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ABSTRACT

We consider the problem of covering simple orthogonal polygons with con-
vex orthogonal polygons. In the case of horizontally or vertically convex
polygons we show that the polygon covering problem can be reduced to the prob-
lem of covering a permutation graph with minimum number of cliques.

In general, orthogonal polygons can have concavities (dents) with four pos-
sible orientations. In the case where the polygon has three dent orientations, we
show that the polygon covering problem can be reduced to the problem of cover-
ing a weakly triangulated graph with a minimum number of cliques. Since
weakly triangulated graphs are perfect, we obtain the following duality relation-
ship: the minimum number of orthogonally convex polygons needed to cover an
orthogonal polygon P with at most three dent orientations is equal to the max-
imum number of points of P, no two of which can be contained together in an
orthogonally convex covering polygon.

Finally, we show that in the case of orthogonal polygons with all four dent
orientations, the above duality relationship fails to hold.
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1. Introduction

One of the most well-studied class of problems in computational geometry concerns the
notion of visibility. Two points in the plane are said to be visible from each other in the presence
of obstacles (which are generally polygonal) if there exists a straight-line path between the two
points which does not meet any of the obstacles. Other notions of visibility involve paths which
are not straight lines, e.g. rectilinear or staircase paths. There is an intimate connection between
visibility problems and polygon covering problems. In his recent book on the Art Gallery Prob-
lem, O'Rourke [20] states that the fundamental problems involving visibility in computational
geometry will not be solved until the combinatorial structure of visibility is more fully under-
stood. In this paper (and a companion paper [19]) we attempt to study this combinatorial struc-
ture. A visibility graph has vertices which correspond to geometric components, such as points or
lines, and edges which correspond to the visibility of these components from each other. Here,
we will be concemned with the visibility graphs for regions inside a simple orthogonal polygon.
We show that certain special classes of these visibility graphs are perfect. We use this property
of the visibility graphs to devise polynomial algorithms for a class of polygon covering problems
that are NP-hard in general.

An orthogonal (or rectilinear) polygon (OP), P, is a polygon with all its edges parallel to
one of the co-ordinate axes. A polygon is said to be simple if it has no holes, i.e. the polygon
boundary is a closed, connected curve. Let n denote the number of edges on the boundary of P.
Here, we are only concerned with simple orthogonal polygons. An orthogonal polygon is said to
be horizontally convex (or vertically convex) if its intersection with every horizontal (resp. verti-
cal) line segment is either empty or a single line segment. An orthogonally convex polygon
(OCP) is both horizontally and vertically convex. Every OP induces a grid which is constructed
by drawing horizontal and vertical lines through all its vertices. A collection of polygons,
C ={P,,P,, - ,P,} where P; P, is said to cover a polygon P if the union of all the polygons
in C is P. Whenever we speak of a set of covering polygons for an arbitrary polygon P, it will
be assumed that each covering polygon is totally contained in P.

The following classification of orthogonal polygons is due to Culberson and Reckhow [7].
Consider the traversal of the boundary of P in the clockwise direction, i.e. ensuring that the inte-
rior is always to the right. At each comer (vertex) of P, we either tum 90° right (outside corner)
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or 90° left (inside corner). A dent is an edge of the perimeter of P, both of whose endpoints are
inside comers. The direction of traversing a dent gives its orientation. for instance, a dent
traversed from west to east has a N orientation. We will use the natural definition of the com-
pass direction, i.e. the positive direction along the y -axis will be referred to as the north direction
and so on. Figure 1 illustrates the N, S, E and W dents. For a dent D, o (D) indicates its
orientation. Two dents D, and D, are said to be similarly oriented if o (D ) =0 (D,). D,y
and D, are said to be oppositely orented if o(D;)=N,o(Dy)=S8 or if
o0(D;)=E,o(D;)=W. Otherwise, D and D, are said to have orthogonal orientations.
An OP is classified according the orientations of its dents. A class k& OP has dents of k different
orientations. A class 0 OP does not have dents and is an OCP. A vertically or horizontally con-
vex polygon is a class 2 OP which has only an opposing pair of dents, i.e. either N and S or E
and W (see Figure 2). A class 3 OP without N dents is shown in Figure 3.

The problem of covering general (non-orthogonal) polygons by simpler components has
received considerable attention in the literature (S, 6, 15, 16, 25]. It turns out, however, that most
of these problems are NP-hard, especially in the case where the polygons are allowed to have
holes [1,25]. The various kinds of orthogonal coverings studied earlier include coverings by rec-
tangles, orthogonally convex polygons and star-shaped orthogonal polygons. Several algorithmic
results have been obtained for covering orthogonal polygons. For instance, Franzblau and Kleit-
man have an O (n?) algorithm for covering a vertically convex orthogonal polygon without
holes with a minimum number of rectangles [8]. Keil has provided an O (nz) algorithm for cov-
ering similar polygons with a minimum number of orthogonally convex polygons [17]. Reckhow
and Culberson [21] later provided an O (n?) algorithm for covering a class 2 orthogonal polygon
with a minimum number of orthogonally convex polygons.

