The Design of a Load Balancing Mechanism for
Distributed Computer Systems

| Harry I. Rubin

S I
-

' a\r
: : Report No. UCB/CSD 87/362
1! July 1987
"X | PROGRES Report No. 87.5
N / Computer Science Division (EECS)
\ NETR A University of California
| \,‘\\:‘\é‘\}“‘ g T ,.\\.”' "' Berkeley, California 94720

f'<',/".' - W & t \.-_'0-)
.',/ "l"i.l 1“‘“' . ":\‘l\'.c,' l‘l:!’n'

) P AN NN \

The Design of a Load Balancing Mechanism for
Distributed Computer Systems

Harry I. Rubin

Computer Science Division
571 Evans Hall
University of California, Berkeley
Berkeley, CA 94709

(415) 642-3979

harry@Berkeley. EDU -or- ...lucbvax'harry

ABSTRACT

We describe the design and planned implementation of a load balancer
for a network of computers. The mechanisms that make decisions are
separated from those that carry out actions, and different levels of centrali-
zation are chosen for each. Load balancing decisions are made by one-per-
machine managers; this allows better administrative control, consideration
of recent history in making decisions, and reduces duplication of effort.
Load balancing actions include establishing communication connections,
sending task descriptions, executing a task, returning results, and so on.
Load balancing actions are decentralized, each program performs its own,
because these actions can be time-consuming and centralizing them could
form a bottleneck. -

Sending decisions include unload decisions, eligibility decisions, and
placement decisions. These are made by a load balancing send manager
(LBSM); there is one LBSM on each machine. The decision to accept an
offered task for execution is made by a load balancing receive manager
(LBRM); there is one LBRM on each machine. The LBSM and the LBRM read
configuration files which instruct them on how to make their sending and
receiving decisions. These configuration files provide for administrative con-
trol of load balancing.

Programs that wish to execute tasks under load balancing contact the
local LBSM and send descriptions of the tasks. The LBSM makes the sending
decisions and replies with the name of the machine selected for each task.
The originating program then contacts the LBRMs on the selected machines
and submits the tasks. The LBRMs either accept each task and execute it, or
send back a refusal message. Each remote task is executed in a separate
execution environment. Results are sent back to the originating program
directly.

We expect that the main user of load balancing will be load balancing
command interpreters (shells!. but a library of routines is planned which
will make it easy for other programs to use the load balancer.

Table of Contents

1. INTRODUCTION

1.1. Objectives

2. CENTRALIZATION AND DECENTRALIZATION OF DECISIONS AND ACTIONS

3. THE ENVIRONMENT

3.1. File System

3.2. Process Migration

3.3. Multiprogramming
3.4. The Network

4, COMPONENTS OF THE LOAD BALANCER

4.1, The User Process

4.2. The Send Manager

4.3, The Receive Manager

4.4. The Load Information Manager
4.5. The Task Information Manager

5. COMMUNICATION

S.1. Communication in ASCI Text
52. Formats and Keywords

5.3. Header and Ending

5.4, Send Manager Queries
5.4.1. Tasks Section

5.4.1.1. No-Placement Tasks (NOPL)

5.4.1.2. Already-Placed Tasks (more NOPL)
5.4.2. Communication Section

5.4.3. Dependency Section

5.4.4. Summary of Send Manager Queries
5.5. Send Manager Replies

5.5.1. Placement Section

5.6. Receive Manager Requests
5.6.1. Execute Section

.....

5.6.2. Pipes ...

5.7. Receive Manager Replies

5.8. Load Information Manager Communication
5.9. Task Information Manager Communication

6. CONFIGURATION INFORMATION

6.1. Sending Configuration Information
6.1.1. Sending Configuration File Format

6.2. Receiving Configuration Information

O OO O O W b bW

NNBNH;—-HwHHHwt—-mv—OHHHMwHwH’—
W W = O 00 00 00 =3 ~1 O W & Hh W W W WL NRDNDN=OO

BRR

6.2.1. Receiving Configuration File Format
6.3. Acceptance Hints

6.3.1. Acceptance Hints at Start-Up

6.3.2. Acceptance Hint Updates Due to Refusals (Hard and Soft Refusals) .cociceeecseness

6.3.3. Acceptance Hint Periodic Updates

6.3.4. Acceptance Hint Version Stamps

6.3.5. Alternatives

7. OTHER MATTERS ...

7.1. Load Balancer Control Program

7.2. Files

7.3. Reconfiguration

8. REFERENCES

BREEEDL

29
29
30
30
30
30
3

The Design of a Load Balancing Mechanism for
Distributed Computer Systems

Harry I. Rubin

Computer Science Division
571 Evans Hall
University of California, Berkeley
Berkeley, CA 94709

(415) 642-3979

harry@Berkeley EDU -or- ...lucbvax!harry

1. INTRODUCTION

In a distributed computer system, it often happens that some computers are heavily
loaded while others are lightly loaded or idle. Theoretical studies and simulations have
promised tremendous improvements in user response time by moving tasks from beavily
loaded computers to lightly loaded ones (for instance [Livmy and Melman 1982],
(Zhou 1986]). We use the term load balancing to refer to any movement of workload from
one computer to another for purposes of improving performance. The issues involved in
load balancing can be divided into mechanism and policy. Mechanism issues deal with the
structure of the load balancer, which functions are performed by which components, how
the components carry out their functions, how they communicate with one another and
with clients, and so on. Policies are the algorithms (or heuristics) by which load balancing
decisions are made. Policies and mechanism are not independent. Policy decisions are sup-
ported by, communicated through, and acted upon by the load balancing mechanism.

In this paper we discuss the design of a load balancing mechanism. This design is
intended to be the basis for a production load balancer. We also intend to use it as a
testbed for experimentation with various load balancing policies. Although to a certain
extent the design of the mechanism restricts or at least influences the policies that can be
supported, we do not feel this is a problem. We believe that the present mechanism is both
general and flexible: it will accommodate most of the policies we will wish to try, and it has
been structured in such a way that it will be easy to modify to accommodate other policies.

1.1. Objectives

Load balancing facilities can be provided at either the command level or the program
level. Load balancing at the command level means the load balancing of whole commands,
as typed by a user at a terminal; the user does not write any programs, only enters com-
mands. Obviously this type of load balancing must be handled by the user’s command
interpreter (in Unix, the shell). At the command level, load balancing should be automatic
and transparent: once load balancing has been turned on, the user should not be required

Unix is a t.radgma.rk of AT&T Bell Laboratories.

This work was sponsored in part by the Defense Advanced Research Projects Agency (DoD). Arpa Order
No. 4871, monitored by Space and Naval Warfare Systems Command under Contract N00039-84.C-0089.
The views and conclusions contained in this document are those of the author, and should not be inter-
preted as representing official policies, either expressed or implied. of the Department of Defense or of
the U.S. Government.

ibin

.92.

to type extra commands or special versions of commands, or even extra characters in com-
mands (as in Hwang, et al's design (Hwang et al. 1982]). Load balancing at the program
level means that programmers can use the load balancing facilities when dispatching tasks
from within a program (in Unix, tasks can be dispatched by fork/exec or by system calls
such as system). Our main objective was to provide convenient and powerful load balancing
facilities at both the command level and program level. .

One approach to providing load balancing at both the command and program levels is
_ to install load balancing in the process control facilities of the operating system kernel, for
example, a load balancing fork. We have rejected this approach for a number of reasons.
First, it is not at all portable: neither our design nor our planned implementation would
have been easily transportable to a different type of computer system. Second, at the pro-
cess control level, the only information available is information about a single process. We
believe that more information may lead to better load balancing decisions, therefore we
wanted a design that would allow use of as much information as possible. Command lines,
or lists of tasks to be dispatched from a program, can contain much information about mul-
tiple tasks to be run concurrently or serially, about communication between tasks, and so
on. Performing load balancing at the process level in the operating system would not allow
use of this information. Finally, making extensive modifications to the kernel of an operat-
ing system is a difficult and error-prone undertaking. For these reasons, another of our
objectives was to avoid modifying the kernel of the operating system.

We believe that load balancing is an "extra” that users and programmers should be
able to use, but they should not be required to use it. If they do choose to use it, it should
be as convenient, automatic, and transparent as possible.

Making it possible to execute a new command under load balancing should be easy.
Some load balancing systems require that a new “front end” program be written for every
command that is to be executed under load balancing [Bershad 1985). We consider such an
approach unacceptable; it is too difficult to administer. Making it possible to execute a new
command under load balancing should be as easy as adding the command to a load balanc-
ing list. '

Administrators have a responsibility to control the use of their machines, and some-
times to control the execution of sensitive tasks. Load balancing that involves moving
tasks off one machine and onto another could pose a threat to administrators’ abilities to
carry out these responsibilities. Administrators must be able to control which tasks exe-
cute on the machines for which they are responsible. In some cases, administrators are
responsible for protecting the execution of certain tasks, in which case they must be able to
control whether those tasks are executed locally or remotely, and, if remotely, to which
machines the tasks could be sent. The ability of the administrator of & machine to control
that machine and its tasks is called local autonomy. We feel that it is vital for a load
balancer to provide a high level of local autonomy. Of course, it should be convenient to
administer local autonomy.

In short, our objectives for this design were:

« to provide load balancing at the command level for commands typed by users at terminals

« to provide load balancing at the program level for programs dispatching tasks

« to make load balancing as convenient, automatic, and transparent as possible at both levels
+ to allow the load balancer to handle any task without writing new software for each task

« to make load balancing facilities available but not mandatory

« to provide a high level of local autonomy

. to make the load balancing system convenient to install and control administratively

« to do all this without modifying the kernel of the operating system

We believe we have succeeded in accomplishing these objectives.

Design of a Load Balancing Mechanism - Rubin July 1, 1987

-3-

2. CENTRALIZATION AND DECENTRALIZATION OF DECISIONS AND
ACTIONS

In the load balancer described here, decisions are made in a centralized fashion but
are carried out in a decentralized fashion.

A load balancer performs two kinds of operations, the making of load balancing deci-
sions and the carrying out of those decisions. We refer to the carrying out of & decision as
an action.

There are several load balancing decisions, some made by a machine considering send-
ing a task elsewhere, and some made by a machine receiving a task from elsewhere:

Sending Decisions

unload decision should any tasks be unloaded now?

eligibility decision is a particular task eligible to be unloaded?
placement decision | where should an eligible task be sent or placed?

Receiving Decisions
acceptance decision] should a received task be accepted or refused?

