from Proceedings of the Summer School on VLSI Tools and Applications,
Switzerland, July 1986, Kluwer Acadmic Publishers
W. Fichtner and M. Morf editors.

Preprint

DESIGN AND LAYOUT GENERATION
AT THE SYMBOLIC LEVEL

Carlo H. Séquin

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

A pipeline of three tools for the construction of high-quality macro
modules or library cells is described. TOPOGEN is a synthesis tool that
takes a logic description at the gate level and converts it into a symbolic
layout of a static CMOS circuit on a virtual (coarse) grid. EDISTIX is an
interactive virtual grid editor for the creation or modification of symbolic
sticks diagrams. ZORRO is a two-dimensional compactor using the con-
cept of ‘Zone refining’ to generate the mask geometry from the symbolic
layout. The generation of the final layout of a cell is a two-step process
using an intermediate symbolic representation on a virtual grid. In this
intermediate state, the user can interactively make changes.

1. INTRODUCTION

The creation of high-quality cells and macro modules is a corner stone of
automatic and semi-automatic chip synthesis. This is true regardless whether a
full custom or a semi-custom standard-cell approach is taken.

The rapid progress of VLSI fabrication technology renders existing standard-
cell libraries obsolete rather quickly, so that they must be adapted periodically to
a new set of mask layers and new design rules. Because of the repeated usage,
density and performance of these cells is important, and thus a lot of effort is nor-
mally spent to obtain optimal cell layouts.

Emerging "Silicon Compilers” normally work in hierarchical stages. Hand-
designed library cells and procedurally generated modules are assembled at the
chip level by powerful placement and routing tools. The latter toals recently have .
started to outperform human designers for complicated tasks with many blocks.
However, automatically generated cells and macro module rarely achieve the per-
formance and density of hand-designs by a good designer. An exception are some
special modules such as PLA’s, but there the gain stems primarily from logic
minimization and from topological folding rather than from the actual layout.

In the last two years we have concentrated some of our efforts on tools that
make the production of high-quality cells and macro modules easier and more

SYMBOLIC DESIGN -2- CARLO H. SEQUIN

automatic. The emerging system consists essentially of three parts. TOPOGEN
is a synthesis tool that takes a logic description at the gate level and converts it
into a symbolic layout of a static CMOS circuit on a coarse virtual grid. EDIS-
TIX is an interactive virtual grid editor for the creation or modification of sym-
bolic sticks diagrams. ZORRO is a two-dimensional compactor using the concept
of ‘Zone refining’ to generate the mask geometry from the symbolic layout.

The generation of the final layout of a cell thus becomes a two-step process:
conversion of the circuit into a good topclogy on the virtual grid, and then the
fleshing out of the sticks elements and their geometric compaction into a dense
layout in accordance with & given set of geometrical design rules. At the inter-
mediate level, the designer has the option to review and possibly improve the
topology of the cell with the interactive program EDISTIX. It is also in this inter-
- mediate format that the design of the cell should be stored for rapid generation of
a new cell when there are small changes in the implementation technology.

2. THE ROLE OF SYMBOLIC REPRESENTATION

The direct conversion of a eircuit into a dense layout is too big a step to be
taken directly, — this is true for the human designer as well as for a computer
program. The concerns of finding a good topology for the layout and of arranging
the components to satisfy all design rules are independent enough, so that these
two issues can be resolved separately in a two-step process. Between the two
steps lies the symbolic representation of the layout in some sticks-like format.

We will briefly discuss the requirements for the representation at this sym-
bolic level and then discuss our chosen representation.

2.1. Requirements for a Symbolic Representation

In the choice of the primitives at the symbolic level, one tries to combine
various diverse goals.

The representation should be lean and uncluttered to make it easy for the
designer to address the concerns he has at this stage of the design. These are to
find an optimal topology for the module under construction that will produce a
module of a desirable aspect ratio, place the connections to the external world at
the proper sides of the module, and produce direct and minimal internal wiring as
well as simple geometry for the well regions.

