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HIGH PERFORMANCE EXECUTION OF PROLOG PROGRAMS
BASED ON
A STATIC DATA DEPENDENCY ANALYSIS

Jung-Herng Chang

Ph.D. CS Division (EECS)

ABSTRACT

Prolog programs are executed from left-to-right and top-to-bottom with backtracking to
the most recently activated choice-point when a failure occurs. This execution strategy is
based on 2 sequential execution model and has been implemented with modest efliciency in
conventional computer systems [12,16]. In this thesis, two ways are explored to improve the
performance of a Prolog system. The first way is a more intelligent form of backtracking.

The second way is to exploit AND-parallel execution.

Both intelligent backtracking and AND-parallel execution require information about the
dependency between body literals. This information can be derived either at compile-time by
using a static analysis or at run-time. Although a run-time analysis is more effective than a
static (hence worst-case) analysis, it incurs a lot of overhead at run-time and is thus
ineflicient. Therefore, this thesis has empbasized the use of compile-time apalysis to improve

run-time performance.

A methodology for a Static Data Dependency Analysis (SDDA) was developed. The
SDDA is based on a worst-case analysis of variable bindings. To perform the SDDA, only one
declaration, which describes the worst case activation, is necessary for each procedure w_hich
can be directly invoked from the top level query. This extra work can be handled quite easily

by the programmer. The cost of doing the SDDA is shown to be comparable to the cost of



[ ]

compilation of a Prolog program. The outputs from the SDDA are a collection of data depen-
dency graphs, one for each clause in a Prolog program. From data dependency graphs, both

intelligent backtracking and AND-parallel execution can be determined.

A scheme for compiling intelligent backtracking based on the SDDA has been designed.
To take full advantage of dependency graphs, three different types of backtracking are
differentiated. At runp-time, when a subgoal fails, 2 backtrack literal can be determined by
the type of the backtracking and its corresponding backtracking path. Execution including
this intelligent backtracking is simulated for a sequential Prolog machine. It includes
modifications of the bardware and the compiler. This scheme has been proved to be very

efective for improving the execution of Prolog programs.

A scheme to exploit AND-parallelism is also proposed. It includes generating parallel
executable tasks by the SDDA, using 2 set of message protocols to coordinate co-operating
processes, exploiting both intelligent backtracking and parallel backtracking. It is shown that
Prolog has potential in parallel processing because of its procedural invocation, non-
deterministic execution, concise syntax, single-assignment variable bindings, and local vari-

able scoping.

_

Alvin M. Despain

Chairman of Committee



TABLE OF CONTENTS

Chapter 1. Introduction ......ccceeeruneee

1.1. What Is Prolog ...cccceeernnnenn.

................................................................................

................................................................................

1.1.1. Declarative Semantics of Prolog .....coccveoienrciiimniiniiiiinincnnccnecisinneaenes

1.1.2. Procedural Semantics of PTolog ....c.cccvverimmmimneeiiniccniieiiencinnsnecneesnceens

1.2. Motivation ....ccccccvveeceeecenerennas

1.3. OVervIew .....ccceeveeervesmennrenicens

1.4. Efficient Execution ................

1.5. Parallel Processing of Prolog

................................................................................

................................................................................

................................................................................

................................................................................

1.6. A Static Data Dependency Analysis for Prolog Programs .......cceeeeiiniicnenncees

1.7. The Thesis .ococveerrecrrreraronnrennnne

1.8. Contributions .........cccccecereerens

................................................................................

................................................................................

Chapter 2. A Static Data Dependency Analysis of Prolog ..ccooeciicecccincnininininininnnnns

2.1. OVEIVIEW ...coeeevercerracencscncnnnnnne

................................................................................

2.2. A Static Data Dependency Analysis (SDDA) for Prolog Programs ........ccoceceee..

2.2.1. Generating A Data Dependency Graph ......cccocoviiiiimmmnineiisnneicnncniinsinenn

2.2.2. Special Characteristics of Prolog ..o

2.2.3. Activation Mode Declaration .....cccccceciiiimmmncnisennnincrcccenininenssisnienssieannas

2.2.4. A Methodology ..............

2.2.5. Optimizations ................

2.2.5.1. Structure Matching

~4

ii



2.2.5.2. Refined Activation Mode Declaration ......ccoooovmniiimimiiiiiniiiiiineinioninn

2.2.5.3. Separating Graph Generation from Exit Mode Derivation ..........c....e..

2.2.6. Handling Control Predicates, I/0, and Global Effect Predicates ................

2.3, A Hidden PrODIEIM ....vveieeeiiviiecrecrcerteeressseesisrenseiasisnnesessssasesssesssessesssosssssssssssiveses

2.4. Complexity Analysis of the SDDA ....coooiiieiiiiiie e

2.5. Conclusion ..........

...................................................................................................

Chapter 3. Compiling Intelligent Backtracking for A Prolog Machine .....ccoveereeccnciinnens

3.1. Overview ............

3.2. Backtracking ......

...................................................................................................

...................................................................................................

3.2.1. Run-Time Intelligent Backtracking .......ccooemmienioinnininniininecinnnneene

3.2.2. Semi-Intelligent Backtracking .......ccceeieiiiicis 3 eresseseesesseresassrrareasesietiassssanne

3.3. Compiling Intelligent Backtracking ........ccceoecimiiiminiienecnecinne

3.3.1. Determining Intelligent Backtrack Paths ........ccooiviiininniiiiiinininninnn.

3.3.1.1. Type I Backtrack Path ..o

3.3.1.2. Type II Backtrack Path ..ot

3.3.1.3. Type III Backtrack Path ............ ereorstsassseriie s st tssanaa e s raaeseesnn st aess

3.3.2. Architectural Support and Code Generation for Intelligent Backtracking

...................................................................................................

3.3.2.1. The Berkeley Prolog Machine (PLM) ..o

3.3.2.2. Implementing Intelligent Backtracking in PLM ...

3.3.2.3. Code GenerAtIOR .oceereeueereieiierrereerrraneaeeeeerersarassensacsssscsirmmmsrissensanresnsranses

3.3.2.4. SIMUIALIONS .evvvenreereeeeiriiieriiereseeesrarennansasessseeeeenemsnnssssessimmsnntsrasansssarsnnnan

3.3.3. Applications

...................................................................................................

il

30

32

34

34

34

36

39

40

40

43

47

30

50



3.3.4. Backtrack Graph vs. Data Dependency Graph v e
3.4. Comparison with Other Implementations/Approaches of Intelligent
Backtracking ..ococeeeecverruminnnsseseenscnscninnnnns eeeetaeeeeeeseesessaseteaseseneessssnseessirraraaararanass
3.4.1. Compiling Intelligent Backtracking vs. Rup-Time Intelligent
BAaCKLTACKINE «.voveveereresrerccmcesmmsessnemsessssiotstnacsssssstesasas s et s s te s st s st e
3.4.2. Intelligent Backtracking Based on Annotated Programs ......cceeeeseeseennnes
3.5, COMCIUSION .eeeneevrrrverveeseeeessosessssesaessensrennassossssssssssssnentsasiasesssaasiotasstsutisstannanstanseesees
Chapter 4. Compiling AND-Parallelism for A Parallel Architecture ........coooemmiiiiiiiicnnns
§.1. OVEIVIEW ooveveeeeereeeeeeresesssssesasesssssseetcscsssssesersrasassasasasasssessssstsssssssessnasasasasasasasesssss
4.2. Why Exploit AND-Parallelism ? ..ot seccsasisnenes
4.2.1. An Example ..c.ccccecirinnireniinacnnes eeveeteeeeseateseesiessasesneserateseeneasessebebene s eneenees
4.3. An AND-Parallel Execution EDVITORIMENt ..cccviirimiimmniiniiianiiiscinsiesnasasnianiness
4.4, Memory Management ......ccooeeuruemieucueiemiisisrseriaenatasssssesststcasss s bt sucrasacscns
4.5. Execution Flow Control in AND-Parallel Execution .......ccccooevenniescenciniincnnnnn.

4.6. Semi-Intelligent Backtracking in the AND-Parallel Execution Eavironment

..................................................................................................................................

4.6.1. Parallel Backtracking in AND-Parallel Execution Environment .................

4.7. Performance Improvement of The AND-Parallel Execution - An Example ........
4.8, CODCIUSION «eveeeeeeeieeiieereireeeasueeesnesresesstsasssessaesasnenesotsosassestansssnasentasesnstastnesssnnsnsnss
Chapter 5. CONCIUSION ...ovoviicueveieriiries ettt s
5.1, CONCIISIONS .ooveereeieeiirireeeienrreeoreaseeisaeserrraarsessaasessetssosiss i oanbasa s bsssesat et iosaatnnasanas
BIDHOZIAPIY evcvvereecmraemerstieies et it

ADPERAIX A .toviieeccmrat ittt s

59

61

61

63

63

64

64

64

64

66

68

70

80

80

84



Appendix B

.......................................................................................................................



CHAPTER 1

INTRODUCTION

1.1. What is Prolog

Prolog (1|, designed by Colmerauer and his colleagues around 1972, is a special
implementation of a logic programming language. A logic programming language is, in short,
the Horn clause logic [2] (a subset of first order logic) plus backward reasoning. Its inference
rule is the resolution principle developed by Robinson [3] in 1965. In general, a logic program
consists of two components. Ope is the logic component which describes the knowledge used
in solving the problem. In Prolog, this is supplied by the programmer. The other is the
control component which determines the problem-solving strategy im order to achieve
efficiency [4]. The Prolog execution provides a default strategy, but this can be modified by
the programmer if desired. The logic component and the control component of a Prolog
program will be discussed separately by considering the declarative semantics and procedural
semantics of Prolog.

1.1.1. Declarative Semantlics of Prolog

Prolog programs can be understood declaratively. The correctness of the program is
independent of its problem-solving strategy®. Three types of statements are allowed in Prolog
as shown below. The first two are used to construct Prolog programs. The third is used to
interact with existing Prolog programs.

(1) Fact:

Facts can be treated as unconditional assertions. Two examples are given below. The

frst fact describes the 'father’ relation between Tom and Mary. The second fact

describes that Professor Despain teaches an architecture course, there are two sections
with 60 students and 50 students respectively.

father(tom,mary).

class(architecture,instructor(despain),
enrollment([section(1,60),section(2,50)))).

(2) Rule:
Rules have the following form:

"There are some side effects of Prolog programs that are sensitive to the order of evaluation of expressions.
These side effects are ignored in the current discussion but will be discussed in section 2.2.6 & 2.3).
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conclusion :- premi=> , .., premise .

It can be understood as saying ”The conclusion is true if all the premises are true”. An
example, which uses three rules to describe the grandfather relation, is shown below.
Note that variables begin with an upper case character.

grandfather(Grandfather,Child) :- father(Grandfather Parent),
parent(Parent,Child).

parent(Parent,Child) :- father(Parent,Child).

parent(Parent,Child) :- mother(Parent,Child).

Each rule is a clause. The conclusion is called the head of the clause. Premises
constitute the body of the clause. Fact is also called 'unit clause’ which is a clause
without a body. Both conclusion and premise are expressed by literals. A literal
consists of a predicate (functor) and a number of arguments. An argument is a term. A
term can be a constant, a variable, or a function f("v""tm)' where t,, ..., t  are also
terms. Clauses which have the same predicate and arity in their head literals constitute
a procedure. Clauses in a procedure describe disjunctively a relation, e.g. the 'parent’
relation above is described by two clauses in the procedure 'parent’. The AND/OR tree
of the grandfather relation is shown in Figure 1.1. In the AND/OR tree representation,
an AND subtree corresponds to a clause and an OR subtree corresponds to a procedure.
Each branch of an OR subtree leads to a candidate clause (as AND subtree) of the
procedure. (Parentl (parent2) denotes the first (second) candidate clause of the parent
procedure.) AND/OR tree is useful in illustrating search strategy as will be discussed in
Chapter 3. -
(3) Query:

A query is used to interact with existing Prolog programs. It describes a goal that needs
to be proved. A goal consists of a list of subgoals each of which is a literal. If there are
no variables in a goal, then the result of execution a query is either yes (true) or no
(talse). Otherwise, instances of variables which make the goal true can be derived as
shown in the following examples.

:- father(tom,mary).
Answer: either yes or no.

- father(tom,Child).
Answer: Child=mary.

(m.ore)



AND/OR Tree:
grandfather
AND
father parent
m
parentl parent?2
father mother

Figure 1.1 The AND/OR tree representation

1.1.2. Procedural Semantics of Prolog

Based on the resolution principle, a deduction step in the logic programming is as
follows.

Let (g‘, 8o weer By o gm)e1 be the current goal list, where 61 denotes the current
binding of variables. ©, is a set of variable/term pairs, {X,/t; - X, /t,}, in which

Xl, v Xk are distinct variables. We say that Xl is bound to the term t. Assume

one of the subgoal, g, is selected to be executed first, and it can unify? [3]
£ by, By b
with variable binding ©,, i.e. (g,)8, = (f)8,, then the resolvent is

(8, 8geeeer 8yp By s By, ng,....gm)e

where 6 = 91‘92.

The result of unification between two terms t, and ¢t is a set of variable bindings © such that (t)© == (¢)O.
© is the most general unifier, that is any other unifying bindings &, is such that ©, = e‘ei for some O, The
composition, 6“9,., of two sets of bindings

8, = {X/t, ., X[t} O = (Y /3, Y /o)
is the set of bindings ©'LE’, where O’ == {X/(tl)ej. - x/(z.)ei} and €', is 6, with any bindings for the variables
X, o X, deleted.



Logically, subgoals can be selected for .xecution in any order and clauses in a procedure
invoked by a subgoal can be selected in 2ny order. P-~log, however, in execution, adopts a
depth-first search strategy. Subgoals -re examined irom left to right and clauses in a
procedure are selected from top to bottc n. Deduction steps are continued until either the
goal is reduced to an empty list (a success), ot a subgoal fails. In the latter case, it backtracks
to the most recently invoked procedure wuica still has untried clauses. If such a procedure
does exist, then the top untried clause of this procedure is selected and deduction continues,

else fails. With this fixed problem-solving strategy, the programmer can control search by

ordering the body literals in a clause and the clauses in a procedure’. A few control

predicates are designed to allow pruning of the search space, e.g. cut, and force backtracking,
e.g. fail. Throughout this thesis, the term 'procedure call’ is used to refer to the execution of
a subgoal.

1.2. Motivation

Prolog is an important symbolic manipulation language. It has been used successfully
for knowledge-based systems [5,6,7], CAD [8,9], natural language processing (10|, and
compilers [11]. Prolog is comparable with LISP in expressive power as well as implementation
efficiency [12]. It features some important mechanisms in symbolic processing: the procedural
interpretation of deduction, pattern-directed procedure invocation, an assertional database,
and nondeterministic execution (through backtracking). It has potential in parailel processing
(discussed later). Its syntactic structure is concise, which makes static concurrency analysis
feasible. Because of these features, it has been promoted by the Japanese as the host
language for their Fifth Generation Computer System [13], which is a knowledge-based system
capable of performing parallel inferences. Recognizing the potential of this language, I have
focused my research efforts into ways and means to achieve high performance execution of
Prolog programs.

1.3. Overview

Shown in Table 1.1 are benchmark timings [14] for three implementations of Prolog: the
Dec-10 Prolog compiler (Prolog-10), the Dec-10 Prolog interpreter (Prolog-10I), and the PLM
(abbreviation of Programmable Logic Machine) constructed here at Berkeley [15]. It is shown
that compilation (Prolog-10) is about 20 times faster than interpretation ( Prolog-10I) (both
run on Dec 2060 with a 33ams clock). With special hardware and microcode to interpret
compiled abstract code, the PLM (with a 100ns clock) is about 10 times faster than the
Prolog-10. The improvement of performance in Prolog is similar to LISP, which starts with
interpreters, then compilers, and finally Lisp machines like the Symbolics 3600.

A natural question to ask is "What is the next step to improve the petformance of
Prolog?”. Two ways that can be explored are discussed in this thesis:

(1) More efficient execution in general, and intelligent backtracking in particular.

(2) Parallel processing in general, and AND-parallelism in particular.

Fven with the fixed execution strategy, since the Prolog is a universal language, the programmer can still write
programs to implement any search strategy he waats. However, the important issue is whether the program’s logic
component can be as descriptive as before, or how much of the iogic component can remain unchanged, whea 2
different search strategy is adopted. Ideally, we would like to have the logic component unchanged even when a
different search strategy is adopted [4]. This objective is yet to be achieved.



Table 1.1  Benchmark timings for a few Prolog interpreters [compilers

and PLM.
Benchmark Timings (in ms)
Prolog-101 | Prolog-10 PLM
Benchmark Interpgreter Com:iler Machine

reverse list30 1160 54 4.4
gsort list50 1340 75 4.9
deriv times10 76 3.0 0.38
deriv dividel0 84 2.9 0.43
deriv logl0 49 1.9 0.20
deriv ops8 64 2.2 0.25
serialize palin25 600 40 3.2
query 8900 185 17.3

1.4. Efficient Execution

A number of ways have been studied to speed up the sequential execution of Prolog
programs. These are clause-indexing (16], goal caching [17], and intelligent backtracking
[18,19].

In the scheme of clause indexing [16] the principal functor of the first argument of the
calling literal is used as an index to select candidate clauses of the called procedure. It was
first implemented in DEC-10 Prolog compiler. It is possible to extend this scheme to index on
more than one arguments and/or use a perfect hashing technique [20].

Goal caching [17] is useful for some applications in which remembering part of the
history of execution avoids a lot of redundant work. It is similar to using a scratch pad to
record goal activations and their results, and retrieving the recorded results if the same
activation occurs again. However, it may be feasible only for deterministic subgoals. For
non-deterministic subgoals, the cached state must include information about untried clauses of
its descendants. This overhead of bookkeeping and cache management is non-trivial.

As mentioned above, Prolog adopts the depth-first search strategy with backtracking to
the most recently activated procedure call which still has untried clauses when a failure
occurs. However, that procedure call may have nothing to do with the failure. Many users
are disappointed when they encounter this naive behavior in Prolog. To backtrack
intelligently is to avoid this kind of redundancy as much as possible. Run-time intelligent
backtracking has been studied by Cox-Pietrzykowski-Matwin [21] and Bruynooghe-Pereira-
Porto [18,19]. Their approaches entail considerable run-time overhead. More detailed
critiques about their schemes as well as a new scheme which has much lower overhead are
discussed in Chapter 3.

1.5. Parallel Processing of Prolog

Various ways of exploiting parallelism in logic programming have been identified. These
are AND-parallelism [22], OR-parallelism [23,24], Stream-parallelism [25], and Unification-
parallelism [26]. To exploit the parallelism, some implementations require using extensive
annotations to denote parallel executable subgoals, e.g. in Epilog [27], or communication
channels between two dependent subgoals, e.g. in Concurrent Prolog [28] and Parlog [29].



In Concurrent Prolog and Parlog, the first candidate clause wuose guard literals (similar
to the guarded command advocated by Dijkstra) are satisfied will t» committed ard executed
with no retry of the other candidate clauses if the committed claus: fails. Paral.el execution
can be exploited by concurrently examining guard literals of candid. e clauses. Furthermore,
literals in the same clause can be executed concurrently and synchronized through specially
anpotated communication channels. Although these languages cun be used in system
programming as well as parallel processing, they are semantically different from conventional
logic programming languages and are not discussed further in this thesis.

In general, independent subgoals in the goal list can be executed conmcurrently by
exploiting AND-parallelism. In real implementations, dependency checks' among subgoals are
normally done on a clause basis because of the costs associated with these checks. AND-
parallelism has been studied by Conery in his thesis [22]. It can be applied to both
deterministic and non-deterministic logic programs. However, to exploit AND-parallelism
according to Conery’s scheme, it is necessary to perform a data dependency analysis among
subgoals at run-time. This can be very expensive. Furthermore, since data dependencies
among subgoals may be changed after backward execution (backtracking), data dependency
graphs have to be re-computed before re-starting forward execution. [n Chapter 2, it will be
shown that a static data dependency analysis performed at compile time can generate data
dependency graphs (one for each clause) for Prolog programs. With static data dependency
graphs available, it is possible to generate compiled code to exploit the AND-parallelism.

All the candidate clauses in a procedure can potentially be explored concurrently by
exploiting OR-parallelism. However, OR-parallelism, either implemented with a parallel
model {24] or a pipeline model [23], is not efficient for deterministic programs or non-
deterministic programs which are used in a more deterministic way (i.e. only a few answers,
instead of the full set of answers, are requested). Based on this consideration, OR-parallelism
should be exploited only on spare resources (e.g. with lower priority). and the programmer
should explicitly denote those procedure calls which can take advantage of OR-parallelism.
Another problem in exploiting OR-parallelism is the need to keep competing OR-processes,
one for each candidate clause in the invoked procedure, from simultaneously binding the same
unbound variable. Some kind of “shadowing” mechanism must be supported. With a
"shadowing” mechanism, the bindings are retained in the local memory of the process, and
bindings are validated only when the results generated by the OR-process are requested. A
proposed “shadowing” mechanism as well as the compiled code for OR-parallelism are
described by Dobry et. al [30].

Stream-parallelism has been studied by researchers in functional [31] and data-Bow
language [32|. Streams can be used to implement infinite data structures and be lazily
evaluated [31], or to achieve efficiency for passing finite data structures between producers
and consumers and be eagerly evaluated [32]. Several attempts, e.g. Funlog [25], have been
made to integrate functional programming language and logic programming language. A
criticism of stream-parallelism is that the grain size of an entity to be synchronized has the
potential for being too small to be efficient. Furthermore, the parallelism can be exploited
only between the generator and the consumer of a stream.

Although it has been shown that in the worst case, unification cannot be sped up by

Dependency checks among subgoals are used to determine whether they are dependent of not. In general, two
subgoals are dependent if they contain common unbound variables at the time of invocation.



parallel computation® [26], most of unifications encountered in actual benchmark programs
can be. It seems feasible to take advantage of data dependency analysis to detect parallel
unifiable terms and design special hardware to support parallel unification [33]. This is
currently an active area of research.

1.8. A Static Data Dependency Analysis for Prolog Programs

From the above discussions, it is clear that efficient ways to exploit AND-parallelism
and intelligent backtracking are important to improve the execution of Prolog. Current
approaches of exploiting them are unrealistic because of the excessive overhead at run-time.
By shifting part of the run-time overhead to compile-time using a static analysis, they can
become realistic.

Using a static data dependency analysis to detect concurrency assumes that if two
literals do not share any unbound variables then they are independent. This assumption is
true in general, except that I/O, control predicates (e.g. cut, fail, repeat) and global effect
predicates (e.g. assert and retract) have to be specially treated. With a static data
dependency analysis, a data dependency graph is generated at compile time for each clause.
Literals on the same 'layer’ of the graph are independent in forwarded execution. It turns out
that it is also possible to take advantage of data dependency graphs to achieve semi-
intelligent backtracking and parallel backtracking. The information that must be supplied by
programmers is minimal. Programmers are relieved from the burden of doing excessive
annotations as required in a lot of other schemes. Although static analysis may not be as
precise and refined as a run-time analysis, there is little run-time overhead and it can
realistically lead to better performance.

A methodology to perform a static data dependency analysis for Prolog programs is
described in Chapter 2. Its applications to intelligent backtracking and AND-parallelism are
discussed in Chapter 3 and 4 respectively. Conclusions are given in Chapter 5.

1.7. The Thesis
My thesis is to show:

(1) The performance of executing PROLOG programs can be improved through a
static data dependency analysis.

(2) Both AND-parallelism and inteiligent backtracking can be exploited with low run-
time overhead by using the generated data dependency graphs.

(3) Changes in both the compiler and machine architecture will be considered in order
to improve performance using this approach.

1.8. Contributions
Contributions of this research are:

(1) Development of an efficient methodology for static data dependency analysis of
PROLOG programs.

(2) The use of static data dependency analysis to achieve intelligent backtracking.

(3) The use of static data dependency analysis to reduce run-time overhead of AND-
parallel execution.

%4 is like general programming in this regard since it is possible to always explicitly create some strictly serial
program.



(4) Ar AND-parallel execution model to exploit both AND-parallelism and intelligent
backtracking.
(5) An evalaation of the cost and effectiveness of the static data dependency analysis.



