Version Modeling Concepts for
Computer-Aided Design Databases

Randy H. Katz, Ellis Chang, and Rajiv Bhateja

Report No. UCB/CSD 86/270
November 1985

Computer Science Division (EECS)
University of California
Berkeley, California 94720

7
o

SRR
'\

VERSION MODELING CONCEPTS FOR COMPUTER-AIDED DESIGN DATABASES!
Randy H. Katz, Ellis Chang, Rajiv Bhateja
Computer Science Division
Electrical Engineering and Computer Science Department
University of California, Berkeley
Berkeley, CA 94720
ABSTRACT: We describe a semantic object-oriented data model for representing how a complex
design database evolves over time. Structural relationships, introduced by the data management
system, are imposed on the objects created by existing CAD tools. The relationships supported
by the model are: (1) version histories, (2) time-varying configurations, and (3) equivalences
among objects of different types. We describe mechanisms for (1) identifying current versions, (2)
supporting dynamic configuration binding, and (3) verifying equivalence relationships. The data
model is being implemented in a Version Server, under development at the University of
California, Berkeley.
KEY WORDS AND PHRASES: Versions, Configurations, and Equivalences; Design Database;
Object-Oriented Database; Time in Databases;

1. Introduction

Computer-aided design databases have emerged as an active area of research. Database
systems have been extended with compler objects and design transactions, to enable them to
better store and manipulate design data [HASK82]. Semantic data models have been proposed for
describing the special kinds of relationships among design data [KATZ83, MCLE83, BATO85a,

AFSA85)], and for exploiting them to maintain the integrity of the design [NEUM83}.

Meanwhile, there has been a growing awareness of the importance of modeling time in
databases. With the exception of some recovery mechanisms, database systems make available
only the current values of database objects. It is convenient for some applications if the database
is seen as evolving over time: a record is stored as multiple instances. Proposals have been made
for augmenting existing data models and manipulation languages with time semantics (e.g.,

[ARIAS3]).

These research areas intersect in version handling for design databases [KATZ84a,

BATO85a]. However, there is much confusion over exactly how versions should be represented.

'Research supported by the National Science Foundation under Grant ECS-8403004.

Implementation issues, such as data compression, are confused with representation issues. Early
proposals merely suggestzd extending existing records with a timestamp, without any explicit
support from the database system. More recent work has introduced modeling constructs for
versions, but these do not extend time-variation to relationships defined over versions. In

particular, time-varying configurations are not adequately suppocted.

By focusing on design applications, we can identify specific time sensitive relationships
worthy of special support in a data model for design. A given portion of the design may have
many instances over time (version histories), may be constructed hierarchically from components

(con figurations), and may correspond to other portions in different representations (equivalences).

In this paper, we concentrate on data modeling issues: how to represent and manipulate a
design database as it evolves over time. This is an extension and further elaboration of
[KATZ85]. Our modeling decisions have been tempered by a pragmatic desire to avoid modifying
existing design tool interfaces. We have carefully chosen our primitives so they can be imposed
with little effort on existing collections of design objects, created by existing design tools. In fact,

most of our “‘design objects’’ could be conventional design files.

In this work, the design database is only loosely coupled with design tools. The database
structure is used by the design management system to locate objects relative to their relationships
with other objects. Once an object is found, it is accessed by the design tools through a
conventional file system interface. We have not yet explored how to provide a tighter coupling, in

which design tools make direct calls on a database system to access design objects.

The rest of the paper is organized as follows. In the next section, we present an object
model for design data, and describe the issues in specifying its structure to model a database
across time. In section 3, the operations for manipulating the data structure are presented.
Section 4 briefly describes an operational system in which these ideas are being implemented: we
call it a Version Server. Section 5 compares our work with previous proposals. Finally, our status

and conclusions are given in section 6.

2. Object Model/Data Structures

2.1. Modeling Primitives

We view a design database as a (large} collectiou of objects that together describe an
artifact Leiag designed. Object is a convenieut teem for ileiiifying useful aggregates of design
data without committing to an implementation in terms of records, tuples, or files. The
aggregation size is left unspecitied. It could be large (an entire subsystem of the design), or very
small (an individuai design »riinitive) at the discretion of the object’s definer. Typically a design
object will contain up to a few hundred modeling primitives, e.g., lines of code, layout geometries,
etc. “Objects” are usually packages of data and manipulation procedures, but we do not assume

this in the following discussion.