To be able to make reasonable choices on the topology, the symbolic
representation must be expressive enough to render the tricks that are routinely
used in the hand-layout of dense library cells. One such trick is to run metal
wires over large transistors and to produce, if necessary, a cross-under for a signal
that enters the drain/source diffusion on one side of this metal connection and
gets picked up on the other (Fig. 1). This construction cannot be represented if
the transistor at the symbolic level is viewed as a point device with only four pos-
sible connections, one each in the four major directions.

SYMBOLIC DESIGN -3- CARLO H. SEQUIN

%

i N
@ N

%
1

T a

v
[o]
- :

Figure 1. Cross-under produced by a diffusion region between two transistors.
This could not be expressed if the FET were a point device.

And finally, the symbolic representation should be efficient. It must
represent succinctly and unambiguously the geometrical and electrical properties
of the circuit, so that the sticks diagram can be checked for functionality and
evaluated qualitatively for the area required by the final cell. Of course, it is
preferable to keep the size of the file describing the cell at the symbolic level as
small as possible.

2.2. Virtual Grid and Raster Components

We have chosen a coarse virtual grid as the basic design space. It allows for
a terse representation and makes the geometrical part of the data structure very
simple. Further, the determination whether two components are actually con-
nected is straight-forward; this makes the checks for possible illegal interference of
components rather simple.

Every component in this representation occupies a number of grid points.
The set of basic components selected for our symbolic representation is show in
Figure 2. All components can be viewed as linear elements spanning one or more
grid points. For wires, this representation is an obvious choice. It also applies for
the port, a formal terminal that can serve as a connection to the outside world. If
the port extends over more than one grid point, it is still considered an equipoten-
tial node. Contacts are also linear equipotential elements, typically represented as -
rows of contact holes spaced one grid unit apart.

Transistors are slightly more complicated. They occupy three rows of grid
points next to one another, one each for the source diffusion, the gate, and the
drain diffusion. They still fit the paradigm of a line element, as internally only
the “‘stick” for the gate is represented explicitly, and the adjacent diffusion areas
are implied and derived on the fly when needed for some check or for display on
the screen. This gives the symbol set a cohesiveness that makes the various data

SYMBOLIC DESIGN -4- CARLO H. SEQUIN

° - . - - © . M . -
. . . B - ® ° ° . - ® . °
At
° * e e » . - » ® . 3 ° 0] *
O * | . ® F L] - ° e l N & -
o . . ° . © L . @ ® 3 & L3
Wires Ports Masfets Contacts

Figure 2. Virtual grid components in EDISTIX.

structure manipulations more regular.

In addition there is an auxiliary component called the joint. It is used wher-
ever two or more wires join together. Joints are strict point elements. We first
tried an implementation with a data structure that did not need these joints and
copnected wires directly to one another. The resulting data structure and its
manipulation became rather cumbersome. The addition of the extra joints, where
needed, simplified things. These joints need not be represented explicitly in the
file that describes the circuit symbolically; they are introduced and deleted on
demand whenever a wire end is not explicitly connected to a terminal, contact, or
transistor.

Every tool described below has its own internal representation of these sticks
elements that is most appropriate for the task that the particular tool has to per-
form. The information is passed between the various tools by means of terse
ASCI files. The format of these files is very simple: Every element is represented
by a keyword that implies its type and layer and the integer coordinates of its
endpoints. In addition, ports and transistors can take names for identification.
This decoupling through the use of these intermediate files makes the databases
for each tool simpler and more efficient and permits separate tool development.

3. EDISTIX

The virtual grid components described above can give a reasonably accurate
deseription of the layout organization and of the achievable packing of the com-
ponents. This is necessary to allow the designer or an automated tool to find an
optimal module topology. Because of the central role of the symbolic representa-
tion, we will first give more details on EDISTIX, rather than present the pipeline
of tools in the sequence that an evolving design would see. EDISTIX acts as the
glue between the other two tools, and its internal data structures are a good

SYMBOLIC DESIGN -5- CARLO H. SEQUIN

example how one can deal efficiently with the described sticks components.

3.1. The Function

EDISTIX is an interactive virtual grid editor that relieves the designer of
many of the chores associated with the modification of symbolic sticks diagrams.
The purpose of this tool is to make it easy to enter symbolic designs from scratch
or to inspect and modify the ones that come out of a tool like TOPOGEN.

