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ABSTRACT

The binary space partition algorithm by Fuchs et. al.1:2 has been imple-
mented for interactive display of scenes described in the UNIGRAFIX language.
The scene is displayed using the painter’s algorithm on a device that draws only
convex polygons, thus an algorithm for decomposing concave polygons into con-
vex pieces has also been implemented.

The program provides fast, near real time interaction for modifying the
viewing parameters. The user can move through the scene, examine its content
and the relation between the objects in the scene. In this way, one can easily
pick the "best” viewing parameters for rendering the scene on hard copy devices,

using the relatively slow scan-line based renderers provided by the UNIGRAFIX sys-
tem.






1. Introduction

In many computer graphics applications we need to provide images of a world model that
changes less frequently than the viewpoint, the viewing angle or the viewing direction.
Schumacker et. al.3 observed that in such situations, preprocessing the scene can reduce the
amount of computation required during the image generation phase. However, the algorithm they
presented for such situations depends on manual intervention in building the internal data struc-
tures. This makes it difficult to generate new databases and thus limits its general usefulness.
Most of the visible surface algorithms developed in recent years% 598 tackle the problem of display-
ing the correct image when given a fixed set of viewing parameters. When these parameters
change, all the work has to be redone, and there is no use of the computation done for previous
frames. Thus, most real-time interactive applications (e.g flight simulators) rely on special pur-
pose hardware to achieve high display rates. However, for a general purpose graphics system, the
Binary Space Partitioning algorithm!:? is the only known algorithm that is designed for fast
redisplay of the same scene from diflerent viewpoints, doing most of the computation during a
preprocessing stage, and little computation per frame. This algorithm is particularly attractive
because of recent fast graphics terminals and workstations (eg. the Silicon Graphics IRIS worksta-
tion? ). These systems provide fast rendering of SD polygons, given the viewing transformations,

but do not provide hidden-surface elimination.

The UNIGRAFIX system provides the user with a terse and powerful language for defining
scenes made of polyhedral objects (for more detail see UNIGRAFIX user manual® ) , it also provides
several tools for generating and modifying objects.? 10 Currently there are three different renderers
provided for displaying scenes on different terminals and hard-copy devices. These renderers use
different scan line based algorithms for generating the images. While these are suitable for pro-

ducing the final pictures, we, as users of the system, found that often we would like to have a fast
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previewing tool that gives us the means for moving through the scene, examining it latter with
various viewing parameters. When the scene constructed with UNIGRAFIX is complex, predicting
the "best” viewpoint for a given scene is difficult. At other times we would also like to take a
detailed look at the scene, to examine the exact structure of the objects we created (either manu-
ally or automatically). From our experience, performing these tasks using the scan line based
renderers, even those that provide limited interactivity,!! is cumbersome and time consuming.
Because of the long image generation time, the type of interactivity needed for these tasks can
not be provided by programs built on top of these renderers. Thus, we needed a fast algorithm as

a basis for an interactive program that will provide these capabilities.

We chose to use the binary space partitioning algorithm on a Silicon Graphics IRIS worksta-
tion? as the host machine. It performs all the geometric operations (transformations and clipping)
at a high rate, so we only had to worry about the hidden-surface removal problem, which is not

addressed by our IRIS.

The program consists of two independent parts: the scene preprocessor and the display pro-
gram. The preprocessor reads the UNIGRAFIX scene description, builds the binary space partition-
ing tree and produces a file describing this tree. The preprocessor can be run ofi-line on any
machine (not necessarily the IRIS). Therefore, one can use a fast host to perform the computation
intensive preprocessing phase. The display program is run on the IRIS (or can be written to run on
any machine with similar capabilities). It reads in the tree description, and provides the user with
interactive means of moving through the scene, providing fast frame generation rate. As UNI-
GRAFIX supports arbitrary polygons (with concave contours and holes) and the IRIS can only han-
dle simple polygons, an algorithm for decomposing arbitrary polygons into convex parts was also

implemented. This algorithm is incorporated into the preprocessing program.



1.1. Paper Organlization

Chapter 2 describes two previous algorithms that have influenced the development of the
binary space partitioning algorithm. The binary space partitioning allgorithm is presented in
chapter 3, where we also discuss the effect of the scene structure on the size of the final tree. The
algorithm used for dividing an arbitrary polygon along a plane is presented briefly in section 4. In
this section I also discuss briefly the problems I had implementing this algorithm. Chapter 5
describes the algorithm used for decomposing arbitrary polygons into convex parts. In chapter 6
the user interface of the display program is described. Chapter 7 draws conclusions about this

work. Appendix I contains manual pages for the programs discussed in this report.

2. Historical Background

In this section I briefly present two earlier algorithms, that have influenced the development

of the binary space partitioning algorithm.

2.1. List-Priority Algorithms.

The hidden-surface elimination problem can be roughly viewed as follows:
Given the world model, a viewpoint location, @ viewing direction and viewing angle,
order the objects in the acene such that objects with lower priority can not obscure those
with higher priority.
Having sorted the objects by this order, when two objects are candidates for occupying the same

pixel in the picture, the one with the higher priority will be visible.

Sutherland et. al.4 categorize the class of algorithms that establish this ordering under list-
priority algorithms. The binary space partitioning algorithm described in section 3 belongs to
this category. The next two subsections briefly describe two earlier algorithms of the same
category, pointing out features of these algorithms that have influenced the design of the binary

space partitioning algorithm.



2.2. Palnter's Algorithm and Face Cutting - Newell's Algorithm

Newell!% 4 introduced the concept of "overwriting” objects to achieve hidden-surface elimi-
nation and transparency eflects. Instead of using the priority list for. determining the visible
object (polygonal face in this case) at a given pixel, the list can be used in a different manner.
Onpe can just draw the faces into the frame buffer in increasing (back to front) order, such that
faces with higher priority overwrite those with lower priority. After the entire list has been pro-
cessed, a correct hidden-surface image is produced. Furthermore, if faces are allowed to partially
overwrite the ones "underneath” them, a tramsparency effect is achieved. This hidden-surface

elimination method is often referred to as the painter's algorithm.

This algorithm is particularly attractive in view of recent raster devices. Most medium-cost
devices provide fast polygon filling and coordinate transformations. Hidden surface elimination,

on the other hand is provided only by the more expensive ones and it is an extra feature.

The heart of Newell's algorithm is a priority ordering procedure that Newell referred to as a
”priority computer”. This procedure sorts a set of faces into a priority order. We are not going
to describe this procedure in detail. However, one step of this procedure that has influenced the

design of the binary epace partitioning algorithm and is described below.

Given the task of ordering a set of objects into a priority list, one may find that such an
ordering does not exist. This is the case when two objects mutually overlap in depth leading to
an ordering conflict. This conflict is often called cyclic overlap conflict (see Figure 2.1). Newell
observed that such conflict can be resolved by dividing one face along the plane of the other face,

producing two faces instead of the one that has been divided (see Figure 2.1).

2.3. Space Division and Fixed Face Priority - Schumacker’s Algorithm

Developing a hidden-surface algorithm for a flight simulator, Schumacker et. al34 observed
that they were facing a world model that rarely changes, while the viewpoint, viewing direction
and viewing angle change frequently. Given these properties, they looked for a method of prepro-

cessing the scene description to reduce the computation required for regenerating the image as the



Figure 2.1.

Cyclic overlap: faces P and Q can not be placed in priority order. However if Q is di-
vided into two faces @, and Q, by the plane of P then the order is (@ ,P,Q,).

viewing parameters change.

To achieve the above goal, Schumacker introduced the concepts of clustering and fized face
priority.