Design descriptions exist across representations. For example, a VLSI design is specified by
layout, tramsistor, and functional descriptions. Thus, design objects containing representation-

specific data are typed: a layout object, a transistor object, a functional object.

Design descriptions are composed hierarchically. A given object can be described in terms of
component objects. For example, a datapath layout object can be described by a combination of
layout primitives and the composition of ALU, register file, and shifter layout objects. Objects
built in this way are composite, while objects without components are primitive. A composite

object and its components are type-homogeneous.

Existing design synthesis tools are specific to a particular design representation. However,
designers must span representations during analysis and verification. A design is described by a
collection of composite objects, one for each of its representations. Each is the root of a hierarchy
of object compositions, called a representation hierarchy. Since it is convenient to identify
objects in different representations that describe the same real-world artifact, we introduce
equivalence relationships. They are type-heterogeneous, provide the necessary linkages across

representations, and can be exploited in maintaining design consistency (see Section 3.3).

-3

S-A-COMFONENT-OF
13-COMPOSED-OF

£\ REPRESENTATION [REPRESENTATION
HIERARCHY HIERARCHY

Figure 2.1 - Composite/Primitive Objects; Representation Hierarchies and Equivalences;

Representation objects are typed, e.g., triangle or square. They can be primitive, or composite, i.e.,
hierarchically related to other objects of their type, which are components. Correspondences across
representations are indicated by equivalence relationships, explicitly represented by distinet
equivalence objects.

These concepts are summarized in Figure 2.1. They can be found in almost every design
organization known to the authors. For example, VLSI design files contain “cells”, each of which
is built from design primitives and compositions of subcells. A similar observation can be made
about software systems, which are usually described as hierarchical collections of source, object,
and executable modules. All too often the equivalence relationships exist, but are implicit in

namirg conventions, e.g., “x.c” for source, “x.0" for object, and “x" for executable.

2.2. Adding Time: Verslons and Configurations

Counsider the representation of a microprocessor datapath layout. It is a composite object
with components that describe the register file, ALU, and shifter. Becayse the design is under
continuous revision, many descriptions of the datapath layout may exist at different points in

time,

-4-

GENERIC DATAPATH.LAYOUT
IS-A-VERSION-OF

DATAPATH|2]. LAYOUT
2 {S-DERIVED-FROM

DATAPATH[1].LAYOUT

DATAPATH.LAYOUT VERSION HISTORY
Figure 2.2 — Datapath Layout Version History

Version objects are organized into a derivation history: e.g., Datapath{l].layout is derived from
Datapath[0]layout. This means that version 1 was created by applying a set of changes to version
0. Each of these objects is also refated to an associated “generic” object: datapath.layout. The
latter relationships are essentially generalizations, supported by most semantic data models.

Individual instances of the datapath layout are full-fledged representation objects, directly
manipulated by design tools. No design tool creates the ‘‘generic”’ datapath layout object. It must
be added to the database to interrelate the representation objects that are different versions of
the same generic object. Hence, it is not a representation object, but a structural object, added by
the data management system to organize the objects created by design tools. Associated with
each gemeric object is a Version Plane, which is simply a graphical representation of the
relationships {1) between the gemeric datapath layout object and its versions, and (2) among the

version objects themselves (see Figure 2.2).

The relationships among versions have not been adequately recognized in other version data
models. To maintain a true version history, it is not enough to merely group together versions of
the same object. The derivation sequence must be represented explicitly. Timestamps are
insufficient because the version history is a tree: several versions may be derived from the same

parent. These parallel versions are often called alternatives.

B

DATAPATHI|0|.LAYOUT

S-A-DERIVATIVE-OF

DATAPATH[2] LAYOUT

RFILE[1].LAYOUT SHIFTER|[1].LAYOUT ALU[3].LAYOUT

Figure 2.3 -- Datapath Layout Configuration

Configurations differ from simple composite objects in that the composition must bind to some
version of the components.

Each datapath layout version is a composite object, composed from register file, ALU, and
shifter objects. A datapath layout configuration is composed from specific versions of these
generic objects. Thus, configurations correlate versions of composite and component objects (see

Figure 2.3). Most proposals do not support time-varying configurations.

Sometimes it is useful if the relationship between composite and components can be left
unbound. A version of the datapath layout contains some ALU version, but exactly which one is
determined dynamically. An operational mechanism for supporting dynamic configurations will be

presented in Section 3.

