Preprint from Proceedings of the Summer School on VLSI Tools and Applications,
Switzerland, July 1986, Kluwer Acadmic Publishers
W. Fichtner and M. Morf editors.

FAULT TOLERANT VLSI MULTICOMPUTERS

Carlo H. Séquin and Yuval Tamir*

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

An approach is presented to increasing the reliability of future high-
end systems beyond what is possible with technological solutions alome.
The system conmsists of computation nodes and communication nodes,
interconnected by high-speed dedicated links. These components are relied
upon to detect errors while system level protocols are used for error
recovery and reconfiguration. The use of duplication and matching for
implementing the self-checking nodes allows us to restrict a detailed
analysis of the impact of all possible faults to the comparator, a circuit
that can be implemented in a relatively straight-forward way in NMOS or
CMOS technology.

1. INTRODUCTION

Certain computational problems such as weather forecasting, simulations of
complex systems, or design optimizations, exceed the capabilities of current com-
puters. They require a substantial increase in compute power and, since such
computations may run for an extended amount of time, improved systems reliabil-
ity. There are fundamental limitations to the gains in reliability and performance
that can be obtained from advancing technology alone. A more important contri-
bution will have to come from organizational improvements in such computing
systems: performance can be enhanced by exploiting parallelism, while the limits
on reliability can be overcome using fault tolerance techniques.

If the computational problem can be subdivided into a sufficient number of
simultaneously executing tasks, then this inherent parallelism of the problem can
be used to achieve high performance by a system that comprises many computa-
tional nodes. A possible systems architecture that is compatible with the con-
straints of VLSI interconnects these computation nodes using high-speed dedicated
links, and communication nodes which provide hardware support for communica-
tion functions such as message routing.23 Computation nodes my consist of a sin-
gle processor chip and several memory chips surrounded with the associated glue

*Now with the Computer Science Dept., University of California, Los Angeles, CA 90024.

MULTICOMPUTERS -2- SEQUIN & TAMIR

logic, forming a powerful self-contained computer. The communication node has
several ports through which it is connected to computation nodes and other com-
munication nodes. Such a system is called a multicomputer. Ideally, the two
types of nodes and the links between them are building blocks that can be used to
construct multicomputers with a wide range of organizations and performance.

COMMUNICATIONS NODES: (©) PROCESSOR NODES: A @
Figure 1: Conceptual View of a Multicomputer.

When the behavior of a system deviates from its specification at the interface
with the “‘outside” world, we say a system fatlure 1 has occurred. System failure
is often the result of a failure of one of its components. However the failure of a
component does not necessarily imply that a system failure must occur. The sys-
tem is fault-tolerant if it can continue operating correctly despite the failure of
some of its components. Various techniques can be employed to provide fault
tolerance at the different levels of the system hierarchy.

A multicomputer is particularly well suited for reliability enhancement using
fault tolerance techniques since it is naturally divided into fairly independent
modules of substantial “intelligence”” — the above mentioned nodes. Fault-free
components can adjust their behavior to the changes in faulty components and
continue their operaticn in such a way that the overall output of the system
remains correct despite the occurrence of a fault.

The design of a VLSI chip or of a multicomputer system is in itself a very
hard task. Adding the extra demands of fault tolerance may just make this task
unmanageable, unless we simplify the task by using principles of regularity and
repetition. Using the multicomputer system as an example, it will be demon-
strated how the concerns of fault tolerance can be concentrated on a few critical

MULTICOMPUTERS -3- SEQUIN & TAMIR

components, and how, by a suitable modular approach, the whole system can
become fault tolerant, without undue penalty to either system design time or sys-
tem performance.

2. FAULT TOLERANCE

The reliability of any system can be enhanced by increasing the reliability of
its components through fault prevention! techniques, such as specialized design
methodologies, stringent quality control, and extensive validation and testing.
These techniques typically result in more complex designs,8 greater cost, and
lower performance.?0 Furthermore, the effectiveness of these techniques is limited
by our inability to exhaustively test complex VLSI chips.19

The reliability of components can also be increased by employing fault toler-
ance techniques at the component level. These techniques attempt to ensure that
each component will continue to perform according to its specifications despite
the failure of its subcomponents. Unfortunately, no component can tolerate an
unbounded number of faults. Thus, the system must be able to handle com-
ponent failure. The contamination of the system by incorrect output from a
faulty component can be prevented only if, at some stage, other system com-
ponents find out about the failure of the component and physically or logically
isolate it from the rest of the system.

If a node fails due to a transient fault, it need not be removed from the sys-
tem, but rather should be reset to a proper state, and then continue to be a useful
part of the system. If the failure is detected by a neighboring node, then this
node must have the authority to initiate some action that might eventually lead
to a resetting of the node. However, the same authority also gives a failed node
the potential to invoke the resetting of an operational neighbor, so that a single
node failure could result in a total system failure. To prevent this undesirable
situation, each node must be responsible for its own reset. Hence the node should
include a mechanism to detect its own erroneous states and to initiate a reset.

System level fault tolerance techniques need not rely on the components to
report faults themselves. Instead, system level protocols could be used for detec-
tion and recovery from the component failure. For example, each task may be
performed in parallel on three nodes and a “majority vote’ taken on the results.
Such a system with triple modular redundancy3!:3% can continue to produce the
correct output even if one of the nodes fails. While the scheme does not make
any assumptions about the nature of the individual subcomponents, it requires the
system level protocols to ensure that the paralle] task execute on different nodes
and that the messages between themselves and the initiation node travel via
independent paths. Hence this method leads to very high overhead in the use of
the computation nodes as well as in message traffic. Additional problems concern
locating failed components and effective handling of transient faults.

