Decision-Theoretic Control of Reasoning:
General Theory and an Application to
Game-Playing ~

Stuart Russell and Eric Wefald
Computer Science Division
University of California
Berkeley. CA 94720

October 11, 1988

Abstract

In this paper we outline a general approach to the study of problem-solving, in
which search steps are considered decisions in the same sense as actions in the world.
Unlike other metrics in the literature, the value of a search step is defined as a real
utility rather than as a quasi-utility, and can therefore be computed directly from
a model of the base-level problem-solver. We develop a formula for the value of a
search step in a game-playing context using the single-step assumption, namely that
a computation step can be evaluated as it was the last to be taken. We prove some
meta-level theorems that enable the development of a low-overhead algorithm, MGSS™.
that chooses search steps in order of highest estimated utility. Although we show that
the single-step assumption is untenable in general. a program implemented for the
game of Othello appears to rival an alpha-beta search with equal node allocations or
time allocations. Pruning and search termination subsume or improve on many other
algorithms. Single-agent search. as in the A algorithm. vields a simpler analysis. and
we are currently investigaiing applications of the algorithm developed fo: this case.

*This research has been supported by an equipment grant from the AT&T Foundatior. Wefald has been
supported by a GE Foundation Fellowship and more recently by a Shell Doctoral Fellowship. Ve gratefully
acknowledge this assistance.

Contents

Introduction 4
Related work in resource-bounded problem-solving 5
9.0.1 Real-time AI 5
2.0.2 Limited rationality 6
2.0.3 Selectivesearch 8
2.0.4 Theoretical computer science 10
Optimal allocation of computational resources 11
Calculating the value of computation 18
5 Specific base-level problem-solvers 24
5.1 Simple decision-making in real time 25
5.1.1 Meta-greedy algorithmso 25
5.1.2 Single-step assumption 25
5.1.3 Variation of estimated utility with search 26
5.2 Decision-Theoretic Real-time A™ e e 29
5.2.1 Real-Time A™« . o o e 30
5.2.2 DTA* with an Admissible Heuristic 30
5.2.3 DTA* With a Non-Admissible Heuristic 34
5.3 Game-playing: The MGSS* algorithm 35
5.3.1 Backing up error distributions 36

5.3.2 Implementation 38
5.3.3 Estimating leaf-node error distributions 39
5.3.4 Computing the search-value expressions 40
5.3.5 Estimating deliberation costo 41
5.3.6 Performance e 42
5.3.7 Detailed comparison to other work on game-playing 43
5.3.8 Further work: recursive search algorithms 44
6 Summary 45

()

Blot out vain pomp; check impulse; quench appetite; keep reason under its own
control.

Marcus Aurelius Antoninus

1 Introduction

This report describes research in progress on the RALPH (Rational Agents with Lim-
ited Performance Hardware) project. The principal goal of this project is the design of
robust software architectures for goal-driven intelligent systems operating under resource
constraints, particularly time bounds, with the capability for self-adaptation to improve
performance in a given task environment. A major tool of this research is a normative
meta-level theory for the value of computations, since this allows an agent to allocate
scarce computational resources optimally. Progress on developing such a theory forms the
main subject matter of this report; the following remarks may help to put this work in
context.

The study of resource-bounded intelligent systems promises to be a major area of re-
search in Al in the near future, with the potential for drastic revision of our understanding
of learning, inference and representation. The logic-based approach to Al emphasizes the
ability to reach correct conclusions from correct premises. The rational agent approach,
derived from philosophical and economic notions of rational behaviour, emphasizes max-
imal achievement of goals via decisions to act. The main criterion driving the design of
such systems is the effectiveness of their behaviour; having true beliefs is a secondary goal.
When resource bounds come into play, we have the case of a limifed rational agent (LRA),
for which infallible, open-ended inference is an unaffordable luxury. The solution to such
a consirained-optimization design problem may look very different from that provided by
the deductive model for the unconstrained problem. Our approach will be to address the
design problem with the finitude of resources as a starting poini, rather than trying to lop
corners off the deductive model.

The problem of resource-bounded reasoning is usually studied under the heading of
real-time Al but has more general applicability than the class of problems usually studied
in that field. The formal characterization of the problem situation is the following: the
utility of a given action performed by the system exhibits a significant dependence on the
time at which it is carried out. The dependence is usually such that complete solutions to
the decision problem are infeasible. Typically, the utility of an action will be a decreasing
function of time. Since the time at which an action can be carried out depends on the
amount of deliberation required to choose the action to be performed, there will usually
be a tradeoff between the intrinsic utility of the action chosen and the fime cost of the
deliberation. Standard algorithms either maximize intrinsic utility with little regard for
the time cost, or minimize the time cost for achieving some fixed level of intrinsic utility.
An assumption underlying this work is that considerably greater flexibility in the control
of reasoning is required in order for systems to maximize their overall performance.

We envisage resource-bounded problem-solving as occurring in an adaptive, decision-
theoretic, meta-level architecture. With this architecture, the system can perform explicit
reasoning about the costs and benefits of the various computational actions available for
solving a problem with varying degrees of solution quality and certainty. Below, we devciop
the foundations of a theory for estimating the value of any computation within the context

of a given base-level decision-making system. The architecture is adaptive in the sense
that the (sometimes expensive) meta-level reasoning can be compiled into efficient control
policies for use in future problem solving, thereby amortizing the cost of control reasoning
and allowing the system to converge towards an optimal configuration for 1ts environment
and goals. For this reason, the topics of meta-level reasoning and compilation need to be
pursued together in a unified framework. However, these subjects are not discussed in this

report.

2 Related work in resource-bounded problem-solving

This section discusses related work in several subfields. We first cover research on tradi-
tional “real-time AI” systems. We then discuss work involving explicit reasoning about the
costs and benefits of computations, and work on architectures incorporating some kind of
meta-level capabilities. A special subfield is that of selective search algorithms for game-
playing and puzzle-solving. Lastly, we discuss the problem of computation cost {rom the
point of view of theoretical computer sclence.

2.0.1 Real-time Al

Work in real-time Al has traditionally focused on delivering Al capabilities in applications
demanding high performance and negligible response {imes. As a result, research has
emphasized maximally efficient processing of inputs. Designers typically choose a fixed level
of desired output quality, and then perform the necessary precompilation and optimization
to achieve that level within a deadline. In a recent survey [54], Laffey defines real-time
systems as follows: «The feature that defines a real-time system is the system’s ability to
guarantee a response after a fixed time has elapsed, where the fixed time is provided as part
of the problem statement.” In the large majority of the systems surveyed in their article,
the required response time is relatively constant; given this view of real-time, the authors
are led to the conclusion that “research which focuses on speeding up a version of the
algorithm that can guarantee a response time should be given high priority.” As Dean has
pointed out [22]. this approach, combined with algorithms that do not degrade gracefully as-
time bounds are reduced, leads to a research strategy based on compile-time optimization
and variants of job scheduling. It seems unlikely that such an approach will generalize,
particularly to cases of widely varying time pressures and problem complexities, or cases in
which the need to act may arise on short notice. In addition, the ‘deadline’ model of time
pressures 1s overly restrictive, since in reality there is almast always a continuous increase
in the cost of time. A large qumber of application programs have been developed for real-
time problems [3,5,6,16,17,15.19,30,31,33,40,42,50,58,62,67,68,76,79,81,87.89,93,94,98,101].
Many of these are discussed in detail in Laffey et al. [54]. The authors of the latter survey
note, somewhat despairingly, that “Currently, ad hoc techniques are used for making a

system produce a response within a specified time interval.”

Q1

2.0.2 Limited rationality

It is a commonplace of artificial intelligence that perfect rationality, in the sense prescribed
by decision theory, is unlikely to be computationally attainable by systems that explicitly
solve the decision problem at each juncture. Simon made clear the distinction between
systems that compute the rational thing to do (procedural rationality), and systems that
simply do the rational thing (substantive rationality). Several articles on the subject
of rationality appear in [90]. Substantive rationality, however, does not come for free.
Although it means that an agent can be perfectly rational despite limited computational
resources, it can only arise in one of three ways:

1. By design, where the designer possesses the computational and informational re-
sources required to find optimal solutions.

2. By simple adaptation, that is, direct adjustment of behaviour in response to feedback
{from the environment.

3. By deliberative self-design, where the agent itself carries out the required computa-
tions, (perhaps incrementally) compiling them to ensure substantive rationality in
future situations.

In non-trivial environments, particularly those with significant variation, it will be the
case that exact solutions to the decision problem are intractable. Moreover, simple adap-
tation will be inadequate as a means of learning. With appropriate allocation of resources,
however, it may be possible to approximate rationality to some degree. A premise of this
research, therefore, is that flexible, autonomous systems in complex environments require
the ability to reason explicitly about the appropriate resources to allocate to computation
at any point. and about which computations will be most effective. This premise is shared
by several other researchers in Al. Below we briefly describe the major current research
projects in this area.

e Jon Doyle has been carrying out a long-term theoretical, perhaps even philosophical,
investigation into the nature of rationality in real systems. under the heading of
‘rational psychology’ [26.27]. Using the principle that computations, or internal
state changes, are actions to be chosen like any other actions. he has investigated the
general notions of belief, intention and learning. In mainstream philosophy, Harman
[39] has evinced a similar position concerning reasoning.

e Rational choice of computation has emerged as a topic of study in the field of medical
decision-making for two reasons: firstly, because of earlier work on the value of
performing tests to obtain information (there being an obvious analogy between
performing tests and carrying out computations); and secondly, because of the need
for high-stakes decision-making in real time, for example in intensive care units. Most
work in this area derives from early work on the value of information by Howard [48]
and Good [37]. Eric Horvitz [44,45] discusses maximizing the comprehensive value of

6

a computation, referring to the utility of the action chosen by a computation taking
into account the cost of the computation itself, and studies various tradeoffs and
default policies in this light. He has also applied similar ideas to the problem of
sorting under resource constraints [46]. Heckerman and Jimison [43] show how the
amount of detail in the decision-theoretic formulation of a therapy problem can be
varied according to the cost of complicating the model, the criticality of the decision
and the degree of dominance of one course of action over another.

Alice Agogino has been investigating the use of decision-theoretic modeling in the
control of mechanical systems such as high-speed lathes and pumps. Using IDES
(Influence Diagram Expert System) [2] she is able to carry out meta-level analy-
sis automatically to decide, for example, whether to run a diagnosis routine, with
associated downtime costs, or to continue running the machine under potentially
suboptimal conditions.

Tom Dean has been investigating several aspects of temporal reasoning [23] and
real-time planning [21,22]. In the latter work he assumes a known variation of the
intrinsic utility (see below) of the results of a computation method with the amount of
resources allocated to that method, and uses this utility profile to allocate resources
optimally in various resource-bounded scenarios. "His principal contention is that
real-time problem-solving requires the use of what he calls anytime algorithms, that
is, algorithms whose quality of performance degrades gracefully as their resource
allocation decreases.

Mike Fehling and Jack Breese [32], like Agogino and Horvitz, have adopted a decision-
theoretic approach to the control of reasoning and information-gathering, and de-
scribe a simple robot scenario in which a robot is faced with a choice between heading
for one of two bridges without knowing which is usable, and taking a reconnaissance
detour. They show how the optimal choice depends on the cost of time and on the
probabilities of the various outcomes from reconnaissance.

Bratman. Israel and Pollack. members of the Rational Agency (RatAg) working
group at Stanford’s Center for the Study of Language and Information, have pro-
posed a system design that combines elements of decision theory with Al planning
techniques [11]. They claim that the role of plans in a decision-theoretic framework
is to limit the options to be considered at each juncture, thus keeping the decision
problem tractable. Essentially, computation consists mainly of extending and instan-
tiating a partial plan, or executing the plan’s immediate recommendation subject to
interrupts and plan failure monitoring.

Vic Lesser and his group at the University of Massachusetts have studied real-time
problem solving in some depth, particularly in the context of a distributed vehicle-
tracking application [29,49.61,62]. Although the approach taken is primarily prag-
matic, the principles adopted are very similar to those given below, particularly the

-1

definition of ‘real-time’ as denoting situations in which the utility of actions varies
with time, rather than just simple deadline situations. Plans are viewed as expres-
sions of prior control decisions, as in the RatAg work, and approximation 1is the main
method for achieving flexible processing.

The research program proposed herein shares some of the ideas in the above efforts. Al-
though detailed discussion is left to the following section, it is worth pointing out that
this research differs in the following respects: it aims to integrate control reasoning with
compilation to produce efficient execution architectures; it uses decision-theoretic e\.lua-
tion of computations, in terms of their expected outcomes and utilities, rather than using
meta-level condition-action rules; it computes the utility of computation directly in terms
of the resulting change in the base-level action selected for execution, thereby embody-
ing a formal justification for control policies; it emphasizes fine-grain control of reasoning,
rather than a big-switch approach; it defines and integrates multiple forms of execution
architectures using compiled knowledge. More globally, we take a system’s internal utility
function to have an empirical status, rather than to be a given, and we emphasize the use
of defaults combined with continual adaptation for performance improvement as a route
to avoiding the standard problem with reasoning about control, namely infinite regress.

2.0.3 Selective search

Selective search algorithms, typically employed in game-playing, use a simple but well-
developed form of meta-level control. In these algorithms, the search tree is grown not using
a situation-independent procedure such as breadth-first search, but rather by choosing, at
each cycle, to expand the node that is ‘most promising’ according to some measure. This
measure embodies the system's implicit meta-level preferences - the criteria according to
which one computation is considered to be more valuable than another. A second facet
of such algorithms is their ferminaiion criterion, which effectively embodies the system’s
meta-level preferences between time costs and computational benefits.

The simplest such algorithms are the best-first and branch-and bound procedures (in-
‘cluding A*), which assess the desirability of ezpanding a node according to the desirability
of a solution path that includes the node. We propose that this confuses two quantities:
the intrinsic cost or value of the solution found, and the cost of finding it. In some cases.
this confusion is harmless, but particularly in game-playing it can lead to irrational search
policies. Part of the difficulty with using these algorithms in real-time situations is that
they were developed for finding optimal solutions to problems before taking any action -
essentially, the cost of search was considered to be a second-order concern. In realistic
settings (and in the majority of games) only a limited amount of search can be done before
committing to an action, usually well before the goal state is reached in the search. Korf
[51,52] has been investigating the properties of search algorithms which commit to actions
before reaching the goal state, and has found that acceptable performance can be obtained
(in terms of the length of solution path found) with only a limited look-ahead horizon.

