Symmetric Interpolation of Triangular
and Quadrilateral Patches Between
Cubic Boundaries

Leon A. Shirman

Report No. UCB/CSD 87/319

December 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

SYMMETRIC INTERPOLATION
OF TRIANGULAR AND QUADRILATERAL PATCHES
BETWEEN CUBIC BOUNDARIES

Leon A. Shirman

Master's Project Report
Under Direction of
Professor Carlo H. Sequin

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
December 1986

ABSTRACT

In her Master’s Project, Lucia Longhi [Longhi '85] has implemented an exploratory pro-
gram, called ucs, for interpolating triangular Gregory patches between cubic boun-
daries. This work is a continuation of the research in the area of smooth surface inter-
polation.

First, a symmetric version of the polygon tessellating program, ugtess [Gigus '85], has
been developed. It splits faces of a polygon into bilaterally symmetric convex parts.
Second, ucs kas been extended to include quadrilateral Gregory patches; this reduces
the occurrence of asymmetric creases in the interpolating surfaces. Third, several new
approaches are discussed to represent the surface with Bezier and Gregory patches and
to determine the corresponding control vertices. Fourth, a method for subdivision of
triangular Gregory patches into Bézier patches is described.

1. INTRODUCTION

The importance of representing surfaces in a computer has been widely recognized in Com-
puter Aided Design and Manufacturing (CAD/CAM). There are basically two fields in Computer
Aided Design: surface modeling and solids modeling. Surface modeling (sometimes also called
free-form surface modeling) tries to represent curved surfaces that occur in the body of a car or
in a human face. Various mathematical expressions for surface shape design have been proposed
by Coons, Bézier, Gregory, and others ([Coons 84}, [Barnhill '74], [Gregory '74]). In solid model-
ing, three-dimensional objects are represented as rigid solids. In such a system, complicated
shapes are constructed from several primitive elements such as simple polyhedra, spheres, and

cylinders. In this paper, we will be dealing with surface modeling only.

A widespread method for constructing smooth surfaces in CAD/CAM interpolates surface
patches in such a way that neighbor patches meet smoothly. Smoothness can be defined in terms
of differentiability, i.e. partial derivatives at boundary points must be identical. Alternatively,
one can often be satisfied with geometric continuity, where only the shape of the adjoining
patches is considered, but not their parametrization. A very important problem in designing a

surface is to ensure smoothness along boundary curves.

There are various attempts to solve this problem. G. Farin [Farin '82] uses a triangular
mesh to specify an object’s topology, builds cubic curves between vertices, constructs quartic
Bezier triangular patches, and then subdivides each patch into three subpatches and adjusts them

to meet smoothly along their boundaries.

Another approach by H. Chiyokura and F. Kimura [Chiyokura et al '83] uses quadrilateral
Gregory patches between cubic boundaries. In their approach, patch information is derived

exclusively from boundary curves.

Farin’s method uses Bezier patches, which are polynomial. Thus, many well-known algo-
rithms for subdivision, intersections, etc. can be used. Chiyokura’s method, on the contrary,

uses non-polynomial Gregory patches. However, their method is local, i.e. a patch can be

R

changed without the necessity to recompute other patches in such a way, that the geometric con-
tinuity between the patches will be preserved. This is very useful for interactive design. Farin's

method does not have such flexibility.

In her Master’s Project, L. Longhi [Longhi '85] designed an interactive system called ucs.
For a given polyhedral object, each face is first triangulated. Then normals are computed at each
vertex as the average of the normals of all faces that meet at this vertex, weighted by the angle
between the two edges by which a face is connected to that vertex. Cubic curves are then created
by some heuristic method that gives pleasing results. The control points for triangular Gregory
patches are constructed from the geometric continuity constraints across the boundaries. The
patches are then evaluated at several points and triangular nets are constructed for visual
representation. The program also makes it possible to construct straight edges, borders, and flat

faces.

A D

Figure 1.1. A polygon with a hole

One of the disadvantages of the above system is that it does not preserve the symmetry of
an object because the triangulation of each face occurs in a rather arbitrary manner. For exam-

ple, the face in Fig. 1.1 is decomposed into triangles in a manner, shown in Fig. 1.2. Clearly,

A D

Figure 1.2. The polygon of Fig. 1.1, decomposed with old ugtess.

vertices A and C are different from B and D, and they shouldn't be. As a result, undesired
creases are produced in the final rendering of the object. To remedy this situation, we have
designed a symmetric version of the program ugtess, which splits a polygon into symmetric bila-
teral convex parts (see Section 3). To further enhance the flexibility of the ucs system, we have
also introduced quadrilateral Gregory patches. In Section 4, we describe various methods of join-

ing two Gregory patches with first order geometric continuity across their common border.

As mentioned above, it is often desirable to use Bezier patches rather than Gregory patches.
In Section 5, we describe our efforts to subdivide Gregory patches into Bézier patches and thus
combine the best of the two approaches by Farin and Chiyokura. Implementation aspects and

pew features of ucs are described in Section 6 and in the Appendixes.

2. SOME BASIC MATHEMATICS

2.1. Bézier Patches

Quadrilateral (Tensorproduct) Patches. A biparametric vector-valued tensorproduct

-4
Bézier patch of degree (m,n), defined over the unit square, is given by:

b(u,v) = 2":)_'ﬂjbu BMu) Bj{v), uyve [0,1].
=0 {=0

where B{(t) are Bernstein polynomials:

I P
Bjt) = Wtf (1-t)~4, j=0,..1, telo1].

b 5 b a b s [I
[] []

b | b, b, 15,
b b *b

by n 12 ﬁbla
L —. —_— -]

b b b b

00 01 02 03

Figure 2.1. A bicubic BeZier patch.

An example of a bicubic patch (m=n=3) is shown in Fig. 2.1. Thus, a Bézier patch is com-

pletely determined by the finite number of control points b;y.

Triangular Patches. Bézier patches can also be defined over triangles (Fig. 2.2). Let T be
a triangle in space with vertices T;, Ty, and Ty. A point P in the plane of the triangle can be
uniquely represented as follows:
P=UT1+UT2+WT3, v+ v+ ws=1
P is said to have barycentric coordinates (u,v,w) with respect to T. The interior of the triangle

is characterized by the additional restrictions u,v,w 2> 0.
The following equation represents a Bézier patch of degree n over a triangle:

bluv,w)= 3 bk Blyslu,v,w), v,o,w20, vtviw = 1.
i4jtk=n
iJjk 20

Here

-5-

004 108 202 201 400

Figure 2.2. A quartic triangular BeZier patch.

n! <
17T
are bivariate Berstesn polynomials. They are indeed bivariate, because one variable is depen-

Bl p(u,v,w) = viw* {+j+k =n, {,5,k>0.
JJok

dent on the other two: w =1 — u — v.

Degree Elevation. As one can see, equations of boundary curves are described by Berstein
polynomials in one variable. Every polynomial (not necessarily univariate) of degree n can be

expressed in terms of Berstein basis polynomials of degree n+1:

n n+l1
2 b BHt) =), b BIY(t).
i=0 i=0
New coefficients b; can be obtained as follows [Farin '82]:

bt_ n+l—1)

S — b, = 0.nl.