CHAPTER 2

A STATIC DATA DEPENDENCY ANALYSIS OF PROLOG

2.1. Overview

As stated in chapter 1, the most important guideline for this research is to emphasize
compile-time efforts in order to improve the performance of executing Prolog programs. In
this chapter, it is shown that a static data dependency analysis can be done for Prolog
programs [34] at compile time with a minimal amount of additional annotations given by
programmers. In the next two chapters, it will become clear how both AND-parallelism and
intelligent backtracking can be exploited with much lower overhead at run-time given a static
data dependency analysis. The complexity of this data dependency analysis is about the same
as that of automatic mode generation [35] for Dec-10 Prolog, and it shares a similar flavor
and philosophy. But, instead of figuring out whether or not an argument is instantiated at
the entry of a clause, this data dependency analysis generates a collection of data dependency
graphs, one for each clause, and a specification of backtrack literals for each body literal in a
clause. In Chapter 3, issues in backtracking are discussed, and a scheme to compile intelligent
backtracking by using data dependency graphs is described. In Chapter 4, it is shown that
this dependency analysis can also be applied to achieve AND-parallel execution.

2.2. A Static Data Dependency Analysis (SDDA) for Prolog Programs

In this section, the methodology to do a static data dependency analysis (SDDA) for
Prolog programs is illustrated. A map-coloring problem is first used as an example to show
what it takes to conmstruct a data dependency graph. Then the special characteristics of
Prolog which affect the complexity of SDDA are examined. A few examples are chosen to
illustrate difficulties in SDDA for Prolog programs because of these characteristics. Finally,
the construction of the static data dependency analyzer is described. The analyzer itself is
written in Prolog and appears in Appendix A.

2.2.1. Generating A Data Dependency Graph

A piece of program which solves a map-coloring problem with five areas to be colored
(such that no two bordering regions are assigned the same color) is shown in Figure 2.1. The
map is described by the 'map’ clause. Colors for two bordering region are selected by the
'mext’ predicate. In order to derive the data dependency graph for the first clause, it is
necessary to know:

(1) How the clause is activated; That is, whether the arguments are still unbound

variables, bound to ground terms®, or aliases of each other when the clause is
invoked.

(2) The worst case binding of a variable after a procedure call.

1A ground term is a term which does not contain any unbound variable.



10

map(A,B,C,D.E) -
next(A,B), next(A,C), next(A,D), next(B,C),
next(C,D), next(B,E), next(C,E), next(D,E).

next(X,Y):- next1(X,Y).

next{X,Y):- next2(X,Y).

next1(green,red).

nextl(green,yellow).

next1(green,blue).

nextl(red,blue).

nextl(red,yellow).

next1(blue,yellow).

next2(X,Y) :- next1(Y,X).

Figure 2.1 A map-coloring problem

From the above information, the status of variables can be determined and the data
dependencies between the body literals can be derived.

For this example, assume that at the entry of the procedure call 'map’ all variables are
unbound. Then, by visually examining this program, it is not difficult to observe that at the
exit of each procedure call 'next’ all the arguments are ground terms. Based on the above
assumption and this observation, the data dependency graph of the first clause (Figure 2.2)
can be derived. In Figure 2.2, each node in the graph corresponds to a body literal. Literals
on the same layer of a data dependency graph are independent during forward execution.
That is, a literal can be executed as soon as all its predecessors are done, e.g. next(C,D) can
be executed when next(A,C) and next(A,D) are done.

In the following sections, the method that the data dependency analyzer uses to
determine (instead of the 'assume’ and the 'visually observe' processes as described above) the
activation and exit mode of a procedure call is developed. First, however, to help describe the
problems involved, the special characteristics of Prolog are now examined.
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Figure 2.2

2.2.2. Special Characteristics of Prolog

Logic programming languages have several special characteristics which are different
from conventional HLLs (high level languages) such as FORTRAN and PASCAL. Some
characteristics which affect the SDDA are listed below:

(1)

(3)
(4)
()

A procedure can be invoked in multiple ways, e.g.

.-grandfather(GrandFather,mary).
:-grandfather(john,GrandChild).

The 'grandfather’ procedure is invoked with the first argument a unbound variable
in the first query, and the second argument 2 unbound variable in the second query.

Variables in Prolog are called logical variables. Logical variables may remain
unbound or not grounded at the exit of a procedure call, e.g.

b - ..., a(X,Y), ...
variable bindings at the exit of 'a’ may be:
X : unbound
Y : bound to (2,Z] where Z is unbound

All the candidate clauses in a procedure may be tried one by one. Each candidate
clause can generate a different set of variable bindings.

The scope of a variable is a single clause. The same variable name in different
clauses represents different variables.

Variables are singly-bound. The binding of a variable can not be modified unless
the clause which generates the binding fails and backtracking occurs. However, it is



possible that a logical variable is bound to a non-ground term and later om the
unbound variables contained in this non-ground term become bound.

In the characteristics listed above, the first three make the SDDA more difficult, while
the others make it easier as compared with the other HLLs like FORTRAN or PASCAL.
This is illustrated by the following examples:

example_1:- alias(A,B), useA(A), useB(B).
alias(X,X). :

example_2:- coupled(A B), useA(A), useB(B).
coupled([X|L1},{2,Y | L2]):- alias(X,Y).

example_3 is a query:
.- coupled([X|L1],[{2.X1L2})?
coupled(A,B):- useA(A), useB(B).

example_4(X,Y):- goall{X,Y), goal2(X,Y), goal3(Y).
goall(3,3).

goal1(3,X).

goal2(X,2).

goal3(Z):- more(Z), - - -

In the first two examples, if we look only at the first clauses, we may wrongly assume
that useA{A) and useB(B) are independent and can be executed in parallel after returning
from the first procedure call, 'alias’, in the body. However, because of logic variables, it is
possible that two variables become aliases or coupled. Two variables are coupled if they are
bound to two coupled terms, and two terms are coupled if they share at least a common,
unbound variable. The introduction of aliases or coupling may be several levels deep in the
prool tree’> or within terms as shown in the second example. The problem of executing
useA(A) and useB(B) concurrently in the first two examples is the possibility of creating
binding conflicts for shared unbound variables. UseA(A) and useB(B) can be executed
concurrently, however, if the complete sets of answers from useA(A) and useB(B) are "joined”
together; or if the set of answers generated by useA(A) are "streamed” to useB(B). But, both
schemes are impractical if users are interested in a small part of the solution set; or are
inefficient for a deterministic program. The static data dependency graphs for the first two
examples are shown in Figure 2.3 (a) and 2.3 (b). In Figure 2.3, variables which are aliases are
shown in parentheses, variables which are in the same coupling group are put in a set.

In the third example, there is no way to tell at compile time whether useA(A) and
useB(B) are independent unless the compiler is supplied with information about how each

entry procedure is to be invoked3. An entry procedure is a procedure which is called directly

A proof tree is an AND/OR tree with only one OR branch, which corresponds to the currently activated
clause of the procedure, shown for each OR subtree.

slternatively, a separate data dependency analyzer can be compiled for each possible query {combination of
modes).
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Figure 2.3

from the top level query. If the programmer has denoted that the procedure 'coupled’ will be
invoked with its two arguments coupled together, then the correct data dependency graph
(Figure 2.3 (c)) can be generated. In the fourth example, there are two possible dependency
graphs depending on whether goall(3,3) or goall(3,X) is selected to unify with goall(X,Y).
Goal2(X,Y) and goal3(Y) are independent in the first case (Figure 2.3 (d)), but are dependent
in the second case (Figure 2.3 (e)). If only one data dependency graph is generated for a
clause, then the analyzer must examine all the possible candidate clauses and do a worst-case
analysis.

It is worthwhile to examine the cost of doing a dynamic data dependency analysis [22].
In order to find at run time whether or not two literals are independent, it is necessary to find
all the unbound variables contained in the arguments of the literals. Two literals are
independent if they do not contain any common unbound variable. To determine this, it
requires traversing all the argument terms. Furthermore, this run-time analysis needs to be -
performed again after backtracking in order to take into account of the new set of variable
bindings generated by a nmew candidate clause. Obviously, this can be quite expemsive. A
much cheaper scheme [36] based on tagging has been designed. However, it still involves
some run time costs and its dependency check is not as thorough as the SDDA. In that
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scheme, two literals are claimed to be independent only when
(1) One of the literals is grounded, or

(2) All the arguments of the literals are unbound variables and the literals do not share
any unbound variable.

2.2.3. Activation Mode Declaration

A clause is invoked either from the top level query or from literals in the body of some
clause invoked by the query. This implies that the minimal information a programmer must
supply is the worst-case activation mode of the query, e.g. the worst-case activation mode for
example_3 may be declared as

entry_(coupled(s,s)).

This means that the predicate "coupled”, with two arguments, may be a top level query with
its two arguments coupled together in the worst case. The symbols used in declaring the
worst-case activation modes of entry procedures are summarized below:

”sN™- coupled term in Nth coupled group.
”s” . coupled term. (implies there is only one coupled group)
”g” - ground term.

”i” - independent term.*

Ounly one declaration, which describes the worst case activation, is necessary for each entry
procedure in the program. This extra work can be handled quite easily by the programmer.
It it is desirable, the system can verify that the activation of the top level query is coasistent
with the declared worst-case activation mode. Throughout this chapter, the term "worst case
mode” is mentioned frequently. Worst case mode is determined in the following way. In the
above classification, ”s” is worse than ”i” and "i” is worse than "g”. For example, il a
predicate 'foo’ with three arguments has the following possible activations:

(f00,3.!8,8,5])-
{foo,3,[i,8.8})-
(f00,3,(g,3.8])-

Then the worst case activation mode should be (f00,3,[is,s}).

2.2.4. A Methodology

Up to this point, it is assumed that if two literals do not share any unbound variables
then they are independent. This assumption is not true in general, e.g. I/O and control
predicates such as cut and fail have to be handled in a special way. However, let us assume it
is true now and discuss special handling in section 2.2.6.

Prolog programs are executed from left-to-right. In SDDA, literals in a clause are

‘an independent term is a term which is neither a ground term nor 3 coupled term.
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examined according to the order of execution®. Variables in a clause are classified by the
analyzer into three sets G, C, and I:

G- {VI| V is bound to ground term}

C-{Vl| VEEC,ECis an equivalence class which contains variables that may
be coupled together}

I1- {V] V is neither in G, nor in C}

Again, two terms are coupled if they share at least a common, unbound variable. Two
variables are in the same coupling group (equivalence class) if the analyzer detects that it is
possible for them to be bound to two coupled terms. A unbound variable belongs to set I, but
not all variables in set I are unbound. It is possible that a variable is instantiated to a non-
ground term and still be in set I so long as it is not coupled with the other variables. The
triple (G,C,1) is called the variable status (i.e. the status of the variables).

The data dependency graph of a clause can be derived when the data dependency
analyzer examines body literals from left to right and keeps track of the worst case variable
status. To do this, the analyzer must find the worst case binding of a variable at the exit of 2
procedure call. It is similar to the problem encountered in the automatic mode generation for
Dec-10 prolog [35]. But, the major difference (besides the methodologies) between the SDDA
and the automatic mode generation is that, instead of just figuring out whether or not at the
entry of a procedure call the arguments are instantiated or not, the SDDA also keeps track of
the variable status in clause bodies and generates data dependency graphs.

The way that the analyzer processes a clause with a known activation mode is shown in
Figure 2.4. From the head literal and the activation mode of this clause, the analyzer first
constructs the initial variable status (GO,CO,IO). Assume that the current variable status
" before executing g, is (G,,:C,pL;)- The analyzer uses the current variable status to figure out
the activation mode of g. Then, it derives the exit mode of g, for this activation. From the
exit mode, it knows the worst case variable bindings of this procedure call. With this, it
updates the old variable status (G, ,C, I,,) to get the new variable status (G,C,I). This
process is continued until the end of the clause is reached, and the final variable status
(G,,.C,1) is derived. From the final variable status and the head literal, it derives the exit
mode of this clause for this activation. Since a procedure call may invoke all the candidate
clauses in a procedure, all candidate clauses have to be processed in the same manner in order
to get the exit mode of a procedure call for a given activation. The exit mode of a procedure
call for a given activation is the worst case exit mode among all the candidate clauses. An
Example is shown in Figure 2.5.

During the derivation, a variable can be in only one set at any time, yet it may be
switched from one set to another as each body literal is examined, e.g. a unbound variable in
a literal g, may be switched from the set I to the set G when the analyzer detects that it will
be grounded when g, is executed. Two equivalence classes may be merged together if two
variables, one from each class, become coupled together. If an equivalence class has only one
variable in it, then this equivalence class should be removed and the variable should be added
to the set I. An example is shown in Figure 2.6 (a). It shows snapshots of the variable status
as each literal is examined by the analyzer.

%n general, to perform the SDDA any static ordering algorithm can be chosen.



16

Io)

(Gy , Co, (G » G > K

(G G, 1y

(G s G v Tia)

!

Activation Mode of g;

!

Exit Mode of g;
classify variablesin g; :
{grounded variable}
{coupled variable}
{independent variable}

(G ,G, 1))

Figure 2.4 Processing a clause




17

Activation Mode of the clause

y
(G ,Co, 1o

v
(G .G 1)

’ L3

'
|
Cn, )
v

Exit Mode of the clause
for this activation

(Gy,

Figure 2.4 Processing a clause (continued)




18

{

|

I

1

' clause al

| [s;grsrgl

i | al -

! Exit Mpde of 'a2":

: g.8.8.i]

|

! clause a2
Act. Mode ! Exit Mode
—_— . } >

. a2 - ..

(g,1,3,] 1 | (g.1.8,]

]

: clause a3 «:\

1 ] |

‘ a3 - ' Exit Mode of a3’

'I ! 8,i.8.8]

{ t

Figure 2.5 Processing a procedure

Exit Mode of 'al’:




19

example :- foo(A,B,C), useA(A), useB(B),useC(C).
foo(X,3,[X1L}).
useA(2).
useB(1).
useC([2,4]).

input: {B}
generator: {}

input: {A,B,C}
generator: {A,B,C}
(G,cl)=({B}{{A,C}}.{})

input: {A} input: {C}

generator: {A,C} generator: {C}

(G.ch=({Aa.B}.{}.{C}) (G.Ch=({aB.C},{}.{}
(a)

(b)

Figure 2.6 Generating a data dependency graph

(G.C.l)=({A,B},{}.{C})

The data dependency graph can be generated as follows:

(1) The default "generator” of a variable is the calling literal.

(2) A literal which contributes to the binding of a independent variable will be made

the "generator” of that variable.

(3) A literal which contributes to the binding of at least one variable in an equivalence

class will be made the “generator” of all the variables in the equivalence class.



(4) A predecc.sor of a literal, say g, is the closest "generator” of one of the variables in
g Of course, a literal ~an have several predecessors each of which is the closest
"generatc-" >f at least :ne of the variables in the literal.

The data dependency graph of the example in Figure 2.6 (a) is derived according to the
above scheme. It is shown in Figure 2.6 (b). In Figure 2.6 (a), the set of variables for which a
literal is the generator is labeled as "generator”, the set of variables of a literal is labeled as
”input”.

This analyzer starts the analysis by frst examining all the entry procedures with
declared activation modes. After processing all the clauses of the entry procedures, a
collection of activation modes are available for the other procedures. The analyzer can
explore either all the possible activation modes of a procedure or just the worst case
activation. In the latter case, only one data dependency graph is generated per clause. In the
current implementation, the analyzer explores only the worst case activation of a procedure.
It is clear that the worst case activation mode of a predicate may be changed as the analysis
proceeds. Even the entry procedures may later on have activation modes which are worse
than the initial declarations given by the programmer. Whenever that happens, the data
dependency analyzer will re-analyze those procedures,

As stated above, given the activation mode of a literal, in order to derive its exit mode,
it is necessary to find the exit mode of each candidate clause for this activation. The exit
mode of the procedure with a given activation is the worst case exit mode among all
candidate clauses. This exit mode is recorded in a data base of the analyzer as a quadruple
(F,N,Act,Exit), i.e. (functor of the literal, its arity, activation mode, exit mode). If, later on,
the same activation occurs, then the corresponding exit mode can be retrieved without re-
deriving it. For the map-coloring problem in Figure 2.1, if an activation mode is declared for
the eatry procedure 'map’ as follows:

entry_(mép(l,x,x,l,x)). %% arguments are independent variables

the analyzer can derive exit modes for all the possible activations as listed in Figure 2.7. A
representation of the graphs generated by the analyzer is shown in Figure 2.8. One graph is
generated for each clause. These representations are ordered in the same order as
corresponding candidate clauses in 3 procedure. In Figure 2.8, the predicate "pred_" describes
the data dependency graph. Pred_(map,5,list) means that "list” is the data dependency list of
a candidate clause of map/5. Each element in the data dependency list describes the data
dependency of a literal, for example [2,1,0] means that the predecessor literals of literal #2 in
the body of the clause are the literal #1 and the calling literal (#0). The structure "back ”
describes the backtrack literals of each literal in a clause. Its structure is similar to "pred_”,
for example [6,1,3] means that the backtrack literals of literal #6 are literal #1 and literal #3
(these two backtrack literals correspond to two different types of backtracking as discussed in
Chapter 3).

In the above description, there is a "chicken and egg” relationship that must be
resolved. Because, in order to determine the exit mode of an activation, it i3 necessary to
determine the exit mode of each body literal. But what if a body literal has the same
activation (F,N,Act) as the calling literal? This circularity can happen for recursive clauses or
mutually recursive clauses. Circularity can be detected by maintaining an invocation chain.
An invocation chain is a list of activations, i.e. (F,N,Act)s, of all the ancestor literals. Since a
recursive clause generally must terminate on some other candidate clauses of the same
procedure, we can ignore this recursive clause when the cycle is detected and find the exit
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Figure 2.7 Mode quadruples
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pred_(next1,2,[]).

back_(next1,2,[]).

pred_(next1,2,[]).

back_(next1,2,{}).

pred_(next1,2,[}).

back_(next1,2,[}).

pred_(next1,2,[]).

back_(next1,2,[]).

pred_(next1,2,(]).

back_(next1,2,[]).

pred_(next1,2,[}).

back_(next1,2,(]).

pred_(next,2,{[1,0]]).

back_(next,2,{[1,0]]).

pred_(next2,2,([1,0]}).

back_(next2,2,([1.0]}).

pred_(next,2,[[1,0]]).

back_{next,2,[[1,0}]).
pred_(map,5,{[1,0],(2.1,01(3,1,0,14,1,2).(5,2.3],[6,1,0],[7 2,6],8,3.6]]).
back_(map,5,[1,0,0,2,1,1},3,1,2],{4,2.5,3],16,1,3],{7.61,8.6]])-

Figure 2.8 Output of the SDDA

mode of the body literal by considering the rest of the candidate clauses. It can be illustrated
with a simple example:

concat([],.L,L).
concat([X1L1),L2,[XIL3}):- concat(L1,L2,L3).

Assume the analyzer wants to determine the exit mode of an activation (concat,3,[g,g,i]). It
first examines the first candidate clause. From the activation mode it knows that L will be
grounded, so the initial variable status is (GO,CO,IO) = ({L},0,0). Since there are no body
literals, this is also the final variable status. From the final variable status and the head
literal, it deduces that the exit mode corresponding to the first clause should be {g.g,g]. It
then examines the second clause. From the activation modes it gets (GO,CO,IO) =
({X,L1,L2},9,{L3}). From this initial variable status, it derives that the activation mode of
the body literal is also [g,g,i]. With the same (F,N,Act) as the head, a cycle exists. So, in the
derivation of the exit mode of the body literal, it considers only the first clause. Since the exit
mode of the first clause for this activation is known to be !g,g.g|, at the exit of the second
clause, the variable status (G,C,I) becomes ({X,L1L2L2],0.0). From this final variable
status, it derives that the exit mode of the second clause for the activation (concat, 3,[g,8,i])
should be [g,8,g]. By comparing the exit modes of both clauses, the analyzer deduces



(F,N,ACt,EXit)=(c°ncatysy[grg1i] ,[S,S,SD-

This information is asserted into a data base of the analyzer for future references. Another
example is shown in Figure 2.9 (a). It is a quicksort program using a difference list [37]. The
result of mode derivations is shown in Figure 2.9 (b) and the output of the analyzer is shown
in Figure 2.9 (c). It can be observed that the exit mode of the activation (qsort,2,(g,i}) is [g.i]
instead of the anticipated [g,g]°. The reason for this is that the current implementation of the
analyzer has been simplified in order to achieve efficiency. Some optimization techniques
which can improve the quality of the exit mode derivation are discussed in the next section.

entry_(quicksort(g,i)).

quicksort(Unsorted,Sorted):-
gsort(Unsorted,Sorted-{]).

gsort([],Rest-Rest).

gsort([X | Unsorted|,Sorted-Rest) :-
partition(Unsorted,X,Smaller,Larger),
qsort(Smaller,Sorted-[X | Sorted1]),
gsort(Larger,Sorted2-Rest),
Sorted2==Sortedl.

partition([],..[1.(])-

partition([X | Xs|,A,Smaller,[X | Larger]) :-
ALX,
partition(Xs,A,Smaller Larger).

partition([X 1Xs|,A,[X | Smaller| Larger) :-
A> =X,
partition(Xs,A,Smaller,Larger).

Figure 2.9 (a) Quicksort

Functor Arity Act Mode Exit Mode.
partition 4 (8.8,1.i] (2.2.8.8]
gsort 2 (8.] [8.i]
quicksort 2 (8.1 [g.i]

Figure 2.9 (b) Mode quadruples

SNote that this is not an error. It does not matter when the analyzer fails to analyze the exact variable status
so long as the variable status is better than, as [g,g] is better than [gi}, what the analyzer has derived. Of course, it
may result in detecting less concurrency.



pred_(partition,4,{]).
back_{partition,4,[]).
pred_(partition,4,{{1,0],(2,0]]).
back_(partition,4,{{1,0],{2,0])).
pred_(partition,4,{[1,0],{2,0])-
back_{partition,4,{{1,0},(2,0]]).
pred_(gsort,3,[{1,01,[2,1,0],3,1,2,0]]).
back_(qsort,3,[[1,0,0],[2,1,1],[3,2]]).
pred_(qsort,3,{]).

back_(gsort,3,[]).
pred_(quicksort,2,{[1,0]}).
back_(quicksort,2,[{1,0]}).

Figure 2.9 (c) Output of the SDDA

2.2.5. Optimizations

Three optimization schemes which can be incorporated into the anmalyzer in order to
extract more precise information about the status of variables are discussed nere. They are
(1) structure matching, (2) refined activation mode declaration, and (3) separating the graph
generation phase from the exit mode derivation phase.

2.2.5.1. Structure Matching

Structure matching can be very useful in SDDA as illustrated in the following example.
Assume 3 clause has a head literal foo(W,h(Y,Z)). Consider the following two calling literals:

(1)  foo(3,h(X.X)).
(2) foo(3,h(X,3)).

Assume X is not grounded. According to the methodology described in the previous section,
the analyzer will derive the fact that both literals have the same activation mode [g,i].
Clearly, the initial variable status (G,CI,) of the first case should be ({W},{{Y,2}}.{}), and

of the second case should be ({W,2},{},{Y}). However, since only the activation mode is
used to derive the initial variable status, the analyzer treats both cases in the same way.
That is, for the second calling literal, the initial variable status derived by the analyzer will be
the same as the first. This is not desirable. To make the SDDA perform a little bit better, in
the current implementation an independent term which contains coupled arguments are
denoted by an intermediate mode 'r'. If an argument in the head literal has 't as its
activation mode, and contains more than one variables, then all its variables are put into the
same coupling group; if the argument of the head literal only contains one variable, then the
variable is considered as an independent variable. With this scheme, in the above example
the first calling literal will have the activation mode lg,r] and the second [gi]. Then, the
initial variable status for the second calling literal will be ({W},{},{Y,Z}) which, although not
as good as the ideal variable status, is better than before. However, if the structure matching



is incorporated into the SDDA, the ideal variable status can always be derived. Also consider
the quicksort program in Figure 4. During the data dependency analysis, the analyzer tries to
find the exit mode of the literal gsort(Unsorted,Sorted-[]). Since it does not perform any
structure matching between the literal and the head of the first candidate clause (only the
activation mode (gsort, 2, [g,i]) is passed over), the initial variable status (GO,CO,IO) is
({X,Unsorted}, @,{Sorted Rest}). If structure matching is performed, the analyzer can detect
that Rest will be matched with the empty list [|. In that case, (G,C,l,) will become

({X,Unsorted,Rest}, @,{Sorted}) which is more precise than before.