In the first case, the goal is to make sticks entry as fast as sketching on a pad
of paper, but with all the potential advantages of having a smart checking pro-
gram looking over your shoulder and preventing you from making simple mistakes
such as tying ‘Power’ and ‘Ground’ together. Particular attention was thus given
to the user interface, with the goal of minimizing the necessary actions during the
entry of circuit elements.

In the second case, the main goal in EDISTIX is to make it easy to change
the topology of a layout without changing its connectivity. If a designer wants to
improve the layout topology (in cases where TOPOGEN gives less than optimal
results) he should be able to spend most of his attention on finding an optimum
topological arrangement without having to worry that the interconnections might
be changed accidentally in the process. Thus, in this mode, EDISTIX keeps the
internal netlist unchanged and tries to reroute all interconnections accordingly
when components are moved.

3.2. Data Structures

Considerable effort has been spent to find efficient data structures to
represent the geometrical as well as the electrical aspects of a design.

In the geometrical data structure, because of the limited size of non-
hierarchical macro modules or library cells, and since in good topological arrange-
ments practically all vertical and horizontal grid lines contain at least one com-
ponent, it is reasonable to represent all the rows and columns of the drawing area
explicitly, rather than using sparse matrix techniques. Thus for every row and
column we list all the vertical and horizontal line-elements, respectively. In each
of the two directions, these elements are grouped into five linked lists sorted by
element types (Fig. 3). Thus we store in separate lists: wires and links, contacts,
joints, ports, and FET’s. This makes it easier to search for a particular element
type and to provide the different processing routines necessary for different ele-
ment types.)

Since the elements are either horizontal or vertical sticks, their geometry is
fully captured with three numbers: their row/column number and two values for
the second coordinates of their endpoints.

In the electrical data structure, a distinction is made between equipotential
nodes such as ports, contacts, FET-terminals, or joints, and binary connection ele-
ments such as wires and links (Fig. 4). All nodes are connected in a linked list in

SYMBOLIC DESIGN -6- CARLO H. SEQUIN

Wires
e at Joints
in row y!

Ports
/’-—. Mosfets
1 T /I > Contacts

v

YOI
VERTICAL }’Vires
oints
y | ARRAY Ports . K
Mosfets 1o row y
Contacts
Y-DIM * 5
xE &
- > Wires
HORIZONTAL ARRAY » Joints . n
- > Ports in row x
X-DIM * 5 L - Mosfets
> Contacis
Wires
—> Joints k
b o Ports it row X
— Mosfets
Contacts
Geometrical Element Type Element Type
P Next Next
Lmkmg of Row/Column_# Row/Column_#
Elements High Coordinate High Coordinate
Low Coordinate Low Coardinate

Figure 3. Geometrical data structures in EDISTIX.

the order they are created. They may carry an optional name. They also have a
pointer that points to the first child, i.e., any attached wire or link, or is nil.

Wire or links are two-ended elements that are attached to two nodes. At
each end they have two pointers, one pointing to the node to which they are con-
nected, and the other pointing to any ‘siblings’, i.e. other wires or links attached
to the same ‘parent’ node.

All the geometrical and the electrical information is contained in the same
structure representing both aspects of an element.

3.3. Operations

The many possible operations can be grouped into various classes: edit opera-
tions, selection and query commands, clean up operations, rearranging the topol-
ogy, analysis, and output.

Edit operations are used to build a circuit from seratch or to modify a given
circuit. They include the standard operation to add or delete an element, and to

SYMBOLIC DESIGN -7- CARLO H. SEQUIN

Equipotential Nodes: Ports, Contacts, Mosfets, Joints

- = . . . o
Nodelist #6 #5 #4 #3 n #1

Gate Source Drain Joint Contact Port

I ? ! ? ? ?

Binary Connections:
Wires, Links

Electrical Linkage of Elements

(high end) (low end)

Figure 4. Electrical data structures in EDISTIX.

select and modify an element. When adding an element, the program watches for
illegal constructs such as running a poly wire across a diffusion area, or it warns
you of questionable configurations such as level crossings of wires that will lead to
an implicit electrical connection. The program maintains up-to-date information
about all electrical connections, and it will warn the user when nets with different
names are connected or when a loop is formed in a net.

