JESSIE:

AN INTERACTIVE EDITOR FOR UNIGRAFIX

H. B. Siegel

Report No. UCB/CSD 86/279
December 1985

University of California
Berkeley, California 94720

Computer Science Division (EECS)

Al

JESSIE:
AN INTERACTIVE EDITOR FOR UNIGRAFIX

H.B. Siegel -

Master's Project Report
Under the Direction of
Prof. Carlo H. Séquin

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
December, 1985

ABSTRACT

Jessie, (Geometric Construction Editor) is a tool for the creation and
modification of UNIGRAFIX objects and scene descriptions. It is an
interactive 3-D editor running under SunTools. Jesste has operations to
incrementally create and maintain a hierarchical scene representation. It
supports a large set of transformation and alignment operators to
transform portions of the scene tree, both by eye and by exact placement.
The command language includes some geometric operators to help the user
construct exact representations, that are not limited by the screen
resolution. Jessie has an easily expandable input language and flexible
menu structure.

This report consists of several parts: As an introduction, one should
read first the User's Guide. For further information on maintaining,
debugging, or customizing Jesste see The Jesste Design Manual.

This work was supported in part by
the Semiconductor Research Corporation.

Jessie: An Interactive Editor for Unigrafix
The User's Guide

H.B. Siegel

Master's Project Report
Under the Direction of
Prof. Carlo H. Séquin

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
December, 1985

1. INTRODUCTION TO JESSIE
This manual assumes a working knowledge of:
(1] The BSD Unix operating system as implemented on a Sun workstation (1],

[2] The UNIGRAFIX ascii scene representation format, including hierarchical models
and transformations

Potential users unfamiliar with one or both should spend some time learning the
peculiarities of BSD and UNIGRAFIX before attempting to learn Jessse.

Jeasse is tool for the creation and modification of UNIGRAFIX objects and scenes.
It fulfills two roles in the UNIGRAFIX universe. Jessic may be used as a scene composi-
tor, assembling smaller scenes and objects into a cobesive whole. Because Jessice is also an
editor, it allows creating and modifying individual parts of the scene. The command
language is a superset of UNIGRAFIX, so Jessie can edit any scene created by any other
UNIGRAFIX tool.

Jessie 1.0 currently runs only on the Sun workstations under SunTools, similar to
other Sun tools such as Icontool and Gremlin. It is memory and processor intensive and
runs best on a single-user workstation. Jessie may be opened, closed, or even cloned on
the same workstation.

The tool window is broken up into several subwindows. The graphics subwindows
make up most of the tool area, with a smaller area for command confirmation and menus.
Jessic 1.0 supports four independent views on the same scene tree and a flexible
menu/prompting scheme for the user interface. All picking and selection of UNIGRAFIX
objects takes place in one of the four graphics areas, or views. Command entry is
through the menu panel or alternatively by typing directly into the command line. The
user may mix and match command entry styles - a fast typist may prefer to type com-
mands as opposed to most novices who prefer the safety of a prompted menu. Jessic may
even be used non-interactively by feeding it scripts containing commands.

1.1. Buttons and Cursors

Mouse Buttons

Left Used for all command menu
buttons, selection of vertices
and points on the graphics
screens, positive valuator
values, and confirmation

queries.

Middle Used for extraction of coordi-
pates for contour and face
commands.

Right Used for negative valuator

values, and pull-down menu
selection on the command
menus.

All menu commands and most picks are through the left-hand mouse button. The
middle and right-hand buttons are occasionally used, as described in the above table.

Cursors and lcons

p———
Pointing Hand

The Command Selection cur-
sor informs user that the sys-
tem is waiting for for a com-
mand to be selected from the
menu.

Coffee Cups

The Patience cursor informs
the user that a relative slow
operation is currently execut-
ing, e.g. reading a large file.
The animated steam rising
from the coffee cups shows
that the system is still run-
ning.

Quill Pen

The Write cursor informs the
user that a file is being writ-
ten.

Gnomon

The Dials cursor is displayed
while the cursor is in the dials
area.

Target

The Target cursor is the de-
fault cursor in the wviews.
Used for selection of vertices.

Eyeglasses

The View icon is displayed in
the upper left-hand corner of
the current view. It is also
the cursor in the graphics
area while the system is wait-
ing for the user to select a
view via the pick view com-
mand.

The Map cursor informs the
user that the system is in
map mode. The cursor
represents a ray penetrating a
face.

OK?

The confirm cursor informs
the user that the system is
waiting to confirm the execu-
tion of the current command.
Hit the left mouse button to
confirm and middle or right
to abort.