Another advantage of incorporating the structure matching into the SDDA is that, in
deriving the exit mode of a calling literal, the analyzer can ignore clauses whose head literals
have structures incompatible with the calling literal. For example, calling literal foo([X|L}, - -
- } can not activate a clause whose head is, say, foo(9, - - - ) or foo(f}, - - - }.

The disadvantages of exploiting structure matching is that the SDDA becomes more
complicated, e.g. the activation mode may contain structure in each argument position, the
worst-case activation modes takes longer time to resolve, worst-case variable bindings are
more difficult to resoive at the exit of a procedure call, etc.

2.2.5.2. Refined Activation Mode Declaration

In the current scheme, programmers can only classify an argument into three different
types of terms, i.e. ground terms, coupled terms, and independent terms, in the activation
mode declarations. More refined activation mode declaration can be implemented together
with the structure matching, e.g.

entry_(foo(g,(gi]))-

which means that the entry procedure 'foo’ is activated with the first argument a ground term
and the second argument a list with its head a ground term. If the head of a candidate clause
is foo(W,ZIL]), then the analyzer can derive (GyColy)=({W,2},0,{L}) instead of

({(W}ho{Z.L}).

2.2.5.3. Separating Graph Generation From Exit Mode Derivation

In the current implementation, dependency graphs are generated at the same time the
analyzer derives the exit mode of each body literal and updates the variable status. This
approach simplifies the implementation, and takes advantage of the fact that both exit mode
derivation and graph generation requires the knowledge of the variable status. There is,
however, a fundamental difference between exit mode derivation and graph generation. In
graph generation, literals in a clause have to be examined from left-to-right (or in any fixed
order determined by a static ordering algorithm). The exit mode of an activation of a clause,
however, should be order independent. It turns out that for a literal, which invokes a recursive
clause, 2 more accurate exit mode of the activation can be derived by considering that a
unbound variable may be bound later on by other literals in the same clause. A more detailed
discussion on this is in the automatic mode generation paper by Mellish [35].

By separating the graph generation phase from the exit mode derivation phase, the
analyzer can perform better in exit modes derivation and graph generation.

The data dependency analyzer has been tested on several benchmark programs, e.g. the
queens problem, the mu-math problem, an automatic circuit design problem, a map-coloring
problem, and the quicksort. The analyzer is able to detect as much parallelism as exists in



the programs. This result is very encouraging.

2.2.8. Handling Control Predicates, 1/0, and Global Effect Predicates

A program, for any practical purpose, must have I/O and other side-effects. One of the
difficulties in static data dependency analysis in Prolog is that the global effect predicates,
namely assert and retract, can be used in a fairly unrestricted way. For example, in Waterloo
Prolog a new clause can be asserted into any position in a procedure, i.e. as the first clause or
as the Nth clause. Also, an assertion can show up at any place in the program. These raise
the cost of the static data dependency analysis, because the analyzer must find all the
procedures being affected by assert or retract under a literal and find out the axiom-

dependencies between literals in the same clause. A literal is axiom-dependent if it invokes

procedure calls which are affected by assert or retract, or vice versa’. [/O operation is

treated in the following way. All the previous literals have to be completed before an I/O can
be started. Control predicates also have to be specially treated because their significance can
not be detected by the data dependency analysis. In the current implementation, all the
literals before control predicates, e.g. cut, fail, and repeat, have to be completed before these
control predicates can start, and the subsequent literals can not backtrack to previous literals
without going through these control predicates.

2.3. A Hidden Problem

In the previous section, it is shown that a pure data dependency analysis is not enough
to detect dependency, e.g. control predicates have to be handled in a special way. In this
section, 3 hidden problem in the approach of the SDDA is pointed out with the following
example.

a(X):- test_for_ok(X), work_on(X).

In this example, if X is grounded at the entry of this clause, the data dependency analyzer wiil
allow both literals in the body to proceed concurrently. However, there is a logical
dependence between these two literals. The second literal may contain meaningless,
inaccurate or unbounded work unless the first literal succeed. To handle this problem, the
programmer should either use a dummy variable or use a special annotation to denote the
logical dependence. The programmers, who are accustomed to the left-to-right sequential
execution of Prolog, need to have a special mind-set to detect this potential problem.

2.4. Complexity Analysis of the SDDA

As mentioned in Chapter 1, a Prolog program can be treated as an AND/OR search
tree in which an AND subtree corresponds to a clause and an OR subtree corresponds to a
procedure. In the SDDA, if ignoring activation modes and recursions, the analyzer basically
performs a depth-first tree traversal of the AND/OR tree starting from the OR subtrees of
the entry procedures. The complexity of the algorithm would be linear. However, because of
activation modes, an OR subtree may need to be examined several times, each time with a
worse activation mode. Assume the number of arguments of all the procedures in a program
is bound by a constant K. Then, the number of different activation modes of a procedure is

bound by 3% The constant 3 is introduced because that an argument can have one of the

A simpler and cheaper scheme is to treat a literal, which invokes global eflect predicates, as an I/O (see the
static data dependency analyzer shown in Appendix A).



three possible activation mode, i.e. g, i, or s (to simplify the analysis, sN is not included here).
The complexity of this algorithm would still be linear. Here, it is assumed that an existing
mode quadruples can be retrieved with constant time (for example, hashing is used rather
than a linear search). That is, it costs almost nothing to retrieve the exit mode of an old
activation. Recursions are handled by considering all the other clauses except the clauses of
which the recursive call is a descendant. Now, assume that there are M recursive clauses in 2
procedure, each of which contains one recursive call. If all the recursive calls happen to have
the same activation mode, then the number of recursive clauses that need to be examined is
M! (M factorial). This would be quite expensive especially when the AND subtree of a
recursive call is non-trivial. For example, in one of the benchmark programs, the automatic
circuit design problem®, the recursive procedural call 'ngate’ calls another recursive procedure
call 'tgate’, where the procedure 'tgate’ includes several clauses. To reduce the cost of the
SDDA, the programmer can use declarations to declare 2 mode quadruple, for example:
mode_(ngate,3,[i,i,i,[i.ii]).

This declares that the exit mode of the activation (ngate,3,[i,i,i]) is [i,i,il- When the SDDA
searches its data base and finds a mode quadruple with the given activation, it stops exploring
the corresponding OR subtree and simply retrieves the exit mode.

Table 2.1 compares speeds of the data dependency analyzer and the PLM compiler [14]
for several benchmark programs. It can be observed that the cost of the SDDA is cheaper
than the compilation except for programs which contains many recursive clauses (as in mu-
math and automatic circuit design problem).

Benchmark SDDA PLM Compiler
map-coloring 20.23sec 25.23sec
determinate concate 2.67sec 7.87sec
quicksort 17.67sec 62.90sec
population query 18.48sec 61.77sec
serialize 59.02sec 62.30sec
mu-math 247.22sec 83.10sec
queens 19.53sec 51.92sec
automatic ckt
(w/o mode declaration) 197 .63sec 116.38sec
ti t
(witharl::zadlecclcal:ation) 38.85sec | 116.38sec

Table 2.1 Comparison between the SDDA and the PLM compiler

®\{ost of the benchmark programs mentioned in this thesis are in Appendix B for reference.



2.5. Conclusion

In this chapter, a method to accomplish a SDDA for Prolog programs has been derived.
The cost of performing a SDDA is cheaper than compilation for most of the benchmark
programs. The SDDA and the automatic mode generation [35] share a similar flavor and
philosophy, both are concerned with deriving, automatically, worst-case variable bindings.
But, instead of just figuring out worst-case variable bindings at the entry of a clause, the
SDDA also generates a collection of data dependency graphs, one for each clause. In the
automatic mode generation, Mellish [35] estimated that the cost of deriving instantiation
modes is about four times as expensive as compiling the same program by the Dec-10
compiler. The approach used in the automatic mode generation is to first construct a
dependency network?, then iteratively propagate the mode constraints through the network
until a fix-point is reached. This method is designed to handle recursive clauses, but is less
efficient in handling non-recursive clauses. On the other hand, the dependency analyzer
described in this chapter walks through the AND/OR tree in the depth-first order. It keeps
track of variable status and constructs the dependency graph at the same time, re-examines
an OR subtree only when the worst case activation mode has been changed. It may cost
more in handling nested recursive clauses, but it wastes no extra effort in handling non-
recursive clauses. Although the objective of the SDDA is different from automatic mode
generation, the methodology used in this chapter can be adopted for that purpose. In the
next two chapters, the SDDA will be employed to achieve intelligent backtracking and AND-
parallelism.

*This dependency network is constructed by looking only the name of the variable. It is different from the
dependency analysis discussed in this chapter where the worst case variable bindings are considered.



CHAPTER 3

COMPILING INTELLIGENT BACKTRACKING FOR A PROLOG MACHINE

3.1. Overview

Prolog programs are executed from left-to-right and top-to-bottom. A depth-first
execution strategy is employed. It backtracks to the most recently activated procedure call
having a choice point (untried alternative) when a failure occurs. However, the most recently
activated choice point may not be able to generate any new variable bindings which can help
solve the subgoal that fails. To backtrack intelligently is to avoid this kind of redundancy as
much as possible. Intelligent backtracking based on run-time bookkeeping has been studied
by Cox-Pietrzykowski-Matwin | 21] and Bruynooghe-Pereira-Porto [18,19] Their approach
entails considerable run-time overhead. A static data dependency analysis for Prolog
programs (as discussed in Chapter 2) will allow the generation of compiled code with
improved backtracking behavior. Taking advantage of data dependency graphs to achieve
better backtracking behavior was first suggested by Conery in his thesis [22]. In his approach,
however, it is necessary to determine data dependencies among literals at run-time.
Furthermore, since data dependencies among literals may be changed upon backtracking,
Conery's method requires re-computing data dependencies before forward execution is
resumed. Obviously, this is very costly. Instead, static data dependency analysis can
generate a data dependency graph for each clause. From the data dependency graph, the
literal which a literal should backtrack to in case of failure can be determined. However, since
the analysis is static and based on worst-case considerations, it is not as accurate as a run-
time analysis. Thus, it is called semi-intelligent backtracking [38]. In this chapter, a scheme
to compile semi-intelligent backtracking for a Prolog machine (PLM@Berkeley) is described.
The advantages of this approach are demonstrated with simulation results. It is shown that
although the cost of compiling a program is increased, the overhead required to support semi-
intelligent backtracking at run-time is very small.

3.2. Backtracking

In general, there are two kinds of backtracking [16], shallow backtracking and deep
backtracking. Shallow backtracking is backtracking to alternative candidate clauses when the
head of the current candidate clause can not unify with the calling literal. Deep backtracking
occurs when there are no untried candidate clauses for the current procedure call, so
backtracking occurs to amy previously invoked procedure call having a choice point.
Backtracking can be done more effectively by using clause indexing (hash on the arguments of
the calling literal) [16]. Clause indexing selects qualified candidate clauses of a procedure call.
Its effect is local to a procedure. On the other hand, intelligent backtracking reduces the
number of redundant, deep, backtracking steps, and its effect is inter-procedural. Current
Prolog interpreters/compilers implement shallow backtracking and deep backtracking
uniformly: They always backtrack to the most recently activated procedure call having a
choice point when a failure occurs. Since this style of backtracking is purely mechanical, it is
called nasve backtracking. A simple example is shown below to illustrate naive versus
intelligent backtracking.
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Example 3.1.
2(X,Y) :- a(X), b(Y), ¢(X).
a(X):- d(X), e{X).
a(X):- ...
b(2):- ...
b(3).
b(Y):- ...
c(Z):- s(2), t(Z).
d(3).
e(3).
s(3).
t{1).
t(2).

t(4).

The AND/OR tree of this example is shown in Figure 3.1. In this figure, the candidate clause
of a procedure ’a’ is labeled as 'al’, 'a2’, ... It is clear that when the literal ¢(X) fails during
forward execution, backtracking should occur directly to the choice point of 'a’. Since the
failure of 'c’ is due to the binding of variable X bound by 'a’, backtracking to 'b’ will be
useless.

3.2.1. Run-Time Intelligent Backtracking

Run-time intelligent backtracking has been studied by Cox-Pietrzykowski-Matwin | 21]
and Bruynooghe-Pereira-Porto (18,19]. Their approaches are based on finding minimal (or
maximal) deduction subtrees! such that unification is impossible (or possible). Since these two
approaches are complementary to each other, in the following only the method developed by
Bruynooghe-Pereira-Porto is outlined.

Intelligent backtracking by finding minimal failing deduction subtrees is based on the
observation that a naive interpreter always considers the whole proof tree as the failing tree
when a failure occurs. If a smaller deduction subtree can be determined to cause the failure,
then the redundant search space can be pruned. Their method can be summarized as follows:

(1) Construct the deduction subtree of a term. The deduction subtree of a term
consists of procedure calls which contribute, directly or indirectly, to the binding of
the term. The deduction subtree of a term is constructed during unification. An
inconsistent deduction subtree is derived whea two terms fail to unify.

(2) A leaf of the inconsistent subtree is selected as the culprit and removed. The fact
that the remaining subtree causes failure of the current candidate clause of the
culprit is asserted intc a data base. Next an attempt is made to grow the tree
again (normally by selecting another candidate clause, if any, of the culprit).

(3) If all the candidate clauses of a procedure fail, their associated failing instances
being asserted in the database are combined to become the unsolved subtree of this
procedure call.

1A deduction tree looks like a skeletal proof tree. It is a proof tree with all substitutions completely ignored.
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AND/OR Tree:

Legend:
* . fail
- — ~y : forward execution (DFS) path
....... » : intelligent backtracking path
————p : Daive backtracking path

Figure 3.1 Naive vs. Intelligent Backtracking

(4) If the unsolved tree is an empty tree, then the goal fails. Otherwise, remove the
failing procedure call, select a culprit from the remaining inconsistent subtree, and
proceed as in (2).

The authors show that this scheme requires a lot of run-time bookkeeping. They confess
that the overhead is too large for the sequential execution of the majority of logic programs,
and that its only advantage is in special applications related to theorem proving.

As will be shown later, the support of intelligent backtracking for Prolog execution is
important. Since run-time intelligent backtracking has too much overhead to be useful, a
promising alternative is to compile intelligent backtracking based on the SDDA described in
Chapter 2. It turns out that this scheme, although not as intelligent as the run-time



approach, can be quite useful for many applications and is easily supported. The technique is
briefly described in the next section.

3.2.2. Semi-Intelligent Backtracking

As discussed in Chapter 2, with SDDA a data dependency graph can be generated for
each clause in a Prolog program. Literals on the same layer of a data dependency graph are
independent during forward execution. Thus, a failure of a literal occurring during forward
execution has nothing to do with the other literals on the same layer. During backward
execution, literals on the same layer are not independent (this will be explained later). In
spite of this, a more intelligent form of backtracking can still be achieved by using the data
dependency graph based on worst case considerations.

One immediate limitation of this approach is that the intelligent backtracking behavior
is confined within a clause, as illustrated with the following examples.

Example 3.2.
a(X,Y,Z) - b(X,Y), ¢(Y,2), d(X).
b(X,Y) - e(X), f(Y).

In this example, assume X, Y, and Z are bound to integers by 'e’, 'f’, and ¢’ respectively. The
AND/OR tree and the data dependency graph of the first clause is shown if Figure 3.2. When
'd’ fails during forward execution, it should backtrack to 'b’ without going through 'c’. This
can be easily compiled with the help of the SDDA. But without further information, at best
'd’ can only backtrack to the last choice-point under 'b’, which could be the choice-point of 'f’.
However, the desired behavior is for 'd’ to backtrack directly to the choice-point of ’e’. In
order to achieve this, it would be necessary to know which literal in a clause binds which
variables and to have a method to determine the cause of failures.

Example 3.3.
:- perm(|1,2,3],5), safe(S).
perm({[I).
perm(|X1L],[U1V]) :- del{(U.[X1Y],W),perm(W,V).
del(X,[X1Y].Y).
del(U.[XIY].[XIV]) = del(U,Y,V).
safe(S) - ...

This is a fragment of the program which solves the 3-queen problem [18]. The procedure
'perm’ generates a possible configuration S, and the procedure 'safe’ checks whether the
configuration is safe or not. It can be seen that a configuration, which contains three
positions of queens, is generated by four tail-recursive calls of 'perm’, each of which has a
choice-point in its child procedure 'del’. Now, assume that in 'safe’ it is found that the
configuration is not safe because of the position of the first queen which is generated by the
first recursive call of 'perm’. One would certainly like to throw away choice-points associated
with the other recursive calls of 'perm’ and backtrack directly to the untried clauses of the
culprit. But as in the first example, from the limited information gathered from the SDDA,
this ideal scemario can not be achieved. It could be achieved, however, by a run-time
intelligent backtracking scheme.
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a(X,Y,Z) - b(X,Y), ¢(Y,Z), d(X).
b(X,Y) :- ¢(X), 1(Y).

AND/OR Tree:

I
bl :
§
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e ‘r f y
Legend

R » semi-intelligent backtracking
————p :Daive backtracking
- — — ~yp :desired backtracking path

a(X,Y,Z) - b(X,Y), ¢(Y,2), d(X).
b

N

¢ d
Data Dependency Graph

Figure 3.2 A Map-coloring Problem

Given its limitations, one may wonder whether it is worthwhile to pursue semi-
intelligent backtracking. It turns out that there are many programs for which semi-intelligent
backtracking suffices. A very important advantages is that overhead at run-time is very
small. Furthermore, semi-intelligent backtracking is based on a static analysis. The
mechanism is called for only when there are advantages to so doing. A detailed comparison
of run-time intelligent backtracking to semi-intelligent backtracking is shown later.
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3.3. Compiling Inteiligent Backtracking

In this section, the scheme to incorporate semi-intelligent backtracking into the PLM
architecture |16, 15] and compiler [14] is described in detail.

3.3.1. Determining Intelligent Backtrack Paths

In previous sections, forward ezecution refers to the continuation of deduction steps and
backward ezecution refers to all the backtracking activities. In this section, the terms
forward state and backward state are defined for clause instances. A clause instance is an
activation of a clause. There can be several clause instances of the same clause being invoked
during the execution of a program. Forward and backward states are used to distinguish
three different types of backtracking.

Forward State -
The forward state of a clause instance starts from the forward execution of a body
literal until a failure of another body literal of the same clause instance.

Backward State -
When a body literal fails, the clause instance is said to be in backward state. It remains
in backward state until a previously invoked body literal of the same clause instance has
another solution.

Since semi-intelligent backtracking is confined by a clause boundary, one needs to
examine only the data dependency graph of a clause (ignoring graphs associated with proof
subtrees underneath them) in order to determine the backtrack paths of its body literals.
Three types of backtrack paths in a clause are distinguished, as shown below, in order to take
full advantages of the data dependency analysis.

Typel-
Backtracking between body literals that occurs at the end of a forward state of a
clause instance. It is discussed in section 3.3.1.1.

Type Il -
Backtracking between body literals that occurs during a backward state of a clause
instance and before its first successful exit. It is discussed in section 3.3.1.2.

Type III -
Backtracking between body literals that occurs during a backward state of a clause
instance and a/ter its first successful exit. It is discussed in section 3.3.1.3.

For each type of backtracking, the backtrack literal of a literal can be determined from
the data dependency graph.

3.3.1.1. Type I Backtrack Path

The data dependency graph for the 'map’ clause in the map-coloring problem is shown
again in Figure 3.3. In forward execution, if next(A,D) is called, after exiting from next(A,C),
and fails, then it should backtrack directly to mext(A,B) without going through next(A,C).
This is because failure of next(A,C) is due only to the binding of variable A generated by
next(A,B). In general, for this type of backtracking, the literal should backtrack to its closest
predecessor node in the data dependency graph. The backtrack path for the type I
backtracking in the map-coloring problem is shown in Figure 3.4 (a).
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map(A,B,C,D.E) -
next(A,B), next(A,C), next(A,D), next(B,C),
pext(C,D), next(B,E), next(C,E), next(D,E).

Figure 3.3 A Data Dependency Graph
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3.3.1.2. Type II Backtrack Path

In forward execution, two literals on the same layer of the data dependency graph are
independent. However, during backtracking, this is not the case. For example, in the data
dependency graph in Figure 3.3, next(A,C) is the »generator” of variable C and next(B,E) is
the "generator” of variable E; they are independent in forward execution. Now, let us assume
next(B,E) fails to respond to backtracking from next(C,E). Should next(BE) backtrack
intelligently to next(A,B), the generator of variable B? or to next(A,C), the generator of
variable C? or some other literal? In this case, next(B,E) should backtrack to next(A,D). It
does seem a bit strange that next(B,E) cannot backtrack intelligently to either next(A,C) or
next(A,B). This is because the uitimate failure of next(B,E) may contribute to both next(C,E)
and next(D,E) which reject bindings on variable E generated by next(B,E). To backtrack to
next(A,D), there is a chance that one instance of E, when combined with a new instance of D,
becomes acceptable by next(D,E). In the proposed scheme there is no attempt to analyze the
cause of failure, nor to remember the history of backtracking. A failure of a literal is assumed
to be due to all its input arguments.
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The back-from set of a literal determines the type 11 backtrack path. It is defined
recursively as follows:

(a) For each leaf literal in a data dependency graph, the back-from set is the empty set.

(b) For each non-leaf literal g, the back-from set is the union of the succeeding (or

right-hand side) literals whose backtrack literal (of type I for a leaf literal or of type
11 for a non-leaf literal) is gy and their back-from sets.

(c) For each non-leaf literal g the backtrack literal of type I is the closest preceding
(or left-hand side) literal g_such that at least one literal in the back-from set of g,
is reachable® from g, If nosuch g, exists, then the backtrack literal of type II of g
is the calling literal.

Basically, the type II backtrack literal of a literal g, is the closest literal which lies in any
of the possible intelligent backtracking paths that go through g, From the above definition,
the back-from set of a literal g, can be seen to consist of succeeding literals whose failure may
contribute (by type I or type II backtracking) to the backtracking to g. If g, does not bave
any more untried candidate clauses, then it will backtrack to a literal g, which still has a
choice-point and can reach at least one of the literals in the back-from set of g, (thus have a
chance to solve the failed subgoal).

An algorithm which determines the back-from set and the backtrack literal of type II for
each literal in the clause is shown below:

[Algorithm I}
Let G,, G,,. -G, be the ordered sequence of literals in a clause. This sequence is

partxtloned into m layers according to data dependencies. Let S, denote the back-from
set of G,.

(1) For each literal G, in the bottom layer, set S=0. The backtrack literal (of type I)
of G, is its closest predecessor.

(2) For layer n = m-1 down to 1: Let n,...,n, be the indexes of literals in layer n.
For j = n,down to n:

(2a) Let A ={xIG is the backtrack literal (of type I for leaf literals or of type II for
non-leaf hterals of x}. Then the back-from set of G, is S ={x|x€-\ or G,€A,
and x€S,}.

(2b) Find the largest index k, 0<k<j, such that at least one of the literals in S, is
reachable from G,. If there is no such k then the backtrack literal of GJ is the
calling literal; otherwise the backtrack literal of G is G,.

Let R, be the reachable set of G, Note that if RNS,, = O then backtracking to G, does
not help in finding successful mstances for literals in SH_1 In naive backtracking, backtrackmg
to G, in this case amounts to a redundant step. In Algorithm I, these redundant steps are
avoxded otherwise, nothing has been changed. For the map-coloring problem, the backtrack

%A literal g, is reachable from literal g, if there is a directed path from g, to g; in the data dependency graph.
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paths for the type II backtracking are shown in Figure 3.4 (b). Note that all the literals at
the bottom layer do not have backtrack literals of type II.