More sophisticated programs have been constructed for game-playing. where the infea-

sibility of search to termination has long been accepted as a fact of life. Some early work,
that unfortunately does not seem to have been picked up by the Al community, was done
by the philosopher/statistician I. J. Good [37,38]. Good proposed a decision-theoretic anal-
ysis both of move choice and search step choice, along with a comprehensive set of ideas
for building high-performance chess programs. His suggestion for choosing search steps
was for the system to estimate its expected utility before and after expanding a node, and
to prune those nodes that did not appear worth expanding. The utility estimates were to
be derived from the backed-up value of the moves viewed as best before and after the node
expansion. As we discuss in more detail below, his suggestion contained a technical flaw
but was certainly ahead of its time, and has reappeared in simpler forms in more recent
work by McAllester and Rivest (see below). The mainstream of game-playing research and
programming has been dominated by fixed-depth minimax search using alpha-beta prun-
ing [53]. The alpha-beta heuristic is in effect a meta-level ‘theorem’ stating that a certain
class of search actions have no value, on the assumption that the current leaf-node evalu-
ations will not be changed as a result of further search (hence the utility of this heuristic
in conjunction with fixed-depth search).

The rigidity of these simple meta-level policies was realized by Berliner [10], who
pointed out that they result in needless search when only one legal move is available,
or when one move can be seen to be better than all others even without search.

Berliner's B* algorithm [10] represents a significant departure from minimax and alpha-
beta. In B, the single-valued static evaluation function is replaced by a pair of values,
representing an upper and lower bound on the presumed “true” value of the node. The
algorithm finds a proof that one first-level node is better than all others, by expanding the
tree and backing up new upper and lower bounds, until the lower bound of one first-level
node dominates the upper bounds of all the other first-level nodes. The algorithm can
accomplish this either by attempting to raise the lower bound on the best node, called
the “prove-best” strategy, or by lowering the upper bounds on all other nodes, called the
“disprove-rest” strategy. Palay [77,78] has given heuristics for deciding between the two
strategies. The choice can easily be formalized and computed within the decision-theoretic
framework described below. v

Although the line of research on B* algorithms reflects a number of useful insights into
the search process, it does not incorporate explicit reasoning about the value versus the cost
of search, in terms of its ultimate effect on move quality. Instead, it assumes that progress
toward the goal of proving that one move dominates all others is always worthwhile, and
seeks to maximize the rate at which such progress is made. In our terms, B is using the
wrong utility function at the meta-level. as illustrated by the case of symmetrical moves,
where one should toss a coin rather than attempt to prove one better.

Two other recent approaches are Rivest’s Min/Max Approximation method [82] and
McAllester’s “Conspiracy Numbers” approach [69]. Both are iterative, selective-search
methods. Rivest’s method is based on the principle that the best node to expand at any
given point in the search is that node whose expansion would provide the greatest amount
of information. He suggests that the node which should be expanded under this principle is

that node such that a small change in its value would cause the greatest change in the value
at the root. He shows that the backed-up minimax value of a node can be approximated
by a differentiable function, whose derivative can be maximized, giving the node on whose
value the root value most highly depends, in the sense that the ratio between a given change
in the node’s value and the resulting change in the root’s value is greatest. In general this
node will simply be the frontier node reached by following the line of best play, other things
being equal. However, the influence of any node at the frontier on the value at the root
diminishes with depth, so that as the line of best play is expanded to greater and greater
depth, other nodes eventually will come to be expanded. Thus, Rivest's method could
perhaps be approximated by using a control-level evaluation function which estimates the
worth of expanding a node to be an amount which increases with the closeness of the node
to the line of best play, and decreases with the depth of the node. Such a function could
be seen as a refinement of the implicit two-valued estimator used by alpha-beta. Below,
we show that Rivest’s algorithm can be led into fruitless searches because of the lack of
correspondence between his principle of maximum information and the true value of a
computation.

McAllester’s approach is based on the notion of a “conspiracy”. A conspiracy Is a
set of nodes that must change their values to increase or decrease the root value beyond
given bounds. If we assume that a conspiracy of a certain size is unlikely, then we can
put upper and lower bounds on the range of likely values that can be taken at the root.
The tree is then searched in a way that shrinks this range of likely values as much as
possible. In choosing which move to make, McAllester follows the dominance strategy
of B*, terminating the search when the lower bound of one possible move exceeds the
upper bounds of all other moves. Note that this approach depends on making an a prior
assumption about what size of conspiracy is “unlikely”. More work is needed to analyze
the basis for such a choice.

2.0.4 Theoretical computer science

Since the recognition of the intractability of finding exact solutions for many interesting
classes of problems, theorists have spent a good deal of time studying algorithms with one
of two properties:

1. A guarantee that the solution returned will be within some ¢ (either relative or
absolute) of the optimal solution. This is called approzimation.

o

A probability of at least 1 — & that the algorithm will return the correct or optimal
solution. These are often called probably correct algorithms.

Some researchers, notably Valiant and others in the field of inductive learning [97.41]
have studied ‘probably approximately correct’ algorithms, combining the above properties
in the obvious way. In many cases complexity bounds are expressible in terms of the
error parameters § and ¢; this provides us with exactly the information needed to carry
out effective resource allocation among a discrete set of competing processes (see [22]).

10

However, as Horvitz [46] has pointed out, what is needed is a theory of algorithms that
maximize the comprehensive value of computation. In other words, since the utility of a
computation and resulting action is a function U(S, t) of both the quality S of the resulting
solution and the time t taken to choose it, we would like methods for designing algorithms
that maximize this combined utility. Current theory studies only minimization of ¢ for
fixed output behaviour, or in some cases minimization of error for fixed t. We believe
that a combined approach may be possible using the techniques described below, and is
essential for a system faced with varying resource constraints.

3 Optimal allocation of computational resources

In order for the concept of resource allocation to make sense, the system in question must
have a choice of computations available to it, each of which can return a decision or can
affect the ultimate decision made. The computations may vary along dimensions such
as the amount of time used, the quality of the solution returned, the certainty that an
adequate solution will be returned, and the usefulness of a partial computation if the
process is interrupted. For our purposes, the amount of time used and the quality of
solution returned will be of paramount importance, since limited resources of time are the
major Tocus of this research.

Choices concerning which computation to carry out must be made by meta-level com-
putations. This, of course, leads to the potential for an infinite regress of meta-levels. This
regress can be avoided by, among other methods, the use of approximate decision-making
(the outcome of which is not guaranteed to be optimal) at some point in the hierarchy,
and by carrying out an unbounded computation at design time. The latter method has
been preferred in computer science generally, being the subject of research in algorithms,
but for the tasks faced in Al the variety of situations and time pressures is too great, and
we must imbue our systems with an autonomous capability to control computation in a
situation-dependent way.

The basic proposal here is quite simple: choose computations in the same way that
any other actions are chosen. Decision theory is the standard normative theory for actions,
so let’s apply it to computations too. This idea, although reasonably well-established in
decision science [37]. is relatively new in Al In addition, getting the model right and putting
it into practice are not such easy tasks. Work in decision science has concentrated on the
relatively simple case of deciding whether to act now or to carry out a single comput. tion
and then act on the results. We discuss this situation, and other, more realistic cases,
in the following paragraphs. We first give a formal definition of the expected value of
a computational action in the general case, and discuss why it is a difficult quantity to
estimate. We then discuss various methods for computing approximations to this quantity.
Finally, we describe an implementation of one of these methods, and discuss its strengths
and weaknesses.

Let us first review the basic aspects of any implementation of decision theory [88,99].
We have

11

1. A utility function U(W)! on world situations W, whose range must form a partial
ordering and be closed under multiplication by the reals. (Standard real-valued
utility functions satisfy these requirements.)

2. A set of possible actions A;

3. Some knowledge of the current world situation, expressed by X’s subjective proba-
bilities P(W;) of the possible situations W;.

4. Some knowledge of the outcome O;; of action A; in situation Wj.

The optimal action is that which maximizes the agent’s expected utility, computed accord-
ing to the formula?

EWU([4])] = 3 P(W;)U(Oy). (1)

In many situations, such as betting on dice, the application of decision theory is quite
straightforward. After all, probability was invented partly out of a desire to understand
gambling. A good introduction to decision theory and its uses in artificial intelligence 1s
given in [47].

In the choice of computations, however, we have a different story. A computation
directly affects the system’s internal state, and only indirectly the external world (except
by consuming time), whereas a utility function usually refers only to aspects of the total
situation that are external to the agent (such as winning a game of chess) or to aspects
of internal state such as happiness that are, fortunately, not generally accessible to direct
computational manipulation. So how are we to judge the effects of computations, in order
to choose properly between them?

The answer lies in knowledge of the system’s own decision-making process. It is essential
to know how an internal computation will affect the system’s ultimate choice of an ezternal
action. Thus, there is value in computation only inasmuch as it affects the system's
ultimate choice of action.

There are also costs to computation. As stated in the introduction, real-time Al is
properly defined as the study of decision-making under conditions in which the utility of a
given action varies significantly with the time at which it is carried out. Any class of time
constraints can be represented by describing this variation. The ‘cost of computation’
arises from the fact that in many cases the utility of an action decreases with time (or
the agent’s overall utility is decreasing in the absence of action), so that the time delay
caused by computation will tend to reduce an agent’s expected utility, all other things

In the standard formulation the utility function is indexed by the agent and by the time at which the
agent’s preferences are calculated. The calculation is assumed to be instantaneous. We omit the agent index
for simplicity, and assume that the agent’s preferences on world states remain constant, although the world
state can certainly include a clock.

2We will refer to the result of taking action A in the ‘current state' as [4]. This notation, though informal,
is adequate for our current purposes. When we need to be more specific about the state in which the action
is taken, we will use the notation [A, S].

being equal.® Later, we define the conditions under which the cost of a computation can
be defined and separated from its ‘intrinsic benefit’.

Note that we do not assume that the agent knows the expected utilities of his actions;
otherwise, no computation would be necessary, and the agent could simply take the action
with the greatest expected utility. In general, it may be impossible for the agent to
determine with certainty all of the probabilities and utilities he would have to know in
order to compute the expected utility by applying equation 1. However, often the agent
does have available an estimmate of the expected utility U([A4;]) of his actions. In the AI
literature, such estimation functions are often called evaluation functions. We will use
the symbol U to denote the agent’s current estimated utility function. In fact, it is often
the case that compulation proceeds by revising the estimated utility function. This is the
general picture of deliberation about how to act on which we will most closely focus our
attention. For instance, in a game-playing program, a computation might involve a further
ply of search, followed by back-up of new minimax values for the top-level move choices.
These new backed-up values would give the agent’s new estimated-utility function, based
on its latest computation. Note, however, that we make no general assumptions about how
the estimated utility function is arrived at. For instance, the estimate might or might not
be based on individual estimates of the component probabilities and outcome utilities.*

We assume that at any given time the agent has available to it a default action,
which is the action, a, that appears best to it given its reasoning to date. That 1s,
a = ”‘;““{(]([A])}. Initially, before any deliberation has been done, U will presumably
be a constant. For definiteness, we will assume that ties are broken somehow, perhaps
by picking randomly from the actions with maximum estimated utility, so o is always a
determinate action.

In general. the agent has a choice between acting upon its reasoning to date, that is.
carrying out its current best action a, and engaging in further deliberation. Deliberation
consists of computation steps, which represent the basic units about which control reasoning
is done. The utility of a computation step S; is defined, just as in ordinary decision theory.
in terms of the resulting state [S;].

Before sketching how this utility can be estimated by a program, it is worth a few
words to discuss its use. It is tempting to view a formula for U([S]) as a general inter-
mediate utility expression for non-committed states, such that the utility increment of an
individual computation step S; can be viewed as the difference between the formula applied
to [S;] and the same expression applied to the current state. This would be a mistake.
The agent does not have a choice between carrying out the computation and staying in
the current state: time passes inexorably, and given ihat the expected intrinsic utility of

3 An additional source of computation cost may be that computing itself consumes energy, as is the case in
biological systems. For the purposes of AL, however, we will assume that all instruction executions, including

no-ops, have the same cost per unit time.

It is not necessary, of course, that the agent ever actually make a numerical estimate of the utilities of
the available actions and then choose .he action with maximum estimate. It might instead simply have an
estitmated preference ordering, and choose the action which comes first in the ordering. We will have little
directly to say about this more general case.

13

computation is always non-negative, the agent is obliged either to act or to compute. In
other words, any completion of the computation beginning with the null step (no-op) has
lower expected utility than the best completion beginning with & useful step. Thus to
choose a computation step S;, we compare the utility of [S;] with the utility of [Si] for
k # j, and also to the utility of the state in which the agent has committed to the current
best action a.

We therefore define the nef value V(S) of a computation S as the increase in utility
gained by carrying out that computation rather than ending deliberation and taking the
current best action immediately.

V($)=U([S]) - U([e]) (2

—

Similarly, we define the estimatcd net value ff’(S) as the increase in estimated utility (=
the estimated increase in utility) due to the computation.

V(S) = U([S)) - U(la)) (3

~—

The major distinction that must be made in calculating U([S]) is between isolated com-
puiations, those in which no further computations occur after S, and pariial computalions,
those that may be followed by additional deliberation.

Case 1: Isolated computations.

Suppose we know that the agent will have to act after the computation step S; in question
(if it does not act immediately). In other words, suppose the agent is only choosing between
complete, or isolated computations. Then the utility of S; will be equal to the utility of
the action o’ believed by the agent to be optimal after S; has been carried out, given that
the action is carried out affcr S; is completed. That is,

E(U([S;]) = EWU([o", T;])) (4)

where T; is the time at which computation S; will be completed if begun at time T'. (Note
that from the agent's point of view, both o’ and U([e’.T}]), and perhaps T as well. are
random variables in the current state. That is, their actual values are not yet determinate,
though the ezpectations will be well-defined.)

In this case, therefore, the expected net value of S; is given by

EV(S;)] = EU([, T;]) = U([a])] (5)

That is, the net value is what the agent gained (or lost) by doing the calculation and thus
delaying action.

