Features for Multiprocessing in SPUR Lisp

Benjamin Zorn
Paul Hilfinger
Kinson Ho
James Larus
Luigi Semenzato

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley California

4 March 1988

OThis research was funded in part by DARPA contract number N00039-85-C-0269 as part of the
SPUR research project.

Abstract

This paper describes simple extensions to Common Lisp for concurrent computation on
multiprocessors. Functions for process creation, communication, and synchronization are
described. Multiple threads of control are created with process objects. Communication
and synchronization are managed using mailbozes. Signals provide asynchronous commu-
nication between processes. SPUR Lisp includes future and delay values, which were first
introduced in Multilisp [6]. These features provide a flexible and efficient basis on which
higher-level multiprocessing abstractions can be implemented and studied.

Contents
1 Introduction

2 Processes

2.1 Processes
2.2 Changes to Common Lisp Semantics
2.3 Process Functions.

3 Communication and Synchronization
3.1 Mailboxes
3.2 Mailbox Functions

3.3 Interactions Between Processes and Mailboxes

4 Signals
4.1 The :sigkill Signal
4.2 Signal Functions

5 Futures
5.1 Future Functions

6 Examples

6.1 Synchronization Primitives
6.2 Timing Primitives IR
6.3 More Multiprocessing Constructs . .

6.4 Structured Processes and Mailboxes
6.5 Parallel Tree Search using Structured
6.6 Dataflow Computation in SPUR Lisp

7 Conclusions

......................

......................

......................

......................

......................

......................

......................

......................

......................

Processes

.....................

.................

12
12
13
13
15
16

19

1 Introduction

SPUR Lisp is a superset of Common Lisp [16] that will run on the SPUR multiprocessor
workstation that is being developed at Berkeley [8]. Part of the goal of the SPUR project is -
to build multiprocessor workstations that can be used to study different styles of concurrent
programming. We intend to use SPUR Lisp as a research vehicle to understand and ex-
periment with different programming abstractions such as the queue-base multiprocessing
proposed by Gabriel and McCarthy [4], Halstead’s Multilisp [6], Connection Machine Lisp
proposed by Steele and Hillis [17], and techniques for automatic restructuring (7,11]. To
accomplish this goal, we designed a flexible and efficient set of multiprocessing primitives
that can be used to implement a wide range of high-level abstractions.

Our design is based upon a small set of strongly-held beliefs that have provided guidance
in making important decisions. We believe that language features should not be provided
unless there is clear evidence that they are useful to programmers. To this end, we support
our design decisions with examples that illustrate the necessity of our language features.
We also believe that features should not be defined if they can be easily and efficiently
implemented by features already in the language. A consequence of these decisions is that
features in this document are low-level; they form a basis on which a set of higher-level
abstractions can be implemented.

This document is intended for two audiences. We hope to provide a casual reader with
an overview of the language features, descriptions of the functions and special forms, and
examples their use. However, this document is also a reference for language implementors
and contains a careful and concise description of the semantics of the features.

This paper is organized in the following way. Section 2 describes processes and inter-
actions between processes. Section 3 describes mechanisms for communication and syn-
chronization, while Section 4 describes asynchronous communication between processes.
Section 5 describes the semantics of futures and the functions used to support futures.
Section 6 presents several examples that illustrate the use of the features described in this
document.

2 Processes

The basic mechanism for multiprocessing in SPUR Lisp is the process, which is a Lisp
object that embodies an independent thread of control. We made processes lightweight so
that abstractions using processes can take advantage of fine-grained parallelism. Processes
should require little overhead to create and are intended be used freely by programmers for
even relatively small computations.

2.1 Processes

Processes are created by executing the special form make-process, which takes an arbitrary
form and creates an independent thread of control to evaluate it. Processes terminate in two
ways: by completing their evaluation normally or by being terminated explicitly. A process
executes until one of these two events occurs, even if all references to the process are deleted
(i.e., an non-terminated process cannot be garbage collected). Processes can be in one of

several states. The possible states are: :executing, which is state of an executing process;
:blockad, which is the state that a process enters when it waits for a shared resource (like
a mailbox or processor); :terminated, which is the state that indicates that the process
has completed execution, and :suspended, which is the state entered when a programmer
explicitly suspends a process. Processes can inquire about the states of other processes
using the process-state function.

Processes directly affect other processes using three primitive operations: kill-process.
suspend-process, and resume-process. suspend-process and resume-process provide
an abstract mechanism that we foresee being used mostly at the interface level, where a
user may want to suspend the state of a process in order to debug it. Suspended processes
are resumed with the resume-process function. When a suspended process is resumed, all
signals that were enabled prior to its suspension are re-enabled (see Section 4).

kill-process immediately terminates a process. In many cases this is not desirable
because it may cause a process to leave data structures in an inconsistent state (e.g., the
process may leave files open). Because kill-process does not allow clean-up actions to be
taken by the killed process, a predefined signal :sigkill is provided (see Section 4.1).

Note that there are no protection mechanisms built into processes at the lowest level.
Any process with a reference to another process is free to copy the reference, obtain the
status of the process, or send signals to that process. Other development systems such as
the Symbolics 3600 [13] and the Xerox Interlisp system [1] have been designed with the
belief that protection mechanisms are a disadvantage to a capable user. Because SPUR
is intended to be used as a research tool, we also believe that protection mechanisms are
unnecessary.