A type II backtrack literal is determined by the worst-case consideration. This is
illustrated in Figure 3.5. In this figure, it is assumed that forward execution has advanced to
literal #7 (next(C,E)), and literal #8 (next(D,E)) has not been called after the activation of
this clause instance. If literal #7 fails, it should backtrack to literal #6 (next(B,E)) by type I
backtracking. Now, if next(B,E) can not yield another successful instance, it can very well
backtrack to literal #2 (that is, next(A,C)). This is because that literal #8 has not been
called yet, so the set of variable bindings generated by literal #6 are rejected only by literal
#7. In this case, literal #6 does not need to backtrack to literal #3. On the other hand, if
literal #8 has been invoked before, thea it is possible that a subset of variable bindings
zenerated by literal #6 are rejected by literal #8 because of the binding on variable D
generated by literal #3. In that case, a retry on literal #3 to generate another binding for

~ o e ¢

failure

Legend:
———3 Data Dependency Arc

- - — » Forward Execution
(up to next(C,E))

_______ —» Ideal Backtrack Path

Figure 3.5
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variable D may solve the problem.

Now, even if literal #8 has been invoked before, if the system keeps track of the history
of backtracking (e.g. in run-time intelligent backtracking) and finds that all the binding
generated by literal #6 are rejected by literal #7, then literal #6 can still backtrack directly
to literal #2.

It is felt that the payofl would not justify the trouble to either compile a separate list of
type II backtrack paths for each execution stage of a clause or to keep track of the history of
backtracking. So, only the worst-case type II backtracking paths (that is, it is assumed that
all the literals in a clause have been visited) are compiled.

3.3.1.3. Type III Backtrack Path

When a clause instance is backtracked into after its first successful exit, the static data
dependency graph does not provide enough information to achieve intelligent backtracking.
~This is illustrated by the following example:

f(W,Z) - u(W,Z), tW,Z).
u(X,Y) :- v(X), w(Y).
W(X.Y) .. .

Assume the analyzer has deduced that, at the entry of the second clause shown above, X
and Y are independent variables, v is the generator of variable X, and w is the generator of
variable Y. The data dependency graph of the second clause is shown in Figure 3.6. At run-
time, after the first successful exit of u(W,Z), t{(W,Z) is executed. If t(W,Z) fails and
backtracks to w(Y), and w(Y) fails to generate any other solution, should w(Y) backtrack to
the calling literal u(W,Z) to try alternative candidate clause or backtrack to v(X) which seems
to have nothing to do with w(Y)? Clearly in this case it is necessary to backtrack to v(X)
because the failure of t(W,Z) is presumably due to both input arguments. (Recall that in this

calling literal

N
- ~
- ~

O ©

Figure 3.6
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scheme, no attempt has been made to determine the cause of failure. A failure of a literal is
assumed to be due to all its input arguments.) It is possible to generalize intelligent
backtracking of type II to type I if, in algorithm I, all the possible extensions of the current
proof tree are analyzed for backward independence. This global analysis can be seen to be
very expensive. Since type II backtracking is based on the worst-case analysis, It is
conjectured that not many intelligent backtracking paths would result from global analysis.

In the current scheme, type III backtracking is treated as naive backtracking, i.e.
backtracking sequentially through all choice points.

3.3.2. Architectural Support and Code Generation for Intelligent Backtracking

In this section, the way to incorporate semi-intelligent backtracking into a Prolog
machine (PLM@Berkeley) [15] and its compiler [14] is described.

3.3.2.1. The Berkeley Prolog Machine (PLM)

The PLM is s special purpose Prolog machine based on an extension of Warren’s
abstract Prolog instruction set [39]. It has a set of special registers and specially designed
data paths for efficient execution of compiled Prolog programs.

The PLM uses four memory areas. Three of the memory areas are used as stacks to
store data. The fourth is the code space.
(1) Heap -
The heap is used to store all structures created during execution of the program.
(2) Stack -
The stack contains two kinds of objects:
(a) Environments -
An environment is used to store permanent variables which cannot be stored in
the temporary registers of the machine because these variables must survive
across calls. It also contains some other information used to continue execution
when the clause is completed and to aid the implementation of the cut
operator. An environment is shown in Figure 3.7 (a). The E, B, CP, and N
fields are copies of registers E, B, CP, and N (see the Register Description
below) when the environment is created.

(b) Choice-Points -
A choice-point is shown in Figure 3.7. It contains copies of registers TR, H,
A-A;, CPE B (see the Register Description below) and a pointer (BP) to the
next candidate clause of the procedure. A choice-point is created so that the
correct machine state can be restored upon backtracking.
(3) Trail -
The trail contains pointers to all variables which must explicitly be reset to
unbound upon backtracking.
(4) Code Space -
The code space contains all executable code of the running Prolog program.

The state of the PLM at any instant is defined by the following registers:
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Figure 3.7 (b) A Choice-Point
( Continued )
Register Description
P program counter (to the code space)
CP continuation pointer (to the code space)
E last environment (to the stack)
B last choice-point (to the stack)
N size of last environment
H top of the heap
HB heap backtrack pointer (to the heap)
S structure pointer (to the heap)
TR top of the trail
PDL top of the PDL (for unification between structures or lists)
AX argument and temporary registers
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PLM instructions are categorized as follows:

(1) unification -
Unification instructions include get instructions and unify instructions. These are
the instructions that generally bind variables.

(2) procedure call -
This category includes put and uni/fy instructions for setting up arguments, cell and
ezecute instructions for invoking a procedure, proceed for a call return. allocate and
deallocate instructions for allocation and deallocation of call frames (environments).

(3) choice-point manipulation -
A set of instructions are used to manipulate choice-points. They are try
instructions for creating choice-points, retry instructions for updating next untried
clauses, and trust and cut instructions for throwing away choice-points. A few
switch_on_term (clause indexing) instructions are also available for pre-selecting
qualified candidate clauses.

(4) built-in functions -
There are several built-in functions, e.g. side-effect predicate and arithmetic
operators.

3.3.2.2. Implementing Intelligent Backtracking In PLM

The new data structures necessary to support semi-intelligent backtracking are shown in
Figure 3.8. -At compile time, a backtrack table (BT_TABLE) is constructed, as part of the
compiled code, for each clause which can take advantage of semi-intelligent backtracking. At
run time, a choice-point table(CP_TABLE) is maintained for each such clause. Each entry in
the choice-point table is a pointer to the last choice point, if any, of the corresponding literal.
Entries of BT_TABLE in Figure 8 correspond to the color/5 clause of the map-coloring
problem. No entries are provided for the first literal because it should always backtrack to
the parent’s choice-point.

A few new instructions are designed to support the intelligent backtracking. There are
described below.

(1) i_allocate n, label -

This is a new allocate instruction used to create an environmeat for a clause that
can take advantage of intelligent backtracking. In this instruction, n is the number
of literals in the clause, and [abel is the label of the BT_TABLE. When i_allocate
n, label is executed, it creates an environment on the stack as well as a choice-point
table (with n entries) on the heap. Pointers to the choice-point table and backtrack
table are stored in the environment as shown in Figure 3.9 (a). The field LB is used
to store a pointer to the last choice-point before the execution of a procedure call so
that it can be determined whether this procedure call has a choice-point at the exit.
It is needed for the enter instruction described below. A one bit flip-flop (E_FF) is
set by the i_allocate instruction to denote that the current environment has a
different structure (Figure 3.9 {a)) from an ordinary environment (Figure 3.7 (a)). It
is part of the machine state. It is copied onto the stack along with the E register
(in which only bits 2670 contain the address of an environment) (see Figure 3.9 (a))
when a call frame or a choice-point is created. It is restored when the E register is
restored. Another one-bit flag (EXIT_FLAG) is also stored in the modified call
frame. It is used to distinguish backtracking of type III from type IL. It is set
permanently by the deallocate instruction.
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literal# type | type II
1 :-_—0—_—1-_‘0—-—:
2 1 1
3 1 2
4 2
5 3
6 1 3
7 6
8 6
BT_TABLE
literal# pointers to choice-points
1
2
. .
o .
n
CP_TABLE

Figure 3.8 Backtrack Table (BT_TABLE) and Choice-Point Table (CP_TABLE)
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Figure 3.9 (a) A Modified Environment Frame
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Figure 3.9 (b) A Pseudo Choice-Point
( Continued )

(2) make m -

A make instruction is used to create a pseudo choice-point (Figure 3.9 (b)) on the
stack. It is inserted right before a procedure call to set up intelligent backtracking
when the procedure call fails. A pseudo choice-point does not contain previous
machine state as in a normal choice-point. It contains only information for the
purpose of intelligent backtracking. It includes copies of registers B {in order to
access the previous choice-point, real or pseudo), E (to access EXIT_FLAG and
pointers to CP_TABLE and BT_TABLE), and a value m (the literal number of the
following procedure call). At the end of the make m instruction, register B points
to the newly created pseudo choice-point, and the mth entry in the CP_TABLE is
initialized as UNKNOWN. A one bit tag (CTAG) is used to distinguish a pseudo
choice-point (CTAG = 1) from a normal choice-point (CTAG = 0).

(3) i.call name/arity,n -
An i_call instruction is almost the same as a call instruction except that it also
copies the value of the B register into the LB field in the environment. With the
pointer to the most recently activated choice-point available in the LB field, it can
be determined whether or not there are choice-points under this procedure call.

(4) enter m -
An enter m instruction is inserted right after an i_call in order to record the last
choice-point under the procedure call into the mth entry of the CP_TABLE. If
there are no choice-points generated by the procedure call or its children when enter
m is executed, the mth entry in the CP_TABLE is tagged as NONE. It can be
determined by comparing the closest real choice-point (traced from the B register)
with the LB value in the environment.

(5) i_cut m -
When cut is a literal of a clause which can take advantage of semi-intelligent
backtracking, it is replaced by i_cut m. An i_cut m instruction is similar to cut,
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except that the pointer which is supposed to load into the B register is also recorded
in the mth entry of the CP_TABLE.

In naive backtracking, the machine state kept in the last choice point, pointed to by the
B register, is restored when a failure occurs. With semi-intelligent backtracking, the
operations of failure handling are changed to the following:

(1) If register B points to a real choice point (CTAG=0), then go to (3). Otherwise,
continue.

(2) Access entry# from the pseudo choice-point and pointers to CP_TABLE and
BT_TABLE from the environment. Examine CP_TABLE[entry#| Two possible
cases follows:

(a) CP_TABLE[entry#| is tagged as UNKNOWN. It is backtracking of type L
Look up the "TYPE I” field of BT_TABLE[entry#] to get the backtrack
literal.

(b) Otherwise, get EXIT_FLAG from the modified environment.

(i) If EXIT_FLAG =1 (i.e. TYPE Il backtracking), retrieve the pointer to
the previous choice-point from the B feld of the pseudo choice-point and
keep tracing pointers until a real choice-point is found; then go to (3).

(i) 1If EXIT_FLAG = 0 (i.e. TYPE II backtracking), look up the "TYPE II”
field of BT_TABLE[entry#]| to get the backtrack literal.

In TYPE I and Type II backtracking, if the backtrack literal has a NONE entry in
the CP_TABLE, then keep tracing backtrack literal chains of type II until either a
backtrack literal with a non-NONE entry is found or the calling literal (literal #0)
is met. In the first case, the non-NONE entry is loaded into the B register. In the
latter case, a copy of the B register, stored in the environment, is restored. If it
points to a pseudo choice-point, then keep tracking B pointers until a real choice-
point is reached.

(3) Restore machine state from the choice-point.

In the proposed modifications, only one flip-flop (E_FF) has to be added into the PLM
hardware. There are five new instructions to be implemented in microcode. The code size of
a typical program increases very little (a small backtrack table and at most two more
instructions per procedure call for clauses which can take advantage of semi-intelligent
backtracking). At run time, a little bit more memory space is required to hold pseudo
choice-points (3 32-bit words per pseudo choice point) and environments (3 32-bit additional
words for such a clause). The run-time overhead for normal backtracking only involves
checking the CTAG bit stored in the choice-point. To backtrack semi-intelligently involves
more work but the overhead is still small. It can be seen that this is indeed a feasible scheme
and can be supported in a Prolog system.

3.3.2.3. Code Gencration

There are three possible forms of compiled code for a procedure call in a clause which
can take advantage of the semi-intelligent backtracking:

(1) For a literal which can not backtrack intelligently and will not be backtracked into
intelligently from the other sibling literals, it is translated as a regular procedure
call:
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call name/arity,n

(2) For a literal which can not backtrack intelligently but can be backtracked into
intelligently from the other sibling literals, it is translated into the following code:

i_call name/arity,n
enter m

(3) For a literal which can backtrack intelligently (whether or not it can be
backtracked into intelligently), it is translated into the following code:

make m
i_call name/arity,n
enter m

The compiled code for the 'color’ clause (Figure 3.2) is shown in Figure 3.10.

The code can be further optimized by considering the determinism of each literal. A
simple criterion for detecting determinism of a literal is that all its arguments are bound to
ground term when it is called. (Of course, there may be a lot of deterministic literals which
can not be detected by this criterion.) This information is derivable from the SDDA. For
example, in the map-coloring problem, the analyzer can detect that all leaf-literals are
deterministic. So, there are no intelligent backtracking paths for literal #5 & #38 (because
type I backtracking from literal #5 to literal #3 goes through literal #4 which is
deterministic, same for literal #8). They can be translated into normal procedure calls.

The above reasoning is correct if there are no choice-points created for a deterministic
literal at run-time. However, because of non-perfect hashing, it is possible that some useless
choice-points are created for a deterministic literal. To backtrack through these useless
choice-points may be time-consuming, e.g. in data-base application. One may want to bypass
these useless choice-points. It can be easily done by generating the following code:

call name/arity,n
make m

By putting a make instruction after the procedure call, it sets up a TYPE I backtracking trap.
With the proper entry in the backtrack table, the choice-points of this procedure call can be
skipped.

The above two paragraphs describe two different ways that a deterministic (known at
compile time) literal can be handled. One may be more applicable than the other in different
applications. It also shows the versatility of the enhanced instruction set.

There are two ways to handle the last procedure call of a clause. The last procedure
call can have an entry in the choice-point table. In this way, the last procedure call will be
treated as the other procedure calls, and it can take advantage of semi-intelligent
backtracking. It is translated into the following code:
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BT_TBL:

i_allocate 8, BT _TBL

{ get instructions }
{ put instructions }
i_call next/2,5
enter 1

{ put instructions }
i_call next/2,5
enter 2

{ put instructions }
make 3

I_call next/2,4
enter 3

{ put instructions }
make 4

i_call next/2,4
enter 4

{ put instructions }
make 5

i_call next/2,4
enter §

{ put instructions }
make 6

I_call next/2,3
enter 6

{ put instructions }
call next/2,2

{ put instructions }
make 8

i_call next/2,0
enter 8
deallocate
proceed

1
2

[- 20 TR I

/* unify with head literal */
/* set up arguments for next(A,B) */

/* set up arguments for next(A,C) */

/* set up arguments for next(A,D) */

/* set up arguments for next(B,C) */

/* set up arguments for next(C,D) */

/* set up arguments for next(B,E) */

/* set up arguments for next(C,E) */

/* set up arguments for next(D E) */

/* Backtrack Table */

Figure 3.10




make n

call foo/2, 0
enter n
deallocate
proceed

It can not, however, achieve last literal (tail recursion) optimization. The alternative is not to
take advantage of the semi-intelligent backtracking for the last procedure call, i.e.
backtracking from the last procedure call is handled as the type III (naive) backtracking. In
this way, the last procedure call can stay in its original form (with last literal optimization):

deallocate
ezecute foo/2

In order to recover stack space for determinate execution up to the last literal, deallocate
instruction have to be modified to trace through and throw away pseudo choice-points whose
corresponding entries in the CP_TABLE are tagged as NONE until a real choice-point is met.

3.3.2.4. Simulations

The proposed scheme is simulated by modifying our PLM simulator [40]. The simulator
generates run-time statistics which show the frequency of instruction execution and other
important information. This information includes invocations of built-in micro routines, such
as failures (backtracks), and dereferences, as well as memory access. The simulated run-time
statistics for the map-coloring problem (in Figure 2.1) with and without the semi-intelligent’
backtracking scheme are shown in Figure 3.11 (a) & (b). Instructions with zero execution
frequency are not shown in the figure. It can be seen that for this simple example the
performance gain is about 30%, and the memory space used is about 9% more. The trade-off
is definitely worthwhile. Also shown in Fig 3.11(a) are the number of intelligent backtrackings
that occur and the total number of real choice-points that have been skipped by intelligent
backtracking hops. In the map-coloring problem, intelligent backtracking of type I occurs
once (when next(B,C) fails in forward execution), and it skips over two real choice-points
created by next(A,D) and its children. Although it only hops over two real choice-points, it
actually saves all the work which may involve many more choice-points that would be
otherwise spawned by them.

Although the count of each machine instruction is not weighted by the machine cycles
required to execute it, Figure 3.11 shows that almost all instruction executions are reduced by
the same percentage by the intelligent backtracking. This is what one might have expected.

3.3.3. Applications

Intelligent backtracking in Prolog can be quite important for a lot of applications, e.g.
deductive databases, CAD, and other generic searching problems which have a flavor of
theorem proving. For example, in a deductive knowledge-based system, a user may be
interested in knowing the first few possible solutions, which satisfy a probability threshold set
by the user, of a query. This can not be solved efficiently by conventional database
techniques which retrieve all the possible solutions. The depth-first search strategy with
built-in backtracking allows us to get the first, or the first few, answers with 2 modest set of
resources. It seems to a good idea. It is not, however, the whole story if it always backtracks
naively when a failure occurs. (Some people argue that the depth-first search strategy in



# Simulator Data Run Count %

proceed 21 7.95
execute 12 4.55

call 14 5.30

i_call 9 3.41
allocate 10 3.79
i_allocate 1 0.38
deallocate 11 4.17
get_variable 8 3.03
get_constant 50 18.94
put_variable 5 1.89
put_value 26 9.85
try_me_else 11 4.17
retry_me_else 9 3.41
trust_me_else 10 3.79
try 12 4.55

retry 10 3.79
switch_on_term 13 4.92
switch_on_constant 16 6.06
make 7 2.65

enter 9 3.41

TOTAL 264

failures 29
type [ 1
skip(type I) 2
type II 0
skip(type II) 0
unifications 50
unify routine 50
bindings 7
escapes 0
memory reads 606
memory writes 483
dereferences 79
binding trails 7
maximum trail 6
maximum stack 238
maximum heap 14

maximum PDL 0

Figure 3.11 (a) Run-time statistics with semi-intelligent backtracking
for the map-coloring problem (Figure 2.1).




# Simulator Data Run Count %
proceed 2 6.58
execute 18 4.93
call 29 7.95
allocate 13 3.56
deallocate 13 3.56
get_variable 11 3.01
get_constant 90 24.66
put_variable 5 1.37
put_value 36 9.86
try_me_else 14 3.84
retry_me_else 18 4.93
trust_me_else 19 5.21
try 16 4.38
retry 15 4.11
switch_on_term 18 4.93
switch_on_constant 26 7.12

TOTAL 365

failures 52
unifications 90
unify routine 90

bindings 15

escapes 0
memory reads 931
memory writes 585
dereferences 134

binding trails 15
maximum trail 6
maximum stack 226

maximum heap 6
maximum PDL 0

Figure 11 (b) Run-time statistics with naive backtracking
for the map-coloring problem (Figure 2.1).
( Continued )

Prolog is too strict to be useful. This argument is a bit misleading, because it is not hard to
write a meta-interpreter on top of user programs to achieve adaptive searches. What is really
bad about current Prolog interpreters or machine architectures is the naive backtracking
which is built into the DFS (depth-first search). More discussion on this appears in the last
chapter.) In the following, it is shown that the proposed scheme can remove the inefficiency of
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execution, caused by the naive backtracking, for some applications.

I. Adaptive Quadrature Integration:
Prolog is well suited for writing adaptive algorithms. An adaptive algorithm can be
written in Prolog in the following way:

(1) Each clause in a procedure describes an algorithm. Clauses are ordered such that a
more refined and time-consuming algorithm always follows a cheap-and-fast one.

(2) 1If a clause (algorithm) fails (e.g. it does not produce acceptable results), then the
pext clause (more expensive algorithm) in order will be tried. Time-consuming
algorithms do not have to be tried until necessary.

One of the advantage of the quadrature integration (shown in Figure 3.12) is that the
error bound can be estimated. In this example, arithmetic functions are expressed, for
convenience, with arithmetic symbols and are used directly in argument expressions.
Two clauses are used to describe the adaptive quadrature integration method. The first
clause will return the value of the quadrature function as the result if the estimated
error bound is less than the imposed error bound. The second clause partitions the
integration into two independent adaptive quadrature integrations each with an error
bound which is proportional to its share of integration. The partitioning is done by the
subgoal 'select’ which may simply chop the area in half or chop it according to the
behavior of the function. Both 'integration’ subgoals have to be satisfied. Although it is
pot shown, the 'select’ procedure should prevent indefinite partitioning and cause 2
failure when it detects that the error bound can not be satisfied with a reasonable
amount of computations. If the second 'integration’ fails, by type I backtracking, it
should backtrack directly to the ’select’ procedure and try another way to partition. In
naive backtracking, to backtrack to the first 'integration’ and try to get a more accurate
result of it does not solve the failure of the second 'integration’.

II. Automated Circuit Design Problem
A Prolog program has been written for automated circuit design. This program can
generate circuit configurations for a given truth table. The most crucial step in the
program is, given an output function, to derive a set of possible input functions and to
implement the input functions one by one. It is written in Prolog as follows:

circuit([0,1,0,1,0,1,...],i1)./* boundary conditions */

circuit(Output,[Configl,Config2]):-
derive(Output,Inputl,Input2),
circuit(Input1,Configl),
circuit(Input2,Config2).

In the above, it is assumed that the basic logic component is a two-input gate. Its
function is hidden by the predicate "derive”. It is easy to see how unfortunate it would
be if a pair of possible input functions, (Inputl,Input2), generated by the predicate
»derive” could be implemented by the first “circuit” predicates but not the second.
Since the first "circuit” predicates can have many possible implementations, it will take
quite a while to enumerate all of them before useful business (backtracking to 'derive’) is
accomplished. Although this problem can be solved by putting a cut at the end of the
recursive clause, this is still too restrictive. The user may want to see several alternate



. Quadrature Integration
]

| { f(z)dz—quad(f,ab) | < err(fa.b)

b—a

trap(f,a,b) = (f(a)+f(8))*
2

a+bd a+b
) + trap(f,
2 2

err(f,a,b) = | quad(f,a,8) - trap(f,a,b) |

quad(f 8 ;b) = trap(f 3, ,b)

query:

- integration(a,b,f,Ans,¢,Errbd).
/* € given error bound */
/* Errbd: estimated error bound */

program:

integration(S,T Fct,Y Errl,Err2) -
Y = quad(Fct,S,T),
Err2 = | Y-trap(Fect,S,T)!
Err2 < Errl.
integration(S,T F ¢t,Y1+Y2,Errl Err2+Err3) :-
select( ..,U),
U-S§
integration(S,U,Fct, Y1 Errl * ——Err2),
T-S

T-U

integration(U,T Fet,Y2,Errl * —Err3).

T-S

Figure 3.12 Adaptive Quadrature Integration

designs instead of just the first one.
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The automatic circuit design program is listed in Appendix B. The 'ngate’ procedure is
used to implement the 2-input NAND function. To take advantage of the semi-
intelligent backtracking, the 'ngate’ procedure call is compiled into the following code:

i_call ngate/3,5
enter 1

The second 't’ procedure call is compiled into the following code:

make 2
i_call t/8,8
enter 2

The run-time statistics of running this query with and without semi-intelligent
backtracking are shown in Figure 3.13. With the proposed scheme, the performance
gain is about four times!!!!

III Data Base Query
Consider the following query:

Q: List names of a couple in this community who are both employees of the company
PHONY and share no common hobbies. This query can be written in Prolog as
follows:

?- couple(Husband, Wife),
employee_hobby(Husband HobbyA),
employee_hobby(Wife,HobbyB),
neq(Hobby A, HobbyB).

