On the Time and Sgﬁcp Complexity of Computation
Using Write-Once Memory

-0OR -
Is Pen Really Much Worse Than Pencil?

Sandy frani
Moni Naor
Ronitt Rubinfeld

Computer Science Division
University of California, Berkeley
Berkeley, CA 84720

ABSTRACT

We introduce a model of computation based oo the use of write-once memory. Write-once
memory has the property that bits may be set but not reset. Our modal consists of a RAM
with o small amount (such as logarithmic or n® for @ <1 , where i is the size of the prob-
lem) of regular memory, and a polynomial amount of write-once memory. Bounds are given
on the time required to simulate on write-aoce mamory algorithms which originally run on
a RAM with s polynomial ameunt of regular memery. We attempt to characterize algo-
rithms that can be simulated on our write-ones memeory model with very littie slow-down. A
persistent computation is cne in which at all times, the memory state of the compuatation at
any previous point in time can be reconstructed. We show that any data structure or compu-
tation implementsd on this write-once memory model can be made persistent withaut
sacrificing much in the way of running time or space. The space requirements of alge-
rithms running on the write-once model are studied. We show that general simulations of
algorithmsa originally runsing oo & RAM with reguler memory by algorithms ruseing on
our write-once memory model require space propertional to the number of steps simulated.
I order to study the spece complexity furthar, we define an analogue of the pebbling game,
called the pebble-sticker game. A sticker by different from a pebble in that it cannot be re-
moved once placed on & node of the computation graph. As placing pebbles correspond to
writes to regular memory, placing stickers correspond to writes to the write-onee memory.
Bounds are shown on pebble-sticker tradeoffs required to evaluate trees and planar graphs.
Finally, we define the complexity class WO-PSPACE as the class of problems which can be
solved with a polynomial amount of write-once memary, aed show that it is equal to P,

1. INTRODUCTION
Write-once memory is memory where bits many only be "used” once, in that they can

be set but mot reset. This is the same difficulty we encounter when using pen rather than

pencil and eraser. The write-once property is interesting for several reasons:

1) It occurs naturally in mere and more sophisticated technologies from stone tablets to
punch cards and paper tapes to optical disks.

2) It may be a good way to view memory where the time required to erase is much
greater than the read/write time so that one would not want to erase during the com-
putation. This property occurs in the optical disk of the NEXT computer.

This research was supported in part by NSF Graot Moe DCF-85 13926, CCR 88 12632, The frst author was
also supperted in part by & Tandem Corporatisn fellowship, and the third author by an TBM Graduats Falbowship.

3) It models the restriction in PROLOG that only allows variables to be bound once
[PMN].

4) It has been under consideration as a restriction in & parallel architecture that would
reduce write-synchronization problems [T].

We investigate the implications that the wrile-once property has on both the time and
space requirements of computation and we show that, in fact, write-once memory can be
used very effectively, though not without some loss in time and space.

Previous work in this area bas been done by [Vit84,Vit35] with the emphasis on the
use of optical disks in databases. [RS] give codes which allow one to make updates to a
variable without using storage proportional to the size of the varigble times the pumber of
updates made to the variable. We are interested in the more genéral question of the com-
plexity of computation using write-once memory. Though the questions that are addressed
in this paper are not unrelated to previous work, the differences suggest a different model
and approach,

In the write-once model of computation presented here, there are a small number of
regular memory registers, each of which can store logn bits, where n is the problem size.
The number of registers are given by some predetermined function of n, i.e
fin)=e, fin)=logn, fin)=n® The amount of write-once memory available ia polynomial
in the problem size. We assume that O(logn) consecutive bits can be read from or written
to in one time step. This is & natural assumption, because it allows one to read polynomi-
ally bounded numbers in constant time. In particular, this allows addressing to be per-
formed in constant time. In addition, it is natural to assume that when executing a graph
algorithm one can access a label of a node in constant time, or that in sorting elements, one
can mccess the value of an element in constant time. The models in [Vitd4, Vitd5) are
different in that they assume that only a constant number of bits can be read from or writ-
ten to in one time step. Their sssumption is appropriate when looking at database prob-
lems, because there is no natural notion of problem size, i.e. address size and register gize
are considered to be a hardware dependent constant. An additional difference in [VitB4,
Vit85] is that they do mot allow the regular memory registers to be used as intermediate
storage. In our model this would be equivalent to the assumption that an adversary may
clear the regular memory registers between updates to the write-once memory machine. We
call this version of our model the register restricted version.

Techniques in [Vit84, Vit85] give a method for converting any algorithm written for
the conventional model of computation into an algorithm for the write-once model of com-
putation which increase the running time by s factor of O(logn). (Their techniques are
optimal on their model.) We show that the order of the running time need only be increased
by a multiplicative factor of O{logn/loglogn) on our model There is an online problem in
[Vit85] which requires Q(nlogn/loglogn) steps on the register restricted write-once memory
model, but only ~ steps on 2 regular memory model.