Similarly, there are some load balancing actions which occur on & sending machine
and others which occur on a receiving machine:

Sending Actions

establish connection to receiving machine
send task

send any other information required
(possibly) wait for task to complete
receive results (if any)

Receiving Actions

accept connection from sending machine
receive task

set up execution environment for task
execute task

send any results back to sending machine
clean up

Load balancing activities, both the making of decisions and the carrying out of them.,
can happen at any one of five levels of centralization, from completely decentralized to com-
pletely centralized:

« per task

- per user (user environment, or login session; in Unix, per shell)

« per machine

- per cluster of machines (defined on load balancing clusters)

« globally (all machines that could possibly participate in load balancing)

Centralized decision-making means that & single entity makes all decisions for the globe or
cluster or machine or login session. Decentralized decision-making means that many enti-
ties are making decisions independently. Carrying out load balancing actions in a central-
ized way means that some central entity carries out all actions. Carrying out load balanc-
ing actions in a decentralized way means that many independent entities are carrying out
actions independently.

By centralizing decision-making on 2 per-machine basis, load balancing actions by all
users of the machine can be taken into account, and thus better decisions can be made.
Centralizing load balancing decisions also eliminates certain duplications of overhead. An
even more centralized approach. per-cluster or global, would stand in danger of becoming a

-4 -

bottleneck, would involve more off-machine communication (which is slower than on-
machine communication), and would involve the greater complexity of detecting and react-
ing to a failure of the cluster controller or global controller. We believe that a carefully
designed and implemented per-machine load balancing decision-maker will be able to make
decisions quickly, so that it does not become a bottleneck. Experience and experiments will
tell whether this is true.

Recert work by Zhou has led him to claim that per-cluster load balancing may deliver
better performance than per-machine load balancing ((Zhou 1986); also see {Zhou and Fer-
" rari 1987)). Zhou's work, however, differs from our own in a number of significant
respects. Zhou combined two functions, distributing load information and making load
balancing decisions, into one component, and based his conclusions about centralization on
the cost of distributing load information. In our design the two functions are embodied in
two separate components, 80 deciding that load balancing decisions will be made on a per-
machine basis still allows load information to be distributed on a per-cluster basis, or on
any other basis. Furthermore, Zhou implicitly assumed that placement decisions for all
machines would be made in the same way. Our scheme, however, includes extensive
administrative controls to allow for local autonomy on & per-machine basis. This makes it
awkward to have a single per-cluster decision-maker; the per-cluster decision-maker might
have to make decisions according to different criteria depending on which machine was the
source of the task. Such a per-cluster decision-maker would be more complex to design and
implement, and would run more slowly, increasing the possibility that the decision-maker
could become a bottleneck. Another problem with per-cluster load balancing is also due to
local autonomy: if load balancing decision-makers run on each machine, it is easier for the
administrator of each machine to control load balancing. In a cluster-based system, if the
cluster-controller ran on a remote machine, the local administrator might have to depend
on the administrator of the remote machine to control the movement of tasks onto and off
of the local machine. For our objectives, making load balancing decisions at the per-
machine level seems better.

Load balancing actions could take a relatively long time to perform since they involve
communication with remote machines and waiting for actions on remote machines. Com-
munication with remote machines is done via relatively slow off-machine communication
mechanisms. Remote machines may take a long time to complete an action either because
the action is complex and computationally expensive, or because the machine is slow, or
both. If a remote machine is down, or crashes during an action, the originating machine
may have to wait for a time-out period to discover that. If load balancing actions were cen-
tralized, even at the per-machine level, the action-manager could become a major
bottleneck. By decentralizing actions, we eliminate the danger of bottleneck.

In the load balancer described here, load balancing decisions are made by one-per-
machine entities, while load balancing actions are carried out on a per-user basis by per-
login entities (in Unix by the shell).

3. THE ENVIRONMENT

The design proposed here is fairly general in that it makes few assumptions about the
operating environment. The design could be implemented in any environment that fulfills
those assumptions. This section describes those aspects of the operating environment on
which the design of the load balancer depends.

3.1. File System

The load balancer assumes that files are visible and accessed by the same name from
all machines (this is sometimes called transparency:. The load balancer does not check that
this is true, nor does it take any actions to ensure it. We considered designing the load
balancer to copy input files to remote machines or result files back, if necessary, but our
view is that a distributed system supporting a load balancer should also include a

a Load Balancing Mechanis Rubin July 1. 1987

distributed file system that provides these services.

File access costs need not necessarily be uniform across machines; a file residing on
one machine must be visible and accessible under the same name from a remote machine,
but it might be far more costly in terms of delay to access the file from the remote machine.
Load balancing policies might well take into account the relative costs of file access on
different machines (as, for example, in Hac and Johnson's study (Hac and Johnson 1985)).

Although we have not dealt with it in this design, if the distributed file system allows
" fles to be moved from machine to machine automatically, then perhaps the load balancer
and the file system could negotiate about whether to move the work nearer to the files or
the files nearer to the work. If the distributed file system supports replication of files, then
copies of needed files could be created near the work site.

All file names must be expanded or converted to a format which is absolute, not rela-
tive, across machine boundaries, so the file naming system must include such an absolute
format.

3.2. Process Migration

Our design does not rely upon process migration. Load balancing is done by initial
placement of tasks; once a task is accepted by a machine, it runs to termination on that
machine.

It is possible that a task that was accepted under one set of circumstances could
become unwelcome on its host machine later in its lifetime if circumstances change.
Nevertheless, once a task is accepted it runs to completion, even if this later becomes incon-
venient or undesirable. Without process migration there is little alternative. In the case of
a multi-user computer, this is 2 small problem; users must expect that tasks belonging to
other users will affect the response times of their tasks. In the case of a single-user works-
tation or personal computer the problem is more significant, if only for psychological rea-
sons (“this is my workstation .."). We have considered some approaches to ameliorating
the problem:

. foreign tasks which become unwelcome could be suspended for 8 while, or they could
have their priority lowered. But such actions would increase response time, defeating
the purpose of load balancing.

. tasks which become unwelcome could be aborted and an attempt made to automati-
cally restart them from scratch elsewhere. But it may be difficult for the load
balancer to know whether and how to restart a task. Alternatively, unwelcome tasks
could be aborted and an error reported to the originating process, which may choose to
restart the task elsewhere, but it may be difficult even for the originating process to
know whether and how a task can safely be restarted. Aborting 2 task may leave
data in an inconsistent state requiring special processing to clean up, more than just
restarting the task from scratch; the possibility of this type of abortion makes load
balancing unattractive to potential users. At the least, an aborted task has wasted all
the processor time and all the real (wall clock) time it has used, increasing response
time and defeating the purpose of load balancing. (Consider a two-hour computation
aborted at one hour and fifty minutes.)

Neither of these alternatives is attractive and we have not included either in the design.

Tolerating foreign tasks which have become unwelcome is part of the price one pays for

participating in a load balancing scheme. '

To implement process migration. if it is not already implemented. would require
extensive changes to the operating system. We preferred to design a load balancing system
entirely outside the operating system. This will make it possible to implement the load
balancer on a wider variety of systems. it will make implementation easier, and it will
make installation of the load balancer easier.

MNaei 1bin

-6 -

Another reason for not using process migration in the load balancer is that migrating
an executing process would involve sending the process's entire execution image to the des-
tination machine. With large physical memories and even larger virtual memories, execu-
tion images could reach megabytes or even gigabytes in size. The time delay of sending so
much data through the communication medium would be significant. There is also the bur-
den on the medium, and on other users, of sending so much data.

Because load balancing is done by initial task placement only, and does not require
moving execution images, it should be possible to do load balancing across heterogeneous
" machines, as long as the machines support the same commands. Alternatively, load
balancing decisions could take into account which machines are able to execute which com-
mands. Either type of arrangement would require some way to refer to the different com-
mands that would execute on the different machines by some generic command name. The
Locus system uses "hidden directories” for this purpose [Walker et al. 1983}, while Cronus
keeps track of “execution environments” and their requirements [Hofman et al. 1982],
[Schantz et al. 1983). Other approaches are possible [Rubin). Load balancing across
heterogeneous machines also raises the question of slightly different results obtained from
different machines due to different word sizes, different arithmetic hardware, and other fac-
tors. It could be most disturbing to the user to run the same program on the same input
data and obtain different results. We have not focused on load balancing across heterogene-
ous machines, and we do not deal further with the problems of generic versus machine-
specific command names or differing results.

3.3. Multiprogramming

The load balancer consists of a number of independent (though communicating) long-
running processes, sometimes called daemons. Any operating system on which this design
is to be implemented must provide multiprogramming, the ability to have several processes
running or ready to run.

3.4. The Network.

The network connecting the load balancing machines need only support point-to-point
communication, that is, process-to-process communication, between machines. Certain
operations of the load balancer can be made more efficient if broadcast or multicast are
available, but these are not required for correct operation. Of course, the network must
operate with a fairly low latency or some of the benefit of load balancing will be lost. It
should be possible to operate the load balancer over a long-haul network (such as the
Arpanet); although the load balancer should function correctly, the longer latency would
probably make it difficult to improve response time through load balancing. All communi-
cations between components of the load balancer, and between user processes and the load
balancer, are reasonably short ASCII text messages; therefore the network need not provide
extremely high bandwidth. (If migration were used, then entire virtual memory images,
possibly several megabytes in size, might have to be sent over the network. In that case, a
high bandwidth network would be more necessary.)

Subject to the above requirements, we believe it would be possible to implement our
design on most any hardware, software. and network.

4. COMPONENTS OF THE LOAD BALANCER

The load balancing decisions made by a sending machine (load balancing sending
decisions) are quite different from the load balancing decisions made by a receiving
machine (load balancing receiving decisions:; so, there are separate entities to handle the
different decisions. The one-per-machine entity responsible for making load balancing
sending decisions is the Load Balancing Sending Manager or LBsM. The one-per-machine
entity responsible for making load balancing receiving decisions is the Load Balancing
Receiving Manager or LBRM. Each machine participating in load balancing will normally

Design of a Load Balancing Mechanism - Rubin July 1.1987

_7.-

run both an LBSM and an LBRM. (An administrator could choose to have a machine act only
as a sender, in which case it would not need to run an LBRM. Alternatively, an administra-
tor could choose to have a machine act only as a receiver, that is, be a compute server, in
which case it would not need to run an LBSM. Generally, each machine will run both an
LBSM and an LBRM and automatically adjust to being a sender or a receiver as the situation
changes, for example, being a sender when its load is high and a receiver when its load i8
low.)

