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ABSTRACT
All Symmetric and Intuitionistic Algebras are represented by Sym-

metric or Intuitionistic Algebras of classical sets obtaining, as a corollary,
the Bialynicki-Birula and Rasiowa’s theorem for De Morgan Algebras.
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Introduction

Representation theorems for distributive lattices by classical sets and by open sets of
a topological space were given by Stone (see, for example [1] or [2]). On its own
Bialinycky-Birula and Rasiowa studied the De Morgan Algebras (under the name of
Quasi-Boolean Algebras) and gave a representation theorem for these Algebras (see [2]). In
this paper three types of negations on distributive lattices are defined taking into account
the properties that the connective "not” has in different Logics. This negations have been
studied in several papers (see [3], [4], [5]) and define three different types of Algebras. The
paper has two sections. The first one deals of negations on a distributive lattices and on a
Boolean lattice of classical subsets of a set X. In the second one representation theorems
for Symmetric and Intuitionistic Algebras by Algebras of classical sets are given.

We denote by A= (A, vV , A ) a distributive lattice with universal bounds 0 and 1
and by (P(X), M. ,C) the Boolean Algebra of subsets of a set X.

1. Negations in lattices.
Definition 1. A decreasing mapping n: A — A is said to be :
- a dual automorphism if n satisfy the De Morgan laws,
- an intuitionistic negation if n?> Id and n(1)= 0,
- an involution if n? = Id.
Definition 2. A mapping c: A — A is said to be a closure operartor if:
1) x <y imply c(x) < ¢(y),
2) ¢(x) > x for any x € A,
3) ¢(c(x)) = ¢(x) for any x ¢ A.
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Definition 3. A set S C A will be said to satisfy the minimum condition if for any x ¢ A
there exists A {b ¢S | b > x} that belongs to S.

lemma 1. For any closure operator ¢ of A, ¢(A) satisfy the minimum condition and ¢(x)
= A {be ¢(A) | b > x} (1). Reciprocally, for any S C A satisfying the minimum
condition, there exists a unique closure operator ¢ such that ¢(A) = S.

Proof.

a} For any x € c(A), ¢(x)=x because if x=c(x"), c(x}=c(c(x"))= c(x")=x.

b) For any y € A, C(Y) is given by (1) because c(y) € ¢c(A) and for any b ¢ ¢(A) such that
b >y, c(y) < c(b)=b.

Reciprocally, if S satisfy the minimum condition, the mapping ¢:A — A defined by (1) is a
closure operator as a simple computation show. The unicity of ¢ is a simple consecuence of
the first part of this lemma.

Proposition 1. If n is an intuitionistic negation on A, then :

(i) for any S C A such that V,uz €A ,n(V,4 )= Asaa n(z),

(ii) for any x,y € A, n(x A y) 2 n(x) V n(y),

(i) n?is a closure operator on A such that n? (A) = n(A),

(iv) n(A) is a meet-subsemilattice of A such that satisfy the minimum condition and con-
tains the minimum O,

(v) the restriction of n to n(A) is an involution 7 ,

(vi) If S is a subset of A satisfying the minimum condition and containing 0 and if 77 is an
involution on S, there exists a unique intuitionistic negation such that n|g = 7 and
n(A) = 7 (A). This negation n is defined by,

n(z) = (A {ben(A)] b 2>z} (*)
Proof.
(i) For every x €S, A.,sr<z ,thenn( A,z )> n(x)for every x ¢ S. So,
n(Aze7) 2 Vaesni(z) (1.1)
For every x € S, V.. z > z , then n( V,.)< n(x) for every x ¢ S. So
n(Ves?) € Asesn(2) (1.2)

For every x € S, n%(z)>z , then V,.sn? (x) >V.s X and by (1.1) we have,
Vaes? £ Vaesn(n(z)) < n(Azes(n(z)) (1.3)
So applying n to (1.3),
n(Viesz) 2 n¥H(A2es(n(2))) 2 Asesn(z) (1.4)
The inequalities (1.2) and (1.4) prove (i).
(i1) The prove is the same then that given for to prove (1.1).