In this paper, we are more concerned with combinatorial results conceming covering prob-
lems for orthogonal polygons. Let an independent set of points in a polygon P, with respect to a
class of covering polygons C, denote a set of points in P, no two of which can be covered by any
covering polygon from the class C. A duality theorem for covering problems is of the following
form: the size of the minimum cover by polygons from class C is equal to the size of the max-
imum independent set of points with respect to the class C. Many interesting duality theorems
have been obtained for polygonal covering problems. Chv'atal [8] conjectured that a duality
theorem holds for the problem of covering orthogonal polygons by rectangles. This conjecture
was shown to be false by Szemeredi and Chung (cited in {4] ). However, Chaiken et al [4]
showed that the duality theorem holds for polygons that are orthogonally convex. Gyori [12] then
showed that the duality relationship holds even if the polygon is only vertically (or horizontally)
convex. For the case of horizontally convex polygons, an O (n?) algorithm was devised by
Franzblau and Kleitman [8], based on an observation due to A. Frank. Later, Saks [23] showed
that a graph determined by the boundary squares of the grid induced by the vertices of an OCP is
perfect. Other related work includes that of Shearer [24], Boucher [3] and Albertson & O’Keefe

[2].
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The purpose of this paper is three-fold: we first show that the visibility graph of a vertically
convex orthogonal polygon is a permutation graph [10, 18]. We then show that the visibility
graph of a class 3 polygon is a weakly triangulated graph {13]. Thus, we reduce the polygon cov-
ering problem to the problem of covering a weakly triangulated graph with a minimum number of
cliques. Since weakly triangulated graphs are perfect [13], we get the following duality relation-
ship for a class 3 polygon P : the minimum number of orthogonally convex polygons needed to
cover an orthogonal polygon P is equal to the maximum number of points of P, no two of which
can be contained together in an orthogonally convex covering polygon. Further, the Ellipsoid
Method of Grstschel, Lovasz and Schrijver [11] gives us a polynomial algorithm for the covering
problem for polygons with three dent orientations. Recently, Hayward and Hoang [14] have
obtained an O (n%) algorithm for the minimum clique cover problem for weakly triangulated
graphs, thus providing us with a purely combinatorial algorithm for the polygon covering prob-
lem under consideration. Since this algorithm is combinatorial, it does not suffer from the same
drawbacks as the Ellipsoid method. Finally, we show that the visibility graph is not perfect for
general (class 4) polygons. Further, we show that the above duality relationship fails to hold for
general (or class 4) orthogonal polygons.

Reckhow and Culberson [7] independently reached the conclusion that the problem of cov-
ering an orthogonally convex polygon with two dent orientations can be reduced to that of finding
a minimum clique cover in a comparability graph [10, 18]. However, permutation graphs are a
subset of comparability graphs, and, as such, we believe that our result is stronger. Again, in the
case of covering a polygon with three dent orientations, Robert Reckhow [221 has independently
shown that the visibility graph of such a polygon satisfies the Strong Perfect Graph Conjecture
(10, 18]. He also provides an O (n?) geometric algorithm to cover a class 3 polygon with a
minimum number of orthogonally convex polygons.

This paper is organized as follows. In Section 2, we discuss the theoretical framework for
this problem, as discussed in [7,21]. Section 3 discusses the connection between the covering
problem for vertically convex polygons and permutation graphs. In Section 4, we state our main
results for covering class 3 polygons. Section 5 gives a proof of a technical lemma called the
Crossing Lemma, which we use to show that the covering problem for class 3 polygons reduces
to the clique covering problem for weakly triangulated graphs in Sections 6 and 7, giving us the
duality relationship mentioned above. Section 8 shows why we feel that the above techniques
will probably not extend to the more general problem of covering a class 4 polygon. We also
show that the duality relationship fails to hold for these polygons. In Section 9 we will consider
possible extensions of our results.

2. Preliminaries

In this section we develop some of the tools required to analyze the problem of finding
minimum orthogonally convex covers for orthogonal polygons. Some of the definitions and
observations stated here are due to Culberson and Reckhow [21,7]. Throughout this paper, P
refers to the simple orthogonal polygon to be covered.



2.1. Staircase Paths

A maximal OCP in P is an OCP contained in P, but not contained in any other OCP con-
tained in P. A staircase path in P corresponds to a sequence of points u =xg,Xy, ", X =V
contained in P such that, (a) each adjacent pair of points, x; and x;_;, determine a vertical or hor-
izontal line segment which is contained in P, and (b) in traversing the staircase path from u to v
the edges corresponding to the adjacent pairs of point are traversed in at most two of the four pos-
sible compass directions. More informally, a staircase path is a connected sequence of horizontal
and vertical edges such that the path alternates between left and right tums. We sayu = v (read
as u sees v) if there exists a staircase path joining 4 and v. We will denote by s(u,v) a fixed
staircase path with u,v € P as its two end-points. The following observations demonstrate the
inherent relationship between staircase paths and covers by OCP's.