In [48], R.A. Howard, using a somewhat similar formula to the above, analyzed in detail
the expected value of obtaining complete information about various unknown quantities
in a competitive bidding situation. For our purposes, a more directly usable formula 1s the
following, which gives the expected estimated net value of computation §;

E[V(T.S;)] = E[U([o, T5]) = U([a))] (6)

14

An important point about this formula is that in many domains, 1t is possible to arrive
fairly cheaply at a useful estimate of the expected estimated net value of a particular
computation before it is carried out, given statistical data concerning the value derived from
past computations. We will describe below a game-playing program we have implemented
which makes use of such estimates. Briefly, suppose we can characterize 5; as belonging
to a given class of computations, i.e. suppose S; is a particular {ype of computation, such
as an additional ply of search in an iterati\e-deepening algorithm®, being considered in a
particular type of situation, where the situation is characterized by some pre-determined
set of features. Then we can characterize the distribution of the random variable \/(9)
to almost any desired standard of approximation by computing post hoc the net increase
U([a’, 1)) - U([a]) for a large sample of computations in similar situations drawn from
the same class.® Of course, computing the actual increase for a large sample of similar
situations will be much more expensive than simply carrying out the computation S;.
However, if a large amount of “leisure time” is available, in which such. statistical sampling
can be done without time pressure’, with the resulting distributions stored for later use,
presumably in a parametrized form, then the cost of applying formula 6 to estimate the
expected net value of computation S; can be orders of magnitude cheaper than carrying
out S; itself. In that case, the e‘{pected value calculation will be well worth doing, since in
many cases it can tell us ahead of time that S; is expected to be of little value, and hence
should not be carried out. Or, if more than one computation is under consideration, we
can choose the one with highest expected net value.

Case 2: Partial compulations.

If we could always assume that the agent would necessarily take the action o' after per-
forming search action S, then calculating the value of computation would always be as
simple as in the previous paragraph. However, in general this is not the case, since, as
long as the agent does not arrive at complete certainty about its utility function—which
we assume our agents almost never attain®— in state [S;] the agent will still have a choice
between taking action o', and continuing to deliberate. Thus the value of the computation
S; will be the value of having this choice. There are at least two ways to model the utility
of being in the state of having a choice between actions.

A. If we assume that the agent will be able, when faced with such a choice. to choose

5In fact, in our actual experiments. we computed statistics for individual node expansions in the game of
Othello. This case is slightly more complicated to describe; we discuss it in detail below.

6In fact, we can simplify the post hoc computation of the net increase in the sample situations by decom-
posing the estimated utility of each move into an intrinsic component, independent of time, and a time-cost
component, which depends only the amount of time required to perform a given computation. We discuss
this decomposition in more detail below.

"For instance, this is clearly true of game-playing, where, at least in terms of time, quite high development
costs can easily be afforded, even though the time pressure during actual play is high.

8There are some exceptions to this; for instance, during end-game play it is sometimes possible to deter-
mine the exact minimax value of a position. In such cases further computation would obviously be a waste
of time.

15

the best option, then the utility of having a choice between two actions is just the maximum
of the utilities of the two actions. This is a standard approach taken in decision analysis,
for instance by Howard in [48]. Thus let S be the action of continuing to compute in state
[S;], and let T; be the time at which §; is completed. Then on this model, the utility of
computational action S; in the current state is given by

E[U([s;D] = E[max{U([a", T;)), U([Sk, T5])}] (7)

One difficulty with this formula is that it appears to give little help in figuring out
how in general to calculate, or even estimate, the expected value of a computation, since 1t
defines the value of a present computation in terms of the value of a future computation.
In the next section, we will describe a possible line of research which we hope will overcome
this difficulty.

Moreover, it is probably unreasonable for the agent to assume that it will necessarily
choose the action with maximum utility in state [S;]. For even though he is committed to
choosing the action which then appears best to him, it doesn’t follow that the best action
will in fact appear best.

On the other hand, if we replace U by U in equation 7, we obtain the following:

E[U([S;)] = E[max{U (", T;1), U([Sk, T;D}] (8)

It might be argued that equation 8 is indeed a principle of rationality, in the sense that
it imposes a constraint on any ezfenston of U from base-level actions to computational
actions. For it is true almost by definition that the agent will pick the action with maximum
U, and hence in a sense equation 8 says that the agent should value an action the same
as he values the computation that told him to take the action. But against this it might
be argued that if the agent knows that his estimated-utility function is error-prone, he
needn’t think that the right-hand side of equation 8 gives the true expected utility of the
computational action §;.

We have found it very difficult to settle the sorts of philosophical questions raised by
such considerations, and will not attempt to do so here. But we hope the dilemma of the
previous paragraph might convince the reader, as it has us, that the questions raised here
are very deep.

In any case. equation 8 suffers {rom the same difficulty as equation 7, that it cannot
defin. a unigue extension of I/ to computational actions because it is “ungrounded™; i.e
it does not specify how the recursion bottoms out. Later in this section we will discuss a
possible way of overcoming the non-uniqueness, by specifying a conservative eztension of
U from base-level to computational actions.

B. More generally, if we do not wish to assume that the agent will be able to choose
infallibly the best action in state [S;], we may assume instead that the agent has a certain
probability of taking any given action. This probability may be directly related to the
utility of the action; in an extreme case, if we assume that the probability is 1 for the action
with highest utility, and 0 for other actions, we arrive at the model of equation 7. The better

16

Figure 1: A decision tree for possible computations and resulting actions

the agent’s utility estimator 7 as an approximation to 7. the closer will these probabilities
come to this extreme case, but as long as [’ remains error-prone, the probabilities will lie
in the open interval (0.1).

Let pi(a’). p;(Sy) Le respectively the probabilities that in siate [S;] the agent will
immediately take the new best action a’. and that it will continue deliberation with com-
putational action S,. Then on this model the expected utility of the computational action
S; 1s given by ‘ :
IS = Elps(a)U(la", S31) + ps(S)T (1S, T3] (9)

Again, this formula gives the value of a current computational action in terms of the
value of a future one. However, if we expand the action S recursively in a similar way to
the expansion of S;. and so on. we develop the familiar dccision frec characteristic of such
situations. shown schematically in figure 3.

Moreover. if we expand all computational actions in this way. the right-hand side of
equation 9 becomes the expectation of a sum of terms of the form p;g;(ae)+prgiio.) =.. ...
where the a’s are selected from the Lase-level actions 4;. and ¢, represents the probability
of reaching the kth node. that iz, [775H1 = pi). This expressions thus averages over all
pussille compicte computations (see cquation 101,

If we then comiine terms: corresponding to situatlons in which the same action is
chosen. we get an expression of the form p,(4.) = .. -=p. (4, where now p. represenis
the probability that action 4; 1< cventually chosen after completing the compuiation. Thus.
after wransforrming the equation in this veay, we can then arop the expeciation sign on the
right-hand side (see equation 14 helow).

We wil] explore these ideas. and discuss possible implementations based on them. in
more detail in the next sec:ion.

Whichever model we choose for the utility of a possible computation. the idealized
algorithm that resulis in optimal overal]l behaviour is the following:

1. Keep performing the most valuable of the available computations until none have
positive value 17,

17

2. Commit to the action recommended by the last computation in 1.

This intuitive definition of the value of a computation. and the algorithm accompanying
it, were proposed by Good [37,38]. This algorithm is to be distinguished from a best-
first search, in which search steps are ordered by the utilities of the nodes to which they
apply. Although ‘best-first’ sounds like a good idea, there is no compelling reason why
there should be a correspondence between node utility and node search value. We do show
below that in some cases this correspondence exists, but in others it does not.

Obviously, the computation of the values V' cannot be instantaneous; in fact, as we
describe below, it can be arbitrarily hard. However, in many cases calculation is sufficiently
fast to result in benefits over other control methods. In other cases, the formulation of a
formally correct estimation of the value of computation results in a tractable meta-level
after compilation, or forms the basis for well-motivated approximations.

4 Calculating the value of computation

In order to develop the appropriate formulae for calculating the value of a computation, we
must first introduce some notation. As we have seen, the notion of the agent’s estimate of
its utility is central to a discussion of the agent’s deliberative actions, since deliberation in
general proceeds by revising the estimated utilities. Let us use S to denote the base-level
computation sequence carried out up to the current state. In a game-playing system, for
example, S might be the sequence of node expansions to date. If we are now considering
some computation step S;, then the computation sequence after S; has been carried out will
be §.5;. We will use the notation QS to represent an estimate of a quantity Q calculated
in the state resulting from computation S.°

In this section, we will try to accomplish three things. We want to spell out in detail
the transformation of equation 9 alluded to at the end of the last section. Also. we want
to replace the function U in that equation by the function U'. since we are assuming that
the former is unknowable, and the agent is able to calculate only in terms of the latter.
This will require some care, and perhaps further transformations of the equation. Finally.
we will try to show how, and under what conditions. the net value of a computation can
be decomposed into two terms, the net or intrinsic benefit of the computation, due to
the improved choice of action. and the cost of the computation due to the expenditure of
temporal resources. This is an important issue because Al applications usually employ
evaluation functions for actions that are independent of time.

As mentioned above, the probability distribution among actions corresponds to. and
can be derived from, a probability distribution among complete computations, since a com-
pleted computation defines the action the system will take, assuming its decision-making is

%In discussing an estimate of some quantity of interest, such as the agent's estimate of its actions’ utility,
it is important to keep in mind the computational state on which the estimate is predicated, since we will
be considering estimated utilities and probabilities at different stages in the decision-making process: in
particular, the current state and the projected state after the computation step we are considering.

18

deterministic. By a complete computation we mean any sequence of computational actions
that ends with the agent performing a particular base-level action.

We will return to the problem of the system’s estimated utility if it acts immediately.
Now, let us consider the situation resulting from taking computational action Si. In this
state, we can complete the computation by taking any sequence T of computational steps,
followed by an actual action in the world. T could be the null action, in which case the
system will take the current best action after Si. Since we are not now choosing the
subsequent course of computation, it is reasonable to impose a probability distribution
over the sequences T. Then the utility of [Si] can be estimated {rom averaging the utilities
of the states resulting from all possible complete computations beginning with S.5;:

[7S-S ([Sk]) = Zprs St

mj"U“t ([4:,£(S.5:.T)]) (10)
Note that the estimated utility of an action A; is calculated in the computational state in
which it is taken. For example, in a chess program, the estimated utility of a move will be
the evaluation backed up from the search tree that has been grown to date. But also, the
estimated utility is a function of the external situation in which the move is taken, this
situation being denoted by the function ¢. 10 In simple cases such as chess, the function
¢ denotes the time that has passed during a computation, since the board situation does
not change. In more complex (and realistic) worlds, the dependence extends to include
anything that changes as the computation proceeds and affects the nature and utility of
the action’s outcome.

The utility estimator that takes as arguments both the ‘time factor’ and the ‘local’
state resulting from the action is a well-defined function: the optimal resource-bounded
probability estimate for winning the game from the class of states described by the argu-
ments. But typically we are given some estimator that is independent of time and takes
just the action outcome as argument. We will call such a function the intrinsic ulalily, or
intrinsic benefil. We can then define a function TC, for time cost, that simply expresses
the difference between total and intrinsic utility:

U (4 1) = Ur([4]) - TC([4: 1) (11)
Rewriting equation 10, we obtain

(55‘ ([Sk)) ZPr

S. S’k ma‘(

S0P T((A)) - TC(A:, 1S 5. TY)] (12)

Now if we assume that the time cost term T'C is independent of the state being evaluated
(that is, of the action being taken), then it will just be a function of ¢ and can be factored
out of the max expression:

S5 (s ZPrSS‘ lUssk ZPTSS* T)TC((S.5:.T))] (13)

1014 is of course possible to make ¢ be implicit in the value of [A], but it seems more perspicuous to
separate the two.

19

Hence, under certain assumptions, the notion of a general time cost for computation can
be made precise and used to simplify the meta-level decision process.

Obviously, for the system to make an effective choice between computations, it cannot
possibly examine all possible completions T 1n order to implement equation 13. In the fol-
lowing paragraphs we examine some possible methods for arriving at reasonable estimates
of the value of a computation; each uses a different way of averaging over the possible com-
putations, and each therefore requires different statistical knowledge of the domain under
consideration. By making still further approximations, we can arrive at some interesting
domain-independent heuristics.

The probabilistic strategy approach

The above formulation (equation 10) takes the subsequent course of computation T
as the principal random variable in estimating the utility of the situation resulting from
computation step S;. The action ultimately chosen is treated as a dependent variable.
An alternative approach is to focus on the actions as random variables, estimating the
probability that each will become the action actually carried out. In this approach, the
situation [S;] after the computation step is evaluated as if the agent had a probabilistic
straiegy, somewhat like that proposed by von Neumann [99] as a solution to certain games.
Thus in [S;] the agent’s expected utility is estimated by calculating the probability that
each action A; will be chosen eventually, and multiplying by the estimated utility of each
action on the assumplion that it is chosen.

USS((S) = 3 Pr° (4,05 ([4:]| 4; chosen) (14)

where we use the conditional notation to denote informally that the fact of an action
being chosen influences our estimate of its utility, and the fact thai the action’s utlity will
depend on the time at which it is taken, and hence on the computation that ends in its

being recommended.
Now, in order to estimate the utility of [S;] using the above equation, we need to

evaluate three quantities:

1. The probability distribution for the values of the various actions after the step S;.
This is the same problem as appears in the isolated computation case.

2. The probability that a given action will be chosen given the action values in [S;] and
the expected variation in the action values with further search. In principle, this
involves a probability distribution over the possible completions, as in equation 10.
In practice, we can get approximate values from prior statistical experiments.

3. For each action, the value it is expected to have given that it is chosen. This requires
the same information as the previous item.

We cannot go into detail here on the computation of these items. The advantage
this approach possesses over the single-step-assumption approach described below is that
it allows the agent to judge the value of a computation step that by itself cannot alter

20

the action to be taken, but because of its altering the action value estimates can set up
subsequent revisions of the current best action. We can describe a tree that is very unlikely
to yield a subsequent alteration in the choice of move as having high inerfic or stability; a
computation step that renders a tree unsfable can thus be valuable.

Adaplive feedback estimatlion

Another approach to estimating the value of partial computations is based on equa-
tion 8; it involves the idea of a conservaiive ezlension of the agent’s utility-estimation
function U from base-level actions to computational actions. As we noted above, an ap-
parent difficulty in attempting to use equation 8 is its “ungroundedness”-~it defines the
value of a present computation in terms of the value of a possible future computation. On
the other hand, an advantage of this equation is that it does not require an estimate of
the agent’s probabilities of taking the various actions; all that is required is knowledge of
the distributions of the values of the actions, including compuiational actions. We have
already mentioned that the distribution of the value of &' can be statistically inferred from
sample outcomes of the various computational actions. We believe that the same tech-
nique might well work in learning the distribution of the value of Si as well. Two things
are required to implement this approach. First, in order to evaluate the outcomes of our
sample computations, we would need to have a method for arriving at a reasonable post
hoc evaluation of a given computational action, S;. Second, we would need features of
situations, including the agent’s internal computational state, that discriminate between
situations on the basis of the distribution of the value of further computation.