MULTICOMPUTERS -4- SEQUIN & TAMIR

Many of the deficiencies of fault tolerance techniques that rely only on
hardware or only on system-level protocols can be overcome by using a combina-
tion of hardware error detection in self-checking components and system-level
protocols that perform error recovery and fault treatment. Errors caused by
faults in the communication links are detected through the use of error-detecting
codes. All nodes are self-checking and signal to the rest of the system when their
output is incorrect. In addition, failed nodes attempt to reset themselves and
reestablish a sane state. The immediate neighbors are informed whenever a node
fails. If the node does not reset itself or fails too often, the neighbors can logically
remove it from the system by refusing to communicate with it. The diagnostic
status information is distributed throughout the system so that, eventually, no
fault free node will attempt to use the faulty component.

On top of the self-checking hardware there is a low-overhead, application-
transparent, distributed error recovery scheme. It involves periodic checkpointing
of the entire system state and rolling back to the last checkpoint when an error is
detected (Section 7).

3. SELF-CHECKING NODES

For all likely faults, a self-checking component must either produce the
“correct’” output (according to its specifications) or somehow indicate that its out-
put is incorrect. A component that satisfies this requirement is said to be fault
secure.?2 If the component does not produce an error indication immediately fol-
lowing the first fault, it is possible for several faults to exist in the component
simultaneously without any indication to the rest of the system. Even if the com-
ponent is fault secure with respect to any single fault, several faults together may
lead to the failure of the self-check mechanism and, eventually, to incorrect out-
put from the component. In order to prevent this situation, the component must
also be self-testing.?? In the presence of one or more faults, a self-testing com-
ponent is guaranteed to produce an error indication before additional faults can
occur that may lead to the failure of the self-check mechanism. Components
which are fault-secure as well as self-testing are said to be totally self-checking??
(TSC).

Error detecting or correcting codes can be used to implement T.SC nodes.
Redundant information is carried by busses, memories, and registers in order to
detect {and possibly correct) errors.?? Unfortunately, different coding schemes
must be used for different parts of the node. This increases the complexity of the
design task and makes design verification and testing more difficult. As a result,
failure modes that are harder to predict and ‘‘tolerate’ are more likely to occur.

An alternative is to construct the 7SC computation or communication node
using two identical, independent modules, each performing the function of the
node. Inputs from neighbor nodes are fed to both modules. Except for the, hope-
fully nearly-impossible, case where both modules produce identical incorrect out-
put (Section 6), if the modules operate synchronously, errors can be detected by

MULTICOMPUTERS -5- SEQUIN & TAMIR

simple comparison of the outputs of the modules. The comparator that performs
this function is part of the node, and its output is connected to neighboring nodes
through dedicated wires. The output from one of the two modules is the “‘func-
tional’’ output from tke node (Fig. 2). A “‘no-match” signal from the comparator
is used locally as a reset signal and is also sent to all neighbors as a failure indica-
tor. Similar failure indicators from the neighbors cause an interrupt and invoke
system-level routines that hardle the node failure.

SELF-CHECKING
SELF-RESETTING
COMPUTATION
NODE

“{ PROCESSOR |
+MEMORY

DATA ERROR/ERROR'

SELF-CHECKING
SELF-RESETTING

COMMUNICATION
NODE .
¢ '
“i7f SWITCH +
CONTROL

AR

COMPARATOR

RES

11
1

Figure 2: Self-Checking Nodes for Multicomputers

Implementing the 7SC property in a component using duplication and com-
parison may appear wasteful since it more than doubles the required hardware.
However, this scheme becomes more attractive when issues such as design com-
plexity, fault coverage, reliability prediction, and the ability to recover from tran-
sient faults are taken into account.

Traditional fault models are not adequate for VLSL.10:30 As 3 result, low-cost

error detection schemes, that are based on th2se models, may no longer be suffi-
cient. With duplication and comparison, errors are detected as long as the

MULTICOMPUTERS -6- SEQUIN & TAMIR

comparator remains functional and the two modules produce different outputs the
first time one or both of them fail. Since a faulty comparator can mask faulty
functional modules, faults in the comparator must not go undetected, t.e., the
comparator must be self-testing. Thus a detailed analysis of the effects of all
likely faults on the comparator is required.

4. DEFECTS AND FAULTS IN VLSI

The design of self-checking circuits requires an understanding of the physical
defects that commonly occur in VLSI and of the resulting logical faults. In the
past the stuck-at fault model has been widely used to model, at the logical level,
the effects of physical defects in circuits. This model does not cover many of the
possible defects in VLSL7:10,30 The fabrication flaws and physical processes that
can cause malfunction of NMOS and CMOS VLSI circuits are summarized in this
section.

VLSI chip failures may be caused by design or fabrication flaws, may be due
entirely to environmental factors, or are the end result of a degenerative process
invoked by operational and environmental stresses but often attributable to
design or manufacturing flaws.%22 Fabrication defects in MOS chips consist
mainly of shorts and opens in each interconnection level, (metallization, diffusion,
and poly-silicon), shorts between different levels, and large imperfections such as
scratches across the chip.l? Other fabrication defects include incorrect dosage of
ion implants, contact windows that fail to open, misplaced or defective bonds, and
penetration of the package by humidity and other contaminants.?® During the
operation of the chip, faults may be caused by electromigration, corrosion, electri-
cal breakdown of oxide, cracks due to thermal expaasion, power supply fluctua-
tion, and ionizing or electromagnetic radiation.9

At the logical level, most of the faults can be represented in a circuit model
consisting of switches, loads (for NMOS), and interconnection lines that directly
correspond to the transistors and interconnections in the actual circuit.19 Most of
the physical defects, such as opens and shorts, can be represented in this model in
an obvious way.” A ‘“switch” may be permanently on or permanently off,
corresponding to a gate input stuck-at-1 or stuck-at-0, respectively. Shorted
NMOS loads (pullups} are equivalent to an output line s-a-1. Disconnected gate
inputs are usually equivalent to s-a-0 or s-a-1 faults.