Observation 1. For any two points u,v € P, u = v if and only if some OCP includes them
both.

Observation 2. Any covering of P by OCP’s can be made into a covering of P by the same
number of maximal OCP’s.

We say that a staircase path from u to v goes southwest if, in traversing it from u to v, we
go west on all the horizontal segments and south on all vertical segments. Thus, staircase paths
between u and v can be of four possible orientations: northeast, northwest, southeast, southwest.
However, depending upon the direction of traversal, the same staircase path might be viewed as a
northwest/southeast path in one case, or a northeast/southwest path in the other. Thus, we clas-
sify staircase paths into two types: In a type I staircase path, one may travel northwest or
southeast on it and in a type II staircase path, one may travel northeast or southwest on it. A vert-
ical or horizontal staircase path (line) is both of type I and II.

2.2. Dent Lines and Zones

For each dent edge D, we construct a dent line D by extending D in both directions until it
meets the perimeter of P. The orientation of D is the same as the orientation of D. D divides
P into three zones. Two of these zones, called B; ( D Yand B, ( D ) (see Figure 4), are said to
be below the dent, and are the two connected components of P which lie to the left in a clockwise
traversal of D . We will refer to the region B; (D )\ B, (D )asthe B zone or B( D ). The
third zone, A ( D ), is said to lie above D', and is the connected component of P which lies to
the right in a clockwise traversal of D. For any two pointsu € B; (D),v € B, (D), there
will not exist any staircase path between  and v and, thus, u #v. We now observe the follow-
ing facts about dents and zones. Those stated without proof can be found in [21].

Observation 3. Let u and v be two points in P. If u # v then there exists a dent D such that
ue B(D),ve B,(D)orve B (D),ue B (D).
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In this case, we say that D separates u and v, and D itself is called a separating dent for u
and v. In general, there may be more than one dent separating two points in P.

Observation 4. Let 4, v and w be three points in P such that a dent D separates 4 from v. If
u=wandv = w,thenw € A(D).

The following observations are stated for particular dent orientations. However, it is not
very hard to see that they hold in all of their reflection and rotation symmetric versions.

Observation 5. Let D be a dent and u, v be points such that u € B (D) andv € A (D).
Without loss of generality, let o (D )= N, then u lies to the north of D and v lies to the south
of D.

Proof: Every staircase path from v to u must at first lie totally in A (D), then cross D and then
lie totally in B (D). When the path leaves A (D) it must be traveling north. If v lies to the north
of D , then the path must first travel south to get below D' . But no staircase path can travel both

north and south. A similar argument establishes that & lies to the north of D.
Q.E.D.

Observation 6. Let u, v and w be points in P such that v lies to the northwest of u and w lies
to the northeast of u. If u =v,u =w and v #w then there is a N dent separating v from w.

2.3. The Region DAG, the Visibility Graph and the Source Graph

The set of all dent lines of P subdivides P into regions. Reckhow and Culberson [21] con-
struct a region DAG (directed acyclic graph) as follows: The nodes of the region DAG are the
regions, and there is an arc from region u to region v if 4 and v share a common border D and
u is below D (see Figure 5). In the following, we relate the notion of visibility by staircase paths
with the covering problem.

Definition 1. Let u and v be regions in P. We say that u = v (read as region u sees region v) if
and only if some OCP (contained in P)includes bothu and v.

Observation 7. [21] Let « and v be regions in P, and let g, and g, be arbitrary points inu andv
respectively. Then, there is a staircase path between g, and q, ifand only if u =v.

The visibility graph, G(V , E), for the polygon P is an undirected version of the closure of
the region DAG. More formally, the vertex set V of G contains a vertex corresponding to every
region in P. Two vertices 4 and v are adjacent in the graph G if the corresponding regions in P
can be covered by a single OCP. We will use the same notation for a region of P and the
corresponding vertex in V. Thus, we have that <u,v>e€ E if and only if u =v. Clearly, if
<u,v>e E then there is a staircase path from each point in the region u to each point in the
region v.

A source is a region of zero in-degree in the region DAG (see Figure 5). Itis easy to see
that each source has at most one dent line of a given orientation as its border: two dent lines of
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the same orientation are parallel to each other, and no region of the polygon with both of them as
border lines can be a source. Thus a source can be called an order k source, 1 <k <4, where &
denotes the number of dent lines that border the source. It is clear that a class 3 polygon does not
have order 4 sources. From this, Reckhow and Culberson [21] show that a class 3 polygon has
only O (n ) sources. The following result from [21] shows the importance of sources.

Lemma 1. If B is a set of maximal orthogonally convex polygons that includes every source of P,
then B includes every region of P.