A slowdown of O(logn/loglogn) is not required for all problems, and in fact, standard
algorithms for many well known problems can be converted to algorithms that run on the
write-once memory model of computation with no loss in speed, e.g. matrix multiplication,
sorting and shortest path computation. What are the properties that allow some algorithms
to be converted witk no loss in speed? One such property is obliviousness. An algorithm is
oblivious if its read-write access pattern is the same for all inputs of the same length, and
therefore depends only on the input size. We show that if there exists an oblivious algo-
rithm for a problem running in time ¢ on a regular memary machine, then there exists a
nonuniform algorithm for the problem running in time it} on the write-once memory
model. The writs-once algorithm can be found by preprocessing for a specific input size in
Ot} steps on a regular memory model or in Ofrlogt/loglogn) steps on the write-once
memory model. The preprocessing need only be done once for every input size, and

therefore could be of practical use if the algerithm were to be run oo many inputs of the
same or similar size. In general, though, our feeling is that non-oblivious algorithms which
involve complex data structures, especially ones in which elements may be pointed to from
more than one other location, are likely to require some blewup in running time when
simulated on write-once memory.

We show that any algorithm on regular memory using s space can be simulated with
a multiplicative factor of O(logs) inerease in the runping time on write-once memory.
When the value of § is small enough, this is an improvement over other techniques. We do
not know if any multiplicative increase in running time is actually required for any prob-
lem on the general write-once memory model.

A persistent computation is one in which at all times, the memoery state of the compu-
tation at any previous point in time can be reconstructed. [Vit85) suggests the use of
write-once memory in applications that require persistent data-structures. We show that
any data-structure or computation on our write-once memory model can be made persistent
with only a O(loglogn) multiplicative increase in time and an Oflogn) multiplicative
increase in space. GQueries about the contents of memory location { at time j in the origi-
nal (nonpersistent) computation can be answered in Ofloglogn) time,

We consider a a closely related but more restrictive model, where the write-once
memory is replaced by memory in which a word may only be written to once. This model is
interesting for two reasons: error detection can be done easily at the word level (L.e. parity
check) and PROLOG is moere accurately modelled. The proof of the previously described
result also shows that any computation on the original write-once memory model can be
simulated on the mare restrictive model with only a G(loglogn) multiplicative increase in
time and an O{logn) multiplicative increasa in space.

The space requirements affect the cost-effectiveness of computing on write-once
memory because it is not reusable, [RS] investigate coder that allow one to make updates to
a variable without using space proportional to the size of the variable times the number of
updates made to the variable. We examine the space requirements on write-once memory
and consider the question of how to design algorithms so that the available regolar memory
can be used to conserve write-once memory space. Oun our model, many problems seem to
require space proportional to the time required to solve them on a regular memory
machine. [t is easy to prove that on the register restricted write-once memory model, the
problem of maintaining variables through ¢ on-line updates requires {{¢) space. In fact, the
results in [RS] show that maintaining a v-bit variable through t on-line updates on the
register-restricted write-once memory model requires at least ¢+t bits. We show that 12t
space is required on the general write-once memory model to maintain several variahles.
This implies that no general simulation technique exists which uses significantly less apace
than the number of steps being simulated. However, on the general write-once memory
model, there are problems for which less space is needed because the regular memory can
be used very effectively. In order to study this further, we define a variant of the pebbling
game, called the pebble-sticker game. In the pebble-sticker game, there are pebbles and
stickers, Pebbles correspond to writes to the regular memory registers, and stickers
correspond to writes to the write-once memory. We discuss the relationship between the
number of stickars and pebbles required for trees and planar graphs.

Finally, the complexity class WO-PSPACE is defined to be the class of problems that

can be solved in polynomial space on our model of a write-once memory machine with a
constant number of regular registers, and show that it is equal to P.

The next section contains a description of the model. In Section 3 we discuss the time
complexity of computing using write-once memory, and in Section 4 we discuss the space
complexity. In Section 5 we define the complexity elass WO-PSPACE and show that it is
equal to P. We present our conclusions and open questions in Section 6

2. THE MODEL
Definition of Write-Once Memory:

A bit of write-once memory may be set {changed from 0 to 1), but never reset (changed
from 1 to 0). We assume that the hardware ignores commands that violate this restric-
tion, and that initially all memory is set to 0.

Definition of Word-Write-Once Memory:

A word in word-write-once memory may be written to only once. We assume that the
hardware ignores commands that violate this restriction, and that initially &ll memory is
aet to O,

Description of Model for Random Access Write-Once Memory Machine (WOMM):

The model we use is & RAM with a small emount of regular memory and a polynomial
amount of write-once memory. A memory word is defined to be 1+d-logn bits where d is
a constant and n is the problem size. (The first bit is used to decided whether to index
into writs-once memory or regular memory). There are Cin) regular memory words and
n¢ write-once memory words. C(n) is & function which may vary. For example, we might
choose Cin)=c, or C{n)=n", depending on the amount of regular memory available. As
long as the amount of regular memory is smaller thap the amount of write-once memory,
one memory word is large enough to address any word in the write-once or regular
memory. We assume that all bits of write-once memory are initialized to zero (except
where the input data is stored). The space used by an algorithm is defined to be the
pumber of memory words used by the algorithm. WOMM denotes the Write-Once
Memory Model, Word-WOMM denotes this same model with n¢ words of word-write-once
memory, and RMM denotes this same model with n words of regular memory instead of
write-0nce mMemory.