2.3. Constraints on the Database: Equivalence Relationships

Equivalences identify correspondences across representations. For example, a datapath
layout version corresponds to some datapath transistor version and some datapath functional
version. An equivalence structural object, the “‘datapath,” is introduced to interrelate these (see

Figure 2.4).

From an operational viewpoint, equivalences are also constraints: the correspondences

between objects must be verified by the design team. Sometimes they can be established

-6-

“DATAPATH”
£Q

DP.LAYOUT DP.TRANS DP.FUNC

3

DATAPATH[{] LAYOUT DATAPATH|k].FUNCTION
DATAPATH[j] TRANSISTOR

Figure 2.4 — Equivalence Objects

Equivalence objects tie together objects of different representations that describe the same real world
artifact. The equivalence object can be viewed as representing that artifact, while the associated
representation objects its description in the appropriate type.

automatically. For example, an “‘object code” object is equivalent to a ‘‘source code’ object if it
has been compiled from it. Otherwise, the validity of equivalences is determined by the successful
execution of analysis tools. Mechanisms to support the verification of equivalences are described

in Section 3.

2.4. Further Modeling Issues

So far we have introduced primitive and composite representation objects, and have defined
over these version, configuration, and equivalence relationships. In doing so, we have introduced
composite structural objects for grouping versions (generic objects) and equivalents (equivalence
objects). By recursively applying these relationships, further useful structure can be imposed on
design objects. If representation objects are 0th level and the structural objects introduced so far

are ISt' level, then we will now examine 2nd level relationships.

It is useful we can model the evolution of equivalence objects (see Figure 2.5). Consider two

representation objects A and B, related through equivalence object EQAB. A new version of A,

.7-

VERSION PLANE A VERSION PLANE B

Figure 2.5 — Versions of Equivalences

Equivalence objects evolve in much the same way as representation objects. EQA’B te-derived-from
EQAB to represent the new equivalence between A’ and B.

A', is created and shown to be equivalent to B,? introducing the equivalence object EQA’B'
EQA’B is actually a derivative of EQAB' As an example, suppose that the equivalence objects
link different representations of the microprocessor datapath. Then the second-level generic
object, associated with the equivalence object version plane, represents the version history of the

datapath (independent of representation).

There are some advantages if equivalence objects can be composite and can participate in
configurations. Their configurations are inferred from the objects they range over (see Figure
2.6a). If an equivalence object interrelates composite representation objects, and if the
components of these are also interrelated by equivalence objects, then the equivalence objects can

form a component hierarchy as shown in Figure 2.6b.

2 Equivalences are demonstrated by special analysis tools that are part of the design environment. We will say more
about these in Section 3.3.

-8-

Figure 2.6a — Separated Representation Hierarchies

The triangle and square objects form representation hierarchies. Their hierarchical structures can be
clustered independently of equivalence relationships. Solid lines are compositions, while dashed lines
are equivalence relationships.

VY X ~ - W2~ - e AW

Figure 2.6b — Clustering by Equivalence

The equivalence objects have inherited their compositions from the objects they range over. The
composition relationships among the triangle and square objects still exist, but are not shown in the
figure. Objects can be clustered across representations first by their equivalence relationships, and
then by the compositions of the equivalence objects.

By explicitly denoting correspondences, we retain flexibility by not forcing every object in

one representation to have equivalent objects in all other representations. Thus, representation

hierarchies remain independent, and need not be isomorphic (i.e., all representation hierachies are

forced to have identical compositions). However, when the hierarchies are isomorphic, the

hierarchical composition of equivalence objects provides a way to cluster representation objects

both across representations and within compositions.

-0-

GENERIC DATAPATH LAYOUT

GENERIC GENERIC GENERIC
SHIFTER RFILE ALU
LAYOUT LAYOUT LAYOUT

Figure 2.7 - Configurations of Generic Objects

Individual representation objects identify their components explicitly (heavy solid lines). These can
be inherited by the associated generic object (medium solid line) only if every composite it ranges
over is composed from a shifter, rfile, and alu instance from the component version planes.

Configurations of generic objects can be constructed as for equivalence objects (see Figure
2.7). A generic object can be configured from component generic objects only if all of its
associated versions incorporate some version of the component generic objects. For example, if
some datapath layout versions have no shifter, or some make use of a completely different kind of
register file, then the generic object ranging over datapath layouts cannot be configured from

either the shifter or the register file generic objects.