Two other software entities support the LBSM. In making its decisions, the LBSM can
use information about the Joads on other machines. The Load Information Manager, or LIM,
maintains and updates load information and provides it on request to the LBSM. The LBSM
can also use information about the characteristics of particular tasks. The Task Informa-
tion Manager, or TIM, maintains and updates this information and provides it on request to
the LBSM. The LBSM communicates with the LIM and the TIM via inter-process communica-
tion (IPC). The LIM and the TIM will reply to queries from any process, 80 other system
processes Or user processes may obtain information from them.

User processes that utilize the load balancer are actively involved in some of the load
balancing operations, for example, they initiate the load balancing of tasks. In this sense,
user processes are part of the load balancing scheme, and their part in it is described.

Figure 1 illustrates the operation of the load balancer, as explained in the following
sections.

Sending Machine

losd infe

User Process ey LIM
o "’M
o name
° y/- LBSM
User Process ,/4 TIM
| [T
hints
Receiving Machine
o] LM
%ﬂh
LBRM
ery
|
: task info TIM
im;&a
T Execution Env| ©©© [Execution Env

Fig. 1: The Load Balancing Mechanism - Shown for Two Machines

Load Balancing Mechanism - Rubin

July 1, 1987

4.1. The User Process

Any process which executes tasks can use the load balancer. We expect that users’
shells (or whatever entities represent users or login sessions on other systems) will be the
main users of the load balancer, using it to improve the performance of commands typed by
the user. Nonetheless, any program or process can use the load balancer. Possibilities
include a load balancing Make [Feldman 1979), or a graphics program computing many
picture elements. Because any user process can use the load balancer, we refer to "the user
process” generically in what follows.

To make it easier for programmers to write programs that use the load balancer, &
library of subroutines will be provided. The library will contain two types of routines:
those which are self-contained and carry out complete (though simple) operations, and those
which carry out parts of more complicated operations. An example of the first sort of
library routine is a load balancing version of the Unpix library call named "system,” which
executes a command line. An example of the second sort is a routine which establishes a
conpection to the local LBSM. Routines of the second sort can be used to do more complex
load balancing, much like the load balancing Unix shell will do; for example, a load balanc-
ing Make could be implemented using these routines.

A user process that wants to execute some task or tasks subject to load balancing
sends a query to the local LBSM. User process clients of the LBSM make no decisions (except
that they want to submit certain tasks for load balancing); they know nothing about which
tasks are eligible for load balancing or how placement decisions are made. This allows the
clients to be simpler, eliminates certain duplications of overhead, and simplifies administra-
tive control of load balancing. On the other hand, user processes are not required to be
clients of the LBSM; if they want to make their own decisions they can do so according to
any policies they wish. They can query the LIM and the TIM and contact the LBRMs on other
machines. We expect that only very rarely will user processes choose not to use the LBSM
for load balancing.

Clients communicate with the LBSM via whatever IPC mechanism is available and
convenient; using the load balancing subroutine library makes communicating with the
LBSM appear to be done as a subroutine call. The LBSM may consult the LIM and the TIM
and its own information on recent placements. It makes load balancing sending decisions
and replies to the user process with the names of the machines on which the tasks should
be executed. Tasks which the LBSM decides should be placed on the originating machine
are executed in the usual manner (in Unix, either by fork/exec or the system call named
“gystem”). For tasks which the LBSM decides should be placed on remote machines, the user
process sets up connections to the LBRMs on the machines selected and sends the tasks to
them. The user process can then either wait for the resultc from the remote machines or
proceec with other work.

If one of the selected receiving machines refuses to accept a task, it replies with a
refusal message to the user process which sent the task. The user process then notifies its
LBSM of the refusal and asks for a new placement decision. An alternative would be to
have the refusing machine notify the appropriate LBSM directly, as well as notifying the
user process, but this would place a greater load on the refusing receiver, which may be
refusing because it is overloaded (or it could be for administrative reasons), so we prefer to
avoid this alternative. The alternative approach might be appropriate if there was concern
about user processes behaving correctly. We expect that the main client of the load
balancer will be the shell, and that most other client programs will use the subroutine
library provided; both the load balancing shell and the library routines will follow the
proper protocols in dealing with the load balancing managers, and we will assume that any
other user processes will also follow the proper protocols.

Des

.10 -

4.2. The Send Manager

The LBSM receives requests from user processes; it makes load balancing sending deci-
sions in response to those queries (unload decisions, eligibility decisions, and placement
decisions) and sends the results back to the querying processes. The LBSM maintains infor-
mation about recent placement decisions it has made and can use that information in mak-
ing new decisions. (How recent is recent depends on the frequency and reliability of the

_ information the LBSM can get from the LIM.) The LBSM may query the LIM or the TIM and use

their information in making decisions; the LBSM communicates with the LIM and the TIM

" through IPC. If the LBSM has no other duties and the local machine’s load is low enough, it
can try to precompute placement decisions for likely requests. (How the LBSM might
precompute placements, and whether it ought to even try to do 8o, is a new area of investi-
gation which we have not yet explored.)

Note that the LBSM may decide that a task or tasks should be executed on the local
machine. This could be (a) because the local load is so low that it is not necessary to
unload tasks, (b) because the tasks have been declared not eligible for load balancing, or (c)
because the placement decision selects the local machine.

The LBSM does not fork child processes to deal with requests. Decisions must be made
quickly enmough to avoid forming a bottleneck, and the fork operation is fairly time-
consuming. More importantly, the purpose of centralizing the LBSM is to be able to use
knowledge of other load balancing decisions, and to avoid conflicting or destabilizing deci-
sions; if decisions were made by separate processes it would be much more difficult to share
knowledge and coordinate actions. (We are speaking here of “heavyweight” processes with
separate address spaces. Many operating systems, including the one we plan to implement
under, do not support “lightweight” processes sharing an address space, so we have not
based our design upon them.)

If the LBSM encounters a problem of some sort, so that it cannot make decisions, it
replies to all queries by saying all tasks should be executed locally, that is, it turns off load
balancing. It would be an error for the LBSM to have a task sent somewhere it should not
go, whereas turning off load balancing merely removes an enhancement to the system.

4.3. The Receive Manager

When a user process wants to execute some task or tasks subject to load balancing it
consults its local LBSM, which provides the identity of a machine to which the user process
should send the task. The user process then uses an intermachine [PC mechanism to
establish a connection to the LBRM on the selected machine, and sends the task to the LBRM.
The LBRM examines the task and decides whether or not to accept it. If the LBRM accepts
the task, it sends an acceptance message back to the user process, it establishes an execu-
tion environment for the task, and it arranges for the task to execute. If the LBRM does not
accept the task, it sends a refusal message back to the user process. The receiving machine
has no obligation to provide service to the sending process.

For each accepted task, the LBRM creates an execution environment, if necessary
obtaining information from the user process. (In Unix, for the load balancing shell, this
will involve obtaining environment variables and shell variables from the originating
shell.) The connection from the user process is duplicated and passed to the execution
environments. The LBRM then causes the tasks to execute, each in its own execution
environment. The tasks execute logically in parallel, so they may compete with each other

for resources. If any task requires input data it reads it from the originating user process;
any results or other output are written to the user process via the connection.

The LBRM’s acceptance decision can be based on such factors as the local load, the
name of the task, the characteristics of the task. the identity of the sending user, the iden-
tity of the sending machine, the number of “foreign” tasks already accepted, the number of
users logged on, the time of day, and more. A file of acceptance criteria, maintained by the

Design of a Load Balancing Mechanism - Rubin July 1. 1987

S11 -

system administrator, specifies which factors, and what values of the factors, determine
acceptability. The format and contents of this file are described in a Jater section. The
LBRM may communicate with the LIM or the TIM running on the same machine.

The LBRM maintains a f'= of accounting information, containing a record for each
foreign task accepted. Each r cord includes the originating machine and user, the real
(wall clock) starting and ending times, and accounting data such as CPU.time used,
amount of /O, memory occupancy, network traffic, and so on. Additional accounting data
_ not directly associated with the execution of a task should also be recorded if at all possible;
this includes data such as number of pages printed or typeset, number and type of tapes
mounted, and so on.

The LBRM does not perform any accounting actions such as computing or assessing
charges, it just writes out its accounting file. System administrators will probably arrange
for the LBRM and accepted tasks to run under one account, for example, an account named
“loadbal.” System administrators could use the LBRM’s accounting file to re-assign charges
from this load balancer account back to the originating user’s account. It is left to system
administrators to arrange this, if appropriate.

When a user’s task is executed on a remote machine via the LBRM, the remote
machine charges the task execution to the load balancing account and the remote LBRM
records the task execution in its accounting file. This design allows users to use the load
balancer to execute tasks on remote machines without having to have an account on every
remote machine (subject to acceptance criteria in the receivers’ configuration file). Note
that the accounting is carried out in this manner even if the user does happen to have an
account on the remote machine. There are several reasons for this. First, doing it the
same way in all cases makes the design and implementation of the load balancer simpler.
Second, the accounting file is a technical record of the LBRM’s activities as well as an
administrative accounting record. Third, the account named "joe” on machine Alpha may
belong to a different person than does “joe” on machine Beta, or the accounts may belong to
the same person but be subject to different administrative or accounting arrangements (for
example, they may be used for different projects billed to different clients). In any case, the
accounting records should be kept separate.

4.4. The Load Information Manager

One Load Information Manager (LIM) executes on each machine. The LIM is responsi-
ble for obtaining and maintaining up-to-date information about the loads on all machines
which might be considered for load balancing. (Other processes may consult the LIM about
similar matters, so its duties may be a bit broader than just providing load balancing infor-
mation.) To do this, it samples the load of the local machine and, when necessary, sends
updates to other LIMs. It receives load updates sent by other machines and it may, if neces-
sary, request load updates from other machines. The LIM makes its information available
by responding to queries.

The LIM responds to three types of queries:

(1) query for the load of the local machine,
(2) query for the load of a single specified machine,
(3) query for all information the LIM has.

The LIM is used by the LBSM and the LBRM running on the same machine, but may
also be used by other processes. Many operating systems run some sort of remote machine
information facility (e.g. rwhod in Berkeley Unix, rstatd in Sun Unix). At some future
time, these facilities might be merged with or replaced by the LIM.

Loa July 1, 1987

.12 -

4.5. The Task Information Manager

Different tasks consume different types of resources and cause different kinds of load.
Tasks may run for a short time or for a long time, and they may consume & lot of resources
during this interval or not. Some tasks may do much computation and little UO. Some
may do much disk IO but little network communication, and so on. These are the charac-

teristics of tasks. .
The characteristics of a task depend not only on the program being run but also on
- the flags, options, and arguments given it. For example, using the C compiler to compile a
short program will generally consume relatively less CPU than compiling a long program.
Turning on code optimization will cause the compiler to run longer and to use relatively
more CPU.

