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Fault Tolerance for VLSI Multicomputers

Yuval Tamar

Abstract

The performance requirements of future high-end computers will only be met by
systems that facilitate the exploitation of the parallelism inherent in the algorithms that
they execute. One such system is a multicomputer that consists of hundreds or thousands
of VLSl computation nodes interconnected by dedicated links. Some important
applications of high-end computers, such as weather forecasting, require continuous
correct operation for many hours. This requirement can only be met if the system is
fault-tolerant, i.e., can continue to operate correctly despite the failure of some of its
components. This dissertation investigates the use of fault tolerance techniques to
increase the reliability of VLSI multicomputers. Different techniques are evaluated in the
context of the entire system, its implementation technology, vand intended applications. A
proposed fault tolerance scheme combines hardware that performs error detection and
system-level protocols for error recovery and fault treatment. Practical design and

implementation tradeoffs are discussed.

A fault-tolerant system must identify erroneous information produced by faulty
hardware. It is shown that a high probability of error detection can be achieved with
self-checking nodes implemented using duplication and comparison. The requirements for
detecting errors caused by hardware faults are: (1) the comparator is fault-free, and
(2) the functional modules never produce identical incorrect outputs. Requirement (1) is
fulfilled with a self-testing comparator that signals its own faults during normal
operation. An implementation of such a comparator using MOS PLAs is discussed.
Requirement (2) is fulfilled with two modules that are implemented differently so that.
although they perform identical functions, they have a low probability of failing
simultaneously in exactly the same way. Low-cost techniques for implementing such

modules are presented.



The detection of an error implies that the state of the system has been corrupted. In
order to recover from the error and resume correct operation, a valid system state must
be restored. A low-overhead, application-transparent error recovery scheme for
multicomputers is presented. It involves periodic checkpointing of the entire system state,
using protocols that ensure that the saved states of all the nodes are consistent, and

rolling back to the last checkpoint when an error is detected.
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Chapter One

Introduction

Since the development of the first electronic computer, advances in technology have
lead to many orders of magnitude improvements in the available processing speeds. As
higher processing speeds became available, users continued to discover new applications
demanding yet faster processors and motivating the development of ever more powerful
systems. At each point in time, important applications seem to require processors that

are an order of magnitude faster than the fastest available systems [Fuss84].

As a result of the constant demand for high-speed processing, each gemeration of
computers includes a group of large expensive systems, called “supercomputers,’ in which
technology is pushed to its limits in order to implement computers that are only ‘‘one
generation behind the computational needs of certain key industries”[Linc82]. At the
present time, the technology used for implementing supercomputers has reached a point
where significant improvements in its raw speed will not be possible due to fundamental
physical constraints (such as the speed of light). Significant enhancements in the
computational power of high-end computers will only be possible if the parallelism

inherent in the algorithms that are executed on these computers is exploited.

Some of the computations performed on supercomputers, such as large circuit
simulations, weather forecasting, or aeronautical design, may require continuous operation
of the system for many hours (or even days)[Fern84]. In order to have high confidence in
the validity of the results obtained by such computations, the system must be highly

reliable. Thus, supercomputers require high reliability as well as high performance.

Unfortunately, the reliability of a system is inversely proportional to its size and
lcomplexity. In order to achieve the maximum possible performance, supercomputers are
large complex systems with many thousands of components [Russ78]. The probability that
one component out of many thousands will fail is relatively high, even if each component
by itself is very reliable. If any single component failure can cause the system to produce
incorrect results, high system reliability cannot be achieved. Thus, supercomputer
systems must be able to continue correct operation despite the failure of individual

components, i.c., they must be fault-tolerant.



Due to advances in VLSI technology, a general purpose computing system composed
of thousands of microcomputers is now ec;onomically feasible. In such a system, high
performance may be achieved for computational tasks which consist of many subtasks
that can run simultaneously on different microcomputers. High reliability may be
achieved using fault tolerance techniques by exploiting the fact that the components of the
system (the microcomputers) are “intelligent’ and can adapt their “‘behavior’ to changes

in the system status caused by “‘faults”’

o
L s

Fig. 1.1: A Computing Element (Node)

A possible building block for future supercomputer systems is a computing clement
composed of a processor, memory, and switching circuitry [Desp78, Barr83]. A system
that consists of a large number of such computing elements interconnected by high-speed
dedicated links is called a multicomputer [Fuji82, Seéqu83]. In a multicomputer there is no
single hardware component that is used by all (or a large number of) the computing
elements and which can become a performance bottleneck and/or a critical resource whose
failure results in system failure. Hence, a multicomputer is especially well suited for

reliability enhancements using fault tolerance techniques [Tami83}.

This thesis deals with the implementation of fault tolerance in supercomputers
implemented as VLS! multicomputers. Since the main goal of a supercomputer is high-
performance, special emphasis is placed on minimizing the performance degradation
caused by the fault tolerance techniques. In order to continue correct operation despite a
failed component, the resulting errors must be detected, a valid system state must be
recovered from the system state corrupted by the fault, and the system must be
reconfigured to avoid using the faulty component. This thesis focuses on the error

detection and error recovery phases.



Computing
Element

p;

Communication Link

Fig. 1.2: A Multicomputer

1.1. Achieving High Performance Using Parallelism

Over the past thirty-five years the execution time of simple instructions on electronic
computers has decreased by four or five orders of magnitude. This decrease has been due
mainly to improvements in technology. Currently, the clock cycle time on the fastest
supercomputers is less than ten nanoseconds [Hwan84]. In order to achieve the required
high switching speed, the circuits used in these systems are characterized by high power
dissipation. For example, in the CYBER 205 each one of the 1760 printed circuit boards
dissipates 750 W|Ko02d80, Linc82], and the total power required by the CRAY-1 is more
than 100 KW [Russ78).

Two major factors limit further reductions in processor clock speeds: (1) signal
propagation delays and (2) power dissipation. In vacuum, light travels approximately one
foot per nanosecond. Since the propagation speed of signals on wires or inside chips is
lower, severe timing problems can occur in synchronous circuits operating with elock
cycles of a few nanoseconds due to related signals traveling through paths of different
lengths with different delays. Removal of the heat dissipated by high-speed circuits
requires expensive, complex cooling technologies. Even today, cooling is considered by
some to be one of the most difficult problem in supercomputer system design [Cray74)].
Unless there is a breakthrough in technology, the problem can be expected to get worse in

future supercomputers that will use faster circuits.

Based on the above considerations, it seems unlikely that another order of magnitude

increase in computer processing speed will be achievable by simply enhancing the raw



speeds of circuits. Instead, the greatest potential for achieving significantly higher
processing speeds is in techniques that exploit parallelism. The basic tradeoff here is
simple: since it is getting more and more difficult to implement circuits that operate
faster, the amount of information that is processed by an individual gate cannot be
significantly increased. On the other hand, since it is becoming cheaper to implement
more circuitry (gates) in a system, the amount of information processed by the system
can be increased if different parts of the information can be processed by different gates

simultaneously.

Parallelism bas always been wused in computer systems for achieving high
performance. A simple example is a ‘‘store” instruction that moves all the bits of a
register to memory simultaneously rather than one bit at a time. At a higher level,
pipelining techniques are currently used in all computers. With pipelining, at each point
in time the processor contains several instructions that are at different stages of their
execution. As a result, while the next instruction is being fetched, parts of the processor
that are not used for instruction fetch (such as the ALU) are still doing useful work on

some previous instruction.