We assume b_; = b,4; = 0.

2.2. Gregory Patches

Quadrilateral Patches. A Gregory patch, like a Bezier patch, is defined by its control

-6-

points Pij., 1, =0,.n,k =0,1. In the case of a quadrilateral Gregory patch (Fig. 2.3), the

equations are as follows [Chiyokura '86}:

S(u,v) = 4‘8_7)j—JB;s(u) Bj(v) Qifu,v), uve [0,1].

{=0 j=0
uPy0 + vPyy,
Qualuv)= =T
uPl,z'o + (l—v)Pl‘zyl
Ql,?(urv) - z + 1—v [}
(1—u)Pyy0 + vPay,
Qza(u,v) = -2 + v '
Quafu,v) = (1=u)Pyzp + (1=v)Pp2,
22 1-u + 1—v ’

Q,-,J-(u,v) = P‘J'o = Pi.]',l Othel’WiSC.

| Py Py, Py,
° .

L. CHERC T
Pox Pin Py
L . o < p

P P
010 m ® Puo sz.o qu 310
b a . 4
P P P P
000 100 200 200

Figure 2.3. A quadrilateral Gregory patch of degree 3.
For conceptual elegance, a Gregory patch can also be expressed in equivalent recursive form [Chi-
yokura '83):

S(u,v) = (1-u+uE)® (1—v+vF)® Qoou,v),

where E and F are shift operators:

EQuy=Qin,y FQij=0Qim
and @, ; are as above.

When the eight inside control points satisfy the equations P;;o = P;j;, then the Gregory

-7-

patch degenerates into a bicubic Bezier patch. Thus, a Beézier patch is a special case of a more

general Gregory patch.

Triangular Patches. Working again in barycentric coordinates, a triangular Gregory

patch (Fig. 2.4) of degree 4 is determined by 18 control points:

S(U,U,‘UJ) = Z Bt!',j,k(urv:w) Ql',j,k(urvlw)n U,U,wzoy u+v+w = 1.
i+j4k =n
ik 20

or

S(u,v,w) = (uE + vF + wG)! Qooplu,v,w), vow 20, v +v+w=1

where E, F, and G are again shift operators:

E Q:‘,j,k = Qt‘+l,j,kr F Qi,j,k = Q;'.j-{—l,k, G Qi,j,k = Q:’.j,k+1;
(1—u)vPygy + u(1—v)Pyy,

QllZ(u:v!w) = (l—u)v T u(l—v) ’

Qo(u,0,w) = (1=u)wPyg + v(1-w)Piay,u
S (1—v)w + u(1-w) ’

Qupy(u,0,0) = (1=v)wPo,e + v(1-w)Poyy
211\%» ¥ - s

(1-v)w + v(1-w)

Qijxlu,v,w) = Pyj. otherwise.

P
004 108 202 201 400

Figure 2.4. A quartic triangular Gregory patch.

Again, if

Pyge = Pray, Py = Pl2l,wr Poive = Ponyu,
the triangular Gregory patch becomes a triangular Bézier patch. The Gregory patch has twice as
many interior control points as the Bezier patch. When each pair of corresponding Gregory

patch control points coincides, the patch becomes a Bezier patch.

Finally, we will point out the convez hull property of both Bezier and Gregory patches: all
points on the patch are contained within the convex hull of their control points. This property is

useful for rough interference checks [Faux et al '79).

3. SYMMETRIC CONVEX DECOMPOSITION ALGORITHM

3.1. Overall Description of the Algorithm

As mentioned above, uct does not exploit symmetries of the object. The reason for this is
that the convex decomposition module, ugtess, does not necessarily produce a symmetric decom-
position even though the input polygon (face) has a symmetry axis. As an example, consider the
polygon in Fig. 3.1, which ugtess partitions as shown in Fig. 3.2. Clearly, this decomposition is
not symmetric. Moreover, edge HK is redundant, i.e. it can be removed without destroying the
convexity of the pieces. Our new version of the convex decomposition module does not produce

such irregularities. Fig. 3.3 shows the same polygon, decomposed with the new version of ugtess.

The new algorithm is also based on the monotone convex decomposition [Gigus '85], utilized

in ugtess. It proceeds in several stages:
1. Find a symmetry axis of the input polygon. If no symmetry axis exists, go to step 3.

2. Cut the polygon in half along the symmetry axis, relinking contours and keeping
pointers to the symmetric parts (edges, vertices).

3. If the polygon was divided (i.e. it has a symmetry axis), perform old version of ugtess
on one ‘“‘half” polygon with removing redundant edges (see above). Otherwise (the
polygon has no symmetry axis), perform old ugtess on the whole polygon, remove
redundant edges and exit.

-9

Figure 3.1. A non-convez test polygon.

Figure 3.2. The polygon of Fig. 8.1, decomposed with old ugtess.

4. Create symmetric images of the new edges in the other “half” polygon.

5. Join the two tessellated “half”’ polygons, relinking contours. Remove redundant pieces
of the symmetry axis and possibly new vertices (see section 3.4).

The new ugtess program, as well as the old one, has a triangulate option. If it is set, the
original polygon is tessellated into triangles rather then convex polygons. To tessellate the
polygon into triangles, the algorithm above is used, except that in step 3 the “half”" polygon is

divided into triangles, and no new edges are removed.

Figure 3.3. The polygon of Fig. 3.2, decomposed with smproved ugtess.

The option to tessellate the polygon exclusively into triangular and convex quadrilateral

polygons will be added in the near future.

3.2. Finding a Symmetry Axis

Locating a symmetry axis is complicated by the fact that our polygon doesn’t have to be
simply connected, i.e it could have holes inside (allowed by UNIGRAFIX). Suppose an outer con-
tour of the polygon has n edges. Then the polygon can have at most n symmetry axes. Exam-
ples when n is even and odd are shown in Fig. 3.4. Thus we have to check at most n axes: when
n is even, n /2 axes go from one vertex to the opposite one, and n /2 axes go from the middle of
one edge to the middle of the opposite one. When n is odd, all n axes go from a vertex to the

middle of the opposite edge.

To minimize unnecessary computation, we first compute the centers of the outer contour
and of each hole. Obviously, the center of the outer contour must lie on the proposed symmetry
axis. Centers of contours, which do not lie on the axis, must have a symmetric image on the
other side of the axis. This is checked directly by computing the symmetric image of a center
and comparing it to the centers of other contours not on the axis. Clearly, symmetric images of

centers must be centers themselves. In Fig. 3.5 small circles represent centers of contours.

-11-

/>
Z

Possible symmetry azes of polygons with even and odd number of edges

Figure 3.4.

B C
L M
o
K N
Q
F I
E G H J
A D

Figure 3.5.
Centers of contours must be symmetric with respect

to the symmetric axis. They are represented with small circles.

-19-

Now, we have to check if vertices themselves are symmetric with respect to the proposed
axis. This can be done efficiently due to the fact that vertices in each contour appear in clockwise
(outer contour) or counterclockwise (holes) order (UNIGRAFIX format). Therefore, we know which
vertices are supposed to be symmetric images of each other. We check whether a line segment,
joining them, is orthogonal to the symmetry axis, and is split in half by the symmetry axis. This
test works for both outer and inner contours. For the case of an inner contour, we have to focate

the symmetric image of the first vertex before the above-mentioned test can be applied.