Regarding the first requirement, it is to be noted that at the time we are collecting
our sample data, we can have available to us the complete outcome of any given decision-
making incident. This makes the problem of evaluating a computational action post hoc
quite different in nature from the problem of estimating the expected value of a future
computational action. If we are willing to assume, for the purpose of collecting our sample
data, that our current agent’s decisions are, to a certain extent, correct, then we can
arrive at justifiable values for sample computational actions. Consider for instance the
decision history shown in figure 4. In this case, the agent’s first computational action S,
at time 7 resulted in a state where its best base level action was aq and its best further
computational action was 5;. It chose to continue deliberating with S;, which brought it
to a state with best base level action «; and best computational action S;. It again chose
to continue deliberating with S», which resulted in best action as. At this point, it chose
to stop deliberating and take action a-, at time {;.

Consider now the value of computational action §;. On the isolated-computation
model, i.e., ignoring the effect of further computation, our post hoc estimate of the utility
of this action would be!! following equation 4,

U([S1.11]) = U(foy, ta]) (15)

On the current model, however, we would instead employ equation 8, and determine

"'Note that here the estimate {7 is being made after all computation has ended. Hence we dispense with
the superscript notation, and employ an explicit temporal argument.

21

«, 5, t,
4
2 i,

Figure 2: Evaluating a computational action post koc

the value of 5; by “backing up” values from the bottom of the tree. That is, if we assume
that the agent was correct in stopping deliberation when it did, it must follow that aa was
better than any possible further computation it could have made at that point. Hence 1t
follows that the estimated utility of 5o was simply

U([Sa t2]) = Ul[or2, 1)) (16)
Applying equation 8, the estimated utility of 5, is given by

:(;"'([51,:’1]) = ma.x{qf([a‘l,ig]),L:’([Sg,ig.])}
= max{U([a1,12]), U(]aa t3]}} - (17)

Similarly, continuing in this way we find that
(([So ng) = ma\{[OQ 14] [01 fﬂ [O') 13] } (18)
and so on.
Tle last equation may look more interesting if we assume that U 1s given by an intrinsic
utility estimate {7 and a time-cost estimator T (. In that case we find that
U{[Sate)i =T {og) = TCLS) (19)
and therefore that

C([S1.11)) = max{{s(ay), Ci(as) = TC(82)} = TC(S) (20)

and so on.
Finally. we can define the csfimafed net valuc of 5. along the lines of equation 2. by

U(S)) = max{{j(ar). Uf{aa) = TC(52)) = TC(S) = Uilas) (21)

This value of V' then becomes a data point for that type of search acticn in that
particular tvpe of situation. Given a large number of such data points, 1t is possible

to know a great deal about the distribution of V in various types of situations. Such
knowledge can then be used to make decisions about when to search in future situstions.

The reason the extension of U/ to computational actions derived in this way is called
“conservative”, is that it preserves the agent’s judgments about the relative value of com-
putational and base-level actions. That 1s, one might well ask why we should in hindsight
accept the agent’s decision to stop deliberating at time 3. After all, we could if we wanted
simply continue the computation where the agent left off; we might ultimately come up
with an evaluation of the search actions S; and S, drastically different from the above.
Such a radical re-evaluation of the agent’s deliberative process might turn out to be worth-
while; but we suspect it would ultimately have to result in a re-working of the agent’s
evaluation of base level actions as well. Part of the reason for preferring a conservative
extension of U to computational actions over a more radical one is that we wish to ob-
serve the intuitive distinction between deliberation about the base level and about the
meta-level. The point of the current research program is to figure out how, given a limited
rational agent with its own methods for estimating the utility of its actions and its own
procedures for revising those estimates by deliberation, such an agent’s decision-making
procedures can be opfimized by rationalizing its choice of which computational action to
take at a given time.*?

Data derived in the above way will of course be error-prone, since the whole point
of doing the analysis is that we think that the agent often makes incorrect judgments
concerning when to stop and when to continue computing. Certain of these errors will
be caught by the above method of evaluating sample computations, if the agent makes
computations which turn out posi koc to have had negative value. For instance, in the
above example, if ap turns out to be the same move as «;, we would estimate the net
value of computation S, as simply —TC(S;). However, in cases where the agent cuts
off search prematurely, our post hoc evaluation will underestimate the value of the actual
search actions taken, since we are tied to the agent’s own underestimate of the value of
search actions nol taken. In this case, our estimates will be lower bounds on the true value
of the search actions taken.

Note, however, that this sort of underestimate may be precisely what we want. Recall
that one objection made against equation 7 was that it assumes the agent will choose
the most valuable action. Since this is not always the case, the distribution we want to
measure is that of the value of a given computational action fo the agent. There 1s no
point in arguing that the action had a higher value than we are assigning to it, if the agent
is incapable of recognizing this and acting on it.

On the other hand, once we have done our sampling and equipped the agent with
decision-theoretic search control knowledge, it will in a sense no longer be the same agent,
since it will make different choices in the same sorts of situations. We expect that its

2In fact, this may seem a rather superficial reason for preferring a “conservative” extension of the utility
estimator from base level to computational actions. The deeper reason is that we strongly suspect on intuitive
grounds that such an extension will be more reliable than a more radical one, though we haven't proved this
or even {ully spelled out the notion of reliability that we have in mind.

23

behavior will be improved, l.e. that having knowledge about the expected value of its
computational actions should enable it to make better decisions. The problem is that as
soon as that knowledge is incorporated into the agent’s decision-making procedures, it will
be out of date, since it is knowledge about the value of computational actions performed
by the agent as previously constituied. The solution to this is simply to repeat the process
of gathering data about the agent’s computations, and then incorporate the new knowl-
edge into the agent’s procedures, and so on. In fact, once an initial set of distributions is
obtained, it should be a simple matter for the agent to revise those distributions incremen-
tally as it gains more decision-making experience. In this way, the agent might adaptively
converge on a state in which the agent would possess accurate knowledge of the value of
its own computational procedures.

A number of technical problems need to be solved before the ideas of this section can
be implemented. The most important one is that we will need to find easily-computable
features of the search trees which will discriminate situations according to the distribution
of the value of further search. We believe that in game-playing domains, one important
such feature will almost certainly be the conspiracy number of the search tree, where this
1s defined here, by a slight alteration of McAllester’s definition, as the minimal number of
leaf nodes whose values must change in order to change the current best move choice. It
is clear that as this number increases, the cost of achieving a given increase in the utility
of the chosen move increases as well. In this way, we hope to make McAllester’s valuable
insights a part of a rigorous decision-theoretic approach to game-tree search control. In
fact, we believe that similar properties are relevant to single-agent search trees, as we
discuss in section 5.2 below,

5 Specific base-level problem-solvers

Up to this point, we have been working at a very general level, making absolutely no
assumptions about the nature of the base-level decision-making mechanism. The above
equations are applicable to a brain or a pocket calculator, in principle. Naturally, there
are some attributes of certain mechanisms that make them amenable to meta-level control.
The overall computation should be modular, in the sense that it can be divided into ‘steps’
that can be chosen between; the steps must be able to be carried out in varying orders. The
steps can of course have any grain size, ranging from a single machine cycle to a multi-week
economic simnulation; and we can apply the above analysis to a single step in isolation, as
for example when deciding whether to pay for the aforementioned economic simulation or
to use the proverbial seat of the trousers. In the case of the isolated computation step, the
analysis becomes much simpler, as we discuss below.

We now look at some particular systems in more detail. These systems are amenable to
analysis because of the close match between the base-level decision-making mechanism and
the standard decision-theoretic model. This means that such things as utility estimates are
already available as an integral part of the computation. The analyses, although simplified,
will serve as models for explorations into more complex, real-world systems.

24

mew-level

rmsamrsar s na
-
g

base level

Figure 3: Schematic {wo-level search

5.1 Simple decision-making in real time

In this section we examine the case of a base-level system that is a simple, decision-theoretic
algorithm with lookahead. It essentialiy follows the algorithm sketched on page 17. In order
to make calculation of the expected value of computation tractable, we will make certain
simplifying assumptions. which we will introduce explicitly and discuss in detai) as we g0
along.

We will continue our practice of using A; to denote a generic base-level action available
to the agent. These actions are called “top-level moves”, to distinguish them from possible
future actions represented lower down in a search tree. As before, we use a to denote
the current preferred move, i.e. the action with highest current estimated utility. We use
B1. 34, ete., for the current second-best move, current third-best, and so on.

5.1.1 Meta-greedy algorithms

As mentioned above. explicit consideration of complete sequences of search steps is clearly
intractable. The obvious simplification is to consider single search steps and to estimate
their ultimate cflect: we then choose the step appearing 10 have the highest immediate ben-
efit. We call such algorithins mieta-greedy algorithms. We get different variants depending
on how we estimate the ultimate efect of the search step. A meta-greedy algorithm. then.
15 one that effectively has a fixed meta-meta-level policy of a depth-limit of 1 on the meta-
level decision problems. The decision-making situation iz summarized in figure 5.1.1. At
the meta-level we have a choice of search actions. each corresponding 1o the expansion,
possibly by more than one level. of 2 node at the base level,

5.1.2 Single-step assumption

The above expressions for the estimated expected utility of a computation (equations 10
and 14) can be used directly with a meta-greedy algorithm. but it is often somewhat hard
to evaluate. particulariy when the future availability of computational resources is hard to
estimate. The computation is greatly simplified if we assume that it is reasonable 10 act
as If we had time for at most vne more search step.

Assumption 1 (Single-step):

The value of a search step can be estimated by evaluating its expected effect
as if 1t was the only remaining search action to be taken; that is, as if it was
an isolated computation.

Note that this assumption is true if we are considering search sequences instead of steps,
but as it stands it is strictly false. It sometimes predicts that single search steps have no
value, whereas often those steps enable other steps to become valuable. The simplification
comes {rom the fact that, given a minimax base-level, it is relatively easy to predict how
a search step will affect the choice of move, since the system will always choose the move
with the highest backed-up value. In other words, given the single-step assumption, the
probabilities PrS-%:(4;) in equation 14 will be 1 for the highest-valued move and 0 {or the
other moves.

Our implementations to date have employed Assumption 1 as a simplifying assumption.
We are currently working on implementations which will employ the strategies outlined
in Section 4, which we hope will obviate the need for such an assumption. In this section
we describe the problems which had to be solved in order to implement actual algorithms
employing the single-step assumption, and discuss their performance, strengths and weak-
nesses.

Let o be the move we would have made before performing the search action S; being
considered; that is, the current preferred move. Its current expected utility is (':/'S(oz). Let
o' be the move that is preferred affer performing S;.

Hence the intrinsic benefit of a search action §; is given by the following:

A(S) = U7 (a") = U7 % (@) (22)

Recall that, prior to performing S;, A(S;) is a random variable since we don’t vet know
how the search step will affect our opinions of the moves.

Writing T'C(5;) {for the time cost of the search action, the ezpected net value E[V(S;)]
is defined using the expectation of the benefit of S;:

E[V(S;)] = E[A(S;) ~ TC(S;)] (23)

An important corollary of equations 22 and 23 is that if o = o' then V(! is guaranteed
to be negative. Since the true move utility is unchanged, a search action that doesn’t change
the sysiem’s preferred move will have had no value. It is important to recall that this resualt
1s conditioned on the single-step assumption. We will see that, while it makes the expected-
value computation tractable, this assumption also places certain limitations on the depth
of search in some domains, including game-playing.

5.1.3 Variation of estimated utility with search

Looking at equation 10, we see that computing the expectation of A(S;) requires some
knowledge as to how the estimated uiility of the top-level moves A; will change as a result

26

Pw)

_..-—/ — —/ s Y

Figure 4: Move utilities with error distributions

of 5;. We will use the term ¢rror to describe the variation of [.75'53(.4,-} from ("S(A;).
This notion of error has a clear. operational semantics and is empirically available {the
statistical prediction of errors in game-plaving is described in section 4). It also provides
exactly what we need to choose search actions intelligently.

Let p;;{u) be the normalized prior probability density function for the future value of
the utility estimate [‘75‘51(.'—1,-} after the search action S; has been carried out. We make
the following assumption:

Assumption 2 (Subtree independence):

Search steps affecting the subtree from move A; affect only the expected utility
of the top-level move resulting {from A;, and not that of the other top-level
moves. 3
Hence we can immediately conclude that USS(4:) = US{A) i S; does not affect the
subtree from move A;.

A tyvpical situation appears in figure 5.1.3, where we show the error curves correspond-
Ing to one search action for each top-level move.

There are only two cases in which search actions can have value. by changing the
preferred move. Either further search on some non-preferred move 3 causes it to replace
a. or search on a causes 7. the current second-best move. to replace a (see figure 5.1.3).

Suppose we are considering the seu-ch action S;. which aflects the expected utility
of move J;. The search action will only change cur preferred move if US55 > f's(oj
(the shaded region to the right of ["5(a}). If this happens. we expect to be betier off by
an amount U'5%(3,) — U'S(a); otherwise, the improvement is 0 since our move preference

*In many domains. such as standard game-plaving programs using nuinimax as a back-up method. this
assumption will be straightforwardly irue. if we consider individual node expansions as single computational
steps. However, if the search space is treated as a graph rather than a tree. as in some chess and go programs,
then the analysis hecomes slightly more complicated. In certain problem-solving systems a different approach
must be taken. For example. if 2 computation invelves refining a probability estimate used in an infiuence
diagram. the new value may affect the utility of all the 1op-level actions.

[Bv]
=1

Figure 5: Effects of search actions

remains unchanged. Thus

3 -
EN(S)] = [g pale)lz = U5(a))dr = C(S)) (24)
Simiiarly. if we perform a search action §; on the subtree of ihe current best move, our
move preference is changed only if {755(a), the new expected value of our current preferred
move, is less than ffs(ﬁ,-) {where in this case §; is 3, the current second-best move).
Although the new estimated utility of the new preferred move would be less than the
current estimated utility of the current preferred move, we would still be bctier off than
we are, since the search action will have revealed that o is a blunder. Hence
-GS es) . “

EV(SOl = [pa(@)(U5(8) = 2)dz ~ TC(S)) (25)
As we would hope. the expected benefit of any search action is alwayvs non-negative, al-
though this does not of course mean that we will be better off for doing it. Even disre-
garding the search cost, our expectations, as expressed in the static evaluation function.
can be wrong.

These formule allow the straightforward calculation of the optimal search action under
the meta-greedy and single-step assumptions. and of the appropriate stopping point, given
the distributions p;; and expecied utilities [-'(-4.‘}.