We mssume the pormal constant time RAM operations on memory words such as copy,
write, arithmetic operations, bit operations, jump and two-way branches.

Disk Model

Current technology makes write-once memory available in disk form, thus it is appropri-
ate to look at the effects of seek time on the computation time. We adopt the assump-
tions of [VitB5] with respect to seek time. [Vit85] considers seek time to be the time
required to access a single fized length B-bit block different from the previously accessed
block. The seek time is counted as a constant regardless of where the blocks are located
in memory. There are various more complicated ways to model seek time, but since the
affacts of seek time are mot well understood, even in the case of computing on regular
memory, we adopt a relatively simple model as a first step. Clearly, whatever the
assumptions, an upper bound on the number of steps is an upper bound on the number of
seaks. The lower bound in [Vit85] yields a lower bound on the numhber of seek: on a
model elosely related to ours and with the same assumptions oo seek time.

4. THE TIME COMPLEXITY OF COMPUTING ON WRITE-ONCE MEMORY

3.1 Simulating Common Data Structures

We begin by showing how to maintain some simple common data structures in write-once
memory.

It is easy to see that on both the WOMM and word-WOMM one can perform n queue
gperations (enqueue and dequeue) in O(a) time and n space using only 2 regular memory
words to point to the head and the tail of the queue. One can also perform n stack opera-
tions (push and pop) in O(n) time using oaly two regular memory registers on both the
WOMM and word-WOMM. The writa-once memory space required is 2-n. The regular
memory locations point to the top of the stack and to the first unused write-once mMemory
location. When a push is dooe, the value of the push and the previous top of stack is writ-
ten down at the first unused memory location. The regular memory locations are then
updated accordingly.

In the mext subsection, we show that every data structure can be simulated with an extra
Df"'—th]) multiplicative time factor on the WOMM and an extra O{logn) multiplicative

R
factor on the word-WOMM. The question of what operations on various data structures can
he simulated in less time is an important one. Unfortunately, it seems that very few of
them can be simulated in the same time order as on a regular machine.

One data structure which can be handled in oo the WOMM and word-WOMM as quickly as
it cap be handled in regular memory is a binary tree in which the parent has pointers to its
children.

Claim One can perform n insert and delete operations on a binary tree of height k in OCA)
steps per operation, and Oin) additional write-once memory space. Only two regular
memory words are required.

Proof:

The tres operations can be done using the persisent search trees in [5T] in Oin) space,
We outline & simpler method that requires Ol(n-h) space. The pointer to the root of the
tree is kept in & dedicated regular memory word. The internal nodes of the tree are kept
in the write-once memory and contain pointers to the children of the node. Whenever
node i is changed, all of the nodes along the path from the root to node i are copied to
new locations in the write-once memory, updating the pointers appropriately and writing
in the npew value for node i. [

Surprisingly, the union-find data structure can also be implemented as quickly on a
WOMM as on & RMM.

Claim Oune can implement the set union algerithm with path compression and upion by
rank in Olnaim,n) time on a WOMM, where n is the number of set-union operations and
m is the number of elements in the set.

It is interesting to note that in general it is not known how to maintain trees where the

children point to the parent (such as the linking and cutting trees in [Tal) as efficiently on
write-once memory as on regular memory.

3.2 Simulating 8 RMM by a WOMM and word-WOMM

We discuss three upper bounds for simulating a BRMM with a WOMM, which bound the
simulation time by different quantities. None of the simulation upper bounds are better

than the others in all cases, but the third is most general. All but the third also work on
the word-WOMM. In each of the following, we assume that the running times of the simu-
lated algorithms are polynomial in n, where n is the size of the input.

Theorem 3.1 If a program runs in time ¢ and space s on an RMM, then it can be simulated
on the WOMMWord-WOMM in Oit-logs) steps and using a constant number of regular
memory words and O(f +5) write-once memory space.

Proof:

The values of the memory locations in the RMM are organized into 2 halanced binary
gearch tree ordered by memory address. The pointer to the root of the tree is kept in a
dedicated regular memory register. The values of the s memory locations are kept at the
leaves of the tree, Whenever & memory location in the simulated algorithm is changed,
the value of the leafl ussociated with it is also changed. As explained in the previcus sec-
tion, each tree operation can be performed in O(h) time where h is the height of the tree.
The height of the tree is logs. [

The following theorem follows from some elegant methods discussed in [Vit85] involving
allocation trees. The proof presented here uses a different approach, but it is useful
because it is simple and requires the storage of very few pointers.

Theorem 3.2 Let A be an algoritim running on the RMM, whose running time is bounded
by ¢, whose space requirement is bounded by s, and such that the number of updates to
sach location is bounded by b. Then A can be simulated in Oitlogh) steps, a constant
pumber of regular memory locations and Ol¢+s) write-once memory space on &
WOMMiword-WOMM,

Prool:
In order to clarify the discussion, we refer to each memory location on the EMM as &
variable. A k-block for a variable is a sequence of 9t +1 consecutive locations,initially
all 0. 2* locations will be used to store 2* updated versions of the variable, and the last
location will be used as a pointer. The idea is to initially allocate to each variable a 0-
block in write-onee memory. When a k-block is filled up, a k +1-block is allocated to the
variable and the k-block is made to point to the k+1-block. In crder to find the value of
the variable, a search is made for the current block by following the address pointers
until a block is reached that has no pointer filled in yet (this means the last one has been
reached). Then a binary search is done on the block to find the last place in which a
value was written, To change the value of the variable, the new value of the variable is
written to the next location in the block, If at most b changes are made to a variable,
then at most logh blocks are allocated to it. Therefors, following the addresses to the
pewest block takes at most O(logh) steps. The size of the block is O(b) words, so the
binary search to find the current value of the variable also takes at most O{logh) steps.