Some physical defects have a more complex effect on the circuit. In NMOS,
incorrect dosage of ion implants may cause a threshold shift in a load transistor.
This can result in an output voltage that lies between the voltages assigned to
logic 0 and logic 1. If the fanout from the gate is greater than one, some of the
gates connected to its output may ‘‘interpret” it as logic 1 while others will inter-
pret it as logic 0. If, at some point in time {(clock cycle), the line is supposed to be
a logic 1 but is interpreted by some of the gates as logic 0, we call it a weak 1
fault. Conversely, if the line is supposed to be a logic 0 but is interpreted by some
of the gates as logic 1, we call it a weak 0 fault. A single physical defect, resulting

MULTICOMPUTERS -7- SEQUIN & TAMIR

in a single weak 0 or weak 1 fault, has the same effect as multiple s-a-1 or s-a-0
faults, respectively.

In CMOS, a transistor which is permanently off or a break in a line can
result in a high impedance state where the output of a combinational logic gate is
dependent on the previous output rather than the current input.30 Such a fault
(called 2 stuck-open fault) may escape detection even if all possible input vectors
are used to test the circuit.30

5. SELF-TESTING COMPARATORS IN VLSI

The duplication and matching scheme relies entirely on a self-testing com-
parator to detect faults in the functional modules. Implementing such a compara-
tor requires knowledge of how different faults will affect the circuit. Fortunately,
a comparator is a simple circuit that can be implemented with a regular structure
and is therefore amenable to thorough analysis. Hence, we can have confidence in
our ability to predict the likely physical defects, develop a valid fault model, and
prove that the implementation we propose is indeed self-testing.

We assume that physical defects in the node occur one at a time. A fault
that is the result of a single physical defect is called a single fault. It is assumed
that there is a negligible probability that the time interval between the occurrence
of successive single defects in the comparator or between a single defect in the
comparator and an arbitrary collection of defects in the functional modules, is less
then some value T. In order to ensure that faults in the comparator will not mask
future faults in the functional units, during normal operation, the comparator
must “‘test itself”” for any single fault in less than time T.

5.1. Single Stuck-At Faults

As a first step to constructing a comparator which is self-testing with respect
to any single fault, we will discuss the implementation of a comparator which is
self-testing with respect to any single stuck-at fault.

In this context ‘“‘two-rail” codes prove useful. They consist of all words (bit
vectors) such that a specified half of the word is the complement of the other half.
If the output of one of the modules in a self-checking node is complemented, a
two-rail code checker can serve as a ‘“‘comparator’’ that checks the validity of the
output (Fig. 3). Such a code checker, which is self-testing with respect to any sin-
gle stuck-at fault, can be implemented as a two level NOR-NOR PLA (Fig.
4).6,26,32 The output from the checker is a two-bit two-rail code that is 01 or 10
(code output) if the input is a two-rail code word (code input), and 00 or 11 (non-
code output) otherwise (noncode input). It can be shown that if any single stuck-
at fault exists in the checker, there is a two-rail code input word that results in a
00 or 11 output, thereby ‘‘detecting’ the fault.32

The requirement that the checker must be self-testing with respect to any
single stuck-at fault poses severe constraints on its implementation. It can be

MULTICOMPUTERS -8- SEQUIN & TAMIR

,

a;» —< b

”

ag» —< 5

Cy €o

Figure 3: Self-Testing Two-Rail Code Checker

-

T TSR
=4 -
HL e i

s HL T, | £
ﬂ-{i »{Q =

L AND A AE A A L 4 v

: a, b, ay b} C, Co

i Array

Figure 4: NMOS Implementation of Code Checker

shown that any two level AND-OR {or NOR-NOR) implementation for an input
of 2n bits (n bits from each module) must use 2 product terms, one for each
code input.?6:29 If the output from each module is, say, 16 bits, this implementa-
tion is impractical since it requires 2'® = 65536 product terms. Furthermore, all
possible (27) code words must appear at the checker’s inputs for it to perform a
complete self-test.

Several small self-testing two-rail code checkers can be used as “cells” for
constructing a self-testing checker for a wide input word (Fig. 5).1222 While the
self-testing property is preserved, the number of input patterns required for a
complete self-test is dependent only on the size of the largest “oell 12

MULTICOMPUTERS -9- SEQUIN & TAMIR

is bis 34 11'4 ‘;3 b‘: iz b 11 b"l ;o]i'o

two-rail code two-rail code two-rail code two-rail code
checker checker checker checker

[] I]
5_' R R

two-rail code two-rail code
checker checker

[]
y Y

two-rail code
checker

R

¢, ©Co

Figure 6: A Self-Testing Two-Rail Code Checker Tree

7 by ag by

Skl

5.2. Other Single Faults

The faults that commonly occur in a MOS PLA are stuck-at faults, shorts
between adjacent lines, breaks in lines, and contact faults that include missing or
extra devices at crosspoints.!®:32 In addition, weak 0/1 faults can occur on the
input or product term lines. Fortunately, it turns out that it is possible to imple-
ment a two-rail code checker that is self-testing with respect to any one of the
aforementioned single faults. The implementation is a NOR-NOR MOS PLA
which is laid out according to a few simple guidelines described in[26] and[29)].
The rest of this section contains a partial informal “‘proof” of this claim; a more
formal proof can be found elsewhere.?6:29 Faults in the input lines, product term
lines, output lines, AND array crosspoints, and OR array crosspoints, are con-
sidered separately.

Any single stuck-at fault or short in the input lines will cause one or more 0's
to change to 1's or one or more 1’s to change to 0's (but not both) for some code
input. It can be shown that such an error (called a unidirectional error'3) on the
input lines results in noncode output.32 The effect of a break in an input line
depends on its location. A break in the input line outside the AND array is
equivalent to the line stuck-at-0 or stuck-at-1. A break in the middle of the AND
array affects only some product terms. For an affected product term, if the break
is equivalent to a stuck-at-1, the one code input that is supposed to select this
product term won’t, and a noncode output will result. If the break is equivalent
to a stuck-at-0, there exists a code input that results in a noncode output since it
selects two product term lines each of which is connected to a different output
line.?9

An extra device in the AND array is equivalent to the corresponding product
term stuck-at-0. The code input that is supposed to select that product term
results in a noncode output. If there is a missing device in the AND array, there
exists a code input that produces a noncode output since it selects two product
term lines, each of which is connected to a different output line.2?