Most of todays supercomputers (e.g. the CRAY-1[Russ78]) are ‘‘vector machines”
where parallelism is exploited at an even higher level. Single instructions operate on
vectors of numbers rather than on individual elements, thereby achieving speedups
proportional to the size of the vectors. The vector instructions are, of course, always used
for vector operations specified by the programmer. In addition, all vector machines use
sophisticated ‘‘vectorizing compilers’ that can convert code segments which are not
specified as simple vector operations into the vector operations supported by the
bardware [Kuck84).

The main limitation of vector (or array) machines is that all the processing elements
always perform the same operation. In many cases execution can be speeded up if the
different processing elements are able to execute different code segments simultaneously.
In order to exploit this potential for high performance, supercomputers of the future will

consist of multiple independent processing elements.

Conceptually, there are two major types of systems with multiple independent
processing elements: multiprocessors and multicomputers. In a multiprocessor all the

processing elements are connected to a shared memory which they can use to



communicate with each other (Fig.1.3). A multicomputer consists of a number of
computing clemente, each of which is a complete computer that contains local memory as
well as a processor. The computing elements do not share memory and communicate by

sending messages through an interconnection network (Fig. 1.4).

Processor Processor Processor

Interconnection Network

Memory Memory Memory

Fig. 1.3: A Multiprocessor

Interconnection Network

Fig. 1.4: A Multicomputer

The simplest way to connect multiple processors to a shared memory or to
interconnect multiple computing elements is to use a common bus or Ethernet. This
scheme is used in most of the current commercially available multiprocessors{Jone83] and
multicomputers [Katz82]. Unfortunately, the use of a common bus with a finite
bandwidth limits the maximum pumber of processing elements that can be effectively
utilized in the system. While a bus may be the best choice for a system with, say, ten

processing elements, it is clearly not appropriate for a system with hundreds of elements.

The key to implementing a high-bandwidth interconnection network that can
support a large number of processing elements is to ensure that different ‘‘messages’’ can

be transmitted on different ‘‘wires” so that the transmission of multiple messages can



occur in parallel. Interconnection networks that allow several units to communicate
simultaneously are called alignment networks (switching networks)[Kuck78]. Many
multiprocessor systems use alignment networks that allow N processors to communicate
with N memory modules|{Gott83]. Each processor can communicate with each one of the
memory modules so that all the memory can be shared by all the processors. An example

of such an alignment network is shown in Fig. 1.5.

Processor —Switch| witch witch Memory

Processor Memory

Processor H : Memory
T Switeh witch witch{

Processor Memory

Processor Memory |
ISwitch Switch Switch| ™

Processor Memory

Processor Memory

Processor ™{Switch witch Switch] ™ Memory
M | & N

Fig. 1.5: An Alignment Network

In multiprocessors that use an alignment network of the form shown in Fig. 1.5 to
interconnect the processors to memory modules, all memory accesses are performed
through the interconnection network and the access time from each processor to each
memory location is uniform. Since accessing memory through the network is expensive, a
cache is added to each processor module so that a large percentage of the accesses are
actually performed locally without traversing the metwork [Gott83]. The use of caches
introduces the problem of ensuring that all the processors access a comsistent version of
the data. The problem occurs when one of the processors modifies data held in the cache
of a second processor. Before the second processor attempts to read the data, the
modification must be propagated to the shared memory and the data held in the second
processor’s cache must be invalidated to ensure that the data will be read from the shared
memory. The protocols required to ensure cache coherency[DuBo82] increase the

communication overhead and slow down the system [Kell84].

In multicomputer systems each processor has exclusive control over the memory in



-1

its own computing element. Sharing of data is accomplished by exchanging messages and
is under the control of the software. The local memory in a computing element is simpler
and cheaper to implement than a cache so that it is practical to implement a larger and
faster memory tightly coupled with each processor. As a result, if the application exhibits
high locality so that there is relatively little sharing between processors, higher

performance may be achievable in the multicomputer than in a multiprocessor.

It is possible to implement a multicomputer which provides uniform communication
between every pair of computing elements. For example, all the computing elements can
be on the same bus, or an alignment network of the form shown in Fig. 1.5 may be used.
If an alignment network is used, instead of connecting N processors to N memory
modules, as in a multiprocessor, N computing elements are interconnected by attaching
the output port of each element to one end of the network and the input port to the other

end.

An alternative approach to implementing a multicomputer is to use high-speed
point-to-point dedicated links to connect each computing element to a small subset of all
the computing elements in the system [Desp78, Sequ83, Kell84, Barr83]. Two computing
elements connected by a dedicated link are called nesghbors. Communication with a
computing element that is not a neighbor is accomplished by transmitting a message to a
neighbor that is closer to the final destination with instructions to forward the message to
the final destination. This process is repeated until the figal destination is reached. We
call a multicomputer in which the computing elements are interconnected by point-to-
point dedicated links a PTPI (point-to-point interconnection) multicomputer. In the rest
of this thesis, unless otherwise specified, the term multicomputer will be used to denote a

PTPI multicomputer (Fig. 1.2).

. In a PTPI multicomputer communication with a neighbor is significantly faster than
with other nodes. Communication between neighbors can be faster than communication
between computing elements in systems that use a uniform interconmection network.
Furthermore, communication between any two neighbors cannot affect (slow down)
communication between other npeighbors in the system. Based on the above
characteristics, the PTP] multicomputer is particularly well-suited for applications that
can be partitioned so that each computing element communicates mostly with a small

pumber of other elements and has relatively little direct interaction with the majority of



computing elements in the system. For such applications, the PTPI multicomputer has
the potential of higher performance than other types of multicomputer or multiprocessor

systems constructed using similar technology.

1.2. Achieving High Reliability Using Redundancy

Over the past thirty-five years, the reliability of the basic components used to
implement electronic computers has increased by several orders of magnitude. In the days
of relays, vacuum tubes, and delay-line storage, it was considered a difficult task to simply
keep the system operating for more than a few minutes[Aviz78]. With current VLSI
components, whose failure rates are only a few hundred per billion part hours [Peat81,
Bud:z82], systems are built whose expected down time is only a few minutes per
year [Toy78] or with a failure rate of less than one failures per billion aystem
hours [Hopk78].

Despite the low failure rates of the available components, the level of reliability
desired for many of the current applications of computers cannot be achieved by simply
relying on the high reliability of the components and allowing the system to fail whenever
one of the components fails. For example, in a system that consists of 10,000 components,
each with a failure rate of 500 per billion part bours, the probability that none of the

components will fail during 100 hours of continuous operation is only 0.6.

As technology progresses, fewer chips are needed to implement a system with a given
functionality and performance. However, the demand for ever more powerful computers
for each application keeps up with technological developments. Thus, the additional
functionality and performance per chip are often used to increase system performance
rather than decrease the number of chips in the system. Hence, the reliability of systems
pormally used for a particular application area is likely to increase only to the extent that
the reliability of the mew, more powerful chips is higher than that of the previous

generation of chips.

Over the past two decades, the reliability of chips has increased simultaneously with
increases in their functionality and performance. For example, the reliability of current
microprocessor chips is higher than the reliability of the first NAND gate chips. However,
there are three major interrelated factors that limit reliability improvements achievable

by technological developments alone: unexpected failure modes, incomplete testing, and



the use of state-of-the-art technology.