Selection and query commands permit the user to pick one or more elements
on the screen and then see a listing of the detailed information on that element as
well as a list of other elements it is connected to. Some fields such as the name
can be changed.

Clean-up operations remove dangling wires and contacts and merge pairs of
collinear wires on the same level. This brings the internal representation into a
minimal consistent state.

Rearrangement commands allow the user to change the layout without
changing the underlying circuit. These operations are using a generalized block -
move operation. A group of elements, selected individually or by an ‘area select’
command, are moved jointly by a given displacement vector. Connections that go
beyond the selected area and connect to components that remain fixed have to be
recreated. The system does as much rerouting as possible and shows the remain-
ing connections that it cannot handle in contrasting color. It is then up to the
designer to find a feasible implementation for these wires, or to make further
changes that enable the wiring to be completed.

SYMBOLIC DESIGN -8- CARLO H. SEQUIN

Analysis commands (not yet implemented} will eventually allow the user to
interact directly with a simulator or a timing verifier. In this way it will be easy
for the designer to verify functionality or to get a first estimate on performance.
For the time being, the designer will have to produce an output file with one of
the various drivers for a particular simulation tool, and then run that tool
separately on this file.

Output of the stored data on the design can be viewed in many different
forms. Elements can be listed in geometrical order, going through the various
types of devices on a row by row and column by column basis. This is the default
scan mode used when the user wants to write out a file of the database in the
ASCII format. Alternatively, the nodes with all the attached children can be
listed in the order in which they were generated. Finally the whole network can
be traversed in a depth first manner; this is the mode that is used when one wants
to create an output file in the format for simulators such as SPICE! or ESIM.2
There is also a possibility to create a file in the format of the OCT data base3 so
that the other tools of the Berkeley Design Environment* can be run on the cells
generated with EDISTIX.

Il =) =1
f i

il
3
.

i

C u B[¢ | =Sl=mam. o

i1 = T T f -

(s B 1 1 E] q E E a:’ !
(e ff= i = C =i 1
@ | ot s |

: oo ama-

»
{S—
[i

2 @ L

Figure 6. Virtual grid representation of a flipflop composed with EDISTIX.

3.4. Results and Discussion

Figure 5 shows the sticks representation of a flipflop as it would appear on
the EDISTIX screen. EDISTIX has been under continued development for a cou-
ple of years. It has been rewritten from scratch at least four times, first a couple
of times in Pascal, more recently in C. The general features discussed in this sec-
tion have been rather stable over the last few versions, and we are confident that

SYMBOLIC DESIGN -9- CARLO H. SEQUIN

they represent a good solution to capturing a symbolic layout. It gives a rather
good idea of what the final layout might look like.

4. TOPOGEN

TOPOGEN is a generator program that takes a functional description at the
logic gate level and converts this into a symbolic layout on a virtual grid. The
first version of TOPOGEN is aimed at standard cells for a static CMOS family.
So far, the layout style is restricted to a single row of transistor pairs with one
diffusion strip each for the p-channel and n-channel FETs, respectively, TOPO-
GEN is organized in a modular fashion, so that one can experiment with different
algorithms for the various steps mentioned below.

VDD
INPUTS:
A, B, C DE, » OUT
CLOCK

GND

Figure 8. Circuit generated form the following TOPOGEN input:
(evalgate (output OUT) (npt CLOCK) for A (and BC D)E)).

4.1. Circuit Generation

The translation of the logic description into a corresponding circuit is
straight-forward. TOPOGEN accepts nested AOI expressions that are converted
to the corresponding series / parallel networks of transistors. The program looks
at every AOI gate in the input stream separately. In the sequence in which the
logic inputs appear in the original description, corresponding transistors are .
placed from left to right and from output rail towards the power/ground lines
(Fig. 6). In addition, single or paired clocked switches can be specified. These
clock inputs can be placed next to the output rail or next to the supply lines,
depending on whether the clock input specification appears before or after the
description of the Boolean logic block.