MULTICOMPUTERS - 10 - SEQUIN & TAMIEK

An extra device in the OR array means that one of the product terms is con-
nected to both outputs. A missing device in the OR array is equivalent to the
corresponding product term stuck-at-0. In either case, the code input that selects
the relevant product term will result in a noncode output.

If the output lines are shorted, their values are equal and that is a noncode
output. If one of the lines has a stuck-at fault, there exists a code input that
causes the other line to have the same value, so the output is noncode. For some
code input, a break in one of the output lines is equivalent to a stuck-at-1 or
stuck-at-0 fault on that line.

A stuck-at-0 fault on a product term line will result in a noncode output if
the input is the code word that is supposed to select that product term line. A
stuck-at-1 fault on a product term line will result in a noncode output to any
input that selects a product term line that is connected to the other output line.
A break in a product term line is equivalent to a stuck-at fault on that line since
each product term line is connected to only one output line. A short between two
product term lines will result in a noncode output if the input selects either one of
these lines.??

Product term lines are not susceptible to weak 0/1 faults since each product
term line is connected to only one output line (fanout of one) so that a weak 0/1
fault is equivalent to a single stuck-at fault. Input lines have a fanout greater
than one and are thus susceptible to weak 0/1 faults. A weak 1 fault on an input
line is equivalent to one or more missing devices in the AND array. Each product
term that is connected to a “missing device” will be selected by an input code
word that also selects a product term line that is connected to the other output
line.2? Thus, a noncode output will result. A weak O fault on an input line is
equivalent to one or more product term lines which are stuck-at-0. Any code
input that is supposed to select one of these product terms will result in a noncode
output.

In CMOS chips, PLAs are usually implemented in dynamic ‘“‘pseudo
NMOS"”.39 All product term and output lines are precharged during every clock
cyele before being selectively discharged according to the input. Therefore, no
state is preserved from one cycle to the next, and the circuit is combinational
despite any opens in the precharge or discharge paths.?? Hence the PLA used in
CMOS chips is only susceptible to the same faults as the traditional static PLA
used in NMOS chips. '

This analysis shows that for all single faults in our fault model, there exists a
code input that results in a noncode output from the proposed two-rail code
checker PLA. Thus, the checker is self-testing with respect to any likely single
fault. Based on this result, it can be shown that the checker constructed as a tree
of smaller self-testing checkers (Fig. 3) is also self-testing with respect to any
likely single fault.29

MULTICOMPUTERS -11- SEQUIN & TAMIR

6. IMPLEMENTATION ISSUES

The key to the fault tolerance technique presented in the previous chapters is
the use of self-checking nodes implemented with duplication and comparison. As
discussed in Section 3, one of the potential weaknesses of duplication and com-
parison is that if the two functional modules fail simultaneously in exactly the
same way, the failure is not detected, and incorrect results are accepted as correct
by the rest of the system. Thus we have to look at the causes of such common
mode failures and at techniques for reducing their probability of occurrence.
While it is not possible to entirely eliminated common mode failures, there are
some practical implementation techniques for reducing the probability of these
failures in the context of commonly used NMOS and CMOS circuits.

Common mode failures (henceforth, CMFs) may be caused by environmen-
tal factors such as power supply fluctuations, pulses of electromagnetic fields, or
bursts of cosmic radiation, affecting both modules at the same time, triggering
similar design weaknesses, and causing simultaneous identical failures of both
modules. If the two modules to be matched are physical duplicates, then design
weaknesses are a particularly worrisome source of CMFs. Any pattern-sensitive
marginal performance is likely to trigger the same erroneous output in both
modules. Simultaneous module failures may also be caused by faults that occur at
different times in parts of the modules that suffer from identical design
weaknesses and are rarely exercised.

Advancing VLSI technology will soon make it possible to implement an entire
self-checking module, such as a computation or communication node in a multi-
computer, on a single chip. This would provide nice logical building blocks?® for
the construction of powerful and reliable computer systems. Furthermore, such
chips offer some advantages in production testing. Simplification of testing is
achieved by eliminating the need to store the correct responses to long test
sequences and compare them with the actual responses of the chip during testing.
Testing can proceed at the normal system clock rate, and only the outputs of the
comparator need to be monitored. However, the danger of CMFs masking design
flaws may prohibit this approach for the case where the two modules are copies of
the same physical design.

Unfortunately, if the two functional modules (and the comparator) are fabri-
cated on the same chip, the probability of CMFs during normal operation is
greater than if they are on separate chips. This increased probability of CMF's is
due to the tighter electrical and physical coupling between the two modules and
to similar weaknesses in the two modules that may be caused by fabrication flaws
specific to the wafer containing the chip. Thus, having physical copies on the
same chip enhances the possibility of CMFs to the point where it might defeat the
overall purpose of fault tolerance. One must thus consider implementing different
modules with the same desired behavior but with independent failure modes.

As noted in Section 3, one of the benefits of using duplicaticn and

MULTICOMPUTERS -12- SEQUIN & TAMIR

comparison for self-checking subsystems is that relatively little extra design effort
is required to implement the self-checking property. Creating two different imple-
mentations for every function clearly violates this goal. The question thus arises,
how much extra effort is required to design and fabricate two modules for the
given function whose implementations are sufficiently different to reduce the
chance of CMF's to an insignificant level.

How the two modules should differ to achieve independent failure modes
depends on the implementation technology. In the following, approaches are out-
lined that are suitable for NMOS and CMOS VLSL

6.1. Dual Implementations

For every combinational Boolean function f(z)= f(z1,zs - - ,2a) there is a
corresponding dual function g such that g(z) = F(Z) for every z. In the circuits
¢, and C, that implement the functions f and g, respectively, voltage levels
represent the logic values. If the circuits are implemented using positive-logic, the
“high’’ voltage level represents a logic 1 and the “low" level represents a logic 0.
Because of the above relationship between the functions s and g, C, is a negative-
logic implementation of the function f, and C; is a negative-logic implementation
of the function g. The circuits ¢, and C, are said to be dual implementations of
the function f, and C, and C, are said to be dual circuits. 27,29

Dual implementations of arbitrarily complex sequential logic circuits are also
possible. If the inputs to the negative-logic implementation are complements of
the inputs to the positive-logic implementation, the corresponding outputs from
the two implementations are complements of each other.