Schumacker observed that given a viewpoint, the computation of face priority can be
divided into two stages. In the first stage the world model is divided into clusters, where each
cluster contains a set of objects (a set of faces in this case). Within each cluster every object is
compared to every other object in the cluster to compute the object priority. The clusters in this
algorithm are constructed manually so that within a cluster the priority of the objects (faces) can
be determined independently of the viewpoint (hence, it is called fized face priority). Thus, prior-
ity computation can be done once at the preprocessing stage and need not be recomputed when

the viewpoint changes (see Figure 2.2).

In the second stage, the algorithm computes the relative priorities of the clusters. Once

these are established, the scene can be rendered as follows: if cluster A is closer to the viewpoint
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Figure 2.2.

Face priority. a. Top view of an object with face priority numbers assigned. b. The
same object with a specific viewpoint located. Dashed lines show back Jaces.

than cluster B, then all the objects in cluster A are closer to the viewpoint and have higher prior-
ity then those in cluster B. This observation does not hold in general, unless the clusters are con-
vex. Schumacker used planes, that were introduce manually, to separate the clusters. These
Planes are used to create a binary tree, that given a viewpoint has to be traversed to find out the

correct cluster priority. The calculation of cluster priority is illustrated in Figure 2.3.

Schumacker’s algorithm tolerates motion of clusters in the environment if they remain
linearly separable. The cluster priority, recomputed every frame, correctly accounts for this
motion. Using special-purpose hardware, the algorithm was able to produce real-time animation

for the flight simulator (for a detailed description of the hardware see (3,4) ).

A few important points should be made about this algorithm. The use of fized face priority
constrains the structure of the objects in the emvironment. Only objects that have fized face

priority can be put into a cluster. The spatial relation between the objects is also constrained as
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Figure 2.3.
Cluster priority. a. Three clusters (1,2,3) are separated by two planes {alpha beta ) (the
arrowe show the direction of plane normals). The viewpoint may be located in one of
Jour areas (A,B,C,D). b. A tree structure for finding the cluster priority from the

viewpoint location. At nodes labeled with planes, we take a branch depending on which
side of the planes the viewpoint lies. At the leaves we get the cluster priority order.

they have to be linearly separable. A fair amount of user intervention is required. The planes
separating the clusters have to be introduced manually into the database as it is very hard to find
the planes automatically. Furthermore, when a cluster that does not have fixed face priority is
detected, it has to be manually subdivided into several "well behaved” clusters. These features
are acceptable in a special purpose flight simulator, for which there is a limited number of possible
environments. Experts can do the above tasks as a one time effort. However, these features
prevent the algorithm from being used by ordinary end-users who want arimated viewer motion
through a general environment. Even if the user has the expertise required by the algorithm, the

overhead in performing these steps, just for viewing one scene several times, is too high.



3. The Binary Space Partition Algorithm

Fuchs et. al.? looked for a way to use the preprocessing approach used in Schumacker’s algo-
rithm, while not having any user intervention in the process. They obsérved that if one were to
use clusters made of single polygons, then given a viewpoint one can choose an arbitrary polygon
A, and assuming all other polygons lie on the negative or positive side of A, use the painter's
algorithm in the following fashion:

1) Draw all the polygons in the scene that are on the far side of A, with respect to the

viewpoint according to their priority.

2)If A, is not a backface then draw Ay.

8) Draw all the polygons in the scene that are on the near side of A, according to their

priority.
This process will draw the polygons according to their list-priority, resulting in the correct image
with hidden surfaces removed. This approach is similar to the way the separating planes were
used in Schumacker’s algorithm, but instead of using artificial planes, the planes of the polygons
themselves are being used. The problems of constructing the clusters and selecting the separating

planes are automated and no user intervention is required.

The algorithm above assumes that given a polygon A;, every other polygon in the scene is
either on the far side or the near side of A,. However, that might not be the case as some
polygons may lie on both sides of A;. Here, in a fashion similar to Newell's solution for the cyclic

overlap conflict, we split these polygons along the plane of A;.

3.1. Construction of the Binary Space Partitioning Tree

The algorithm, as stated above, fails to explain how the priority of the polygons on both
sides of polygon A, is determined. However, we can recursively repeat this algorithm for both
sides ( in a fashion similar to sorting with the Quicksort algorithm ) , to get the correct list-

priority ordering.



Fuchs et. al. observed that the basic step of the above algorithm is partitioning the 8D space
of the environment into two half-spaces along the plane of A,: one half-spgce 8, contains the part
of the environment (the polygons in this case) that lies on the positive side of A;’s plane, and the
other half-space 8, contains the part of the environment that lies on the negative side of the
plane. As this is a recursive binary subdivision, it can be described in a binary tree (Fuchs et. al.
called it a Binary Space Partitioning, or "BSP” tree). The root of the tree contains Ay, the right
subtree contains all the polygons in 8, and the left subtree contains all the polygons in &,. The

tree construction step can be done at a preprocessing stage, once for all possible viewing positions.
The tree remains the same as long as the model does not change. Procedure MakeTree gives the

detailed algorithm in pseudo-code. Figure 3.1 illustrates this process and the resulting tree.

Procedure MakeTree(PolygonList) returns BspTree;

begin
i PolygonList is empty then
return NullTree;
else begin
Root := SelectPoly(PolygonList);
NegativeList := |[];
PositiveList := [};
foreach Polygon In PolygonList do
If Polygon 5 Root then begin
if Polygon is on the negative side of Root then
AddToList{Polygon,NegativeList);
else If Polygon is on the Positive side of root then
AddToList{Polygon,PositiveList);
else begin
SplitPoly(Polygon,Root,NegativePart,PositivePart);
AddToList(NegativePart,NegativeList);
AddToList(PositivePart,PositiveList);
end
end

return CombineTree(MakeTree(NegativeList), Root, MakeTree(PositiveList));
end
end
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Figure 3.1.

Tree construction. a. A top view of the scene. Arrow represent the direction of the
plane normals. Dashed lines represent the cutting planes at first and second level of
the recursion. b. After two levels of recursion, polygons 2 and § are chosen as the root
at the first and second level respectively. e. The final tree.

3.2. Use of the BSP Tree for Image Generation

Given the BSP tree, generating the image is simple. The tree is traversed in a special in-
order fashion. Starting from the root, recursively for each node of the tree, we determine whether
the viewpoint is on the negative or the positive side of the polygon. Then we first traverse the
subtree that is "further” from the viewpoint, draw the polygon at the node (if it is not a back-

face), and then traverse the "near” subtree. The traversal procedure is given below.

Procedure Display Tree(Tree);
/* Procedure Display renders a polygon performing
* the geometric transformations and clipping
*/
begin

if Tree is empty then return

else begin

if viewpoint is on the positive side of Tree.Polygon then begin
Display Tree(Tree. NegativeSubtree);
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Display(Tree.Polygon);
Display Tree(Tree.PositiveSubtree);

end

else begin
Display Tree(Tree.PositiveSubtree);
if back faces are to be visible then Display(Tree.Polygon);
Display Tree(Tree.NegativeSubtree);

end

end
end

3.3. Tree Size

The choice of the root polygon strongly influences the size of the tree. In the example illus-
trated in Figure 3.1 the resulting tree has 5 polygons, while in the example of Figure 3.2 the tree
for the same scene has 10 polygons. Even in simple scenes, "bad” selections of the root polygon
at many levels of the subdivision, may lead to trees that are much 'arger than the original data

base. A tight upper bound for the size of tree has not been found yet.

We must try to keep the tree as small as possible. The size of the tree stands in almost
direct relation to the frame generation time. The bigger the tree is, the more time it takes to
traverse it. Although it takes less time to fill the smaller fragmented polygons, as this process is
done by a special purpose processor, the increase in the tree traversal time becomes the dominant
factor in displaying the tree. Furthermore, to get reasonable display rates, the tree has to be kept
in main memory. When the tree grows beyond the size of the available memory, paging causes a

sharp increase in image generation time.