(iti) By definition of n, n? satisfy :
1}If x <y, n(x) > n(y), and so n?(z) < n?y),



2) n%z) > z by definition of n,
3) n¥(n*(z))= n%z) because,
- n?(n(x)) > n(x) which imply n¥(z)<n*(z)
- n%n?z))>n¥z), that is, n%(z)>n%(z)
Then n?(n¥z))=n%z)
So, n? is a closure operator on A.
On the other hand n(A)=n%A) because,
- if x=n(x') , n%(z)=n(n¥z'))<n(z')=z. Then n? (x)= x and so, x en? (A).
- n2(A) C n(A).
(vi) Given S C A such that satisfy the minimum condition and contains 0 and given an
involution  on S, the mapping n defined by (*) is a negation. On the other hand if
n, and n, were a negations on A such that n, (A)= n, (A)= S and
n,ls=nylg= @ ,n;=n, because if there exists x such that ny(z)#nfz) ,
n2(z)={n,(z)) # T(no(z))=n(z) and then nf##nf . So, n{ and nZ would be two
different closures operator on A with the same image which is imposible (See lemma
1).
Proposition 2. A mapping n:A — A is an involution if, and only if, it is both a dual
automorphism and an intuitionistic negation.
Proof.
If n is a dual automorphism and a intuitionistic negation, n(A) = A and by (iv) of
proposition 1, n is an involution on n(A) = A.
If n is an involution, obviously n is an intuitionistic negation and n is bijective. So
n(a v b)= n(a) A n(b) by (i) of proposition 1 and n(a A b)= n(a) v n(b) because if n is
decreasing, bijective and involutive, there exists n™* and it is also decreasing, bijective and
involutive. Then n=n(a)yn(b))=n"*(n(a))An~Y(n(b))=a Ab . So, n satisfy the De Morgan
laws , that is, n is a dual automorphism.

The representation theorems require to characterize the possible negations that we
can define on a Boolean lattice P(X) of classical subsets of a set X. The following proposi-
tions characterize these negations.

Definition 3. An automorphism H, of P(X) is said to be generated by a permutation s of
X if it is defined by [ H, (A)](x) = A( 7 (x)) for any A ¢ P(X).

Proposition 3. Any dual automorphism n of P(X) is composition of the complementa-
tion C of the boolean algebra P(X) and an automorphism generated by a permutation s of
X,thatis, n=H, o C=C o H,.

Proof.

Given n, the mapping 3:X — X defined by {s(x)} = C~* (n({x})) is a permutation of
X. So, taking account that n is univocally determined by the image of the atoms or single-
tons of P(X), a simple computation show that n = C o H,=H, o C.

Corollary 1. A dual automorphism n = H, ¢ C is an involution if , and only if |

2 = Id.
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Proposition 4. An intuitionistic negation n on P(X) is univocally defined by a complete
meet-subsemilattice S that contains X and ¢, and an involution on S.

The proof is omitted because is an easy consecuence of (i) and (iv) of proposition 1
taking account that P(X) is a complete lattice.

In other words, proposition 4 say that, given a meet-subsemilattice S that ccatains X and
G/, there is as much intuitionistic negations n on P(X) such that n(P(X)) == S as involu-
tipns 7 we can define on S.

2. Representation theorems.

Let A = (A, V,A ) be a distributive lattice with universal bounds 0 and 1.
Definition 4. An Algebra (A, V,A ,n) is said to be :

- A Symmetric Algebra if n is a dual automorphism ,
- An Intuitionistic Algebra if n is an intuitionistic negation,
- A De Morgan Algebra if n is an involution.

Theorem 1. Any Symmetric Algebra is representable as a subalgebra of a Symmetric
Algebra of classical sets.

Proof.

Let X be the set of prime dual ideals of the lattice A. For any F ¢ X, we define s(F)
= A - n(F) which also is an element of X. So, if we denote by n’ the dual automorphism
H,  C,(P(X), N\ ') is a Symmetric Algebra.

Let f:(A,A,V ,0) = (P(X),,|J ,0’) the mapping defined by f(a)={F ¢ X |ac F}.
This mapping is a monomorphism because :

1) fav b)=1a) U fb)

-ifay beF,aeF orbeF because F is prime. So f(a v b) C f(a) | f(b)

-ifaeForbeF,aybeF. So, f(a) | f(b) C f(ayb).

2) f(a A b) = f(a) M f(b) because a A b ¢ F is equivalent to a ¢ F and b ¢ F.
3)  f(n(a))= n'(f(a)).

n'(f(a))=(C o H, \{FeX | aeF })=C({X-n(F) | aeF}

f F'=X-n(F), F=n"1(X-F')=X-n7'(F’) and n(F) = X - F' . Then,

n'(f(a))=C({F' eX | aeX-n7'(F)})=C({F'¢X | n(a) e X-F' }), s0

n'(f(A)) = {F' ¢ X | n(a) ¢ F'} = {(n(a)).

So, the algebra A is isomorphic to the subalgebra f(A) of P(X).

Corllary 2. (Bialinycki-Birula and Rasiova [2]) A De Morgan Algebra is representable as
a subalgebra of a De Morgan Algebra of classical sets.
Theorem 2. An intuitionistic Algebra is representable as an intuitionistic Algebra of
classical sets.
Proof.