The composition of generic objects implies that a datapath could be constructed from any
combination of shifter, register file, and ALU, but this is usually not the case. Particular versions
of these must be compatible before they can be composed into a valid datapath, and such
constraints are not obvious from the structure formed in Figure 2.7. A related idea is to permit
configurations to span both 0th and 15¢ level objects. For example, a particular datapath layout

object could be configured from a particular register file layout object, and the version histories of

-10-

the ALU and shifter. In essence, the choice of which ALU and shifter layout should be
incorporated iuto this datapath layout object is left unbound. Again, this has a problem with
compatible compositions of the ALU and shifter. We will describe an operational mechanism in
the next section that supports dynamic configuration biading while also supporting the concept of

compatible configurations.

The higher order relationships we support are summarized in Figure 2.8. Other possible
relationships have been eliminated. It does not appear useful to support versions of versions. The
essential point of versions is that updates are not performed in place: a sequence of updates are
applied to an object to create a new derivative of that object. However, someplace in the system
updates must be performed in place. Thus, we have decided that creating a new version directly
updates the associated generic object, rather than creating a mew version of it. Similarly, we
disallow equivalences to be defined over equivalence objects. While it may be useful to have some
notion of corresponding equivalence constraints, it is not clear how this would be established.
Neither do we support equivalences among generic objects. Again, it is not clear how such

equivalences would be established.

COMPOSITE COMPOSITE VERSIONS
2 NP RSIONS or
vE EQUIVALENCES | pQUIVALENCES
EQUIVALENCES
5T VERSIONS (GENERIC OBJECTS)
(EQUIVALENCE OBJECTS)
o TH REPRESENTATION OBJECTS: COMPOSITE + PRIMITIVE

Figure 2.8 — Higher Order Relationships

-11-

3. Object Model/Operations

3.1. Currency Within the Version History

Without some control mechanisms, version histories can branch widely. It is useful if a
preferred version can be identified from which new derivatives should be created. This is
accomplished with a currency indicator: new derivatives can be created from previously
superceded versions, as long as they are descendents of the current version. Currency can be set

explicitly, to allow designers to follow any desired system release policy.

(@ o Vir
(b) Vil
Vit vig Vil

Vi4)

G

Vi)

Figure 3.1 — Example Derivation of a Version History

Initially, V[0] is the current version. After currency moves to V}2], no further derivations can be
made from V[0], V[1], V3], or V[4] without repositioning the currency.

-12-

Consider the <'.rivation sequence shown in Figure 3.1. V|0] is created and made the current
version (see Figure 2.1a). V[1], V[2], and V]3] are created as alternative derivatives of V[0]. V[4]
is then derived frora V[3]. At this point, V[2] is set to the current positica {see Figure 3.1b), and
no further derivatives of V[1], V[2], or V[4] caz be durived withoul chouging currency. VI[5] is
derived from V[2], and in turn, V[6] is derived from V[5]. Note that V[2] remains the current
version (see Figure 3.1c). Thus, it is possible to create V(7] as a new alternative derived from
V[2], even though V[6] has superceded V[2]. If V[6] is now made current, further derivations from

V(2] or V[7] would be disallowed.

3.2. Dynamlc Configuration Binding

A version of a composite object is formed from versions of its components. Instances can be
bound at the time the composite is created, or can be left unspecified until the object is accessed.
The latter approach, dynamic binding, is most useful during the exploratory phases of design,
when alternative new versions are being evaluated. At some point in an object’s lifetime, its

configurations must be bound to specific versions, usually when it is ‘‘released.”

Layers, first proposed in [GOLDS81|, support dynamic configurations. The database is
partitioned into layers that correlate versions among related objects. The initial layer contains
the original versions, the second layer contains newly added objects and new versions of existing
objects, etc. A composite object identifies its components by referencing their associated generic

objects. At least conceptually, the binding to actual versions takes place by searching through the

design layers for the first encountered version of the desired object.®

The power of layering is that the designer determines which versions will be bound simply
by specifying the layer search order. The choice of ordering is an environment, and all object
accesses are evaluated with respect to onme of these. There can be many user-defined

environments.

®This search can be implemented efficiently as an index structure mapping unique object identifiers into object
versions, taking account of the specified order of the layers {e.g., see [KATZ84a}).