Because of the prohibitive cost of computing the optimal tree, one must use a heuristic
approach in selecting the root polygon at every level of the tree. As the behavior of the BSP tree
is complex, selecting what heuristic to use is difficult. Selecting a polygon that cuts many other
polygons in early stages of the algorithm, may reduce the fragmentation of the scene in later
stages. The opposite also bolds; a polygon that conflicts with only a few polygons may divide the
balf-space into two subspaces such that one or both of them contain many conflicts and result in

significant fragmentation of the data base.
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Figure 8.2.
Root selection. a. Top view of the scene. The cutting planes at all level of the recur-

sion are represented by dashed lines; the planes are shown only in the half-space they
affect. b. The resulting tree.

The heuristic suggested in (1) is: mazimize a weighted sum of the number of confiicts
between the polygons in the positive half space with those in the negative half space minus the
number of cuts produced by the root polygon. The weighting function in this sum has to be
selected empirically. This approach incurs a high computational cost. Every polygon of the given
space has to be intersected with the plane of the candidate polygon, and then every polygon in
one half-space has to be tested against the plane of every polygon of the other half-space. These

tests have to be repeated for every polygon of the half-space of every level of the tree.

In a later paper,? Fuchs et. al. reported that a simpler heuristic produced very good results
in most scenes. The heuristic was a pigeonhole approach: at every level of the tree, select the
polygon whose plane cuts the fewest other polygons. On the scenes that they applied it to, this

approach resulted in an increase of the size of the original data base by a factor of 2.33 at the
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most. A further computational simplification of this approach was suggested by Z. Kedem.
Instead of testing every polygon in the given half-space to select the best one, only a few ran-
domly chosen candidates should be tested to select the one that cuts fewest polygons as the root
at this level*. They reported that with about 5 polygons as candidates at each level, the results

were nearly as good as their first approach.

I tried all these approaches and found that the last approach produced results that were
almost as good as the more computationally expensive ones. In most scenes the number of
polygons in the BSP tree was between 1 and 3 times the size of the original data base. The
decrease in the size of the tree that was achieved when the other approaches were used did not
justify the increase in computation time. The sizes of the trees produced for several scenes are
given in table 3.1 as a function of the number of random trials in selecting the dividing polygor

(these results represent the best of three runs for each entry), using Kedem'’s idea.

BSP tree slze statistics
Figure name Number of polygons Output for varying number of
(and number) in the model candidates for root selection
1 [ 10 15
Ié‘:"{n‘;ﬁ ‘;ﬁ:ﬁ:’:";’;}‘ 642 1079 | 1045 | 1008 968
C"’;}'ﬁ:ﬁ’r"e ?;‘;"9 ¢ 1284 2972 | 1886 | 2070 | 1948
G(;‘,".Z:feg ';jt 64 800 | 294 821 297
b (;‘,’l.';:r"edgc,lju 488 2756 | 2655 | 2694 | 2587
’;;f.’;ﬁr"e g“;’}e 162 17 | 162 162 162
Interlocking
Triangles (Figure 8.8) 52 £07 197 102 166
Intersecting Tetra-
hedrons (Figure 8.9) £0 256 £50 £58 £58
Table 3.1.

* This simplification resembles, in some respects, the heuristic used in the pivot selection step of the Quicksort
algorithm.
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Figure 8.8. Half of a Clockwork Orange.
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Figure 8.4. Clockwork Orange.
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Figure 8.6. Granny Knot.

Figure 3.6. Diamond Cell.
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Figure 8.7. Rubik ' Cube.

Figure 3.8, Interlocking Triangles.
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Figure 8.0. Intersecting Tetrahedrons.

3.3.1. Effect of the Model Structure on the Tree Size.

Examining table 3.1 we find some interesting results. Although the "Half of a Clockwork
Orange” model (Figure 3.3} is a highly non-convex model made of 642 polygons, the size of the
resulting tree is about 1.5 times the size of the original data base (when 15 candidates are used in
the selection stage). However, the "Granny Knot” model (Figure 3.5), which is made of 64
polygons and seems much simpler then the "Clockwork Orange”, results in a tree that is more
than 4.6 times the size of the original data base. Even when all the polygons in the half-space are

considered as candidates for the cutting polygon, the resulting tree has about the same size.

The "Diamond Cell” model (Figure 3.6), made of eight instances of the "Granny Knot”, also
exhibits similar results; the size of the BSP tree increases by about the same factor as does the
tree for a single knot. The tree size for the "Clockwork Orange” model (Figure 3.4), on the other
hand, grows by about the same factor as does the tree for one half of the model. Thus, we find

that the structure of a single knot must be the dominant factor in the fragmentation of the scene.



-19 -

Examining the structure of the "Granny Knot” and the "Half of a Clockwork Orange” models

gives some insight as to the nature of these results.

In the "Granny Knot” all polygons are concentrated in a small sbace with very small dis-
tance between them. As the knot is tightly packed, most polygons, if extended by a small
amount, will actually intersect a few other polygons in the model. Furthermore, every polygon
bas, at the most, one other polygon that is parallel to it and its plane cuts many of the other
polygons in the model. Therefore, for several levels of the recursion, the plane of any polygon
that we pick as the root of the subtree intersects several other polygons, and the resulting half-
spaces still contain many conflicts. This behavior is further enhanced by the high degree of sym-
metry of the knot (it is actually made of four instances of the same model). The fragmentation of
a single knot is shown in Figure 3.10, we can see that most of the cuts occur close to the center of

the knot.

Thbe "Half of a Clockwork Orange™ model, on the other hard, is much more suited for the
binary space partitioning process. Its outer "shell” can be peeled off without cutting any polygon
at all. Many of the inward pointing "beams” are oriented in such a way that their plane cuts only
a few polygons. At early stages of the recursion these beams divide the space into separate
"slices” eliminating many conflicts at every subdivision. Therefore after just a few levels down

the tree there are no more conflicts, and we get low fragmentation of the scene.

We conclude that the behavior of the algorithm on a particular model is affected by more
properties than just the "convexity” of the model. We have to examine the separable clusters of
polygons from which the model is made (such as the knots in the "Diamond Cell”}). Polygons of
one cluster cause very little, if any, fragmentation in other clusters. Most of the fragmentation
occurs within the cluster. When the model has polygons that can divide it into clusters that exhi-
bit low fragmentation, experimental result indicate that we can expect the size of the BSP tree to
be less than twice the size of the original data base. However, when the model has volumes of
space that have a concentration of many polygons that conflict with each other, we can expect a

high increase in the size of the BSP tree.
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Figure 3.10.
Fragmentation of the model. After being processed by the binary space partitioning al-
gorithm the "Granny Knot" shows a high level of fragmentation. Notice that most of
the cuts occur near the center of the knot, where there 13 a high concentration of po-
lygons.

Fortunately, there are many applications where the models have the properties that are
necessary for a relatively low degree of fragmentation of the original data base. As memory is
becoming cheaper, the increase in the size of the original data base can be tolerated in these appli-
cations. On the other hand, applications that have very large data bases and deal with ill-
behaved models (made of densely packed objects that can not be separated into clusters that exhi-

bit low level of fragmentation) are not suited for this algorithm.

4. Cutting an Arbitrary Polygon along a Plane

When constructing the binary space partitioning tree, polygons have to be cut along the
plane of the root polygon. A UNIGRAFIX model can be made of arbitrary polygons (with concave

contours, holes, and even several disjoint parts). The cutting module of the tree construction
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program has to handle all such polygons, which is a much harder task than cutting cobnvex
polygons. The task can be simplified if the polygons are first decomposed into convex parts.
However, this decomposition may increase the size of the data base sigﬁiﬁcantly, resulting in an
increase of the BSP construction time. Furthermore, when the display device can handle arbitrary
polygéns, the increase in the number of polygonal pieces will result in unnecessary increase in the
frame generation time. Thus, we decided to implement a module for cutting an arbitrary polygon
along a plane. This proved to be the most complicated part in the implementation of the binary
space partitioning algorithm.