As in theorem 1, let X be the set of prime dual ideals of the lattice A and f the map-
ping f:A — P(X) defined by f(A)= {F ¢ X| a ¢ F}. Theorem 1 prove that f is a monomor-
phism of the lattices.



-5-

If we define 7 on f(A) by T (P)=(f o n o ™' JP) for every P ¢ f(A), 7 is an intuitionis-
tic pegation on f(A) and f ¢ n= 7@ o f.

So, (f(A)), M,\UJ,7 ) is an intuitionistic Algebra of classical sets isomorphic to

(A, AV, m).

In general (f(A), M\U.7 ) is not a subalgebra of some Intuitionistic Algebra (P(X),
MU » n'), that is, the existence of a intuitionistic negation n’ or P(X) such that = =
n’ | y4) can not be secured.

Proposition 5. A suficient condition for (f(A), M),|J.@ ) to be a subalgebra of some
Intuitionistic Algebra on P(X) is that f(n(A)) = 7 (f(A)) is a complete meet-subsemilattice
containing X and @' .

Examples.

1) Let M be the set M = { p, .pz. -~ px | p; is'and p; = p; forany i 5}

- Let A , V be the operations

- Let P the set of prime numbers and P’ = P J {0,1}.

P’ is a complete inf-subsemilattice of M and n":P' — P’ defined by n'(0)= 1, n'(1)= 0
and n’(p)= p for any p ¢ P is an involution on P’. So, by (vi) of proposition 1, there exists
an intuitionistic negation n on M such that n| p = n’ and n(M) =P’. This negation n is

defined by:

1ifz=0
n(z)=1z if zeP
0 otherwise

In this case f(n(M)) is obviously a complete inf-subsemilattice and proposition § can
be applyed. So, the algebra (M, A,V ,n) can be represented by a subalgebra of an intui-
tionistic algebra on (P(X), N.1J )-

2) Let Y be an infinit set and let F(Y) = [0,1]¥ be the set of Fuzzy Sets on Y taking values
on [0,1]. If we define () and [J by (AM\B)(z) = A(z)AB(z) and (A B)(z) = A(z)VB(z)
;then (F(Y), M,1J ) is a complete and distributive lattice with maximum X and minimum
g .

- We denote by o, , &, , 8, 0 and &, the Fuzzy Sets defined by :

o,(y)=0ify # xand o, (x)=1

7, =0C(0o;)

6o (x)=aforanyxeY

02 =o0,\6,and ¥, =T,V

Let n be the intuitionistic negation defined on F(Y) by the conditions n | gyy=C and
n(F(Y)) = P(Y). By (vi) of proposition 1 the negation n is defined by :

0 if A(z) =0
[n(A)(z) = 1 if A(z)=0

Let Z the set of prime dual ideals of F(Y).
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lemma 2. The set Z contains the following prime ideals:
-Zy={[02)] zeX , ael0,1] }
-Z,={(02)] zeX , a[0,1] }
-Z2'={FeZ | &,¢F for any zeX }

Proof.

. The proof is a consecuence of the following results :

(i) The join-irreducible elements of F(Y) are the elements of the type o2 for any z¢X an
any «€0,1] . So, Z, and Z, are prime dual ideals and there are the unique principal
duals ideals.

(ii) Any prime dual ideal no principal has contain all the elements &, for any zeX
because for every zeX , o, ¢F and o,\V3, = X ¢F . So &,¢F .

(iii) There exist a prime ideal F containig all elements &, for every ze¢X because,
-I={AeF(Y)! {zeX | A(x) =1} is finite } is an ideal.
-D={Ae¢F(Y) {zeX | A(x) s 1} is finite} is a dual ideal disjoint with I
Then by Stone theorem (see [3]) there exists a prime dual ideal F containing D and
disjoint with I.
Let f:F(Y) — P(Z) be the mapping defined by f(A) = { FeZ | AeF }
Lemma 3. The sets f(F(Y)) and f(P(Y)) are no complete sublattices of P(Z).
Proof.
For any zeX , 0, = M, &,%: and,

Jloz) = {loz) | ac0,1] }J{ (ez) | ac[0,1] }
J(3) = {loz)1 aef01] ,y #z JJ{(0:)] ec0l], z £y } U Z

Then , f(0;) * M. ¢,/ (3)
So, f(F(Y)) and f(P(Y)) are sublattices of P(Z) because f is a monomorphism but they are
not a complete sublattices of P(Z).

On the other hand n(F(Y)) = P(Y) and f(n(P(Y))) = f(P(Y)). Then in this case pro-
position 5 can not be applyed.

However the existence of no functions n' on P(Z) such that n' |,qy =
J ° n o f7!can not be secured because the condition of proposition 5 is only suficient.
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