Before looking at specific applications. we can describe the gualifafivc behaviour of anv
algorithm based on our approach. Clearly. an agent will tend 10 forego further consideration
of ann action whenever its current estimated value and that of the best candidate are 100
far apart: in this case, it is unlikely that search will provide usefu! information. since the
probability of changing action preference with any rcisonable amount of extra computation
1= negligible. But search may also be pointless if the current values of the two nodes are
too close together: in that case. it may be unlikely that search will reveal a significant
difference between them. In an extreme case, the two moves may actually be symmetric.
or nearly so, so that no amount of search will differentiate significantly between them.
This case has received scant attention in the literature. B~ in particular may be vulnerable
on this account. since its sole goal is 1o prove one move better than all others. Lastiv. if
there is considerable uncertainty as to the values of the available actions, and considerable
overlap. further computation is recommended. To shorten this discussion. we illustrate the
three major situations graphically in Figure 5.1.3.

2%

NN SN

(a) terminate (b) terminate (c) continue

Figure 6: Three basic situations

5.2 Decision-Theoretic Real-time A®

In this section we examine a special case of the previous analysis, involving the application
of the above ideas to real-time single-agent search, or, as Korf has dubbed it in [51,52],
Real-time A*, in which the utility of a state is the minimum cost of a path to the ‘goal state’
constrained to go through that state. This is the standard situation In branch-and-bound
search. In particular, we examine both the case of an admissible!* heuristic function, and
the more general case of a non-admissible heurstic function. If we assume a meta-greedy
approach to search control, this case turns out to be fairly simple, but instructive. The
main results are

1. If we make the single-step assumption, and consider only individual node expansions
as single computation steps, then there is at most one frontier node that is worth
expanding at any given time.

9. However. on this model it is possible, in fact highly likely, that the search tree
will quickly reach a point where the expected value of all further search actions 1s
calculated to be 0 or negative. even if the current estimates of move utilities is still
highly uncertain: this phenomenon is called the “single-step barrier” e

But if we use a slightly more general model. in which the decision-theoretic calculation
i# applied 1o sequences of node expansions. all aflecting the same top-tevel move.
considered as an isolated computation. then it is always easy to pick out the minimal
sc? M of nodes which must be expanded in order for further search to liave posiuve
expected value, and moreover the expected value of expanding all modes in .M. orin
any superset of .M consisting of leaves descended from the current best move. can

W)

be computed by evaluating a single integral.

14The term admissiéle was originally defined as in [73] to mean any search algorithm that is guaranteed
to find an optimal path to a goal. if one exists. In the context of the A* aigorithm. a well-known sufficient
condition for admissibility in this sense is that the cost-estimation function never over- esumate the true cost
of reaching « goal from the current node. Following fairly common usage. we use the term “admissible” hLere
only to refer to this sufficient condition.

Y5 This fact is of particular interest becausr a similar barrier will be seen to occur in the case of game- -playing
programs.

4. Furthermore, the single-step assumption seems to be almost completely justified in
the latter case.

5.2.1 Real-Time A¥*

Korf’s Real-Time A™, or RTA*, algorithm is appropriate in situations where complete
search to a goal is infeasible. It is basically just the familiar A* branch-and-bound pro-
cedure with a truncated search horizon, just as game-playing programs apply classical
minimax with a truncated search horizon. The result of the search is not a complete
path to a goal, but rather an educated guess as to the best first or next step on such a
path. As with A™, the cost of getting to a solution via a given node n is estimated as
f(n) = g(n) 4+ h(n), where g(n) is an exact measure of the cost of getting to node n from
the current position, and k(n) is a heuristic estimate of the cost of getting from node n to
the nearest goal. In Korf’s fornmulation, RTA* involves searching forward to a fixed search
depth, or alternatively a fixed g(n) cost, and then backing up the costs of the frontier
nodes. In this case, back-up is a trivial operation, since the backed-up cost of any top-level
action is just the minimum cost'® of any leaf node descended from that action.

Korf shows that given admissibility of the cost-estimation function A(n), it is possible to
avoid searching the entire tree down to the search horizon by following a branch-and-bound
procedure, which he calls alpha-pruning!®. Basically, alpha-pruning involves searching the
tree in a depth-first manner, and setting the bound « equal to the lowest cost of any leaf
node seen so far. Whenever an internal node is reached whose estimated cost exceeds a,
we can prune the subtree under that node, since we know that the estimated cost is a
lower bound on the actual cost.

We will call our algorithm, which involves the addition of meta-greedy decision-theoretic
search control to RTA* Decision-Theoretic A*, or DTA*.

5.2.2 DTA* with an Admissible Heuristic

A. Throughout this section we will be employing the single-step assumption, in which
possible computational actions are evaluated as if they were isolated computations; i.e., as

1€We deliberateiy use the term “cost” rather than “value” here, because we will later use the term “value”
in the sense of the negative of cost.

Y"In fact, Korf shows that monotonicity, or equivalently consistency or obeying the triangle inequality
(see Pearl, [80], p. 82) is sufficient in order for alpha-pruning to be justified. But Korf points out that,
given a non-monotonic admissible function, “a monotonic function can trivially be constructed by taking its
maximum value along the path”. In fact, it should be obvious that one will always want to do this, given
an admissible cost estimation function. Since the estimate at any point is a lower bound on the true cost.
to use a lower estimate at a later point on the same path would be to throw away information. Conversely,
any monotonic cost function must be admissible, provided the algorithm is infallibly capable of recognizing a
goal node, so that f{n) = g{n) when n is a goal. For a non-admissible function would have to over-estimate
the cost of getting to a goal at some point, and therefore it would have to decrease between that point and
the goal; hence it would be non-monotonic. Thus monotonicity is essentially equivalent to admissibility in
practice.

30

Figure 7: The value of a node expansion.

if they would necessarily be immediately followed by a commitment to act. We will first
consider the most specific application of this assumption. in which oniy individual node
expansions are considered single computation steps. In this case, deciding which node, if
any, to expand is trivial. Only the frontier node with the minimum estimated cost is worth
expanding.)

Let a be the current best (lowesi-cost) top-level action, and 2, 82.... the current
second-best. ete. Recall that search is worthwhile on the single-step assumption only if 1t
causes us 1o change our choice of top-level action. The only ways to do this in a single
node expansion are either to increase the cost estimate of a. the current best move, or
decrease the cost estimate of one of the alternative moves 5,. But we cannot do this by
decreasing the estimated cost of 3, since the current estimate f(3;) is a lower bound on
the true cost of 3;. Hence it is only worthwhile to search nodes in the sub-tree under a.
and only if doing so can increase the estimated cost of a. But since the backed-up cost
of @ is alwayvs egual to the minimum cost of any leal node under a. and search can only
increase the estimated cost of anyv leaf node. only the leal node under o with minimum
cost estimate will be worth expanding. Thus. there will be at most one node with positive
expected search value. This mode i< preciscly the one which would be czpanded next 1n a
“hest-first " scareh BT

Le: n be the unique leaf node with minimum cost: hence currently fial = finl.
Suppose we expand n. and let f'{n) be the new backed-up cost of node n alter expansion.
(See ﬁgurelr&-_z""i.) It does not automatically follow that f'(a} = f'{n). For insiance.
suppose n has a sibling m such that f{n) < f{m) < f'{n). Then the new backed-up
cost of & will be at most f(m), rather than f'(n). Thus, it is clear that there will be an
upper bound, &. on how far the backed-up cost estimate of action o can be increased by
increasing the cost estimate of node 1. Clearly. & is simply the cost of the leaf node under
a with second-lowest cost estimate, prior to the expansion of n. If there is only one leafl

1815 case of ties there could be more than one node with minimum cost estimate: in that case search is
only worthwhile if all of the nodes with minimum cost estimate are searched. This case will be covered in
the next section.

31

node, then § = oc.!®

Clearly, if § < f(:1), then no single node expansion will have positive expected search
value on the single-step assumption since in that case it will be impossible to raise the cost
of a above that of J; by a single node expansion. The point at which this situation first
obtains we call the “single-step barrier”. Another way of describing this point is that it
is the point at which the conspiracy number of the tree increases from 1 to 2. From that
point, isolated single node expansion steps have no value.

Otherwise, if & > f(f), it {ollows that the expected value of expanding frontier node
n 1is

&

EV(S)) = [pale)(z = F(B))dz + [pale)(6 = (8:)da (26)
fiB) F;

where p, is the prior probability density function for f/(n).

B. Here we will consider sequences of node-expansions as isolated computations on the
single-step assumption. However, to simplify the choice of sequence, we will only consider
sequences of expansions of leaf nodes, all of which are descendents of the same top-level
move. We will argue that this restriction is justifiable in the case of an admissible heuristic,
because given the admissibility assumption, it still follows that only frontier nodes under
a are worth expanding at any given point. Of course it may turn out to be worthwhile to
expand, say, a node under « and a node under 4, making 3, the new choice of move. But
if so, it cannot hurt to expand the node under « first, and then, affer 5, has become the
new best move, expand the node under 3;. Moreover, if the expansion of the node under
a fails to increase the estimated cost of & above that of F;, then it will not turn out to be
worthwhile expanding the node under 4, after all. Thus even in this case it seems clear
that at any given time it is only worth considering expanding nodes in the subtree under
the current lowest-cost move.

Furthermore, it is fairly easy to characterize the minimal set, M of nodes under o
which must be expanded in order to alter the top-level move choice. Let £, be the set
of leaf nodes in the subtree under a. Then M = {n;|n; € L. &f(n;) < f(3,)}. That is,
all leaf nodes under o whose current cost estimate is less than f{3,) must have their cost
estimaies raised above f{4) in order to change the choice of best move from o to 3;. Let

win = min{ f'(n;)|n; € M} where for each n; f'(n;) is the new cost estimate for node n;
after expansion. Clearly, f'(a) < fL;., and f'(a) = f/,, as long as f. is less than the
current cost estimate of any node in £, — M. Let p,;, be the prior probability density
function for f/;.. Then the expected value of expanding all of the nodes in M is:

YEquivalently, let § = min{8y,8,... &}, where {§,,6,... §; } are the estimated costs of all of the second-
best children of nodes along the path from o to n {§; = +oo if a node has only one child). Then if f/(n) < &,
we will have f'(A) = f'(n}, and otherwise f'(A) = & This formulation will be recalled later on, when we
are discussing game-playing algorithms.

5) |
EV(Sm)l = [poin(2)(e = 1(8)dz + [pria(2)(6 = F(B1))dz. (27)
J(8))

In this case, 6 is just the lowest cost of any leaf node in £, — M, or +ocif M = (.

Further, let M’ be any superset of M such that M C M’ ¢ £,. Then the same
formula gives the expected value of searching all of the nodes in M’ where the definitions
of pmin and & are revised accordingly.

In this case, there is no “single-step barrier”. That is, there always exists some subset
M C L,—perhaps L, itself—such that searching all of the nodes in M can conceivably
result in a change in the choice of top-level action. Moreover, it seems intuitively clear
that, other things being equal, the leal node with lowest current cost estimate should be
expanded first, since if its cost estimate is not raised by expansion, expanding the others
in the set A will not be worthwhile. Thus, again it appears that the “best-first” criterion
of A* is justifiable on decision-theoretic grounds.

Note that even if we do not make the single-step assumption, or do not even bother
to try to estimate numerically the expected value of a contemplated sequence of node
expansions, we can still make the following assertion unqualifiedly, which so far as the
authors are aware has not before been noticed by researchers on heuristic search: Unless
sufficient compuiatlional resources are gvailable to ezpand all of the leaf nodes in the set
M as defined above, search should cease immediately, since it will not be possible {0 alter
the current move choice with lhe resources remaining.

C. Estimating Error Distributions and the Cost of Search

We will call the difference f'(n) — f(n) between the backed-up cost estimate of node
n after one ply of search, and its static cost estimate, the I-ply error for node n. Before
the above ideas can be incorporated in an algorithm, we need some way of estimating the
distribution of the 1-ply error in the heuristic cost-estimation function, as well as the cost
of search. ‘

Our approach to the task of learning the error distributions is actually quite simple. We
randomly sample the domain, and at each point apply the cost-estimation function without
search, then estimate the cost of the same node at various depths of search. A relatively
small sample of such points will be sufficient to characterize the distribution of (he error to
a high degree of accuracy. In some cases, these distributions can be param: trized, making
computation i node search values a relatively straightforward matter.

Estimating the cost of search involves computing the trade-off between further search
on the current move, and search on future moves. The nature of this trade-off is highly
domain-specific, and there is little of a completely general nature that we have to say about
it. In section 5.3 we will describe a time-cost estimation procedure that we found to work
fairly well for the game of Othello.

Finally, note that, as we have pointed out previously, a lot of information on the cost
of search can be derived just from the size of M. From the above formula for the expected
value of V/(Su,), it seems clear that on average, when Af is twice as large, it will require

33

about twice as much search to achieve about the same expected value. Compare the use
of “conspiracy numbers” as a stopping criterion in McAllester’s work.

5.2.3 DTA* With a Non-Admissible Heuristic

To a certain extent, this case is fairly similar to the case of an admissible heuristic, though
more complex. We will discuss it briefly here.

A. Again, we start by considering single node expansions as isolated computations.
Let Lp be the set of leaf nodes under any of 3,,5,,.... With an admissible heuristic,
none of the nodes in Lg are relevant; i.e. changing the value of any of these can have
no immediate eflect on the choice of current best move. Here the situation is exactly the
opposite. Since the cost estimate of any node can decrease by an arbitrary amount, the
estimated cost of any leaf node in £z could conceivably decrease below f(a), causing its
top-level ancestor to become the new default move choice. Thus all of the nodes in L5 are
relevant. Moreover, in this case there is no limit, §, on the amount by which the estimated
cost of the default move choice can change. Thus the expected value of expanding a node
n in Lg descended from &; will be:

fla)
EV(S)) = [pa(a)(f(a) - 2)de (28)
-0
where p, is the prior probability density function for f'(n).

For a node in £,, the situation is basically as it was for the admissible case. Since
searching a node in £, is worthwhile only insofar as it can cause the backed-up cost of o
to increase above f{3,), only the unique frontier node n of minimum cost in £, such that
f(n} = f(a) is relevant to a. As before, the amount by which f{a) can be raised is limited
by &, the cost of the second-lowest-cost node in £,. Thus, there is still a “single-step
barrier” on this side of the search tree, but not for the tree as a whole. The expected value
of expanding a node n in £, is still given by equation 26

B. We will now consider sequences of node expansions in the same subtree as isolated
computations. We can extend the results for the single-node model in an analogous way
to what we did for the admissible case. However, in this case 1t is much less clear that the
single-step assumption is justifiable even for such sequences. For it is possible that first
raising the cost of &, and subsequently lowering the cost of 3;, could cause 3; to unseat
o as the default move choice, even if the initial increase in the cost of & does not bring
it above the current cost of 3,. Thus, expanding a set of nodes in £, U £5 could have
positive expected value even when no node or set of nodes in £, has positive expected
search value.