The algorithm used here was derived from the algorithm that was developed by Mark Segal
for UGISECT,!3 that eliminates intersections between polygons by cutting every pair of polygons
with respect to the other. The algorithm used here is a simplified version of the latter as we have
to deal with dividing a polygon along a plane. The basic algorithm is simple:

1) Traverse the contours of the polygon and find the intersections of edges with the
plane.

2) Compute the intersection line and sort the edge intersections along this line.

8) According to the above order, create a cut in the polygon between each consecutive

even and odd intersections (§5—3 ;8,15 ).

However, the actual implementation is quite complex. As cuts are made, new contours have
to be created and old ones have to be reconnected in the right order. Maintaining correct data
structures for the polygons is a delicate task that is prone to error. When an edge has endpoints
on different sides of the plane, there is no problem in detecting the intersection. However, when
one of the vertices of the edge happens to lie on the cutting plane, it has to be handled as a spe-
cial case. The polygon might be just touching the plane at this point without going through it, so
there is no intersection. On the other hand, it can be a point where the polygon crosses from one
side of the plane to the other, so it is an intersection. A third case is when the next vertex lies on
the same side as the previous vertex but the angle at this point is conca;'e, here two intersection

points have to be created (see Figure 4.1).
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Figure 4.1.
A verter of the polygon lies on the cutting plane (the polygon has counter clockwise-
orientation). a. The polygon just touches the plane - no intersection has to be created.
b. At this vertez the polygon crosses from one side of the plane to the other - one in-
tersection has to be created. e. The edge lies in the plane but the polygon does not in-
tersect the plane - no intersection has to be created. d. The edge lies in the plane and
the polygon intersects the plane - no intersection point 8 created at v; but one has to
be created at v, e. The previous and the nezt vertices are on the same side of the

plane and the inside angle is concave, this is a vertez where two cuts meet - two inter-
section points have to created.

To differentiate between these cases, we need to establish the exact geometrical relation
between the polygon and the plane, and determine on what side of the plane a vertex lies, as well
as the inside angle at a vertex. Limited numerical accuracy results in apparent changes of these
relations that may sometimes lead to incorrect results. Vertices that are very close to the cutting
plane might be classified as lying on the plane resulting in degenerated geometrical situations (an
example is illustrated in Figure 4.2). Substantial eflort went into dealing with these problems and
trying to minimize their eflect. A more detailed discussion of these problems and possible solu-

tions is presented by Mark Segal in (13,14).
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Intersection V1 Vo

Figure 4.2.
Degeneration of polygons due to numerical inaccuracy. a. The polygon has to be cut
along the plane, four intersection points have to be created. b. Due to limited preci-
sion, all four vertices v, through v, appear to lie on the plane. The outer contour is
found to be completely on one side of the plane and no intersections are detected.

However, intersection points are detected at vy and v resulting in an inconsistent si-
tuation for the cutting procedure.

The binary space partitioning algorithm provided us with many test cases for the correct-
ness of the polygon cutting algorithm. As a wide variety of relative constellations between a
polygon and the cutting plane are encountered, errors in the cutting routine became readily

apparent. Finding the cause of these errors, however, was often a less readily achievable task.

It turped out that the effort put into this part of the program also benefited the algorithm
used by UGISECT. The variety of special cases, that have to be dealt with to be able to construct
the binary space partitioning tree, provided us with insight into some of the special cases the
algorithm used in UGISECT have to deal with. Thus, we could enhance (and sometimes fix) the

later to deal with these cases.
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6. Decomposing Arbltrary Polygons into Convex Parts

UNIGRAFIX tolerates arbitrary polygons (with concave contours and holes) as part of the
world model. The Silicon Graphics IRIS workstation, used for displaying the binary space parti-
tioning tree, can handle only comvex polygons. Thus, arbitrary polygons must be decomposed
into convex parts. This can be done either before or after the construction of the BSP tree.
Decomposing the polygons before the binary space partitioning algorithm would simplify the
polygon cutting routine of the algorithm but would significantly increase the time spent in testing
a large number of polygons against the cutting plane. As this test is the most time consuming
part of the algorithm, we decided to perform the convex decomposition after the BSP tree has

been built.

To keep the size of the data base small, we looked for a convex decomposition algorithm
that produces a small number of convex parts and uses existing vertices only. Another criterion
in selecting the algorithm was its simplicity and speed. We were willing to accept an increase in
the number of convex parts for enhanced speed. All the fast algorithms for this task produce
nearly optimal solutions!3 (correct to within a constant factor). As all algorithms presented in the
literature deal with simple polygons®, one has either to extend these algorithms to deal with holes
(which often proves to be a complicated extension), or first decompose the polygon into simple
polygons. We decided to take the second approach and used Greene's algorithm,!> which decom-

Poses monotone polygons into convex parts, because of its simplicity and relative speed.

The complete convex decomposition algorithm is divided into two stages. In the first stage
(described in section 5.1) the polygon is decomposed into monotone parts; in the second stage

(described in section 5.2) these polygons are decomposed into convex parts.

§5.1. Decomposing Arbitrary Polygons into Monotone Parts
Let P be a simple 2D polygon® with n vertices whose contour is | VgUy, - - -,V ], (v is a
vertex of the polygon). Assume that no two vertices have the same Y coordinate. Let v; be the

vertex with the largest Y coordinate and let v; be the vertex with the smallest Y coordinate.

* A simple polygon is made of one contour {no holes).
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Then P is a monotone polygon in Y if and only if the sequence | v;,v;,,, . . . »Yj ] is monotone
decreasing in the Y coordinate and the sequence [ v;,v;4;, - . - ,¥; ] is m‘onotone increasing in the
Y coordinate (the indices of the vertices are computed modulo n). The alrgorithm described below,
which_ decomposes an arbitrary polygon into monotone parts, was suggested by T. Asano.!® It is
an extension of the algorithm presented in (17) for the decomposition of a simple polygon into

monotone parts.

If we classify the vertices of a polygon according to the six classes presented in Figure 5.1,
then it can be shown!® that the polygon is monotone in Y if and only if it contains no vertex of
type UpConcave or DownConcave. Therefore, to decompose a polygon into monotone parts it
suffices to make cuts that eliminate vertices of these types. Such vertices can be eliminated by
cuts that connect a DownConcave or UpConcave vertex to a visiblet vertex below or above it
respectively. These cuts do not intersect the edges of the polygon; if we also make sure that they
do not intersect each other, then no new vertices will be introduced, and the resulting parts will be

monotone. The algorithm described below performs such cuts.

The algorithm is based on a scan-line approach. The process is performed in the plane of
the polygon. The scan-line sweeps from vertex to vertex in order of decreasing Y coordinates}.
Notice that the scan-lines that pass through an UpConcave vertex and a visible neighbour above it
that is closest to it in the Y direction form a trapezoid with the edges immediately to the left and
right of these vertices. The same applies to the scan-lines that pass through a DownConcave ver-
tex and a visible vertex below it that is closest to it in the Y direction. If we keep track of these
trapezoids, we can readily locate the nearest visible neighbour, which is necessary for performing
the cuts. An Active Edge List of edges that intersect the current scan-line is used to keep track of
these trapezoids. Each edge in the list points to the vertex that defines the top of the "current
trapezoid” for that edge. The current scan-line forms the base of the “current trapezoid” for the

edge. When an UpConcave vertex is encountered, a cut to the nearest visible vertex above it is

t Two vertices are visible to each other i they can be connect by a line segment that lies inside the polygon.
$ Vertices with the same Y coordinate are processed in order of incressing X coordinate. This is equivalent to
rotating the polygon by a very small angle clockwise to eliminate any equal ¥ coordinates.
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DownConvex

UpConcave DownConcave

LeftVertex RightVertex

Figure 6.1. Verter classification for the monotonizing algorithm.

performed immediately. When a DownConcave vertex is encountered, we record it on the edges
that are part of the trapezoid whose top is the current scan-line. When the vertex whose scan-line

forms the bottom of this trapezoid is later encountered, a cut is made to that vertex.