-13-

As an exaiapie, consider the creation of layers as shown in Figure 3.2. By creating
environments from different sequences of layers, different instances of the ALU and the Register
File can be bousd. If the environment is formed from layers 0, 1, 2, and 3, then the ALU is bound
to instance 2 aad the Register File is bound to instance 2. If the cavironment is formed from
layers 0, 1, and 2, ikies the iustaaces bound are 2 aud 1 respecuively. If the layers are sequenced
as 0 followed by 1, thea the ALU instance is 1 and the Register File instance is also 1. If the
environment contains just layer 0, then the ALU[0] and RFile[0] are the instances bound. As a
final example, an environment constructed from layer O followed by layer 3 would yield ALU|0]
and Rfile[2] as the bound objects. Note that it is not possible to create a context that binds

ALUJ0] and RFile[1], because of the grouping of ALU[1] and Rfile[1] in the same layer.

RFILEQ]

A
7

O
RFILE{1}

;
oe—}—o0e——0f
£

5

LAYER 2

\

LAYER 3 o)
RFILER)

Figure 3.2 —- Layers and Environments Example

The Version Histories are partitioned into layers as shown. Layers can be shuffled to make some
versions dominate others. For example, if layer 1 dominates layer 2, then a reference to the ALU
will be bound to ALU[1] rather than the newer ALU|2].

~14-

The mechan:isn as presented provides 3 primitive way to constrain allowable configurations
to those that are consistent, i.e., the interfaces of the components are compatible in how they are
interconnected to cealize the comipoasite object. A uore sophisticated approach would introduce
compatibility r=loti~aships amonig objects of the sanme type, in a manner similar to equivalences.
For example, ALU[0] i8-cornputidle-wilh Kfile[2], aad thus can participate in the same

configuration of the datapath. The approach is still under investigation.

3.3. Validatiun

Part of the function of any database system is to keep its databases consistent. In design
databases, consistency enforcement is closely tied to the mechanisms that permit a design to be
released to a user community. One such mechanism, based on object check-in to an archive, is
described in the next section. Consistency is usually determined by the successful execution of
sequences of validation tools. It is beyond the scope of the data management system to
automatically invoke such sequences, and to determine whether they are successful. However, it
can still assist designers track portions of the design that must be revalidated after a change. The
system can log designer activity with their assistance, for example, to record the success or failure
of a simulation run. Equivalence constraints are described by validation scripts that must match
the actual log of design events to be valid. For example, verifying that a layout and transistor
object are equivalent requires the invocation of a circuit extractor and a schematic comparison

tool. These tools must be applied to the appropriate versions constrained to be equivalent.

We have based a simple Validation Subsystem on PROLOG. PROLOG provides an
elaborate pattern matcher, in which the validation scripts, specified as PROLOG rules, are
matched against the event log, stored as time-stamped PROLOG facts, to “prove’ that the
constraint is in force (see Figure 3.3).

PROLOG can be used to infer unvalidated equivalence relationships from those that have

already been validated. It can also inform the designer about the nature of equivalence violations

if there are any, by backtracking to the point of failure. Suppose that A and B are equivalent. A

-15-

rules:
equivalence (Layout, Transistor) :-
extractor {Layout, T1},
comparator(Transistor, T1, succeed),

facts:
extractor (layout, 1, transistor_1).
extractor (layout_2, transistor_2).
comparator (trapsistor_3, transistor_1, succeed).
comparator (transistor_3, transistor_2, fail),
query:

equivalence (layout_1, transistor_3)?

2 1 YES
Figure 3.3 ~ Check-in Script and Proof of Consistency in PROLOG

Layouts are shown to be equivalent to transistor descriptions by executing a circuit extractor and
schematic comparator. This sequence of events is specified in the Prolog rule, where the capitalized
parameters are variables. The facts indieate which tool events are associated with which versions
(lower case parameters), and whether the invocation succeeded or failed. To check that layout_1
and transistor_3 are equivalent, the rule is matched against the facts, and Prolog’s inference
mechanism ean deduce that the rule is satisfied for the specified objects.

designer checks-out A to create a mew version A’. By inheritance, A’ must be shown to be
equivalent to B before it can be checked back into the Archive. The designer can augment the
database with a new equivalence relationship among A and A'. If this constraint is shown to be
valid, then the original comstraint is satisfied by transitivity: A is equivalent to B and A’ is

equivalent to A implies that A’ is equivalent to B.