B C

K L H G
J 1 E F
P
M N
A D

Figure 3.8. A test polygon with several holes

The UNIGRAFIX definition of the face shown in Fig. 3.6 might be written as:
f (ABCD)(EFGH)(JILK)(MNP}
In this example, we would test the following line segments to be orthogonal and divided in half by

the proposed symmetry axis: DA, BC, MN, EI, FJ, GK, HL.

If the polygon passes this test, we have to relink the contour to produce the two ‘“‘half”

polygons. To do this, we have to sort centers of holes which lie on the symmetry axis. If the axis

-13-

splits an edge of a hole or of the outer contour, a new vertez will be introduced. Fig. 3.7 shows

one resulting “half” polygon. Arrows indicate the order in which edges are linked.

#_B.C C
H G
E F
P
#_M_N
L
N
#.D_A D

Figure 3.7. The “half” polygon, generated by the symmetric cut.

In the process of dividing the polygon we have introduced new vertices on the symmetry
axis. For the face in Fig. 3.6, the new vertices are #_B_C,#_D_A, #_M_N. The program
assigns names to the new vertices in the form #_vert1_ vert2, if a new vertex lies on the edge

between vert1 and vert2.

This part of the algorithm can be briefly described in pseudo-computer language as follows:

for each possible symmetry axis do
check centers of contours;
if centers are symmetric then
check vertices;
if vertices are symmetric then
exit: symmetric axis found;
else loop;
else loop;
end;

-14-

3.3. Removing Redundant Edges

This is an unsophisticated, but very important part of the algorithm. For each new edge,
i.e. an edge that was added- by old ugtess, we check if we can discard without destroying the con-
vexity property of a subpolygon. This is done by checking an angle between incoming and outgo-
ing edges, closest to the new edge, at both its endpoints. The edge shown in Fig. 3.8 cannot be
removed, because the angle at vertex A would not be convex. We can easily find the proper
incoming and outgoing edges, using the fact that each contour is a linked list of its edges, and

each new edge is actually present twice (once in each contour that contains it).

Figure 3.8.

The angle at vertex A would not be convez, if edge AB s removed.

The dashed lines with arrows represent the contours.

The resulting decomposition is minimal in the sense that no new edge can be removed
without destroying the c;mvexity property. However, it is not minimal in an absolute semse,
since it does not necessarily produce a decomposition of a polygon into the smallest possible
number of convex pieces. We feel that breaking a polygon into smallest possible number of pieces
is not essential, and would complicate the program. Significantly, uct can only handle triangles
and quadrilaterals anyway; tessellating a polygon into the smallest possible number of convex

pieces is likely to produce polygons with many sides.

-15-

3.4. Joining the Two Halves Together

After the tessellation of one of the two symmetric halves has been completed, the same
tessellation is carried out on the other half, too. Since we have symmetric pointers for vertices
and edges, creating edges that are symmetric images of new edges is not difficult. Relinking the

contour is also easy. Fig. 3.9 shows a tessellated symmetrical polygon after these operations.

B #BC c
K L H G
J 1 E F
P
#.MN
M N

Figure 3.9.
The polygon of Fig. 3.6 with the relinked contour before the removal

of the unneeded parts of the symmetry azis and the new vertices.

As we can see, edges (#_B_C P)and (#.M_N #_D_A) are redundant and can be removed.
The procedure for that has been described above. Also, new vertices #_B_C and #_M_N are
redundant and can be removed. We only have to reset a few pointers. However, the new vertex
#_D_A cannot be removed, because even after removing redundant pieces of the symmetry axis,

there are new edges that use this vertex as an endpoint: (H #_B_C) and (#_B_C L).

We realize that adding extra vertices is an undesired feature of the algorithm. However,

-16-

extra vertices will not presen}, any difficulty for UNIGRAFIX programs, dealing with straight lines
and polyhedra, that might use ugtess’ output as their input. As for other programs, such as uci,
one can locate a new vertex by the special name, assigned by ugtess (see above). In Section 5.1
we will discuss how uct deals with it. Simplicity was an important consideration in selecting the

described approach.

B #BC c

Figure 3.10.

Final decomposition of the polygon.

Fig. 3.10 shows the final output, produced by improved ugtess. Appendix 2 has additional

examples.

4. GEOMETRIC CONTINUITY ACROSS CUBIC BOUNDARIES

Constructed patches must meet ‘‘smoothly” across joint boundaries. In the course of this
work, “‘smoothness’ will imply geometric continuity of degree 1 (G'). Two adjacent patches are

said to be G continuous, if the surface normal direction at the boundary is continuous.

-17-

Since the patches we are dealing with are defined in terms of their control points, we have to
find the conditions on the control points of the two patches on either side of the shared boundary

that guarantee G! continuity. In our application all the boundaries are cubic Bézier curves.

4.1. Methods Involving Control Points on Both Sides of the Boundary

4.1.1. General Formulation

Let us now consider in its full generality the problem of joining two patches smoothly across
a cubic boundary. Suppose that two patches, ¢ and ¥, meet along the boundary T (Fig. 4.1).
Then, for any point v on I', we can find D®(v), a cross-boundary derivative of & at I'(v), and
DW(v), a cross-bound derivative of ¥ at the same point. Let DI'(v) be the tangent vector at I'(v).
Then the necessary and sufficient conditions for patch continuity is coplanarity of all three vec-

tors:

det (D®(v), D¥(v), DT(v)) =0, v €[0,1].

Figure 4.1. Two patches, joining across the common boundary.

-18-

Patches ® and ¥ can either be bicubic quadrilateral or quartic triangular patches. Consider
the case when the quadrilateral and the triangular patch join across the common cubic boundary.
For the quadrilateral patch, D&(v) is just the usual partial derivative ¢,(0,v). For the triangular
patch, D¥(v) is the radial derivative [Farin '82]:

D¥(v)=(1 - v) (¥, = ¥,) +v (¥, —¥,)
Both bicubic quadrilateral and quartic triangular patches have two internal control points along

each edge, and, therefore, the same procedure for finding these control points can be used.

The common cubic boundary of the two patches is used as a cubic for the evaluation of the
bicubic quadrilateral patch, and has to be degree-elevated to quartic for the evaluation of the

quartic triangular patch (see Section 2.1).

D®(v) and D¥(v) are polynomials of third degree in v, while DI'(v) is a polynomial of second

degree. They can be expressed in terms of Berstein polynomials and control points:

2 3 3
DI(v)=3 ' 8; Bi(v), D®1v)=3)} R;BXv), D¥(v)=3} T:Bi{v)
i=0 i=0 i=0
The above expressions for cross-boundary derivatives are valid for bicubic quadrilateral patches

only; for quartic triangular patches, the coeflicient 3 is changed to 4 [Farin '82].

If we evaluate the determinant equation for v = 0 and for v = 1, that is, for the endpoints
of the boundary curve, we can see that the vectors Ry, T, 8o must be coplanar; analogously, vec-
tors Ry, Ty, S, must also lie in the same plane. These conditions are called endpoint conditions
for the boundary curve or vertez planarity conditions for the two neighbor patches. Vertex nor-
mals N, and N, (this notation will become clear later) are orthogonal to the respective endpoint

planes.