This algorithm may, in some cases, not decompose the polygon into the optimal number of
monotone parts. However, it is simple, fast and yields a close to optimal decomposition in all

cases.
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Procedure MonotonizePolygon(Polygon)

*

* Polygon has counter-clockwise orientation.

*

* AEL is short for Active Edge List.

*

* Procedures that maintain the AEL -

L

*. 8 -

*/

begin

o InitializeAEL() - Creates an empty AEL.

® ReplacelnAEL(el,e2) - Replaces edge el in the AEL with edge el.
o InsertTwolnAEL(el,e2) - Searches for the correct location for el

in the AEL and then inserts el followed by el into the AEL.

¢ DeleteTwoFromAEL(el,e2) - Deletes the pair el followed by e2 from the AEL.

VertexArray := SortByDecreasingY(Polygon);
Classify Vertices(VertexArray);
Initialize AEL();
for Vertex In VertexArray do
begin

InComingEdge := Vertex.InComingEdge;
OutGoingEdge := Vertex.OutGoingEdge;
case Vertex.Type of

DownConver:
InsertTwolnAEL(OutGoingEdge,InComingEdge);
InComingEdge. TopVertex := Vertex;
OutGoingEdge.TopVertex := Vertex;
InComingEdge HasDownConcave := false;
OutGoingEdge . HasDownConcave := false;

UpConvez:

DeleteTwoFromAEL(InComingEdge,OutGoingEdge);

If Vertex.InComingEdge HasDownConcave then
MakeCut(Vertex,lnComingEdge.TopVertex);

LeftVertez:
RightEdge := InComingEdge.NextInAEL;
OutGoingEdge.TopVertex := Vertex:
RightEdge.TopVertex := Vertex;
OutGoingEdge HasDownConcave := false;
RightEdge. HasDownConcave := false;
ReplaceInAEL(InComingEdge,OutGoingEdge);
if InComingEdge HasDownConcave then
MakeCut(Vertex,InComingEdge. TopVertex);

RightVertexr:
LeftEdge := OutGoingEdge PreviousInAEL;
InComingEdge. TopVertex := Vertex;
LeftEdge.TopVertex := Vertex:
InComingEdge HasDownConcave := false;
LeftEdge. HasDownConcave := false;
ReplacelnAEL(OutGoingEdge,InComingEdge);

0

7z
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if OutGoingEdge HasDownConcave then
MakeCut(Vertex,OutGoingEdge.TopVertex);

DownConcave:
LeftEdge := OutGoingEdge.PreviousInAEL;
RightEdge := InComingEdge NextInAEL;

LeftEdge.TopVertex :== Vertex;

RightEdge TopVertex := Vertex;

LeftEdge HasDownConcave := true;

RightEdge.HasDownConcave :== true;

DeleteTwoFromAEL(OutGoingEdge, InComingEdge);

if LeftEdge HasDownConcave then
MakeCut(Vertex,LeftEdge.TopVertex);

if RightEdge . HasDownConcave then
MakeCut(Vertex,RightEdge. TopVertex);

UpConcave:
InsertTwolnAEL(InComingEdge, OutGoingEdge);
LeftEdge := InComingEdge.PreviousInAEL;
RightEdge :== OutGoingEdge NextInAEL;
MakeCut(Vertex,LeftEdge. TopVertex);
InComingEdge. TopVertex :== Vertex;
OutGoingEdge. TopVertex := Vertex;
LeftEdge. TopVertex :== Vertex;
RightEdge. TopVertex := Vertex;
InComingEdge HasDownConcave := false;
OutGoingEdge HasDownConcave := false,
LeftEdge . HasDownConcave := false;
RightEdge.HasDownConcave := false;
end /* Case */
end /* For */
end /* Procedure */

5.2. Decomposing Monotone Polygons into Convex Parts

The algorithm presented here is by D. Greene.}® It is an extension of an algorithm for tri-
angulating monotone polygons, which is presented in (18). This algorithm basically groups the tri-
angles that would have been produced by the latter algorithm into the largest convex polygons
that can be constructed from these triangles. The number of convex parts produced by this algo-

rithm is within four times the smallest possible number of convex parts for a monotone polygon.

The algorithm sweeps through the vertices of the monotone polygon in the Y direction from
top to bottom, in a similar fashion to the algorithm discussed in section 5.1. Figure 5.2 shows the
basic data structures maintained by the algorithm. The deque is a collection of vertices whose

angles are concave. The front and rear chains hang from front or rear of the deque respectively.
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All the vertices of these chains have convex angles. They represent the outer boundary of the
convex parts being constructed (connecting the ends of either chain results in a convex polygon).
Cuts are always made from the head of the front chain to the front oAf the deque, or from the
head of rear chain to the vertex that is second to the rear of the deque. When cuts are made,

convex parts are pruned off the structure.

rear

Deque
Rear Chain

Front Chain

bheads of chains

Figure 5.2.

Basic data structures used by the monotone to convex decomposition algorithm.

When the sweep encounters a vertex that is adjacent either to the front or the rear of the
deque, it starts a new front/rear chain.

When the new vertex is adjacent to the front chain, the angle at the new vertex is tested.
If the angle is convex, the new vertex becomes the head of the front chain and the sweep contin-
ues. If the angle is concave, then cuts are made from the new vertex to the elements of the deque
starting at the second vertex from the front, working backwards through the deque until either:
e  The angle at the new vertex becomes convex, so the new vertex can start a new front chain

(Figure 5.3.a).
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Rear Chaln

Rear Chaln

@~ FrontChain.head @— FrontChain head

t

New Vertex RearChain.head

t

RearChain.head New Vertex

Figure 5.3.

Concave angles at the front chain. a. Cuts are made to the deque until the angle be-
comes convez, or b. the angle at the connection to the degue is concave.

. The angle at the cut with the deque is concave, or there is only one vertex left in the deque

(Figure 5.3.b). In either of these cases the new vertex is added to the front of degue.

When the sweep encounters a vertex adjacent to the rear chain, it will become the new head
of this chain. We have to ensure that a cut from the new vertex to the second vertex from the
rear of the deque will produce a convex polygon. This property can be maintained if the new ver-
tex is visible to the vertex at the rear of the deque®. If the new vertex is not visible to the rear of
the deque, the algorithm performs cuts from the head the rear chain to vertices in the deque
working from the second vertex from the the rear of the deque forward, until the vertex at the

rear of the deque is visible to the new vertex (Figure 5.4.a). In some cases, a cut to the deque may

* Note that we can test if the new vertex is visible to the vertex at the rear of the deque by testing if the angle
< pew vertex — head of rear chain — rear of deque > is convex.
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results in a concave angle at the deque. Here, the vertex at the head of the rear chain is put at
the rear of the deque (Figure 5.4.b). Another special case is when the deque is reduced to one ver-
tex (Figure 5.4.c). Here, the head of the rear chain and the front of the .deque form a new deque.
Of these two, the one with the smallest Y coordinate becomes the front of the deque. When the
later is the head of the rear chain, the front chain becomes the rear chain and the front chain
becomes empty. Here, the deque also switches from being on one side of the polygon (left or

right) to the other.

Rear
Chalin

Deque
RearChain.head

New Vertex
New Vertex

a. b.

Deque
Front Chaln

{becomes the rear chain)

New Vertex

C.

Figure 5.4.