In the above, the couple relation contains all couples in the community, the
employee_hobby relation contains hobbies of all employees in company PHONY.
Now suppose the names of a couple are retrieved from the couple relation, and
suppose that the husband is an employee of the company PHONY and the wife is
pot. It can be seen that the first two literals can be executed successfully, but not
the third. With naive backtracking, the second literal will be retried, uselessly, for
several times until all the hobbies of the husband are enumerated. From the data
dependency analysis, we can tell that the third literal is a successor of only the first
literal. With semi-intelligent backtracking of type I, the third literal can backtrack
directly to the first literal on failure.

From above examples, one can see the importance of supporting intelligent
backtracking. In current Prolog compilers/interpreters, the only means to prevent exhaustive
depth-first search is by cut. As mentioned above, cut is too restrictive. With the proposed
scheme, sometimes it is possible to prevent redundant, exhaustive, depth-first search while
maintaining the flexibility.

One may have observed that in the above examples, all the intelligent backtracking
paths are of type I. In general, because type II backtracking handles only continuous
backtracking between body literals of a clause. Most likely it is useful only for clauses which
have many non-deterministic body literals. Furthermore, since it is based on the worst-case



# Simulator Data Run Count

proceed
execute
call
i_call
allocate
i_allocate
deallocate
get_variable
get_value
get_constant
get_nil
get_structure
get_list
put_variable
put_value
put_unsafe_value
put_constant
put_structure
put_list
unify_void
unify_variable
unify_value
unify _constant
unify_nil
try_me_else
retry_me_else
trust_me_else
try
retry
trust
switch_on_term
unify _cdr
escape
cut
make
enter

TOTAL

failures
type I
skip(type I)
type 11
skip(type II)

%
166
27
137
32
456
60
84
468
60
400
170
390
2379
91
595
155
186
20
1
615
804
20
2172
164
143
725
102
239
300
168
538
1800
546
47
22

56
14884
1295

16
35

1.12
1.83
0.92
0.21
3.06
0.40
0.56
3.14
0.40
2.69
1.14
2.62

15.98

0.61
4.00
1.04
3.27
0.13
0.01
4.13
5.40
0.13
14.59
1.10
0.96
4.87
0.69
1.61
2.02
1.13
3.61
12.09
3.67
0.32
0.15
0.38



unifications
unify routine
bindings
escapes
memory reads
memory writes
dereferences
binding trails
maximum trail
maximum stack
maximum heap
maximum PDL

3757
3757
2378
546
30507
19526
2425
2267
80
495
142
0

Figure 3.13 (a) Run-time statistics with semi-intelligent backtracking
for the automatic circuit design problem.
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# Simulator Data Run
proceed
execute

call
allocate
deallocate
get_variable
get_value
get_constant
get_nil
get_structure
get_list
put_variable
put_value
put_unsafe_value
put_constant
put_structure
put_list
unify_void
unify_variable
unify_value
unify _constant
unify_ail
try_me_else
retry_me_else
trust_me_else
try
retry
trust
switch_on_term
unify_cdr
escape
cut

TOTAL

failures
unifications
unify routine
bindings
escapes
memory reads
memory writes
dereferences
binding trails
maximum trail

Count
472
1036
425
1880
270
1760
156
1746
634
1329
9289
235
2123
495
2046
52
1
2304
3178
52
9304
704
449
2924
436
792
1126
655
1804
6785
2202
119

56783

5141
15572
15572
10033
2202
116964
73313
10152
9618
80

%

0.83
1.82
0.75
3.31
0.48
3.10
0.27
3.07
1.12
2.34
16.36
0.41
3.74
0.87
3.60
0.09
0.00
1.06
5.60
0.09
16.39
1.24
0.79
5.15
0.77
1.39
1.98
1.15
3.18
11.95
3.88
0.21
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maximum stack 484
maximum heap 134
maximum PDL 0

Figure 3.13 (b) Run-time statistics with naive backtracking
for the automatic circuit design problem.
( Continued )

consideration and is applied before the first successful exit from the clause, its occurrences are
rare. Table 3.1 shows the effectiveness of type I & Il backtracking for some benchmark
programs. Note that for these examples, type II backtracking does no good at all. (It does
not allow any real choice points to be skipped). However, it is not difficult to observe that
type II backtracking can be useful for other cases. For example, in Figure 3.14, lit3 can
backtrack directly to litl by type II backtracking (without going through choice points of lit2)
after both lit4 and lit3 fails.

3.3.4. Backtrack Graph vs. Data Dependency Graph

Up to now in this chapter, it is assumed that all the backtrack paths are determined
from data dependency graphs. As a matter of fact, backtrack paths are determined from
backtrack graphs and have taken into account the determinancy (the word is used to describe
whether or not a procedure is determinate®) of a literal. The difference between a backtrack
graph and a dependency graph can be seen {rom the following example:

Typel Type Il
Benchmark no. of occurrence no. of choice-points no. of occurrence no. of choice-points
being skipped being skipped
exhaustive-coloring 27 18 0 0
query 24 22 15 0
circuit 18 35 0 0
color13d good 4 3 0 0
color13 bad 9 90 o 0

Table 3.1 A comparison between type I & II backtracking

%A calling literal is deterministic if it has at most one successful instance or fails.
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\
z | type I
S

contiguous failures

Figure 3.14 A type II backtracking

.....

entry _(map(i,i,i,i,i)).
map(A,B,C,D,E) :- next(A B), write{(A,B}), det(B,C),
next(C,D), next(C,E), next(D,E).

Assume at the exit of either 'mext’ or 'det’ both arguments are grounded, and 'det’ is
deterministic. The data dependency graph is shown in Figure 3.15 (a), and the backtrack
graph is shown in Figure 3.15 (b). It is clear that 1/O operations should be considered in
determining the dependency graph. However, since an /O operation always succeeds and is
deterministic, it should be excluded from the backtrack graph which is used to determine
intelligent backtracking paths.

The information about the determinancy of a literal is important for the effectiveness of
the proposed intelligent backtracking scheme as can be seen from the following example.

a(X,Y) = b(X), .., ¢(Y), -, d(X.Y).

In this example, assume at the entry of the clause, both X and Y are unbound. Assume X is
bound by 'b’ and Y is bound by 'c’. In the proposed scheme, if 'd’ fails, it will backtrack to
the closest predecessor which is 'c’. But, if '¢’ is deterministic, then it would be more desirable
for 'd’ to backtrack directly to 'b’ via type [ backtracking; otherwise, the backtrack path from
'e’ would be type II which is non-optimal. In the current implementation of the SDDA, the
programmer can declare that a procedure is deterministic. A simple-minded algorithm could
be incorporated into the analyzer to check for determinancy. But, it requires including
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Figure 3.15 Backtrack graph vs. data dependency graph

structure matching into the analyzer to be effective.

3.4. Comparison with Other Implementations/Approaches of Intelligent
Backtracking

In this section, different implementations/approaches of intelligent backtracking are
examined. Advantages and disadvantages of each approach are compared.

3.4.1. Compiling Intelligent Backtracking vs. Run-Time Intelligent
Backtracking

The general approach to run-time intelligent backtracking is outlined at the beginning of
this chapter. Shown in Table 3.2 is a table of run-time statistics of the benchmark programs
selected in the paper of Bruynooghe and Pereira [18]. Columns 2 to 4 are the run-time
statistics of the benchmark programs simulated with the PLM simulator. The last column is
the run-time statistics of the benchmark programs quoted directly from their paper. It shows
the percentage change in performance (-’ stands for improvement, and '+’ otherwise) when
Bruynooghe and Pereira’s (P&B’s) intelligent backtracking is supported in a Prolog
interpreter. Two figures are used to illustrate performance changes in the simulation of the
semi-intelligent backtracking. One is the total number of PLM instructions executed, and the
other is the number of failures (backtracking) that occurred. The first benchmark program is
a simple data base query. The second benchmark program is the queens problem (tested for 5



Naive Serni-Intelligent | Semi-Int vs. Naive
(PLM) (PLM) (PLM) B&P's Int. vs. Naive
Benchmark no. of occurrence | no. of occurrence % Change (Interpreter)
% Change
Total Failure | Total | Failure Total Failure
query 1493 280 1258 188 -18% -35% - -20%
simple - - - - % % -386% ~ -T7%
queens
clever - - - - 0% 0% +00% ~ +190%
bad || 2484803 | 714808 | 2272 k791 -00.9% | -99.9% -00.7%
map-color
good 804 200 | 013 185 +0.7% | -1.5% +83%
binary tree - - - . 0% 0% +44%

Table 3.2 A performance comparison between naive and intelligent backtracking

queens, .., 8 queens). The third benchmark program is the map-coloring problem to color 13
regions. The last benchmark is a deterministic program to build an ordered binary tree.

Since B&P’s intelligent backtracking involves backtracking intelligently across clause
boundaries, it can improve performance for the generate-and-test (simple) algorithm used in
solving the queens problem. However, by merging the generate and test parts, the resulting
(clever) program has backtracking distance (in terms of choice points) which is always one,
similar to naive backtracking. In this case, run-time intelligent backtracking only introduces
overhead. In the map-coloring problem, with a good ordering of body literals, the effect of
intelligent backtracking in not sufficient (as in the bad ordering case) to overcome the
overhead. For the deterministic program which builds an ordered binary tree, there is no
backtracking. So, again, intelligent backtracking only introduces overhead.

The semi-intelligent backtracking has the advantage of flexibility. This mechanism is
used only when it is advantageous. For the queens problem, as well as the deterministic
program which builds a binary tree, no intelligent backtracking paths* are detected by the
static data dependency analyzer. So, these programs are compiled into the same code as
before.

The weakness of the proposed scheme, as compared with run-time intelligent

backtracking, is that it can not backtrack directly across a clause boundary and it is based on
a static worst-case analysis. However, since the overhead of our scheme is very small, the

“An intelligent backtracking path is a backtracking path which skips over literals which are not known to be
deterministic at compile time.
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penalties are also very small (e.g. 0.7% in the map-coloring problem with good ordering of
body literals) even when the advantage of using this mechanism turns out to be limited (-
7.5% in this case).

In general, the disadvantage of dymamic intelligent backtracking is high overhead.
These schemes cannot judge, before run-time, whether this mechanism should be used or not.

An important observation about both forms of intelligent backtracking is that problems
whose executions are order-sensitive with naive backtracking can become much less order-
sensitive when equipped with (semi-)intelligent backtracking, as for example, in the map-
coloring program. However, there are still some problems whose execution can not be sped up
by reordering of body literals, but can be sped up by (semi-)intelligent backtracking, for
example the automatic circuit design problem shown above.

3.4.2. Intelligent Backtracking Based on Annotated Programs

Another approach to achieve intelligent backtracking has been suggested by Dembinski
and Maluszynski [41]. Their approach requires annotating I/O modes for all predicates in a
program. [t is summarized as follows:

(1) Each argument of a predicate is declared either as an input argument or an output
argument.

(2) Based on the I/O mode declarations, data dependency graphs can be constructed at
compile time. At run time, an eztended data dependency graph is constructed for a
clause instance from the compiled data dependency graph to take into account of
variable bindings due to unification. From the eztended data dependency graph,
predecessors of literals and generators of variables can be determined.

(3) A failure of a literal is assumed to be due to all its input variables. When a failure
occurs, the closest predecessor is selected to backtrack. An algorithm is used to
determine the backtrack point [41] of a literal at run-time. The backtrack point of
a literal includes all its predecessors, and all the previous untried backtrack
candidates.

It is interesting to observe how this scheme fits in between the semi-intelligent
backtracking and the run-time intelligent backtracking. It is clear that this scheme still
requires much more run-time overhead than the semi-intelligent backtracking, but less than
the run-time intelligent backtracking. It can backtrack more intelligently than the semi-
intelligent backtracking. This is because that it computes the ertended data dependency
graph at run-time (instead of using the worst-case assumption). It is not as intelligent as
run-time intelligent backtracking because the faulty variable bindings are not determined in a
more refined way (see (3) above). No simulation results are available to allow a more
thorough comparison.

3.5. Conclusion

In this chapter, the scheme to compile intelligent backtracking based on data
dependencies between literals was described. Not many modifications are required to
incorporate this scheme into the PLM architecture. The overhead at run time is small. Data
dependencies between literals can be determined automatically by a static data dependency
analyzer, or manually indicated by programmers using pragmas. The advantages of
intelligent backtracking are illustrated with examples and proved with simulation results.

In a parallel execution environment [34], the semi-intelligent backtracking as discussed
in this chapter can be also applied. It is discussed in the next chapter.



CHAPTER 4

COMPILING AND-PARALLELISM FOR A PARALLEL ARCHITECTURE

4.1. Overview

In general, independent subgoals in the goal list can be executed concurrently by
exploiting AND-Parallelism. AND-Parallelism has been studied by Conery [22] in his thesis.
He proposed an AND/OR process model in which an AND process controls the AND-parallel
execution of subgoals in a clause and an OR process works in an eager mode for solving each
subgoal and generating ail the possible solutions. Processes are communicated via messages.
In his scheme, dependency checks among literals are done at run-time which can be quite
expensive. Since data dependency graph can be generated at compile time as described in
Chapter 2, there is no run-time overhead for dependency checks. In this Chapter, a scheme to
compile Prolog programs for AND-Parallel execution is described. The scheme is designed for
the Aquarius system [42] which is a tightly-coupled, heterogeneous multiprocessor system
specialized for symbolic/numeric computation.

4.2. Why Exploit AND-Parallelism ?

AND-Parallelism exists for both deterministic and non-deterministic Prolog programs.
In AND-parallel execution, independent subgoals can be executed in parallel. Resources are
not wasted, in computing results which are not requested, as is possible in OR-Parallel
execution.

There are several advantages in exploiting AND-Parallelism:
(1) Parallel execution of independent subgoals.

(2) Cooperative failure detection - Variable bindings generated by a subgoal are
evaluated by all the successor subgoals. Variable bindings are rejected as soon as
one of the successor subgoals fails.

(3) Semi-intelligent backtracking.
(4) Parallel backtracking.

The first two advantages are easy to understand. Semi-intelligent backtracking in the parallel
execution environment and parallel backtracking are discussed later.

4.2.1. An Example
In this section, an example is used to describe the advantages of and issues concerned in
exploiting AND-Parallelism.

Example 4.1.
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circuit(Output,[Conﬁgl,ConﬁgQ]) -
derive(Output,Inputl,Input2),
circuit{Input1,Configl),
circuit(Input2,Config2).

This is the clause used in Chapter 3 to illustrate the semi-intelligent backtracking for
the automatic circuit design problem. After the 'derive’ predicate generates input functions,
(Inputl,Input2), both 'eircuit’ subgoals can be executed concurrently. If both input functions
can be implemented (i.e. the 'circuit’ predicates can successfully derive configurations for
input functions), then the time it takes to finish executing these two subgoals would be
max(T,,,T,,) instead of T, tT,asin sequential execution (where T (T,) denotes the time it
takes to implement function Inputl (Tnput2)). If the function 'lnputl’ can be implemented
and the function 'Input2’ cannot, then the time it takes to reject the instance (Inputl,Input2)
generated by 'derive’ would be min(T ,,T,) instead of T, +T,, (where T, denotes the time it
takes to fail the second ’circuit’ predicate). (Of course, if the function 'Inputl’ cannot be
implemented, then resources are wasted in trying to find concurrently a configuration for the
function 'Input2’.) The advantage of the semi-intelligent backtracking is the same as in the
sequential execution. That is, when the second ’circuit’ predicate fails, it is not necessary to
backtrack to the choice-points under the first ‘circuit’ predicate.

In this example, the proof tree of depth two is shown in Figure 4.1, assuming the first
'circuit’ predicate is always forked off and runs concurrently with the second 'circuit’ predicate
at the exit of the 'derive’ predicate. It can be seen that four independent processes, executing

circuit
derive circuit
circuit @ / \
/ derive circuit
] circuit @ circuit @
derive
circuit
Legend :

@ - denote forked off processes

Figure 4.1 Spawning Processes in AND-Parallel Execution
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"circuit’ subgoals, are running concurrently. It is clear that the number of processes will be 2°
for a proof tree of depth n, assuming none of the functions of the non-leaf 'circuit’ predicates
correspond directly to the input signals. In reality, because the cost of maintaining a process
will not be zero, there should be a way to limit the degree of multi-processing at run-time.
This can be dome by explicitly specifying, by the programmer, the maximum number of
processes that can be generated by the program. The same approach is used in the HEP
machine [43]. It can also be done by the central scheduler which monitors the usage of
system resources and decides whether or not more processes can be spawned.

In general, when a clause can take advantage of the semi-intelligent backtracking, it can
also take advantage of the AND-Parallel execution. But, not vice versa. That is because
semi-intelligent backtracking mostly occurs in non-deterministic programs, while AND-
Parallel execution can occur in both deterministic and non-deterministic programs.

4.3. An AND-Parallel Execution Environment

The Aquarius system architecture [42] is shown in Figure 4.2, where PPP stands for
Prolog Processor, FPP stand for Floating Point Processor, and IOP stands for I/O Processor.
Processors are connected to memory through a crossbar switch. The simplest Aquarius
system which has only a single PPP is surround by dash lines. This is the PLM system
discussed earlier. A [full blown Aquarius system can have multiple PPPs. The Aquarius
system has the following features:

(1) Heterogeneous multiprocessor system - It has special processors, for example PPP,
FPP, and IOP, to perform special functions. It is different from systems which
consist of a large number of homogeneous processors with fixed interconnection, for
example X-tree [ 44] and FAIM [45].

(2) Shared memory model - Data can be accessed by each processor and operated upon
without interruptions from other processors. The alternative is the message passing
modei!. Although the message passing model is cleaner in a parallel execution
environment, it has a lot more overhead and is thus inefficient for a modest number
of processors.

(3) Dedicated synchronization memory - A fast synchronization mechanism is crucial
for a tightly coupled multiprocessor system. A dedicate synchronization memory
system with special hardware support is proposed to achieve this goal.

(4) Static partitioning - A problem can be partitioned into many tasks by the user
during the design of the algorithm by using special languages such as Concurrent
Prolog [28] or OCCAM [46]. In the Aquarius project, we propose to compile
standard Prolog program and partition it into tasks. This will be accomplished by
the compiler, which is similar to the approach of Paraphrase [47] and BULLDOG
(48].

(3) Dynamic scheduling with central scheduler - Tasks are generated at compile time
and put into task queues of PPPs at run time, which is similar to the approach of
the NYU Ultracomputer [49], although in the Ultracomputer a single global task
queue is used. In Aquarius, each processor has its own process queue. The overhead
of dynamic scheduling should not offset the advantages of AND-Parallel processing.

o the message passing model, there is no shared memory. Both data and control information are passed by
messages through communication channels.
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Figure 4.2 The Aquarius Architecture

The static partitioning can be done with the help of the SDDA. The data dependency graphs
generated by the SDDA is passed to the compiler. It is not difficult to have a crude measure
of the load of an independent task (such as the number of nodes in its AND/OR subtree), and
incorporate such measures into the compiler as a criterion to partition tasks.

In AND-Parallel execution of Prolog, a forked off process is assumed to execute either
one or a group of subgoals. But, to make it easier to explain, in the following, a process is
assumed to execute a single independent subgoal. Forking a process can be reduced to the
following actions:

(1) Set up arguments for the procedure call.

(2) Create a new process. (A process structure is shown in Figure 4.5).
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(3) Allocate memory space (the Stack®, Heap, and Trail) for the new process.
{4) Select a processor and put the new process into its process queue.

The first action is done by the caller (parent process), and the others are done by the central
scheduler.

4.4, Memory Management

Memory Management is probably the most difficult and important issue in parallel
processing of Prolog. Symbolic languages are memory hogs. Typically, an efficient garbage
collector is implemented to free used but no longer referenced data objects. A garbage
collector is invoked when free memory space falls below a certain level.

Typically, Prolog tends to use more memory space than other languages because of the
following reasons:

(1) Heap and trail space used by a procedure call can not be reclaimed until

backtracking occurs®.

(2) An environment frame can not be reclaimed unless all the body literals are
deterministic. (If tail-recursion optimizatioa is supported [39], then the environment
frame can be recovered when all the body literals except the last one are
deterministic.) An environment is needed to store variables in a clause in order to
set up arguments for body literals, and to continue the execution at the exit of each
body literal. -

For a large Prolog program, runming short of heap space is a potential threat that the
programmer must worry about. Garbage collection {together with tail-recursion optimization)
can help to relieve this problem.

In an AND-parallel execution environment, there is yet another important memory
management problem besides the garbage collection problem. This is how to allocate memory
space to concurrently running processes. This is related to the problem of communicating
information, which includes the variable bindings and control information, between processes.
The execution flow control, both forward and backward, can be done by using compilation
and run-time bookkeeping (by the central scheduler). This control will be discussed later.
Memory space, including the environment stack, heap, and trail, can be allocated to
independent processes in chunks out of a pool. In this way, it becomes easier to deal with the
extension and contraction of memory space of a process. In the AND-parallel execution
environment, the environment stack may become a tree, as shown in Figure 4.3, in which
stack segments used by forked-off subgoals of a clause form separated tree branches. The
virtual environment stack viewed by a subgoal consists of stack segments from the current
branch to the root. Within each stack segment, the discipline of stack usage remains the
same as in sequential execution. The usage of an environment stack is different from the
usage of a heap in that, when two variables are bound together, "junior” variable always
points to the more “senior” ope to avoid creating dangling references when stack space is
reclaimed at determinate exit. So, in the AND-parallel execution environment, a method (e.g.

The 'Stack’ refers to the environment stack.

¥ ogic variables allow a procedure call binds variables in ancestors’ environment. Heap space of the procedure
can not be reclaimed at the exit of the procedure because that the procedure may bind s variable in an ancestor’s
environment to structured data on the heap.
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Figure 4.3 Tree-like environment stack in AND-parallel execution

in [50]* ) must be provided to determine the seniority between two unbound variables. Since
all the binding conflicts are resolved by the static data dependency analysis in exploiting
AND-parallelism, there are no binding conflicts between parallel running processes as in OR-

parallel execution. So, there is no need to shadow non-local variable bindings®.

As explained above, the memory space (except, perhaps, environment stack space) can
not be reclaimed at the exit of a forked-off independent process. It seems to be desirable to
reclaim the memory space (which includes environment stack, heap, and trail) of a forked-off,
independent process which is known to be deterministic. To achieve that, it is necessary to
trail non-local variable bindings, i.e. bindings of variables which are outside of the data space
of a rupaing process. (This can be done by trailing non-local variable bindings in a special

4n this method, each environment frame is assigned an invocation level, which is the depth of the proof tree.
Since a subgoal can only bind variables in the current enviro:.ment of the clause it belongs to, or the environment of
its ancestors, the invocation level is good enough to determine the seniority between two environment {rames.

%n OR-parallel execution, if an OR-parallel executing process binds a unbound variable in the ancestor
environment or heap, it has to shadow the bindings in its local memory to make it invisible to other OR-parallel



data areas.) Since non-local variable bindings are trailed, the part of the heap which is
referenced by non-local variables can be found and copied back to the heap of the parent
process. Trailing of non-local variable bindings must also be copied back to the trail of the
parent process. Although there is overhead to do the copying, the advantage of removing a
forked-off, deterministic process and retrieving all its resources can outweigh the overhead of
copying. In this way, the net eflect would be as if no forking had occurred. An example is
shown in Figure 4.4. In this example, subgoal 'g2’ and 'g3’ are independent, and subgoal 'g3’
is forked-off to be executed non-locally. Assume that 'g3’ is deterministic. Then, at the end
of executing 'g2’ and 'g3’, the part of the heap and trail of 'g3' which are associated with
non-local variable bindings can be copied back to its parent process. Note that since 'g3’ is
forked-off before 'g2’ is locally executed, the order of using heap (and trail) by the subgoals is
preserved. (The reversal of execution order of 'g2’ and 'g3’ is necessary only when we want to
retrieve the memory space of a forked-off, deterministic process at the end of its execution. In
the rest of the chapter, it is assumed that this scheme is not supported.)

There are other proposals that try to exploit deterministic AND-parallelism [50,28]. In
general, for a forked-off process which is nondeterministic, both the data space and the
process itself, which is known to the central scheduler, should be retained at its successful exit.
This is because that the process may be backtracked into later on to find other successful
instances.