It is clear that equation 27 still holds for the set M as previously defined (and also
its extension to any superset M’ such that M C M’ C £,). An analogous extension of
equation 28 holds as well, for any subset of the nodes in £g. That is, let A C Lz be
any subset of the leaf nodes in L, and let f!; = min{f'(n;)|n; € A'}. Let p, be the

min
prior probability density function for f.;.. It is clear that as long a« ... < f(a), the

min

34

corresponding 5; will become the new default move choice, with f(3;) = f.. . Thus the
expected value of expanding all of the nodes in A/ is given by

fla)
EWV (S = [puial@)(f(@) = 2)dz (29)

— 00

5.3 Game-playing: The MGSS* algorithm

In this section, we describe how the utility of a computation can be estimated for two-
player games, in which the basic decision-making algorithm is some kind of lookahead
search using minimax backup. We describe the implementation of the resulting control
regime in a new?® algorithm, MGSS~.

In designing a game-playing algorithm, as with any other machine, the choice of com-
putation, in this case the choice of search steps, should be made so as to maximize the
system’s overall utility. Overall utility is determined by the move chosen and the time at
which it is made. As we discuss below, the main stream of game-playing literature has
either used heuristic quasi-utilities [10,77,78,82,69,95] or fixed policies {such as alpha-beta
search with a depth limit) to select search steps. A system with low-overhead, optimal
control of search would be guaranteed to win, on average, against any other program with
equal computational resources and domain-specific knowledge.

QOur objectives in this domain are to examine the degree to which a reasonable approx-
imation to optimal control of search can be implemented with minimal overhead: and to
study the qualitative properties of the resulting search behavicur. As in the discussion of
single-agent search, we make a number of assumptions that appear appropriate for this
domain, in order to arrive at a formula for the expecied value of a search step that can be
calculated quickly. '

Qur first assumption is that the utility function is approximately separable into tem-
poral and intrinsic components, as described above. In the game-playing domain, where
there is typically a minimum number of moves that have to be made within some fixed pe-
riod, this assumption means that the time cost TC of a computation will just be a function
of the length of the computation, the remaining time allowed, the number of moves that
have to be made and possibly some features of the current board situation: it will ignore
the effect of, for example, quickly choosing a move under time pressuie that complicates
the game rather than simplifying it. This can be partially compensated for by including
some time factors in the board evaluation function. The implementation section discusses
in greater depth a method for estimating TC. Here we concentrate on how search steps
can affect U.

Intrinsic move utilities can be measured on a real-valued scale, corresponding to the

20An early version of some of the ideas and imaplementation described in this section were discussed in our
paper [86]. In that paper, this algorithm was called simply MG*, because in the earlier formulation we did
not carefully distinguish the meta-greedy assumption from the singie-step assumption. There are other, less
important differences from the earlier version which we will not discuss in detait.

35

values returned by a normal, static evaluation function. It is important to note that the
static evaluation function is not to be viewed as an estimate of the true value of the position,
but as an erpected utility. The true value for a game such as chess is 0 or +1 (on a scale in
which 1is a win); the expected utility is a computationally-bounded, probability-weighted
value Puin — Ploss [37).

In the following analysis. we use both the meta-greedy and single-step assumptions,
with individual node expansions as the chosen computational unit of analysis. We develop
an efficiently computable formula for evaluating the integrals in equations 24 and 25. The
principal tool is the re-expression of the probability distributions pi; 1n terms of the error
distribution p;; at the leaf node aflected by the search action S;. Since py; is a function
of only the board situation, and not of the game tree, it can be estimated from empirical
data on the results of previous tree searches.

5.3.1 Backing up error distributions

In order to apply formulae 24 and 25, we must be able to compute the expected galn in
utility of a node af the top level, resulting from the expansion of a particular leaf node.
Although the relation between the new leaf node value and the new top-level move value
15 more complicated here than in the single-agent case, it turns out that computation of
- search values is not a very difficult task, and can be accomplished using only information
available at the leaf node itself at the time the expected utility computation is made.

Recall that o is the current best top level move, with backed-up value _Us(a'), and let
31 3o, etc. be the second-, third-, etc. best moves, with current utilities Us(ﬁl), and so
on. The estimated values of the top-level moves will be calculated by minimax backup
from the leaf node values in the tree generated by computation S. The search action Sk
1s defined as an expansion of leaf node & (to some fixed depth or node limit) followed by
calculation and propagation of its new minimax value.

We now compute the set of nodes that can have non-zero search value:

Definition 1 (Relevance):
We will say that a given node n Is “Relevant” to move o, if and only if changing
the value of node n can immediately cause the value of o to drop helow U7%(3,).
Similarly. we will say thal node n is Relevant {0 move 3. for { > 1. 1f and only
if changing the value of node n can immediately cause the value of B: to rise
above I73(a).
If S; 1s the search action of expanding leaf node j, recall that @’S'Sf(a) 1s the value of move
« after the search action is performed {at which time a may no longer be the best move).
Similarly, T5%:(3;) is the value of 3; alter search action S;.

It 1s clear. from the subtree independence assumption, that a given node can be Rel-
evant to at most one move, namely its top level ancestor in the tree. Further, expanding
a node that is not Relevant to any top level move cannot cause an immediafe change in
the choice of best move, and hence expanding such a node will have zero benefit on the
single-step assumption.

36

The following theorem yields a formula for computing the expected value of searching
a leaf node k that is Relevant to a. A dual of this theorem alsc holds for nodes Relevant

to 4; fori > 1.

Theorem 1 (Relevant nodes):

1. The following computes the set of nodes Relevant to a:

(a) o is Relevant to a.

(b) If n is a min node and n is Relevant to «, then all children of n are
Relevant to «.

(c¢) H n is a max node and n is Relevant to a, then the best child of n is
Relevant to « provided the second-best child of n has current value
< US(f,). Otherwise no descendant of n is Relevant to a.

If a node n is Relevant to a, then USSt(n) < US(4) if and only if
0SSt (a)< US(4).
3. If nis Relevant to «, then if US-5t(n) < US(4,) then US-St (o) = max(6, uny),

where 6 = max{é;,... , 8.}, where {61,...,8} are the values of all of the
second-best children of max nodes on the path from o to n.%

|]

All three statements are easily proven by induction on the depth of node n, and the proof
1s omitted here.

Consider now a leaf node & that is Relevant to a. On the single-step assumption, the
action of expanding & will have positive value only if it results in the lowering of a’s value
below US(3,), i.e., only if U35t (o) < US(4,). In fact, the expected benefit of expanding
node k is given by

E(ASD) = [par(@)(U3(8) - 2)da, (30)

where p, is the probability density function of the random variable I/S5t{a). From the
above theorem. parts 2 and 3, it follows that an equivalent expression for A(S,) is

&) US(5,))
EAS)) = [pul@)(03A) = 8)de = [pula)05(3) —a)de, (31)

&

where pyy is the density function of the random variable ﬁs'sf(k).
We pass quickly over the dual of the above Theorem, which yields a formula for the
value of searching a node j Relevant to a top level move other than the current best.

Theorem 2 (Relevant nodes):

31 Compare footnote, p. 31 in section 5.2 above.

37

1. The following computes the set of nodes Relevant to 3;:

(a) 5 is Relevant to ;.

(b) If n is a max node and n is Relevant to /3, then all children of n are
Relevant to j3;.

(¢) If n is a min node and n is Relevant to /3, then the best child of n is
Relevant to /3; provided the second-best child of n has current value
> é’s(a'). Otherwise no descendant of n is Relevant to 3.

If a node n is Relevant to f;, then US%i(n) > U/S(a) if and only if

U331(8) > US(a).

3. If n is Relevant to &, then if USS1(n) > US(a) then

US51(3;) = min(§, U5%1(n)), where § = min{6,,... , &}, where {8,,... ,§)
are the values of all of the second-best children of min nodes on the path

from 3; to n.

o

Again we omit the proof by induction on the depth of the tree. In this case, the theorem
vields the following formula for the value of expanding a leaf node j that is Relevant to 3;
for 7 > 1:

o §
E(A(S)) = [pu(a)6 = US(a)do+ [pyj(a)(o — US(a))dz (32)
¢ U5(a)

Methods for computing the integrals are given in section 5.3.4.

5.3.2 Implemenfation

In this section we will describe an implementation of the above ideas which we have carried
out. Although we have implemented a program that works reasonably efficiently, we expect
that many improvements are still possible, and will be needed to deal with extensions to
the theory. n

In a direct implementation of the analysis of the previous section, the entire search
tree 1s kept in memory, and the tree is grown one step at a time by choosing, at each step,
a tip node to expand, and adding its successors to the tree.

The following information is maintained for each node:

1. a link to the top-level move, if any, to which the node is Relevant;

2. the Search Value of the node, i.e., the expected gain in utility from expanding the
node, for leaf nodes;

3. the GameValue of the node, ie., its StaticValue if it is a leaf node, or its current
backed-up value otherwise;

38

4. the é value for the node, as defined above;

a link pointing to the Parent of the node; and

an

6. if the node has already been expanded, a link pointing to a list containing the node’s
Children. The list is maintained in order of GameValue.

Relevant leaf nodes with positive Search Vafue are maintained in a Queue, in decreasing
order of Search Value.

Algorithm MGSS”

1. Generate the successors of the Root. Place the Relevant ones in the QQueue ordered
by SearchValue. For each successor, set its GameValue equal to its StaticValue.
Place the successors in the Children list of the Root ordered by GameV alue.

b

Remove the first element j of Queue. Compute E(A(S;}) using equation 31 or 32.
Estimate the time-cost TC of expanding node j. If E[A(S;} — TC] < 0 then return
the first element in the Children of the Roof as the best move.

3.- Otherwise

(a) Carry out the computation S;. For each resulting leaf node, set GameValue =
StaticValue.

(b) Place the new leaf nodes, ordered by GameValue, in the Children list of ;.

(c) Back up the GameValues of the successors to j's GameValue. I this changes,
re-insert j in its parent’s Children list and continue backing up recursively,
stopping at the Rooi. Whenever a Children list is re-ordered, or the best move
in such a list increases its value, or the second-best move in such a list decreases
1ts value, recompute the appropriate § values and Relevant node pointers. The
latter step may involve updating Queue membership.

(d} Add j's Relevant successors, ordered by SearchValue, to the Queue.

4. Go to 2.

5.3.3 Estimating leaf-node error distributions

In order to compute the value of search steps, formulz 31 and 32 require information as
to the error distributions of the leaf nodes. For search steps consisting of a single node
expansion, such as are used in MGSS®| this is simply defined as the a prior distribution
of the difference between the leaf’s static value and its backed-up value from a depth one
search. _

This distribution is thus statistically well-defined, and, like the choice of an evaluation
function, should be computed not at run time, but at the time a program is developed
for a specific game, by means of statistical sampling techniques. By collecting a large

39

enough number of data points, and categorizing them according to game situation, one
can obtain information about the functions p;; accurate to an almost arbitrary standard
of approximation. That is, we can approximate p;; for a particular node j by a function
p-{u), where o matches the game situation at node j. We can choose values for ¢ that are
more or less fine-grained, depending on our computing resources and the limit of obtainable
accuracy. Finding an error estimator should be much easier than finding a good evaluator,
since the feedback is immediate rather than depending on the final game outcome.

If the distributions obtained in this way are normal distributions, then all necessary
information about them can be stored using two parameters, the mean x and standard
deviation ¢. The hypothesis of normal distributions is empirically testable. We have in
fact found it to be true to a high degree of accuracy for a particular static evaluation
function we are using for the game of Othello. _

35,000 positions were generated, and error values were computed for each. Means
and standard deviations were then computed for roughly 1000 buckets of data points
categorized by six board features. Given these leaf distributions, the computation of node
search values using formule 31 and 32 can be done using only one table of Integrals, as
shown below.

5.3.4 Computing the search-value expressions

Recall the equations 31 and 32 for computing the SearchValue (expected benefit) of the
search action S; applied to node j. In order to enable the expected benefit to be computed,
the MGSS* algorithm maintains the values 6, US(a) and [75(8;), and the distributions D
are available by computing the appropriate features of the board position j and using them
to index'into the stored table of error parameters i and o. Replacing p;; with the normal
distribution function N, ., we obtain two equations composed of four integral expressions
each containing four parameters. It seems it would be impossible to compute and store
a four-dimensional integral table that would provide the needed discrimination along the
dimensions. As it happens, by a miracle of high-school mathematics described in detail in
[100]. the integral expressions can be reduced to simple arithmetic expressions involving
only one integral expression, namely

B(r) = / Noa(z)dz.

This integral is tabulated in any statistical tcxtbook or tables.
The new equations, assuining the leaf node error distributions can be approximated

by N, ., are
. US(3) - u . &—u
A(Sy) = o (f\'o,1 (_——()) — Ny, ())

T

- . 7S -
- -9 (28] 0300 - we (L) (33)

a

40

corresponding to (31), and

A(S;) v (.’\-’0.1 (Qﬁ%) — Nog (6 ; ﬂ))

- {é=1)® (6—;) + (Ds(a) - 1)d (——%%—-_

Il

+ (5-U5@a)) ' (34)

corresponding to (32). Armed with these formulese, computing search values is usuaily
somewhat quicker than computing the static evaluation function.

5.3.5 Estimating deliberation cost

The cost estimnation function can also in principle be determined empirically, though one
would probably need a much larger amount of data to get accurate values. Assume that
the average time needed to perform a search step is ¢, where ¢ could be, say, a millisecond.
Then we want to determine the effect of wasting a millisecond, in a given game situation,
on the probability of ultimately winning the game. Given our probability-based definition
of the evaluation function, we then have a common utility scale for moves and time costs.
In practice, it is sufficient to have T'C be an appropriate function of the number of seconds
per move remaining. such that a loss on time is impossible. The appropriate sort of
time-cost function will depend heavily on the particular rules under which the game is
played, such as whether there is a per-move or only a per-game time limit. and so on.
Since Othello tournaments impose a per-game time limit, we decided to adopt such a limit
for our implementation, even though we had no intention, at least at this early stage, of
producing a tournament-level Othello program. (Besides, the time cost calculation given
a per-move time limit is trivial; the cost of a node expansion is 0 as long as the time limit
1s not exceeded. and infinite if it is.) For the purpose of testing the implementation, we
set & per-game thme limit in terms of numbers of nodes expanded. rather than seconds.
since we wanted a direct test of the selectivity and power of the decision-theoretic search,
independently of its overhead.??