SYMBOLIC DESIGN - 10 - CARLO 1. SEQUIN

4.2. Gate Optimization

The circuits obtained in the manner outlined above are now arranged as a
linear sequence of transistor pairs. In each gate the sequence of the transistor
pairs is arranged so that the mutual sharing of the diffused drain/source areas is
maximized and thus the length of the rows of transistors is minimized. This
amounts to finding corresponding FEuler paths through all the transistors of either
polarity. We use the method of adding a pseudo input in every series / parallel
block with an even number of components® since that makes the construction of
an Euler path trivial. These pseudo inputs correspond to turned off gates or isola-
tion zones in the final diffusion strips. Their number is minimized by permuting
the sequence of the children at every node of the AOI tree {Fig. 7). Multiple adja-
cent isolation zones can then be collapsed into one.

ﬁfP f } ﬁf? ﬁ;?
‘
ooooooo Pseudo-inputs

(a) (b) (¢)

LSS

ey

7

ARBRW
(S 5%

RS 1NY

e

]
3
4

Figure 7. Gate rearrangement to produce an Fuler path through a circuit.

4.3. Gate Placement

TOPOGEN subsequently rearranges these individual and-or-invert gates with
the goal to minimize the width of the wiring channel between the two diffusion
areas. A pairwise interchange algorithm is used to step through all the gate posi-
tions once, comparing the potential gains in exchanges with all the gates that lie
ahead In the line. The cost function to be minimized is the width of the resulting
strip, i.e., the maximum of the sum of the width of both the P and N transistors
and the local density in the wiring channel. Since good channel routers can wire
a channel without exceeding its density, this evaluation function is quite appropri-
ate. :

4.4. Wiring

When a suitable gate arrangement has been determined, all the necessary
interconnections in the area between the two diffusion strips are generated. We
use the latest channel router available to us. We have had good success with
YACR 0% and we are currently experimenting with others such as
CHAMELEON? and MIGHTY.® TOPOGEN simply writes an ASCII file

SYMBOLIC DESIGN -11- CARLO H. SEQUIN

specifying the routing problem in the particular format that the router needs and
subsequently reads the generated file with the wiring description.

In trying to modularize our design environment, we are in the process of
defining “standard” format for the description of a routing problem and for the
generated solutions. To be general enough, we permit the routing region to be
any arbitrary rectagon, signal input pins can lie on this rectagon boundary or
inside, and there can also be obstacles inside the routing region on one or more
layers. Issues that need to be resolved concern the transformation of the signals
from the layers given by the original problem situation to the levels that the
router is prepared to handle, and questions whether the router can introduce a
level change right at the location of a signal pin.

e

rem
Lo .
e —n
L
—H

PRETEE
"

i

L il

-
% 151¥
14 - 4
1 L U L 1 LJ :] [: d U U L

Figure 8. Sample output generated by TOPOGEN.

g
q

|

4.5. Output

The final phase is to write an output file in the format understandable by
EDISTIX. This is fairly straight-forward since TOPOGEN internally has built up
all transistor positions and wirings on the same kind of coarse virtual grid used by
EDISTIX. A typical output for a small group of simple gates is shown in Fig-
ure 8.

SYMBOLIC DESIGN -12- CARLO H. SEQUIN

4.6. Results and Discussion

In its current form, TOPOGEN is a useful tool for clusters of gates totaling
about a hundred transistors. The layouts are not yet competitive with a hand
design. The main reason is that TOPOGEN carries out each phase of the chosen
design process without much concern for the other phases and without any itera-
tive feedback loop. We are in the process of reducing this design gap by incor-
porating more sophisticated routing algorithms that can route over large transis-
tors. In order to handle larger gate clusters, We have started to extend the basic
approach to modules with multiple strips of complementary transistor pairs; in
this case the gate placement is a harder problem that requires more sophisticated
techniques than simple pairwise interchange with the goal to minimize channel
density.

5. ZORRO

The third step in the generation of a standard cell is the production of the
final mask geometry for the particular technology to be used for implementation,
i.e. the compaction of the symbolic circuit representation with proper dimension-
ing and spacing of all elements. Most of the compaction or spacing programs in
practical use today can alter only one coordinate of a component at a time. This
leads to certain deficiencies in the compaction process that make the automatic
spacing of layouts inferior to the work done by the human designer. The result-
ing inefficiencies are typically considered unacceptable for frequently used library
cells.