We can now construct the source graph G, (V, , E;) as follows (see Figure 6). The vertex
set V, has a vertex corresponding to each source region of P. As before, we have the edge
<uyv>inE, ifu=v. Clearly, V, €V and the source graph G, is an vertex induced subgraph of
the visibility graph G. The following lemma [21] provides the relationship between the covering
problem for P and the graph G;.

Lemma 2. Let H (V’,E’) be a complete subgraph (clique) of G;. Then, the sources of V’ can
be covered by a single maximal orthogonally convex polygon.

Since the sources & and v, such that # # v, cannot both be covered by an orthogonally con-
vex polygon, a minimum clique cover of G; (that is, a minimum cardinality set of cliques of G;
with every vertex of G, belonging to some clique) corresponds exactly to a minimum cover of P
by orthogonally convex polygons. Finding a minimum clique cover is NP-hard for general
graphs [9], and this formulation of the problem does not give us an algorithm immediately. How-
ever, there is an important subclass of graphs (called perfect graphs) for which the minimum
clique cover problem can be solved in polynomial time [18]. We will show in a later section that
the visibility graph for a class 3 polygon is perfect, implying that the source graph is perfect too.

3. Vertically Convex Polygons and Permutation Graphs

In this section, we show that the visibility graph G of a vertically convex polygon P is a
permutation graph [10, 18]. A vertically convex polygon belongs to the class of class 2 polygons.
Another kind of class 2 polygons has dents of two orthogonal orientations. It is our belief that
these kinds of class 2 polygons also have the property that their visibility graphs are permutation
graphs. The proof will be omitted for the sake of brevity. By definition, a vertically convex
polygon can have dents of N or S orientations only.

A comparability graph is one which can be obtained from a partially ordered set Q by tak-
ing the elements of Q as its vertices and joining two elements if and only if they are comparable.
In other words, it is the undirected version of the transitive closure of Q. We now define permu-
tation graphs. Although permutation graphs were originally defined differently, we provide an
equivalent definition [18] that is suitable for this paper.

Definition 2. A graph G is a permutation graph if both G and its complement are comparability
graphs.



-7-

Comparability graphs are known to be in the class of graphs called perfect graphs [18]. It
follows that permutation graphs are also perfect graphs.

For every region u of P, we pick an arbitrary representative point g, and argue about this
set of points. Recall that, by Observation 7, regions u and v see each other if and only if
g, = q,. For notational simplicity, we denote region u and its representative point g, by the
same name u.

The following lemma shows that visibility in a vertically convex polygon is in some sense a
transitive property.

Lemma 3. Let points 4, v and w bein P. Letu = v, such that u lies to the south of v, and let
v = w, such that v lies to the southof w. Then, u = w.

Proof: Without loss of generality, let the staircase from u to v be northeast. If the staircase from
v to w is also northeast, then ¥ = w. Assume to the contrary that u # w. Thus, the staircase

from v to w is northwest. By Observation 6,2 W dent separates ¥ and w, a contradiction.
Q.E.D.

Given the visibility graph G, we construct a directed graph Hg from G as follows. The
undirected version of Hg is G. Edge <u ,v> of G is oriented from u to v in Hg (denoted by
u —v) if point u is to the south of point v. Since edges are directed from south to north, Hg is
acyclic. In order to prove that Hg is the transitive closure of some partial order, all we need to
show is that if edges u —»v and v -»w exist in Hg, then edge u —»w exists in H;. By the
orientation of edges,  is to the south of v and v is to the south of w. In addition, ¥ = v and
v = w, implying, by Lemma 3, that u = w. Moreover, u is to the south of w, and hence, edge
u —w isin Hg. We have thus shown the following lemma.

Lemma 4. The visibility graph G of a vertically convex polygon P is 2 comparability graph.

We now show that the complement graph G°¢ is also a comparability graph. As before, we
construct a directed graph H g. from G¢, such that the undirected version of H - is G°. The
orientation of an edge <u ,v > is from u to v if u is to the westof v. As before, H - is acyclic.
Now, we show transitivity, i.e., if # = v isin Hg. and v »w is in Hg., then u ->w is in
H g-. We first need the following observation.

Observation 8. Let D be a dent in a vertically convex polygon P such that o (D )= S (N).
Then every point in B; (D ) is to the west (east, resp.) of every pointin B, (D).

Proof: Trivial.
Q.E.D.
Lemma S.If u —»v and v > w are edges in H 5, thenu —w isanedgeinH g..

Proof: Since <u ,v> € E (G ), u £v. Thus, dent D, separates u and v. Without loss of
generality, let o (D, )= S. By Observation 8, u € B (D,)and v € B, (D, ). Similarly,
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we can argue that there exists a dent D, separates v andw.

Casel:o(D,)=S
By Observation 8, v € B, (D,) and w € B, (D,). If D,, is to the north of D,, then
u € B, (D,), and hence, u £w. If D is to the north of Dv, then w € B, (D,), and
hence, # #w. Thus, u - w isanedgeinH g-.