Another way to look at the time cost caleulation is that it measures the trade-off be-
tween present and future node expansions. That is, the possible gain from a further node
expansion in the present situation must be weighed against the possible loss {from being
deprived of the ability to perform a node expansion in some future situation. To analyze
this trade-off. we made two heuristic assumptions, which to some extent are in tension with
one another. The first is that. other things being equal, in defau't of any discriminating
information, each move in the game should be allocated a roughly equal share of whatever
nodes remain. The second heuristic assumption was that numerically equal gains in the

“*In fact, the overhead was low enough to be very encouraging, considering that this was a first imple-
mentation, not carefully coded for speed. While we saved about 40% over alpha-beta in terms of node
expansions, we roughly broke even in terms of total time per game.

41

backed-up values of moves at diflerent points in the game are of equal utility. Based on the
second assumption, we assumed that the cost of a single node expansion is given approxi-
mately by the average gain from expanding a node over the remaining moves of the game,
where this average gain, like the error distributions, has been pre-computed statisticaily.
To give weight to the first assumption, we did not simply set the time cost equal to the
average gain per node expanded. Instead, we assumed that the cost of expanding another
node in the current situation is given by T'C = f(e) x a, where a is the average gain from a
node expansion over the remaining moves, and ¢ = the elapsed time for this move; i.e., the
number of nodes expanded on the current move so far. Further, f is an increasing function
of e, such that f(t) = 1, where { = (number of nodes remaining)/(number of moves re-
maining); i.e., ¢ is the number of nodes per move if all moves are allocated an equal share
of the remaining nodes. In our implementation, we simply used f{e) = ¢/1.

Obviously, there is a great deal of room for invention and trial and error in the design
of a heuristic time cost estimator. The problems involved constitute in themselves a
whole area of research which to date remains largely unexplored. We hope that further
refinements in this area will be forthcoming as we add new experience with implementations
in a varlety of domains.

5.3.6 Performance

The qualitative behaviour of the MGSS™ algorithm is much like that described for the
general decision-theoretic case, with two distinct classes of search termination points (see
figure 5.1.3).

It may be possible to show, although we have not done so, that the pruning scheme
of alpha-beta search is generated automatically by the formule 24 and 25. Examination
of the trees MGSS™ generates, and of the general depth-two tree, indicates that this may
in fact be the case. More importantly, the generation of the pruning strategy has been 2
consiruciive process.

In order to demonstrate the falsity of the single-step assumption in practice, we have
implemented a version of MGSS™ that assumes that all Relevant nodes should be expanded.
This algorithm usually terminates wih a tree of about 500-1000 nodes, roughly equivalent to
a full depth-three search, although the actual trees had depths up to 26. The termination
indicates that at some point. it will be the case that no single search steps have value,
although sequences of steps may still be useful. Note that termination occurs regardless
of the cost of time used. Even without search ordering. this algorithm seems to perform
as well as an alpha-beta search using the same evaluation function, and roughly the same
number of nodes searched per game.

With search ordering using E{A(S)) and time costs for pruning, our algorithm wins
about 44% of its games against alpha-beta, while expanding about 40% fewer nodes per
game than alpha-beta expands. In terms of numbers of discs won, MGSS* looks even
better, winning a total of about 95% as many discs as alpha-beta.

Surprisingly, our implementations show that the ‘constant factor’, time per node ex-
panded, for MGSS™ is comparable to that of an alpha-beta scarch using the same basic

42

technology. In other words, the overhead of meta-level control is relatively small. Neither
our implementation of alpha-beta nor of MGSS* was very carefully engineered for speed.
On average, alpha-beta used about .13 seconds per node expanded, while MGSS* used
about .22 seconds per node.?

The fact that MGSS™ search seems to have a low upper limit on the number of nodes
it will ever search means that comparisons against a deeper-searching alpha-beta (say
100,000 nodes per move) are unlikely to be favourable, although it does sometimes search
interesting lines very deeply. Extension of the algorithm to consider sets of search steps
may overcome this problem. We are also investigating the effect of applying MGSS* to
selectively ertend search beyond the depth limit of an alpha-beta search. An extremely
simplified form of this method appears in the work on singular eztensions by members of
Berliner’s group [15].

5.3.7 Detailed comparison to other work on game-playing

The most closely related work, in spirit, to our decision-theoretic approach to game-playing
has been the proposals due to Good [37,38]. Good suggests using a real utility measure
on search steps to decide when to prune (although not how to order search). His formula
for the utility , as far as can be determined, seems to be irrational in practice, in that he
compares the utility of the best move after the search step with the curren{ utility of the
current best move. This assigns a high value to search steps which simply revise the value
of the current best move upwards; but this gain is illusory, since the true value of the move
remains fixed. Similarly, a search step that shows the current best move to be a blunder
1s given a negative value, whereas it is actually highly desirable.

Although Rivest [82] dees not explicitly employ probabilistic considerations, there is
some affinity between his method and ours. Consider the line of best play, starting at the
root node. If we could infallibly discover this line of play in advance, we could completely
determine the value of the root without having to search any of the rest of the tree.
Simply “guessing” the line of best play, for instance on the basis of the static evaluations
of the nodes along a given line, would not be adequate, since such guesses could often go
drastically wrong. Any method which tends to concentrate search along the line of best
play, while searching with sufficient width to lessen the probability of missing the actual
line of best play entirely, will result in gains from the point of view of ase of resources.
Rivest’s method and ours both try to make this width/depth tradeoff. However, we are
not entirely convinced by his criterion for selecting search actions. In the iterative context,
1t seems to us that we should expand that tip node whose expansion will have the greatest
expected benefil in terms of move quality. Rivest’s policy seems to approve of a search
action that simply revises the utility of the current best move upwards, whereas in our
framework this is valueless. Clearly, there exists a connection between the two approaches,

2*Numerous savings in this overhead are readily available: for instance, in our initial implementation, the
queue of Relevant nodes was simply a sorted list, but it could instead be implemented as a priority queue.
Our next implementation sheuld be more efficient.

43

but we have been unable to ascertain the link precisely.

As mentioned above, McAllester’s theory of conspiracies [69] attempts to find sets of
nodes such that searching them, and thereby changing their values, will have the largest
effect on the root value, and thus seems to fall into the same problems. Also, although
1t seems intuitively plausible that larger conspiracies are less likely than smaller ones, the
algorithm ignores the quantitative probabilities of the value changes being counted and
the fact that node value changes in a game tree are far from independent. However, the
methods used to identify the conspiracies are particular ingenious, and may be adapted
for our purposes to identify sets of nodes that can change the current hest move, in cases
where the meta-greedy assumption breaks down.

The line of research on B” algorithms {10,77,78] is also closely related to ours in that
it uses an explicit meta-level policy, and it uses error distributions. Berliner’s original
motivations, arising from the apparent irrationality of alpha-beta in doing search with
only one legal move, are similar to our own. However, there are significant theoretical
and practical differences. It seems that B*’s policy, of attempting to find the shortest
proof that some move is better than all others, suffers from the difficuity, alluded to above,
of trying to distinguish between close moves when it should be indifferent between them
(see Figure 5.1.3). This appears to be because the meta-level goal being pursued is a
quasi-utility, and does not equate to winning the game. This irrationality at the meta-
level can lead to an infinite search when, for example, the system tries to choose between
symmetrical moves. Moreover, we believe that a search of a small portion of the entire
game tree can never ‘prove’ that one move is best — all it can do is suggest a probability.
Therefore termination of search mus? depend on some notion of the current cost of time,
rather than on any property of the partiai game tree alone.

In addition, B*'s concept of error is quite different from that proposed in this paper. In
B", error is a deviation of the static value from the ‘delphic’ value of a position, that is, the
value assigned by an idealized ‘expert’. In other words, Berliner and Palay propose that
there exists some correct number to which the evaluation function is an approximation.
The intended semantics of this notion cannot be made coherent, since the true value is 0
or =1, and any estimate is a function of resource bounds. This difficulty can be avoided
by using the value affer search, as compared to the static value. If we can estimate the
distribution of the value after search before the search is performed, this can help us to
- decide beforehand whether the search is likely to be worthwhiie.

5.3.8 Further work: recursive search algorithms

A recursive, or problem-reduction algorithm could also be implemented. which would be
less costly both in terms of time and space. This algorithm would work by iterative
deepening. The algorithm would start by expanding the current position to determine the
possible moves, and then call itself on the successors. The meta-level decisior at each call
would then be whether to expand a given node to another ply of search. The algorithm
would use only linear space. Further, the cost-benefit comparison of possible search steps
would be done at the top level of each recursive call, rather than in a best-first fashion over

44

the whole subtree. The necessary error data would be the variance of the static evaluation
function versus search to depth &, for different values of k.

A variant of this is the ilerative ezpansion approach, which involves the use of an
explicit resource bound, or node limit, rather than a depth limit. That 1s, the algorithm
would be called with a number of nodes allocated to the search of the current move. [i
would then decide to allocate a portion of the node limit to the search of a particular move,
and call itself recursively with that node limit on that move. The control decision at each
step would then be a decision whether to search the same move with a greater node limit,
to search a different move, or to terminate the search. To achieve the asymptotic behavior
of iterative deepening, the node limit' would be multiplied by a fixed constant each time a
given node 1s searched.

By deliberating at the meta-level only about large collections of base-level steps, con-
siderable time is saved. However, this naturally leads to more wasteful base-level search
actions. Appropriate trade-offs remain to be investigated.

6 Summary

We see computational resource limitations as a major influence on the design of optimal
agents. This influence has been neglected in classical theories of normative behaviour, with
the result that practical AI systems for non-trivial domains are constructed in an ed hac
fashion. We have therefore undertaken research into three tightly-interconnected areas of
study:

o the theory and practice of normative meta-level control of reasoning;
* the construction of a universal-subgoaling, decision-theoretic architecture;

¢ the possible forms of compiled and uncompiled knowledge within such an architec-
ture, and compilation mechanisms for transforming between them.

In this report, we developed a framework for estimating the utility of computations, by
focusing on the effects of computations in revising an agent’s intended actions. The notion
of real-time problem-solving was formalized within the framework, by taking into account
the time-dependence of the utility of actions, We have applied the formal framework
to analyze both single-agent problem-solving and competitive game-playing, in each case
vielding new algorithms with improved performance. Performance systems for a variety of
domains can be derived by making suitable approximations to the normative formula for
meta-level control, and by proving associated simplifying theorems.

Overall, the meta-level architecture and the set of compiled knowledge types generates a
rich space of possible agent designs. But more importantly, the fact that all the components
in our proposed system have a well-defined semantics, and the fact that they are connected
by normative inferential links, means that an agent can make well-motivated changes in
its own configuration as it searches the space of possible designs for an optimal state,

43

References

[1]

4]

(9]
(10]
[11]

[12]

[13]

Agre, P. and Chapman, D. (1987) Pengo: An implementation of a theory of activity.
In Proceedings of the Sizth National Conference on Artificial Intelligence, Seattle, WA:
Morgan Kaufmann.

Agogino, A. M. (1987) IDES: Influence Diagram Based Expert System. Mathemaiical
Modelling, 8, 227-233.

Allard, J. R. and Kaemmerer, W. F. (1987) The goal/subgoal knowledge represen-
tation for real-time process monitoring. In Prec. Sizth National Conf. on Ariificial
Intelligence, Los Altos: Morgan Kaufmann, 394-398.

Anderson, J. R. (1986) Knowledge Compilation: The General Learning Mechanism.
In Michalski, R., Carbonell, J., and Mitchell, T. (Eds.), Machine Learning: An Arts-
ficial Intelligence Approach, Vol. II, Los Altos, CA: Morgan Kaufmann.

Anderson, B. M., Cramer, N. L., Lineberry, M., Lystad, G. S., and Stern, R. C.
(1984) Intelligent automation of energency procedures in advanced fighter aircraft.
In Proc. First Conf. on Artificial Intelligence Applications, Washington, D. C.: IEEE
Computer Society, 496-501.

Andersson, R. L. (1987) Real time expert system to control a robot ping pong player.
Ph.D. Dissertation, Department of Computer Science, University of Pennsylvania.

Batali, J. (1985) A computational theory of rational action (draft). Cambridge: MIT
Al Lab.

Benjamin, D. P. (1987) Learning Strategies by Reasoning about Rules. In Proceedings
of the Tenth Inlernational Joini Conference on Artificial Inielligence, Milan, Italy:
Morgan Kaufmann.

Benjamin, D. P. (1988) A metalevel manifesto. In Proceedings of the Infernational
Workshop on Machine Learning, Metareasoning and Logics, Sesimbra, Portugal.

Berliner, H. J. (1979) The B* Tree Search Algorithm: A Besi-First Proof Procedure.
Arlificial Intelligence 12,

Bratman, M., Israel, D., and Pollack, M. (in press) Plans and Resource-Bounded
Practical Reasoning. Computational Intelligence, to appear.

Braverman B., and Russell, S. J. (1988) IMEX: Overcoming Intractability in
Explanation-Based Learning. In Proceedings of the Seventh National Conference on

Brooks, R. A. (1986) A robust, layered control system for a mobile robot. JEEE
Journal of Robotics and Autornation, 2(1), 14-23.

46

[14]

[15]

[16]

Bundy. A., Byrd, L, Luger, G., Mellish, C., Milne, R., and Palmer, M. (1979) Solving
mechanics problems using meta-level inference. In Proceedings of the Sizth Interna-
tional Joint Conf. on Artificial Intelligence, Tokyo: Morgan Kaufmann.

Campbell. M. (1988) Singular Extensions: Adding Selectivity to Brute Force Search-
ing. In Proceedings of the AAAT Sympostum on Compuier Gume-Playing, Stanford,
CA, 8-13.

Chen, D. C. (1985) Progress in knowledge-based flight monitoring. In Proc. Sec-
ond Conf. on Artificial Inlelligence Applications, Washington, D.C.: IEEE Computer
Soclety, 441-446.

Chester, D., Lamb, D., and Dhurjati, P. (1984) Rule-based computer alarm analysis
in chemical process plants. In Proc. Seventh Annual Conf. on Computer Technology,
Washington, D.C.: IEEE Computer Society, 22-29.

Clippinger, J. H. (1983) An artificial intelligence system for the realtime monitoring
and analysis of textual information. In Proc. Trends and Applications Conf., Wash-
ington, D.C.: IEEE Computer Society, 65-67.

D’Ambrosio, B., Fehling, M., Forrest, S., Raulefs, P., and Wilbur, B. (1987} Real-
time process management for materials composition in chemical manufscturing. JEEE
Erpert 2 (2), 80-89.

de Kleer, J., Doyle, J., Steele, G. L., Jr., and Sussman, G. J. (1977) AMORD: Explicit
control of reasoning. Proc. ACM Conference on Al and Programming Languages,
Rochester, New York.

Dean, T. (1987) Intractability and time-dependent planning. In The 1986 Workshop
on Reasoning about Actions and Plans (M. P, Georgeff and A. L. Lansl-} eds.}, Los
Altos: Morgan Kaufmann, 245-266.