Experimental two-dimensional compactors have been built with different
approaches. One approach is to start with a totally collapsed layout and then
remove the distance violations one by one.? G. Kedem and H. Watanabel®
translated the compaction problem into a special form of a mixed-integer pro-
gramming problem. An even more fundamental approach uses simulated anneal-
ing techniques!! for the placement of the components.1? All these approaches typ-
ically show non-polynomial growth in runtime for large circuits.

We have taken a less expensive approach to 2-dimensional compaction. Only
a small part of the circuit is opened up for two-dimensional motion of the com-
ponents. This open zone is swept through the precompacted layout in a strong
analogy to the zone refining technique used in the purification of crystal ingots.

5.1. Zone-Reflning

In close analogy to zone refining of crystals (Fig. 9a), we start from a circuit
layout that has been “‘crystallized” by precompaction with a one-dimensional
compactor. In our case the “‘impurities” that we want to sweep out of the “cry-
stal”’ are the unnecessary voids between circuit components. Starting from the
bottom, individual circuit components or small clusters of components are peeled
off row by row from the precompacted layout and are reassembled after they have

SYMBOLIC DESIGN - 13- CARLO H. SEQUIN

i

Figure 9. Zone refining: (top) of crystal ingots and (bottom) of layouts;
the preferred direction of compaction i3 vertical the direction of the sweep,
but the blocks in the zone can also make lateral movements.

been moved across an open zone (Fig. 9b). As the components pass this free zone,
they can move laterally to a more advantageous position that will result in a
denser layout. In the process of reassembling the components at the other end
both coordinates of the moved components can be altered and jogs can be intro-
duced in the connecting wires between the circuit components. These additional
degrees of freedom permit a higher packing density in the newly formed part of
the layout than can be achieved with a one dimensional compaction process.

The geometrical design rules are observed by maintaining and using the con-
straint graphs in both the x- and y-direction.

5.2. Data Structures

The main data structure is the adjacency graph, here illustrated on the sim-
ple example of a packing problem involving rectangular boxes (Fig. 10a,c,d). The
positions of all blocks are represented in the nodes of the graph. All horizontal -
and vertical adjacencies are represented as two types of corresponding arcs
between the nodes (Fig. 10b,e). These arcs are labeled with the minimal allowable
horizontal or vertical separations between the centers of the block; this adjacency
graph can thus be turned into a constraint graph for properly placing the blocks
without overlap. For an actual circuit layout, the constraints attached to these
arcs become more complicated and contain upper as well as lower bounds.

SYMBOLIC DESIGN - 14 - CARLO H. SEQUIN

ceiling ceiling

[e]c]l o] ¢ nm | Lelcl ofclelm |

E ¢ F g c-,._l E i _’J
D D D
€ b H
H .-i. 3
gapl ga:p
& gap2 2
. E -
c1 s I o o
A] A c2] A
floor (a) (c)
Ca] m T o]
@ veri. constr.
hoiZ;cg_ng_tr.

Figure 10. Ezample of bor packing in progress. (a) Intermediate constellation
of boxes and floor and ceiling data structures. (b) Corresponding adjacency
graph. (c) Box C has been selected to be moved, lhree candidate places C1, C2,
C'3 are evaluated. (d) Box constellation after box C has been placed and new
floor and ceiling structures. (e) Updated adjacency graph.

A second data structure is associated with the moving refinement zone and
contains the currently active components that must be referred to frequently in
each block move. All elements that form the boundary of the free zone, above
and below, are joined together in the ‘ceiling’ and ‘floor’ data structures, respec-
tively (Fig. 10a,d). They permit an efficient evaluation of the best position for the
elements that are being moved across the zone.

5.3. Zone-Reflning Algorithm

Elements are moved from the top part to the bottom part of the circuit
across the open zone with the following algorithm. In the ceiling an element is
selected that hangs farthest down. For simple box packing, an individual box is
selected. For actual circuits, where the components are connected with wires, a
whole cluster of components that is connected by horizontal wires without jogs in

SYMBOLIC DESIGN -15- CARLO H. SEQUIN

them must be moved at once. The selected components are removed from the
ceiling data structure and from the horizontal adjacency graph. They are now
free to float around in the zone.