4. Version Server

We are incorporating the data model of Section 2 and the operations of Section 3 into a
Version Server [KATZ86|. It (1) organizes the design into configurations across representations,
(2) maintains version histories, {3) supports workspaces, in which designers can make private

changes, (4) permits these changes to be shared with other designers through semi-public

~16-

workspaces, and (5} imyiements the careful update of the design archive, by insuring that objects
added to it have “een successfully validated and that all equivalence relationship are in force. By
supporting the structural relationships of Section 2, without imposing constraints on the internal
formats of the objects it mavages, the Version Server should be able to manage information from

many design domaius,

The Version Server provides access to objects through check-out/check-in operations, which
are nested within design transactions. Versions are checked-out to private workspaces, where a
designer can create new derivatives. These can be shared, without first validating them, by
checking them into a semi-public workspace associated with the design transaction. Designers
checking out versions from these workspaces accept the risk that such objects may be incomplete
or invalid. Otherwise, the objects can be checked back into the archive as new versions, but only
if all constraints, equivalence and otherwise, can be shown to be valid. These mechanisms are

- more fully described in [BANC85, KATZ84b, KIM 84].

5. Previous Work

The Source Code Control System of UNIX [ROCHTS] is perhaps the most widely known
version management system. It uses differential file techniques to encode versioned text files
[SEVET6). Versions are named according to creation order, and it is possible to create parailel
versions. A particular version is first extracted from the base file, and later appended to it as a

new version.

While being widely used, SCCS does have shortcomings. There is no way to order the
versions other than by creation time. Its mechanisms have been selected to support versions of a
siagle file. It is not possible to associate versions of component modules with the module that
incorporates them. Further, the system has no support for correspondences across files containing

information of different types, for example, documentation and source code.

The UNIX MAKE facility provides a primitive mechanism for enforcing equivalence

constraints. Object A is equivalent to {or dependent on) object B if there is an algorithmic

-17-

process by which A can be derived from B (e.g., A is the result of compiling B). The constraint is
in force as long as A has a newer timestamp than B. If B has a newer timestamp when MAKE is
invoked, then A is rederived from B by executing the appropriate script. The approach has been
generalized for CAD databases in [NEUMS83|. In our model, we explicitly keep track of versions,
and do not use timestamps to ideniify invalid equivalences. Our equivalences are validated with
respect to more general scripts, and are enforced passively. The Validation Subsystem flags
unvalidated equivalences rather than forcing them to be valid. Many designers prefer a passive

approach that they can override as desired.

Several version management schemes have been proposed within the database context
[STONS1, KATZ84a], but they do not adequately support configurations. Each assumes an
underlying record-based system, while the object-oriented model presented in this paper is more
general. Relationships over versioned relations could be stored as versioned relations, giving the

flavor of configurations, but how to support concepts like dynamic configurations is not obvious.

Data compression is an important consideration for most version schemes. Configurations
provide this capability at an object granularity. A component object can be shared among several
composite objects, including multiple versions of the same composite object. This is effective if
objects are of a reasonable size (hundreds of design primitives, not millions). It is still possible to
compress within versions of the same generic object, but to do so requires some constraints on the
internal formats of versions. For example, differential file techniques cannot easily be applied to
bit-string data files. It also makes it expensive to reference configurations that incorporate old

versions, since these must be decompressed on access.

There have been some recent proposals in which versions are modeled by the SmallTalk
type/instance model [BATO85a,b]. Generic objects become types; version objects become
instances. Instances can inherit attributes from their type. This is similar to the generalization

hierarchies supported by most semantic data models. However, inheritance requires that the

-18-

system understaad the internal structure of design objects®, which we have tried to avoid.
Further, these models do not make explicit provision for configurations or composite objects. An
object is viewed as having several representation-dependent facets, which we represent through
configurations of equivalences as in Figure 2.6b. It is not easy tc support non-isomorphic
representation hierarchies, as important requirement for some design domains such as VLS],

without explicit denotations of equivalences.

In our model, we have observed a close interrelationship among versions and configurations,
but are not the first to do so. [MCLES83| introduced an AND-OR notation to represent that
objects were configured from components (AND), which in turn were bound to one of several
alternatives (OR). This idea was adapted from earlier work in version control of software
systems. Our contribution is to separate these concepts into orthogonal, rather than sequential,

relationships.