Case2:0(D,)=N.
We have, by Observation 8, that v € B, (D,) and w € B, (D,). Suppose there exists
another dent D, separating u and v, such thato (D', )= N, then by the proof of Case 1, we are
done. Therefore, assume that there is no N dent separating u and v. Sumlarly, assume that
there isno S dent D', separat:mg v and w. This implies that v is to the south of D »» and that
D , is to the south of D .. Thus, » € B, (D,), implying that 4 £w. We have now shown
that u —w is anedge in H g-.

Q.E.D.

The preceding arguments have established the following lemma.
Lemma 6. G¢ , the complement of the visibility graph G , is a comparability graph.
Now, Lemmata 4 and 6 together imply Theorem 1.

Theorem 1. The visibility graph G of a vertically convex polygon is a permutation graph.

4. Polygons with Three Dent Orientations

In this section, we state our main results concerning orthogonal polygons with three dent
orientations (class 3 polygons). We first assert that the visibility graph of a class 3 polygon is
perfect. In a perfect graph G, the size of a minimum clique cover of every subgraph G’ is equal
to the size of a maximum independent set of G”. We then state the duality relationship for class 3
polygons. We first need the following definition.

Definition 3. A graph G is weakly triangulated if neither G nor G¢, the complement of G con-
tain induced cycles of length greater than four.

The following theorem, proved by Hayward [13], will be useful.
Theorem 2. (Hayward) Weakly triangulated graphs are perfect.

We now state the following theorem, the proof of which is contained in the next three sec-
tions.

Theorem 3. The visibility graph of a class 3 orthogonal polygon P is weakly triangulated.

Theorem 2, together with Hayward's theorem, provides us with the following duality rela-
tionship:
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Corollary 1. (The Duality Relationship) The minimum number of orthogonally convex polygons
needed to cover an orthogonal polygon P with at most three dent orientations is equal to the max-
imum number of points of P, no two of which can be contained together in an orthogonally con-
vex covering polygon.

Since the source graph is an induced subgraph of the visibility graph, by Theorem 2, it must
be perfect. Moreover, the induced subgraphs of a weakly triangulated graph are also weakly tri-
angulated. By Lemmata 1 and 2, we have that a minimum clique cover of the source graph
corresponds to a minimum cover of P by maximal OCP’s. Recently, Hayward and Hoang [14]
have devised an O (n°) algorithm to compute the minimum clique cover of a weakly triangulated
graph. This is a significant improvement over the Ellipsoid method generally used for perfect
graphs. The main advantage of working with source graphs is that, in a class 3 polygon the
number of sources must be O (n). It is not very hard to see that a minimal cover by OCP’s can be
efficiently constructed given the minimum clique cover of G, . Thus, we have a polynomial algo-
rithm for the convex cover problem for class 3 polygons.

5. The Crossing Lemma.

In this section we prove a technical lemma, called the Crossing Lemma, which will be
required in the proof of Theorem 3. Two staircase paths are said to cross if they meet at some
point. We will only be considering pairs of staircase paths which cross and have distinct end-
points. Observations 9 and 10 are concemned with pairs of crossing staircase paths which are of
the same type and of different types, respectively. These observations are valid in all their
reflection and rotation symmetric versions.

Observation 9. Let points u,v € P be such that u =v and u lies southwest of v. Let points
u’ v’ e P be such that u’=v’ and u’ lies southwest of v’. If staircase paths s,v)and s(u’,v")
cross then u’=v and u =v’. Moreover, u and u’ lie southwest of v’ and v, respectively.

Proof: s (u,v) travels southwest from v tou. s (u’,v") travels southwest from v’ to u’, and meets
s(u,v) at some point, say p. Thus, we can take s (u, v) from v to p and then take s (x’,v") from
p to u’, establishing a southwest staircase from v to u’. Similarly, there is a southwest staircase

fromv’'tou.
Q.E.D.

Observation 10. Let points u,v € P be such that u =v and u lies southwest of v. Let points
u’,v’ e P be such that u’=v” and u’ lies southeast of v/. If s(u,v) and s(u’,v’) cross and u £u’
then a S dent separates u from u’.

Proof: As before, let s(u ,v) meet s(u’,v’) at p. Now, p sees u to its southwest and u’ to its
pP p

southeast. By Observation 6, there is a S dent separating u and u’.
Q.E.D.

Let G’(V’,E’) be a subgraph of the visibility graph G (V,E). For every veriex v € V’, fixa
point (also called v) which lies in the region of P corresponding to v. Note that this notation
should cause no confusion, by Observation 7. For every edge <u,v>e€ E’, fix a staircase path
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s (u,v) from point u to point v. We call this collection of points and staircase paths an instantia-
tion of the subgraph G’.