Now the best location for placing the component on the floor has to be
found. We are looking for the position that maximizes the narrowest part of the
zone, because then we know that the two halves of the circuit can fit together
with minimum total height. In the case of box packing, all grid positions from the
left extreme to the right extreme are evaluated. For circuits, the lateral motion is
much more restricted. In the first version of ZORRO, components or clusters of
circuits are only moved laterally within the freedom allowed by the attached
wires. Wires can be moved to the extreme positions of terminals, and horizontal
parts of wires can be stretched, but no new jogs are introduced at this point.

—.";ﬂ ——.._"'5 N

(@)

N
I T] T i

(b)

Figure 11. Automatic jog introduction in horizontal wires.

Once the optimal x-position has been found, the box or the circuit cluster is
moved onto the floor and is properly integrated into the floor data structure and
into the two adjacency graphs. Updating the horizontal and vertical adjacency
graphs is done in an incremental manner. When a component is moved in the
vertical direction, its horizontal arcs are removed. Once it is in the new y-
position, the new adjacencies are detected by sweeping a scan line across the
height of the component and checking what other components get intersected. -
New horizontal arcs are formed for all discovered adjacencies. Corresponding
operations on the vertical adjacency graph are carried out whenever a component
is moved horizontally.

For the case of circuit compaction, all attached wires have to be placed prop-
erly, once the best place for the moved component cluster has been found. Jogs
may have to be introduced in the horizontal wires to permit the component to
move all the way to the floor (Fig. 11a). To maximize vertical compression, we

SYMBOLIC DESIGN - 16 - CARLO H. SEQUIN

will also bend some of the horizontal wires that span over large enough regions of
empty space (Fig. 11b).

b.4. Results and Discussion

Figure 12 illustrates the zone refining process on a simple example of box
packing. We start from a randomly generated array of rectangles and compact it
in the upward direction; the overall height of the array is reduced from %0 units
to 63 units. A first zone refining pass, where the boxes move downward across the
open zone, reduces the height to 53 units. The second zone refining pass in the
opposite direction brings the total height to 47 units. This is the limit; additional
zone refining passes do not reduce the height of the constellation any further.

SE=Rmen ==
Eg%g@g% 1-Dpack: B E

b

5\
| b
7

upward . N e

80 63

ZR pass: | | downward
-

47

Figure 12. Ezample of bor packing with zone refining.

Figure 13 shows various phases in the compaction process of a real circuit.
First it shows the precompacted circuit with merged contacts and nets. The next
two figures illustrate an intermediate and the final state of the first zone refining
pass on this circuit. The last figure shows the result after four more zone refining
passes in the vertical direction; these passes also include jog generation in horizon-
tal wires. The obtained reduction in area is 33% compared to the result of simple
one-dimensional compaction.

SYMBOLIC DESIGN - 17 - CARLO H. SEQUIN

Precompacted 7R in progress After st ZR pass After four more

(20/65) ZR’s with Jogs.

Figure 13. Erample of circuit compaction.

For box packing problems, zone refining can reduce the area occupied by up
to 30% beyond what a one-dimensional compactor can do, at a cost in total run
time that is 10 to 30 times longer, depending on the number of passes. For cir-
cuits similar improvements have been observed, but because of the complications
introduced by the attache wires, and the need for jog generation, total run time
can be up to 100 times longer than that required for one-dimensional compaction.

Interconnections play a crucial role in the performance of the circuit, and the
given topology of the circuit often has been chosen based on considerations at the
micro-architecture level. Thus we do not want the compaction tool to make pro-
found changes to the topology of the circuit; this is the task of a different kind of
tool that can take properly into account concerns beyond observation of the
geometrical design rules. Thus for the zone refining process we assume that we
start from a good topology, given for instance in the form of a symbolic sticks
diagram. The given basic ordering is maintained in the compaction process, dis-
tinguishing our approach from the more general problem of block placement and
routing.

The advantage of the zone refining approach over global two-dimensional
placement algorithms is that the number of components that must be considered

SYMBOLIC DESIGN - 18 - CARLO H. SEQUIN

at any one time is dramatically reduced, and the complexity of the algorithm thus
is only of polynomial complexity. In addition, just as in the physical zone refining
process, the compaction process can be repeated if the results are not yet satisfac-
tory after the first pass.