With any new technology there may be unexpected failure modes that defy detection
using prevalent testing procedures or increase the chip's semsitivity to environmental
factors. For example, smaller feature sizes in memory chips increased the semsitivity to
alpha particles and cosmic rays[Brod80]. Testing procedures had to be modified for
CMOS circuits since one of their major failure modes (stuck-open faults) was not usually
considered with other technologies[Wads78]. Subtle problems that may make the testing
of certain CMOS circuits unreliable bave only recently been recognized [Redd83]. Thus,
products that use state-of-the-art technology may have unexpectedly low reliability. This
problem has been recognized by NASA and as a result, in computers used in spacecrafts,

only proven (5-10 years old) technology is used [Renn78].

Due to their complexity, exhaustive functional testing of VLSI chips is
impossible [Rasm82]. Manufacturers of VLSI chips perform partial testing of their chips
based on the known likely failure modes. The tests used are often functional tests that
are derived in an ad hoc way. In other cases the tests are based on restricted fault
models, ;uch as single stuck faults{Frie71], that do not cover all possible physical defects
that can occur in VLSI circuits |[Gali80, Koda80]. The result of the incomplete testing is
that some of the chips that are delivered to the customers are faulty. The percentage of
such faulty VLSI chips ranges from 0.1 percent for relatively simple chips that have been

in production for a while to several percent for new complex chips [Peat8l].

In implementing any system there is an important tradeoff between either using the
most sdvanced chips for high performance and taking the risk that the resulting system
will be unreliable, or using proven technology for high reliability and failing to achieve the
highest possible performance. As mentioned above, for specialized critical applications
only “‘proven” technology is used. Even in less critical systems, which do not include any
special provisions for fault-tolerance, it is always necessary to be somewhat conservative in
making this tradeoff in order to ensure that the resulting system will be usable. However,
the use of the most advanced chips available can result in systems with lower
price/performance ratios than their predecessors or in systems that achieve a level of
performance that has not been achievable in the past. Thus, there are strong pressures to
use state-of-the-art techmologies for most applications. This is particularly true for

supercomputers where, as discussed in the previous section, the demand for more powerful
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computers always far exceeds the capabilities of the available systems.

The previous subsection discussed the use of the hardware resources of the system to
process different parts of the information simultaneously, thereby increasing the overall
throughput of the system. Since the required reliability from systems cannot be achieved
by relying on the “raw” reliability of the hardware, another use of system resources is to
perform redundant operations that increase the reliability of the system rather than its
performance. The redundant operations may be performed by dedicated (redundant)
hardware whose sole purpose is to check and/or correct the results produced by other,
possibly faulty, hardware. It is also possible to use redundancy in time where the same
hardware reexecutes the original operations, verifies the validity of the results, and

attempts to correct invalid results.

Redundancy is currently used in most computer systems to increase their reliability.
The simplest example is the use of a parity bit to detect erroneous information as it is
retrieved from main memory. The memory dedicated to the storage of the parity bit with
each byte or word is redundant hardware. Redundancy in time is used when, for example,
the processor spends time calculating the CRC code for a block of data before storing it
on disk. Wkhen the block is read, the CRC check bits are used to determine whether the
data has beer corrupted.

There is a wide range of choices as to where and how redundancy is used to increase
the reliability of a system. The choices that have to be made include: bardware versus
software, the extent of hardware redundancy, the granularity of hardware redundancy,

the extent of time redundancy, and granularity of time redundancy.

The fault tolerance features of a computer system can be made entirely transparent
to the software. For example, the output from the system is a majority vote on the
outputs of three identical processors that operate in lock-step executing identical
software [Plat80]. In this case the system can tolerate the failure of any one of the three
processors. On the other hand, it is also possible to construct a system in which all the
fault tolerant features are implemented in software. For example, the application
program may periodically perform ‘‘acceptance tests” on intermediate results. If the test
indicates an error, the last subtask may be reexecuted using a different
procedure [Rand78]. The alternate procedure can attempt to use the hardware in a
different way so that the error will not be duplicated.
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If redundant hardware is used in the system in order to increase its reliability, an
important design decision is what percentage of the system bhardware is dedicated to
increasing system reliability. A simple example is a memory system in which, using
appropriate coding techniques, one redundant bit per word can provide error detection

while several redundant bits per word can provide error correction.

The granularity of hardware redundancy can be at the level of individual gates or
complete processors. An arbitrary logic circuit that can tolerate any single line stuck-at-
zero or stuck-at-one can be implemented by a technique, called quadded logic, that
requires quadrupling the number of gates and interconnections [Tryo82, KohaT8].
Hardware redundancy at the level of a complete processor is used in some multiprocessor
systems where each task is simultaneously executed on several processors and the results

are compared to determine their correctness[Wens78].

The percentage of system processing time devoted to increasing the reliability of the
system is another important parameter of any system. For example, an application may
periodically perform low-cost ‘reasonableness” tests on intermediate results or,
alternatively, the entire computation may be repeated, using a different algorithm, in

order to provide a more accurate test of whether the results are correct.

When time redundancy is used, a fixed percentage of processing time for redundant
operations may be used for a large number of short operations or a small number of large
complex operations. For example, if the system uses periodic acceptance tests to detect
errors, those tests could be performed after every few instructions, only when a procedure
is about to return control to its caller, or only at the end of the entire program. The
choice of the granularity of time redundancy cannot be based only on the probability of
detecting errors. Even if one complex test at the end of the program has a higher
probability of detecting errors, simpler intermediate tests might be chosen in order to
fulfill requirements of low latency between error occurrence and detection or faster

recovery when an error is detected.

The issues discussed above do not include all possible options that must be
considered when choosing a scheme for enbancing system reliability. Rather, these are
meant to be example of the type of issues that come up. In general, the choice of a
particular scheme for using redundancy is a result of complex tradeoffs involving

performance requirements, reliability requirements, available technology, cost, market
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pressures, etc. This thesis discusses the options and tradeoffs for one particular type of

system — a PTPI multicomputer implemented using VLSI technology.

1.3. Architectures of Future Supercomputers

The goal of high-end computer systems is to execute compute-intensive tasks quickly.
At the present time one of the critical research issues in computer science is what type of
architecture is most appropriate for computer systems whose goal is to achieve orders of
magnitude greater performance than today's high-end systems. Proposed architectures
include: bigger and faster vector uniprocessors, such as the Cray-1[Russ78, Miur84], a
small number of interconnected high-end vector uniprocessors [Widd80, Lars84], several
hundred or a few thousand of the most powerful microprocessors available interconnected
with each other [Desp78, Gott83], or tens of thousands of very small processors each
performing simple (possibly bit-serial) operations [Hillg1, Shaw84].

There are clear advantages to computers whose performance does not rely on a high
degree of parallelism. With such systems there is no need to develop new parallel
algorithms or sophisticated compilers that can extract the parallelism from programs that
were written for sequential execution. However, as discussed earlier, there are
fundamental limitations on the speed of logic circuits so that significant performance
improvements in the future will require exploiting parallelism. Hence, future
supercomputers will be multiprocessors or multicomputers. The only question that
remains is whether it will be possible to develop algorithms and software to effectively

utilize these systems.

While there is general agreement that it is possible to utilize a small pumber of
processors effectively [Widd80, Lars84), it is unlikely that thousands of processors can be
effectively used for all general purpose computation [Nico84]. On the other hand, for some
important applications in scientific computations, simulation studies bave shown that it is
possible to utilize several hundred|Nico84] or a few thousand [Gott83] processors. For
some applications in artificial intelligence it is claimed that hundreds of thousands of

processors could be effectively utilized [Hill81, Shaw84).

The need to deal with the unreliability of the hardware is not usually considered
when comparing different architectures for supercomputers. As discussed earlier, large

systems consisting of tens of thousands of chips have a significant hardware failure rate.
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Fault tolerance techniques must therefore be used to allow the system to continue correct

operation despite hardware faults.