The above determinant equation is a polynomial of degree 8 in v, which yields 9 equations
for the coefficients of the various degrees of v. Two of these equations represent endpoint condi-
tions. The remaining 7 equations for the 4 unknown vectors Ry, Ry, T, T (or 12 unknown

scalars) proved to be so complicated, that even MACSYMA couldn’t handle them [Longhi '85].

-19-

The fa,ct that there aré 7 constraints across each boundary (and, therefore, a total of 5
degrees of freedom) has several important implications. First, one cannot, generally speaking,
pick the control points in one patch freely and hope to determine suitable control points on the
neighboring patch, because that would use 6 degree of freedom, while actually there are only 5.
There is always one more constraint than degrees of freedom for whatever patch degree is used:
each time the degree is raised By one, the order of the above determinant equation increases by
three, but the extra control point also gives three additional degrees of freedom. Second, it is not
possible to fit quartic triangular and/or bicubic quadrilateral Bezier patches into already defined
cubic boundaries. For each quartic triangular Bézier patch, there are 3 inside control points, or 9
degrees of freedom; however, each boundary brings in on the average 7/2 = 3.5 constraints,
which gives a deficit of 1.5 unfulfilled constraints for each triangle, and, analogously, of 2

unfulfilled constraints for each quadrilateral.

This lack of degrees of freedom forces us to use Gregory patches rather than Bezier patches,
if the boundary curves are predetermined. Another possibility would be to use the control points
of the boundary curves to provide the required additional degrees of freedom. However, this
leads to a highly complicated system of equations that could be quite difficult to solve, and it des-

troys the property of locality.

4.1.2. Formulation with Vector Equations

Rather then trying to solve the above determinant equation, one could premultiply each
derivative by an unknown polynomial, and then equate the resulting linear combination to 0:

a(v) D&(v) + p(v) D¥(v) + Mv) DI'(v) = 0.
Since D®(v) and D ¥(v) are of degree 3, while DI'(v) is of degree 2, it is clear that

deg (a(v)) = deg (p(v)) = deg (M(v)) — 1.
In this case, a system of vector equations, i.e. three identical scalar systems, one for each coordi-
nate, will have to be solved. This is simpler than the case for the determinant equation, which

mixes the components along different axes.

-20-

4.1.3. Farin’s Method

Farin [Farin '83] and Chiyokura [Chiyokura '83], indeed, take the latter approach. Farin
premultiplies D& and D¥ by a constant, and DT by a linear polynomial. Since one of the
coefficients can always Be set to 1, this leaves 3 coefficients to be determined. However, planarity
conditions on either end of the boundary give 4 constraints. This means that the original control
points of the cubic boundaries have to satisfy an additional constraint. Farin formulates this as a
constraint on the areas of the triangles RSy, SoT,, R;S; and S,;Ty in Fig. 4.1. See also Section

5.1.

Thus, Farin’s method allows the computation of interior control points on either side of the
boundary, provided that the boundary control points satisfly the area ratio constraint [Farin '82).
Unfortunately, this approach is not flexible enough for our purposes, because we would like to

choose the cubic boundaries in an unconstrained manner.

4.1.4. Multiplication by the Higher Order Polynomials

Alternatively, we can premultiply D& and DV by linear, and DT by quadratic polynomials.
Now there are 7 coefficients of polynomials, one of which can be set to 1, and 4 constraints at
either end. This leaves 2 coefficients to be chosen freely. Our vector polynomial is of degree 4, so
one can expect 5 equations for the various degrees of v. Two of these equations, however, are
fulfilled automatically at the ends of the boundary, leaving just three vector equations. Thus, if
R, is set, and the 2 extra coeflicients are chosen (note that again there are 5 degrees of freedom),
then R,, T, and T, can be determined. Thus one can find all four control points with just one
computational pass across each boundary. However, it's not clear how to choose R, to ensure a

“symmetric” choice of control points.

We can go even further and premultiply the derivatives by two quadratic and one cubic
polynomial, giving a total of 10 coefficients. One of them again can be set to 1, 4 will be deter-

mined from planarity conditions, leaving a free choice of the remaining 5 coefficients. Now there

-21-

are three more free constants than in the approach described in the previous paragraph. How-
ever, there is a very important advantage: our polynomial is now of degree 5, two conditions at
the ends are satisfied, and so there are four vector equations for four points R;, R,, T;, T,! No
guesswork is needed here in terms of control points and there is some hope for a “symmetric”
solution, as soon as the 5 coefficients, representing all the degrees of freedom that exist, are

picked.

We have succeeded in obtaining a closed-form solution in terms of the unknown coefficients.
However, the resulting equations are too cumbersome for practical use, and it is not yet clear how

to choose these unknown coefficients.

4.2. Methods, Involving Control Points on One Side of the Boundary

All the approaches, described above, resulted in equations, which involved both pairs of inte-
rior control points on either side of the boundary. The last one permits in principle an indepen-
dent calculation of the pair of interior control points on one side of the boundary in one computa-
tional pass. In the following, we discuss methods that rely solely on the boundary information to
find the pair of interior control points on either side of the boundary independently. Thus, to
determine all four control points, actually two passes along each boundary are required. How-
ever, these methods have the advantage to be completely local, i.e. interior control points depend

on boundary information only and not on the interior control points of the neighboring patch.

4.2.1. Chiyokura's Method

In his method, Chiyokura [Chiyokura '83], [Chiyokura '86] interpolates the cross-boundary
tangent. He assumes the cross-boundary tangent to be the difference of the vectors T, and R, at
one end of the boundary, and the difference of the vectors Ty and R, at the other end (see Fig.
4.1). Although the cross-boundary tangent can be quadratic in general (see Section 4.1.1), Chi-

yokura assumes it to be linearly interpolated between the cross-boundary tangent at the ends of

-29-

~ the boundary, which allows to compute the interior control points easily. See Appendix 3 for
Chiyokura's equations. This procedure is performed separately for the two neighbor patches.

The resulting interior control points guarantee G' continuity between the two patches.

Chiyokura’s method provides an easy way of computing interior control points of the Gre-
y P

gory patch, and is currently used in our implementation.

4.2.2. Intrinsic Normal Approach

It seems natural to describe G! continuity as orthogonality of the intrinsic normal of the
boundary curve N(v) and the cross-boundary derivative D&(v). The intrinsic normal of the

curve I'(v) is defined as a normalized derivative of the unit tangent vector of I'(v):

v) = DT(v)
~ DT

MACSYMA showed us that the equation

DTI'(v)

N(IDI(v) |~

where T(v) =

(N(v), D&(v)) =0

is a polynomial of degree 7, giving 8 scalar equations for 6 coordinates of R, and R,. However,
the intrinsic normal N(v) may not coincide with the precomputed vertex normal at the ends of
the boundary. Two of the above 8 equations result in constraints on the cubics themselves, which

may not be acceptable.