The cursor that tracks the mouse informs the user of the current function of the
mouse: a small crosshairs when Jessic wants the user to pick an object vertex, a pointing
band for picking commands, a mouse image for the co
line, error line, prompt line, and current cursor work to

current status.

pfirmation signal, etc. The status
gether to inform the user of the

1.2. The Use of Color

Screen Objects and Colors

Vertices Green
Wires Magenta
Faces Blue
curlnst White
Other Instances Red
Select Set Green
New Contours Yellow
Gnomon Magenta
Background Gray

Jessie uses color heavily to key the object types; this may preclude use of a mono-
chrome workstation, depending on the perceptual skill of the user. Like MAGIC, the
Berkeley VLSI design system (3], Jessie uses a highlit/lowlit scheme for identifying the
currently editable objects among all other objects. The rule is simple and works well on a
color display: The bright objects can be changed through various commands and the dim
objects are untouchable. The bright and dim objects make it easy to tell the current posi-
tion in the tree.

Jessie runs on monochrome Suns, but currently there is no support for special key-
ing on these devices.

2. BASIC OPERATIONS

The core features are simply the UNIGRAFIX commands that describe scenes.
There is a duality between the UNIGRAFIX descriptive format and the Jesste command
language. All UNIGRAFIX object descriptions are a subset of Jessie commands. The
following statements are valid UNIGRAFIX input as well as Jessic commands:

v vAlpha 01 2;
v vBeta 8 4 5;
w wirename (vAlpha vBeta);

2.1. Primitive Constructors

A naive user could theoretically use just the standard UNIGRAFIX statements to
build scenes of arbitrary complexity. This set of commands is called the Primitive Con-
structors. They allocate and name new structures that are available for use later in the
session. Any object assembled with the primitive constructors may be referred to by its
pame or by picking it in a view.

Unlike UNIGRAFIX, which ignores the identifiers for everything except vertices,
Jessic uses them for uniquely identifying the object within a definition.

Primitive Constructors (standard UNJIGRAFIX statement
vertex [id]

wire [id] (vertex-list) { (vertex-list) }* [colorld];

face [id] (vertex-list) { (vertex-list) }* [colorld] [illum];
instance [id] (defid {transform-list}) ;

def id;

end;

color [id] intensity | hue [saturation | translucency]} ;
light [id] intensity [x y z [h]]:

A careful reader might have noticed that, unlike standard UNIGRAFIX, the
identifiers for vertices are optional. In Jessie, all identifiers are optional, and the parser
will supply an internally generated, unique, cryptic identifier to any new, unnamed object.
If the user prefers more sensible names, he should name the object as it is created or use
the rename command to replace the internal identifier. The internally generated names
are of the form g#x#y, where z is the number of symbols generated since the beginning
of the session and y is a unique number associated with the session process id. The exact
identifier is unimportant, suffice it to say that it is unique.

All Primitive and Advanced Constructors return the identifier of the object that they
create. This allows a LISP-like nesting of these commands, greatly extending the scope
and power of standard UNIGRAFIX. Jessic takes advantage of this by constructing

commands like:

fﬁd(vaOlOvblOOvc230);

which is equivalent to:

vaO1l0;
vb10O;
ve230;
ffid (a bec)

The vertices that are constructed on-the-fly are syntactically and semantically the
same as regular UNIGRAFIX vertices. They may be named explicitly or implicitly by
letting Jessic generate internal names. Jessic will generate statements like the one above
in response to a command that creates a face out of new vertices, e.g. creating a new face
from points that generated from some pointing action.

The generation of vertex coordinates is much more flexible than illustrated above.
As described in later sections, the coordinates for a vertex may also be extracted from any
other vertex, or generated by mapping a mouse-pick onto an existing face. Several com-
mands use the vertez-list structure so it is worth noting here. The literals are in italics.

vertex-list ::= vertexId vertex-list
| vertex-command vertex-list

| map faceld vertex-command end_map vertex-list

The first alternative should be familiar to UNIGRAFIX users - it is a list of previously

-6 -

specified vertex .dentifiers. The second alternative is the direct interpolation of vertex
commands, as described in the example above. The third choice allows mapping of ver-
tices onto an existing face. This s useful for drawing contours (cutting holes). The con-
tour command, described later, uses this command to assure the new vertices lie on the
prescribed face.

Often the user will want to work on one portion of the scene tree for a while before
moving onto apother portion of the tree. The commands that change the subtree of
interest are described in a later section, but the concepts are important for describing the
rest of the constructor commands.

The scene tree is rooted at World. The World definition bhas some special properties:
it has no parent and it cannot be deleted. Otherwise, it is a simply another definition.
There is one implied instance of the World in each view. When Jessie starts up, the
current definition is set to be World, which means that all additions and deletions affect
only the World. Several commands change the current definition to another definition in
the scene. This changes the focus of the various construction and modifying commands to
the new current definition. This current definition is commonly referred to as curDef in

the remaining documentation.

One instance, if there is one, in the curDef is specially designated - a favorite child,
so to speak. This is the current instance, or curlnst. All transformations and some modi-
fying commands work only with the current instance. Both Jessie and UNIGRAFIX
treat definitions as mere prototypes or templates of an object, whereas instances are the
real, physical interpretation of the object in the world. The instance of a definition may
be squeezed, stretched, translated, rotated or even deleted with no effect on the definition
itself. Of course, any change to curInst will affect curDef because curDef is the parent
of curlnst. Any change in curDef will be reflected in any instance that refers to this
definition, just as in standard UNIGRAFIX.