Sedmak and Liebergot?! have suggested that the probability of CMFs in a
self-checking functional block can be reduced by using dual modules rather than
pairs of identical modules. To make use of dual modules, the inputs to the self-
checking block are passed unmodified to the positive-logic module (henceforth
called the P-module), and are complemented for the negative-logic module (V-
module). If the two modules are operating correctly, their outputs are comple-
ments of each other and can be “compared” using a two-rail code checker® (see
Fig. 6).

There are some immediate advantages to the use of dual modules. The
difference in the two modules forces the use of different masks, and thus it is not
possible that a mask defect gives rise to identical behavioral problems in both
modules. Since one module is a negative-logic version of the other, electromag-
netic pulses or noise on the power line will almost certainly produce different
effects in the two modules. Finally, crosstalk problems within a module itself will
typically appear at different times in the two modules because the sensitivity to
electrical pickup at a particular circuit node is sensitive to the polarity of the vol-
tage transition, and with dual circuits, the voltage transitions on corresponding
lines in the two modules are in opposite directions.

MULTICOMPUTERS - 13- SEQUIN & TAMIR

N-module

P-module

'S

two-rail code
checker

i ==

output error input

Figure 8: Self-Checking Block Based on Dual Modules

In SSI technology, the realization of a dual circuit is relatively straight-
forward; the negative-logic module can readily be derived from the positive-logic
module by a simple one-to-one replacement of gates and flipflops by their
negative-logic equivalents. In VLSI technology, the implementation of dual cir-
cuits is more problematic since it is not possible to convert an existing positive-
logic chip to negative-logic by a simple replacement of standard building blocks.
Even the replacement of NOR gates with NAND gates is difficult. First, the dif-
ferent gates have different cell topologies and sizes, and the layout of the entire
chip .may have to be modified in order to accommodate the replacement gates.
Second, the fan-in capability of the two gates may be different for example, in
NMOS, it is possible to implement a NOR gate with a large number of inputs
while NAND gates are limited to about four inputs. Finally, practical circuits are
often not simply a collection of standard logic gates; they may contain transmis-
sion gates, precharged busses, register files, PLAs, dynamic logic subcircuits, etc.
For some technologies, converting such circuits to negative-logic may require sig-
nificantly more area and/or result in lower performance.?7,29

Thus, a practical conversion does not necessarily involve converting the
entire module at the lowest level (i.e., individual FETSs) to negative-logic. It may
be preferable to design the N-module so that some of the subcircuits in the
P-module have direct negative-logic equivalents in the N-module while other sub-
circuits are used unmodified in the N-module. The only critical requirement is
that the N-module “‘behave” as the negative-logic equivalent of the P-module at
the interface to the outside world.

68.2. Partial Conversions

Standard NMOS circuits are fundamentally asymmetrical. The available
devices are enhancement mode transistors (EFETs) and depletion mode transistors
(DFETs). There is no device that can perform the dual function of the EFET,
i.e., be turned on by a low gate voltage and off by a high gate voltage. These

MULTICOMPUTERS -14 - SEQUIN & TAMIR

constraints prevent a simple conversion of many common NMOS subcircuits into
negative-logic. A more practical approach is to selectively convert only some of
the circuits and keep others unchanged. If this is done judiciously, the sensitivity
of the system to CMF's can still be strongly reduced.’

Tamir proposes an approach®® in which the N-module essentially stores and
transfers all data in negated form, but where processing and control is done by
positive-logic subcircuits. This approach avoids many problems with the conver-
sion of control circuits: busses, multiplexers, and latches are not modified, and the
transmission gates and pull-down transistors in them are controlled with signals of
the same polarity in both modules.

Even though there are a lot of similarities between the two implementations
of the modules, the probability of CMF's is greatly reduced. Shorts between data
lines carrying complementary values usually pull both lines to the low voltage.
Thus, both lines in the P-module change to logic 0 while similarly shorted lines in
the N-module change to logic 1. Busses that fail to precharge in both modules
will be interpreted as all zeroes in the P-module and all ones in the N-module. If
timing is not properly designed and there is insufficient time to drive the bus from
one of its sources, different lines on the bus will be affected (the ones that must be
discharged), and the failure will be detected. The extra design effort with this
approach is quite moderate.

CMOS technology offers switches of both polarities. Specifically, it can be
shown that a positive-logic, ratioless CMOS circuit can be converted to a
negative-logic circuit by simply replacing all NFETs with PFETSs, replacing all
PFETSs with NFETs, connecting all Vpp lines to ground, and connecting all ground
lines to Vpp. It thus appears that it should be simple to convert a P-module to
negative logic.

Unfortunately, due to the different mobilities of the majority carriers in
NFETs and PFETs, these devices are not completely symmetrical. The W/L
ratio of a PFET has to be approximately twice the W/L ratio of an NFET in
order to achieve similar drive capability. Therefore, a typical CMOS processor
may employ many more NFETs than PFETs. In order to maintain similar perfor-
mance and module area, the P-module cannot be converted to an N-module by
simply complementing all FETs, and the difficulties in achieving an efficient
conversion are often similar to the difficulties encountered for NMOS circuits.
Thus, similar solutions and considerations apply, on the other hand, the availabil-
ity of PFETSs can simplify the conversion.?7

6.3. Two Independent Implementations

Modules that are independently developed from the same specifications by
two separate teams, are likely to fail in different ways. This approach is normally
impractical because of the increased design costs. However, this situation may
change for two reasons.