If the system is one large “monolith)’ it is difficult to design it in such a way that it
can isolate any faulty component and reconfigure itself to continue normal operation
without that component. It is here that a multiprocessor or multicomputer with a large
pumber of processors has a distinct advantage. The ‘“components’’ of such systems are
processors which are capable of independent ‘‘intelligent” actions. One processor can
detect that another is faulty and modify its behavior to allow the system to continue
operating correctly. It is much more difficult for part of a large complex ALU to detect
the failure of another part of the ALU and change its operation to compensate for that

failure.

The fact that a system comsists of multiple processors does not guarantee that it is
easy to isolate a faulty component and reconfigure the system to continue operating
without that component. For example, in a multiprocessor system where a multistage
alignment network is used to interconnect N processors with N memories [Gott83] the
switches used in the alignment network are not ‘‘intelligent’ Therefore it may be difficult
for the system to identify a faulty switch and for the other switches to accommodate that
failure. Furthermore, in order to be able to tolerate a switch failure, the alignment
petwork must have more than one path between each processor and each memory. This
requirement leads to a more complex petwork with higher latency than in a petwork

where there is only one path between each processor and each memory [Adam82].

It may also be difficult to implement fault tolerance in any multiprocessor or
multicomputer system with a very large number of very small processors [Hill81, Shaw84].
If a node in the system contains a 32-bit microprocessor and thousands of bytes of

memory, it is feasible to add to the node extra bardware and software that allows it to

‘handle exceptional situations, such as the failure of another node. On the other hand, if

the node is a small bit-serial processor with a few dozen bytes of memory, it necessarily
has only a small repertoire of actions that it can take during normal operation. Such a
node will have to be made many times more complex to provide it with the capabilities to
diagnose other parts of the system and to modify its behavior accordingly. This may

make the entire system infeasible.

Based on the previous paragraphs, we can conclude that no one type of computer
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architecture will emerge as the clear choice for all applications. Instead, different
architectures, utilizing different degrees of parallelism, will be used for different
applications. Reliability considerations are likely to be just as important as performance
requirements in determining the type of system to be used. In this context, a
multicomputer system with several hundred or a few thousand nodes, each containing a
relatively powerful microprocessor, has several distinct advantages: (1) Nodes are
“disposable” since the loss of a few nodes does not significantly reduce the bardware
resources of the system, as they would in a system with a small pumber of processors.
(2) There is no central resource, such as the alignment network in 2 multiprocessor, whose
performance is critical to the performance of the entire system. (3) The nodes are

sufficiently powerful to handle exceptional conditions.

Recent experiments have demonstrated that, in terms of performance, a
multicomputer system can be utilized effectively for important applications [Seit85].
Given the advantages of a multicomputer architecture for implementing fault tolerance,
there is no doubt that this type of architecture will be used in a significant number of

future supercomputers.

1.4. Thesis Organisation

This thesis focuses on the use of fault tolerance techniques to increase the reliability
of multicomputers implemented with VLSI and using point-to-point dedicated links for
interprocessor communication. Effective implementation of highly reliable systems
requires the use of a combination of hardware and software techniques carefully tailored
to the technology as well as to the intended applications. Accordingly, the different fault
tolerance techniques for the multicomputer are considered in the context of the entire
system rather than in isolation. In each chapter relevant previously published work is
reviewed and the choice of the approach most appropriate for a VLSI multicomputer is

described.

Technical discussions require the use of precise terminology whose meaning is agreed
upon by all. Unfortunately, there is no “agreed upon” terminology for discussing “fault-
tolerant” computer systems. In Chapter 2 the terminology that is used throughout this
thesis is introduced. In addition, Chapter 2 includes a discussion of the fundamental

issues of the causes of faults in digital computers and fault modeling.
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In order to be able to continue correct operation despite errors produced by faulty
hardware, the system must identify the erroneous information. Various error-detection
techniques for use in a multicomputer are discussed in Chapter 3. It is shown that, given
the need for effective error-detection, computing elements that report their failure to the
rest of the system at the same time they produce erroneous information, are the most
desirable building blocks for multicomputers. With VLSI technology, such self-checking
computing elements are best implemented using duplicate functional modules that operate
in lock-step, performing identical operations on the same inputs. The outputs of the two

modules are continuously compared and any mismatch signals an error.

No error detection scheme can guarantee that all hardware errors will be detected.
One of the potential weaknesses of duplication and comparison for implementing the self-
checking computing elements is that if the comparator fails, a subsequent mismatch
between the outputs of the two functional modules is not detected and erroneous
information is accepted as correct by the rest of the system. It is therefore imperative
that faults in the comparator be detected soon after they occur so that the rest of the
system can be informed that the supposedly self-checking computing element has lost its
self-checking capabilities. This requirement can be fulfilled by using a self-testing
comparator that signals its own faults during normal operation. The implementation of
such a comparator is discussed in Chapter 4. The proposed implementation uses MOS
PLAs and is shown to be self-testing with respect to a new fault model that represents
many of the possible physical defects that were not considered in previously published

models.

When ap error occurs, the state of the system is corrupted and correct operation
cannot be resumed unless a valid system state is restored. Furthermore, if the faulty
component that caused the error remains in the system after a valid system state is
restored, it is likely to cause further errors and eventual system failure. Hence, after an
error is.detected, as part of the process of ‘recovering” from the error, the faulty
component must be located and isolated from the rest of the system. Chapter 5 includes a
review of several techniques for locating a faulty component that has caused an error,

restoring a valid system state, and reconfiguring the system so that it can operate without
| the faulty component. A new error recovery scheme for multicomputers is proposed.

This new scheme is particularly well suited for a multicomputer executing nop-interactive
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applications. It involves periodic checkpointing of the entire system state and rolling back
to the last checkpoint when an error is detected. No restrictions are placed on the actions
of the application tasks, and, during pormal computation, there are no complex

communication protocols of the type required by most other schemes.

This thesis does not provide a complete detailed design of a high-performance fault-
tolerant multicomputer. There are many implementation details that bhave not been
considered. For example: power distribution, clock signal distribution, synchronization
between computing modules, and packaging. In addition, the topology of the
interconnections between computing modules may be a major factor in determining
system performance and reliability. A brief overview of these issues is presented in
Chapter 8. One of the potential problems in using duplication and comparison for error
detection is that if the two functional modules fail simultaneously in exactly the same
way, the erroneous output is not detected. Chapter 8 also includes a discussion of

implementation techniques that can help reduce the probability of such undetected errors.

The major results of this thesis are summarized in Chapter 7. A few conclusions,
that may serve as guidelines for future research on the implementation of fault tolerance

in multicomputers, are presented.
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Chapter Two

Basic Concepts and Terminology

This chapter discusses the concept and the need for fault tolerance in VLSI
multicomputers—the system of interest in this thesis. The terminology to be used
throughout this thesis is introduced in Section 2.1. The nature of hardware faults in
systems implemented using MOS VLSI chips is discussed in Section 2.2. It is shown that
acceptable sysiem reliability cannot be achieved unless the multicomputer system can
“solerate” hardware faults, i.e., continue correct operation despite the failure of one of its
components. A detailed discussion of the behavior required from a fault-tolerant

multicomputer after one of its components has failed is presented in Section 2.3.