The designated curDef and curlnst save a lot of typing and repicking. All construc-
tion and transformation operators aflect only curDef, but some modifiers have side effects,
e.g. copy, which will affect other specified definitions as well.

Jessie input is normally completely prefix, that is, the operation 1s specified before
the parameters or the elements to be operated upon are supplied. However, the com-
mands that use curDef and curlnst have a postfix feel, since curDef and curlnst are set
implicitly before the commands are invoked. The original Jesate was completely postfix
and this is one the few vestiges of that version. The tree traversal commands use and
modify curInst and curDef with each movement through the tree.

The status line always displays the curDef and curlnst. If the curDef is a leaf node,
there is no curlnast.

2.2. Advanced Constructors

Advanced Constructors
contour faceld (vertex-list);
reverse contour faceld;
reverse face faceld;
build def defld;
copy def newDefld;
copy def select newDefld;
repame instance instanceld;
rename def defld;
replace def newDefld:
delete def defld;
delete instance;
delete vertex vertexld,;
delete face faceld;
delete wire wireld;
delete contour faceid;
delete select;
flatten instance;
join instance instld [defld}:
clear def;
clear all;

The contour command adds a contour to an existing face. The most useful con-
tours are holes, but it is also acceptable to Jessse to add a co-planar face to an existing
face. However, such contructs may not be properly interpreted by some of the other
UNIGRAFIX programs. The vertex-list of a contour is formed exactly the same way as
the vertex list in face statement. A useful option for drawing contours is map mode,
which takes a face identifier as a parameter. Map will interpret each mouse-click as a ray
from the viewer's eye to the map face, generating a point at the intersection of the face
and the ray. This is useful for guaranteeing that each vertex lies on the selected face.
Each click of the left mouse button will create a new vertex at the intersection point and
interpolate the vertex identifier into the vertex list.

The end_map parameter in the vertex list informs Jessie to leave the map mode and
go back to picking vertices. An example contour command could be:

contour faceld (map faceld
vg#0345vg#1943vg#2945end_msp);

This format appears wordy, but since it is entirely generated through menu selec-
tions, some of which contribute several parts each to the final command, the actual
issuance of the command is quick.

The direction of the contour determines whether it is a bole or a face. Reversing a
contour through the reverse command is 3 convenient way to change the direction of a
contour. Reversing a face reverses all the contours of a face.

The bujld command is a combination of several simpler UNIGRAFIX commands

that are often used together. Build creates 3 new empty definition called defId, instan-
tiates it in the current definition, and then sets the curDef to be the new definition.

A Unigrafix Scene Tree

Robot

@@@ kb

World

Cean>

Icosa |

VWF

Head J Arm Body Leg

WE TywE VW Wi

i Wi W WA
Identifier Definition
Instance
— VvV - Vertex List
— W — Wire List
—F — Face List

Figure 1.

A typical scene tree created by Jessic.
definition. Each definition may have scveral instances,

to another definition.

The scenc tree ia rooted at the World

each of which points

-8-

The current definition may be copied using the copy def command. The new
definition is an exact replica of the current defipition. All vertices, wires, faces, and
instances in the new definition are unmique, but it is important to remember that the
definitions to which the duplicate instances refer are the same as before.

The copy def select command is useful for extracting only the members of the select
set into a new definition. The select set mechanism is explained in the chapter Picking
and Selection.

The rename command changes the internal identifier for a UNIGRAFIX object.
The current instance and current definitions may be renamed with the snstance and def
parameters, respectively. Jessie 1.0 has no provision to rename vertices, wires, or faces.

The replace def comand changes the definition to which the current instance refers.
This is occasionally useful for exchanging simple object for a more complicated object.

UNIGRAFIX is hierarchy-oriented, so Jessic provides several operators to help
maintain and rearrange the scene tree.

The delete type operator will remove an object in curDef. Delete accepts each
object type as the type parameter, including contour and select. Delete contour will
delete the last added inside contour of a face, but not the first (outside) contour. Addi-
tional delete contour commands will delete the remaining inside contours, one at a time.
Only delete face will remove the entire face, including the outside contour. The delete
select command deletes all currently selected items in the select set inside the current
definition.

The delete def defId command will delete the definition called defId, but only if it
is Dot in use by any other instance. It is impossible to delete the world definition, but the
same net eflect may be obtained through the clear all command.

The flatten command "flattens” the current instance by copying the transformed
elements of curInst’s definition into the current definition. This does not affect the
definition to which curlnst refers. The curlnst is deleted, and a new curlnst is chosen
among the remaining instances in curDef.

The last of the hierarchy modifying commands is join. Join asks the user to pick
any instance in the scene. This picked instance is inserted into the current definition with
the same relative transformation as it had to its former parent. The instance is then
removed from its old parent definition, effectively moving the instance to the current
definition. This is the only Jessic command that affects an object outside the current
definition. UNIGRAFIX does not allow a recursive definition, so Jesaie does not allow
the picked instance to a paternal relative of the current definition.