Resolving vissbility problems at the rear chain, a. Cuts are made to the deque until the
rear of the deque ta visible to the new vertez (the numbers represent the sequence of the
cuts). b. A cut results in a concave angle at the deque; the head of the rear chain is
put at the rear of the deque. . The deque 18 exhausted; the head of the rear chain and
the front of the deque form a new deque. As here the head of the rear chain hae
emaller Y coordinate, it becomes the front of the deque and the front of the deque be-
comes its rear. Thie switches the front chain to be the rear chain and aleo moves the
deque from the right side of the polygon to the left side.
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After the last operation, the new vertex may become adjacent to the front of the degue (this
bhappens when the head of the rear chain becomes the front of the deque). When this happens,
the new vertex will start a new front chain. If this is not the case, the'new vertex becomes the
head of the rear chain, and we test the angle at the new vertex. If it is concave, we make cuts to
the deque, marching from the second vertex from the rear forward until the angle at the new ver-
tex becomes concave (Figure 5.5.a). This may leave only one vertex in the deque, in which case
the old deque front and the new vertex start a new deque, with the new vertex at the front of the

deque.

Rear Chain

RearChain.head

{the new vertex)

Rear Chain

Front Chaln

{(becomes rear chain)

New Vertex

New Deque front

b.

Figure 5.5.
Concave angles at the rear chain. a. Cuts are made to the deque until the angle be-
comes conver. b. The deque i8 ezhausted; the new verter becomes the front of the

deque and the front chain becomes the rear chain. The deque switches from the right
ssde of the polygon to the left side.

As the old deque front became its rear, the old front chain becomes the rear chain and the front
chain becomes empty (Figure 5.5.b). Here also, the deque moves from one side of the polygon to

the other. The complete algorithm is described below.
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Procedure MonotoneToConvex(MonotonePolygon)

begin
VertexArray := SortByDecreasingY(MonotonePolygon);
InitializeDQ();
AppendToFront(VertexArray|0]);
AppendToFront(VertexArray|1]);
FrontChain := RearChain = [|;

for Vertex := third to last of VertexArray do
begin
if Vertex is adjacent to RearChain.Head then
Visible(Vertex);

If Vertex is the last vertex in VertexArray then
Make cuts from Vertex to all vertices in the
interior of Deque and quit;

if Vertex is adjacent to Deque Front then
if angle at Deque.Front is concave then
AppendToFront(Vertex);
else
HandleFrontChain{Vertex);
else If Vertex is adjacent to FrontChain.Head then
HandleFrontChain(Vertex);
else
HandleRearChain{Vertex);
end /* For Vertex Loop */
end /* Procedure MonotoneToConvex */

Procedure Visible(Vertex);

begin
while rear of deque is not visible to Vertex do
begin
PopRear(};
MakeCut(RearChain.Head,Deque.Rear);
if Deque has only one element in it then
begin
Form new Deque from Deque. Front and RearChain.Head;
/* The vertex with the smallest Y coordinate
is put at the front. */
if RearChain.Head became Deque.Front then
Swap FrontCbain with RearChain; /* Front becomes empty */
return;
end /* If one in deque */
end /* While */
end /* Visible */
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Procedure HandleFrontChain(Vertex);
begin
while true /* Exit from the loop is by return */
begin
if angle at Vertex is convex then
begin
make Vertex head of FrontChain;
return;
‘end
PopFront();
MakeCut(Vertex,Deque. Front);
if only one vertex left in the deque or
angle at front of deque i3 concave then
begin
AppendToFront(Vertex);
FrontChain := |J;
return,;
end;
end /* While */
end /* Procedure */

Procedure HandleRearChain(Vertex);
begin
while true /* Exit from the loop is by return */
begin
if angle at Vertex is convex then
begin
make vertex head of RearChain;
return;
end;
PopRear();
MakeCut(Vertex,Deque.Reat);
if only one vertex left in deque then
begin
AppendToFront(Vertex);
RearChain := FrontChain;
FrontChain := [];
return,;
end;
end /* While */
end /* Procedure */

5.3. Decomposing Arbitrary Polygons into Triangular Parts

The eflort put into the decomposition of arbitrary polygons into convex parts had side
benefits as well. This module was made into an independent program called UGTESS that decom-
poses arbitrary polygons into monotone, convex or triangular parts. The decomposition into tri-

angular parts was a simple addition to this module, as the monotone to convex algorithm is an
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enhancement of a monotone to triangles decomposition algorithm. Using the data structures and
utility procedures (for making cuts, testing of convexity etc.) designed for the monotone to convex
decomposition algorithm, it was a simple task to implement the trianghlar decomposition algo-
rithm described in (18). UGTESS is a valuable tool as a filter for other programs where simple
polyg;)ns or triangles are easier to handle (e.g for Gouraud shading in UGDISP!® ), or are required

(e.g for the smoothing operation by uCI® ).

8. Interactive User Interface on the IRIS

An interactive user interface is used for displaying the scene described by the BSP tree.
This interface, implemented on the IRIS workstation, allows th~ user to vary the viewing parame-

ters while viewing the resulting image.

The display program reads a special format ascii file that describes the BSP tree and the
illumination sources, reconstructs the BSP tree and creates the graphical objects for the IRIS
display list, then it invokes the interactive user interface module. This module goes into a loop
where it processes input from the user, sets up the viewing transformation and the corresponding

viewpoint, and invokes the tree traversal module for generating the new frame.

The method of communicating with the user and the setting of the viewing transformation
is independent of the tree traversal module. Thus, it is fairly easy to experiment with different
types of user interface paradigms. Of the ones that we have experimented with, we found two
that are easy to use and give the user intuitive control in manipulating the scene. One interface

uses a flight paradigm and the other one uses a crystal ball paradigm.

8.1. The Flight Interface

In this interface the user gets the feeling of being the pilot of a weightless helicopter that he
can move through the model. The mouse serves as a rudder controlling the pitch (by y motion of

the mouse) and the yaw (x motion). Roll is controlled by keyboard buttons. Forward and
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backward motion is achieved by holding down the left (forward) and right (backwards) mouse but-
tons, and borizontal and vertical motion is accomplished by pressing the keypad buttons. The

speed, the roll increment, and viewing angle can be adjusted interactively by the user.

We found that this interface is suitable for examining the model in detail. This paradigm
provides intuitive feeling of traveling through the model and looking around. Thus, the user gets
good perception of the structure of the model, and can easily move himsell closer to mode] details
that he wishes to examine. However, this paradigm is not that useful for selecting a good set of
viewing parameter for producing hard-copy images of the model. Here, the user basically controls
the movement of the eye coordinate system with respect to the world. Therefore, positioning the
model at a certain orientation with respect to the viewer has to be achieved by the inverse opera-
tion, which is positioning the viewer with respect the object. This is an unintuitive operation that

involves indirect movements and is hard to perform.

6.2. The Crystal Ball Interface

Here, the interface paradigm is one of enclosing the model in a transparent sphere with
infinite radius, placing the model at an arbitrary location with respect to the center of the sphere.
By rotating the sphere around its center, the user manipulates the model’s orientation. The
viewer is assumed to be at a position that does not change with the motion of the sphere, looking
towards the center of the sphere. To be able to determine the exact position of the model with
respect to the center of the sphere, the viewer can switch between two positions that are in the
same plane but 90 degrees apart around the center of the sphere (this is equivalent to looking

either down the Z axis or down the X axis).

The amount of x and y rotation of the sphere is directed by the movement of the mouse,
which is reflected in the position of a cursor on the screen. The position of the cursor with respect
to the center of the screen specifies the angle of rotation in either direction. Moving the cursor in
the y/x direction result in a rotation around the x/y axis in the same direction as that of the cur-

sor. As the cursor gets further away from the center, the angle of rotation increases quadratically
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(this provides better control of the rotation angle). Rotation around the Z axis is accomplished by
holding down keyboard buttons. This rotation is by a fixed angle that can be adjusted interac-
tively. Lateral movements of the model inside the sphere are specified l;y holding down buttons.
The left and right buttons of the mouse control the movement along the Z axis, and four keypad
keys control the movements along the X and Y axes*. The size of these movements can be
adjusted interactively. The viewer's distance from the center of sphere, as well as the viewing

angle are also adjusted incrementally from the keyboard.