4.5. Execution Flow Control in AND-Parallel Execution

In this section, the flow control of AND-parallel execution is outlined. Flow control in
AND-parallel execution is achieved partly through properly compiled code, and partly through
run-time bookkeeping by the central scheduler. The central scheduler is responsible for
keeping track of process status, and routing of control messages, such as fas! and kill,
between processes. A process can be in either one of the two states, active or non-active. A
process is in an active state when it is either on a ready queue or on one of the wait queues
(waiting for I/O or for an external function to complete). A process is in a non-active state
when the execution is completed. The process structure is retained for the purpose of
backtracking. Non-active processes are maintained by the central scheduler. A process,
active or nom-active, is deleted when it is the target of a kill message. A non-active process
becomes active and is put into one of the active queues when it is the target of a fail
(backtracking) message. A process structure is as shown in Figure 4.5. The first entry, called
the "command” field, in the process structure is used to specify whether a forward or a
backward execution is requested. When a procedure call is forked off, the central scheduler
creates a process structure, allocates memory space (environment stack, heap, and trail),
copies argument registers and P register into the process structure (other register entries,
which include pointers to the environment stack, heap, and trail, in the process structure are
also set properly), marks the "command” field in the process structure as "forward”, and puts
the process structure into the active queue of a processor. If a non-active process is
backtracked into (i.e. the target of a fail message), the central scheduler marks the
»command” field as "backward” and puts the process into the active queue of a processor.
When a processor starts executing a process, it first checks the "command” field. If the
"command” feld contains "forward”, the registers are loaded from the process structure and
execution starts. If the "command” field contains "backward”, then the machine state stored
in the last choice-point is restored and execution starts. During the execution, if I/O
operations or external functions are encountered, the machine states can be saved into the

executing processes.
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process structure, and put into a wait queue. The parent process [D (Parent PID) and the
pointer to the parent environment ("Parent Env.) are used to access the parent environment,
from which the child process can access various data structures to achieve backtracking and
synchronization. Synchronization and backtracking for the AND-parallel execution will be
discussed later.

As discussed in Chapter 2, data dependency graphs (one for each clause) can be
generated at compile time. In a data dependency graph, all the subgoals in the same layer
can be executed conmcurrently in forward execution. In Chapter 3, it is shown that data
dependency graphs can be used to achieve intelligent backtracking for a sequential Prolog
machine. Below, it is shown how the AND-parallel execution flow control can be achieved
through the static data dependency analysis and compilation.

The data structures required to support AND-parallel execution are the Join Table
(JOIN_TBL), the Process Table (PROC_TBL), and the Backtrack Table (BT_TBL). The
Join Table and the Backtrack Table are generated at compile time. Each entry in the Join
Table contains two fields, one is the synchromization count and the other is the starting
address of a piece of code to be executed when the count reaches zero. A copy of the Join
Table is kept in the environment so that a clause can be reentered. The backtrack Table
contains information which is needed for failure handling. The Process Table records the



process ID of a forked-off procedure call and the list of synchronization variables (SYNCVAR)
that must be updated at the end of a successful execution or before a retry of this procedure
ca.i (see Figure 4.7). The Process Table is maintained at run time by the central scheduler.
Through the central scheduler, a forking process (parent process) can fork off independent
processes (children processes), kill a forked off process, and force backtracking on a forked off
process. BT_TBL is used as before to achieve intelligent backtracking. However, it contains
more information (discussed later) than in the sequential execution. PROC_TBL is needed to
find the process ID of a forked off process when backtracking to the forked off process is
demanded. The entry of the JOIN_TBL, which is updated by the backtracked process, has to
be incremented to reflect the retry.

An example of a clause, which can take advantage of AND-parallelism, and its compiled
intermediate code are shown in Figure 6. The PROC_TBL is updated whenever a procedure
call or a fork instruction is executed (as shown in Figure 47). For a forked off procedure call,
the central scheduler, which is invoked by the fork instruction, will create a new process and
assign a new PID to it. Figure 4.7 shows one possible way to compile for AND-parallel
execution. The advantage of this approach is that it is easy to implement. The disadvantage
of this approach is that the AND-parallel execution is restricted by the sequential nature of
the main stream of the compiled code. Because it is possible that the execution is stalled at
one synchronization point while the subsequent subgoals are ready to be executed, e.g. in
Figure 4.8 the execution may stalled because the join variable for subgoal #6 has not been
reduced to zero, while subgoal #7 may be ready to be executed.

4.8. Semi-Intelligent Backtracking in the AND-Parallel Execution Environment

In AND-parallel execution environment, independent subgoals may be forked off to be
executed on other processors. Special arrangements are necessary to handle backtracking
to/from a forked-off process. Three kinds of process manipulating messages are sent between
processes via the central scheduler to cause desired interactions. They are fasl, reset and kill
messages. Fail messages are sent to non-active processes which have successfully executed
the subgoals to be backtracked into. Reset messages are sent to the right siblings processes
(processes which are on the same layer of the dependency graph) of the processes which are
backtracked into. Kill messages are sent to processes {active or mon-active) which are no
longer needed.

To understand the usage of the reset message, let us look at the sequential execution of
Prolog. In the sequential execution, when a subgoal is selected to backtrack into, all the
execution histories of the subsequent subgoals to the right of the backtracked subgoal are
thrown away. When the backtracked subgoal has another successful instance, the subsequent
subgoals are re-executed. In the AND-parallel environment, under certain circumstances
(explained later), right sibling subgoals, unlike the other subsequent subgoals which are not on
the same layer on the dependency graph, of the backtracked subgoal do not need to be re-
executed. So, reset messages are sent to the right sibling subgoals instead of kill messages.
The action taken by a subgoal upon receiving a reset message is described later.

When a failure occurs during forward execution, a subgoal is selected to be backtracked
into {see the discussion on semi-intelligent backtracking in Chapter 3). Backtracking is
achieved by restoring the machine state from the last choice-point of the backtracked subgoal.
If the backtracked subgoal is executed by a different process, then a fail message is sent to
that process. The usages of these messages are illustrated at below.

Receiving fail messages -
When a process receives a fail message, it sends k:ll messages to all its successor



Example:

a:- b,c,d. /* assume ¢ & d are independent, but depend on b */

Compiled code:

allocate PROC_TBL/1, JOIN_TBL/1, BT.TBL

/* allocate environment; PROC_TBL, a copy of the */
/* JOIN_TBL, and pointers to BT_TBL are kept in the */
/* the environment. */
{ get instructions } /* unify with head */
{ put instructions } /* set up arguments for b *

call b,1,0

{ put instructions }
fork ¢,2,1

{ put instructions }
call 4,3,1

walit 1

Labell:
proceed

JOIN_TBL:
2 Labell

BT_TBL:

/* this call corresponds to literal #1;  * /

/* set up arguments for ¢ */
/* this call corresponds to literal #2;  */
/* on success, it decrements the count  */
/* field of entry #1 of JOIN_TBL and */
/* goes into a non-active state. */

/* set up arguments for d */

/* this call corresponds to literal #3;  */
/* on success, it decremeats the count
/* field of entry #1 of JOIN_TBL. */

/* wait until entry #1 of JOIN_TBL is O

[* success */

/* tor failure handling */

Figure 6 An Example

*/
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Note:
PPID - Parent PID
CPID - Child PID

Figure 4.7 Forking-off an independent procedure calil




Figure 4.8 A data dependency graph and its type Il backtracking paths

subgoals (one layer down in the dependency graph) which are executed by different
processes; it also sends reset messages to backward dependent sibling subgoals which
are executed by different processes. As defined in Chapter 3, two subgoals are
backward independent if one is not on the semi-intelligent backtracking paths of the
other. In Figure 4.8, node 4 and 5 are backward independent nodes for both type I
& 1I backtracking. For type III backtracking, all nodes on the same layer of a
dependency graph are assumed to be backward dependent. The reset list for the
data dependency graph in Figure 4.8 is shown at below:

Typel & II:
[5] ==> 0
[4| ==>0
[3] ==>> [4,5]
[2] ==> [3.4,5]
1] ==>0
Type IIL
[8] ==> 0
[7] ==> [8]
(6] ==> [7.8]
(5] ==> 0
[4] ==> [5]
(3] ==> [4,5]
(2] ==> [3,4,5]
(1] ==> 90

The reset list contains information about which subgoal will be sent a reset message
during backtracking. For example, if subgoal #3 is backtracked into via type I



s |
b |

backtracking path, then reset r..ssages are sent to subgoal #4 & #5 il they are
executed by different processes. The reset lists for type I and type II backtracking
(although in Figure 4.8 they a e the same) may be diflerent because in type I
backtracking backward dependen. ; is determined by considering the subgraph from
the root to one layer below the backtracked node, while in type II backtracking the
whole graph has to be considered. The Backtrack Table (BT_TBL) mentioned in
the previous section contains lists of backtrack nodes as well as reset nodes for each
type of backtracking.

Receiving reset messages -

When a process receives a reset message, it ignores the message if it has onmly
generated ome solution, for example a process which executes a deterministic
subgoal. If it has generated more than one solutions, then the process will restart
from its initial state, that is the state when the process was first created. In the
latter case, the synchromization variable has to be updated to reflect the re-
execution. If re-execution is required, then it sends kill messages to all the
successor subgoals which are executed by different processes.

Receiving ks:ll messages -
When a process receive a kill message, it sends kill messages to all the successor
subgoals which are executed in different processes, and then terminates itself
(returns all its resources back to the central scheduler).

4.8.1. Parallel Backtracking in AND-Parallel Execution Environment

Backtracking is a way to sequentially exploit alternative solution paths. However, in
AND-parallel execution environment, there can be several forward as well as backward
execution activities going on concurrently. The simplest example is that, during the execution
of two independent subgoals, both subgoals van be in backward states at the same time. In
this case, two backtrack paths are in two separated proof trees (or graphs) and they can not
interfere with each other. The more complicated cases are that two backtrack paths are
derived from the same graph, that is, two backtrack paths between subgoals in the same
clause. In this case, two backtracking activities can proceed concurrently if one does not
interfere with the other (for example, one is not on the reset list of the other). The semantics
of the control messages mentioned above is designed exactly to achieve this.

4.7. Performance Improvement of The AND-Parallel Execution - An Example

The run-time profile of the automatic circuit design program (see Appendix B) with a
query, t(2,X,(0,0,1,1,0,1,0,1]), for designing a multiplexer is examined. The improvement of
performance due to semi-intelligent backtracking and parallel execution, as well as the
pumber of messages sent between two concurrently running processes are shown in Figure 4.9.
In Figure 4.9, the sequence and numbers of times that procedure 'ngate’ and 't’ (in the clause

which describes the NAND gate, and when the 'Depth’ is equal to 2%) are called or retried are
shown, where 't1’ denotes the first 't' predicate and 't2' denotes the second 't predicate in the
clause ('11t2' means that the second 't2’ predicate is retried or called 11 times). The numbers
shown in the parentheses are the total numbers of inferences at the exit of procedure calls. In
this figure, it is assumed (for simplification) that the independent procedure call 't’ is forked-
off only when at the entry of the clause the "Depth’ is equal to 2. With sequential execution,

®All the descendant procedure calls, with 'Depth’ less than 2, which include more invocations of 't’ and 'ngate’
are not shown.



Sequential Execution:

lnga.t.e |tl i 11t2 A ngate i tl i 8t2 'ngabe i tl | 2t2 'ngat.e i

(73) (82) (119) ' (s02) (B19) Ve ' (1385) (148
(1242) (1428)

nltz

!
)

Sequential Execution with
Semi-intelligent Backtracking :

lngat’.e |tl A t2 lngabe A tl | t2 | ngate | tl | t2 'ngate | t1 | t2J

(73) (82) (13) * (187) (202) * (268) (310) * (379) (412) (442)

AND-Parallel Execution :
CFD—_

au:y ) l(23‘9 4 (@240
ngate i;;‘ | ngate %El ngate _tEi ngate _tH.

! ! | |
(7'3:) (82) " (156) (22 *  (oa1) (32'3)

no. of fork instructions : 4
no. of 'fail’ messages : 0
no. of 'reset’ messages : 0

no. of 'kill’ messages : 0

Note:
(1) CFD : Co-operative failure detection

(2) The numbers in parentheses are the total no. of inferences
at the exit of procedure calls.

(3) * : denotes the occurrence of a failure.

Figure 4.9 Performance Improvement of the ANb-Parallel Execution

to get the first answer requires 1461 inferences. If the semi-intelligent backtracking is
exploited, the number of inferences is reduced to 442. With a limit AND-parallel execution,
as assumed above, the time it takes to get the first answer is amount to performing 324
sequential inferences. Not much performance gain is shown for the AND-parallel execution
because this is a simple example and the maximum number of concurrency is limited to 2.
Although the co-operative failure detection (CFD) has potential to reduce the total number of
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inferences’, in this example it does not. This is because that in the three CFD phases, 't1’ has
successful instances and takes shorter time to find those instances tian the failur-: of 't2’.
There are no messages being passed because the forked-off 't1' has su-~~<sful instarces. Note
that, in this simple example, the overhead of executing the 'fork’ in: ructions has not been
taken into account. Future simulations must include the overhead of executing ’'fork’
instructions and passing messages.

4.8. Conclusion

In this chapter, a scheme to exploit the AND-parallel execution in Prolog was proposed.
It involves using the SDDA at compile time to detect independent subgoals, and forking-off
independent subgoals at run time. Data is accessed through a globally shared memory, while
the execution flow controls are achieved by sending messages between concurrently running
processes via a central scheduler. It is shown that concurrency for both forward and
backward execution as well as the semi-intelligent backtracking can be exploited.

Only one example of AND-parallel execution has been presented here. Clearly much
further analysis and simulation is needed to fully evaluate the cost effectiveness of this
approach. Nevertheless, it can be seen that the SDDA methodology presented here does have
great potential for increasing the speed of Prolog execution through the use of AND-
parallelism.

This is because that short failure sequences, in the parallel case, can terminate long chains before they
(uselessly) complete.



CHAPTER 5

CONCLUSION

5.1. Coneclusions

Prolog, an implementation of a logic programming language, has caught the attention of
the computer science community because of its declarative semantics, logic foundation, and
efficient implementation. The efficiency of current Prolog systems mainly comes from its
simple control strategy which is a left-to-right and top-to-bottom control strategy with built-
in naive backtracking. However, because of the naive backtracking, a lot of redundant effort
may be wasted for problems which have a flavor of theorem proving. Two ways are proposed

in this thesis to improve the performance of Prolog:
(a) Semi-intelligent backtracking,
(b) AND-parallel execution.
Both rely on a static data dependency analysis done at compile-time.

Use of compile-time analysis to improve the run-time performaace is the main emphasis
in this thesis. AND-parallel execution [22] and intelligent backtracking [18,21] have been
studied by other researchers. Their approaches are based on either a run-time bookkeeping or
a dependency analysis. Although a run-time analysis is more effective than a static (hence
worst-case) analysis, it incurs a lot of overhead at run-time and is thus inefficient. For a
static analysis, although the compilation costs more, the price only needs to be paid once.
Static analysis has been used in the past for the other HLLs to generate more optimized code
[51], to partition a program into concurrent subtasks [47,48|, and to translate HLL programs

into data flow graphs for a data-flow architecture [52]. For Prolog, the static analysis has

80
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been used to derive the invocation modes to generate more efficient code [35], and for query
optimization [53]. In this thesis, it was shown that static analysis can be applied to Prolog to

achieve both intelligent backtracking and AND-parallel execution.

The static data dependency analysis (SDDA) is based on a worst-case analysis of run-
time variable bindings of Prolog programs. This analysis is easier for Prolog than the other
high level languages because of its local variable scoping, concise syntax, and single-
assignment variable binding. On the other hand, the analysis is harder for Prolog because of
the untyped logical variables, and the non-deterministic execution. A methodology is
proposed in this thesis to perform the SDDA. It was shown that the cost of doing the SDDA
can be comparable to the cost of compilation (see Table 2.1). For programs without many
nested recursions or many activation modes for the same procedure, the cost of doing the
SDDA can be 30% to 40% of the cost of compilation. For programs with many nested
recursions or many activation modes for the same procedure, the cost of doing the SDDA can
be 80% to 300% of the cost of compilation. The SDDA is easily incorporated into the
compiler. The output of the SDDA is a collection of data dependency graphs, one for each
clause of a Prolog program. A data dependency graph describes the dependency between
body literals of a clause. From the data dependency graphs, the compiler can generate codes

to achieve both the semi-intelligent backtracking and AND-parallel execution.

Semi-intelligent backtracking can improve the performance of Prolog for problems which
have intelligent backtracking paths within a clause boundary. The scheme proposed in this
thesis is to derive intelligent backtracking paths (within a clause boundary) from the data
dependency graphs generated from the SDDA. At run-time, when a subgoal fails, a
backtrack literal can be determined from the pre-computed backtracking paths and the literal
can be retried. It was shown that this scheme can be implemented by modifying the compiler

and the architecture. The performance improvement (see Table 3.2) can be substantial (up to
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1200:1 in execution time) for some programs and the performance is more robust with resgect
to the ordering of body literals. However, it was observed that semi-intelligent backtracking
is useless for certain problems, e.g. the queens problem and the D-algorithm (shown in
Appendix B). In these problems, the positions of queens or the logic values of nodes are
gradually determined across several clauses or iterations. To achieve intelligent backtracking
in these problems require recording the binding history as in the run-time intelligent
backtracking [18], which is known to be very expemsive. A future research topic is to
investigate an efficient scheme to achieve intelligent backtracking which is not restricted by

the clause boundary.

While semi-intelligent backtracking is useful only for non-deterministic programs, AND-
parallel execution is useful for both deterministic and non-deterministic programs. A scheme
to achieve AND-parallel execution was described in this thesis. [n this scheme, an
independent procedure call can be forked-off and run concurrently in a different processor.
Data is accessed through a globally shared memory, while the execution-flow controls are
achieved by sending messages between concurrently running processes via a central scheduler.
It was shown that both parallel execution and semi-intelligent backtracking can be exploited
to improve the performance. Future research directions for the parallel execution are: looking
into partition algorithm for subtasking, incorporating the OR-parallel execution, run-time load
balancing, and efficient memory management which includes memory allocation, deallocation,

and parallel garbage collection.

The static data dependency analysis described in this thesis is used to generate
dependency graphs for Prolog programs to achieve both intelligent backtracking and AND-
parallel execution. It can also, however, serve for other purposes with minor modifications.
Since the SDDA can find the worst-case bindings of variables, it can be used to derive the

instantiation mode (as in automatic mode generation [35]) for generating more efficient code.
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From the variable binding analysis of the SDDA, the subgoals can be reordered (similar to
Conery's ordering algorithm [22]) for more efficient sequential execution. Since the SDDA
knows whether or not two terms are coupled (as described in Chapter 2), it can be used to
decide whether or not parallel unification can be exploited between two literals. A future
research goal is to apply the SDDA to these areas and blend all these possible applications
together into the compiler to generate optimized code for more efficient execution of Prolog

programs.
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APPENDIX A

0% 9% 9% % % % %6 9% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 7o

%
%
%

;;; Static Data Dependency Analyzer ;;;

9%%% %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 7% 7% %o

:-{[lib,var,main,back]). % consult files 'lib’, 'var’, ‘'main’, and 'back’

sdda_ :-

repeat, nl,
write(’ - A Static Data Dependency Analysis -'), nl, nl,
write('Input file ? '), read(File), % get the name of input file
write('Graph file ? *), read(Graph), %% get the name of the output graph file
write{"Mode file ? '), read(Mode), % get the name of the output mode file
sdda_(File,Graph,Mode), nl, % perform a SDDA on the input file
(var(Mode) -> true; tell(Mode)),
Cpu is cputime,
write('CPU time= '), write(Cpu), nl,
Heap is heapused,
write('HEAP used = '), write(Heap), nl,
tell(user),
write('Other input files ? (y/n) '),
read(Con),
(Con==y ->
deconsult_(File),
close(File),
(var(Graph) -> true; close(Graph)),
(var(Mode) -> true; close(Mode)),
fail;
true),
'

“The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer,”’
IEEE Trans. Computers C-32 pp. 175-189 (Feb., 1983).
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08 9% %% %% % %6 %6 % %6 % %% %6 %6 % % % % % %6 % % %6 % % % % %6 % % % % % % %6 70 7o

B %57 % %8 % %% % % % % %% % % %6 % % %6 % % % % % % % % % % % % % 7% 76 7% To

%% Several side-effect predicates are used to improve the efficiency of
% this program:

% recur_(F,N,Act,Ref) : there is a cycle in the clause, with data
% base reference Ref, for activation (F,N,Act).

% mode_(F,N,Act,Exit) : record all possible activations and their
% corresponding exit modes.

% act_(F,N,Act) : keep track of the worst case activation of (F,N).

% notDone_(F,N,Act) : to detect cycles.

% reGen_(F,N,Act) : need to perform SDDA on F/N for activation Act.
% pred_(F,N,PredL,PredB) : record all data dependency graphs (PredL)
% and backtrack graphs (PredB) of F/N.

%

% side_(F,N) : record that F/N contains ifo or side-eflect predicate
% det_(F,N,Act) : record that (F,N,Act) is deterministic

%

9% side_, mode_, and det_ can be declared by programmers for any F/N to speed
% up the data dependency analysis.

sdda_(File,_,_) =~
write('Read file ..."), nl,
consult(File),
entry _(EntProc), % get an entry procedure call F/N
EntProc=_.[F|Act],
tunctor{EntProc,F,N),
assertz(act_(F,N,Act)),
assertz({reGen_(F,N,Act)),
fail.
sdda_(_,.,.) -
write('Generating data dependency graphs ..."), nl,

reGen_(F,N,Act), % start processing a top level (F,N,Act)

% or re-process a F /N for a new worst Act
procDep_(F,N Act,_,_,1,.), 9% generate graphs for (F,N,Act)
retract(reGen_(F,N,Act)), ‘
fail. % other (F,N,Act)s

sdda_(File,Graph,_) - % write out all graphs
(\+var(Graph) ->

(write(’Graphs will be recorded into file '),

write(Graph), write("”’), nl,

tell(Graph),

pred_(F,N,PredL,PredB),

findBack_(PredB Back), % find backtrack literals
write(pred_(F,N,PredL)), write(.), nl,
write(back_(F,N,Back)), write(.), ol,

fail;

tell(user));



true),
abolish(pred_,4), fail.
sdda_(_,.,Mode) :- % write out all modes, for debugging purpose
(\+var(Mode) ->
(write(’'Write all modes ... "),
tell(Mode),
mode_(F,N,Act,Exit),
write(F), tab(6), write(N), tab(6),
write{Act), tab(6), write(Exit), nl,
fail;
tell(user),
write('into file *"*), write(Mode), write(""), nl);
true),

abolish(mode_,4), abolish(act_,3), abolish(side_,2),
write('Done!!’).

% procDep_(F,N,Act,Exit,SideEﬂ,GraphOn,Determ) generates the Exit mode for an
% activation (F,N,Act), and data dependency graphs if GraphOn=1.

% F/N : functor/arity

% Act : activation mode

9% SideEf : if there are side-effect predicates or I/O within the procedure F/N

% SideEff=1, else SideEff=0.

% Determ : F/N is deterministic if Determ=1

procDep_(F,N,Act,_,_,GraphOn,_}) -
assertz{notDone_(F,N,Act)), % begin processing (F,N,Act)

functor(H,F,N),

clause(H,Gs,Ref), % get a candidate clause

(recur_{F,N,Act,Ref) -> % if there is a cycle for (F,N,Act,Ref)
fail;

cIDep_(H,Gs,F,N,Act,Exit,SideEfl, Ref,GraphOn),

updateSide_(F,N,SideEf), '

updateExit_(F,N,Act,Exit) ),

fail. % other candidate clauses of F/N ?
procDep_(F,N,Act,Exit,SideEff,GraphOn,Determ) :-

(det_(F,N,Act) -> Determ=1; allGnd_(Act,Determ) ),

mode_(F,N,Act,Exit), % get final Exit mode
(side_(F,N) -> SideEff=1; SideEffl=0), % get SideEff flag
retract(notDone_(F,N,Act)). % end processing (F,N,Act)

% clDep_(H,Gs,F,N,Act,Exit,SideEff, Ref,GraphOun) generates the Exit mode
% for a clause (H :- Gs.) with activation mode Act, and the data dependency
% graph if GraphOn=1.

clDep_(H,Gs,F,N,Act,Exit,SideEff,Ref,GraphOn) :-

H=_[F | Args|,
argVarL_(Args,AVL), % AVL is an arg-var list
varL_{AVL,Act,VarL), 9% VarL is the initial var-st list

(Gs====true -> NL=VarL, PredL={], SideEf=0, PBs=||;
gsDep_(Gs,VarL,NL,1,PredL,PBs,0,SideEf,0,_,Dets,Ref) ),

A3



findMode_(AVL,NL,Exit,_,_), % find the Exit mode

elimDet_(PBs,Dets,PredB),

((GraphOn=1, act_{F,N,Act)) ->
assertz{pred_(F,N,PredL,PredB));

true).