The clear def command removes all vertices, wires, faces and instances from the
current definition. It is equivalent to a series of delete commands. The parameter all
will erase every existing definition, clearing the entire database. This is useful for restart-
ing a session, or starting afresh on a new scene.

3. TREE TRAVERSAL, PICKING, AND SELECTION

Tree Traversal,
Picking,
Selection Commands

walk_down,;
walk_up;
walk_right;
walk_left;

pick instance ild;
pick vertex vld;
pick wire wld;

pick face fl1d;

select {closure}

{ pick i {ild}+ }*
{ pick v {vid}+ }*
{ pick f {fld}+ }*
{ pick w {wld}+ }*;

The walk commands change the curlnst and curDef by moving around the scene
tree. Using the walk commands may or may not be faster than simply picking the
appropriate instance with pick instance. It is sometimes more convenient, especially if
the user is very familiar with the scene tree.

The walk_down command changes the curDef to the one referenced by curlnst.
The first instance in this definition, if any exist, becomes the new curlnst. If the
walk_down command is issued in a definition with no instances, and therefore no
curlnst, Jessie displays a mild error message.

The walk_up command changes the current definition and current instance by
moving one level closer to the root, i.e. World. The new curlnst is reset the previous
curInst before the last walk_down command. The new curDef is the definition that con-
tains the new curlnst. Since instances in many definitions may refer to a particular
definition, Jessic keeps track of the specific one that was used to get to current definition.
Several Jessie commands, such as pick instance and walk_down, set the path through
the scene tree.

Walk_right and walk_left set the new current instance to be the right or left
sibling, respectively, of the current instance. Practically, right and left have no physical
meaning, except that the right sibling is alway in the opposite direction as the left sibling.
The sibling instance list is circular within curDef, so a walk in the wrong direction will
eventually end up with the desired instance.

Each command knows what type of objects it needs in order to complete a syntacti-
cally correct command. The prompt line and menus inform the user of the choices for
next valid steps. Often the command needs an identifier from the database of some UNI-
GRAFIX object. Although there are about a dozen different types of objects the pick
bandler can return, there are a few common denominators: the left-hand mouse button
picks, and each pick is always at a vertex or at a corner of a bounding box.

The vertez-list pick is special. The middle button may be used to eztract the coor-
dinates of any point in the scene, including the boundary of a bounding box. A new ver-
tex is created at that world location, but it bears no topological relationship to the picked
point. It just occupies the same position in space.

-10-

The pick command takes the goal object type as a parameter. This type may be
any of the standard objects: vertez, wire, face or snstance. Definitions may not be
picked, as they never appear on the display. However, the instantation of a particular
definition may be selected.

Notice that each of the pick commands also takes an identifier as a parameter. The
user never types this; it is supplied by Jessie after the pick is successfully completed. If
for some reason the pick fails, Jessie will keep asking the user to re-pick the object until
the pick succeeds or the user decides to abort. Jesste will return the full path name to
the instance in a pick instance command. The pick vertez, pick wire, and pick face
commands are local to the current definition. Some commands allow inter-definition
picks, but in these cases the pick will return a value, such as the coordinates of a vertex
rather than a direct reference to the vertex.

Because names of objects in definitions are local, the name of a UNIGRAFIX object
does not uniquely specify it. It is possible to uniquely specify an object by giving its full
path name, but this is often extremely cumbersome and certainly is not useful within an
interactive editor. Jessie, like most 3D hierarchical editors, uses a picking device to
bypass the hierarchical naming problem and to allow the user to directly point to the
desired object.

Sometimes even this is not enough and a 3D view may be ambiguous. This is easily
solved by shifting the view slightly, an advantage which a 3D editor has over a 2D editor
in a similar situation. The early versions of Jessie had a sophisticated picking algorithm
for distinguishing among these ambiguous picks. The simpler system turned out to be
satisfactory.

Jessie finesses the ambiguous pick problem by allowing picks from any graphics
subwindow within the same command. At least one view should contain a satisfactory
eyepoint on the scene.

Occasionally the user will want to directly type in the name of an object. The path
from the root to the destination must be fully specified. This format resembles the way
UNIX specifies directory paths, e.g. /rootinst/b/c/destobj. Each slash and string
represents one instance of the UNIGRAFIX scene tree. The full specification of the path
will uniquely specify one object in the destination definition. This representation is
cumbersome, but complete.

Picking, by itself, does nothing more thap return the name of the picked object.
Often the user wants to do something with a picked object, so Jessie uses the pick com-
mand to help build a eelect set.

The select set is a group of objects within a definition that are temporarily linked
together so that a Jessic command may operate on all of them in parallel. Any set of
vertices, wires, faces and instances in a definition may be grouped into a select set. Most
commands that operate on UNIGRAFIX object can also take the select set as a parame-
ter. Select sets remain with the definition (they are implemented as boolean flags on each
item) so it is possible to have several simultaneous select sets in several different
definitions.