4.2.3. Prescribed Normal Method

Rather than trying to describe the behavior of the normal with the intrinsic curve normal,
we can ‘‘prescribe” the normal to the boundary. Prescribed normal N(v) of degree n can be

expressed as the Bézier polynomial
N(v) =) N; B}{(v)
i=0
and has to satisfy the following conditions:

1. N, and N, must be equal to the precomputed vertex normals at the beginning and the

end of the boundary, respectively;
9. N(v) has to be orthogonal to the boundary tangent:

(N(v),DI(v)) =0, wvel01]

3. N(v) has to be orthogonal to the cross-boundary derivative:

(N(v),De(v))=0, wvel01]

Since the unnormalized normal vector can be expressed as a cross product between the
boundary tangent DI'(v) and the cross-boundary derivative D&(v), the degree of N(v) can be at
most 5, disregarding the normalizing denominator.

Suppose the degree of the prescribed normal is n. Then the equation

(N(v), DT(v)) =0
will be a Bézier polynomial of degree n + 2, and we will have n +3 equations. Two of these
equations, however, will reflect boundary conditions at the endpoints, so, in fact, there will be
only n + 1 constraints. All degrees of freedom are contained in the vectors N, through N,; how-
ever, N, and N, are known, which leaves 3 (n — 1) degrees of freedom. To match the number of
constraints with the number of degrees of freedom, we set
n+1=3(n-1)
that is, n = 2. Thus, the prescribed normal of degree 2 is determined by No, Nj, S, 8;, S,.
Indeed, substituting the Bernstein expressions for N(v) and DI'(v), we have:
((1-v)* Ng + 2 (1-v)v N; + v¥ Ny, (1-v)2So + 2 (1-v)v S; + v* S,) = 0.
Expanding the scalar product, and equating the coefficients of (1-v)*~*v’, i = 0,1,2 to 0, we get
the following five equations:
(NO: s0) = Or
2(No 8;)+2(N;,8)=0,
(No, S2)+4(Ny, 8) +(N;§)=0,
2(N,, 8;)+2(N,;8,)=0,

(N 8;)=0.
The first and the last equations are the endpoint conditions and are trivially satisfied by the con-

-24-

struction of the vertex normals. The remaining three equations form a system, from which N;

can be determined. In fact,

(No,S2)(SoX S2) — 4(N,,8,)(81X 82) — 4(N2,8,)(SoX S;) + (N2,80)(So X S2)
P 1(S 8, 5;) '

The denominator is a mixed product of Sy, 8, and 8. It is equal to zero, if the cubic boundary is
planar. It turns out that, in this case, the normal will be cubic in the plane of the curve, and
linear in any plane, orthogonal to it! We have to escape to the higher degree because, in the
plane, a control point of a curve has only two unknown coordinates, while the number of equa-
tions remains the same.
Once we agree that the degree of N(v) is 2, then the equation
(N(v), D&(v)) =0

is of degree 5, giving 6 constraints, two of which again reflect the endpoint conditions. So there
are 4 constraints for 6 unknowns R, and R,. However, if we assume that the cross-boundary
derivative is quadratic, then, unless the normal is planar, the “middle’” point R, is determined
uniquely! The expression for R, is analogous to the expression for the ‘“‘middle” normal vector

N;:

_ (Ro,N2)(NoX No) ~ 4(Ro,N)(N; X N;) — 4(Rg,N;)(NoX N;) + (Rg,No)(NoX Ny)
M 4 (N, N, N;) '

The real control points R, and R, are easily obtained by the degree elevation (see Section 2.1).

The case of the planar normal, again, has to be treated separately, because the determinant

of the linear system used for general curves is identically zero.

The fact that there are different cases that have to be treated separately is an obvious disad-
vantage of the method. The normal, generally speaking, cannot be assumed to be of degree 2,

due to the special case of the planar curve.

4.2.4. Formulation with Surface Shape Parameters

What if we choose a normal vector N(v) of higher degree? First, the choice of the normal is

-95-

no longer unique: for a normal of degree n, 2n — 4 degrees of freedom will somehow have to be
disposed of. Suppose, however, that we have defined the normal of degree 3. Then the scalar
product equation will produce a polynomial of degree 6, giving 5 constraints for the 6 unknowns

of the 2 interior control points of the patch.

The fact that there are 2 degrees of freedom for the normal of degree 3 can be exploited to
give the user more flexibility in the design of the surface. We believe that these two degrees of
freedom can be described as the warp from some default position of the two intermediate normal
control vectors of the boundary. The degree of freedom, remaining for each pair of the patch
control points could be viewed as the bulge of the surface near the boundary. This parameter
would describe how far from the boundary the interior control points will lie on the average. Note
that as a result of the Prescribed Norma! Method, there are only four degrees of freedom (param-
eters), rather than five: the two warp parameters of the normal and one bulge parameter for each

of the two patches, bordering the boundary.

A practical design system should choose these parameters with some good default values.
The user should then be given the possibility to alter any of these parameters to introduce the

desired shape modifications in the surface.

At present, the formulation of G* continuity with the surface parameters is an open research
issue. We are currently investigating different ways of arriving at the best default values for the
above parameters, as well as the mathematical expression of the surface in terms of these parame-

ters.

5. SUBDIVISION OF THE SURFACE INTO BEZIER PATCHES

The desirability of being able to subdivide the whole surface area into polynomial patches
has been already mentioned. The methods described in Section 4 to join patches with G! con-
tinuity readily lead to non-polynomial Gregory patches. An analogous approach aimed at subdi-

viding the surface into Bezier patches proved to be futile, due to the fact that a Bézier patch has

-26-

only half as many interior control points as a Gregory patch, and not all the constraints across

each cubic boundary can be satisfied simultaneously (see Section 4.1.1).

As a remedy to this, we propose to create a number of Bézier patches in the place where a
single Gregory patch is ordinarily constructed. This is almost a subdivision of one patch into
several, except that the original patch is actually never defined. Nevertheless, we will call this
operation ‘“‘subdivision”, so that we don't have to invent a new word for it. A very useful and
important property of the proposed subdivision is the fact that it is completely local, that is, all
control points of a patch are determined solely from the control points of the cubics that border

this patch.

5.1. Triangular Patch Subdivision

In the simplest case, we subdivide a triangular patch into three Bézier patches. This subdi-
vision employs Farin’s method, which results in vector equations, and the system of resulting

equations actually splits into three separate subsystems.

Suppose now that we have a triangular face and wish to construct a polynomial patch. We
construct three Bezier patches and ensure geometric continuity (G") between them. Our patches
are shown in Fig. 5.1. By, Cy, D;, ¢ = 1,2 are control points on the cubic curves, which are given
as far as this subvision task is concerned. S;, P;, i =12 are the control points of the cubic
boundaries between the subpatches and are yet to be determined, as well as the control points

inside each subpatch.

Assume for the moment that Lys, Mys, L1g, K12, Kzs, Moy are all known. These points ensure
smoothness across the “real” external boundaries and can be determined without much difficulty

using Chiyokura’s method (see section 4.2.1), once the points S;, Sy, and Sy are known.