O

This last simulation is desirable, bacause it uses space efficiently. However, we can reduce
the number of steps required if we are willing to use some eéxtra spaca.

Theorem 3.3 Let A be an algorithm whose running time is bounded by ¢, whose space
requirements are bounded by s, and such that the number of updates to each location is

bounded by b, on 3 RMM. Then A can be simulated on a WOMM using Ou 15:{;%3 steps

and Ot +35-lognlogt oglogn) space.

Corollary 3.3 An algorithm that runs in O{f) time om a EMM c¢an be simulated in

utﬁ%m steps on & WOMM.

Proof idea:
We will describe & method which requires more space, but it is easy to see that it can be
modified to run io the claimed space bound. We again refer to each memory location on
the RMM as a variable. We show how to knf track of the current value of each variable
in the program being simulated with DIT-%EE—H} steps per access (read write) to the vari-

able, thus giving & method of simulating ¢ steps of an algorithm in ﬂ{ﬁlﬁl, The idea
is to maintain for each varigble a tree with logn degree at each node andgb leaves. The

™ leaf corresponds to the j* value that the variable takes on during the execution of the
program. If the variable changes fewer than j times, then the j*' leaf is all 0's. The
internal nodes of the tree contain an address which is the addreas of the child that is on
the path that leads to the leaf with the current value of the variable. It is not necessary
for each internal node to contain pointers to all of its children, only the child which leads
to the leaf with the current value of the variable. Therefore it is only neceasary to store
the children in logn addresses which are compatible in the sense that the address of the
i child ean be changed into the address of the i 4+ 1% child by only setting bits. This can
be dome by letting the first child be an address in which the last logn bits of the
addresses are 0 and the i address differs from the i —1" address only in that the ™ bit
from the last is changed to one.

Each variable can be changed at most b times in the course of the program. The depth of
the tree, which is ﬂ'[—lnﬂ-—}. is & bound on the time to access the corresponding vari-

loglogn
able. 7] 8

The proof of this theorem also shows that if B is the oumber of bits in a block, thera is an
O(logn/logB) upper bound on the number of disk accesses required on write-once memory
per disk access on regular memory. A lower bound in [Vit25] shows that this is tight on
the register-restricted modal.

Some algorithms can be solved on a WOMM in the same amount of time as on a RMM,
¢ven though only a small amount of information can be stored in the regular memory of a
WOMM. In fact standard algorithms for determinants, matrix multiplication, and sorting
work as quickly on 8 WOMDM as they do on a RMM. We would like to characterize those
properties of algorithms that allow this to be true. Une such property, though by no means
the only one, is the following:

Def. An algorithm is oblivious if the read/write access pattern depends only on the size of
the input, and not on its value.

Theorem 3.4 If there is an oblivious algorithm for 2 problem that runs in time ! on & EMM
for input size n, then there exists a nonuniform {oblivious) algorithm which produces the
same output and runs in time Ot} on a2 WOMMword-WOMM and uses Oit) space. The
preprocessing mecessary to find the corresponding algorithm for a particular input size

takes Oi¢) time on a RMM, 'I:l-[r-—l—“r—] time on a WOMM and Ovtlogn) time on a word-
WO loglogn

Proof:
All of the operations defined in Section 2 can be decomposed into a constant number of

read andfor write operations on at most & constant number of words, and arithmetic and
logical cperations on regular memory registers. Therefore we only need to show how to
simualate { reads and writes in a total of O(t) steps. A tahle is kept with an entry for
each time step. When simulating a read at step i, the algorithm reads the i entry in
the table. We now show how to simulate a write of a to location 7 at step i. Suppose the
next write after time i to location j is at time step i'. We write a to all entries in the
table which correspond to the time steps in the original algorithm in which location j is
read between steps i and i, Because the algorithm is oblivious, the read/write accesses
and therefore the information telling where to write in the table is the same for any
input of size n. A total of ¢ reads are made and, since the total number of writes in the
simulation is bounded by the total number of reads, the nopuniform algorithm runs in

time Ot} [

The simulation can be of practical use in cases when the same program is used many times
on data sets of similar sizes,

Thers is & lower bound implied by a proof in [Vit85] on the simulation time for a problem
on the register-restricted version of our model. The problem is that of maintaining a vari-
able through n updates, such that at any point in time, the value of the variable can be
correctly determined. The problem can be solved trivially in n total steps on a RMM. The
problem requires {n-logn/loglogn) steps on the register-restricted WOMM and Qin logn)
steps on the register-restricted word- WOMM. This proof does not apply to the general
write-once memory models.