8. CONCLUSIONS

“Silicon Compilers” as well as human designers like to reduce design com-
plexity by separating concerns, where possible. In the creation of dense library
cells or macro modules, finding a good layout topology and observing all the
geometrical layout rules for a particular implementation technology are two dis-
tinct concerns that can be addressed in subsequent design phases. A well-chosen
symbolic representation to capture the design at the intermediate state is erucial
to facilitate the design process and to obtain good results. The coarse-grid com-
ponents used in EDISTIX seem to fulfill these needs quite nicely.

With this symbolic representation at the center, the design of a high-quality
module becomes a two-step process. First, the gate or circuit-level description
gets converted to a good sticks layout, then this symbolic representation gets com-
pacted to a real layout. Both these steps can be automated. With TOPOGEN
we have created a prototype of a generator that will produce acceptable topolo-
gies for clusters of CMOS logic gates. ZORRO is a first prototype of a new class
of two-dimensional compactors that can convert sticks-representations to practical
layouts. Before long, the process of module generation will be largely done by
computers.

7. ACKNOWLEDGEMENTS

Over the last two years several people have worked on and contributed to
the tools described in this paper. Special thanks go to the most recent set of
developers who have also given me constructive criticism on this paper: Ping-San
Tzeng, Glenn Adams, and Hyunchul Shin.

This work is supported in part by the Semiconductor Research Corporation
and by the State of California under the MICRO program.

References

I L.W. Nagel and D.O. Pederson, “Simulation Program with Integrated Circuit
Emphasis,” Proc. 16th Midwest Symp. Circ. Theory, Waterloo, Canada, April 1973.

2. CM. Baker and C. Terman, “Tools for Verifying Integrated Circuit Designs,”
Lambda, vol. 1, no. 3, pp. 22-30, 4th Q. 1980.

3. D. Harrison, P. Moore, A.R. Newton, A.L. Sangiovanni-Vincentelli, and C.H. Séquin,
“Data Management in the Berkeley Design Environment,” submitted to ICCAD-86,
Santa Clara, CA, Nov. 1988,

SYMBOLIC DESIGN -19- CARLO H. SEQUIN

10.

1.

12.

C.H. Séquin, “VLSI Design Strategies,” in Proceedings of the Summer School on
VLSI Tools and Applications, ed. W. Fichtner and M. Morf, Kluwer Acadmic Pub-
lishers, 1986.

T. Uehara and W.M. VanCleemput, “Optimal Layout of CMOS Functional Arrays,”
Trans. Comp., vol. C-30, no. 5, pp. 305-312, 1981.

A. Sangiovanni-Vincentelli, M. Santomauro, and J. Reed, “A New Gridless Channel
Router: YACR 11, IEEE Trans. Comp.-Aided Design, vol. CAD-4, pp. 208-219,
1984.

A. Sangiovanni-Vincentelli, D. Braun, J. Burns, S. Devadas, H.K. Ma, K. Mayaram,
and F. Romeo, “CHAMELEON: A New Multi-Layer Channel Router,” Proc. Design
Autom. Conf., Paper 28.4, Las Vegas, July 1986.

H. Shin and A. Sangiovanni-Vincentelli, “MIGHTY: A ‘Rip-up and Reroute’ Detailed
Router,"” submitted to ICCAD-86, Santa Clara, CA, Nov. 1986.

M. Schlag, Y.Z. Liao, and C.K. Wong, “An Algorithm for Optimal Two-Dimensional
Compaction of VLSI Layouts,” Integration , pp. 179-209, 1983.

G. Kedem and H. Watanabe, “Graph-Optimization Techniques for IC Layout and
Compaction,” IEEE Trans. CAD of ICAS, , vol. 3, no. 01, 1984.

S. Kirkpatrick, C. Gelatt, and M. Vecci, “Optimization by Simulated Annealing,"”
Science, vol. 220, no. 4598, pp. 671-680, 1983.

R. Mosteller, “Simulated Annealing for IC layout,” privat communication, 1983.