In effect, the select set may be used as a temporary instance, without any permanent

changes of the data structure. The selected objects may be deleted, copied, or
transformed. Using select sets for transformations is extremely useful and often saves

-11-

tedious picking and retransformations.

Selecting a face or a wire implicitly selects all its vertices. Since UNIGRAFIX is a
vertex-oriented boundary representation, selecting a face would be somewhat meaningless
if its vertices were not also zelected.

The select command is primitive in Jessie 1.0. Each select command may select of
any combination of objects in the current definition, but the select set in the definition is
cleared for each new select command. This means that the entire select set must be re-
entered if the user wants to add or delete any objects in the set. Selected objects must be
in the current definition. Despite these drawbacks, the mechanism is useful. Select has a
closure option which computes the transitive closure of a selection. With closure it is
easy to point to one vertex of a group of connected faces and implicitly select the entire
group. Unconnected objects (in the UNIGRAFIX sense) remain unselected. The closure
parameter has no effect on the selection of instances since they are never connected to any
other object.

4. INCREMENTAL TRANSFORMATIONS

The transformation operators do not change the scene tree topology, but rather the
transformations between portions of the scene tree. Rotations, translations, and scaling
are examples of commands, that transform some portion of the scene tree. The viewing
transformations change the relationship between the Jesssie scene and the viewer's eye.

The use_dials command attaches the incremental transforming operations to the
dial area on the command panel. This allows easy interactive modification of the selected
objects without having to know the exact transformations. These dials may be hooked up
to any view or object in the scene tree and may be interpreted as rotations, translations
or scaling around various important axes in the scene.

The Sun does not have any valuator devices, so the mouse and virtual dials replace
physical dials. The dial buttons on the dial area are valuators. A left mouse-button click
on the left side of the dial represents a "small positive” value and a left mouse-button
click on the right side of the dial is a "large positive” value. The "largeness” or "small-
ness” of the value depends on the coarseness of the dial mode. Similarly, the right
mouse-button returns a "pegative” value of the same magnitude. A left-click followed by
a right-click will cancel each other out, leaving a net transformation of zero units.

The coarseness of the dials may be set to autoscale so that the value returned is a
small fraction of the bounding box of the current instance. The semantics of the dial
value should be interpreted only as a convenient analog mumber with no particular
significance. If the analog dials are not suitable, the user may enter an exact pumerical
distance or angle for a transformation.

There is a wide variety of transformation options available from the keyboard and
dials. Often the user will want to fiddle with the dials freely, moving the selected object
in space until it reaches the desired position.

Each definition has an implicit coordinate system. This is the coordinate system that
we use to build the object, e.g. the vertices of a cube may lie at (+-1, +-1, +1). The
most common type of transformation is to rotate or translate an instance in this coordi-
pate system, where the x,y,2 axis are interpreted in the patural manner. Such operations
are called instance transformations and correspond to transforming the instance around

-12-

its own axes. The parent transformation, on the other band, transforms the instance and
its axes with respect to the coordinate frame of the parent definition.

While designing an object, the user may want to shift the axes of the definition to a
more convenient position. Haviug the axes in a good position simplifies future transforma-
tions of the instance with an snstance transformation. The azes transformation changes
the frame of reference, i.e., the position of the axes within the current instance. If the
show zyz true option is set, the user sees the axes of the current instance move or rotate.
These algorithms are described in more detail in the The Jessie Design Manual [4].

After the type of transformation (instance,parent, or azes) is specified, Jesste
attaches the dials to the specified object or objects. The user has the option of restricting
the trapsformation further or continuing with a general transform. The general
transform allows free movement around and along the x,y,z axes of the specified coordi-
nate frame, as well as symmetrical scaling with respect to the origin of the frame.

Incremental Trapsforms
use_dials instance general transform-list;
use_dials axes general transform-list;
use_dials parent general transform-list;
use_dials vertex general { vertexld transform-list }*;
use_dials select general transform-list;
use_dials view general transform-list;
use_dials instance vec_select point point transform-list;
use_dials axes vec_select transform-list;
use_dials vertex vec_select point point { vertexld transform-list} *;

The user may type in the transform list directly, but it is much easier to use the
dials as described above to generate the sequence of transforms. As each transform is
parsed, Jessie will update the display by moving the appropriate object in real time.
Although Jessie update speed is not blazingly fast, the feedback is acceptable.

The transformation parameters instance, azcs, and parent refer to the current
instance. Jessie does not have any concept of a current vertex, so the use_dials verter
command operates on picked vertices within the current definition. As each vertex is
picked, the entire set of accumulated transformations from the start of the current
use_dials command is applied to the new vertex. This makes it easy to transform a
series of vertices with the same set of transformations.