Let C be k-cycle in the graph G such that V(C)={vo:V1, - Vi) and <v;,v; 1> € E(C),
for each i (all indices here and in the rest of the paper are modulo k). Consider C’, an instantia-
tion of C.

Lemma 7. (Crossing Lemma) If C is an induced cycle of G (i.e. C has no chords) then some pair
of non-adjacent staircase paths must cross in C’.

Proof: Assume to the contrary, that none of the non-adjacent pairs of staircase paths cross. Let vy
be the northernmost point of V(C). Let [ denote the line segment connecting the neighbors of v
in C, viz. v; and v,_;. Let R denote the region in P which is enclosed by s (Ve_1:v0), s (Vo:V1)
and ! (see Figure 7). Since v;_; #v;, an edge of the boundary of P must intersect /. Thus, there
are points of the boundary of P in R. Let p denote a northernmost point in R which lies on the
boundary of P. Since P is a simple polygon and the set of staircase paths of C” forms a closed,
non-crossing path, the region enclosed by the closed path cannot include p. Thus, some point,
say v; € {Va,V3, " Vy—p} must lie in R to the north of p. Then, v; = v,. imolying that v; has a
chord to v, and we have a contradiction.

Q.E.D.

Lemma 8. Suppose C is an induced k-cycle of G, where k>4. Any pair of crossing staircase
paths in C’, s (v; ,v;4y) and s(v; Vj+1) say, must be of different types if they have distinct end-
points.
Proof- Leti,j € {0, -+ ,k=1} be such that li—ji>1mod k. Assume to the contrary that
5 (v;,Vi41) and 5 (v;,V;j4y) CTOSS and are of the same type, say type . Assume, without loss of gen-
erality, that v; and v; lie to the southeast of v;,; and v;4;, respectively. By Observation 10, we
have that v; =v;,; and v; =Vi,y. Thus, <v;,vja> € E (C) and <v;,viy1> € E (C). Since
k > 4, one of these edges will cause a chord in C and give us a contradiction.

Q.E.D.

6. Induced Cycles in the Visibility Graph.

In this section we prove the first part of Theorem 3. We show that for a class 3 polygon P
the visibility graph G has no induced k -cycles, for k>4.

Lemma 9. Suppose P is a class 3 polygon (with W, S and E dent orientations). Then, the
visibility graph, G, cannot have induced k-cycles where k >4.

Proof: Assume to the contrary that C is an induced k-cycle in G. Let V(C)={vo.vy, " Vi1
denote the set of vertices of C in the cyclic order. Let C ’ be an instantiation of C. By the Cross-
ing Lemma, some pair of non-adjacent staircase paths, s (v;,v;4;) and 5 (v;,v;,1), must Cross. By
Lemma 8, the two staircase paths must be of different types. Assume, without loss of generality,
that 5 (v;,;,1) is of type I and s (v; ,v;41) is of type I. We may further assume that v; lies to the
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southeast of v;,; and that v;,, lies to the southwest of v;. Since P has only three dent orienta-
tions: W, S and E, we assert that v;,;=v;. If this were not the case, then, by Observation 10,
there would be a N dent separating the two points, giving us a contradiction. To prevent chords,
we have that v; £v;,;, v; £v; and v, £V, By Observation 10, there must be a W dent, Dy,
separating v; from v;. Similarly, there must be a S dent, Dy, separating v; from v;,; and an E
dent, D, separating v;, from v;,, (see Figure 8).

First, note that D g must lie in A (Dy/) and D w must lie in A (Dg). This implies that D E
must lie to the east of D w. We now know that v;,, € B, (Dw) and v; € B; (Dg). Moreover, itis
clear that v; € B, (Dw) and v, € B, (Dg).

Consider the set of staircase paths which remains after the removal of s (v;41.v;) from the
instantiation of C. In the sequence of paths from v;,; o v;, let 5 (Vg ,Vi+1) be the first staircase
path to intersect with D w. We will assume that k+1 # i; otherwise, k # j+1 and we can argue
symmetrically. Let the intersection point of s (v,ve4+1) and D w be called p (see Figure 9). Note
thatv, € B, (Dy)and v;,; € A (Dy).

Since v;,; sees v; o its southeast, and p is to the south of the point of intersection of D W
and s (v; , v;,1), there is a northwest staircase path from p to v;,;. If the staircase path s (v, Ve1)
is of type I (that is, southeast from v; to Vi.1), then v, has a northwest staircase path from v,
to p, and thence to ;4. Since k+1 #i and k+1# j, we have a chord from v, t0 v;,;, a contrad-
iction. If, on the other hand, s (v;,vi41) is of type II, then again v, = V4 otherwise, there must
be a N dent separating v, from v;,;, by Observation 6. Since N dents do not occur in P we
again have a chord from v;,; 10 v;,;, @ contradiction.

Q.E.D.