Clearly, S, must lie in the plane of T,B,C,, and analogously, S, in the plane of T,C,D,, S5 in

the plane of T4B,D;, and, finally, Z in the plane of P,P,P;. Thus, there are 3 degrees of freedom

-927-

Figure 5.1. Triangular patch subdivision.

each for points Py, Py, Py, Nip, Ny, Noy and 2 degrees of freedom each for points S,, Sy, S, 2.

This gives a total of 26 degrees of freedom.

We use Farin'’s [Farin '83] method of ensuring G' continuity between the subpatches. For
subpatches T,ZT; and T,ZT; to be continuous, it is necessary that the following triangle areas

match:

area (7,5,C,) area (P,ZP,)

area (1,5,B,) area (P,ZPy)’

Furthermore, to guarantee G' continuity across the internal boundary, the additional two vector
(six scalar) equations must be satisfied, involving points Ty, Sy, Py, Z, Lyz, Lis, Nya, Nys. Therefore,
there are 7 constraints across each boundary (as expected! see Section 4.1.1), which gives a total
of 21 for the whole subdivision. So there are 5 extra degrees of freedom left for the whole trian-

gle.

-28-

We make use of these extra degrees of freedom as follows. First, we use 2 degrees of free-

dom and choose Z to be in the center of gravity of the triangle P,P,Py, that is,

1 1 1
Z=-3—P1+§-P2+ -3-P3.

Therefore, the areas of triangles P,ZP,, P;ZP,, and P,ZP; are all equal.

Now, to satisfy above area ratio condition, areas T,5,C; and T,5,B; must be equal, and
analogously for the other two interior boundaries. It's sufficient that S, lies anywhere on the
median of the triangle T,C,B,, which goes through T,. It seems natural to pick S, again in the
center of gravity of T,C,B, (the center of gravity of a triangle is at the intersection of its medi-
ans). In making this decision, we have discarded two more degrees of freedom for each S; and at
the same time satisfied the area ratio constraint for each interior boundary. Now, the number of

the remaining degrees of freedom matches exactly the number of constraints (18).

The choice of the center of gravity of a triangle emerges from the following consideration.
Suppose the overall triangle is equilateral. Then Z would be in the center of gravity of the (big)
triangle, and S; and P; would divide lines joining each vertex with Z into 3 equal parts. Cubics
control points would also divide each triangle side into three equal parts. But this situation
corresponds to our initial choice of picking S; and Z in the centers of gravity of the corresponding

triangles.

There is another way to express the area ratio condition, which we actually used in solving
the remaining 6 vector equations. C,, D, B, and P; can be expressed in barycentric coordinates,
using the corresponding points on the other side of the respective interior boundaries:

Boundary (le): Cx = Tl + ¢ 7] sl + a Bl! g + a2+ a = 1,
P2=a3P1+a4z+aP3, a3+a‘+a=l,

Boundary (T,Z): Dy, =8,To+ 628+ 8C,, B+ B8, +8=1,
Py=fP,+,Z+8P,, Bs+Bh+BF=1,

Boundary (TsZ): By =7, Ts+ 7283 +7D;, n+1z+17=1,
P=7%Py+%uZ+1P; 1s+7u+7=1

-29-

Area ratio constraints for all three boundaries are equivalent to equations

a) + a; = ag + ay,
B+ Ba= Bs + B
N+ T2="73+ %

When we choose S;, Sz, Ss, Z in the center of gravity of the corresponding triangle, we actu-

ally set

and

The parameter o can be thought of as the negative ratio of the areas of the triangles T}5,C,
and T,5,B;, or, which is the same, as the negative ratio of the areas of P,ZP, and P,ZP;. The

parameters f and 4 have the analogous geometric interpretation.

The six vector equations [Farin '83] that we need to solve are listed below:

2 1
sz"—‘-g(alsl‘*‘azpl)'*'g(asT1+a4sl)+aL13

1 2
N12= E.(alPl+azz)+g(a351+a4P1)+aN13

K23=':?3'(5152‘*'/521’2)‘*%(53T2+ﬁ452)+ﬂxx2

Noy= + (% Po+ o 2) + 5 (A S, + B Po) + A Ny

M, = %‘(71 Ss+ 1 Py) + 'é-('fsTs'*"hsa)'*"YMzs

Ny = %—(71P3+’72z)+ %‘(’Yass'F’hPa)"")’st
With this, points P, P;, Py can be determined directly from just one equation each. The remain-
ing 3 equations form a simple linear system, from which Ny, Nys, Ny can be found. Solutions to
these equations, when S; and Z are picked in the centers of gravity of the corresponding triangles,
are listed in Appendix 4. We also have solutions for general o's, f's, and 7', derived with

MACSYMA's help, but they are too cumbersome to be listed here. Of course, each vector equation

-30-

is actually 3 scalar equations, one for each coordinate.

5.2. Subdivision of the Patch over an Arbitrary Face

Let us now generalize the problem of the surface subdivision to the case of an arbitrary con-
vex face with n edges. We would like to represent the surface over this face as a union of n

Bézier patches, such that every pair of adjoining patches is G' continuous.

We use the notation and the approach of the previous section. Again, we assume that the
control points Li;p, § =1,.,n, j =12 (Fig 5.2) are known. Our task is, then, to determine
points Py, Si, Nijp, § = 1,1, and Z. There are 3 degrees of freedom each for the points P; and
N; 4, and two degrees of freedom each for the points S; and Z. Therefore, there is a total of
8n + 2 degrees of freedom. On the other hand, there are 7 constraints across each interior boun-
dary. Furthermore, a planarity constraint at Z must be satisfied: all the points P; (and, of
course, Z) must lie in the same plane. This introduces n — 3 more constraints. Thus, there is a
total of 8n — 3 constraints. We can see that there are always 5 degrees of freedom more than
there are constraints. Therefore, in theory, a surface over an arbitrary convex face can be

represented as a union of geometrically continuous triangular Bezier patches of degree 4.

However, it turns out that the planarity condition complicates the system of equations to
such an extent, that so far we were not able to find a close-form solution. For the triangular
case, there is no planarity condition (three points are always on the same plane!), which results in
the system of vector equations. The planarity constraint, on the other hand, mixes all the coordi-
nates, so that the equations can no longer be broken into three separate subsystems. The area
ratio constraint also becomes more complicated. Even for the quadrilateral case it is not, in gen-
eral, possible to pick the center point Z, so that all the areas of triangles P;ZP;,, can be made

equal.

Thus, for n > 3, an alternative way of subdivision must be found. Since the planarity con-

straint is the main obstacle in obtaining an easy subdivision, it should be avoided. In fact, no

-31-

Figure 5.2. Subdivision of the surface over an arbitrary Jace.

more than three interior boundaries should meet at the same point. Keeping this in mind, we

were able to subdivide an arbitrary quadrilateral patch.

5.3. Quadrilateral Patch Subdivision

We have arrived at the two subdivision schemes for the quadrilateral case (Fig. 5.3). Subdi-
vision “‘a’’ requires less computation time, while the subdivision *b”" treats all the vertices and
sides of the quadrilateral in the same way. Due to the simplicity of the method, it does not
require much computation time, either. We believe that both these subdivision schemes are

acceptable.