The use_dials sclect command transforms every selected object within the definition
with the same series of transformations. This is the preferred way to transform a face,
such that it remains planar, because a series of use_dials verter commands could create
pon-planar faces. Jesaie doesn't care about pon-planar faces because it deals almost
exclusively in wire-frames, but the algorithms in ugdisp or ugplot rely on planar faces.
The use_dials sclect is especially useful for moving a group of instances simultaneously
while keeping the relationship between those instances constant.

Occasionally the user begins to transform the object, but, perhaps through indecision
or carelessness, regrets ever touching the object. At any time the user may abort the
transform and return the object to its original state. If the user wants to keep the
transform, hitting accept will end the use_ dials command. The user may even change
his mind after accepting the transform (see undo). The ability to abort a transformation
in mid-stream makes transforming objects painless and easy.

- 13-

Sometimes it is inconvenient to transform objects in terms of their instance or parent
coordinate system, so Jessse also supports rotation and translation around arbitrary vec-
tors in the scene. With the vec_select option, the user may pick apny two points in the
scene, such as an edge of a face or corners of a bounding box, and then rotate around or
translate along that vector.

The incremental transform that operates on the scene as a whole, use_dials view
general, is so useful that it bas been given a special place on the main menu (abbreviated
to just view xform). This operation transforms the view, allowing the user to move
around inside the scene. All the transformation options that transform an instance, e.g.
translation along a vector, could also be used to transform the view. However, the most
common method of transforming the view is still the use_dials vieuw general command.

5. ABSOLUTE TRANSFORMATIONS

All the transformation operators described so far are incremental. Each transforma-
tion is applied on top of the previous transformations to produce a new transformation.
The incremental transformation is intuitively obvious for interactive tweaking of the
scene, but often the user has a clear idea of exactly where he wants the object to be.
Moving the latter to its final position via the incremental transforms would be tedious,
error-prone, and unexact, even with the use of the various coordinate frames. To ease
this task, Jessie supports a set of absolute transformas.

Absolute Transforms
move instance pt_select pt0 ptl;
move instance vec_select vecO vecl;
move instance plane_select plane0 planel;
move select pt_select ptO ptl;
move select vec_select vecO vecl;
move select plane_select plane0 planel;
move instance norm transform;
move instance normrot transform;
move instance align transform;
move instance abut x transform;
move instance abut y transform;
move instance abut z transform;
move instance abut xyz transform;

The syntax and semantics for absolute transforms are similar to that of incremental
transforms. All transformed instances and vertices must be in the current definition.
Except move select, all the absolute transforms change only the current instance. Move
sclect, like use_dials sclect changes the transform of all the selected objects inside the
current definition.

The pt_select, vee_sclect and planc_select parameters are extremely useful for align-
ing objects exactly. These alignment operators are a major feature of another 3-D scene
composition system, calledSCOT [5].

Pt_sclect asks the user for two points in the scene. These points may be vertices, or
points on a bounding box. Jesaic calculates a transform that will map the first point onto
the second point with a simple translation. This translation is applied to the current
instance or to the select set for the commands move instance and move sclect, respec-
tively; position angles remain unchanged.

-14 -

Vec_ select asks the user for two vectors in the scene. A vector is defined by any two
points, as described above. The vector is extracted by subtracting the first picked point
(the tail), from the second point (the head). Vector alignment starts by moving the tail of
the first vector onto the tail of the second vector, like pt_select, then rotating the altered
first vector onto the second vector until the vectors are aligned. The combined transform
that describes this alignment process is applied to the current instance or the select set.

Plane_select asks the user for two planes in the scene. A plane is defined by any
three points. For plane alignment, the lines defined by the first two points of each triple
are aligned, as described in vector alignment, then the altered first plane is rotated about
this line until the planes coincide.

The order of picked points for pt_ select, vec_select, planc_select is critical. Diflerent
picking order will have different results. This is intentional and useful. In summary, for
all three cases, the first point (of the first vector or plane) is translated to the first point
(of the second vector or plane). The first vector (of the first plane) is rotated into the first
vector (of the second plane). Finally, the new first plane is rotated into the second plane.

Most of the absolute transforms accept a parameter transform. Usually this param-
eter is extracted from an existing transformation somewhere in the scene tree. For exam-
ple, if the user wants to align instance A with with instance B anywhere in the scene tree,
he could select move instance align, then pick instance B in a view. The user does not
care what the transform was, but simply wants to set align A with B.

The pick handler extracts the transform from the picked instance and substitutes the
transform for the picked instance, without the user ever knowing what the transform was.

The norm parameter sets the total trapsforms with respect to the World, between
the current instance and the picked instance to be the same. Afterwards, the current
instance will have the same rotation, translation and scale relative to the World as the
picked object.

The normrot parameter sets the total rotational transforms with respect to the
World, between the current instance and the picked instance to be the same, but leaves
the translation component intact. The selected object will have the same rotation and
scale relative to the world as the picked object, but its origin will remain fixed.