In light of Theorem 3.4, showing that a problem in P requires asymptotically more time on
a WOMM than & RMM is a hard task: it would imply the problem cannot be solved by a
linear-sized circuit, a major open problem in computational complexity. This is so because
a circuit is an oblivious algorithm. (Actually, if only 2 uniform separation exists, then it
shows that there are no (logspace,linear time)-uniform linear size circuits, which is open as
well).

Short of a major breakthrough in computation complaxity, this gives hope only for showing
lower bounds on online simulations of RMM by WOMM. By online simulations, we mean a
simulation that keeps track of the value of each memory cell of the RMM. Our success in
this task has not been better. However, we can identify a problem that is “eomplete” for
the online simulation problem. The problem is the counter-maintenance problem: there are
n counters initialized to zero, and we are given & series of ¢ requests to either increment
counter i or to report its value. The best known algerithm on a WOMM requires
Olt-logt/loglogn) steps. Om the RMM, this problem can be done in Q(f) time, regardless of
the number of times a counter is incremented. This problem is complete in the sense that
if this problem can be solved in O(u) total time on a WOMM, then any program requiring ¢
stepa can be simulated in O(u) total time.

3.3 Making a Computation Persistent

Def. A computation is called persistent if at any point in the computation, the state of the
memory at any previous time of the computation can be reconstructed.

Theorem 3.5: Any computation on a8 WOMM requiring ¢ steps and s space can be made
into a persistent computation rumning in Oitloglogn) steps and t-Cln)+slogn space
{where C(n) is the pumber of regular memory words). Determining the contents of location
i at time j can be done in O{loglogn) steps.

Proof idea: For general Cin), the state of the regular memory words at each point in time
is kept in priority queues which allow accesses and predecessor computations in
O{loglogn) time. There will be one priority queue for each regular memory word in the
simulated computation. If the regular memory word in the simulated computation is
updated to i at time j, j{n+1}+i will be inserted into the pricrity queue associated with
that regular memory word. The value of regular memory word [at time j can be
retrieved by asking for the predecessor of (j+1)(n+1) and taking the value to be the
value of the predecessor modn. It can be shown that 0(C(r)) of these data structures can
be implemented using O(Cin) registers of regular memory and the write-once memory.

In order to keep the state of the write-once memory words at each point in time, we first
gbserve that a write-once memory word can only be changed 1+ dlogn times because
sach change sets at least one bit and each bit can be set at most once, Thus we can
simulate each location i in the original computation using 2(1+dlogn) consecutive loca-
tions in the persistent computation (where 1+dlogn is the number of bits in a memory
word) in the following way: Initially blank, the 2(1+dlogn) consecutive locations will
contain a "history” of location i in the original computation. The history will be of the
form of (1+dlogn) ordered pairs (time stamp, value). If the j* change of location { in
‘ne ariginal computation was made at time u by writing v then the j™ ordered pair will
be (x,u). When location i is changed in the original computation, & new ordered pair can
be inserted in the next consecutive blank locations. Using binary search to find the next
blank location will take time O(loglogn). The value of location i at time u in the origi-
nal computation can again be found by binary search on the time stamps. []

This proof also shows that any computation on the WOMM can be simulated on the Word-
WOMM with only a O(leglogn) multiplicative increase in time and an O(logn) multiplica-
tive increase in space.

4. THE SPACE COMPLEXITY OF COMPUTING ON WRITE-ONCE MEMORY

In this section, we investigate how efficiently space can be used in write-once memory. [n
the situation where ome would like to keep track of a variable through several changes
without using any regular memory, [R3] show how to comserve the number of write-once
memory bits required. However, if ¢ changes are to be made to the variable, ¢ write-once
bits are necessary. Our emphasis is different because a WOMM has & certain amount of
regular memory which can be used. We are interested in modifying algorithms in order to
use the regular memory to conserve space.

It seems that many algorithme on the WOMM require space proportional to the running
time. The following theorem shows that space proportional to the number of simulated
steps is required for any general simulation of a program eriginally running on a RMM.

Theorem 4.1 If k Zc-d+1, where ¢ is the number of d-logn bit regular rm.mory words
available, then maintaining k variables givén n on-line updates requires {Hn) bits of
write-onee memory. Each update changes exactly one variable to any valuein [1,- - Al

Prook:
We prove the theorem for the case k=cd +1. The genera] theorem follows trivially from

this. We show that an adversary can force a write Lo & write-once memory location after
every a steps, where a=cd +1 is & constant. Define a register cnnfiguraton to be a

10

snapshot of the registers, and a memory configuration to be a snapshot of the registers
and the write-once memory. Define a state of the k variables to be a k-tuple (zy, - - %)
where £, €[1, - - - ,n] ia the current value of the i* yariable. Sipce the algorithm is
maintaining the variables, it must be able to find out the value of each variable at all
times. As the information about the variables can be assumed to be contained solely in
the memory, we know that no two states of the k variables can have the same memory
cenfiguration. (On the other hand, it is possible that more than one memory configuration
could indicate the same state since the memory configuration may be dependent oo the
arder of the updates.) Since a*>n"? we see that starting from any state, any one of n'
different states can be reached after k steps. then there is at least one pair of states that
have the same register configuration. Since the memory configurations must be different
for different states, thers must have been a write to the write-once memory for at least
ome of these two states, Therefore, there is a way of updating the variables in order to
force a write to the write-once memory every k=cd+1 steps. []

A similar proof shows that for large enough & the lower bound holds even when the wvari-
ables are counters that may only be incremented by one at each update.