The approach of the triangular patch subdivision is used here again to obtain all the neces-
sary control points on the interior boundaries and the subpatches. Again, we assume that the
control points of the subpatches, closest to the ‘‘real” boundary, are known. The control points

of the interior boundaries, adjacent to the vertices of the face, can be picked freely, as long as the

-39-

* e o) .o/o oo.
a b

Figure 5.3. The two ways of the quadrilateral patch qubdivision.

planarity condition at the corresponding vertex is satisfied. The second control points of these
boundaries will be determined by Farin’s formulas (see Section 5.1). The two control points in
one (subdivision a) or in four (subdivision b) innermost boundaries can be chosen freely. The cen-
tral points of the triangles, formed by the control points of the interior boundaries are then
chosen in such a way, that the area ratio constraints are satisfied. Then the remaining control
points of the subpatches (shown bold in Fig. 5.3) can be found from two (subdivision @) or four

(subdivision) separate systems of three vector equations.

A reasonable choice should be made to pick the control points in the interior boundaries. As
we did with the triangular subdivision, we consider the case of the perfect square and make our

selections based on this special case.

Our implementation uses the “‘symmetric” scheme b. It turns out that in this case, like in

the triangular subdivision, the central points of the triangles should be chosen in their centers of

gravity.

6. IMPLEMENTATION ASPECTS

8.1. uct Overview

A detailed description of uct can be found in [Longhi '85]. Therefore, we will only briefly

describe the procedure for the smoothing of a polyhedral object.

-33-

Tessellation of the Polyhedral Object. The current implementation of ucs works only
with triangular and quadrilateral faces. The module ugtess (see section 3) can be used to triangu-
late the object or split it into convex pieces. In the latter case, faces with more than four edges
could be produced. These faces will then have to be tessellated manually in the source file. The
option to Qgtcas to tessellate the polygon into triangular and quadrilateral faces only will be

introduced shortly.

The symmetric version of ugtess, as mentioned in Section 3.4, can produce new vertices in
the middle of the original edges. In this case, ucs finds the two vertices, between which the new
vertex is located, computes vertex normals there and constructs the Bézier curve between them.
The curve is then evaluated for the parameter value of 0.5 and the result is assigned to the new
vertex as its corrected coordinates. This correction takes place for all the new vertices before the
usual procedure for curved edges computations is invoked. This approach is reasonable, because
the surface will pass through the “corrected’” new vertex, as it would, if the new vertex were not

there.

Vertex Normals. A normal is assigned to each vertex of the polyhedral object. It is com-
puted as a weighed average of all normals of the faces, meeting at this vertex. The weight factor
is the angle between the two edges, that use this vertex. The normal computation based on this

weighting method is tessellation-independent.

Curved Edges. Cubic Bézier curves are then constructed. The Bezier points are found by
projecting the original edge onto the tangent plane of the vertex (this plane is perpendicular to
the vertex normal). The distance between the vertex and the Bezier point is equal to the one
third of the length of the edge. This does not always give satisfactory results, and other methods

are being studied.

Alternatively, the user can specify the Bézier points for the curve, joining two vertices, in
the source file. This gives the designer more flexibility in changing the shape of the resulting

smooth object.

-34-

Sometimes it is desirablé to have a sharp edge or a straight line in the surface. For this rea-
son, uci has four different types od edges: curved border, straight border, curved edge, and
straight edge. All these edge types can be specified in the source file. G continuity is only

enforced across borders.

Patch Construction. Once the cubic (or straight) boundaries (or edges) are defined, the
patches are constructed to represent a smooth surface, unless the face is flagged to be flat. Qua-
drilateral faces are represented with quadrilateral Gregory patches, or with five quadrilateral
Bézier patches, while triangular faces are represented with triangular Gregory patches, or with
three triangular Bézier patches. By default, Gregory patches are constructed; the -b option can
be used to obtain the Bezier representation. For each patch a quadrilateral or triangular net is

then constructed for the visual representation.

8.2. New Features of ucs

Gregory and Bézier Patches. As mentioned above, the object can be represented as a
union of Gregory or Bézier patches. If the Bézier option is specified, each triangular face is
represented with three triangular patches, while the quadrilateral patch is represented with five
quadrilateral patches, as shown in Fig. 5.3b. The labelings of the Gregory patches are shown in

Fig. 6.1. Bézier patch labelings are shown in Fig. 6.2.

9‘ li
s 19
¢ *s 12¢ ¢
2 oe® ®15 |18
¢ 4°® LBV
1 o; 1 17
0 s 10 16 0

Figure 8.1. Gregory patch labelings.

-35-

9 18
s - e 19
.1 5 ® ° . ? .
. ! . ® o, ? .,
0 o‘ 1Ao 16 0

Figure 8.2. BeZier patch labelings.

Figure 8.3. The ‘pyramid effect”.

In our first implementation, we constructed the triangular net, used for the visual represen-
tation, on each of the subtriangles separately. However, the fact that the central angle in these
subtriangles is almost always obtuse, created the illusion of an extra vertex, like a tip of a
pyramid (Fig. 6.3). To get rid of this unpleasant effect, we construct the net in the parameter
space of the big triangle, and compute the coordinates of the relevant point in the parameter

space of the proper subtriangle for evaluation.

Parameter space mappings. Suppose that some point P has the barycentric coordinates
(r,s,t) in the parameter space of the big triangle and the barycentric coordinates (v,v,w) in the
parameter space of the subtriangle it lies in (Fig. 6.4a). Then it easily follows that P has the fol-

lowing representations in the parameter space of the subtriangle it is in:

II.

1L

(0,1,0) (o,1) y=1 (1,1)

I

x=0 I v | |

v
(0,0,1) 8 =0 (1,0,0) (0,0) y=0 1,0)
a b

Figure 8.4. Parameter space regions.

u=r—s, v=233, w=t—-s, [s8<r 8t}
wu=3r, v=8—r, w=t-r, |[r<s, r<t]

hmrotvme—tw=3, [t<r t<l

Analogously, for the quadrilateral subdivision, suppose that some point P has the coordi-

nates (z,y) in the parameter space of the big quadrilateral. Some mathematics shows that P can

represented as follows in the parameter space (u,v) of the subquadrilateral it is in (Fig. 6.4b):

IL.

HI.

IV.

V.

w =3z, v=4"21 [z<y,z+y<l,z<%—];

12z
u=%—£_;ll,v=3y—2. [z<y,z+y>1,y>%];
r+y-1 2
=3—v = ’ ’ 1: !
u z -2 v T [z>y, z+y> :c>3]

-y 1
= e— =3, ’ 17 =)
T P >y, z+y< y<3]

t=3z—1 v=3y—1, [%—<x,y<§-]. ,

Copy Function. A very useful copy function has been implemented. The data structure

has been changed to hold not only the current object, but its backup copy as well. Once the

object is read from the source file, the backup structure and the current structure both have the

-37-

same object. uci knows when the original structure has been changed; if the new command is
issued, which requires the original object structure, it will be copied from the backup structure
into the current structure automatically. A good example of this is using the patch command

after the curvedg command. Previously, the user had to read in the whole source file again.

The copy command itself could be used to copy the last-modified structure into the backup
structure, or vise versa. The latter operation (-r option) is very useful for restoring the original

structure after an undesired change.