We found that this interface is particularly useful for positioning the model with respect to
the viewer. The intuitive feeling provided by this interface is of holding the model and manipulat-
ing it in diflerent directions. Thus, this is a good interface for picking viewing parameters for gen-
erating hard-copy images, and examining the overall appearance of the model. On the other
hand, it does not provide the capabilities of the flight interface. Positioning the viewer at certain
locations of the model, and looking around from that location to examine details of the model, is
not easy. Here, the object has to "come to the viewer” rather then the viewer "going to the

object™, which is unintuitive and therefore cumbersome.

This interface method is actually a simplification of a more elaborate method we have exper-
imented with. In the later, the surface of the screen is considered to be an imaginary tracker ball
that is being manipulated by the motion of the mouse. The cursor serves as a finger that moves
the ball around its center, in the same manner as a2 human manipulates a regular tracker ball.
This scheme needs immediate feed-back to the motion of the mouse to make it really intuitive.
The cursor location has to be sampled at a high rate to be able to follow the user’s instructions.
When the model is large, the relatively long frame generation rate prevents immediate feedback.

Hence, we picked the simpler version described above.

® The three axes are fixed independent of the movement of the sphere. The X/Y plane is paralle] to screen with
the negative Z axis going into the screen. (Or we may switch to Y/Z plane parallel and X going into the screen).
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8.3. Dealing with Relatively Long Image Generation Times

In case where the BSP tree for the model is bigger than 500 polygons, the frame generation
rate is less than that required for for smooth animation. When this h;ppens, manipulating the
model becomes tiresome. Here, the user can get much better response using a wire frame option
for fast redisplay. Wire frame images may, at times, be ambiguous or misleading. However,
switching back and forth between wire frame and hidden surface mode, provides fast interaction

while perception of the the model is maintained.

7. Conclusion

The combination of the binary space partitioning algorithm with the fast transformations
provided by the IRIS workstation provided us with a tool for previewing and examining UNIGRAFIX
models. Because of the high level of interactivity provided by this tool, it is easy to select a
"good” viewing parameters for generating the final hardcopy pictures. The ease of moving
through a model proved to be useful in examining the structure of the model and the relation
between its components. Examining the model for features such as exact object placement and
intersections, which is difficult using the other renderers, becomes easy when using the binary
space partitioning display programs.

There are some weaknesses of the binary space partitioning algorithm that we hope to over-
come by future programs of the same nature. The main weakness is the inability to handle
changes in the model without reconstructing the complete tree. Thus, it can not be used in an
interactive manner for constructing a model or even just moving existing objects in the model.
Another weakness is the inability to handle all the models that can be rendered by the other batch
oriented UNIGRAFIX renderers. Such models are either made of a large number of polygons to
begin with, or their structure leads to a high level of fragmentation during tree construction.

Here, the size of binary space partitioning tree exceeds the memory limit imposed by the system.
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Overall, the eflorts in creating this program resulted in a few good tools that enhanced the
UNIGRAFIX environment. This preview program provides a counterpart to the interactive editor
JESSIE, 1 which was also recently added to the UNIGRAFIX environment. Thus, we now have the

interactive capabilities that have been so conspicuously missing in the UNIGRAFIX environment.
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Appendix I - Manual Pages

Ugbsp - Creates a Binary Space Partion tree from UNIGRAFIX scene
description.

BspBall,bspFly - Interactive display programs for the binary space
partition tree.






UGBSP (UG) UNIGRAFIX User's Manual UGBSP (UG)

NAME
ugbsp - create a binary space partition tree from UNIGRAFIX scene description.

SYNOPSIS
ugbsp | options, arguments |

DESCRIPTION
Ugbsp is a preprocessor for the binary space partition interactive display programs. It reads a UNI-
GRAFIX scene description and generates a special format ascii file describing the binary space partition
tree. The following arguments can be used:

-t number of tries
Number of candidates to try when selecting the root face of a subtree. Default is 15.

-nr Do not use the randomizing scheme when selecting the root for a subtree. Instead, all
faces of the subtree are tested and the one that cuts the least faces is selected as the root.
This option overrides the -t option.

-nt Do not write out the file describing the binary space partition tree. Used for gathering
statistics and creating UNIGRAFIX descriptions of the scene after the binary space part:-
tion algorithm was run (to show the fragmentation of polygons).

-nc Do not decompose the faces of the binary space partition tree into convex parts. By
default, after the binary space partition tree is created, the faces are decomposed into
convex parts. This option should be used when the scene is to be displayed on devices
that can handle arbitrary polygons or it is desirable not to have extra edges when produc-
ing a UNIGRAFIX description of the scene.

-w Write out a UNIGRAFIX description of the faces in the binary epace partition tree. Convex
decomposition of faces (if not disabled by -nc) is performed before the scene is written
out.

-fl filename

Use filename as input file. Default is standard input.

-fo filename
Write the binary space partition tree description into filename. Default is standard out-
put.

-fc filename
Use filename to find command-line options.

-fw filename
Write the UNIGRAFIX description of the scene after the binary space partition algorithm
into filename. Implies -w. Default file is standard output.

-d{1,2,3)
Debugging option, recognized only when the program is compiled with the DEBUG flag.
Turns on the debugging option. The numbers specify increasing levels of verbosity in
debugging messages. Apart from the messages, when in debugging mode, the program
generates long labels for vertices and faces. These labels make it easier to trace the
ancestors of faces and the edge that was cut when a vertex was created.

As the program uses randomized root selection, it may produce trees of varying sizes at different
runs. When the scene has a large number of faces or the size of the resulting tree is significantly
larger than the original scene, several runs are recommended to try and get better results.
Increasing the number of candidates for selecting the root of a subtree increases the computation
time but will not necessarily improve the size of the tree. Therefore, experimentation is required
here as well.
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The cutting procedures as well as the convex decomposition procedure can not handle self inter-
secting contours, in most cases the program will crash when such contours are encountered.

EXAMPLE
ugbsp -fi infile -fo outfile -t 5
FILES
“ug/bin/ugbsp
“ug/src/ug2/bsp/MakeTree

SEE ALSO
bspBall (UG), bspFly (UG}

DIAGNOSTICS

Prints out the number original number of faces, the number of added faces and the total number
of faces in the tree.

AUTHOR
Ziv Gigus
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NAME
bspBall - interactive display program for scenes defined by a binary space partition tree

SYNOPSIS
bspBall | options | [ bsp-tree-file |

DESCRIPTION

BspBall provides an interactive interface on a Silicon Graphics Iris work-station for viewing scenes
defined by a binary space partition tree. It reads the scene description from bsp-tree-file that is a spe-
cial format ascii file produced by ugbsp. BspBall gives the user the impression of manipulating the
scene by enclosing it in a transparent crystal ball and rotating this ball around its center. The center
of the ball is at a fixed location with its X and Y coordinates coinciding with the center of the view
window, and the Z coordinate at a given distance from the view point. The viewing direction is fixed
toward the center of the ball (this can be thought of as looking down the Z axis of a fixed coordinate
system whose origin coincides with the center of the ball). The user can also switch to looking up the
X axis of this coordinate system, to check the relation between the scene and the Z coordinate of the
center of the ball.

This program is useful for manipulating the scene while viewing it from viewpoint and at a fixed
viewing direction. Thus, it is suitable for selecting a set of viewing parameters for producing
pleasing hard-copy images. However, moving around a scene in order to examine it in detail is
not easy with this interface. BspFly is more appropriate for the latter task.