2.2 Changes to Common Lisp Semantics

Each process that is created shares the heap with all other processes and has its own private
stack areas and registers. Special binding in the context of shared memory multiprocessing
needs further explanation. The semantics of SPUR Lisp special variable binding are best
described in terms of ordinary deep binding of dynamic variables. When a process is created,
all special bindings of its parent are visible to it. When a process introduces new bindings
of special variables, these shadow the bindings of the variables in its parent. These new
bindings are in turn visible to any child processes that the process creates. Note that the
bindings are independent of the processes. That is, a process may introduce some special
bindings, spawn children, and then die. The bindings that a process creates may persist
after the process dies because the descendents of the process may still use the bindings.
The obvious implementation of these semantics is to make the bindings of a process into a
set of name/value pairs and a pointer to the bindings of the parent. These bindings are like
any other Lisp object in that when all references to them disappear, they can be garbage
collected. A

Because Common Lisp was designed as a uniprocessor Lisp standard, there are features
and functions in Common Lisp that require careful use in a multiprocessor Lisp environment.
In particular, many operations change heap structures that are visible to all processes. For
example, package operations, like use-package, change the globally visible state of a pack-
age. defun redefines the globally visible function definition of a symbol. Implementations

(3]

of these primitives must make sure that concurrent executions of such global operations
are serialized. Common Lisp also defines many global variables, particularly in the context
of the I/O system, such as *print-level* and *standard-outputs, which initially ar-
shared between all processes. To create its own instance of these global variables, a process
is required to rebind the variable. SPUR Lisp processes can be extended so that they always
rebind a useful subset of the Common Lisp global variables.

2.3 Process Functions

This section contains descriptions of process functions in the same format used in Common
Lisp: The Language [16). In later sections we provide similar descriptions for mailboxes.
signals, and futures. Throughout these descriptions, we adhere to the Common Lisp nota-
tion for error conditions, with one minor change. To avoid confusion over the word “signal”,
where the Common Lisp book says “an error is signaled,” we say “an error is raised.” When
we say “an error is raised,” this means that all implementations are required to detect the
error and call error or cerror. When we say “it is an error,” this means that programs
containing such errors are invalid but implementations are not required to detect the error.
In reference to types, if an argument “must be” a particular type, this means “it is an
error” to provide another type. Because error handling functions are not currently part of
the Common Lisp definition, we do not specify what actions occur when an error is raised,
other than to say that either error or cerror is called.

make-process form &optional process-name [Special Form]

make-process takes a form and immediately returns a process object with the side
effect that an independent process is created to evaluate the form. Evaluation of the form
begins immediately. process-name must be a string or symbol and is used for debugging
and documentation. If process-name is unspecified, it defaults to “anonymous process”.

processp object [Function]

processp returns t if object is a SPUR Lisp process and nil otherwise.
process-state process [Function)]

This function returns the current process state of its argument, which must be a pro-
cess. The information provided by process state is the instantaneous process state at
the time of the call. The values this function may return are: :executing, :blocked.
:terminated, and :suspended. Implementations are allowed to return an additional value
from process-state that describes the state of the process in more detail. Portable pro-
grams should not rely on this additional value.

kill-process process [Function]

kill-process terminates its argument, which must be a process. kill-process does
not return until the process argument is terminated. The kill-process function should

only e used in cases in which no clean-up actions need to be taken by the killed process
before terminating. If the user wants unwind-protects executed before terminating, he
shouid use the :sigkill signal with the signal-process form (see Section 4.1). Killing
an already terminated process raises an error. kill-process returns the process killed.

suspend-process process [Function]

suspend-process suspends its argument, which must be a process. suspend-process
does not return until the process argument is suspended. The suspended process enters
the :suspended state with all its signals disabled. The process continues executing only
after being explicitly caused to resume. Suspending a suspended process has no effect.
Suspending a terminated process raises an error. suspend-process returns the process
suspended.

resume-process process [Function]

resume-process causes its argument, which must be a process, to resume execution if
it is currently suspended. When a process is resumed, all signals that were enabled before
it was suspended are re-enabled. Resuming an executing process has no effect. Resuming
a terminated process raises an error. resume-process returns the process resumed.

self-procass [Variable]

self-processx is a special variable always bound to the currently executing process.

3 Communication and Synchronization

Before the details of communication and synchronization are presented, we need to describe
the semantics of concurrent read and write operations with multiple processes in a shared
global memory. In Lisp, the basic unit of measure is an object reference, (i.e., a typed
pointer or immediate datum) referred to here simply as a pointer. In SPUR Lisp, reading
a pointer from memory and writing a pointer to memory are atomic operations. If one
process writes a pointer and another reads it, then the process reading the pointer either
gets the old value or the new value, but not an intermediate, inconsistent value.

3.1 Mailboxes

Choosing a synchronization mechanism is an important part of designing multiprocessing
primitives. Many mechanisms have been proposed, ranging from Dijkstra’s semaphores (2],
to Hoare’s monitors [9], to the rendezvous in Ada [10]. We concluded that simple semaphores
are too low-level for most applications. Monitors, which are best suited for client/server
applications, are not general enough to support many interesting styles of multiprocess-
ing. We chose a simple mechanism that combines synchronization and communication in
an intuitive way. The mechanism is called a mailboz and is loosely based on mailboxes as
defined in the RED language ({14]. To avoid confusion, we emphasize that mailboxes and

+

messages in SPUR Lisp are not related to message passing as defined in the distributed
operating systems literature. In particular, message passing in distributed systems typi-
cally works between non-shared memory computers; our messages require a shared memory
implementation. :

In SPUR Lisp, a mailbox is an unbounded buffer with synchronization. A mail item,
or message, is any Lisp object reference. There are two major operations on a mailbox:
send, which places a message in the mailbox, and receive, which removes a message from
a mailbox. The send and receive operations on mailboxes are implicitly synchronized. For
a single mailbox, there can be at most one send operation and one receive operation being
executed concurrently; additional operations must be serialized. The order of serialization
of concurrent mailbox operations is not specified.