Theorem 4.2 Maintaining n'~* counters given n on-line updates requires (n) write-once
bits.

There are, however, algorithms that require significantly less write-once space than their
running time on a RAM. For example, the way we used in high school to perform Gaussian
elimination takes time O(nY). At each phase, we wrote down the new matrix that we caleu-
lated after doing the row operations. This method takes Oin?) epace. However, a factor of
n can be saved in the space without affecting the running time by saving the row opera-
tions rather than the current values of each row. Therefore, the space required is only
OinY. In order to study space requirements further, we define a variant of the pebbling
game, called the pebble-sticker game.

Pebbling graphs is a common tool used in examining the space requirements and the
time-space tradeofls in oblivious computation (see [F] for 2 survey). The idea is to model an
algorithm by a directed acyclic graph. The nodes with zero indegree correspond to the
inputs and the nodes with zero outdegree correspond to the outputs. The interior nodes
correspond to operations. There is 2 directed edge from & node u to a node v if the output aff
node u is an operand for v. The object of the pebbling game is to cover each vertex of &
graph with a pebble, subject to the condition that before a pebble can be placed on 4 vertex
v, every vertex that has an edge directed towards v must be covered by a pebble. A pebble
can be removed from a vertex at any time. The pumber of pebbles required to pebble 2
graph represents the space requirements of the computation and the number of steps
corresponds to the computation time. The problem ig to find the minimum number of peb-
bles needed to cover the graph or to find tradeoffs between the number of pebbles and the
number of steps.

The analogous problem with write-once memory uses stickers in addition to pebbles. A
sticker is different from a pebble in that once a sticker has been placed on a node, it cannot
be removed. As placing pebbles correspond to writes to the regular memory, placing stick-
ers correspond to writes to write-once memory. The problem is to find the minimum
number of stickers required to cover a graph, given _‘:}u]y a limited number of pebbles.
Bounded degree planar graphs can be covered with O(Vn) pebbles (LT80), and there exist
bounded degres planar graphs which require {{Vn) pebbles [M]. Bounded degree treas can
be covered with Oilogn! pebbles, and balanced binary trees require logn +1 pebbles (PHI

11

The following four theorems show tight bounds on the number of stickers required to peb-
ble directed acyclic planar graphs and trees, given a limited number of pebbles.

Theorem 4.3 Directed acyclic planar graphs of indegree less than p can be covered with
ﬂt%}l stickers, where n is the size of the graph and p is the number of pebbles.

Prook:

The method in [LT80] for pebbling planar graphs uses the fact that for any planar graph,
i =(V E), the vertices of G can be partitioned into three sets, A, B, C such that th:piﬂ
no edge in (7 between a veriex of A and a vertex of B, n/is|A|=2n/3 and [C]=2V2n.
We use this fact to define a tree structure on the graph such that each node in the tree
-nntains & "small" subset of the nodes in the graph G. The sets contained at each node of
the tree form a partition of the nodes in G. Furthermore, if two nodes, u and v, are adja-
cent in (7, then the node in the tree that contains u is an ancestor of descendant of the
nods in the tres that contains v. Let A B, and C be the components of G as defined
abave (note that A B and C form a partition of V). Let G, be the subgraph induced by
the vertex set A and Gy be the subgraph induced by the vertex set B. Define TIG)
~ecursively as follows: if || <p?/4 then T(G) is just a one node tree that contains the set
V. Otherwise, the root of tree T(G) contains the nodes in component C. The right sub-
tree of T(G) is T(G4) and the left subtree is T{Gg).

For a node v in the graph, let Node(u) be the node in the tree Ti() where v is contained.
We use stickers to cover all graph nodes o such that Nede(v) is an interior node in the
tree Ti(). We call these nodes sticker nodes. All other nodes are called pebble nodes and
are covered by pebbles. We cover the graph in topological order. From the results of
[LT80], we know that if the degree of the graph iz bounded by pfid-logp), then the sub-
graph induced by the nodes at each leaf in TVG) can be covered using only p pebbles and
without using any stickers. Therefore, if 2 node v is 2 pebble node and all of the sticker
nodes that precede v in the topological ordering of v are already covered, then v can be
covered using p pebbles. To cover an arbitrury node v in the graph, we assume that all
sticker nodes that precede v in the topological ordering have been covered. The only peb-
ble nodes that have an uncovered path to v are stored in tree-leaves that are in the sub-
tree rooted at Node(v). We use the pebbles te cover nodes in each of the subgraphs
induced by nodes in these tree-leaves that are topologically less than v, leaving a pebble
on each predecessor of v. When this is done, every predecessor of v has been covered and
v can then be covered.

Let S(n,p) be the number of stickers required to cover & planar graph oo n vertices ,
using only p pebbles. We then have
Sinp)=2V2a+S{anpl+Sil—alnp)

whare
1 a
E 5#53
and .
scﬂ—@mzu.

which gives S{ﬂ._p}=ﬂ{§jl]

Theorem 4.4 For all 0 'ﬂpﬁﬁfﬂ, there is a family of bounded degree planar graphs that
requires $H{n/p) stickers given at most p pebbles.