2.1. Terminology

Technical discussions require the use of terminology whose meaning is agreed upon
by all. Unfortunately, there is no “‘agreed upon” terminology for computer systems in
general and ‘fault-tolerant” computer systems in particular. The terminology used in this
thesis is derived mainly from the proposals of Anderson and Lee [Ande81, Ande82] (also in
Randell ¢t al[Rand78]). A few of the terms specific to the study of fault-tolerant systems
are from proposals by Avizienis[Aviz78, Aviz82]. Most of the terms related to the

interconnection topology of the multicomputer are discussed by Tanenbaum [Tane81).

The main characteristic of the proposed terminology is that it is fundamentally
hierarchical and thus corresponds to the hierarchical structure of computer systems in
general and the multi-level hierarchical implementation of fault-tolerance schemes in
particular. Many alternative system models and terminology schemes have been proposed
in the literature. One of the most widely used proposals is the “four-universe information
system model” which is based on four fixed views of the system: physical, logical,
informational, and external[Aviz82]. These views correspond to the ‘‘universe of
discourse” of the engineer, the logic designer, the programmer, and the user, respectively.
In this model there is no representation of the hierarchical nature of the structure of
systems. One of the difficulties in using this alternative terminology is evident when
considering systems composed of fault-tolerant subsystems.

In the following three subsections the terminology used throughout the thesis is
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summarized. The emphasis is on a clear semantic understanding of the terms rather than

on abstract mathematical definitions.

2.1.1. Systems and their Components

A system is any identifiable mechanism that maintains a pattern of behavior at an

interface between the mechanism and its environment.
An snterface is the place of interaction between two systems.

The environment of a system is another system that provides inputs to and receives

outputs from the first system.

The exterpal behavior of the system can be described by a set of external states

(output values), and a function defining the transitions between these states.

A system consists of a set of components which interact under the control of a
design. Each component is itself a system. The design of the system is the way in which
the components are interconnected. The internal state of a system is an ordered set of

the external states of its components.

If the internal structure of a relatively simple system is of no interest and is to be
ignored, the system is said to be atomic. For example, if the system under consideration
is a circuit board populated by resistors, capacitors, and discrete transistors, each one of

these components would typically be considered atomic.

2.1.2. Multicomputer Terminology

The term multicomputer, as used in this thesis, was defined in Chapter 1 to mean a
collection of computing elements interconnected by high-speed point-to-point dedicated
links. A computing element is a complete Von Neumann computer containing local
memory as well as a processor. Others bave called this type of system a nctwork
‘computer. The computing elements are also called nodes. A link is a bidirectional

connection between two nodes called neighbore.

A multicomputer system must be connected to various peripheral devices, such as
disk drives, tape drives, printers, and terminals. Furthermore, there may also be
connections to other systems via a local-area-network. Each of these devices is connected
to one or more of the nodes of the multicomputér. When discussing a multicomputer

system, the nodes and links are considered the components as discussed in Section 2.1.1.
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Devices that are usually considered input/output devices, such as disk drives, but which
exchange information only with nodes of the multicomputer, must also be viewed as
components of the system. On the other hand, a tape drive that is used to read a tape

created on some other system must be considered part of the environment.

Nodes in a multicomputer exchange information via messagcs. A message is simply
a sequence of bits containing all the information transferred as well as any overhead
necessary to ensure that the information reaches the desired destination. Messages may
be very long (millions of bytes) and may have to pass through several intermediate nodes
if the source and destination nodes of the message are not neighbors. A packet is the
smallest unit of information transferred between nodes. In order to transmit a large
message, the sender breaks it up into packets and it is the responsibility of the receiver to

assemble the original message from the sequence of packets it receives.

The snterconnection topology of the multicomputer is the specification of which
nodes are neighbors. A path between two nodes, i and j, is a sequence of adjacent
(neighbor) nodes starting with i and ending with j. The length of the path is the number
of links in the path (s.c. one less than the number of nodes). A geodessc is a path of
minimum length between a given pair of nodes. Between a given pair of nodes there may
be several different paths. These paths are said to be disjosnt if they have only nodes s
and ; in common. The system is said to be connected if there is at least one path

between every pair of nodes.

Two important parameters characterize the interconnection topology: diameter and
connectivity. The diameter of the system is the length of the longest geodesic. The node
(link) connectivity is the minimum number of nodes (links) that must be removed in order

to partition the system so that it is no longer connected.
In this thesis, the interconnection topology, the protocols used for inter-node
communication, the operating system, and the application software, are all considered

part of the dessgn of the system.

2.1.3. Terminology for Fault Tolerance

As discussed in Section 2.1.1, a system is defined to the ‘“‘outside world” by its
specified behavior at its interface with the environment. System failure occurs when its

bebavior deviates from the specifications.
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An erroncous internal state is a state that could lead to a failure by a sequence of
valid transitions. Ap error is a part of an erroneous state that constitutes a difference

from a valid state.

An erroneous internal state is a result of either design failure or component failure.
A component failure is a result of an error in the internal state of the component. A
design failure means that the choice of components or the way in which the components
are interconnected is incorrect. As a result, although each one of the components is
operating according to its specifications, the set of external states of all of the system’s

components (at a particular point in time) is erroneous and may lead to system failure.

An error in a component is a (component) fault in the system. Such a fault may
lead to a component failure which is a system error. The system error may lead to

system failure.

Permanent faults are faults that are present for a long period of time (longer than
some threshold). Transient foults are present for a limited period of time (less than the
threshold) and then disappear from the system. An intermittent fault is a recurring

transient fault.

As discussed above, system failure may occur, as a result of design faults, even if all
the components are operating according to their specifications. Component failures may,
in turn, be a result of faulty design of the components. On the other hand, it is often the
case that the design of the entire hierarchy of components above the atomic components is
correct, and the failure of the system is the result of the failure of atomic components.
Under these circumstances it is said that the system failure is the result of a hardware
fault or a physical defect. Since the design of the system and all of its components is
fixed when the system is constructed, any system failure that is a consequence of physical

changes in the system or its environment is classified as the result of a hardware fault.

There are two basic approaches to the construction of highly reliable systems: fault
prevention and foult tolerance. With the first approach an attempt is made to ensure
that the design of the system is correct, and all of its components are functional when
installed in the system and are highly reliable so that they will not fail in the future.
Fault prevention is accomplished using a combination of fault avoidance and foult
removal techniques. Fault avoidance techniques, such as specialized design methodologies

(such as the use of extra large tolerances in critical components) and strict quality control,
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help avoid introducing faults into the system. Fault removal techniques, such as testing
and validation, are used to find and remove faults that were introduced into the system

during its construction.

Fault tolerance techniques attempt to prevent component failures (which are caused
by faults) from causing system failure. The process of “‘tolerating™ a fault involves four
phases:

(1) Error detection: The existence of a fault can be detected by the system only after the
fault generates an error somewhere in the system. Detection of an erroneous state is the
starting point for any fault tolerance technique.

(2) Damage csscssment: Between the time a fault occurs and the resulting error is
detected, invalid information may spread throughout the system and lead to additional
errors. Before an attempt to “‘recover” from the error is made, the extent to which the
system state has been damaged must be determined.

(3) Error recovery: ue ecroneous system state detected and assessed in phase (1) and (2)
is trapsformed into zn error-free state, from which normal system operation can continue.
(4) Fault treatment and continued service: If the fault that had caused the error is
permanent, steps must be taken to repair the fault or ‘“‘reconfigure’ the system to avoid
the fault. This is necessary to prevent the same fault from generating a new error in the

system.

The above four phases are not always distinct and their identification in a particular
system may not be clear. Nevertheless, these phases are, at least conceptually, part of all
fault tolerance techniques. The effectiveness of any fault tolerance technique depends on
how well these phases are implemented explicitly or how valid are the implicit

assumptions made regarding these phases.