Mailboxes can be used for synchronization. A process receiving from an empty mailbox
blocks until there is a message to receive. After unblocking, the receiving process receives
the first message from the mailbox and continues. Examples illustrating the use of mailboxes
for other common synchronization constructs, such as semaphores and locks, are presented
in Section 6.

Mail is removed from mailboxes in first-in, first-out order. Mailsent from a single process
to a mailbox is enqueued in the mailbox in the order it was sent. No interprocess order
is guaranteed if multiple processes send mail to the same mailbox. Likewise, if multiple
processes receive from the same mailbox, then the order of the receives is not specified.

Receive has the ability to read from any one of a number of mailboxes, a facility that we
call multiple receive. If the argument to receive is a Common Lisp sequence of mailboxes,
mail is received from one of them. The order of mailboxes in the sequence is significant.
Intuitively, the mailbox sequence is scanned from the beginning and the first mailbox with
mail satisfies the receive. If multiple processes concurrently receive from the mailboxes in
the sequence, however, race conditions can cause mail to appear to be received out of order.
The exact semantics of multiple receive are described in the next subsection.

SPUR Lisp provides a timing mechanism with the function send-after-delay, which
sends a message to a mailbox after a delay of at least the specified length. The process
calling send-after-delay continues immediately and does not wait for the send to com-
plete. send-after-delay can be used for a number of common timing constructs that are
illustrated in Section 6.

After discussing the communication features that were included in SPUR Lisp, we now
mention what has been left out, and why. Other multiprocessing languages provide addi-
tional structure to the communication primitives. Some applications require a mail com-
munication system that has structured messages containing, for example, a sender’s return
mailbox or process reference. Another kind of structured mail has message flelds that are
explicitly typed, as in RED [14]. Either kind of structured mail can be built upon our mail-
box primitive. We decided to provide a simple communication mechanism so the overhead
of complex mail structures is avoided when unnecessary.

We also considered allowing processes to lock and unlock mailboxes. This feature would
allow higher-level structured mailbox abstractions like structured receive (receive based
upon the contents of the mailbox) and conditional receive (receive based upon an arbitrary
boolean condition). Several multiprocessing languages including PLITS [3] and Linda (3]
provide such sophisticated receive facilities. SPUR Lisp mailboxes can be extended to be

lockable, and higher-level mailbox abstractions can be based upon this extended mailbox
type.!

3.2 Mailbox Functions

This section contains a description of the SPUR Lisp mailbox functions.
make-mailbox &optional mailboz-name (Function]

make-mailbox creates a new mailbox and returns it. mailboz-name must be a symbol
or string associated with a mailbox that serves to document its function. If mailboz-name
is unspecified, it defaults to “anonymous mailbox.”

mailboxp object [Function]
mailboxp returns ¢ if object is a SPUR Lisp mailbox, and nil otherwise.
send message mboz [Function]

send adds a message to a mailbox. mboz must be a mailbox. send is an atomic
operatién. Concurrent send operations to the same mailbox are serialized in an unspecified
order. Mail sent to a mailbox by a single process is guaranteed to be received from that
mailbox in the same order as it was sent. Send returns the mailbox being sent to.

send-after-delay message mboz delay (Function]

send-after-delay sends a message to a mailbox after a delay at least as long as the
duration specied by the argument. mboz must be a mailbox. delay must be an integer time
unit in terms of internal-time-units (upon which internal-time-units-per-second is based).
The process calling send-after-delay continues immediately and does not wait for the
send to take place. Like send, send-after-delay returns the mailbox being sent to.

receive mailbozes [Function]

receive removes a message from a mailbox in a sequence and returns the message.
receive is an atomic operation. Concurrent receive operations on the same mailbox are
serialized in an unspecified order. mailbozes must be either a single mailbox or a Common
Lisp sequence of mailboxes. The process calling receive blocks if there is no mail in
any mailbox in the sequence. If the sequence of mailboxes is empty, receive raises an
error. Intuitively, if more than one mailbox in the sequence contains mail, receive removes
mail from the first mailbox in the sequence that contains mail and returns the message.
More specifically, if all mailboxes in the sequence are initially empty, mail is returned from

!The greatest argument for including lockable mailboxes in the original design is that user-level lockable
mailboxes are much less efficient than system provided lockable mailboxes. If lockable mailboxes become
widely used by SPUR Lisp programmers, we will add them as a standard feature at a later time.

any mailbox in the sequence that receives mail. If some of the mailboxes initially contain
mail, there are two cases. In the absence of concurrent receives on any mailbox in the
sequence, mail is returned from a mailbox in the sequence no later than the first mailbox
that contained mail when receive was called. In the presence of concurrent receives on
mailboxes in the sequence, the message returned from receive is unspecified. If two or
more processes receive from two sequences whose intersection is not empty, the processes
are guaranteed not to deadlock.? receive returns two values, the message received and the
mailbox from which the message was received.

mailbox-empty-p mailboz (Function]
mailbox-empty-p returns ¢ if the mailbox is empty and nil otherwise.
mailbox-message-count mailboz [Function]

mailbox-message-count returns the current number of messages in the mailbox.