It is the responsibility of the Task Information Manager, or TIM, to obtain, update,
maintain, and make available information on the characteristics of tasks. This information
may be used by the LBSM and by the LBRM running on the same machine, and may be used
by other processes as well.

The current design for the TIM is a fairly simple prototype. Some task information
will be obtained through hand-done characterization studies, and this data will be loaded
into the TIM. We plan to do experiments to see whether task information is actually helpful
in making load balance decisions. If task information is shown to be useful in making load
balancing decisions, or some other types of decisions, then a more sophisticated TIM may be
designed. A highly sophisticated TIM might automatically monitor all task executions on
its machine, or obtain monitored information from the operating system, and update its
database based on the monitored information. It might share data with TIMs on other
machines. It might try to parameterize task characteristics in terms of input file size or
other determinants. We do not yet know how to do these things, and we do not know
whether this is worth pursuing. :

Queries to the TIM will specify a program (full path name), and as much information
about flags and arguments as is available. The TIM will reply with information about the
task characteristics for that program with those flags and arguments, if they are known. If
the flags and arguments are not known, the TIM will send a “low confidence” or "approxima-
tion” reply telling what is known about the task, perhaps its characteristics with different
flags or arguments. If nothing is known about the task, the TIM will send a "no informa-
tion” reply. In a sense, all information provided by the TIM is a hint, because the TIM does
pot have information on every possible set of input data for every command (a possible
exception being if a command was run recently and is rerun with the same inputs).

Having discussed the operation of each component of the load balancer, we next dis-
cuss the message formats by which the components communicate.

5. COMMUNICATION

The previous sections have described the components and operations of the load
balapcer. In this section, we discuss the communication protocols used to communicate
with and between the components of the load balancer. The rationale for the design is
given, and the protocols themselves are described in detail.

5.1. Communication in ASCII Text
All communication with and between load balancing managers will be by sending

messages in ASCII text, as opposed to sending structures or records in some programming
language’s internal format. This will make it easier for user programs to communicate
with the load balancing system, especially programs written in languages other than the
ope the load balancer is implemented in. It will also make debugging the load balancing

system easier.

Rubin July 1.1987

.13 -

5.2. Formats and Keywords

To make it easier and more efficient for programs to generate, read, and understand
messages, all messages must conform to a strict format. Every message begins with a mes-
sage header and contains one or more sections. Each section begins with a section-header
keyword, and the lines of a section have a set format. Extra spaces, tabs, and blank lines
are not allowed. :

All keywords are exactly four characters long. To make them into keywords, English
words longer than four characters are abbreviated (sometimes drastically), and shorter
words are padded with x's. In our planned Unix implementation, keywords must be in all
upper case, except for padding x’s which must be in lower case. As messages will be gen-
erated by programs, this strictness of format and case will not be an inconvenience to users.

5.3. Header and Ending

Every message begins with a message header identifying the sender of the message
and the intended recipient of the message. This information is not strictly necessary, it is

included as an error check and debugging aid. Any load balancer component receiving a
message first checks to see that it is the intended receiver.

The first line of every message is the from line:
FROM sending-component sending-machine
Sending-component identifies the component sending the message; it is one of
USER, LBSM, LBRM, LIMx, or TIMx

All user processes are identified as USER. Sending-machine is the name of the machine
(host) from which the message is being sent. The name can be in whatever format is con-
venient for the network being used.

The second line of every message is the to line:
TOxXX receiving-component receiving-machine
Receiving-component and receiving-machine are similar to sending-component and sending-
machine, only they identify the intended recipient.
Every message ends with a line containing only the keyword

ENDx

It is an error to have any extra text after the ENDx.

5.4. Send Manager Queries

We have previously described how user processes wishing to have tasks submitted for
load balancing will send a query to the LBSM. The LBSM then makes decisions and replies
with the identities of machines where the tasks should be sent. In this section we describe
the format of queries to the LBSM in greater detail. We describe the format of the LBSM's
replies in the next section.

A query to the LBSM consists of several sections. A tasks section is required; commun-
ication, dependency, and placement sections may be present if needed. Each section is intro-
duced by a section-header keyword and terminated by the beginning of the next section or
by the end of the message. :

5.4.1. Tasks Section

The first section of an LBSM query is the tasks section, which lists the tasks concerning
which the LBSM is to make decisions. The tasks section begins with a section-header line
containing only the keyword

thin

- 14 -

TASK

The LBSM is allowed to use information about the characteristics of the task to be
placed (task information), so queries to the LBSM must identify the tasks to be placed. The
tasks must be completely and unambiguously specified, with any abbreviations fully
expanded and all substitutions fully performed. In Unizx, this means that the name of the
" program to be executed and all other filenames in the command must be specified by full
. pathnames. For the Unix shell, this means that the names must be alias expanded, history
expanded, and filename and command expanded.

Task characteristics may depend on the flags, arguments, and command line inputs or
parameters to the task, so the query to the LBSM must specify these, too. As with the pro-
gram name, all flags, arguments, and parameters must be fully expanded.

A user process may have several tasks to be placed. In this case, the tasks are listed
one after the other, one per line. The task lines are numbered, beginning with zero; the
task number appears first on the line, followed by a single space, followed by the task
name, then the flags, arguments, and so on. (If there is only one task, it is numbered with
the number zero.) Each line, containing a task number, task name, and parameters, is ter-
minated with a newline (or carriage return) character.

5.4.1.1. No-Placement Tasks (NOPL)

In some situations, a program knows that some tasks are to be run now and some are
to be run later. This could be due to the user’s instructions, as in the Unix command line

cc program.c -0 a.out; mv a.out program

or due to some inherent dependency (see below). The user process could ask the LBSM to
make a placement for the “for later” task, but since the situation could change before the
task is executed it would probably be better for the user process to make another query and
obtain a placement decision later. On the other hand, the LBSM may be able to make better
decisions if it is informed of tasks that are to be executed in the near future (we plan to do
experiments to find out whether this is true). These tasks “for later” are included in the
task list so that the LBSM can take them into account, but a special notation is used to tell
the LBSM not to make a placement for the task. (If the user process does in fact want a
placement decision now for a task to be executed later, it just omits the special notation.
This is not an error, but it is probably not very wise either.)

The notation to instruct the LBSM not to make decisions about a task is this: immedi-
ately following the task number (no space) is a hyphen, immediately followed by the key-
word NOPL (for “no placement™). For the example above, with the “cc” command to be done
immediately and the "mv” command to done later, the tasks section would be:

TASK
0 /bin/cc /usr/tom/program.c -o /usr/tom/a.out
1-NOPL /bin/mv /usr/tom/a.out /usr/tom/program

NOPL tasks may be listed in the communication or dependency sections (see below).
The LBSM may take NOPL tasks to be executed later into account in making decisions, but
it does not reply to the user process concerning them. The LBSM does not save information
about "later” tasks, as it has no way to know when, or even whether. they will actually be
executed. If the user process later wants LBSM decisions concerning these tasks, it sends
another query to the LBSM.

5.4.1.2. Already-Placed Tasks (more NOPL)

Use of the load balancer is optional, and other processes may make their own load
balancing decisions (possibly after consulting the LIM or the TIM,. Or outside decision-

1 - Rubin Julv 1. 1987

.15 -

makers may make decisions about some tasks and ask the LBSM to make decisions about
others. In either case, tasks for which placement decisions have already been made by out-
side decision-makers are called “glready-placed” tasks. It would be helpful to the LBSM if
outside decision-makers informed the LBSM of their decisions, although this is not required
of them. This is done by listing the already-placed tasks as NOPL tasks and including in
the query a placements section to describe where the already-placed tasks have been
placed. The placements section is usually part of LBSM reply messages (see below for
_ description of placements section); in this case the section only includes placements for the
already-placed tasks. For example, if a placement has already been made for one C compi-
lation, but placement of a second compilation has been left to the LBSM, the tasks section of
the LBSM query would contain:

TASKS
0-NOPL /bin/cc /usr/tom/programl.c -0 /usr/tom/p1.out
1 /bin/ce /usr/tom/programl.c -0 /usr/tom/p2.out

The LBSM may take already-placed tasks into account in making decisions, but it does not
reply to the user process concerning them. If an LBSM query contains only NOPL tasks, the
LBSM replies with a message containing only a header and ending, to serve as an ack-
nowledgement.

5.4.2. Communication Section

Among several tasks to be placed, some may communicate among themselves. Know-
ing the expected intertask communication patterns may help the LBSM to make better deci-
sions. For example, communicating tasks may be placed on machines which are close
together in terms of communication costs, or they may even be placed on the same
machine, sacrificing parallelism for ease of communication. If a multiprocessor is available
and has & low enough load, the communicating tasks may be placed there to get both paral-
lelism and ease of communication. The algorithms to be used to make these decisions are
still to be researched.)

The second section of an LBSM query describes which tasks are expected to communi-
cate with which other tasks. This section is optional and should be omitted if there is no
communication or if the originating user process has ne information about intertask com-
munication. It is an error for the query to include a communication section if there is only
one task listed in the tasks section. The communication section is introduced by a section-
header line containing

COMM

Following this is a sequence of lines, each line containing the task numbers of two tasks
that are expected to communicate with each other; the task numbers are separated by a
space. Direction of communication is not considered, so "3 5" means the same as "5 3". If
several tasks communicate with each other, all the communication paths must be listed.
For example, if tasks 3, 5, and 6 all communicate with each other, the query would contain

COMM
35
56
63

An alternative we considered was to allow groups of communicating tasks to be listed
all on one line. With this alternative. the example above with tasks 3, 5, and 6 communi-
cating would have a communication section of

COMM
356

We believe the pairwise format will be easier for programs to generate and read.

-16 -

If directionality were important, the format could be changed to indicate direction of
communication. So if, for example, task zero sends information to task one and tasks one
and two communicate back and forth, the communication section could have

COMM
0->1
1->2
2->1

_ Direction of communication is not important in any network we are familiar with, and we
do not believe it is important for the LBSM to know direction of communication, so we have
not adopted this alternative format.

The load balancer has no way to know which tasks are expected to communicate
unless it is told by the user process. The load balancer does not cause tasks to communi-
cate or even allow them to communicate, it merely takes into consideration in making its
load balancing decisions the fact that they are expected to communicate. [t is not an error
for the user process to omit communication information, or to supply information on
expected communication which turns out be wrong, it just means that the load balancing
decisions may not be as good as they might have been.