In a system where fault tolerance technique are employed, some faults are
“tolerated” (i.c. they cannot lead to system failure) while other faults are still potentially
fatal. Hence there is an ambiguity in the use of the terms erroncous state, error, and
fault. In order to resolve this ambiguity, these terms are defined as recoverable or fatal:
A recoverable erroncous internal state is a state that could lead to system failure by a
sequence of valid transitions in the absence of actions for fault tolerance. This term is
only meaningful in a system where fault tolerance techniques are employed. In such a

system, there is no sequence of valid transitions that begins with a recoverable erroncous
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internal state and leads to system failure. A fatal erroncous internal state is a state
that could lead to system failure by a sequence of valid transitions despite any actions for
fault tolerance iL the system. A recoverable error is a part of a recoverable erroneous
state that constitutes a difference from a valid state. A fatal error is a part of a fatal
erroneous state that constitutes a difference from a valid state. A recoverable fault is an
error in a component that may lead to a component failure resulting in a recoverable
erroneous state. A recoverable fault cannot lead to a component failure that will result
in a fatal erroneous state. A fatal fault is an error in a component that may lead to a
component failure resulting in a fatal erroneous state. Note that both recoverable and
fatal faults are fatal with respect to the component in which they occur since they may

lead to component failure.

A ‘fault-tolerant” system only ‘‘tolerates’ recoverable faults. Whether or not a
fault is recoverable depends on the system. It is possible to have two systems with the
same specifications and the same components, yet a specific fault in one of the
components may be recoverable in one system and fatal in the other. Furthermore, a
given fault in a particular component of a system may be recoverable at some point in
time but fatal at some later time, if, in the interim, some characteristic of the system has
changed. This change may be due to reconfiguration done in order to ‘‘tolerate” some

previous (recoverable) fault.

In order to be able to use the terms ‘“‘fault-tolerant system’ or “fault tolerance,” we
must establish the following convention: When discussing a system that has special
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provisions for “‘fault tolerance)’ the terms ‘‘erroneous state;’ ‘‘error,’ and ‘‘fault;’ when
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they are not further qualified, mean ‘‘recoverable erroneous state,’ ‘‘recoverable error;’

and ‘‘recoverable fault)’ respectively.

2.2. The Nature and Consequences of Hardware Faults

As discussed above, a multicomputer system may fail due to faulty design or faulty
components. For the rest of this thesis it is assumed that the design of the system and all
of its components is correct. Consequently, any system failure must be a result of
component failures caused by hardware faults, i.c., caused by physical changes in the
system or its environment, that prevent the components from operating according to their

specifications.



The question arises whether or mot the frequency of component failures due to
hardware faults is sufficiently high to warrant special provisions for fault tolerance. In
order to answer this question and choose appropriate fault tolerance techniques. it is
necessary to understand the nature of physical defects in the hardware components and
the effects of these defects on the behavior of the components at their interfaces with
their environments. This section discusses the causes and characteristics of physical
defects in bardware components implemented with the technology assumed in this
thesis—MOS VLSI. A simplified model of the behavior of MOS digital circuits under
faults is presented. Since faults that are not detected during fabrication can cause
component failure when the component is part of a working system, the problem of
testing VLSI components during fabrication is discussed. Finally, it is shown that in a
large VLSI multicomputer bardware faults cannot be ignored and there must be special

provision in the system that allow it to continue correct operation despite such faults.

2.2.1. Hardware Faults in MOS Digital Circuits

VLSI chip failure may be due entirely to design or fabrication flaws, due entirely to
environmental factors, or is the end result of a degenerative process due to operational
and environmental stresses but partially attributable to design or manufacturing
defects[Doyl81, Howa82]. Fabrication defects in MOS chips consist mainly of shorts and
opens in each interconnection level (metallization, diffusion, and poly-silicon), shorts
through the insulator separating different levels, and large imperfections such as scratches
across the chip[Gali80]. Other fabrication defects include incorrect dosage of ion
implants, contact windows that fail to open, misplaced or defective bonds, and penetration
of the package by humidity and other contaminants|Doyl81]. During the operation of the
chip, faults may be caused by electromigration, corrosion, electrical breakdown of oxide,
cracks due to different thermal expansion coefficients, power supply fluctuation, and

ionizing or electromagnetic radiation [Doyl81, Cast82).

The probabilities (rates) of the different types of chip failures are difficult to
determine experimentally and the manufacturers are reluctant to release any available
information. In 1981 it was reported that, due to manufacturing defects and incomplete
testing, the number of defective VLSI chips reaching customers is between 100 to 1000
parts per million [Peat81]. The rate of permanent hardware faults, which are a result of

aging and deterioration during the operation of the chip (c.g. corrosion or oxidation,
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insulation breakdown or leakage, ionic migration of mefals, shrinking or cracking of
plastic material), has been reported to be on the order of 300 per billion part
hours [Peat81, Budz82). Measurements of complete systems indicate that the the rate of
transient faults, which are related to environmental factors (c.g. electromagnetic radiation
received by interconnections, power supply fluctuations, ionizing radiation), is at least an

order of magnitude greater than the rate of permanent faults [Cast82].

The failure rates above reflect the reliability of relatively mature chips that have
been in production for several years. New chips exhibit much higher failure rates. For
example, the Texas Instruments TMS-1000 microcomputer, which had a failure rate of 300
per billion part hours in 1979, had a failure rate of 5000 per billion part hours when it was
introduced in 1974-1975[Budz82]. Similarly, when a new complex VLSI chip is first
introduced, it is common for more than one percent of the chips sent to customers to be

defective.t

It should be noted that the above failure rates are for a single VLSI chip, such as a
microprocessor, and do not take into account the other sources of failure in a complete
system, which include printed circuit boards, cables, interconnections between the chips
and the boards, etc. For example, measurements on a ‘“real” system, the Cms, have
shown that the rate of permanent failures of a ‘‘Computer Module’ consistring of an
LSI-11 microprocessor, memory, and a ‘“switch” (approximately 400, mostly SSI/MSI.
chips), is on the order of 200 per million module hours[Siew78]. Since the failure rate of
the standard SSI and MSI chips is at least an order of magnitude smaller than the failure
rates mentioned above for VLSI chips, the rate of module failures cannot be explained by

chip failures alone.

Although design faults are not considered in this thesis, faults caused by marginal
cicsign are often indistinguishable from faults caused by environmental factors or marginal
fabrication and must therefore be taken into account even if the “‘basic™” design is assume
to be correct. For example, if the specified width of a metal line is too small, the result of
an open line due to electromigration is identical to the result of a fabrication defect that
causes a properly specified metal line to be too narrow. Due to the steadily increasing
complexity of chips and the fact that they must deal with interacting asynchronous

events, it is becoming more difficult to ensure that the design is correct so that the chip

+ No formal reference for this information is known to the author.
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can properly deal with all possible combinations of events. Incorrect behavior due to a
rare, unexpected combination of events may be indistinguishable from incorrect behavior

due to a random burst of cosmic rays modifying a value in memory.

Marginal design problems are often detected only after the chip has been in use. The
detection and correction of marginal design faults are one important explanation of the
previously discussed increased reliability of later releases of chips compared to their

reliability when they are first introduced.

2.2.2. A Fault Model for MOS Digital Circuits

At the lowest level, any digital circuit is a non-linear electrical circuit with analog
values of voltages and currents. Determining the precise effects of the physical defects
discussed in the previous subsection on the operation of the circuit requires complex
analysis which involves solutions of non-linear differential equations. Given the size of
VLSI chips and the variety and complexity of the physical defects that can occur, it is
very difficult (practically impossible) to perform such analysis for each possible defect. A
higher level simplified model (fault model) of how the circuit is affected by physical

defects must therefore be used.