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Carlo H. Séquin, without whose enthusiastic support

this work would not have been possible.

Lucia Longhi helped me to understand the code and the general design of the previous ucs

version.

I would also like to thank Prof. Brian A. Barsky, who has agreed to review this report.

Appendix 1

UNIGRAFIX Manual Page for ugtess

NAME

ugtess — tessellate faces into convex polygons or triangles

SYNOPSIS
ugtess [-t] [-s] < oldobject > newobject

DESCRIPTION
ugtess is a filter that tessellates the faces of an arbitrary unigrafix object into convex polygons.
—t The faces are triangulated.

_s Each face is tessellated symmetrically with respect to a symmetric axis if the face has one.
New vertices may be introduced on the symmetry axis; the new vertex between vertices vI
and v2 will be assigned the name #_vI1_v2.

EXAMPLE

cat $(LIB)/dodeca illumF | ugshrink -H -f 0.2 | ugtess | ugplot -ed -7 2 -5 -sa -dw -sy 3 -sx 3
cat $(LIB)/dodeca illumF | ugshrink -H -f 0.2 | ugtess -t | ugplot -ed -7 2 -5 -sa -dw -sy 3 -sx 3

FILES

“ug/bin/ugtess

SEE ALSO

ugext (UG), ugfrac (UG), ugfreq (UG)

BUGS

It is not recommended that vertex names in the object begin with #_, if you intend to use —s
option.

AUTHORS

Ziv Gigus, Lucia Longhi, Leon Shirman

Appendix 2

Examples of Tecsellations, Produced by ugtess

Figures a represent the original polygon; b is the same polygon, decomposed with old ugtess; c is
the polygon with redundant edges removed; finally, d is the final symmetrically tessellated
polygon and e is the triangulated polygon. Note that sometimes just removing redundant edges

produces better results!

ohs

7 ¥

Appendix 3

Chiyokura’s Equations

Please refer to Fig. 4.1. Vectors P, and Py are unit vectors and are defined as follows:

T,— R
Py =
I To — R, |
Ts— R
Py= ———
| Ty — Ryl

Vectors P, and P, are linearly interpolated between P, and Py:

2 1 1 2
P1=-3—P0+-3—P3, P2=§P0+§P3.

Then

(ko

2 hy
1 P0+k0Pl+§'h0sl+-3_SO

(k1—ko)

T2=k1P2"'

ho 2
P3+ ‘?3-82"*' -3—hlsl

where the coefficients ko, k;, ho, £, can be found from the following equations:

T0=k0P0+hoso, T3=k1P3+hl 82.

Appendix 4
Solutions to the Triangular Patch Subdivision Equations (Center of Gravity Case)

The following expressions are valid only if S;, Sz, S5, Z are centers of gravity of corresponding tri-

angles, i.e.
1 1 1
sl~'§'T1+§'Cl+‘é‘Bl
1 1 1
82=§'T2+'§'Cg+§'D2
1 1 1
SS=§T3+§B2+§-DI
1 1 1
Z=-§-P1+§P2+ §-P3
Then
1
PI=E(TI_SI+3L13+3LI2)
P2=%(T2—82+3K23+3K12)

1
P3='6—(T3"83+3M23+3M13)

N12=%—(—81—82+Ss+3P1+3P2—2P3)
N,3=%(—Sl+sz-—ss+3P1—2P2+3Ps)

N23=.;_(sl—sz—ss-2P1+3P2+3P3)

Appendix b

Uci Images

-\
\

\

/

Figure 1. A smooth object, represented with quadrilateral patches.

\

Figure 2. An object with sharp edges.

REFERENCES

[Barnhill et al '74] R. Barnhill and R. Riesenfeld eds., Computer Aided Geometric Design,
Academic Press, New York, 1974.

[Barnhill et al '83] R. Barnhill and W. Bohm eds., Surfaces in Computer Aided Geometric
Design, North Holland, Amsterdam, 1983

[Bartels et al '86] R. Bartels, J. Beatty, and B. Barsky, An Introduction to the Use of Splines in
Computer Graphics, Morgan & Kaufmann Publishers, Inc., Los Altos, California, 1987.

[Bogen et al '77] R. Bogen, J. Golden, M. Genesereth, and A. Doohovsky, MACSYMA Re ference
Manual, Massachusetts Institute of Technology, 1977.

[Chiyokura et al '83] H. Chiyokura and F. Kimura, Design of Solids with Free-Form Sur faces,
Computer Graphics, Vol. 17, No. 3, pp. 289-298, 1983.

[Chiyokura '88] H. Chiyokura, Localized Surface Interpolation Method for Irregular Meshes, to
appear in Computer Graphics, 1988.

[Coons '84] S. Coons, Surfaces for Computer Aided Design, Design Division, Mechanical
Engineering Department, M.L.T., Cambridge, Massachusetts, 1964.

[Farin '82] G. Farin, A Construction for Visual Continuity of Polynomial Surface Patches,
Computer Graphics and Image Processing, Vol. 20, pp. 272-282, 1982.

[Farin '83] G. Farin, Smooth Interpolation to Scattered 8D Data, in [Barnhill et al '83], 1983.

[Farin '88] G. Farin, Triangular Be%sier-Bernstein Patches, Computer Aided Geometric Design,
Vol. 3, No. 2, North Holland, 1986.

[Faux et al '79] I. Faux and M. Pratt, Computational Geometry for Design and Manufacture,
Ellis Horwood Ltd, 1979

[Filip '85] D. Filip, Practical Considerations for Triangular Patch Surfaces, Master’s Thesis,
University of California, Berkeley, California, 1985.

[Foley et al '82] J. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, 1982.

[Gigus '85] Z. Gigus, Binary Space Partitioning for Previewing UNIGRAFIX Scencs, Tech.
Report No. UCB/CSD 86/280, Computer Science Division, University of California, Berkeley,
California, 1985.

-2-

[Gregory '74] J. Gregory, Smooth Interpolation Without Twist Constraints, in [Barnhill et al
'74), 1974.

[Kahmann '83] J. Kahmann, Continuity of Curvature Between Adjacent BeZier Patches, in
[Barnhill et al '83], 1983.

[Longhi '85] L. Longhi, Interpolating Patches Between Cubic Boundaries, Master's Project
Report, Computer Science Division, University of California, Berkeley, California, 1985.

[Séquin et al '84] C. Séquin, M. Segal and P. Wensley, UNIGRAFIX 2.0 User’s Manual and
Tutorial, Tech. Report No. UCB/CSD 83/161, Computer Science Division, University of Califor-
nia, Berkeley, California, 1984.

[Séquin '85a) C. Séquin, The Berkeley UNIGRAFIX Tools, Version 2.5, Tech. Report No. UCB/CSD
86/281, Computer Science Division, University of California, Berkeley, California, 1985.

[Séquin '85b] C. Séquin, More... Creative Geometric Modeling, Tech. Report No. UCB/CSD
86/278, Computer Science Division, University of California, Berkeley, California, 1985.

[Siegel '85] H. Siegel, Jessie: An Interactive Editor for UNIGRAFIX, Tech. Report No. UCB/CSD
86/279, Computer Science Division, University of California, Berkeley, California, 1985.