5.4.3. Dependency Section

The third section of an LBSM query deals with execution-order dependencies. If one
task must be completed before a second can be executed, then the second task depends on
the first. A group of tasks may include complex sequences of dependencies, including both
fan-out (“task 0 must precede both 1 and 2”) and fan-in ("both tasks 4 and 5 must complete
before 6 runs”). As with the communication section, this section is optional and should be
omitted if there are no dependencies or if the originating user process has no information
about intertask dependencies. It is an error for the query to include a dependency section if
there is only one task listed in the tasks section.

The dependency section of a query begins with a section-header line containing

DPND

Following this is a sequence of lines, each line containing the task pumbers of two tasks,
separated by a space, where the first task must precede the second. In the example above,
in which the user’s command means that "cc” must precede "mv”, the query would contain

TASK

0 /bin/cc /usr/tom/program.c =0 /usr/tom/a.out
1-NOPL /bin/mv /usr/tom/a.out /usr/tom/program
DPND

01

We considered formats such as

0->12
4y 5->6

but decided that it would be easier for programs to generate and to read the simpler pair-
wise format. Another possibility was to use a format similar to that used by the Unix util-
ity Make [Feldman 1979]: for each dependent task, listing the tasks it depends on:

DPND
1:0
2:0
6:45

Here again, we decided that the simple pairwise format would be easier to use.

Design of a i.iad Baianaing Mechanism - Rubin July 1, 1987

217 -

As with communicating tasks, the load balancer has no way to know which tasks
must wait for which other tasks unless it is told by the user process. The load balancer
does not ensure that one task completes before a dependent task begins, it merely takes the
dependency into account in making load balancing decisions. It is not an error for the user
process to omit dependency information, or to supply information on expected dependencies
which turns out be wrong, it just means that the load balancing decisions msy not be as
good as they might have been. '

" 5.4.4. Summary of Send Manager Queries
The end of a query to the LBSM is marked by a line containing only ENDX

We summarize with an example of a query sent by a user process to the LBSM:

FROM USER ernie

TOxx LBSM ernie

TASK

0 /usr/local/dtbl -Pdp /usr/harry/document . tblegnms
1 /usr/local/deqn -Pdp

2 /usr/local/ditroff -Pdp -ms

3-NOPL /bin/cc /usr/harry/program.c -lm -0 ~o /usr/harry/program.out
COMM

01

12

DPND

03

13

23

ENDx

This query would be generated from the Unix shell command line:
(dtbl -Pdp document.tbleqnms | deqn -Pdp | ditroff -Pdp -ms); cc program.c -Im -O -0 program.out

but the query format defined is capable of expressing more complex relationships than the
shell syntax.

Note that, in the example command line, there is no inherent reason why the C com-
pilation cannot execute in parallel with the document formatting. Nevertheless, the user
specified that they be done sequentially by using the shell sequence operator “;”, so the
sequentiality is expressed in the dependencies (and by the NOPL); the load balancing shell
will not try to out-smart the user. If the user had used the shell parallel execution opera-
tor "&" instead of ";", then the document formatting and the compilation could execute in
parallel and the NOPL and the dependencies section would have been omitted from the

query.

5.5. Send Manager Replies

When it receives a query, the LBSM makes unload, eligibility, and placement decisions
for the tasks in the query. If the unload policy decides that tasks are not to be unloaded,
then the LBSM replies that all tasks should be executed on the local machine. If some tasks
are not eligible for load balancing, then the LBSM replies that those tasks should be exe-
cuted on the local machine. The placement decision may decide that a task should execute
on the local machine or on some remote machine. Having made these decisions. the LBSM
sends a reply back to the querying user process. The reply consists of a message header
and a placement section.

5.5.1. Placement Section

The placement section’s purpose is to inform the recipient about which machines tasks
are to be executed on. For each task in the tasks section of the query (except those flagged
NOPL), the placement section of the reply has a line with the same task number followed
by the name of a machine or by "LOCL” (for LOCAL). "LOCL” means that the task should
be executed on the machine where it was originally submitted, that is, the machine the
task would execute on without load balancing. If a machine name is given, then the task
should be executed on the named machine. Machine names are given in whatever format
" is appropriate and easily used by the network connecting the machines. The LBSM may
return the name of the local machine for some tasks; this is the same as if it had returned
“LOCL.” An example of an LBSM reply message is:

FROM LBSM ernie
TOxx USER ernie
PLAC

0 LOCL

1 vangogh

2 ernie

ENDx

When a placement section is part of a query to the LBSM, then placements are only
listed for those tasks which have already been placed.

5.8. Receive Manager Requests

We have described above how user processes wishing to submit tasks for load balanc-
ing send the tasks to the LBRM of the machine chosen by the LBSM. In this section and the
following one, we describe the interactions between user processes and LBRMs in greater
detail. '

The method a user process uses to establish a connection with a remote LBRM depends
on the existing local networks and software. In Berkeley Unix, the user process looks up
the network address of the remote machine, looks up the on-machine address (port number)
for the LBRM service, opens a socket and connects it to the machine address and port
number. User programmers should not have to deal with this sort of detail to use the load
balancer, so we plan to provide library routines which will establish connections.

Once a connection has been established, the user process sends a message to the LBRM,
consisting of a message header, an execute section, and an ending. Messages to the LBRM
do not include communication (COMM) or dependency (DPND) sections; the LBRM does not
need the communication or dependency information either to make acceptance decisions or
to execute the tasks. It is up to the user process and the tasks themselves to establish the
communications and enforce the dependencies.

5.6.1. Execute Section

The execute section of a request to the LBRM lists the tasks its sender would like to
have executed on the remote machine. The execute gsection’s format is identical to the for-
mat of the tasks section, except of course for the section-header keyword, EXEC, and except
that there are no NOPLas:

EXEC :
0 /usr/local/dtbl -Pdp /usr/harry/documentfile.tbleqnms

1 /usr/local/degn -Pdp

2 /usr/local/ditroff -Pdp -ms

3 /bin/cc /usr/harry/programfile.c -lm -0 -0 /usr/harry/programfile.out

Design of 4 Load Balancing Mechanism - Rubin July 1. 1987

.19 -

5.6.2. Pipes

A feature of the Unix shell is piping, in which the output of one command becomes
the input of another command. Piping is arranged by the shell, without the command
processes themselves taking any action; indeed, processes are not even aware that their
input or output goes to or comes from a pipe. When commands are executed remotely
through the load balancer, the LBRM is responsible for setting up the execution environ-
ment. In Unix, for commands connected by pipes, setting up the execution environment
must include setting up pipes, because the command processes themselves are not aware of
the pipes.

Shell level pipes were formerly implemented using an operating system feature also
called pipes. In 4.1 and earlier versions of Berkeley Unix, pipes between processes had to
be created by a common ancestor process; usually this was a shell. In 4.2 and later ver-
sions, pipes are merely pairs of sockets, which can communicate if they know each other’s
port number. The port number can be handed down from a common ancestor, or it can be
shared in some other manner.

In order for the LBRM to set up pipes between tasks, it must know which tasks are to
communicate by pipes. This information must come from the originating user process. If
the originating user process is a shell, then it must get the information from the command
line typed by the user. The communication section (defined above) does not meet the needs
of piping for several reasonms. First, the communication section lists all communication
between tasks, whereas pipes are only one type of communication. Pipes are established by
the parent shell and processes are unaware of them, but task processes can communicate by
establishing communications themselves (by creating sockets, sending messages, and so on).
So tasks may be listed in the communication section even if they have nothing to do with
piping. Second, the information supplied by the communication section is fairly general, it
says only that a task is likely to communicate in some manner with another task. To
establish piping, the LBRM must know which task’s output is to become which other task’s
input. So when tasks are to be piped, the communication section does not supply all the
necessary information. Finzlly, a communication section can only refer to tasks listed in
the associated tasks section or execute section, and the execute section sent to an LBRM lists
only tasks to be executed on that LBRM’s machine, but the source or sink of a pipe might be
a task sent to a different machine. In order to supply the LBRM with the information
needed to establish pipes, the Unix implementation of the load balancer will add to LBRM
requests (requests sent by user processes to LBRMs) a special pipes section. The format of
the Unix pipes section is defined next.

The Unix-specific pipes section begins with a section-header line containing

UPIP

(for "Unix PIPes”). Following this is a series of lines, each line describing a pipe the LBRM
is to set up. :

There are two kinds of pipes the LBRM must deal with: (a) local pipes between two
tasks to be executed on the LBRM's machine; and (b) nonlocal or intermachine pipes between
a task to be executed on the LBRM's machine and a task to be executed on another machine.
A nonlocal pipe is either an incoming pipe or an outgoing pipe, that is, either the input to a
task to be executed on the LBRM’s machine comes from & pipe from some other machine, or
the output from a task to be executed on the LBRM’s machine goes to a pipe to some other
machine (Unix shell-level pipes carry information in only one direction).

In the case of a local pipe, both ends of the pipe are tasks listed in the execute section
of the LBRM request. It is sufficient in this case to specify that the pipe is local and to iden-
tify the tasks to be connected by the pipe:

.20 -

LocL 2 3
LocL 5 8

Order is significant and denotes the direction of the pipe: "LOCL 2 3" means the output of
task 2 is to be piped as the input to task 3. Nothing special is done to the non-piped inputs
and outputs; in the example above, to the input to task 2 and the output from task 3.
Multi-stage local pipelines are allowed, and are denoted in the following manner:

LocL 2 3
LocL 3 4

In the case of a nonlocal pipe, for each of the two LBRMs involved, one end of the pipe
is a task listed in the execute section, but the other end is an intermachine communication
path. The two LBRMs must establish the communication channel between them. (Clearly it
is undesirable to have the communication flow through the originating machine.) If there
were some sort of rendezvous server or switchboard facility, then communication could be
established by that means. Unfortunately, Unix does not provide any such facility, so, in
the Unix environment, the load bslancer must establish communication by an ad hoc
method. The originating user process will send to each of the two LBRMs at the ends of the
pipe the name of the other machine and a rendezvous identifier. The rendezvous identifier
is used to make sure that, of several possible connections being established between two
machines, the two pipe ends that are conpected are the two that are supposed to be con-
nected. The rendezvous identifier must be unique on the two machines until the pipe is
established; it may be easier to make it globally unique for all time. The rendezvous
identifier could be generated from some combination of the originating machine name or id,
the originating user process’s id, a sequence pumber maintained by the originating user
process, and a timestamp (in Unix the number of seconds since midnight, January 1, 1970
is returned by the "time” and “gettimeofday” system calls). So a line in the pipes section
sent to an LBRM for a nonlocal pipe must include the following information: (a) the fact that
a nonlocal pipe is to be established, denoted by the keyword NLCL; (b) whether the task on
the LBRM's machine is to be the source of the pipe or the sink, denoted by one of the key-
words SORC for the source end or SINK for the sink end; (c) the identity of the local task,
that is, the number of a task in the execute section; and (d) the information needed to
establish the communication channel for the nonlocal end of the pipe, that is, the name of a
machine and a rendezvous identifier. For example,

NLCL SORC 4 monet ernie.3788.1.546496078
NLCL SINK 6 joshua ernie.3788.2.546496282

The LBRM at the source end of the pipe decides whether it is willing to accept the
source-end task, but does not reply to the user process yet. If it is willing to accept the
task, it creates an endpoint for communication; in Unix, this endpoint is called a socket,
and in the internet protocol used by Unix a socket can be identified by a machine address
and a port number. The source-end LBRM then sends a message to the LBRM at the sink end
(LBRMs are at "well-known addresses” on each machine, which in Unix means that the port
number can be looked up in the “services” database by the "getservbyname” system call),
including the rendezvous identifier and the port number. The LBRM at the sink end con-
nects to the specified port and sends back the rendezvous identifier and ACPT (for
ACCEPT), and the pipe communication channel is established. The two LBRMs then send
acceptance messages back to the originating user process, create execution environments
for the two tasks, manipulate the input or output of the environments so that they use the
pipe, and cause the tasks to execute in the environments.