12

Prool:
A mountain range is & directed, acyclic, planar graph with vertex set fl,- - - nj. The edge
set is defined in terms of an auxziliary height function h from the vertex set int» the non-
negative integers satisfying hil}=hin)=0 and |h(i+1)=h(i)| =1, There is an edge from
i toj if and enly if j=i+1 or j=min/k >i|hik)=hii)}. We define a peak of & mountain
range to be a subgraph induced by a sequence of nodes, [i,..j], where hii)=h{ji=0 and
Rik)=0 for k€fi+ 1. —1].

At least r pebbles are required to pebble a mountain range that has - peaks of height r.
The size of the smallest such graph is n=2r*+1, The case where r=3 is shown balow,

(See [M]).

Now ezamine the mountain range of size n with n/3p peaks each of hiight. 3p/2. Divide
the s into sections of 3p/2 consecutive peaks. This gives 2n/9p" sections. Since
p<Vn/3, there is at least one section of peaks. Each section requires 3p/2 pebbles to be
covered [M1. If only p pebbles are available, then at least p/2 stickers are required for
sach section because the number of pebbles plus the number of stickers must be at least
3p/2 for each section. Sioce stickers cannot be reused, and there are 2n/3p? sections,
n/9p stickers are required to cover the whole graph. [7]

Theorem 4.5 Any binary tree can be coversd in ﬂ{%} stickers where n is the number of
nodes in the tree and p is the number of available pebbles.

Proof:
We show that there are O(n/27) nodes whose removal result in components which are all
of size smaller than 2° nodes, Any tree of size 2° nodes can be pebbled with p pebbles.
The entire graph can be coversd by using stickers to cover 0(n/2F) nodes that partion the
tree into subtrees of size at most 27 and using p pebbles to cover each of the nodes in the
subtree. Such a partition can be shown to exist as we now describe. Every binary degree
tree has a node, ¢, such that

1 2
— s'il i_-.
gh=te=gn

where T, is the number of nodes in the subtree rooted at v. ([B]). If this node is removed
then there are two subgraphs, each with fewer than 2-n/3 nodes. Let Tin.,p) be the
number of nodes that must be removed from any binary tree on n nodes to obtain com-
ponents that are all smaller than 27 nodes.

Tirnp) = Tienpl+Til—alnpl+l

where
1 2
R
32273

and

13

T{2° p)=0
Hence,
= o
Tin,p) = O(2"'1" O

The next theorem shows that this is the best poasible.

Theorem 4.6 Balanced binary trees with edges directed towards the root require m_—g:ﬂl

stickers to cover, where n is the number of nodes in the tree and p is the number of avail-
ahle pebbles.

Prool:

Let T be the complete binary tree of height h with n=2"*! podes. Let v be & node in
such a tree and P(v) the number of pebbles required to cover v. It is known that & +1
pebbles are required to cover T [PHI Mow consider the nodes in the tree that are a dis-
tance p from the leaves. There are gh—p guch podes. A subtree rooted at one of these
nodes is balanced and has 2°*! nodes. Thus, it takes p +1 pebbles to pebble one of these
subtrees, If we only have p pebbles available, we must use at least one sticker to cover
the subtree. Since there are 27 such subtrees, we must use at least gh=p=p f28+l
stickers to cover the entire tree. []

5. RELATIONSHIPS BETWEEN WRITE-ONCE COMPLEXITY CLASSES AND
OTHER COMPLEXITY CLASSES

Definition: WO-PSPACE is the class of problems that can be solved in polynomial space on
& WOMM where the number of regular memory registers available is Cin)=c.

Theorem 5.1 WO-PSPACE =P

Proof:

As a result of our simulation upper bounds, it is clear that anything that is in P is also
in WO-PSPACE. We now show that a problem in WO-PSPACE is in P. First notice that
only a polynomizl number of writes to the write-once memory can be made, because each
write sats at least one bit. This implies that the write-once memory can only be in a poly-
nomial number of configurations throughout the course of the computation. Since there
are only ¢-d-logn bits of regular memory, the regular memory can only be in one of n°®
configurations. Therefore the number of memory configurations is bounded by a polyno-
mial iz n. Each operation depends on the current instruction {of which there are a fixed
pumber) and on the memory configuration. Since the computation terminates, no two
time steps have the same memory configuration and current inatruction. Therefore there
can only be a polynomial number of operations. 7]

8. CONCLUSIONS AND FURTHER QUESTIONS

In this paper, we have introduced a model for computation with write-once memory.
We found that several algorithms can be easily converted to run as guickly on this model
as on a RAM with regular memory, but that others sesm to require some slowdown. We
make an attempt to characterize the reasons for this difference.

All of our simulation time upper bounds use only a constant oumber of regular
memory words, What better time bounds can be found for simulations on the WOMM
when the number of regular memory words is more than a constant?

14

As noted before, it would be of intereat to find problems for which the time or space
complexity is provably greater on the WOMM than it is on the RMM. On the other hand,
as is the case in paralle] complexity classes, there are many problems for which it should be
possible to find upper bounds on time and space which are better than those given by simu-
lation results. For example, can one solve maximum flow problems as quickly on a WOMM?