Even low-level design of digital circuits is often done without direct consideration of
the detailed electrical characteristics of the components. Instead, the designer works at
the level of Boolean logic (‘‘ones and zeros’). The electrical characteristics are taken into
account by following simple ‘‘design rules” that are expressed at the level of ones and
zeros, logic gates, etc., rather than at the level of voltages and currents. While these
design rules prevent the use of some circuits that could provide an effective
implementation of desired functionality, the simplification of the design process and the
analysis of that design is, in most cases, worth the potential limitations. Just as design
rules make it possible to design very complex systems, high-level fault models make it

possible to predict the behavior of complex faulty circuits.

The highest level fault model is the general functional model [Haye85]). It allows
arbitrary changes in the functionality of the circuit due to physical defects. In its
‘“purest” form this model is useless since it simply indicates that the circuit can exhibit
arbitrary behavior due to defects. This model is used by applying it to simple modules

that make up a more complex system. It is then assumed that only a small number of
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modules (typically one) will fail simultaneously and the behavior of the system due to the
arbitrary failure of one or several of these modules is determined. The result is a

restricted functional fault model for the entire system [That80].

High level functional fault models are specific to a particular system and are of no
help in understanding the effects of physical defects on the operation of arbitrary circuits.
To gain such an understanding, it is necessary to consider the characteristics that are
common to all circuits of a particular technology. A logic level fault model for MOS

circuits is therefore introduced in the remainder of this subsection.

Prior to the advent of VLSI, most digital circuit design was done at the level of basic
combinational logic gates (AND, OR, NOT) and simple flip-flops. A relatively low level
fault model was developed to correspond to these modules. This so called stuck-at model
was based on the assumption that most physical defects have the same effect on the
operation of the circuit as a set of gate inputs and outputs that are stuck at logic 0 or
logic 1[Frie71]. While the stuck-at fault model can represent the effects of a significant
percentage of the physical defects that occur in modern NMOS and CMOS VLSI circuits,
it cannot represent the effects of several other possible defects and is therefore

insufficient [Cour81, Gali80, Wads78].

The effects of most defects can be represented, at the logical level, by a circuit model
that consists of a network of switches, loads (for NMOS), and interconnection lines which
directly correspond to the transistors and interconnections in the actual circuit [Gali80].
Shorts and breaks in lines can be represented with this circuit model in an obvious
way [Cour81). Shorts to “ground” and ‘‘power” are the traditional stuck-at faults. A
“gwitch” may be permanently on or permanently off, corresponding to a gate input
stuck-at-1 or O, respectively. Shorted NMOS loads (pull-ups) are equivalent to an output
line s-a-1. Disconnected gate inputs are usually equivalent to s-2-0 or s-a-1 faults. A
single break in a line that fans out to many inputs is equivalent to multiple stuck-at faults

(all of the same type).

Some physical defects have a more complex effect on the circuit. In NMOS,
incorrect dosage of ion implants may cause a threshold shift in a load transistor. This can
result in an output voltage that lies between the voltages assigned to logic O and logic 1.
If the fanout from the gate is greater than one, some of the attached gates may

“interpret” its output as logic 1 while others will interpret it as logic 0. If, at some point
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in time (clock cycle), the line is supposed to be a logic 1 but is interpreted by at least one
of the gates as logic 0, it is called a weak I fault. Conversely, if the line is supposed to be
a logic 0 but is interpreted by at least one of the gates as logic 1, it is called a weak 0
fault[Tami83]. A line may exhibit both a weak 0 fault and a weak 1 fault, as a result of a

single physical defect.

A stuck-at-1 fault is a degenerate case of a weak O fault while a stuck-at-0 fault is a
degenerate case of a weak 1 fault. If a line is stuck-at-1, all the devices connected to it
always interpret its value as logic 1. If a line has a weak 0 fault, at least one of the

devices connected to it always interprets it as a logic 1.

Breaks in lines are another possible source of weak 0 and weak 1 faults. A break
may result in a segment of the line that is only connected to gates of MOS transistors and
is therefore essentially “floating)’ The gates connected to the floating segment of the line

receive an incorrect value for the line in one of its states (0 or 1).

A single break in the line can result in the line being stuck-at-1 if all the pull-dowr
devices are disconnected from the rest of the line, and in the line s-a-0 if all the pull-up
(or load) devices are disconnected from the rest of the line. Furtbermore, if only some of
the pull-up or pull-down devices are disconnected from the line, the line may not be s-a-0
or s-a-1 but assume the wrong value for some inputs that only turn on the disconnected
pull-ups or pull-downs. A particularly troublesome case may arise in CMOS or dynamic
logic circuits: a break in a line or a tranmsistor that is permanently off can make the
output of a supposedly combinational logic circuit dependent on the previous output
rather than the current input alone. Such a fault is called a stuck-open fault [Wads78]. A
testing procedure that is designed to detect any single fault but assumes that the circuit is

strictly combinational, may fail to detect a stuck-open fault.

A short between adjacent or crossing lines that are supposed to have complementary
values may affect the value of one or both of the lines, depending on the conductivity of
the short and the strength of the drivers attached to the two lines. A line whose value is
affected is either forced to the value of the other line or to an intermediate value between
logic 0 and logic 1. In the worst case, the result of a short is that the line that is supposed
to be at logic 1 has a weak 1 fault, and the line that is supposed to be at logic O has a
weak O fault. The circuit may be designed so that most shorts force both lines to a well

defined logic 1 or logic 0. This value may be always the value of one of the two lines that
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“dominates’ the other because it is driven with larger devices. Alternatively, the value

may always be logic 0 (AND operation) or always logic 1 (OR operation).

Traditionally, the term single foult has been used to denote an erroneous logic value
on a single line in the circuit. From the above it is clear that a single physical defect may
result in erroneous logic values on several lines in the circuit. Hence, the term aingle
fault will be used in this thesis to denote the effect, at the logical level, of a single

physical defect.

If faults randomly appear and disappear in the circuit having a different effect on its
operation every time, the fault model is of no use for either determining how to test the
circuit or predicting its behavior when a fault occurs. Similarly, if it is assumed that an
arbitrary number of faults may occur simultaneously in a complex VLSI circuit, the result
is nearly identical to, and just as useless as, a general functional fault model. Several
restrictive assumptions must therefore be made. These assumptions are based on the

likely consequences of the physical defects under consideration.

It is assumed that, for the duration of the fault (defect), the effects of the defect are
determinsstic so that under identical conditions the effects of a particular defect are
always the same. Thus, if a line has a weak 1 fault due to its driver, those devices
connected to it that misinterpret the logic 1 as a logic 0, always misinterpret the logic 1
as a logic 0. Although a transient fault may cause a permanent change in the state of a
circuit with memory elements, it is assumed that the circuit returns to its original physical

structure after the fault has disappeared.

2.2.3. Testing and Its Limitations

The final step in the fabrication process of VLSI chips is extensive testing which
attempts to ensure that no faulty chips reach the customers. Conceptually, the simplest
way to test a circuit is based on the general functional fault model. The circuit can be
placed in a system where it performs all its specified functions and the results are
compared with the correct results. Unfortunately, such testing is nmot practical. For
example, in order to test a microprocessor every possible instruction must be executed,
with every possible addressing mode, with every possible data combination, starting with
all possible internal states, and “modulated” by all possible external events (interrupts).