If the source-end LBRM is not willing to accept the task it sends a refuse message to
the originating user process, and it does not create the port.

y of a Load Balancing Mechanisi Rubin Juls 1.1987

.21 -

If the sink end LBRM refuses the task that was to have been the sink end of the pipe,
then it sends a refuse message back to the originating user process, and when it receives
the pipe-establishing message from the source end LBRM, it can either send back a refuse
message (consisting of the rendezvous identifier and RFUS) or ignore the message. The
source-end LBRM will take the pipe to have been refused either if it receives a refuse mes-
sage or if the pipe-establishing message is not replied to within some timeout period. If the
pipe is refused, then the source-end LBRM sends a refuse message back to the originating
user process with an error indication that the task was refused because the pipe could not
be established to the specified sink-end.

When the sink-end LBRM receives the request with the pipe section, it decides whether
it is willing to accept the task. If not, then, as described above, it sends a refuse message
back to the originating user process, and, when it receives the pipe-establishing message
from the source end LBRM, it can either send back a refuse message or ignore the message.
If the sink-end LBRM is willing to accept the task, it does not reply to the user process yet,
but waits for the pipe-establishing message. If the message does not arrive within a rea-
sonable time, the sink-end LBRM sends a refuse message back to the originating user pro-
cess, with an error indication that the task was refused because the pipe could not be esta-
blished to the specified source-end.

In the approach we have chosen, if either end of the pipe refuses its task, both ends
report refusal to the originating user process and forget about the tasks. The user process,
if it still wants the tasks executed, must then choose a new machine for the refusing end,
possibly with the help of the LBSM, and send new messages to the machines at both ends,
including the machine that was willing to accept the task. Another approach would be to
have the accepting machine "hold” its task and wait for the user process to send a “revise
pipe” message naming a new other end. This alternate approach might be more efficient in
the case of refusals, but it would greatly complicate the situation. There would have to be
protocols, and code, to handle such cases as the holding LBRM, or the machine it is running
on, crashes, or the originating process, or the machine it is running on, crashes. We feel
that the greater complexity is not worthwhile; efficiency is increased only for refusals and
refusals should be rare, so the increase in efficiency would be small. The added complexity
of the design and of the code would make it more expensive to implement and maintain the
load balancer, and would increase the likelihood of problems.

5.7. Receive Manager Replies

When the LBRM receives an execution request, it decides, for each task, whether to
accept the task or refuse to accept it. In the present design, the LBRM considers each task
separately, it does not make acceptance decisions on groups of tasks. The LBRM informs the
requesting user process of its decisions by sending a message which lists, for each task,
whether the task is accepted or refused, and, for each refused task, an indication of the rea-
son for refusal. (The exact format of the reason for refusal remains to be determined.)

Reply messages from the LBRM contain a message beader followed by an acceptance
section. The acceptance section begins with a section-header line containing the keyword
ACPT (for ACCEPTANCES) and continues as shown in the following two examples:

FROM LBRM vangogh
TOxx USER ernie
ACPT

0 ACPT

1 ACPT

ENDx

Juls 1987

-22.

FROM LBRM vangogh
TOxx USER ernie
ACPT

0 ACPT

1 RFUS reason

ENDx

In the first example, both of the tasks submitted in the execution request bhave been
- accepted. In the second example, the first task has been accepted and the second task

refused.

If an execution request includes several tasks and they are all accepted, then the
LBRM sends an acceptance reply and executes all the tasks. If they are all refused, the
LBRM sends a refusal reply. If, however, some of the tasks are accepted and some are
refused, then a more complex situation has arisen.

It may be that the user process originating an execution request which includes a
number of tasks wants all the tasks executed on the same machine (perhaps on the LBSM’s
advice). In other words, if any tasks are refused, none of them should be executed. We con-
sidered a number of approaches for handling this situation. One possibility was to have the
LBRM ip this situation hold the accepted tasks without executing them and ask the ori-
ginating user process whether to execute or not. The user process would have to reply with
lists of which tasks to execute and which to drop. Another possibility was to add a notation
for "all-or-nothing” groups to all execution requests. These approaches have drawbacks:
they cost extra time, they complicate and hence slow down message processing, they com-
plicate the code and make faults more likely and maintenance more difficult, they lower
reliability (what if the originating machine crashes while the LBRM is waiting for instruc-
tions about what to do with "held” tatks?). We believe that most execution requests will
contain single tasks and that most multiple-task execution requests will either be com-
pletely accepted or completely refused. Accordingly, we have dealt with this problem in the
following simple manner. If this approach turns out to be inadequate, one of the more com-
plex alternatives can be implemented. In our simple approach, an LBRM that has received a
multiple-task execution request and refuses any task will refuse all tasks, even if the
remaining tasks are otherwise acceptable. The reason returned for the otherwise accept-
able tasks will indicate that they were acceptable but were refused only because they were
part of a multiple-task execution request of which one or more other tasks were refused.
The originating user process can then resubmit the execution request without the unaccept-
able task(s), or it can attempt to find another machine that will accept the whole set of
tasks.

This concludes the discussion of messages to and from the LBSM and LBRM. We turn
now to messages to and from the LIM and the TIM.

5.8. Load Information Manager Communication

The LIM accepts three types of queries: local, one-machine, and all-machine queries.
Local queries request load information for the machine on which the LIM is running. One-
machine queries request the load information for a single named machine. All-machine
queries ask for the load information for all machines for which the LIM has data, in other
words, for all the data the LIM has. The queries have the formats shown:

local one-machine all-machine

FROM USER machine-name FROM USER machine-name FROM USER machine-name

TOxx LIMx machine-name TOxx LIMx machine-name TOxx LIMX machine-name
LOCL MACH machine-name ALLx

ENDx ENDx ENDx

Design of a Load Balanaing Mechanism - Rutin July 1.1987

.93 .

The reply begins with one of

local one-machine all-machine

FROM LIMx machine-name FROM LIMX machine-name FROM LIMx macnine-name
TOxx USER machine-name TOxx USER machine-name TOxx USER machine-name
LOCL MACH machine-name ALLX :

_ followed by the appropriate information or an error message, followed by ENDx.

The obvious method for the LIMs to use to distribute load information is for each LIM to
send an update to every other LIM every interval. This approach would work in any net-
work supporting point-to-point messages. If broadcast or multicast is available, then
clearly a certain amount of overhead in message sends can be saved. An unsophisticated
use of broadcast would be the flooding broadcast approach with some sort of border con-
straints. A highly sophisticated approach would have the LIM obtain a list of peer
machines, perhaps from a configuration file, then find out either from a configuration file or
from a network manager or routing manager which machines could be reached by broad-
cast or multicast and which could not. In a different vein, instead of sending out updates
at regular time intervals, the LIM could send out updates whenever, but only when, the load
has changed significantly. :

We plan to do two implementations of the LIM, one using point-to-point messages and
the other using single-broadcast. (Actually it will be one implementation with the com-
munication mechanism selected by a compile time option.) Single-broadcast will be less
expensive, but will only work if all machines participating in load balancing are on the
same cable and the network supports broadcast. Point-to-point will be able to function in
any type of network and with any network topology.

5.9. Task Information Manager Communication

As described above, queries to the TIM specify a program by giving a full path name,
and as much information about flags and arguments as is available. The TIM replies with
information about the task characteristics of that program with those flags and arguments,
if they are known. If the flags and arguments are not known, the TIM sends a "low
confidence” ‘or "approximation” reply telling what is known about the task, perhaps its
characteristics with different flags or arguments. If nothing is known about the task, the
TIM sends a "no information” reply.

Further specification of the TIM and TIM communication protocols and formats awaits
construction of, and experimentation with, a prototype TIM.

6. CONFIGURATION INFORMATION

In order for the load balancing system to work to the satisfaction of the users and
administrators of the machines involved, it must be given instructions concerning which
tasks should be sent to remote machines, where they should be sent, which tasks should be
accepted from remote machines under what circumstances, and so on. This information is
called configuration information (others might call it access control.)

A load balancer without configuration information might be technically successful in
that it could make good decisions and carry them out efficiently, but the question remains,
would people be willing to use it? An administrator who runs a load balancer without
configuration information loses control of the machine, because the load balancer will move
tasks onto the machine and onto other machines with no administrative constraints. As
there are nearly always administrative constraints which must be observed. very few peo-
ple would be willing to run such a load balancer on their machines. and software that no
one will use is useless. We believe that the success of a load balancer, indeed of any
software project, depends at least as much on the administrative aspects of installing and
using the software as it does on technical strengths and weaknesses. (This is somewhat

bin

.24 -

akin to the idea that it is important to provide a well-designed user interface as well as
good functionality in a software product.) Accordingly, our design includes fairly extensive
configuration information.

Configuration information concerning sending tasks to remote machines is called
sending configuration information; configuration information concerning receiving tasks
from remote machines is called receiving configuration information. -

The load balancing managers read configuration information from files called
. configuration files, in particular, the sending configuration file and the receiving
configuration file.

6.1. Sending Configuration Information

When an LBSM begins execution it has no information, not even a list of names of
machines to which it might send tasks or which it might query for acceptance hints
(described below). The LBSM reads its sending configuration information from the sending
configuration file.