The abut xyz parameter leaves curlnet 's rotation intact, but trapslates the coordi-
nate frame such that it directly coincides with the picked instance. Abut also accepts just
z,y or z, which translates the frame such that curlnst and the picked instance’s frame
coincide along the specified axis.

The align transform is particularly useful. Align looks at the current instance’s
coordinate frame and the picked instance's coordinate frame and aligns them by matching
the closest axes of the current instance to the picked instance. This algorithm chooses the
smallest rotational transform that will align any combination of the axis pairs. This
operation is useful for making the coordinate systems of two objects orthogonal to each
other.

The command sequence abut x, abut y, abut 1, has the same effect as just abut zy:z.
A normrot followed by an abut zyz would have the same effect as one norm command.
Except for align, all these transforms ignore curlnst’s current transformation.

The normalization and abutting operations are described in depth in [8].

-15-

8. DRAWING AND VIEWING COMMANDS

Drawing and Viewing Commands
draw {clear | grid | contour | select}™ ;
disp {clear | sa | in | ho | ab}*:
eyepoint X y 2;
eyedirect x y z;
viewrotangle r;
viewinfo;
use_dials view general transform-list;
perspective { true | false };
pick view viewlndex;
show open { true | false };
show bbox { true | false };
show xyz { true | false };

Jessie has a small, but useful set of operators to help view the scene as it is being
constructed.

Jessie 1.0 does not place a strong emphasis on intelligent screen updating. Where
possible, Jessic attempts to redraw the screen to reflect the current state of the world,
but once in a while the user would like to force a redraw. The Draw command redraws
the scene in all current views. The Draw command accepts four parameters, grid, con-
tour, select and clear. The Grid parameter draws a grid on the screen which the user
may find helpful for alignment. The Contour parameter draws small arrow-like lines on
all edges in the scene so the user can visualize the direction that a contours faces and
easily distinguish holes from faces. The contour lines lie on the plane of the face at a
forty-five degree angle to the edge. The contour line intersects the edge two-thirds of the
way along the edge in the direction it points, so the contour lines on adjacent faces are
easily distinguished. Each contour line is scaled so it is relatively "small” compared to the
edge on which it lies. The select parameter highlights the current select sets. All of the
drawing parameters stay on until the next draw clear command.

Jessie has a simple, yet workable interface to ugdisp [7], using an intermediate ascii
file. The disp command creates a ugdisp-rendered version of the current scene in the
current view. Unfortunately, ugdisp automatically rescales the picture, although the view
rotation and eyepoint will remain the same. This will eventually be fixed as ugdisp is
enhanced witha the new XFORM standard [8]. The Disp command accepts all the stan-
dard ugdisp options. Like draw, all disp options stay in effect until the next disp clear.

The eyepoint, eyedirect, and viewrotangle need little explanation. They correspond
to the standard UNIGRAFIX description. Like UNIGRAFIX, eyepoint implies perspec-
tive viewing which may be useful as a depth cue. Viewdirect turns off the perspective
viewing as well as setting a new view direction. Perspective viewing may be explicitly set
(or unset) with the perspective command.

Jeasic 1.0 supports up to four simultaneous views on the same scene. The pick view
command, followed by a pick anywhere within the four views sets the view for future
viewing commands. This view is marked as the "current” view by a small pair of eyeg-
lasses in its upper-left hand corner. Working with multiple views is sometimes necessary,
and often helpful in visualizing complex scenes. The main view defaults to an eye direc-
tion of (1,0,0), which corresponds to looking along the X axis. The three smaller, remain-
ing views default to the following view directions: (from the top of the tool downward):

-16-

(1,0,0), (0,1,0), (0,0,1). These correspond to looking along the X,Y,Z axes, respectively.

The most useful of the viewing commands is the use_dials view general command,
which is conveniently abbreviated to view xform on the main menu. This command
attaches the dials (see incremental transforms) and allows to manipulate the viewing
transform that instantiates the World. The interface is simple and intuitive and fits nicely
into the way Jessie transforms other parts of the UNIGRAFIX scene tree.

The viewinfo commands prints a table of current viewing information, which
includes the current settings of the eyepoint, eyedirect, perspective and view rotation.

The show options allow the user to control the level of information displayed on the
screen. These options are applied to the scene tree itself, and are independent of the
current view.

The show open true command will open the current instance’s bounding box so that
the insides may be viewed. Unlike walk_down, the current definition and current
instance do not change. Show open false has the opposite effect, that 1s, it hides the
contents of the current instance and displays only its bounding box. This command is
useful for suppressing scene details that would slow down redrawing, or make picking or
visualization difficult.

The show bboz command shows or hides the bounding box of the current definition.
This command is useful on occasion, but can cause confusion if used improperly. Note
that the bboz and open flag are independent.

The last of the show options sets or unsets the display of a gnomon or labeled Xyz
axis for the current instance. This option is useful for choosing axes for the various
transform commands. Jessie will scale the gnomon so it fits the scale of the bounding
box. The show azes command often prefaces the use_dials azes command, so the user
can see how the axes are being transformed.