MULTICOMPUTERS -15- SEQUIN & TAMIR

The generic modules needed to build VLSI multicomputers may become so
popular, that different companies will develop the same product. Two modules
fabricated by different companies can then be used to build self-checking nodes.
Platteter!4 utilized this idea in constructing a fault-tolerant processor from three
functionally identical microprocessors manufactured by different companies.

The other avenue to obtaining different implementations for a functional
module? will come from the emergence of “silicon compilers”. Before too long,
design systems will get powerful enough to produce competitive macro modules or
even whole chips in a fully automatic manner. The same set of specifications can
then be run through two different compilers, or through the same compiler but
with additional constraints that force two different implementations. At this
stage most of the design effort will go into producing 2 full and unambiguous set
of specifications. Once these specifications exist, obtaining different versions of
the same module is only a matter of a few extra hours on a fast computer.

7. SYSTEM LEVEL PROTOCOLS

The internal state of a system is the ordered set of the external states (set of
output values) of all of its components.] When a component fails, its external
state is erroneous. Thus, component failure implies an erroneous internal system
state, and an erroneous internal state can lead to system failure, i.e., incorrect
output. Special measures, beyond simply detecting the error, must be taken in
order to prevent system failure. In particular, in order to recover from the error,
a valid internal system state must be restored, and the system must then be
reconfigured so that it will not continue to use the faulty component. These
actions require coordination between several (perhaps all) components. Hence,
they involve system-level protocols.

7.1. Error Recovery

Most techniques for performing error recovery can be classified into two
groups:18 Forward error recovery techniques attempt to modify an erroneous sys-
tem state so that it becomes a valid state. Backward error recovery techniques
involve resetting (rolling back) the system to a previous valid state rather than
trying to modify the current state.

Forward error recovery techniques are based on anticipating the types of
errors that may occur and devising specific techniques for handling those errors.
These techniques often involve special actions by the application program running
on the system. On the other hand, backward error recovery techniques can cope
with unanticipated errors. These techniques involve periodically recording the
state of the system. When an erroneous state is detected, it is abandoned, and
the system is reset to the previously recorded error-free state, called a recovery
point or a checkpoint. The process of creating a recovery point is called check-
pointing. No matter what type of error occurs, as long as it can be detected,
some valid system state can be reinstated. Hence. a backward error recovery

MULTICOMPUTERS -16 - SEQUIN & TAMIR

scheme can be totally independent of the application.

Many error recovery schemes are designed for a system where all communica-
tion is over a common bus or Ethernet.® 1% This allows the implementation of a
“recording node” that keeps a record of all inter-node messages transmitted in the
system!® and facilitates the implementation of an efficient atomic operation that
transmits a message to a ‘“‘primary” process and to its ‘‘backup’ that resides on
another node.*

On a multicompuler, communication is point-to-point between nodes. In
order to keep track of messages that are transmitted throughout the system, they
must be explicitly forwarded to the ‘‘recording node’'15 or to the “backup node” .
This requires extra delays in processing: Before any action can be taken which
counts on a message having been transmitted reliably, an acknowledgement from

the destination and the backup node must be received.

Barigazzi and Strigini propose an error recovery procedure that involves
periodic saving of the state of each process by storing it both on the node where it
is executing and on another backup node.® The critical feature of this procedure is
that all interacting processes are checkpointed together, so that their check-
pointed states can be guaranteed to be consistent with each other. Therefore, the
domino effect that may require backing up to successively older statesl® cannot
occur. As a result, it is sufficient to store only one “‘generation’ of checkpoints.

With the recovery scheme described in (3] a large percentage of the memory
is used for backups rather than for active processes. The resulting increased pag-
ing activity leads to increases in the average memory access time and the load on
the communication links. This load is increased further by the required ack-
nowledgements of all messages and the transmission of redundant bits for error
detection. The communication protocols, which are used to assure that the mes-
sage ‘‘send’’ and ‘‘receive” operations are atomic, require additional memory and
processing resources for the kernel. Thus, performance is significantly reduced
relative to an identical system where no error recovery is implemented.

7.2. A Low-Overhead Error Recovery Scheme for Multicomputers

As we described previously,?8:29 the technique of simultaneously checkpoint-
ing the state of all processes belonging to the same ‘‘task’ can be taken a step
further: simultaneous checkpointing of the complete state of all the user and sys-
tem processes on the system. A new global checkpoint is pericdically stored on
disks. When an error is detected, diagnostic information is distributed throughout
the system. Normal operation is resumed after all the operational nodes are set to
a consistent system state using the last checkpoint.

Creating and saving a global checkpoint is expensive; however, if the time
between checkpoints is sufficiently large compared with the time it takes to estab-
lish a new checkpoint, the net system overhead for error recovery is still small.
With the proposed scheme, in a large multicomputer the expected time to

MULTICOMPUTERS -17 - SEQUIN & TAMIR

establish a new checkpoint is less than one minute. Thus, keeping the overhead
low requires that a new checkpoint be established only once or twice an hour. It
is clear that the loss of as much as an hour of processing when an error is detected
is tolerable only for non-interactive applications.

The details of the proposed scheme are described elsewhere?8:29 and will not
be repeated here. The technique consists of two major components: a scheme for
saving a consistent global checkpoint of the entire system and a scheme for rolling
back the system to a previously saved checkpoint once an error is detected. The
technique relies heavily on the self-checking property of the nodes that ensures
that faulty nodes are detected before erroneous information from them is allowed
to spread throughout the system. As mentioned above, the technique is useful
only for a system running non-interactive applications.

The scheme for saving a consistent global checkpoint is an adaptation of the
standard two-phase commit protocol used for preserving consistency in distributed
data base systems.!! Initially, a designated node, say node 1, is assigned to serve
as the coordinator for establishing global checkpoints. If the coordinator fails, all
the other nodes are notified, and the next node, according to a total ordering
between the nodes, takes over the task of being checkpointing coordinator. Every
node includes a “‘timer” that can interrupt the node periodically. Checkpointing
is initiated by the checkpointing coordinator when it is interrupted by its timer.3

The checkpointing coordinator initiates checkpointing by stopping all local
normal processes and notifying all of its neighbors that checkpointing is in pro-
gress. Each node in the system, in turn, repeats this process. Once all the neigh-
bors are informed, each node begins to send its state to a node with a disk where
the state is saved. When the entire state of the node is saved, the checkpointing
coordinator is informed. After all the nodes have saved their states, the check-
pointing coordinator directs the entire system to resume normal operation.