The branching program model was used to investigate time-space tradeoffs of general
computation. There is a natural analogue of this model in write-once memory. [s there a
stronger time-space tradeoff lower bound for sorting on this model than the D(n?) lower
bound in [BC] for branching programs on regular memoary? Given o(a) write-once memory
words for free, can one show that there is an Qin” lower bound on the time-regular
memory space tradeoff? On the other hand, there are a faw known Olrlogn) time random-
ized algorithms for sorting which use Oin) words on @ WOMM, but are there any such
descrministic algorithms?

Can algerithms for maintaining persistent data-structures be found which run on &
WOMM with comparable bounds on time and space as those achieved on a EMM in
[(DSSTT

One could consider extensions of this model to models of parallel computation. Simi-
lar simulation results could again be used to give algorithms on PRAMs with write-once
memory with slightly worse running times than those on PRAMs with regular memory, but
the above guestions for sequential complexity are still relevant with respect to parallel
complexity.

Though this model is incomparable with the Hierarchical Memory Model with Block
Transfer model defined in [ACS], it seems that many of the same problems that can be done
with little slowdown on that model can also be dome with little slowdown on 2 WOMM. It
would be interesting to find out if this is because of the oblivious nature of the algorithms
exhibited in [ACS), or if there is a deeper reason for this to be the case.

Finally, the model could be extended to incorporate more sophisticated ways of model-
ling seek time. For example, it would be more accurate to distinguish batween consecutive
and nonconsecutive reads when charging for a step. If no seek is required for a consecutive
read, how is the number of seeks required affected?

ACENOWLEDGEMENTS

We thank Manue! Blum and Raimund Seidel for suggesting this area of research, for
many helpful conversations, and for Raimund's suggestion of the use of persistent data
structures to improve the space bound on the claim in Section 3.1. We thank Mike Fred-
man for pointing us to O{loglogn) prierity queues. We also thank Mike Luby for his care-
ful reading and comments on this paper, and Russell Impagliazzo, Ron Rivest, Steven
Rudich and Umesh Varirani for several interesting discussions.

REFERENCES

[ACS] Aggarwal, A., Chandra, A., Soir, M, Hierarchical Memory with Block Transfer,
Proceedings 28th Annual Symposium on Foundations of Computer Science, (Los Angeles,
CA, October 1987), 204-216.

[B] Brent, R.P., The Parallel Evaluation of General Arithmetic Expressions, JACM, Vol
21, 1974, 201-208,

13

[BC] Borodin, A., Cook, 5., A Time-Space Tradeoff for Sorting on a General Sequential
Model of Computation, SIAM J. Computing, Vel. 11, No. 2, May 1982, 287.297.

[DMMU] Dolev, D. Maier, D.,Mairson,H., and Ullman J., Correcting Faults in a Write-
Once Memory, Proceedings 16th Annual ACM Symposium on Theory of Computing (Wash-
ington, D.C., May 1984), ACM, New York, 225-229,

[DSST] Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R., Making Data Structures Persistent,
Proceedings 18th Annual ACM Symposium on Theory of Computing (Berkeley, CA, May
1986), ACM, New York, 108-121.

[LT] Lipton, R., Tarjan, R., Applications of a Planar Separator Theorem, SIAM J. Comput-
ing, Vol. 9, No. 3, August 1980, 615-626.

[M] Mehlhorn, K., Pebbling Mountain Ranges and its Application to DCFL-Recognition,
1879,

[PH] Paterson, M.S., Hewitt, C.E., Comparative Schematology, Proj. MAC Conf. on Con-
current Systems and Parallel Computation, 1970, pp.119-137.

[P80] Pippenger, N., Pebbling, Proceedings of the 5th IBM Symposium on Mathematical
Foundations of Computer Science: Computational Complexity, May 19, 1980.

[PMN] Ponder, C., McGeer, P., Ng, A., Are Applicative Languages [nefficient? SIGPLAN
Notices, Vol. 23, No. 6.

[RS] Rivest, R.L., and Shamir, A., How to Reuse a "Write-Once” Memory, [nformation and
Control, Vol 55, Numbers 1-3, 1982, 1-19.

[Vit84] Vitter, J.5., Computational Complexity of an Optical Disk Interface, Proceedings
11th Annual International Colloguium on Automots, Languages, and Programming
{ICALP) (Antwerp, July 1984), 490-502.

[Vits5] Vitter, J.5., An Efficient 'O Interface for Optical Disks, ACM Transactions on
Database Systems, Vol. 10, No. 2, June 1985, 129-162.

[ST] Sarnak, N., Tarjan, R.E., Planar Point Location Using Persistent Search Trees, Com-
munications of the ACM, July 1986, Vol. 28, No. 7, 663-679.

[T] Touati, H., Personal Communication.

[Ta] Tarjan, R.E., Data Structures and Network Algorithms, Society for [ndustrial and
Applied Mathematics, Philadelphia, 1983.

[Val] Valiant, Leslie G., Graph-Theoretic Arguments in Low-Level Complexity Theoretical
Computer Science, 1977.