The LBSM makes three kinds of decisions: unload decisions, eligibility decisions, and
placement decisions, so the sending configuration information is divided into three sections:
unload information, eligibility information, and placement information. Each of the three
could be very complex: the unload information could specify a variety of load limits and
times of day; the eligibility information could specify that only certain commands from cer-
tain users at certain times of day or under certain load conditions are eligible for load
balancing; the placement information could specify which tasks from which users should be
sent to which machines at particular times of day or under particular load conditions, and
80 on. The sending placement information would have to be combined -with the acceptance
hints from receiving machines (see below). It is not clear that all this complexity is neces-
sary or useful, and allowing all this complexity in making sending decisions would increase
the amount of time required to make the decisions, which is exactly what we are seeking to
minimize. For these reasons we have adopted a design with simpler sending configuration
information. In circumstances where more complex sending configuration information
would be useful, a more complex design could be adopted.

In our design, the sending configuration information is made simpler by restricting
the kinds of sending configuration information in each of the three sections. In the unlcad
information section, a machine administrator is allowed to specify only a single range of a
single load index. For example, in Unix, the administrator could choose the Unix one
minute load average for the load index and “four or greater” for the range (that is, if the
Unix one minute load average is four or greater then tasks should be unloaded, otherwise
they should not be unloaded). Eligibility information is allowed to consist only of a list of
commands eligible for load balancing. Placement information is allowed to consist only of a
list of machines which might be willing to accept tasks.

In addition to the sections for unload, eligibility, and placement information, an LBSM
maximum update period for acceptance hints is specified in the sending configuration file.
See "Acceptance Hint Periodic Update,” below, for further discussion.

6.1.1. Sending Configuration File Format

As opposed to the intercomponent messages, which are normally never seen by
humans, the configuration files are meant to be written, read, and maintained by adminis-
trative personnel (presumably human’). The formats of the configuration files therefore are
not strict about extra spaces, allow either upper or lower case, and do not insist on four-
character keywords; comments are allowed, too. The configuration files begin with a line
identifying what type of file it is. sending information or receiving information. The send-
ing configuration file then continues with sections for unload. eligibility. and placement
information. The format of the sending configuration file is as follows. For clarity. we

Design of a Load Balancing Mechanism - Rubin July 1 1987

.95 -

have shown keywords in upper case and items to be supplied by the administrator ia lower
case, but in fact, case is ignored when the configuration file is read.

comments from '#' to end-of-line
LBCONFIG SEND

UNLOAD

TOTALLOAD index:min-max
ELIGIBLE

COMMAND command command ...
PLACEMENT

MACHINE machine machine ...
UPDATEPERIOD

minutes

END

See the "TOTALLOAD” section under "Receiving Configuration File Format,” below, for
the format of index, min, and max.

An administrator editing the file can choose the load index and its range, the com-
mands eligible to be off-loaded, and the machines to which they can be off-loaded. Natur-
ally, each machine can have different configuration information, including a different load
index for unload, but the LIMs on all machines will handle the same set of load indices, and
the load index specified must be one of those reported by the LIM.

When the LBSM begins execution, it attempts to read the sending configuration infor-
mation file. If for any reason it cannot, it generates an error message. Until it knows of at
least one machine which might be willing to accept tasks, the LBSM responds to all queries
from user processes with LOCL (for LOCAL), in effect turning off load balancing.

When the LBSM has a list of machines which might be willing to accept tasks (candi-
date machines), it tries to obtain acceptance hints for each candidate machine on the list.
It obtains these hints by sending a query to the LBRM on each candidate machine. If the
LBRM on a candidate machine ever refuses a task, the LBSM may query that LBRM for new
acceptance hints (see Acceptance Hints, below). :

6.2. Receivix'ag Configuration Information

A receiving machine must make the final, authoritative determination of whether to
accept an offered task, otherwise the administrator responsible for a machine could lose
control of what work is executed on the machine. This determination must be made at the
time the task is offered to it by the sending machine, because the administrator might have
changed the rules since the sending machine’s last update. Thus, receiving configuration
information must be available to each receiving machine.

When the LBRM starts execution, it tries to read the receiving configuration informa-
tion file. If it cannot read the file, it issues an error message and refuses all tasks. The
reason for the receiving configuration information is to prevent a machine from accepting
and processing tasks it should not process. Without receiving information the LBRM does
not know which tasks to accept, so, to be safe, it does not accept any.

6.2.1. Receiving Configuration File Format

The format of the receiving configuration file is

- 26 -

comments from '#' to end-of-line
LBCONFIG RECEIVE
MACHINE machine machine ...
NONE
USER username username ..
ALLUSERS
NOTUSER username username ..
TIME start-end start-end ...
ALLTIMES
LOCALACCT
LOCALGROUP groupname groupname ...
TOTALLOAD index:min-max index:min-max ...
REMOTELOAD index:min-max ...
COMMAND command command ...
ALLCOMMANDS
NOTCOMMAND command command ...
MACHINE machine machine .

END

The file is made up of any number of acceptance-rule groups. Each acceptance-rule group
starts with a MACHINE line that names one or more machines to which the acceptance-rules
in the group apply. It is an error for a machine name to appear in more than one
acceptance-rule group: to reduce the possibility of confusion about what is being allowed,
all the acceptance rules for a machine can be looked at in one place only. (The alternative
would be to allow machines to be named in more than one acceptance-rule group, with the
final acceptance criteria applying to the machine being the union of all permissions
specified, and the most lenient permission in case of overlap.)

Following the MACHINE line there are one or more lines specifying acceptance rules,
one rule per line. The administrator of a machine may specify various combinations of
acceptance rules; for a task to be accepted, it must meet all the acceptance rules in the
appropriate acceptance-rule group. The receiving configuration file specifies allowed accep-
tances, not limitations; anything not specifically allowed is prohibited. The LBRM will not
accept a task unless it has been specifically allowed to. We do not take the more lenient
approach in which the LBRM accepts all tasks unless it has specifically been told not to. The
following describes each of the available acceptance rules.

NONE

no tasks are to be accepted from the applicable machines. The same effect can be

obtained by not mentioning the machines at all, but this provides a way to explicitly

bar certain machines.

USER
only the named users are allowed to send tasks from the applicable machines.

ALLUSERS
all users on the specified machines are allowed to send tasks. Either USER or

ALLUSERS must be specified in each acceptance group.

NOTUSER
the named users are not allowed to send tasks from the applicable machines. Useful
in conjunction with ALLUSERS: NOTUSER overrides ALLUSERS to give an effect of
“all except"

TIME
tasks from the applicable machines are only accepted during the specified times of
day. Times of day are in the format hhmm. where hh specifies hours in the range 0-
93 and mm specifies minutes in the range 0-39.

Design of a Load Balancing Mechanism - Rubin July 1, 1987

.97 -

ALLTIMES
tasks from the applicable machines are accepted at any time of 'day. Either TIME or

ALLTIMES must be specified in each acceptance group.

LOCALACCT
tasks will be accepted only from users on remote machines who also have accounts

(logins, user-ids) on the local machine. (Note that it is possible for there to be a user
on & remote machine with user-id “joe” while a different user has user-id "joe” on the
local machine. User-ids should be consistent across machines before using
LOCALACCT.)

LOCALGROUP
this item is strongly Unix-flavored: Unix users are members of one or more groups. If
one or more LOCALGROUPs are named, then a user on a remote machine must have
a local account, and the local account must be in one of the specified local groups.

LOCALGROUP implies LOCALACCT.

TOTALLOAD
tasks from the applicable machines are accepted only if the load on the local machine
is within specified limits as measured by specified indices. This is the total load on
the local machine due to both locally originated tasks and remotely originated tasks.
Index names a load index and min and max specify the range of values within which
tasks will be accepted, either min or max (but not both) may be "*” which means "any
value.” A Unix example would be

TOTALLOAD LA1:*-U4 nusers:*-20 freemem:2000-*%

which specifies that tasks are to be accepted only if: (a) the Unix one minute load
average is in the range from anything up to four, and (b) the number of users logged
in is in the range from anything up to 20, and (c) the amount of free memory is 2,000
blocks or more. The load indices specified must be among those reported by the LIM.

REMOTELOAD

tasks from the applicable machines are accepted only if the load on the local machine
due to tasks accepted from remote machines is within specified limits as measured by
specified indices. Index, min, and max are as in. TOTALLOAD. In the current design,
the only index allowed is ntasks, which is the number of remote tasks that have
been accepted but have not yet completed execution. Note that the LBRM itself main-
tains the value of ntasks, it does not get it from the LIM. Note also that ntasks is the
total number of remote tasks executing, not just the number from the machines in the
current acceptance-rule group; there is no way to set max for one machine or group.
There is also no way to set a cumulative or periodic ntasks limit (for example, 20
tasks per hour or per day).

COMMAND
only the named commands are accepted from the applicable machines.

ALLCOMMANDS
all commands are accepted from the applicable machines (subject to other acceptance
rules). Either COMMAND or ALLCOMMANDS must be specified in every acceptance
group.

NOTCOMMAND :
the named commands are not accepted from the applicable machines. Useful in con-
junction with ALLCOMMANDS: NOTCOMMAND overrides ALLCOMMANDS to give

an effect of “all except"

.28 -

6.3. Acceptance Hints

If & sending machine were to send a task to a machine which refused to accept it, that
would cost time and delay the eventual completion of the task. Let us call this a refused
send. Refused sends are probably costly enough, in terms of lost time, that the sender
should try to avoid them, even at the cost of increased complexity and hence longer decision
times in the sending machine. Without such avoidance the sender might encounter several
refusals before finding an accepting machine (or giving up and processing the task locally).
So, clearly, sending machines should know something about the likelihood of acceptance.
" This can be accomplished by having sending machines know something about receiving
machines’ receiving configuration information.

Receiving configuration information on the receiving machine must be authoritative,
whereas information on the sending machine can be incorrect. Incorrect information on the
sending machine may result in (a) excluding from consideration machines which would
accept tasks, or (b) in refusals and hence delay, but it will never result in a machine pro-
cessing a task it should not process (because the receiving machine will use the authorita-
tive configuration information to correctly accept or refuse the offered task).

As a practical matter, it is extremely difficult to manually keep multiple copies of
information up-to-date with each other. Trying to manually maintain copies of each receiv-
ing machine’s configuration information on each sending machine or on each shared file
area would no doubt be a frustrating and futile exercise.