% gsDep_(Gs,VarL,NL,Count,PredL,PBs,Sin,Sout,Cin,Cout,Dets,Ref)
% generates a new var-st list NL and the predecessor list PredL for a
% a subgoals list Gs

%

% VarL : var-st list before executing G

%% NL : new var-st list after executing G

% Count : literal count

% Ref : reference to the clause Gs is in

% PredL : the predecessor list

% PBs : the backtrack list

9% Sin : the literal number of the last side-effect predicate before Gs
9% Sout : the literal number of the last side-effect predicate after Gs
% Cin : the literal number of the last control predicate before Gs

9% Cout : the literal number of the last control predicate after Gs

%% Dets : deterministic literal list in Gs

gsDep_(G,_,_,_,_,_,_,_,_,_,_,_) -
var(G), !, % a meta variable
write('Can not handle meta variable in SDDA’), al,
abort.

gsDep_(','(G,Gs),VarL,NL,Count,[P1] P2|,PBL,Sin,Sout,Cin,Cout,Dets,Ref) :-

1
gsDep_(G,VarL,Ll,Count,[Pl],PB,Sin,Sl,Cin,Cl,LZ,Ref),
NC is Count+1,
gsDep-(Gs,Ll,NL,NC,P2,PBs,Sl,Sout,Cl,Cout,DetL,Ref),
(PB=([L3] -> PBL=[L3|PBs|; PBL=PBs),

(L2=[Det| -> Dets==[Det|DetL]; Dets=DetL).

SSDCP-(,;'(-;-),-»-y-:-,-:-;-.-y-,-.-) - !’
write(’Disjunction has not been implemented yet'), nl,
abort.
gsDep_(G,VarL,NL,C,[[C | PredL]],PBL,Sin,Sout,Cin,Cout,Det, Ref) :-
functor(G,F,N),
G=..[F | Args|,
(io_(F,N)->
Sout=C,
Cout=Cin,
Determ==1,
PB=(],
NL=VarL;
control_(F,N) ->
Sout==Sin,
Cout=C,
Determ=0,

((F=fail, N=0) -> true; PB={0]),

Ad
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NL=VarL;
argVarL_{Args,ArgVarL),
findMode_(ArgVarL,VarL,Act,P1,Couple), % find the activation mode
(builtln_(F,N,Act,Exit.,SEf,Determ) -> true; % built-in predicate
notDone_(F,N,Act) -> % if there is a cycle
asserta(recur_(F,N,Act,Ref)),
procDep_(F,N,Act,Exit,SEf,O,Determ),
retract(recur_(F,N,Act,Ref));
mode_(F,N,Act Exit) -> % if mode_(F,N,Act,Exit) is available
(side_(F,N) -> SEf=1; SEf=0),
(det_(F,N,Act) -> Determ=1; allGnd_(Act,Determ) );

act_(F,N,A1) -> % if F/N has been examined
worstMode_(Act,A1,A2),
(A2=A1-> % worst-case activation unchanged

procDep_(F,N,Act,Exit,SEr,O,Determ);
retract(act_(F,N,A1)), % update act_(F,N,A)
assertz{act_(F,N,A2)),
(pred_(F.N,_,.), retract(pred_(F,N,_,_)), fail; true),
% rm graphs
(A2=Act -> % Act is the new worst-case act.
procDep_(F,N,Act,Exit,SEr,l,Determ);
assertz(reGen_(F,N,A2)),
procDep_(F,N,Act,Exit,SEf,O,Determ) »
assertz(act_(F,N,Act)), % new F/N
procDep_(F,N,Act,Exit,SEl’,l,Determ) ),
varLX_(ArgVarL,Exit,L1),
updateVarL_(VarL,C,L1,NL,Couple),
Cout=Cin,
(SEf=1 -> Sout=C; Sout="Sin) ),
(Sin>Cin ->

({Sout=C; Cout=C) -> % if there are special predicates
T2 is C-1, )
(T2=Sin -> PredL=|Sin|;

T3 is Sin+1,
numGen_(T2,T3,PredL) ),
(var(PB) ->

(var(P1) -> PB=(Cin|PredL]; % handle fail
P1=[] -> PB=(Cin];
Cin=0 -> PB=P1;
PB=[Cin|P1] );
true);
(P1=[]; P1=]0]) -> PredL=(Sin], PB=|Cin];
filter_(Sin,P1,P2),
PredL=|Sin P2},
(Cin=0 -> PB=P1; filter_(Cin,P1,P3), PredL={Cin|P3}) );

(Sout=C; Cout=C) -> % if there are ifo or side-effect
T2 is C-1,
(T2=Cin -> PredL=(Cin|;
T3 is Cin+1,

numGen_(T2,T3,PredL) ),
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(var(PB) ->
(var(P1) -> PB=PredL; % handle fail
P1=[] -> PB=(Cin};
Cin=0 -> PB=P1;
PB=(Cin|P1] );
true);
(P1=[]; P1==[0]) -> PredL=(Cin|, PB==(Cin};
(Cin==0 -> PredL==P1; filter_(Cin,P1,P2), PredL==[Cin|P2}),
PB=PredL ),
(PB=[] -> PBL=(]; PBL=([CIPB]]),
(Determ=1 -> Det==[C|; Det=()).

% filter_(N,L1,L2) eliminates any literal number in L1 which is smaller
% than or equal to N.

filter_(_,[],(1)-
filter_(N,[MIL1},L2) :-
(N<M -> L2=[MIL3];
L2=L3)},
filter_(N,L1,L3).

% elimDet_(PBs,Dets,PredB) get the new backtrack graph by considering
% deterministic literals

elimDet_([],..{]).

elimDet_([PB|PBs|,Dets,[PB|PredB|) :-
Dets={] -> PredB=PBs;
elimD_{PBs,Dets,[PB|,PredB).

elimD_([]......[])-

elimD_([[NIL] | PBs]|,Dets,Bs,[L1|Ls}]) :-
backG_(L,Dets,Bs,PB1),
L1=[N|PBi],
elimD_(PBs,Dets,[L1]Bs| Ls).

backG_({[],...]])-
backG_({XIL],DetL,PBs,[YIL1]) :-
(in_(X,DetL) -> bG_(X,PBs,Y); Y=X),
backG_(L,DetL,PBs,L1).

bG_(X,PBs,Y) :-
getLs_{X,PBs,L),
largest_{L,Y).

worstMode_(([]{1.[})-

worstMode_({{M11{L1],[M21L2},[M31L3]) :-
(M1@>M2 -> M3=M1; M3=M2),
worstMode_(L1,L2,L3).

updateExit_(F,N,Act, Exit) -




retract(mode_(F,. ., Act,E1)) ->
worstMo<e_{E1Exit, E2).
assertz{mode_(F,N,Act £2));

assertz(mode_(F,:" Act,Exit)).

updateSide_(F,N,SideEf) -
SideEff==0 -> true;
side_(F,N) -> true;
assertz(side_(F,N)).

% some sample built-in predicates

builtIn_(retract,1,Act,Act,1,1) == !. % A more effective (and expensive)
% way to handle 'assert’ and 'retract’
% is as described in the thesis

builtIn_(assert,1,Act,Act,1,1) :- L.

builtIn_(is,2,_,[g.8].0,1) = !

builtln_(>=,2,_,(8.8],0,1) =- !

builtln_(=<,2,_,|8,8],0,1) =- .

builtln_(<,2,_,|g.8],0,1) == .

builtln_(>,2,,(8.8],0,1) - ..

builtn_(var,1,Act,Act,0,1) - !.

builtln_(=,2,Act,Act,0,1) - .

builtln_(==,2,[g,.] [g.8].0,1) =- .

builtln_(===,2,[_,g].(2.8].0,1) - !

builtln_(===,2,Act,Act,0,1) - ©.

builtln_(=\=,2,[8,.}[8.8].0.1) - |

builtln_{=\=,2.[ .8.[g.8].0,1) == L.

builtln_{=\=,2,Act,Act,0,1) - |

control_(!,0).
control_(fail,0).
control_(repeat,0).

io_(read,1).
io_{write,1).
io_(nl,0).

allGad_([},1).

allGnd_({XIL],Y) -
X=g-> allGnd_(L,Y);
Y=0.

numGen_(N,M,L) :-
N=M -> L=(N];
M1 is M+1,
numGen_{N,M1,L1)}.
L=[MIL1}.

0% get a keyed list

Seth-(Xrnv[l)-



getLs_(X[[YIL}IL1],L2) =-
X=Y -> L2=L;

getLs_{X,L1,L2).
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% argVarL_(Args,ArgVarL) generates ArgVarL for Args.
% ArgVarL : an arg-var list

% Args : an arg list

9% e.g. arg-var list of [f(X,Y),3,[X1Z]| is (1X,Y1ILIX.2Z])

argVarL_({.{})-

argVarL_([Arg| Args],[AVIAVs]) -
argV_(Arg,AV),
argVarL_(Args,AVs).

argV_{Arg,L) :-
atomic(Arg) -> L={;
var(Arg) -> L=(Arg|;
Arg==..[ | Args], getVar_{Args,L).

% getVar_(Args,Vars) generates a var-list(Vars) for a given arg-list(Args).

getVar_([L.[})-

getVar_([Arg] Args|,L) :-
getV_(Arg,L1),
getVar_(Args,L2),
concat_(L1,L2,L).

getV_(ArgL) -
atomic{Arg) -> L={];
var(Arg) -> L={Arg|;
Arg=.[_|Args],
getVar_{Args,L).

% varL_(AVs,Act,L) generates var-st list L with given AVs and Act.
% AVs : a arg-var list
% Act : the activation mode of the literal whose arg-var list is AVs
9% There are three possible modes for each variable (name) in a clause:
g - denotes a variable is grounded
i - denotes a variable is not grounded and is an independent variable
s - denotes a variable is coupled with at least another variable
e.g. the var-st list of [[X,Y],[J.[X,Z]| with an activation mode
li.g.g] is [[X.8,00,[Y.i,0],(Z.8,0]] where '0" demotes that
the generatore of these variable is the calling literal.

RaTR AR

varL_(AVs,Act,L) -
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varList_(AVs,Act,[],L1),
dupElim_(L1,L2),
postVarL_(L2,L).

varList_({],J,L.L).
varList_([AV | AVs],[Mode | Modes|,L1,L2) :-
AV=][] -> varList_(AVs,Modes,L1,L2);
(Mode==r -> % can be either 'i’ or 's’
(AV=[H| -> L3=([H,i]]; spread_(AV s,L3));
spread_(AV,Mode,L3)),
concat_(L3,L1,L4),
varList_(AVs,Modes,L4,L2).

spread_([],.[])-
spread_([Var{ Vars|,Mode,|[Var,Mode| | L)) :- spread_(Vars,Mode,L).

dupElim_([],[])-
dupElim_({[V,M] | VMs],[[V,NM,0] | FVMs]) - % calling literal is the gen.
% of all the variables initially

eliminate_(M,NM,V,VMs NVMs),
dupElim_(NVMs,FVMs).

eliminate_(M,M,_,[},[])-

eliminate_(M,NM,V1,{[V2,M2]|L1],L2) -
V1\==V2-> eliminate_(M,NM,V1L1,L3), L2=([V2,M2]IL3];
(M=g; M2=g) -> NM==g, eliminate_(g,g,V1,L1].2);
(M@>=M2)-> eliminate_(M,NM,V1,L1L2);
eliminate_(M2,NM,V1,L1,L2).

% convert a signle 's’ to i’
postVarL_({].[]):
postVarL_{[VM|VMs],L) :-
VM=[V s|T] -> (60dS_(VMs) -> L=[VM| VMs|; L=([V il T]I VMs]);
postVarL_(VMs,NVMs),
L=[VMINVMs|.
findS_([}) :- fail.
findS_{[VMIL]) =-
VM=[_,s|_] -> true;
findS_(L).

% varLX_(AVs,Exit,L) generates var-mode list L given AVs and Exit.
% AVs : a arg-var list

0% Exit : the exit mode of the listeral whose arg-var list is AVs

% e.g. [[X,Y],[Z]] with exi¢t mode [g,i] has a var-mode list

K ([X.g].{Y.g].{2.i]]

varLX_(AVs,Exit,L) :-
varList_(AVs,Exit,[],L1),
dupElimX_(L1,L2),
postVarL_(L2,L).
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dupEtimX_([L])

dupElimX_({[V,M] | VMs],[[V.NM]| FVMs]) -
eliminate_(M,NM,V,VMs NVMs),
dupElimX_(NVMs,FVMs).

% findMode_ (AVs,VarL,Act,PredL,Couple) derives Act, PredL, and Couple from
% given AVs and VarL.

%

% Act : activation mode

9% PredL : predecessor list for the current literal

% Couple : a flag to denote that the literal uses a var in the coupled group

0% AVs : arg-var list of the current literal

9% VarL : the current var-st list

findMode_({AVs,VarL,Act,PredL,Couple) :-
elimGnd_ (AVs,VarL,AVMs,L,Couple),% AVMs only contains var. of mode i & 8
dupEl_(L,PredL),
checkCouple_(AVMs,Act).

elimGnd_({,..[1.],0)-

elimGnd_([AV | AVs],L,[AVMIAVMs| L1,C) -
elimG_(AV,LLAVM,L2,C1),
elimGnd_(AVs,L,AVMs,L3,C2),
(Cl=0 -> C=C2; C=1),
concat_(L2,L3,L1).

elimG_([],..[].1,0)-
elimG_([V1Vs|,L,L1,[Pred|L2},C) :-
eG_(V.L,VM,Pred,C1),
elimG_(Vs,L,VMs,L2,C2),
(C1=0 -> C=C2; C=1),
(VM=|] -> L1=VMs; L1=[VMI VMs]).

eG_(V,[],[V.i],0,0). % encounter a new variable
eG_(V,{[W,M,P]IL},VM,Gen,C) :-
V==W -> (M=g -> VM=[]; VM=[V,M]),
(M=s -> C=1;C=0),
Gen=P;
eG_(V,L,VM,Gen,C).

dupEL({],(1)-

dupEl_{{X|L1}L2) =-
(in_(X,L1) -> L2=L3;
dupEIl_(L1,L3).

checkCouple_([].{})-

checkCouple_{[AVM | AVMs]|,[M|Ms}) :-
(AVM=[] -> Ml=g;
getMode_(AVM,AVMs M1, Ms)),



(var(M) ->

(AVM=[_], Ml1=r) -> M=i; M=M1);
true),
checkCouple_{AVMs,Ms).

getMode_([],. . M,.) - var(M) -> M==r; true.

getMode_({[V,M] | VMs|, AVMs,M1,Ms) -
fndV_(V,M,AVMs M1,Ms),
getMode_(VMs,AVMs,M1,Ms).

findV_(_,_.[}.-.[})-

findV_(V,M,[AVM| AVMs|,M1,[M2 Ms]) -
vV_(V,M,AVM,M1,M2),
findV_(V,M,AVMs,M1,Ms).

N P
£V_ (V. M,[[W,M3] 1 VMs|,M1,M2) =-
M=s -> ((V==W; M3==s) -> Ml=s, M2=s; true};
% M=i
V===W -> Mi=s, M2==s;
fv_(V,M,VMs M1,M2).

% updateVarL_(VarL,N,ArgVL,NVL,CoupIe) generates a new var-st list NVL
% with given N, VarL, argVL, Couple.

9% VarL : the old var-st list

% N : a literal number

9% ArgVL : the var-mode list contributed by the literal at its exit

9% Couple : a flag which denotes that the literal uses variables from the

% coupled group.

updateVarL_(VarL,N,ArgVL,NVL,CoupIe) -
updateVL_(VarL,N,ArgVL,L,C),
((C=0, Couple=0) -> L1=L; coupleGen_(N,L,L1)),
postVarL_(L1,NVL).

updateVL_(L,_.[,.L.0).

updateVL_(VarL,N,{[V,M]L],NVL,C) =-
updateGen_(VarL,N,V. M,L1,C1),
updateVL_(L1,N,L,NVL,C2),
(C1=0-> C=C2; C=1).

updateGen_([|,N,V,M,{[V.M,N]],0). % a new variable
updateGen_([VMIL|,N,V M,L1,C) :-
VM=[W,M1,N1],
(W==V -> (MI@>M -> C=0, (M=g -> L1=[[V.g,N|IL]; L1=[VMIL])
M1@<M -> (Ml=g -> C=0, L1=[VMIL|; % g->sorg->i
C=1, L1={|V,s,N]IL]); %i->s
C=0, L1=[VMIL});
updateGen_(L,N,V . M,L2,C),
L1=[VMIL2)).



coupleGen_(_,[.{})-

coupleGen_(N,[VMIL],NL) =-
(VM=([W s,N1] -> NL=({[W,s,N|IL1]; NL=[VMIL1]),
coupleGen_(N,L,L1).

%% % % % %% %% % %6 % %6 % %6 % % % % % % % % % % % % %6 % % % % % % % 7% % 76 % %o
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% findBack_(PredB,BackL) generates the backtrack list from the predecessor
% list.

findBack_(PredB,BackL) -
PredB=/[] -> BackL=[};
PredB=(X] -> BackL=PredB;
getPred_(PredB,L1), % get a list of literals which are predecessors
noLeaf_(L1,NotLeaf), % find non-leaf literals
reach_(PredB,ReachL), % construct the reachable list
reverse_(PredB,L2),
reverse_(ReachL,L3),
findB_(L2,BackL,],NotLeal,{],L3).

noLeaf_({].{])-

noLeaf_([XIL],L1) :-
in_(X,L) -> noLeaf_(L,L1);
noLeaf_(L,L2), L1=[X|L2].

getPred_([l.[})
getPred_([[N|Pred| | PredB| L) :-

getPred_(PredB,L1),
concat_(Pred,L1,L).

findB_({],L,L,.,...)-
findB_([[N| Pred] | PredB|,L1,L.2,NotLeaf,BackFroms Reachs) :-

largest_(Pred, M),
(in_(N,NotLeaf) -> 0% if N is not a leaf literal
backFLit_{N,L2,L),

backFSet_(L,BackFroms,L3), % L3 is the backfrom set of N
reachable_{N,L3,K,Reachs,Rs),
L4=|[NM,K]IL2|;
L4={|N,M| L2}, L3={], Rs=Reachs), % if N is a leaf literal
findB_(PredB,L1,L4,NotLeaf,[[N]L3]| BackFroms]|,Rs).

backFLit_(_,[.[])-
backFLit_(N,{[M,B1|L}|Bs},L1) :-
(Bl=N -> (L=[] -> L1=[MIL2]; % M is a leaf literal and M -> N (type I)
L1=L2);
L=[N} -> L1=[M1L2};% M is not a leaf literal and M -> N (type II)



L1=L2),
backFLit_(N,Bs,L2).

backFSet_([],.[])-

backFSet_({X|L]BFs,BF) :-
getLs_(X,BFs,L1),
backFSet_(L,BFs,L2),
concat_([X|L1],L2,BF).

reachable_(_,.,0,[.[])-

reachable_(M,BF K,[[NIR]|Rs|,NRs) :-
M=N -> reachable_(M,BF K,Rs,NRs);
(intersect_(BF,R) -> K=N, NRs=Rs;
reachable_(M,BF,K,Rs,NRs)).

intersect_(_,[]) :- fail.

intersect_(BF,[XIL]) :-
in_(X,BF) -> true;
intersect_(BF,L).

reach_(L1,L2) :-
sucL_(L1,L3),
getSuc_(L3,L4),
reverse_(L4,L5),
reachL_(L5,{],L2).

sucL_([],[])-

sucL_([[X{L4]IL},L1) =
element_(X,L4,L2),
sucL_(L,L3),
concat_{L2,L3,L1).

element_(X.{.[}).
element_(X,[YIL},[[Y.X]IL1]) =
element_{X,L,L1).

getSuc_({L.[]).
getSuc_([[X,Y}IL],L1) :-
getS_(X,L,L3,L4),
getSuc_(L3,L3),
(X=0-> L1=L5; L1=[[X,Y |L4]ILS}).

getS_(L 0L
getS_(X,[MIL}L1,L2) -
M={Y,NJ,
getS_(X,L,L3,L4),
(X=Y -> L1=L3 L2=[N|L4;
L1=[M|L3| L2=L4).

reachL_({],L.L).
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reachL_(|[[NIL]IL1},L2,L3) :-
getR_(L,L2,L4),
reachL_(L1,[{NIL4}1L2|,L3).

getR_({].-.)-

getR_([XIL],L1,L2) :-
getLs_(X,L1,L3),
getR_(L,L1,L4),
concat_([X|L3|,L4,L2).

3% %% %% %6 % % % % % % % % % % % % % % % % % % % % %6 % % % % % 7% % %6 70 7o
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0% define new operators

- op(700,xfx,[\=]).
X\=Y :- X=Y, !, fail.
X\=Y.

% concatenation of two lists

concat_([],L,L).
concat_(|X1L1},L2,[XIL3]) :- comeat_(L1,L2.L3).

0% reverse a list

reverse_([],(]).

reverse_{{X|L1],L3) -
reverse_(L1,L2),
concat_(L2,[X],L3).

%% check for membership

in_(X,[YIL]) -
X==Y -> true;
in_{X,L).

9% deconsult_{File) cleans up all the predicates used in the File.

deconsult_(File) :-
see(File),
repeat,
read(Cl),
(Cl\==end_of_file -> retract(Cl), fail; true),
!, see(user).
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% find the largest natural number in a list
largest_(L,X) :- closest_(L,0,X).

closest_([],X.X).
closest_{[XIL],Y,Z) :-
X>Y -> closest_{L,X,2);
closest_(L,Y,Z).



APPENDIX B

Circuit (Automatic Circuit Design):

entry_(t(g,i,8))-

%% Input signals

t(_, 0, [0,1,0,1,0,1,0,1]).
¢, 1,[00,1,1,0,0,1,1).
¢, 2,(0,0,00,1,1,1,1).
¢(_,i0 , [1,0,1,0,1,0,1,0]).
¢(_,i1 , [1,1,0,0,1,1,0,0])
t(_,i2, 1,1,1,1,0,0,0,0]).

% Inverters

t(Depth, [i,Z], Table) -
Depth > 0’
D is Depth -1,
sint{Table, Itable),
t(D, Z, Itable).

0% Main NAND gate clause.

t{Depth, [n,Y,Z], Table) :-
Depth > 0,
D is Depth -1,
ngate(Table, A, B),
t(D,Y,A),
t(D.Z.B).

% Inverter signal transformation.

sint([],[])-

sint([X,..T1},_,..T2]) - var(X), sint(T1, T2),!.
sint([0,..T1],{1,..T2]) :- sint(T1, T2).
sint([1,..T1],{0,..T2]) :- sint(T1, T2).