Since the nodes are self-checking, the failure of a node is detected by its
neighbors. The neighbors “spread the word” throughout the system, indicating
which node has failed and that recovery is in progress. When a node with disk
storage finds out that recovery is in progress, it begins sending the previously
saved state to all nodes that used it for checkpointing. Each node that receives a
complete previous state informs the coordinator. After all the nodes have
obtained their previous states, the checkpointing coordinator directs the entire
system to resume normal operation.

It is possible to obtain a rough estimate of the overhead of the proposed sys-
tem by making several specific assumptions about such system based on the
intended application environment and on current and near-future technology. We
base our assumptions on the use of the INMOS Transputer chip as the node.3 We
assume a system with 1,000 nodes, each with 256,000 bytes of memory, connected
in a network with a diameter of 15. With communication link bandwidth of
1.5x 10¢ bytes/second, checkpointing or recovery are expected to take less than 20

MULTICOMPUTERS - 18- SEQUIN & TAMIR

seconds.?8 If the system has a mean time between failures of 10 hours and a
checkpoint is saved twice an hour, the total overhead for checkpointing and
recovery will be approximately 3.7 percent.

7.3. Reconfiguration

Following error recovery, it is easiest to resume normal system operation if
no changes are made in the operation of the nodes or the interconnection between
them. This is possible if the error was caused by a node that failed due to a tran-
sient fault. Following recovery the node can resume its previous role in the sys-
tem if it is capable of resetting itself to a ‘‘sane state” at the same time it informs
the neighbors of the failure (see Section 2). However, if the node fails due to a
permanent fault, the system must be capable of continuing normal operation
without this node.

One of the requirements for the interconnection topology of the system is
that the failure of any one node does not partition the system into two indepen-
dent networks that cannot communicate. More generally, the maximum number
of nodes that can fail without the possibility of partitioning the system, is a criti-
cal parameter in determining system reliability.

Nodes that fail due to permanent faults are effectively removed from the sys-
tem. The algorithms used to route messages between nodes in the system must
adapt to such changes in the topology of the system. If the system uses table-
driven routing, the routing tables throughout the system must be updated follow-
ing error recovery.>24 If the system uses ‘‘algorithmic” routing that does not
require routing tables, the interconnection topology must allow such routing even
after some of the nodes are removed.!?

If a node fails due to a permanent fault, processes that were executing on it
must be moved to a different node and continue to execute there. Thus, following
recovery, messages from processes that were communicating with processes on the
failed node must somehow be redirected to the new node. This ability to tran-
sparently migrate processes between nodes is a critical requirement for the operat-
ing system of a fault-tolerant multicomputer. Powell and Miller propose one pos-
sible scheme for such process migration in multicomputers.16

8. CONCLUSIONS

As the number of switching elements in a VLSI system starts to exceed a few
hundred millions, the reliability and thus the fault-tolerance of the system must
become a major concern. The design of a VLSI system is in itself a very hard
task, and adding fault-tolerance may just make it unmanageable, unless we use
the principles of regularity and repetition to simplify the task.

Using the example of a multicomputer system, consisting of hundreds or
thousands of VLSI computation nodes interconnected by dedicated links, we have
demonstrated how the concerns of fault-tolerance can be concentrated on a single

MULTICOMPUTERS -19 - SEQUIN & TAMIR

critical component, and how, by a suitable modular approach, the whole system
can become fault tolerant, without undue penalty to either system design time or
system performance. The discussed scheme combines hardware that performs
error detection with system-level protocols for error recovery and for fault treat-
ment.

We have shown that a high probability of error detection can be achieved
with self-checking nodes implemented using duplication and comparison. These
nodes use two modules that perform identical functions but are not susceptible to
simultaneous identical failures. The output of these modules is compared in a
self-testing code checker that has been thoroughly analyzed for all likely defects in
present-day VLSI circuits.

The proposed low-overhead, application-transparent error recovery scheme
for the system involves periodic checkpointing of the entire system state using
protocols that ensure that the saved states of all the nodes are consistent, and rol-
ling back to the last checkpoint when an error is detected. No restrictions are
placed on the actions of the application tasks, and the communication protocols
used during normal computation are simpler than those required by most other
schemes. A multicomputer system that follows the general principles outlined in
this paper can provide a general-purpose, high-performance computing environ-
ment in which the fault tolerance features are completely transparent to the user.

Acknowledgements

This research was supported by the State of California MICRO program and
the Defense Advance Research Projects Agency (DoD).

References

1. T. Anderson and P. A. Lee, “Fault Tolerance Terminology Proposals,” 12th Fault-
Tolerant Computing Symposium, Santa Monica, CA, pp. 29-33 (June 1982).

9. A. Avizienis, “Design Diversity - The Challenge of the Eighties,” 12th Fault-
Tolerant Computing Symposium, Santa Monica, CA, pp. 44-45 (June 1982).

3. G. Barigazzi and L. Strigini, *‘Application-Transparent Setting of Recovery Points,”
18th Fault-Tolerant Computing Symposiurm, Milano, Italy, pp. 48-55 (June 1983).

4. A. Borg, J. Baumbach, and S. Glazer, “‘A Message System Supporting Fault Toler-
ance,” Proc. 9th Symp. on Operating Systems Principles, Bretton Woods, NH,
pp. 90-99 (October 1983).

5. M. Bozyigit and Y. Paker, “A Topology Reconfiguration Mechanism for Distributed
Computer Systems,” The Computer Journal 25(1), pp. 87-92 (February 1982).

8. W. C. Carter and P. R. Schneider, “Design of Dynamically Checked Computers,”
IFIPS Proceedings, Edinburgh, Scotland, pp. 878-883 (August 1968).