The value returned by mailbox-empty-p and mailbox-message-count is only correct
for an instant, and may be incorrect by the time that the call returns. This information
should only be considered as a hint about the state of the mailbox.

3.3 Interactions Between Processes and Mailboxes

Process operations can interact with mailbox operations. In general, mailbox operations are
atomic and complete before process operations can occur. Processes blocked on a receive
operation can be affected by interprocess operations. In this case, the following actions
occur:

1. The blocked receive is canceled. In all respects, it appears as though the receive never
started.

2. The interprocess operation takes place (i.e., kill, suspend, signal).

3. If the operation was a signal and no non-local goto takes place, the receive is-re-
executed after the signal handler completes, otherwise the receive is ignored.

4. If the operation was a suspend, the receive is re-executed after the process is resumed.

4 Signals

Mailboxes are the primary communication medium between processes. The second mech-
anism, signals, allow processes to asynchronously interrupt other processes. Signals are
intended to be used sparingly. Each process is responsible for defining handlers for sig-
nals that are sent to it. Signal handlers cannot be semantically nested, as in Ada [10] or

2These semantics are provided to assure the user that multiple receives cannot easily cause deadlocks. As
an implementation note, we recommend that multiple receive be implemented so that a process only locks
one mailbox at a time.

CLU [12], but signal handlers can be redefined dynamically. Signal handlers are functions
that are executed asynchronously when a process receives a signal. The dynamic context of
a signal handler, which includes the active catch frames and special variable bindings. is the
same as that of the signaled process when the interrupt arrives. The lexical environment of
the signal handler is different from that of the signaled process.

When a signal is handled, all signals to that process are disabled for the duration of
the handler. By disabled, we mean that no interrupts are taken and subsequent signals
are enqueued in a FIFO queue. If a user wants to enable a signal during the execution
of a signal handler, the enable-signal function allows him to do so, enable-signal is
provided to allow signals of different priorities to exist. When a signal handler completes.
the process that handled the signal continues either from the point at which the signal was
received, or from a different dynamic extent if the signal handler executed a non-local goto
(e.g., a throw or g0). If a signal handler exits by means of a throw or g0, all signals that
were enabled before the signal handler was entered are re-enabled as soon as the dynamic
extent of the signal handler is exited.

Signal handlers can be redefined using the with-signal-handler special form, which
is similar in syntax to let. with-signal-handler also allows a user to define a handler for
“all other signals.” This facility can be used to rebind all signal handlers to a null function
if the user wants to ignore signals. If a process does not handle a signal sent to it, or cannot
catch a throw generated during its executing, an error is raised. Processes do not inherit
signal handlers from the processes that created them. A process abstraction that inherits
signal handlers can be built on top of simple processes.

4.1 The :sigkill Signal

A default signal handler for :8igkill executes a throw of the symbol :sigkill that is
caught by a predefined catch frame at the outermost level of the process. This throw causes
unwind-protect frames to be executed. After the outermost catch of a throw to :sigkill
the process terminates. The signal handler for :sigkill can be redefined by the user.

4.2 Signal Functions

signal-process signal process &rest args (Function]

signal-process asynchronously causes an interrupt and transfer of control to a signal
handling routine in the process specified. signal must be a symbol. signal-process
returns without waiting for the signal to be handled. Signals sent from the same process
are guaranteed to be handled in the signaled process in the same order as they were sent.
The signal argument passed is handled by user provided signal handlers defined by the
with-signal-handler special form. The first argument to the signal handler is the signal
itself, and the arguments after the process argument are passed as the remaining arguments
to the signal handler. One signal, :sigkill, has a predefined handler that executes a throw
with the tag :sigkill. By default, there is a catch frame provided at the outermost level
of a process that catches the tag :sigkill and terminates the process. If a signal is sent

8

to a terminated process, or if a process fails to handle a signal that is sent to it, an error is
raised. signal-process returns the signal sent to the process.

with-signal-handler ({(name signal-handler)}*) {form}* [Special Form)]

with-signal-handler dynamically associates functions with signals. The bindings are
active throughout the execution of the forms in the body. Each name must be a symbol and
names the signal to be handled. If name is t and the pair is the last pair in the binding list,
then the function associated with this name is used to handle all other signals not specified
in the current with-signal-handler form. Each signal-handler must be a function, which
is called with one or more arguments. The first argument to the signal handler is the signal
that caused the handler to be invoked. The remaining arguments are the arguments passed
in the call to signal-process. When a signal handler is executing, all subsequent signals
are enqueued in a FIFO queue until the handler completes. When the process leaves the
dynamic extent of the signal handler, either by completing normally or by executing a non-
local goto (via throw or go), only signals that were enabled before the signal handler was
entered are re-enabled. The value returned by the function handling a signal is ignored.
with-signal-handler returns the value returned by the last form in its body.

enable-signal signal [Function]

anable-signal allows a signal handler to re-enable a signal. enable-signal must be
used within the dynamic extent of a signal handler; when the signal handler finishes, the
effect of enable-signal is undone. Because signal handlers automatically disable all signals
throughout their extent, without enable-signal, signal handlers could not be interrupted
by other signals, and signals with different priority levels could not be implemented. If the
argument is not a symbol, an error is raised. If the signal is already enabled, the function
has no effect. enable-signal returns the signal enabled.