7. MISCELLANEOUS

Miscellaneous
include pathname;
source pathname;
write pathname;
set identifier { = value };
unset identifier;
quit;
abort;

undo;

The include command reads a UNIGRAFIX source file, just like the standard UNI-
GRAFIX command. The source command reads a previously generated Jessie script.
Since UNIGRAFIX commands are a subset of Jessic commands, any file that can be
included may alternatively be sourced, but not the other way around. If the included
file bas any error, however small, all internal changes generated by this include file are
undone. In effect, the database returns to the state which existed before the include
command was issued. The source command ignores errors and continues reading until
the end of the file. There is also another semantic distinction between the two commands
described in the section on the undo command.

.17 -

The write command writes the entire scene tree to a file in UNJGRAFIX format so
that it may be included in another session or sent to another UNIGRAFIX program.

The set command sets the particular environment variable by entering it in the sym-
bol table along with an optional value. The system maintainer uses these special variables
for debugging sections of Jessie. The unset command removes the variable from the
symbol table.

The quit command ends the Jessie session after first asking for confirmation. Obvi-
ously, this should be used with care.

Abort will stop any pending command. Every menu contains the abort command
in the lower left corner. The current command is flushed from the input buffer, and any
intermediate effects of the command are undone.

Jessie supports the elusive and desirable undo command. The effects of the last
database command, which includes additions, deletions and transformations, may be
quickly undone by hitting undo. The undo trail goes all the way back to the begging of
the session, and by repeatedly hitting undo, the user can erase any number of previous
changes in the scene. The availability of the undo command makes it painless and easy
to experiment with unfamiliar commands.

Jessie can even undo an entire include command. After including a file, a touch of
the undo button will undo the effects of the include. As far as undo is concerned, the
include command, plus all the commands read from the file are one group of commands
to be undone together. The source command is simply a set of commands read from a
different input stream; they are therefore undone individually.

The only caveat is that Jessic only undoes changes to the database. This means
that simple commands, like moving around the tree, or setting a show option is not undo-
able.

Jessie 1.0 does not contain a redo command. It would be straightforward to imple-
ment and is discussed in the The Jessie Design Manual.

8. THE ENVIRONMENT

A file in the user's home directory, called .jessierc contains a set of commands to be
issued at bootup time. The default file includes the gnomon file and sets some environ-
ment variables. The user may customize this file to include other commonly used
definitions, scenes, etc.

Jessie maintains a script of all commands issued in the last session. This script is
called .jessielog. It is placed in the user's home directory and overwritten at the begin-
ning of each new session. The user may save old scripts, rename them, then source them
to restart a session if the tool faults for any reason.

Jessie has several environment variables that are useful for maintaining the system.
Each of the these variables may be set during a session with the set command, or Jessie
may be started with the environment variable already set by using the appropriate com-
mand flag.

- 18-

Environment Variables

Name

Startup Flag _ Function

ErrLog

-e If set, Jessie will keep
a log of all error mes-
sages in a file called
_jessieerror in the
user’s home directory.

Flashy

-f While in a script, Jes-
sie will display every
command on the com-
mand line and incre-
mentally display new
contours.

LexDebug

-1 Trace scanner by
printing tokens as
they are accepted.

YYDebug

-p Trace grammar by
printing out rules as
they are reduced.

loDebug

-0 Trace each character
as it is recieved by the
scanner. Trace char-
acters placed on the
unput stack.

UndoDebug

-u Trace strings as they
are placed on the
undo stack.

PathDebug

-t Trace calculation of
the path through the
scene tree. Useful for
debugging hierarchical
commands.

SymDebug

-8 Epable symbol table
debugging

-19 -

References

1. Sun Microsystems, Programmer’s Reference Manual for the Sun Window System,
Sun Microsystems, Inc., Mountain View, CA, 1982,

2. Mark Segal, Carlo H. Séquin, and Paul R. Wensley, UNIGRAFIX 2.0 User’s Manual
and Tutorial, CS-Technical Report 83/161,, UCB/CSD, December 1983.

3. John Ousterhout, Gordon Hamachi, Robert Mayo, and Walter Scott, Magic VLSI
Design System, CS-Technical Report, UCB/CSD, 1984.

4. H.B. Siegel, Jessic: An Interactive Editor For UNIGRAFIX / The Design Guide ,
CS-Technical Report, UCB/CSD, December 1985.

5. Steve Upstill, Tony DeRose, and John Gross, SCOT: Scene Composition Tool, CS-
Technical Report, UCB/CSD, 1983.

6. Eric Allan Bier and K. R. Sloan, Jr, Pointing and Placing with Homogeneous
Transforms, Xerox Palo Alto Research Center, July 24, 1984.

7. Nachshon Gal, Hidden Feature Removal and Display of Intersecting Objects in
UNIGRAFIX, CS-Technical Report, UCB/CSD, 1985.

8. Mark Segal, XFORM Geometry Package, In Preparation, CS-Technical Report,

UCB/CSD, 1986.