8. Conclusions

Even though version and configuration management systems have existed for some time,
how best to structure such information remains an open question. We have introduced (1)
Version Histories, (2) Configurations, and (3) Equivalences, as a framework for organizing design
databases that evolve over time. Explicit configurations is key: it must be possible to specify an
object version in terms of the versions of its components. We have defined these concepts so they
can be imposed upon an existing collection of design files, created by existing design tools, and are

attempting to do so in a new system called a Version Server.

We make no claim that the model proposed here is either optimal or exhaustive. We plan to
experiment with real designers to see how they make use of a Version Server that supports this
particular model of versions, configurations, and equivalences. If we have done nothing else, we

hope to have convinced the reader that the representation issues of versions are subtle and worthy

4AFSABS] is a good example of the incredible richness of modeling concepts with which the internal structure of a
design could be described.

-19-

of further research.

We gratefully ackuowledge the assistance Mohammed Anwarrudin, a visiting Industrial
Fellow from Digital Equipsnent Corporation, in formulating the ideas described in this paper and

in assisting with their implementation.

7. References

[AFSA85) Afsarmanesh, H., D. McLeod, D. Knapp, A. Parker, “An Extensible Object-Oriented
Approach to Databases for VLSI/CAD,” Proc. 11th Very Large Database Conference,
Stockholm, Sweden, (August 1985).

[ARIA83] Ariav G., J. Clifford, M. Jarke, “Time and Databases,” Proc. ACM SIGMOD
Conference, San Jose, CA, (May 1983).

[BANCSS] Bancilhon, F., W. Kim, H. Korth, “A Model for CAD Transactions,” Proc. 11th Intl.
Conf. on Very Large Databases, Stockholm, Sweden, (August 1985).

[BATOS85a] Batery, D. S, W. Kim, “Support for Versions of VLSI CAD Objects,” M.C.C.
Working Paper, (March 1985).

[BATO85b] Batory, D. S., W. Kim, “Modeling Concepts for VLSI CAD Objects,”” ACM Trans. on
Database Systems, V 10, N 3, (September 1985).

[GOLD81] Goldstein, 1. P, D. G. Bobrow, “Layered Networks as a Tool for Software
Development,” Proceedings 7th International Conference on Al, (August 1981).

[HASK82] Haskin, R., R. Lorie, “On Extending the Functions of a Relational Database System,”
Proc. ACM SIGMOD Conference, Orlando, FL, (June 1982).

[KATZ83] Katz, R. H., “Managing the Chip Design Database,” I.LE.E.E. Computer Magazine, V
16, N 12, (December 1983).

[KATZ84a] Katz, R. H., T. J. Lehman, “Database Support for Versions and Alternatives of Large
Design Files,” ILE.E.E. Transactions on Software Engineering, V SE-10, N 2, (March
1984).

[KATZ84b] Katz, R. H,, S. Weiss, “‘Design Transaction Management,” Proc. A.CM./IEEE. 21st
Design Automation Conference, Alburquerque, N.M., (June 1984).

[KATZ85] Katz, R. H.,, M. Anwarrudin, E. Chang, “Organizing a Design Database Across Time,”
Islamorada Workshop on Large Scale Knowledge Bases and Inference Systems,
Islamorada, FL, (February 1985).

[KATZ86] Katz, R. H., M. Anwarrudin, E. Chang, “A Version Server for Computer-Aided Design
Data,” submitted to 23rd ACM/IEEE Design Automation Conference, Las Vegas, NV,
(June 1986).

[KIM 84] Kim, W, et. al., “Nested Transactions for Engineering Design Databases,” Proc. Very
Large Database Conference, Singapore, Malaysia, (August 1984).

-20-

[MCLE83] McLeod, D., K. V. Bapa Rao, K. Narayanaswamy, “An Approach to Information
Management for CAD/VLSI Applications,” Proc. ACM SIGMOD Conference, San Jose,
CA, (May 1983).

[NEUM83] Neumann, T., “On Representing the Design Information in a Common Database,”
Proc. ACM SIGMOD Conference, San Jose, CA, {(May 1983).

[ROTH75] Rochkind, M. J., “The Source Code Control System,” IEEE Trans. on Software
Engineering, V SE-1, N 12, (December 1975).

[SEVET76] Severence, D. G., G. M. Lohman, “Differential Files: Their Application to to the
Maintenance of Large Databases,” ACM Trans. on Database Systems, V 1, N 3,
(September 1976).

[STONS81] Stonebraker, M. R., “Hypothetical Databases As Views,” Proc. ACM SIGMOD
Conference, (May 1981).

-21-