5 Futures

We decided to include in SPUR Lisp the future construct described by Halstead [6]. Futures
are the only high-level abstraction defined in this document. As already mentioned, we in-
tend to use the mechanisms defined here to implement a variety of interesting high-level
multiprocessing abstractions. Most high-level abstractions like qlambda [4] and pcall [6]
require no changes to the traditional semantics of Lisp. However, since futures involve
changing the semantics of computing a value, we include our interpretation of those seman-
tics in this document.

A future creates an “eventual value.” By executing (future X), the programmer can
start the computation of X in parallel, and at the same time continue the current compu-
tation. The future form returns a place holder value immediately, while at the same time
creating a thread of control to evaluate the form X. The place holder behaves exactly as
a normal object in any context in which the actual value is not required. Thus a future
object can be passed as an argument, copied, and placed in a data structure without the
actual value of the future object being required. However as soon as its value is required

(e.g., someone adds 1 to the place holder), the semantics of a future are that the process
needing the value blocks until the value of the future has been computed. In the same way
that a monitor reduces the burden of explicit synchronization on a programmer, a future
allows for fork and join with an implicit synchronization and makes parallel programming
easier.

To make further discussion of futures easier, we now introduce some terminology. We
say a future begins when the process computing the value that the future represents starts
executing. We say a future completes when the process computing the value of the future
finishes. We say the future is required when another process needs the value of the future.
If a future is required before it completes, the process requiring the value blocks. Finally, to
distinguish between the future itself and the value that the future represents, we say future
object to mean the future itself, and future value to refer to the value it represents.

After a future has completed, the future value can rightfully replace all occurrences of
the future object. In SPUR Lisp, we allow this replacement to take place any time after the
future completes. In particular, garbage collection is an ideal time to replace future objects
by completed future values.

There is a design issue involving how futures interact with the tests for equality eq and
eql. One approach would be to say that the tests operate on future objects and thus neither
requires the future’s value. Another approach is to say that eql requires a future value and
eq does not. We feel that both of the interpretations are poor because they mean that
existing code written with eq and eql, but not futures, might fail if suddenly one of the
operands was a future. Our design goal for futures is to make future objects as transparent
as possible in code. Typically, the value returned by a function should not depend on
whether an argument is a future object or any other Lisp object. Our interpretation is that
eq and eql both require the value of future operands. This interpretation may result in
greater overhead in implementing these comparisons, but we feel that increased transparency
outweighs a small performance penalty. We provide the function future-eq for comparisons
that do not require that value of their operands.

In order to allow implementations freedom of choice when implementing futures, we
do not specify that the thread of control created by a future corresponds to a SPUR Lisp
process. In particular, the value of *self-process* within an executing future is not
specified. Because we provide no way to access the process corresponding to a future,
futures cannot be affected by process functions such as process-signal, kill-process.
etc. Futures can terminate in two ways: by returning a value or by executing a non-local
goto such as a throw exits the dynamic extent of the future. Executing a throw out of a
future raises an error.

delay is a feature similar to future that is also defined in Multilisp and Scheme [15].
While a future begins when the future form is evaluated, a delay begins only when the
delay value is required. This behavior allows delay values to be used to represent infinite
data structures like streams of integers. As with futures, we assume that eq and eql require
the values of delay operands. future-eq also works on delays.

10

5.1 Future Functions

Functions related to futures are summarized below.3
future form [Special Form]

future creates a thread of control to evaluate the form provided as an argument and
returns an object that contains a promise of the value of the form whenever it is required.
The future completes when the form returns a value. If the form executes a non-local goto
exiting its dynamic extent, an error is raised. The future object can be manipulated as any
object, but whenever its value is required, the process needing the value blocks until the
process computing the value completes.

delay form [Special Form)|

delay is a special form similar to future, except that the evaluation of the form begins
only when the value of the delay object is explicitly required.

futurep object [Function]

futurep returns t if object is a SPUR Lisp future object and nil otherwise. Note that
futurep does not require the value of the future. After the value of a future has been
computed, the implementation is allowed to replace all references to the future object with
references to the future value at any time. This implies that the value of futurep after a
future has completed is either ¢t or nil depending on whether the future object has been
replaced.

delayp object [Function]

delayp returns t if object is a SPUR Lisp delay and nil otherwise. Like futurep, delayp
does not require the value of its argument.

future-eq objl obj2 [Function]

future-eq is a function that acts exactly like eq unless either of the arguments is a
future or delay. If either argument is a future or delay, then unlike eq, which requires the
value of that argument, future-eq does not require the value, but compares using the delay
or future object itself.

3Readers familiar with other Lisp systems containing futures, such as Butterfly Lisp and Multilisp, may
notice the absence of the function touch, which requires the value of a future and returns it. In the spurit of
minimality, we do not include touch, because Common Lisp special forms and and or accomplish the same
effect.

11

6 Examples

In this section we take familiar examples of multiprocessor programming and show how
they would be implemented in SPUR Lisp. These examples demonstrate the various fea-
tures available in SPUR Lisp and show how these features can be used to implement other
interesting styles of multiprocessor programming.