7. Induced Cycles in the Complement of the Visibility Graph

In this section, we establish the other part of the proof of Theorem 3, namely that the com-
plement graph G of the visibility graph cannot have any induced cycles of length 5 or more.
The following definitions and claims will prove useful in establishing this result. Let C be a k-
cycle in the graph G, where k25. Let V(C)={vg, Vs - » Vi) denote the vertices of C in a
cyclic order. In other words, for each v, € V(C) we have {v,_;, V.. 1} SN (v, , G°), the neigh-
bor set of v, in G¢. Recall that v, € N (v, , G°) if and only if v, £v,. Hence, C is an induced
k-cycle if and only if for each v, itis the case that N (v, , G )V (C)=Vai» Vasl)

From Observation 4, we have that if v, #v, then there must be a dent which separates the
two vertices. Let D, denote the dent which separates the vertices v, and v,,, which are consecu-
tive in the cycle C (recall that all indices are modulo k). Thus, the k-cycle C determines a
sequence of k dents corresponding to the k cycle edges in C (see Figure 10). We first claim that
if any two of these k dents are distinct and of the same orientation then there exists a chord for
the cycle C . Assume, without loss of generality, that the three dent orientations in P are N, W
and S.
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Claim 1. Suppose the dents D, and D, are distinct but of the same orientation, then C cannot be
an induced cycle.

Proof: Suppose, for the moment, that {a,a+1}~{b .b+1 }=. We will relax this condition later.
Assume, without loss of generality, that o (D, )=0 (D, )=S and the dent line D a lies to the north
of the the dent line D’ ». We can always renumber the vertices of C' to ensure that a=0, which
would imply that 2<b and b+1<k-1. Thus, we are assured that the edges <v,.1,Vp41> and
<v, , v,> cannot be presentin G° since they would be chords for the cycle C.

Since k25, there must be a vertex in V(C) which is adjacent to neither v, nor v,,, in G°,
otherwise there would be chords in €. This would imply that there is a vertex which is adjacent
to both v, and v, in the visibility graph G. By Observation 5, we have that both v, and v,
must lie to the south of the dent line D' .- A similar argument also shows that both v, and v;
must lie to the south of the dent line D »» and, thus, also to the south of the dent line D,

We now assert that v, éA(D,). Suppose v, did lie in the zone A (D,). We know that the
edge <v, , v,> is present in G, therefore v, =v,, We also know that v, is in one of the B zones
of D,. By Observation 5, v, must be north of D and, hence, of D p also, which is a contradic-
tion. A similar argument shows that v, . ¢A (D, ) since the edge <V,.1, Vp4+1> must be present in
the visibility graph G and v, ,; lies to the south of the dent line D a

Assume, without loss of generality, that v, € B, (D,) and that v,,; € B, (D,). It then fol-
lows from the above argument that v, € B; (D,) and v,,; € B, (D,), since there are staircase
paths from v, to v, and from v, 10 v, (see Figure 11). Recall that if there is a staircase path
between two points inside the polygon then they cannot lie in different B zones of some dent.

Finally, we observe that the dent line D » must lie entirely in the zone A (D, ). Suppose this
were not the case, then D » must lie either in B, (D) orin B, (D,). Clearly, if D p were inside
the zone B, (D,) then both B, (D,) and B, (D,) would also lie inside the zone B, (D,). This
cannot be the case since vy, € B, (D) and v,y €A (D). A similar argument establishes that
o} » cannot lie in B, (D,).

Consider a path which starts from v, € B; (D,) and first goes to the dent line D a- It then
follows the dent line until it reaches the boundary of the zone B, (D,). Finally, it traverses this
zone until reaches the point v, € B, (D,). Clearly, this path never crosses the dent line D b
since it never entered the zone A (D, ). In other words, we have exhibited a path between v, and
vp4+1 Which lies entirely inside the polygon P and never Crosses the dent line of the dent separat-
ing the two points (see Figure 11). This contradicts the definition of the dent line and completes
the proof for the case where {a,a+1} — {b b+l =

It is easy to extend the above argument to the case where {a ,a+1} ~{b,b+1} Q.
First, observe that the only case in which the intersection is non-empty is where a+1 = b. In this
case, we can argue that the edge <v, , v,,;> must be absentin G¢ since it would be a chord for
C . Observe that the edge <v, , v,.,1> cannot be a cycle edge for C since the length of the cycle is
greater than 3. Thus, we have that v, =v,, . AS before, we can argue that v, and v, must lie to
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the south of the dent line D . while v, and v, lie to the south of the dent line D' »- Again, we
only consider the case where the dent line D » lies to the south of the dent line D a- It is now

easy to see that v, ,; cannot lie in the zone A (D, ).

Without loss of generality, we only consider the situation where both v, and v,,; lie in
B, (D,) while v, lies in the zone B, (D, ). Note that v, and v, ,, cannot lie in different B zones
of the dent D, since v, =v,,,. Again, it is easy to verify that the dent line D , must lie entirely
in the zone A (D,). Thus, we are now able to construct a path from v, to v, which never crosses
the dent line D' » (see Figure 12). This contradicts the definition of the dent line and completes
the proof.
Q.E.D.
We now show that if a dent D corresponds to two non-adjacent edges in the cycle C then
there must be a chord in the cycle C.