To solve this problem the following design approach is used. Receiving configuration
information for each receiving machine is kept on that machine; this receiving
configuration information is authoritative. Sending machines obtain some receiving
configuration information for machines they are likely to send to. This information is
obtained from the LBRM on the receiving machine. Receiving configuration information for
candidate machines held on sending machines is considered hints, that is, probably correct,
but not necessarily correct. Since acceptance hints will usually be correct, sending
machines should seldom ignore usable machines or encounter refusals. Even when refusals
are encountered, they will not cause incorrect functioning. A refusal may cause the
incorrect hint to be updated, reducing the chances of further refusals (see below).

6.3.1. Acceptance Hints at Start-Up -

The LBSM has in its configuration file a list of machines which might be willing to
receive tasks. When the LBSM begins execution, it sends a query to the LBRM on each
machine on the list, asking for acceptance hints.

6.3.2. Acceptance Hint Updates Due to Refusals (Hard and Soft Refusals)

Whenever a task is refused by a receiving machine, the LBSM of the sending machine
may send a query to the receiving machine’s LBRM asking for new acceptance hints. When
an LBRM refuses a request, it may be a "hard” refusal, that is, one that will not change, or a
“soft” refusal, which may change very soon. When a request is refused because the ori-
ginating user is not allowed on the receiving machine, that is a hard refusal; if the same
request were resubmitted some time later it would still be refused (unless the LBRM got new
configuration information). When a request is refused because a load index on the receiv-
ing machine is outside the allowed range, that is a soft refusal; if the same request were
resubmitted some time later it might be accepted.

When refusing a request, the LBRM gives the reason for refusing (see Receive Manager
Replies, above'. Based on the reason supplied. the LBSM can classify refusals as hard or
soft. When a request is refused for a hard reason. that means that the sending LBSM's
acceptance hints for that candidate machine are incorrect; the LBSM, when informed of the
refusal by the user process. will send a query to the refusing LBRM asking for an update on
acceptance hints. A soft refusal does not necessitate an acceptance hint update.

n July 1. 1987

.29 .

(Note that a refusal due to time of day is a hard refusal. The sending LBSM's accep-
tance hints for the refusing candidate machine must indicate that the candidate is willing
to accept tasks at that time of day, or else the LBSM would not bave placed the task on that
candidate. If the candidate is in fact not willing to accept tasks at that time of day, then
the LBSM’s hints are wrong and should be updated.)

6.3.3. Acceptance Hint Periodic Updates

In order to ensure that its acceptance hints are up-to-date, the LBSM queries the LBRM
of each candidate machine on its candidate machine list (see Sending Configuration Infor-
mation, above) at least once every period of time. The LBSM records, for each candidate
machine, when it last received an acceptance hint update. Updates are obtained from all
candidates when the LBSM begins execution and when it is reconfigured (see below). An
update is obtained from a particular candidate when the LBSM encounters a hard refusal
from that candidate. If an update from a particular candidate has not been obtained for
some (-her reason for an entire time period, the LBSM queries that candidate’'s LBRM for
acceptance hints.

The importance of periodic updates can be illustrated by the following scenario. The
local LBSM has acceptance hints which indicate that a certain candidate machine is not wil-
ling to accept tasks from the local machine. In fact, the candidate has recently been given
new receiving configuration information and is now willing to accept tasks from the local
machine. Without periodic updates, the LBSM will not discover that the candidate is now
available until the LBSM is restarted or reconfigured. Since the LBSM believes that the can-
didate is unavaiiable, it will not place tasks there, and there will be no updates due to
refusals. Clearly, it is undesirable for the LBSM to continue to exclude from consideration
machines which are willing to accept tasks, so periodic updates are important.

Choosing the length of the update period involves a tradeofl between the cost of
obtaining updates and the penalty of ignoring usable machines. Since the importance of
these two factors will be different in different environments, the optimal update period will
also be different in different environments. Therefore we allow the machine administrator
to set the update period. The sending configuration file (see above) contains a section
labelled "UPDATEPERICD” which consists of a single line specifying the length of the update
period. In our planned implementation, the length of the period will be specified by an
integer number of minutes.

6.3.4. Acceptance Hint Version Stamps

To improve efficiency and reduce overhead, LBSMs and LBRMs will use version stamps
with acceptance hints. The LBRM will generate or obtain the appropriate version stamp for
its acceptance hints when it starts up and whenever it is reconfigured (see below). The
LBSM will keep a version stamp associated with the latest set of acceptance hints it has
received from each candidate machine. The LBSM will send the old version stamp when it
queries an LBRM for new hints, and the LBRM will either reply that the old version is still
current or send a new set of hints with a new version stamp. In the Unix implementation,
the version stamp will be the last-modified time of the receiving configuration file. This
should improve the efficiency of the load balancing managers and reduce communication
overhead by reducing the sending of duplicate sets of acceptance hints.

6.3.5. Alternatives

If the LBSM’s machine and the candidate machine both have access to the same file
system, the LBSM could try to read the receiving configuration file directly. This would take
some load off the LBRMs, but it would complicate the code of the LBSMs. Also, there are
some questions of appropriateness. We bave decided not to include this in the design, but if
acceptance hint queries and replies turn out to be a heavy cost, the issue might be explored
further.

.30 -

We considered having LBRMs send acceptance information to potential senders as fol-
lows:

send configuration information to all likely senders at start-up and whenever the

information changes; send configuration information to a particular sender

whenever a task from that sender is refused or in response to a query '

We decided against this for the following reasons: first, it is the LBSM’s responsibility to
- gather and use information needed for making sending decisions; the design is simpler and
_cleaner if that responsibility is kept in the LBSM and not partially spread into the LBRM.
Second, the administrator on the sending machine must have control over where his
machine sends tasks; the LBSM should not consider sending tasks to other machines even if
they declare themselves available, unless those machines are in the sending machine's
sending configuration information.

7. OTHER MATTERS

7.1. Load Balancer Control Program

The load balancer consists of the LBSM, the LBRY, the LIM, and the TIM. A machine
which only unloads tasks to other machines need not run the LBRM; & machine which only
receives tasks (a compute server) need not run the LBSM and may not need to run the LIM or
the TIM. An administrator may wish to start or stop load balancing, to reconfigure one or
more of the components, or to check the status of one or more of the components. To make
it easier for administrators to do these things, we plan to provide a program called the load
balancer control program, or lbc, which will interactively accept commands to do these
things.

Lbc will also accepts commands on the command line. So it will be possible to use Ibe
to start all the load balancing components at machine boot time from a script of boot com-
mands (in Unix, from the /ete/rc.local file).

The lbc program will look for a file named lbrc containing information about which
components to run by default, the locations of the executables for each component, the loca-
tions of the configuration files, and perhaps information about security level, debugging
level, an acceptance level, and so on, at which the components should run. ("Lbrec” stands
for "load balancer reboot commands.”)

7.2. Files

The LBSM and the LBRM will accept command line arguments specifying the files to use
as configuration files; in Unix these will be of the form “-f filename”. If there is no com-
mand line file argument, then the lbrc fle will be checked. If the Ibrc file does not specify a
configuration file (sending or receiving, respectively), then a compiled-in default file name
will be used. If the default file does not exist, then the manager reports an error.

In Unix, most system administrative information is kept in the directory /etc. The
default file names for the load balancer configuration and administration files are:

lbre /ete/lbre
send configuration file /etec/1lb.config.send
receive configuration file /etc/lb.config. receive

These default names are compile-time constants and can be changed by editing the source
files and recompiling. '

7.3. Reconfiguration

It may be useful to be able to reconfigure the components of the load balancer without
terminating and restarting them. Reconfiguration means the old configuration information
is discarded, and the configuration file is read and processed as described above.

Design of a Load Balancing Mechanism - Rubin July 1, 1987

.31 -

The planned Unix implementations of the LBSM, the LBRM, the LIM, and the TIM will
reconfigure when they receive the hangup signal (SIGHUP). Reconfiguration can be accom-
plished through the lbc program, which will send the signal.

ACKNOWLEDGEMENTS
Many thanks are due Domenico Ferrari for encouragement, suggestions, and support.

Thanks also to David Anderson, Keith Bostic, Larry Carter, Mike Karels, Kirk McKusick,
- Mike Meyer, Colin Parris, Joe Pasquale, Stuart Sechrest, Mark Sullivan, Stefano Zatti, and

Songnian Zhou, for comments, discussions, and suggestions.

8. REFERENCES

Brian Bershad, Load Balancing with Maitre d’, UCB/CSD 85/276 (PROGRES Report No.
85.18), Computer Science Division, University of California, Berkeley, December 1985.

S. I. Feldman, Make - A Program for Maintaining Computer Programs, Software~ Practice
& Experience 9, 4 (April 1979).

Anna Hac and Theodore Johnson, A Study of Dynamic Load Balancing in a Distributed
System, Report JHU/EECS-85/15, Department of Electrical Engineering and Computer
Science, Johns Hopkins University, 1985.

Morton D. Hoffman, William I. MacGregor, Richard E. Schantz, and Robert H. Thomas,
Cronus, A Distributed Operating System: Functional Definition and System Concept,
Report No. 5041, Bolt Beranek and Newman, Inc., June 1982.

Kai Hwang, William J. Croft, George H. Goble, Benjamin W. Wah, Faye A. Brigsgs,
William R. Simmons, and Clarence L. Coates, A Unix-Based Local Computer Network with
Load Balancing, Computer Magazine 15, 4 (April 1982), 55-66.

Miron Livny and Myron Melman, Load Balancing in Homogeneous Broadcast Distributed
Systems, Proceedings of the ACM Computer Network Performance Symposium, April 1982,
47-55.

Harry I. Rubin, Load Balancing Considerations in the Design of an Operating System, (in
preparation). '

R. Schantz, B. Woznick, G. Bono, E. Burke, S. Geyer, M. Hoffman, W. MacGregor, R. Sands,
R. Thomas, and S. Toner, Cronus, A Distributed Operating System: Interim Technical
Report No. 2, Report No. 5261, Bolt Beranek and Newman, Inc., February 1983.

Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel, The LOCUS
Distributed Operating System, Proceedings of the 9th Symposium on Operating System
Principles, October 10-13, 1983, 49-70.

Songnian Zhou, A Trace-Driven Simulation Study of Dynamic Load Balancing, UCB/CSD
87/305 (PROGRES Report No. 86.4), Computer Science Division, University of California,
Berkeley, September 1986.

Songnian Zhou and Domenico Ferrari, An Experimental Study of Load Balancing
Performance, UCB/CSD 87.336 (PROGRES Report No. 86.6), Computer Science Division.
University of California, Berkeley, January 1987,