% Optimized gate signal transformation.

ngate((], {1, [])-

ngate({X,..TO], [_,..T1], [_,..T2]) = var(X), !, ngate(TO, T1, T2).
ngate([0,..T0|, [1,..T1], [1,..T2]) :- ngate(TO, T1, T2).
ngate([1,..T0}, [_...T1], [0,..T2]) :- tgate(TO, T1, T2).

tgate((], {1, [})-

tgate(|X,..T0|, [_,..T1], [,-.T2]) :- var(X), !, tgate(TO, T1, T2).
tgate([0,..T0|, [1,..T1], {1,.T2]) :- tgate(TO, T1, T2).
tgate([1,..TO], [.,..T1], [0,..T2]) - tgate(TO, T1, T2).
tgate([1,..TO}, [0,..T1], [.,..T2]) :- tgate(TO, T1, T2).
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Quicksort:

entry_(quicksort(g,i)).
quicksort(Unsorted,Sorted) :- gqsort(Unsorted,Sorted,{]).
gsort([X | Unsorted},Sorted,Rest) :-
partition(Unsorted,X,Smaller,Larger),
qsort(Smaller,Sorted,[X | Sorted1}),
qsort(Larger,Sorted1, Rest).
gsort([],L,L).
partition({],_.{].[})-
partition([X | Xs|,A,Smaller,[X | Larger]) :-
A <X, partition(Xs,A,Smaller,Larger).
partition([X|Xs],A,[X | Smaller| Larger) :-
A>=X, partition(Xs,A,Smaller Larger).

Population query:

entry_{query(i,i,i,i)).

query(C1,D1,C2,D2) :-
density(C1,D1),
density(C2,D2),
D1 > D2,
T1 is 20*D1,
T2 is 21*D2,
T1 < T2.

density(C,D) :- pop(C,P), area(C,A), D is (P*100)/A.

pop(china, 8250). area(china, 3380).

pop(india, 5863). area(india, 1139).
pop(ussr, 2521). area(ussr, 8708).
pop(usa, 2119). area(usa, 3609).

pop(indonesia, 1276). area(indonesia, 570).
pop(japan, 1097). area(japan, 148).

pop(brazil, 1042). area(brazil, 3288).
pop(bangladesh, 750).  area(bangladesh, 53).
pop(pakistan, 682). area(pakistan, 311).
pop(w_germany, 620). area(w_germany,
pop(nigeria, 613). area(nigeria,  373).
pop(mexico, 581). area(mexico, 764).
pop(uk, 559). area(uk,86).

pop(italy, 554).  area(italy, 1186).
pop{france, 525). area(france, 213).

pop(phillipines, 415).  area(phillipines, 90).

pop(thailand, 410). area(thailand, 200).
pop(turkey, 383). area(turkey,  296).
pop(egypt, 364). area(egypt, 386).
pop(spain, 352). area(spain, 190).

96).
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Serialize:

pop(poland, 337). area(poland, 121).
pop(s_korea,  335). area(s_korea, 37).
pop(iran, 320). area{iranm, 628).
pop(ethiopia, 272).  area(ethiopia, 350).
pop(argentina, 251). area(argentina, 1080).

entry_(serialize(g,i)).

serialize(L,R) :-
pairlists(L,R,A),
arrange(A,T),
numbered(T,1,N).

pairlists((X 1L}, [Y IR}, [pair(X,Y)[ A]) :- pairlists(L.R,A).
pairlists{([], [}, {1)

arrange([X|L], tree(T1, X, T2)) -
split(L, X, L1, L2),
arrange(L1, T1),
arrange(L2, T2).
arrange([], void).

split([XIL], X, L1, L2) - !, split(L, X, L1, L2).

split{(XIL], Y, [XIL1], L2) = before(X,Y), !, split(L,Y,L1L2).
split((XIL}, Y, L1, [XIL2]) - before(Y X), !, split(L,Y,L1,.L2).

splie([], ., {1, )-
before(pair(X1,Y1), pair(X2,Y2)) - X1 < X2.

numbered(tree(T1, pair(X,N1), T2), NO, N) :-
numbered(T1, NO, N1),
N2 is N1+1,
numbered(T2,N2,N).
numbered(void,N,N).

Determinate concate:

entry_(concate(g,g,i)).
concatenate([X|L1],L2,[X|L3]) :- concatenate(L1,L2,L3).

concatenate({],L,L).
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Mu-math:

B.19

entry_(prove(g)).

prove(X) :- prove(X,1).

prove(X,N) :- write('trying depth '), write(N), nl, theorem(X,1,N).

prove(X,N) - N1 is N + 1, prove(X,N1). ~

theorem([m,i], Depth,MaxDepth) :- write('[m,i] — axiom’),nl.

theorem(Y ,Depth,MaxDepth) :- Depth =< MaxDepth, concat(_,[i,u,Y),
concat(X,{u],Y), NDepth is Depth + 1, theorem(X,NDepth,MaxDepth),
write(Y), write(’ from ’),write(X), write(’ by rule I'), ni.

theorem([mIDouble],Depth,MaxDepth) :- Depth =< MaxDepth, concat(X,X,Double),
NDepth is Depth + 1, theorem(|m | X],NDepth,MaxDepth),
write({m | Double]), write( 'from ), write([m X)),
write(’ by rule II'), nl.

theorem(Y,Depth,MaxDepth) :- Depth =< MaxDepth, replace_u(Y,X),
NDepth is Depth + 1, theorem(X,NDepth,MaxDepth), write(Y),
write(' from '), write(X), write(’ by rule III'), nl. :

theorem(Y,Depth,MaxDepth) :- Depth =< MaxDepth, add_uu(Y,X),
NDepth is Depth + 1, theorem(X,NDepth,MaxDepth), write(Y),
write{’ from ’), write(X), write(’ by rule IV’), nl.

replace_u({u!Rest|,[i,i,i| Rest]).
replace_u([X | Rest],[X | NewRest|) - replace_u(Rest,NewRest).

add_uu(X,[u,ulX]).
add_uu([X | Rest],[X | NewRest|) :- add_uu(Rest,NewRest).

concat([],L,L).
concat([X |L1},L2,[X|L3}) :- concat(L1,L2,L3).

Queens (clever):

entry_(queens(i)).

queens(Config) - solution(c(0,[]),Config).

solution(c(5,Config),Config) :- !.

solution{c(M,Config),Conf) :- expand(c(M,Config),c(M1,Conf1)),
solution(c(M1,Conf1),Conf).

expand(c(M,Q),¢(M1,[p(M1K)!Q})) == M1 is M+1, column(K), noattack(p(M1,K),Q).

column(1).
column(2).
column(3).
column(4).
column(5).
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noattack(P,[]).
noattack(P,[QIL}) :- noattack(P,L), ok(P,Q).

ok(p(R1,C),p(R2,C)) - !, fail.

ok(p(R1,K1),p(R2,K2)) :- Difr is R2-R1, abs(Difr,Abs), Difc is K2-K1,
abs(Difc,Abs), !, fail.

ok({P,Q).

abs(N,N) - N>0, !
abs(N,M) :- M is 0-N.

Queens (simple):

Query:

entry_(queens(g,i)).
queens(L,Config) :- perm(L,P), pair(L,P,Config), safe([],Config).

perm([L.[})-
perm([X | Y,[U1V]) :- delete(U,[XIY],W), perm(W,V).

delete(X,[X1Y]Y).
delete(U,[X1Y],[X|V]):- delete(U,Y,V).

pair([].[}.[)-
pair([X | Y],[UI V], [p(X,U)| W]) :- pair(Y,V,W).

safe(Left,]).
safe(Leflt,[QIR]) :- test(Left,Q), safe((Q|Left|,R).

test([],Q)-
test(|R1S],Q) - test(S,Q), notondiagonal(R,Q).

notondiagonal(p(C1,R1),p(C2,R2)) :- C is C1-C2, R is R1-R2, C==R,
NR is R2-R1, C==NR.

main :- student(Stud,Coursel), course(Coursel,Day1, Room),
professor(Prol’,Coursel),student(Stud,CourseQ),
course(CourseQ,DayQ,Room),prot‘essor(Prof,CourseQ),
not(Coursel==Course2),
write(Stud),
write(Prof),
write(Room),
write(Coursel),
write{Course2).



student(robert,prolog).
student(john,music).
student(john,prolog).
student(john,surf).
student(mary science).
student(mary ,art).
student(mary,physics).
professor(luis,prolog).
professor(luis,surf).
professor(maurice,prolog).
professor(eureka,music).
professor{eureka,art).
professor(eureka,science).
professor{eureka,physics).
course(prolog,monday room1).
course(prolog,friday,room1).
course(surf,sunday beach).
course(math,tuesday,rooml).
course(math,friday, room2).
course(science,thursday,room1).
course(science,friday, ,room2).
course(physics,thursday,room3).
course{physics,saturday,room2).

Exhaustive-Coloring:

main:-
map(green,B,C,D.E),
fail.
map(A,B,C,D,E):-
next(A,B), next(A,C), next(A,D),
next(B,C), next(C,D), next(B,E),
next(C,E), next(D,E).
nextl(green,red).
nextl(green,yellow).
nextl{green blue).
next1(red,blue).
nextl(red, yellow).
next1(blue,yellow).
next2(X,Y):-
next1(Y,X).
next(X,Y)-
( next1(X,Y);
next2(X,Y)).
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Color13 (good):

main:- map(Rl,R2,R3,R4,RS,RS,R?,RS,RQ,RIO,RI1,R12,R13),
write{R1), write(R2), write(R3),
write(R4), write(R5), write(R6),
write(R7), write(R8), write(R9),
write(R10), write(R11), write(R12),
write(R13).

map(R1,R2,R3,R4, R5,R6,R7,R8,R9,R10,R1 1,R12,R13):-
next(R1,R13),next(R1,R2),next(R2,R13),next(R2,R4),next(R4,R10),
next(RG,R10),next(R8,Rl3),next(R6,R13),next(R‘2,RS),next(R3,R4),
next(RS,R13),next.(R3,R5),next(R5,R6),next(RS,R13),next(R4,R5),
next(RS,RlO),next(Rl,R‘T),next(R?,R13),next(R2,R7),next(R4,R7),
next(R‘T,R8),next(R4,R9),next(RQ,R10),next(R8,R9),next(R9,R13),
next(R6,R1 1),next(R10,R11),next(R11,R13),next(R9,Rl2),next(R11,R12),
next(R12,R13).

next{blue yellow).

next(blue,red).

next(blue,green).

next(yellow,blue).

next(yellow,red).

next(yellow,green).

next(red,blue).

next(red,yellow).

next(red,green).

next(green,blue).

next(green,yellow).

next{green,red).

Color13 (bad):

main:- color(R1,R2,R3,R4,R5R6,R7,R8,R9,R10,R11,R12,R13),
write(R1), write(R2), write(R3),
write(R4), write(RS), write(R6),
write(R7), write(R8), write(R9),
write{(R10), write(R11), write(R12),
write(R13).

color(R1,R2,R3,R4,R5 R6,R7 R8, R9,R10,R11 R12 R13)--
next(R1,R2),next(R2,R3),next(R3,R4),next(R4,R5),next(R5 R6),
next(RS,Rl1),next(R11,RlQ),next(R12,R13),next(RQ,R13),next(R9,R10),
next(R4,RlO),next(R4,R7),next(R7,R8),next(R‘;’,RT),next(Rﬁ,RlO),
next(R?,R13),next(R6,R13),next(R2,R4),next(R&R13),next(R4,R9),
next(R3,R5),next(R8,R9),next(R1,R13),next(R3,RIS),next(RS,R13),
next(R?,RlS),next(Rl1,R13),next(R9,R12),next(RS,RlO),next(RlO,Rl1),
next(R1,R7).

next(blue,yellow).

next(blue,red).

next(blue,green).
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next(yellow,blue).
next(yellow,red).
next(yellow,green).
next(red,blue).
next(red,yellow).
next(red,green).
next(green,blue).
next(green,yellow).
next(green,red).

D-Algorithm in Circuit Testing:

test(Ckt):-
consuit(Ckt), % cirucit description is in file Ckt
repeat,
print('Give the fault node and fault type: (node, type)'), nl,
print('e.g. (5,d) or (3,nd)’), nl,
read((FaultNode Fault}),
pattern(TC FaultNode Fault,Out),
print("The fault ('),
print((FaultNode Fauit)),
print(') can be detected at output node '),
print(Out), nl,
print(’ with the following test cube:’), nl,
print(TC), nl, nl, nl,
fail.

% D-Algorithm
pattern(TC1,FaultNode Fault,Out):-

assign(TC1,TC), % assign test-cube
( gate(N,Type,NumIn,In,FaultNode) -> % if success, then output s-a-f
( pdef(Type,NumIn,Fault, PDCF), % (***) choose a pdcf
value(N,PDCF Fault,TC),
implication(In,TC) );
set_in(FaultNode Fault,TC1) ), % else, it's input s-a-f
drive(FaultNode,Out,TC), 9 Out is the output node to detect s-a-f

line_just{[Out |L]-L,TC FaultNode), % line justification
. % only one test pattern is generated

implication(L,TC):- %% L contains list of lines
imp(L,TC), % forward implication
bimp(L,TC). % backward implication
fimp((]... ).
fimp(|X L], TC)-
out(X),
Smp(L,TC).

fimp(|X L], TC)--



connect_to(X,L1), % X is a input to gates in L1
consider{L1,TC),
Smp(L,TC).

consider([},.).
consider([X 1L}, TC):-
value(X,L1,0,TC),
( (var(O),allknown(L1)) -> % if inputs known and output unknown
( gate(X,Type,Numln,_,Y),
pc(Type,NumlIn,O,L1),
value(X,L1,0,TC),
8mp((Y],TC) )
true ),
consider(L,TC).

allknown([)).
allknown([X | L}):- atomic(X), allknown(L).

bimp((],..)-
bimp({X{L],TC):-
in(X),
bimp(L,TC).
bimp([X |L], TC):-
gate(N, Type,NumlIn,L1,X),
value(N,L2,0,TC),
( allknown(L2) -> true;

( no_choice(pe(Type,NumIn,O,L2)) -> % if input-pattern is unique
implication(L1,TC);
true) ),

bimp(L,TC).

no_choice(X):-
count(X,N),
N == ],
X.

count(X,N):-
assert{count(0)), X,
retract(count(l)),
Jis I+1,
assert(count(J}),
fail.

count(X,N):- retract(count(N)).

set_in(N,F,[_ IL]):-
N==],
M is N-1,
set_in(M,F,L).

set_in(N,F [F1_})-
N=:=1.
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drive(Node,Out,TC):-
( out{Node) -> Out=Node; % if Node is an output node; else

( connect_to(Node,L), % Node is a input to gates in L
in_list(X,L), % (***) choose a gate to D-Propagate
gate(X,Type,Numln,L1,Y),
value(X,L2,0,TC),
pdc(Type,Numln,O,L2),
difi(Node,L1,L3), % L3 is the list of other inputs
implication(L3,TC),
fimp([Y],TC),
drive(Y,Out,TC) ) ).

in_list(X, []):- fail.
in_list(X, X |L]).
in_list(X,[. | L]):- in_list(X,L).

difi(X,[].01)-
&iff(X,[XILJ.L).
difi(X,[Y IL],[Y IL1}):- X==Y, diff(X,L,L1).

line_just(]-{],..)-
line_just([X|L}-L1,TC,N):-
in(X),
line_just(L-L1,TC,N).
line_just(|X1L]-L1,TC,N}):-
gate(M,Type,NumlIn L2,X),
value(M,L3,0,TC),
( (0O===d;0==nd) ->
( X=N -> true;
pde(Type,Numin,O,L3) );
pc(Type,Numln,O,L3) ), % (***) choose a pc
diff_list(L2,L1-L4), % convert L3 to a difference list
line_just(L-L4,TC,N).

diff_list({],L-L).
diff_tist([XIL},[X 1L1]-L2):- diff_list(L,L1-L2).

value(Gate,In,Out,[[Gate,In,Out|| _}).
value(Gate,In,Out,[[X,_,.} I L]):- Gate==X, value(Gate,In,Out,L).

% pdcf (primitive D-cube of a logic fault) of a 2-input AND gate

pdef(and,2,d,[1,1]). %% detect s-a-0
pdcf(and,2,nd,[0,_}). % detect s-a-1
pdcf(and,2,nd,{_,0]). % detect s-a-1

% pec (primitive cube) of a 2-input AND gate
pe{and,2,1,[1,1]).
pc(and,2,0,(0,_]).
pe(and,2,0,[_,0]).
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% pde (propagation D-cube) of a 2-input AND gate
pdc(and,2,d,[1,d]).

pdc(and,2,d,[d,1]).

pdc(and,2,d,[d,d}).

pdc(and,2,nd,[nd,1]).

pdc(and,2,nd,{1,nd]).

pde(and,2,nd,{nd,nd]).

% pdef (primitive D-cube of a logic fault) of a 2-input OR gate

pdef(or,2,d,{1,.]). % detect s-a-0
pdcf(or,2,d,[.,1]). % detect s-a-0
pdcf(or,2,nd,[0,0}). % detect s-a-1

% pe (primitive cube) of a 2-input OR gate
pc{or,2,1,[1,_}).

pe(or,2,1,[_,1]).
pc(or,2,0,{0,0]).

% pde (propagation D-cube) of a 2-input OR gate
pdc(or,2,d,[0,d]).

pdc(or,2,d.|d,0}).

pdc{or,2,d,|d.d]).

pde(or,2,nd,[0,nd}).

pdc{or,2,nd,[nd,0}).

pdc(or,2,nd,[nd,nd}).

9% pdc! (primitive D-cube of a logic fault) of a 2-input NAND gate

pdcf(nand,2,nd,[1,1}). %% detect s-a-1
pdcf(nand,2,d,[0,_]). % detect s-a-0
pdcf(nand,2,d,[_,0]). % detect s-2-0

% pe (primitive cube) of a 2-input NAND gate
pc(nand,2,0,(1,1]).
pc(nand,2,1,{_,0}).
pc(nand,2,1,(0,_}).

% pdc (propagation D-cube) of a 2-input NAND gate
pdc(nand,2,nd,{1,d}).

pdc(nand,2,nd,[d,1}).

pdc(nand,2,nd,[d,d}).

pdc(nand,2,d,[1,nd}).

pdc(nand,2,d,[nd,1}).

pdc(nand,2,d,[nd,nd}).

% pdef (primitive D-cube of a logic fauit) of a 2-input NOR gate

pdef(nor,2,nd,(1,_]). % detect s-a-1
pdcf(nor,2,nd,[_,1]). % detect s-a-1
pdcf(nor,2,d,{0,0}). % detect s-a-0

% pe (primitive cube) of a 2-input NOR gate
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pe(nor,2,0,{1,_]).
pc(nor,2,0,(_,1}).
pe(nor,2,1,[0,0]).

% pdc (propagation D-cube) of a 2-input NOR gate
pdc(nor,2,nd,[0,d}).

pdc(nor,2,nd,[d,0]).

pdc(nor,2,nd,[d.d]).

pdc(nor,2,d,[0,nd]).

pde(nor,2,d,[nd,0]).

pde(nor,2,d,[nd,nd]).

% pdcf (primitive D-cube of a logic fault) of an INVERTER
pdef(inv,1,d,[0]). % detect s-a-0
pdef(inv,1,nd,[1]). % detect s-a-1

% pe (primitive cube) of an INVERTER
pe(inv,1,1,0]).

pe(inv,1,0,[1]).

% pdc (propagation D-cube) of an INVERTER
pdc(inv,1,d,[nd]).

pde(inv,1,nd,[d]).

% pdcf (primitive D-cube of a logic fault) of a 3-input NAND gate

pdcf(nand,3,0d,{1,1,1]). % detect s-a-1

pdef(nand,3,4,[0,_,.}]). % detect 3-2-0
pdcf(nand,3,d,[_,0,.}). % detect s-a-0
pdef(nand,3,d,|_,..0}]). % detect s-a-0

9% pe (primitive cube) of a 3-input NAND gate
pe(nand,3,0,(1,1,1}).
pc(nand,3,1,(0,_,.])-
pe(nand,3,1,[_,0,_}).
pe(nand,3,1,[_,.,0})-

% pdc (propagation D-cube) of a 3-input NAND gate
pdc(nand,3,nd,[1,1,d]).
pde(nand,3,nd,[1,d,1}]).
pdc(nand,3,nd,[d,1,1]).
pde(nand,3,0d,{1,d,d]).
pdc(nand,3,nd,[d,d,1]).
pdc(nand,3,nd,[d,1,d}).
pde(nand,3,nd,[d,d,d]).
pdc(nand,3,d,[1,1,nd]).
pdc(nand,3,d,[1,0d,1]).
pde(nand,3,d,[nd,1,1]).
pdc(nand,3,d,|nd,nd,1]).
pdc(nand,3,d,[1,nd,nd]).
pdc(nand,3,d,[nd,1,nd]).



pdc(nand,3,d,[nd,nd,nd]).

% pdcf (primitive D-cube of a logic fault) of a 4-input NAND gate

pdcf(nand,4,0d,[1,1,1,1]). 0% detect s-a-1
pdcf(nand,4,d,[0,_,.,.])- % detect s-a-0
pdcf(nand,4,d,[_,0,_..]). 0% detect s-a-0
pdcf(nand,4,d,[_,.,0,_])- % detect s-2-0
pdef(nand,4,d,[_,.,_,0]). % detect s-a-0

% pe (primitive cube) of a 4-input NAND gate
pc(nand,4,0,[1,1,1,1]).
pe(nand,4,1,[0,_,_._]).
pc(nand,4,1,,0,_,.]).
pc(nand,4,1,[.,.,0,.])-
pe(nand, 4,1,[_,_..,0).

% pdc (propagation D-cube) of a 4-input NAND gate
pdc(nand,4,nd,[1,1,1,d]).
pdc(nand,4,nd,[1,1,d,1]).
pdc(nand,4,nd,[1,d,1,1]).
pdc(nand,4,nd,[d,1,1,1]).
pdc(nand,4,nd,[1,1,d,d}).
pdc(nand,4,nd,[1,d,d,1]).
pdc(nand,4,nd,[d,d,1,1}]).
pdc(nand,4,nd,[d,1,d,1}).
pdc(nand,4,nd,[d,1,1,d}).
pdc(nand,4,nd,[1,d,1,d}).
pdc(nand,4,nd,{d,d,d,1}).
pdc(nand,4,nd,[d.d,1,d}).
pdc(nand,4,nd,[d,1,d,d]).
pdc(nand,4,nd,[1,d,d,d]).
pdc(nand,4,nd,[d,d,d,d]).
pde(nand,4,d,[1,1,1,nd]).
pdc(nand,4,d,{1,1,nd,1}).
pdc(nand,4,d,{1,0d,1,1]).
pdc(nand,4,d,[nd,1,1,1}).
pdc{nand,4,d,[1,1,0d,nd}).
pdc(nand,4,d,[1,nd,nd,1}).
pdc(nand,4,d,[nd,nd,1,1}).
pdc(nand,4,d,[nd,1,0d,1]).
pdc(nand,4,d,[nd,1,1,0d]).
pdc(nand,4,d,[1,nd,1,0d}).
pdc(nand,4,d,[nd,nd,nd,1}).
pdc(nand,4,d,|nd,nd,1,nd}).
pdc(nand,4,d,[nd,1,nd,nd]).
pdc(nand,4,d,{1,nd,nd,nd]).
pdc(nand,4,d,[nd,nd,ad,nd}).

A sample circuit description:



N

%% % % %6 % % %% % % % % % % % % % % % % %6 % % % % % % % % % % 7%

%% all the following predicates are circuit dependent

%% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %o

% circuit description

assign(|A,B,C,D.EF,GHLJ KL, [[1,H],JK]L][2/[BE| JHI,[3.]AF)1,
{4.[D.F1.1[5.C. GLKL{8.[Al.EL{7.1D1.G1.{8.[B.CLFI):

% %

X

9% describe each gate: gate(gates#, type, num_of_input, input_nodes, output_node)
gate(1,nand,4,(8,9,10,11,12).

gate(2,0and,2,(2,5],8).

gate(3,nand,2,{1,6,9).

gate(4,0and,2,[4,6|,10).

gate(5,nand,2,[3,7],11).

gate(6,inv,1,{1],5).

gate(7,inv,1,(4],7).

gate(8,and,2,{2,3],6).

0% describe connection: connect_to(node,gate_list)
connect_to(1,[3,6]).
connect_to(2,(2,8]).
connect_to(3,(5.8]).
connect_to(4,[4,7]).
connect_to(5,(2}).
connect_to(6,(3,4]).
connect_to(7,[5}).
connect_to(8,(1]).
connect_to(9,(1]).
connect_to(10,(1]).
connect_to(11,[{1]).

% input nodes
in(1).
in(2).
in(3).
in(4).

% output nodes
out(12).