6.1 Synchronization Primitives

Send and receive can easily be used to implement other common synchronization primitives.
Semaphores can be implemented with mailboxes. A binary semaphore is a mailbox with
one message in it. Counting semaphores require n initial messages in them. The primi-
tive operations are make-semaphore, p-semaphore, and v-semaphore. We implement the
operations below:

(defun make-semaphore (n)
(let ((semaphore (make-mailbox "semaphore")))
(dotimes (i n)
(send nil semaphore))
semaphore))

(defun p-semaphore (semaphore)
(receive semaphore))

(defun v-semaphore (semaphore)
(send nil semaphore))

A lock is conceptually simpler than a semaphore. The three operations are make-lock,
lock-lock, and unlock-lock. Locks differ from semaphores because lock-lock corre-
sponds to test-and-set. lock-lock returns a boolean value indicating whether the lock
action succeeded. If the process does not obtain the lock, it does not block, as a call to
p-semaphore would.

We implement a lock as a mailbox. To avoid blocking when testing if a lock is in use,
we use a multiple receive on a sequence in which one mailbox is known to have mail. That
mailbox can be a dedicated process mailbox, or as in our example, can be created fresh
every time we test the lock. The following code implements locks in SPUR Lisp:

(defun make-lock ()
(make-mailbox "lock"))

(defun lock-lock (lock)
"Perform a non blocking lock operation on the LOCK argument."
(let ((full-mbox (make-mailbox)))
;: make sure there’s mail in one mbox
(send nil full-mbox)
(multiple-value-bind (msg mbox) (receive (list lock full-mbox))

12

;; test that we received from the lock or other mailbox
(if (eql mbox lock)

T

nil))))

(defun unlock-lock (lock)
(send nil lock))

6.2 Timing Primitives

SPUR Lisp provides one time related primitive, send-after-delay. We can define a
process-sleep function very simply:

(defun process-sleep (delay)
(let ((mbox (make-mailbox)))
(send-after-delay nil mbox delay)
(receive mbox)))

Using send-after-delay, we can define a receive that only blocks for a specified period.
receive-with-timeout returns two values, the message and a boolean indicating whether
the receive timed out.

(defun receive-with-timeout (mbox delay)
(let ((timeout-mbox (make-mailbox)))
(send-after-delay nil timeout-mbox delay) .
(multiple-value-bind (msg read-mbox) (receive (list mbox timeout-mbox))
(if (eql mbox read-mbox)
(values msg t)
(values nil nil)))))

6.3 More Multiprocessing Constructs

Because mapping functions operate on sequence data structures, it is easy to see how they
can be extended for multiprocessing. Here we define pmapcar, and pmapc. pmapcar acts
exactly like mapcar, except that successive function applications are performed in parallel.
This definition of pmapcar waits for all the results to be computed before returning. If
we had used futures, pmapcar could have returned a list of futures immediately. pmapc
performs the function applications in parallel and returns nil immediately.

(defun pmapcar (op &rest args)
"Perform the mapping OP on the ARGS in parallel, returning when all
results have been computed."
(do* ((args args (mapcar #’cdr args))
(an-arglist (mapcar #’car args) (mapcar #’car args))
(mbox (make-mailbox) (make-mailbox))
(result-mboxes nil)
(result nil))

13

((some #’null args)
(dolist (mbox result-mboxes result)
(push (receive mbox) result)))
(push mbox result-mboxes)
(make-process (send (apply op an-arglist) mbox))))

- (defun pmapc (op &rest args)
"Perform the mapping OP on the ARGS in parallel, returning as soon as all
computations have started."
(do* ((args args (mapcar #’cdr args))
(an-arglist (mapcar #’car args) (mapcar #’car args)))
((some #’null args) nil)
(make-process (apply op an-arglist))))

The next example is a slight variation of the producers/consumers problem. In this
example, we implement a software pipeline in which processes create, filter, and consume

data in parallel. We implement a set of general functions for this purpose, and show how
they can be combined.

;;; Example: a generalized software pipeline where processes create,
;3 filter, and consume data in parallel.

;;; pipeline components: every pipeline has 1 source and sink, and
;3 any number of filters

(defun pipe-source (out-box creats-op n end-of-mail)
"Use CREATE-OP to create N objects and send them to QUT-BOX."
(dotimes (i n)
(send (funcall create-op) out-box))
(send end-of-mail out-box)
(signal-process :sigkill *self-process*))

(defun pipe-sink (in-box destroy-op end-of-mail)
“Use DESTROY-OP to consume objects received from IN-BOX."
(do ((item (receive in-box) (receive in-box)))
((eql item end-of-mail)
(signal-process :sigkill *self-process=))
(funcall destroy-op item)))

(defun pipe-filter (in-box out-box filter-op end-of-mail)
"Perform FILTER-OP on items from IN-BOX, sending results to OUT-BOX."
(do ((item (receive in-box) (receive in-box)))
((eql item end-of-mail)
(send item out-box)
(signal-process :sigkill *self-process*))
(send (funcall filter-op item) out-box)))

14

;;; example of putting components together

(defun set-up-pipeline ()
"Create a pipeline with 1 source, 1 sink, and 1 filter process.
Create 1000 items using #’a-create-op and send them through the pipe."
(let* ((mboxi (make-mailbox "source to filter mailbox"))

(mbox2 (make-mailbox "filter to sink mailbox"))

(EOM :end-of-mail)) ; end-of-mail
(make-process (pipe-source mboxl #’a-create-op 1000 ECM))
(make-process (pipe-filter mboxi mbox2 #’a-filter-op EOM))
(make-process (pipe-sink mbox2 #’a-destroy-op EOM))))

6.4 Structured Processes and Mailboxes

The following examples demonstrate the ease with which the primitives that we have defined
can be extended into abstract data types to support more structured kinds of multiprocess-
ing. Our first example demonstrates how processes can be augmented to include information
about who created them (their parent) and the processes they have created (their children).