Rotating the Ball

Rotation of the ball around the X and Y axes is controlled by the y/x displacement of the
cursor from the middle of the view window (indicated by a small cross). The further away the
cursor is from the center, the faster is the rotation. X displacement controls the rotation around
the Y axis; being to left/right of the middle of the window results in a left/right rotation of the
ball. The Y displacement controls the rotation around the X axis; being above or below the mid-
dle of the window results in a rotation upwards or downwards, respectively. The middle button of
the cursor zeros the X and Y rotations and moves the cursor to the neutral position at the cross
(the middle of the window). Rotation of the ball around the Z axis is controlled by the left
and right mouse buttons for counterclockwise and clockwise, respectively. The speed of the
rotation around the Z axes is decreased and increased by the ”[” and ”]” keys, respectively.
Each key push increases or decreases the previous speed by 25% or by 20%, respectively (so the
end result of one increase command followed by one decrease command or vice versa is the origi-
nal speed).

Positioning the Scene Inside the Ball

The scene can be moved inside the ball by translational motions. This motions are always defined
with respect to a fixed coordinate system that has one of it axis perpendicular to the screen and
the other two axes coinciding with the X and Y axes of the screen. All these motions are con-
trolled by keypad keys. Moving the object along the axes that is perpendicular to the screen is
controlled by the "7” and ”9” keys for moving the object away and towards the viewpoint (”in
and out of the screen”). The "4”, "6”, "8”, and "2 keys control the left and right up and down
movements, respectively.

The speed of the translational motions of the object is increased and decreased by the "=~
and ”-” keys, respectively (using the same +25%/-20% method described above for control of the
speed of the Z rotation).

Positioning the view point
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The distance of the viewpolnt from the center of the ball is controlled by the "pf1” and "pf3”
function keys for moving the viewpoint away or closer to the center of the ball, respectively.
Switching between looking down the Z axis or up the X axls is controlled by the "'” (single
quote) key that serves as a toggle switch.

Control of the Display Parameters
The viewing angle can be increased and decreased by the "z” and "x” keys, respectively.
Display of backfaces is switched on and off by the "d” key.

Edge enhancement is toggled by the "e” key. The type of edges that are enhanced is given by
command line options (See Options Section).

Display of wire-frame or full hidden surface elimination is toggled by the "I” key.
Display of wire frame image is faster than performing hidden surface elimination. This option is
particularly useful in large scenes where the redisplay rate with hidden surface elimination is too
slow. In wire-frame mode only the original edges of the scene are displayed.

Front and back clipping plane distance can be changed by pressing the "f” and "b” keys.
The program prompts the user with the current distance of the relevant parameter and asks for
the new value.

The color map can be toggled between a red, green and blue or a grey map by the "m” key.

Miscellaneous

Writing the viewing parameters is preformed when the "w” key is pressed. The user is
prompted for the name of the file to print the parameters to. The parameters are written in a
UNIGRAFIX renderers command line format. This file can be used directly as command line input
to these renderers (using the "command file” option "-fc”) to reproduce the picture that is
displayed in the image window when the parameters are written. The user should be aware that
the current UNIGRAFIX renderers do not perform front and back clipping and thus should avoid
trying to render pictures where the eye point is inside the scene.

»or

Help in the form of a short description of the different keys is provided when the key is

pressed.

Quitting the program is accomplished by pressing the "q” key.

OPTIONS
The following options are recognized on the command line:

- Use standard input for the bsp-tree-file. When this option is specified and a file is also
specified the latter will be used.

-sb When edge enhancement is on, display edges that result from the binary space partition
process as well as original edges. Default is original edges only.

-53 When edge enhancement is on, display edges that result from the binary space partition
process and edges that resulted from the convex decomposition as well as original edges.
Default is original edges only.

-h Help. Displays the possible command-line options and quits.
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FILES
“ug/bin/ugBall
“ug/src/ug2/bsp/ShowTree

SEE ALSO
ugbsp (UG), bspFly (UG), ugplot (UG), ugdisp (UG), ugi (UG).

AUTHOR
Ziv Gigus
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NAME
bspFly - interactive display program for scenes defined by a binary space partition tree

SYNOPSIS
bspFly | options ] | bsp-tree-file |

DESCRIPTION
BspFly provides an interactive interface on a Silicon Graphics Iris work-station for viewing scenes
defined by a binary space partition tree. It reads the scene description from bsp-tree-file that is a spe-
cial format ascii file produced by ugbsp. BspFly gives the user the impression of piloting a massless
helicopter moving through the scene and looking around.

This program is useful for examining details of a scene from various viewpoints, moving around
inside the scene and getting closer to points of interest in the scene as well as looking at inner hid-
den structure. However, it is quite difficult to use this program for selecting a set of viewing
parameters for producing pleasing hard-copy images. BspBall is more appropriate for the latter
task.

Motlon Control

Changes In the pitch/yaw of the craft are controlled by the y/x displacement of the cursor
from the middle of the view window (indicated by a small cross). The further away the cursor is
from the center, the faster is the rate of change. X displacement controls the yaw; being to
left/right of the middle of the window results in a left/right change in yaw. The Y displacement
controls the change in pitch; being above/below the cross raises/lowers the pitch. The middle
button of the mouse zeros the pitch and yaw change and moves the cursor to the neutral position
at the cross (the middle of the window). Roll is controlled by the ”<” and ”>” keys for coun-
terclockwise and clockwise rotation, respectively. Forward/backward motion is controlled by
the left/right mouse buttons. Four keypad keys control the lateral motions; the "4, 767, "8,
and "2” keys control the left and right up and down motion, respectively.

The speed of the linear motions (backward, forward and lateral) is increased or decreased by
the "=" and ”-” keys, respectively. Each key push increases or decreases the previous speed by
25% or by 20%, respectively (so the end result of one increase command followed by one decrease
command or vice versa is the original speed). The angular velocity of the roll is decreased
and increased by ”|” and ”]” keys, respectively (using the same +25%/-20% method).

Control of the Display Parameters
The viewing angle can be increased or decreased by the "z” and "x” keys, respectively.
Display of backfaces is switched on and off by the ”"d” key.

Edge enhancement is toggled by the "e” key. The type of edges that are enhanced is given by
command line options (See Options Section).

Display of wire-frame or full hidden surface eliminatlon is toggled by the "1” key.
Display of wire frame image is faster than performing hidden surface elimination. This option is
particularly useful in large scenes where the redisplay rate with hidden surface elimination is too
slow. In wire-frame mode only the original edges of the scene are displayed.

Front and back clipping plane distance can be changed by pressing the "f” and "b” keys.
The program prompts the user with the current distance of the relevant parameter and asks for
the new value.
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The color map can be toggled between a red, green and blue (fixed different intensity level of
each of these colors) or a grey map (that provides as many equally spaced grey levels as the color
map can accomadate) by the "m” key.

Miscellaneous

Writing the viewing parameters is preformed when the "w” key is pressed. The user is
prompted for the name of the file to print the parameters to. The parameters are written in a
UNIGRAFIX renderers command line format. This file can be used directly as command line input
to these renderers (using the "command file” option ”-fc”) to reproduce the picture that is
displayed in the image window when the parameters are written. The user should be aware that
the current UNIGRAFIX renderers do not perform front and back clipping and thus should avoid
trying to render pictures where the eye point is inside the scene.

Help in the form of a short description of the diflerent keys is provided when the ”?” key is
pressed.

Quitting the program is accomplished by pressing the "q” key.

OPTIONS

FILES

The following options are recognized on the command line:

- Use standard input for the bsp-tree-file. When this option is specified and a file is also
specified the latter will be used.

-sb When edge enhancement is on, display edges that result from the binary space partition
process as well as original edges. Default is original edges only.

-53 When edge enhancement is on, display edges that result from the binary space partition
process and edges that resulted from the convex decomposition as well as original edges.
Default is original edges only.

-h Help. Displays the possible command-line options and quits.

“ug/bin/bspFly
“ug/src/ug2/bsp/ShowTree

SEE ALSO

ugbsp (UG), bspBall (UG), ugplot (UG), ugdisp (UG), ugi (UG).

AUTHOR

Ziv Gigus