7. B. Courtois, “‘Failure Mechanisms, Fault Hypotheses and Analytical Testing of LSI-
NMOS (HMOS) Circuits,” pp. 341-350 in VLSI 81, ed. J. P. Gray, Academic Press
(1981).

MULTICOMPUTERS -20- SEQUIN & TAMIR

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

R. P. Davidson, M. L. Harrison, and R. L. Wadsack, “BELLMAC-32: A Testable 32
Bit Microprocessor,” 1981 International Test Conference Proceedings, Philadel-
phia, PA, pp. 15-20 (October 1981).

E. A. Doyle, ““How Parts Fail,”" IEEE Spectrum 18(10), pp. 36-43 (October 1981).

J. Galiay, Y. Crouzet, and M. Vergniault, “Physical Versus Logical Fault Models
MOS LSI Circuits: Impact on Their Testability,” IEEE Transactions on Computers

.C-29(8), pp. 527-531 (June 1980).

J. N. Gray, “Notes on Data Base Operating Systems,” pp. 393-481 in Operating
Systems: An Advanced Course, ed. G. Goos and J. Hartmanis, Springer-Verlag,
Berlin (1978). Lecture Notes in Computer Science 60.

J. Khakbaz and E. J. McCluskey, “‘Concurrent Error Detection and Testing for
Large PLA’s,”” IEEE Journal of Solid-State Circuits SC-17(2), pp. 386-394 (April
1982).

G. P. Mak, J. A. Abrabham, and E. S. Davidson, ‘“The Design of PLAs with Con-
current Error Detection,” 12th Fault-Tolerant Computing Symposium, Santa Mon-
ica, CA, pp. 303-310 (June 1982).

D. G. Platteter, “Transparent Protection of Untestable LSI Microprocessors,” 10th
Fault-Tolerant Computing Symposium, Kyoto, Japan, pp. 345-347 (October 1980).

M. L. Powell and D. L. Presotto, “Publishing: A Reliable Broadcast Communication
Mechanism,” Proc. 9th Symp. on Operating Systems Principles, Bretton Woods,
NH, pp. 100-109 (October 1983).

M. L. Powell and B. P. Miller, “Process Migration in DEMOS/MP,” Proc. 9th
Symp. on Operating Systems Principles, Bretton Woods, NH, pp. 110-119 (October
1983).

D. K. Pradhan, “Fault-Tolerant Architectures for Multiprocessors and VLSI Sys-
tems,” 19th Fault-Tolerant Computing Symposium, Milano, Italy, pp. 436-441
(June 1983).

B. Randell, P. A. Lee, and P. C. Treleaven, ‘‘Reliability Issues in Computing System
Design,” Computing Surveys 10(2), pp. 123-185 (June 1978).

R. A. Rasmussen, “Automated Testing of LSI,”" Computer 15(3), pp. 69-78 (March
1982).

D. A. Rennels, “Architectures for Fault-Tolerant Spacecraft Computers,” Proceed-
ings IEEE 88(10), pp. 1255-1268 (October 1978).

R. M. Sedmak and H. L. Liebergot, “Fault Tolerance of a General Purpose Com-

puter Implemented by Very Large Scale Integration,” IEEE Transactions on Com-
puters C-29(6), pp. 492-500 (June 1980).

D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System
Design, Digital Press (1982).

C. H. Sequin and R. M. Fujimote, “X-Tree and Y-Components,” pp. 299-326 in
VLSI Architecture, ed. B. Randell and P.C. Treleaven, Prentice Hall, Englewood
Cliffs, NJ (1983).

W. D. Tajibnapis, “A Correctness Proof of a Topology Information Maintenance
Protocol for a Distributed Computer Network,” Communications of the ACM

MULTICOMPUTERS -21- SEQUIN & TAMIR

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

20(7), pp. 477-485 (July 1977).
Y. Tamir and C. H. Seéquin, “Self-Checking VLSI Building Blocks for Fault-Tolerant

Multicomputers,” International Conference on Computer Design, Port Chester,
NY, pp. 561-564 (November 1933).

Y. Tamir and C. H. Se€quin, “Design and Application of Self-Testing Comparators
Implemented with MOS PLAs,” IEEE Transactions on Computers C-33(8),
pp. 493-508 (June 1984).

Y. Tamir and C. H. Sequin, “Reducing Common Mode Failures in Duplicate
Modules,” International Conference on Computer Design, Port Chester, NY,
pp. 302-307 (October 1984).

Y. Tamir and C. H. Séquin, “Error Recovery in Multicomputers Using Global
Checkpoints,” 18th International Conference on Parallel Processing, Bellaire, MI,
pp. 32-41 (August 1984).

Y. Tamir, “Fault Tolerance for VLSI Multicomputers,” Ph.D. Dissertation, CS Divi-
sion Report No. UCB/CSD 86/256, Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA (August 1985).

R. L. Wadsack, “Fault Modeling and Logic Simulation of CMOS and MOS
Integrated Circuits,” The Bell System Technical Journal 57(5), pp. 1449-1474
(May-June 1978).

J. F. Wakerly, “Microcomputer Reliability Improvement Using Triple-Modular
Redundancy,”’ Proceedings of the IEEE 64(8), pp. 889-895 (June 1976).

S. L. Wang and A. Avizienis, “The Design of Totally Self Checking Circuits Using
Programmable Logic Arrays,” 9th Fault-Tolerant Computing Symposium, Madison,
WI, pp. 173-180 (June 1979).

J. H. Wensley, L. Lamport, J. Golberg, M. W. Green, K. N. Levitt, P. M. Melliar-
Smith, R. E. Shostak, and C. B. Weinstock, “SIFT: The Design and Analysis of a
Fault-Tolerant Computer for Aircraft Control,” Proceedings IEEE 86(10),
pp. 1240-1255 (October 1978).

C. Whitby-Strevens, ‘“‘The Transputer,”’ 12th Annual Symposium on Computer
Architecture, Boston, MA, pp. 292-300 (June 1985).