;;; Structure processes are processes that keep track of the process
;;; that created them and the processes that they have spawned.

(defvar Yprocess-children-table (make-hash-table))
(defvar /process-parents-table (make-hash-table))

(defun make-s-process (expr &opticnal (process-name process-name=p))
"Make structured process from an EXPRESSION and call it NAME (optional).
Structured processes keep track of their children and parents.
(let ((new-process (if process-name-p
(make-process expr process-name)
(make-process expr))))
(push new-process (gethash *self-processx Yprocess-children-table))
(setf (gethash new-process !process-parents-table) *self-process=)
new-process))

(defun process-children (process)
“Returns two values: the list of children of the given PROCESS and
a boolean indicating if the process is a structured process.”
(gethash process process-children-table))

(defun process-parents (process)

"Return the parent of the given PROCESS. NIL means that the process
is not a structured process."

(gethash process Yprocess-parents-table))

13

Structured mailboxes are mailboxes that contain mail items with a return address for
the process that sent the mail.

(defstruct signed-mail
message
sender)

(defun send-signed (message mailbox)
"Send a MESSAGE containing the sender’s identity to a MAILBOX."
(send (make-signed-mail message *self-process*) mailbox)’

(defun receive-signed (mailbox-sequence)
"Receive a signed message from a MAILBOX-SEQUENCE. Returns a
multiple value of the message and the sender. The sender is NIL if
the message was not signed."
(let ((message (receive mailbox-sequence)))
(if (signed-mail-p message)
(values (signed-mail-message message) (signed-mail-sender message))
(values message nil))))

6.5 Parallel Tree Search using Structured Processes

This example demonstrates how the structured process type can be used to implement a
simple parallel tree search, which involves creating a process for each node. Each process
examines the data in the node, and creates subprocesses for each of the children of the node.
When a process discovers a node that satisfies the search. mail is sent to the root of all the
processes and a kill signal is sent to its children. which is propagated recursively.

;;; Example: use processes to perform a parallel tree search. We use
;3 structured processes and the process-sleep functions defined in
;i previous examples.

(defun tree-search (tree search-fn)
"Search a TREE for a node which satisfies SEARCH-FN. 1IZ <here is no such
node, this function never returns.'
(let* ((answer-mbox (make-mailbox))
(root (make-s-process (tree-process tree answer-mpox search-fn)))
(answer (receive answer-mbox)))
(signal-process :sigkill root)
answer))

(defun tree-process (tree answer search-fn)
"Search a subtree of a TREE using SEARCH-FN, responding to ANSWER."
(with-signal-handler
((:sigkill #’xill-self-and-children))

16

;; spawn processes for children
(unless (tree-leaf-p tree)
(make-s-process (tree-process (left-child tree) answer search-fn))
(make-s-process (tree-process (right-child tree) answer search-fn)))
;; search the current node
(if (funcall search-fn (tree-data tree))
(send tree answer))
;; sleep forever (receive on an empty mailbox)
(receive (make-mailbox))))

(defun kill-self-and-children (signal)
"Kill a process and all its descendents.”
(delist (c (process-children *self-processx*))
(signal-process :sigkill c¢))
(throw :sigkill nil))

6.6 Dataflow Computation in SPUR Lisp

Our final example shows how SPUR Lisp can be used to perform concurrent evaluations of
an expression using a dataflow style of computation. For simplicity, we limit expressions to
consist only of binary operators and variables. The expression is translated into a dataflow
graph. Figure 1 illustrates the dataflow graph for the expression (* a (+ b ¢)).

output

Figure 1: Dataflow graph for the expression (* a (+ b ¢)). Circles represent operators, which
are implemented with processes. Arrows represent /O queues, which are implemented with mail-
boxes.

Nodes in the graph correspond to operators in the expression and are implemented with
processes; variables in the graph correspond to input and output data; and arrows in the
graph correspond to I/O queues, which we implement with mailboxes. Each operator has
three mailboxes: two for reading the inputs, and one for producing the output, which is the
result of the binary operation on the inputs.

The following functions generate dataflow nodes for the + and * operators. They take
two mailboxes as arguments, and return a result mailbox. As a side effect, they create a
process that reads values from the argument mailboxes, operates on them, and puts the

17

result in the outgoing mailbox. We make these functions accessible from the property list
of the symbols representing the operators.

(defun +-node-generator (left right)
(let ((out (make-mailbox)))
(make-process (loop (let ((x (receive left))
(y (receive right)))
(send (+ x y) out))))
out))

(setf (get ’+ ’node-generator) #’+-node-generator)

(defun *-node-generator (left right)
(let ((out (make-mailbox)))
(make-process (loop (let ((x (receive left))
(y (receive right)))
(send (» x y) out))))
out))

(setf (get ’* ’node-generator) #’=-node-generator)

The following function takes an expression and creates a dataflow graph for the expres-
sion. It assumes that every variable in the expression has an associated mailbox, which can
be retrieved from the property list of the symbol representing the variable.