Dean, T., and Boddy, M. (1988) An Analysis of Time-Dependent Planning. In
Proceedings of the Seventh National Conference on Artificial Intelligen ce, Minneapolis,
MN: Morgan Kaufmann, 49-54.

Dean, T., and Kanazawa. K. (1988) Probabilistic temporal reasoning. In Proceed-
ings of the Seventh National Conference on Artificial Intelligence, Minneapolis, MN:
Morgan Kaufmann.

DeJong, G., and Mooney, R. (1986). Explanation-based learning: -An alternative
view. Machine Learning, 1.

Doyle, J. (1980) A model for deliberation, action, and introspection. Cambridge:
MIT Aritificial Intelligence Laboratory, Technical Report TR-581.

47

[26]

[30)

[39]

Doyle, J. (1983) What is rational psychology? Toward a modern mental philosophy.
Al Magazine 4 (3), 50-53.

Doyle, J. {1988b) Arfifictal Intelligence and Ratfional Self-Government. Technical
report no. CMU-CS-88-124, Computer Science Department, Carnegie-Mellon Univer-
sity, Pittsburgh, PA.

Doyle, J. {1988c) On rationality and learning. Computer Science Department Tech-
nical Report CMU-CS-88-123, Carnegie Mellon University.

Durfee, E. H., and Lesser, V. R. (1988) Incremental planning to control a time-
constrained, blackboard-based problem solver. In [EEE Transactions on Aerospace
and Elecironic Syslems, (forthcoming). Also: Department of Computer and Informa-
tion Science Technical Report 87-07, University of Massachusetts, Amherst, MA.

Ennis, R. L., Klein, D., Milliken, K., Schor, M., Greismer, J., Hong, S., Karnaugh,
M., Kastner, J., and Van Woerkom, H. {1986) A continuous real-time expert system
for computer operations. IBM Journal of Research and Development 30 (1), 14-28.

Fagan, L. (1980) VM: Representing time-dependent relations in a medical setting.
Ph.D. Dissertation, Department of Computer Science, Stanford University.

Fehling, M. R., and Breese, J. S. (1988) A computational model for decision-theoretic
control of probkem-solving under uncertainty. In Proceedings of the Fourth Workshop
on Uncerlainty tn Artificial Intelligence, Minneapolis, MN: AAAL

Fehling, M. R., Joerger, K., and Sagalowitz, D. (1986) Knowledge systems for process
management. In Proc. Instrument Sociely of America-86 Conf. (Vol. 41, No. 3},
Research Triangle Park, N.C.: Instrument Society of America, 1509-1526.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972) Learning and Executing General-
ized Robot Plans. Artificial Intelligence, 4, 251-288.

Finger. J. A. (1987) Ezploiting Consirainis in Design Synthesis. Ph.D. Dissertation.
Department of Computer Science, Stanford University.

Genesereth, M., and Smith, D. (1981) Meta-level architecture. Stanford Heuristic
Programming Project, Memo HPP-81-6, Stanford University, Stanford, CA.

Good, I. J. (1968) A five year plan for automatic chess. Machine Intelligence, 2.

Good, I. J. (1977) Dynamic probability, computer chess and the measurement of
knowledge. Machine Inielligence, 8.

Harman, G. (1986) Change of View: Principles of Reasoning. Cambridge: MIC
Press.

48

[40]

[43]

[44]

43

Harmon, 5. Y. (1983) Coordination between control and knowledge based systems
for autonomous vehicle guidance. Proc. Trends and Applications Conference, Wash-
ington, D.C.: IEEE Computer Society, 8-11.

Haussler, D. (1988) Quantifying inductive bias: Al learning algorithms and Valiant's
learning framework. Artificial Intelligence, 36(2), 177-221.

Hayes-Roth, B. (1987a} A multi-processor interrupt-driven architecture for adaptive
intelligent control. Department of Computer Science Technical Report KSL-87-31,
Stanford University.

Heckerman, D.; and Jimison, H. (1987) A perspective on confidence and its use in fo-
cusing attention during knowledge acquisition. In Proceedings of the Third Workshop
on Uncertainty in Artificial Intelligence, Seattle, WA: AAAI, 123-131.

Horvitz, E. J. (1987) Problem-solving design: Reasoning about computational value,
trade-offs, and resources. In Proc. Second Annual NASA Research Forum, Moffett
Field, CA: NASA Ames, 26-43.

Horvitz, E. J. (1988) Reasoning about beliefs and actions under computational re-
source constraints. In Uncertainty in Artificial Intelligence Vol. 3., (T. Levitt, J.
Lemmer, and L. Kanal, eds.), Amsterdam: North Holland. Also: Department of
Computer Science Technical Report KSL-87-29, Stanford University.

Horvitz, E. J. (1988} Reasoning under varying and uncertain resource constraints. In
Proceedings of the Seventh National Conference on Artificial Intelligence, Minneapoiis,
MN: Morgan Kaufmann, 139-144.

Horvitz, E. J., Breese, J. S., and Henrion, M. (in press) Decision theory in expert
systems and artificial intelligence. Journal of Approzimate Heasoning, to appear.

Howard, R. A. (1966) Information value theory. [EEE Transactions on Sysiems
Science and Cybernetics, $SC-2(1), 22-26.

Hudlicka. E.. and Lesser, V. R. {19%4) Meta-level control through fault detection and
diagnosis. In Proc. Fourth Nutional Conf. on Artificial Intelligence, Los Altos, CA:
Morgan Kaufmann, 153-161.

Kae, S. M., Laffey, T. J., Schmidt, J. L., Read, J. Y., and Dunham, L. (1987} Real
time analysis of telemetry data. In Proc. Third Annual Erpert Systems in Government
Conf.. Washington, D.C.: IEEE Comuter Society, 137-144.

Korf, R. E. (1987) Real-time heuristic search: First results. In Proceedings of the
Sizth National Conference on Artificial Intelligence, Seattle, WA: Morgan Kaufmann,
133-138. ' :

49

[52]

59

60]

Korf, R. E. (1988) Real-time heuristic search: New results. In Proceedings of the
Seventh National Conference on Artificial Intelligence, Minneapolis, MN: Morgan
Kaufmann, 139-144.

Knuth, D. E., and Moore, R. N. (1975} An analysis of alpha-beta pruning. Arfificial
Intelitgence 6, 293-326.

Laffey, T. J., Cox, P. A., Schmidt, J. L., Kao, S. M., and Read, J. Y. (1988) Real-time
knowledge-based systems. AJ Magazine, 9(1), 27-45.

Laird, J. E. (1984) Untversal Subgoaling. Doctoral dissertation, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, PA.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987) SOAR: An architecture for
general intelligence. Arlificial Intelligence 33, 1-64.

Laird, J., Rosenbloom, P., and Newell, A. (1986) Chunking in SOAR: The anatomy
of a general learning mechanism. Machine Learning 1 (1), 11-46.

Leinweber, D., and Gidwani, K. (1986) Real time expert system development tech-
niques and applications. In Proc. WESTEX-86: IEEE Western Conference on Knowl-
edge Based Engineering and Ezpert Sysiems, Washington, D.C.: IEEE Computer So-
ciety, 69-77.

Lenat, D. B. (1979) Cognitive economy in artificial intelligence systems. In Pro-
ceedings of the Sizxth International Joint Conference on Artificial Inielligence, Tokyo:
Morgan Kaufmann, 531-536.

Lenat, D.; Davis, R., Doyle, J., Genesereth, M., Goldstein, I., and Shrobe, H. (1983)
Reasoning about reasoning. Building Fzpert Systems (D. Waterman, R. Hayes-Roth,
and D. Lenat, eds.), Reading: Addison-Wesley, 219-239.

Lesser, V. R., and Corkill, D. D. (1983) The distributed vehicle monitoring testbed:
A tool for investigating distributed problem solving networks. A Magazine 4, 15-33.

Lesser, V.. Pavlin, J., and Durfee, E. (1988) Approximate processing in real-time
problem-solving. Al Magazine, 9{1), 49-61.

Maes, P. (1986a) Introspection in knowledge representation. In Proc. European Conf.
on Artificial Intfelligence, Pisa, Haly.

Maes, P. (1986b) Reflection in an object-oriented language. In Proc. SPL-Insight
Workshop, unpublished.

Maes, P. (1988a) Object-oriented reflection. In Meta-Level Archilectures and Reﬂeé-
tton (P. Maes and D. Nardi, eds.), Amsterdam: North Holland.

50

[66] Maes., P. (1988b) Reflective, object-oriented archilectures. Ph.D. thesis, Artificial

[67]

[68]

[69]

[70]

Intelligence Laboratory, Free University of Brussels.

Marsh, J., and Greenwood, J. (1986) Real-time Al Software architecture issues. In
Proc. IEEE 1986 National Aerospace and Electronics Conf., Washington, D.C.: IEEE
Computer Society, 67-77.

Masui, 5., McDermott, J., and Sobel, A. {1983) Decision-making in time critical
situations. In Proc. Eighth International Joint Conf. on Artificial Intelligence, Los
Altos, CA: Morgan Kaufmann, 233-235.

McAllester, D.A. (1988) Conspiracy Numbers for Min-Max Search. Artificial Intelli-
gence, 35, 287-310.

Minton, S. (1985) Selectively Generalizing Plans for Problem Solving In Proceedings
af the Nznth Inilernational Jomnt Conference on Artzﬁczal Intelligence, Los Angeles,
CA: Morgan Kaufmann.

Minton, S. (1988) Quantitative Results Concerning the Utility of Explanation-Based
Learning. In Proceedings of the Seventh National Conference on Artificial Intelligence,
Minneapolis, MN: Morgan Kaufmann, 49-54.

Minton, S. (1988) Learning effective search control knowledge: An ezplanation-based
approach. Amsterdam: Kluwer Academic Publishers.

Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T. (1986). Explanation-based
generalization: A unifying view. Machine Learning, 1, 47-80.

Natarajan, B. K., and Tadepalli. P. (1988) Two new frameworks for learning. In
Proceedings of the Fifth Internalional Machine Learning Conference, Ann Arbor, MI:
Morgan Kaufman, 402-415.

Nilsson, N. J. (1980) Principles of Artificial Infeligence. Palo Alto, CA: Tioga.

O’Reill}, C. A, and Cromarty, A. S. (1985) “Fast” is not “real-time” in design-
ing effective real time Al systems. In Applications of Artificial Intelligence IT 548,
Bellingham, WA International Society of Optical Engineering, 249-257.

Palay, A. J. (1982) The B* Tree Search Algorithm—New Results. Artificial Intelli-
gence 19,

Palay, A.J. (1985) Searching with Probabilities. Marshfield, MA: Pitman Publishing
Inc.

! Pardee, W. J., and Hayes-Roth, B. (1987) Intelligent real-time control of material

processing. Rockwell International Science Center Technical Report 1, Palo Alto,
CA.

51

80]

[81]

[82]

[83]

[84]

[85]

(86}

1)
[92]

(93]

[94]

Pearl, J. (1984} Heuristics: Inielligent Search Siralegies for Computer Problem Solv-
ing. Reading, MA: Addison-Wesley.

Raulefs, P., D’Ambrosio, B., Fehling, M., Forrest, S., and Wilber, M. (1987) Real-
time process management for materials composition. In Proc. Third Conf. on Artificial
Intelligence Applications, Washington, D.C.: IEEE Computer Society, 120-125.

Rivest, R.L. {1988) Game Tree Searching by Min/Max Approximation. Artificial
Intelligence 34.

Rosenbloom, P. S. (1983) The Chinking of Goal Hierarchies: A Model of Practice
and Stimulus-Response Compatibility. Doctoral dissertation, Computer Science De-
partment, Carnegte-Mellon University, Pittsburgh, PA.

Rosenschein, S. J., and Kaelbling, L. P. (1986) The synthesis of digital machines
with provable epistemic properties. Theorelical Aspecis of Reasoning aboul Knowledge
{(J.Y. Halpern, ed.), Los Altos: Morgan Kaufmann, 83-98.

Russell, S. J. (1985) The Compleat Guide 10 MRS Technical Report no. STAN-CS-
85-1080, Computer Science Department, Stanford University, Stanford, CA.

Russell, S. J,, and Wefald, E. H. {1988) Multi-Level Decision-Theoretic Search. Pro-
ceedings of the AAAT Symposium on Compuler Game-Playing, Stanford, CA, 3-7.

Sachs, P. A., Paterson, A. M., and Turner, M. H. M. (1986} Escort—An expert system
for complex operations in real time. Ezper? Sysiems 3 (1), 22-29.

Savage, L. J. (1972) The Foundations of Statistics, 2nd rev. ed. New York: Dover.

Shaw, R. (1987) RESCU-On-line réal—time artificial intelligence. Computer-Aided
Engineering Journal T (3), 29-30.

Simon, H. A. {1982) Models of Bounded Rationality, Volume 2: Behavioral Economics
and Business Organization. Cambridge: MIT Press.

Smith. B. (1982) Reflection and semaniics in a procedural language. Laboratory for
Computer Science Technical Report 272, MIT.

Smith, D. E. (1985) Controlling inference. Ph.D. Dissertation, Department of Com-
puter Science, Stanford University.

Sorrells, M. E. {1985) A time-constrained inference sirategy for real-time expert
systems. In Proc. IEEE 1985 Nafional Aerospace and Electronics Conf., Washington,
D.C.. IEEE Computer Society, 1336-1341.

Stankovic, J. A., Ramamritham, K., and Cheng, S. (1985) Evaluation of a flexible task
scheduling algorithm for distributed hard real-time systems. In JIEEE Transaciions
on Compulers C-34 (12), 1130-1143.

32

[95] Stockman, G. C. (1979) A minimax algorithm better than alpha-beta? Ariificial
Intelligence, 12.

[96] Treitel, R. J. (1986) Sequentialising Logic Programs Ph.D. Dissertation, Department
of Computer Science, Stanford University.

[97] Valiant, L. G. (1984) A theory of the learnable. Comm. 4.C. M. 18 (11), 1134-1142.

(98] Vidal, J. J. (1985) AI (Artificial Intelligence) based real-time support for high
performance aircraft operations. NASA Technical Report NASA-CR-176906 (NAS
1.26:176906), NASA.

[99] von Neumann, J., and Morgenstern, O. (1947) Theory of Games and Economic
Behavior. Princeton: Princeton University Press.

[100] Wefald, E. H. (1988) The Expected Value of Search: A Decision-Theoretic Frame-
work for Game-playing Algorithms. MS Report, Computer Science Division, U.C.
Berkeley.

(101] Wright, M., Green, M., Fiegl, G., and Cross, P. (1986) An expert system for real-time
control. JEEE Seftware March, 16-24.

53