Claim 2. Suppose {a ,a+1}\{b,b+1 }=@ then it cannot be the case that D, =D, unless C hasa
chord.

Proof: Suppose to the contrary that D, =D, =D and that C has no chords in G°. Thus, the dent
D separates v, from v, and v, from vs,;. Assume, without loss of generality, that v, € B, (D)
and v,,, € B, (D). Similarly, assume that v, € B, (D) and v, € B, (D). Now, the dent D
must also separate v, from v,,; and v, from v, (see Figure 13). Thus, the two edges
<V, » Vp1> and <V, , V441> are not present in G and they are both present in G¢ . One of these
two edges will always be a chord for C when k>5. Since C is an induced cycle (by assumption)
this cannot happen.

Q.E.D.

We are now ready to prove the following lemma.

Lemma 10. If G is the visibility graph of a class 3 polygon P then G°¢ cannot have an induced
cycle of length 5 or more.

Proof: Assume to the contrary that C is an induced k -cycle in the graph G€ . It s clear that k26
since an induced 5-cycle in G¢ would imply the existence of an induced 5-cycle in the visibility
graph G (see Figure 14). From Claim 1, it is clear that in the multi-set
D(C)={DoD 1, - * .Dy-1}, there cannot be more than one dent of each of the three allowed orien-
tations. Moreover, Claim 2 states that the same dent cannot correspond to two non-adjacent
edges of C . Thus, we cannot have an induced k -cycle where k27 since only three dent orienta-
tions are permitted. We now complete the proof of the lemma by showing that, given Claims 1
and 2, even induced 6-cycles are not possible.

Consider the case where k=6. Given Claims 1 and 2, it is clear that we can renumber the
vertices of C to ensure that Dg=D =Dy, D,=D3=Dy and D,=Ds=Ds, where o (Dy)=N,
o(Dyw)=W and o(Dg)=S (see Figure 15). We will show that the edge <vs, v,> is not present
inG and, thus, is a chord for C.
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There must exist vertices in C which are adjacent (in G) to both vs and v, e.g. v3. Obser-
vation 5 then implies that the points vs and v must lie to the south of the the dent line D 5-
Similarly, we can show that the points vo and v, must both lie to the north of the dent line D N-
This can only happen if the dent line D n lies to the south of the dent line D (see Figure 16).
Now the point v, must have staircase paths to both v and v,, otherwise the chords <vj3, vo> Or
<v3,v> will be present in G° . Thus, v3 must lie to the south of the dent line D N Similarly,
points in v3 must have staircase paths to points in both vs and v and, thus, v3 must lie to the
north of the dent line D . Since the dent line D n lies to the south of the dent line D this

gives a contradiction.
Q.E.D.

8. Orthogonal Polygons with Four Dent Orientations

In this section, we demonstrate arbitrarily large induced odd cycles in the source graph of
an orthogonal polygon with four dent orientations. This would show that the source graph, and
hence, the visibility graphof a class 4 polygon, is not perfect [10, 18], and also imply that the
duality relationship of Corollary 1 does not hold for class 4 polygons.

Consider the polygon Ps, shown in Figure 17. There are exactly five sources, but the
source graph is a 5-cycle without chords, which is not perfect, and hence, the duality relationship
fails to hold.

Note that B, (D;) < B; (D). If we now modify B, (D,) to obtain the polygon P4,
shown in Figure 18, we find that the source graph is a 7-cycle without chords. A similar con-
struction to P, would give a polygon whose source graph is a 9-cycle with no chords, and so on
1o obtain arbitrarily large induced odd cycles.

9. Further Work

The main contribution of this paper has been the demonstration of the intimate connection
between orthogonal polygon covering and classes of perfect graphs, and deriving the duality rela-
tionship of section 4. The main tool of our analysis has been the visibility graph for regions
inside an orthogonal polygon. We have demonstrated certain interesting combinatorial properties
of these kinds of graphs. It is our belief that a careful examination of the combinatorial structure
of different kinds of visibility graphs may lead to the solution of other open problems in compu-
tational geometry. In particular, we feel that our approach might prove fruitful in solving the
open problems listed below.

(1) To find a duality relationship and/or a polynomial algorithm for class 4 polygons. Is the
source graph a member of some other class of graphs for which the minimum clique cover prob-
lem can be solved in polynomial time?

(2) Will similar techniques work for the problem of covering orthogonal polygons with a

minimum number of rectangles? We know that Chvatal’s conjecture is false in general for
orthogonal polygons without holes. Culberson and Reckhow [7] describe a scheme to obtain
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source graphs for this case. Is the source graph a member of some other class of graphs for which
the minimum clique cover problem can be solved in polynomial time?
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