(defun setup-dataflow-graph (expression)
(cond ((symbolp expression)
(get expression ’'dataflow-mbox))
(t
;; assume all other inputs are binary operators

(funcall (get (first expression) ’node-generator)
(setup-dataflow-graph (second expression))
(setup-dataflow-graph (third expression))))))

The rest of the code will be presented in a top-down fashion. Suppose we wish to create
a dataflow graph in the following way:

(setq example-dataflow (setup-dataflow ’'(a b c) '(x a (+ b ¢))))

The first argument to setup-dataflow is a list of the input variables to our dataflow
computation. The second argument the expression to be evaluated. setup-dataflow re-
turns an object, whose structure can be ignored for the moment, which can be used as
follows:

(run-dataflow example-dataflow ’((1 2 3) (4 5 6) (7 8 9))) => (11 26 45)

18

Note that the second argument to run-dataflow is a list, whose elements are sequences
of values to be fed to each input of the dataflow machine. Every element corresponds to an
input variable, in the same order as the list of input variables passed to setup-dataflow.

We now look at implementations of setup-dataflow and run-dataflow. The function
setup-dataflow creates a list of mailboxes, one for each input variable, and puts them
on the property list of each variable. It then creates the dataflow graph, and returns the
output mailbox, where the results of the computation will be placed, and the list of input
mailboxes.

(defun setup-dataflow (input-list expression)
(let ((mailbox-list
(mapcar #’(lambda (symbol)
(declare (ignore symbol))
(make-mailbox))
input-list)))
(mapc #’(lambda (symbol mailbox)
(setf (get symbel ’dataflow-mbox) mailbox))
input-list mailbox-list)
(let ((outbox (setup-dataflow-graph expression)))
(1ist outbox mailbox-1list))))

run-dataflow uses pmapcar to start one process for each input variable, whose task is
to send input values sequentially to its corresponding input mailbox. The results are then
collected and returned.

(defun run-dataflow (dataflow inputs)
(let ((outbox (first dataflow))
(inboxes (second dataflow))
(results nil))
(pmapcar #’(lambda (values inbox)
(mapc #’(lambda (value)
(send value inbox))
values))
inputs inboxes)
(mapcar #’(lambda (x)
(declare (ignore x))
(push (receive outbox) results))
(first inputs))
(nreverse results))

7 Conclusions

This paper has defined the semantics of multiprocessing features in SPUR Lisp. Those
features include processes, which embody an independent thread of control: mailbozes.
which are used for communication and synchronization; signals. which are necessary for

19

asynchronous interrupts between processes; and futures, which provide a high-level fork-
join with automatic synchronization.

Our design philosophy is to add powerful yet efficient features on which many interesting
higher-level designs can be based. We have illustrated the implementation of some higher-
level designs in our examples.

Our definition of features for multiprocessing in SPUR Lisp continues to evolve. Any
comments or questions would be welcome. Please address them to Ben Zorn, Computer
Science Division, Evans Hall, University of California, Berkeley, CA, 94720, USA, or send
electronic mail to zorn@ernie.Berkeley. EDU.

References

(1] R. R. Burton, R. M. Kaplan, L. M. Masinter, B. A. Sheil, A. Bell, D. G. Bobrow. L. P.
Deutsch, and W. S. Haugeland. Papers on Interlisp-D. Technical Report SSL-30-4.
Xerox Palo Alto Research Center, Palo Alto, California, September 1980.

(2] Edsger W. Dijkstra. Hierarchical Ordering of Sequential Processes, pages 72-93. Aca-
demic Press, 1972.

[3] Jerome A. Feldman. High level programming for distributed computing. Communica-
tions of the ACM, 22(6):353-368, June 1979.

[4] Richard P. Gabriel and John McCarthy. Queue-based multi-processing Lisp. In Con-
ference Record of the 1984 ACM Symposium on LISP and Functional Programming,
pages 2543, Austin, Texas, August 1984.

[5] David Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80-112, January 1985.

(6] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501-538. October
1985. :

(7] W. Ludwell Harrison, III and David A. Padua. PARCEL: Project for the automatic
restructuring and concurrent evaluation of Lisp. Technical Report CSRD 633, Center
for Supercomputer Research and Development, February 1987. Preliminary.

[8] Mark Hill, James Larus, Susan Eggers, George Taylor, et al. SPUR: A VLSI multipro-
cessor workstation. TEEE Computer, 19(11):8-22, November 1985.

[9] C. A. R. Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 17(10):549-337, October 1974.

[10] Jean D. Ichbiah et al. Ada programming language reference manual. Technical Report
ANSI/MIL-STD-1815A-1983, ANSI, February 1983.

.[11] James R. Larus. Curare: Restructuring Lisp programs for concurrent execution. Tech-
nical Report UCB/CSD 87/344, Computer Science Division (EECS), University of
California, Berkeley, February 1987.

(12] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Shaffert, R. Scheifler, and A. Snyder.
The CLU Reference Manual. Lecture Notes in Computer Science. Springer-Verlag,
New York, New York, 1981.

[13] David A. Moon. Architecture of the Symbolics 3600. In Proceedings of the Twelfth
Symposium on Computer Architecture, Boston, Massachusetts, June 1985.

[14] John Nestor and Mary van Deusen. RED Language Reference Manual Intermetrics,
Inc., 1979.

[15] Jonathan Reese and William Clinger (Editors). Revised® report on the algorithmic
language Scheme. ACM SIGPLAN Notices, 21(12):37-79, December 1986.

[16] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, Burlington, Mas-
sachusetts, 1984.

[17] Guy L. Steele, Jr. and W. Daniel Hillis. Connection machine Lisp: Fine-grained par-
allel symbolic processing. In 1986 Conference on Lisp and Functional Programmang.
Cambridge, Massachusetts, August 1986.