Daniels and Bruce[Dani85] estimate that such testing of a simple 8bit microprocessor
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would take two million years!

Typically, integrated circuits are either “‘very good” or ‘“very bad!'[Dani85] It has
been shown that less than a hundred test patterns, even if randomly generated, are
sufficient to detect most faulty chips[Dani85, Wili85]. The problem is how to identify the

very small percentage of faulty chips that pass the initial test.

Given the impracticality of complete functional testing, the test procedure must be
based on a more restrictive fault model. The single-stuck-at fault mode! has traditionally
been used to evaluate the effectiveness of various testing procedures. It is assumed that
chips that pass the initial test may have only one stuck-at fault. After a testing sequence
is developed, simulation is used to determine the percentage of single stuck faults detected
by that sequence. It has been shown that a few hundred to a few thousand test patterns
are sufficient to achieve nearly a hundred percent coverage of single stuck faults in a

microprocessor chip [Dani85, That80].

Unfortunately, test grading based on single stuck faults is too optimistic. It ignores
the fact that many of the possible physical defects cannot be modeled by single stuck

faults (see the previous subsection).

Another problem is caused by the widespread use of a facility intended to simplify
testing: modern VLSI chips often allow direct control over all the latches on chips by
chaining them together into a large shift-register [Eich78]. With this scan-in/scan-out
facility, the problem of testing a large sequential circuit (the chip) is reduced to testing
many combinational circuit blocks. A test pattern is shifted into the latches and after one
clock cycle, results are shifted out. With this testing procedure the chip is not tested
under normal operating conditions. Since many circuits used in VLSI chips are dynamic,
it is either impossible to test them at all with this scheme or, even if testing is possible,

the test does not reflect their normal operation.

Even the testing of small combinational circuits is not as simple as it might first
appear. In particular, as discussed in the previous subsection, a break in a line of a
CMOS logic gate can cause its output to be dependent on the previous output rather than
the current input alone. This stuck-open fault may escape detection even if all possible

input vectors are used to test the circuit [Wads78].

Using sequences of test patterns it is usually possible to detect the stuck-open faults
discussed above [Wads78]. Unfortunately, even this is pot guaranteed. In particular,
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Reddy et al[Redd83] have shown that for a multi-input combinational CMOS gate it is
possible for small time skews in changes of the inputs to invalidate all possible test
sequences for detecting particular stuck-open fauits. Thus, a chip may pass an extensive
testing procedure only to fail later due to slight changes in the environment (temperature,

time skews in inputs to the chip, etc.)[Redd83).

2.2.4. The Need to “Tolerate’” Hardware Faults

The previous subsections discuss a wide variety of physical defects and their effects
on the operation of VLSI integrated circuits. From this discussion, it is clear that chips
cannot be guaranteed to always operate according to their specifications. They will
always be susceptible to internal physical changes that permanently modify their
functionality, as well as to environmental factors that can modify their internal state and
cause them to fail without any physical changes in their structure. Furthermore, since it
is impossible to completely test chips during production, it can be expected that a small

percentage of the chips installed in any system are faulty.

As discussed in Chapter 1, as long as the most up-to-date technology is always used,
unreliability of chips will continue to be a problem. With advances in technology, chips
become more complex and thus more difficult to test. Furthermore, with each change in
technology, new unexpected failure modes may become important, and the identification

of these failure modes may only occur after years of experience.

Given the fact that chips do, and will, fail, the question arises whether they fail often
enough to significantly affect the operation of a large multicomputer system. To answer
this question, consider a system with ten-thousand VLSI chips. From the discussion in the
previous subsections, the rate of permanent hardware faults for each chip can be expected
to be between one hundred and five hundred per billion part hours. The rate of transient
fault can be expected to be at least an order of magnitude greater. Assuming that chips
fail independently and that the failure of a single chip will cause the entire system to fail,
the mean time between failure (MTBF) of the system due to permanent faults can be
expected to be between two hundred and one thousand hours. The MTBF due to
trapsient fault can be expected to be between twenty and one hundred hours.

It should be noted that the above calculation of the system MTBF takes into account

only chips failures. The failure of the interconnections between chips is ignored. Thus, in



reality, the MTBF of the system can be expected to be sigpificantly lower. However, even
if an optimistic MTBF of, say, fifty bours is assumed, there are severe consequences as to
the ability of the system to perform its intended function. For example, in such a system,
assuming that component failures are exponentially distributed, the probability that a
task that executes for one hundred hours will produce the correct results is only fourteen

percent!

2.3. The Requirements of a ‘“Fault Tolerant” Multicomputer

Since a system fasle when its bebavior deviates from its specifications, whether a
system is or is not fault-tolerant depends on the point of view. The “point of view™ is the
system's specifications. A system ‘‘tolerates” a specific fault if it continues to behave
according to its specifications despite the existence of that fault. Thus a “fault-tolerant”
system does not necessarily exhibit identical behavior before and after the occurrence of a
fault. All that is required is that it continues to comply with its specifications. Hence. if
the specifications are sufficiently lenient, almost every system can be described as ‘‘fault-
tolerant”’ For example, if the specifications of a computing system indicate that “the
system will never blow up. even in the presence of all possible faults)’ then all computing
systems may be considered ‘fault-tolerant’’ If, on the other hand, the specifications
require that ‘‘the system will continue normal operation in the presence of all possible

faults!' then no computing system is ‘‘fault-tolerant.’

The minimal meaningful requirement is that for a large majority of faults, the
system will either continue to function correctly (perhaps at lower performance) or
indicate that an error has occurred. Hence the system must be self-checking. If this
requirement is satisfied, it is highly unlikely that incorrect outputs will be considered
correct. The maximal practical specifications require that the system continue normal
operation (perhaps at lower performance) despite the occurrence of most faults. The
system must continue to be self checking at all times, including during and after

‘“recovery’’ from a previous fault.

Based on the previous section, the minimal requirement, that the system be self-
checking, is insufficient for a large multicomputer. If the system is self-checking but is
unable to continue any tasks that it was executing when a fault occurs, such tasks must
be restarted from scratch after the system is repaired. Considering, once again, a system

with an MTBF of fifty hours and a task that requires one hundred hours to execute, the
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expected execution time for this task, due to the need to restart it after each fault, is

more than seven hundred hours. Thus, the multicomputer must be able to recover from

most faults and continue the correct execution of tasks in the system.
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Chapter Three

Error Detection in Multicomputers

When one of the components of a system fails, it causes an error in the system, i.e.,
it results in an erroneous internal system state that can lead to system failure unless some
special action is taken by the system to recover or to reconstruct a valid internal state. In
order to prevent system failure, such errors must be detected soon after they occur.

Thus, the system must include a mechanism for detecting the failure of its components.

The only way to guarantee error detection is to compare the outputs from all
components with apriori known correct results using a comparison mechanism the can
never fail. Since the correct outputs are not known ahead of time and there is no failure-
proof comparison mechanism, this ‘‘scheme’ is not useful for implementing error detection
in a multicomputer. It is clear that no error detection is perfect; for every scheme there is
a subset of the possible errors that cannot be detected. Different error detection schemes
must therefore be evaluated with respect to the percentage of errors that can be detected
as well as the required system overhead in hardware, design complexity, and extra
operations that must be performed during normal operation. In addition, an important
consideration is how difficult it is to locate the faulty component once an error is

detected.

This chapter discusses various techniques for error detection and location in
multicomputers. An overview of system level techniques is presented in Section 3.1. With
these techniques the key to the detection of errors and the identification of faulty nodes is
the information exchanged between the nodes. An alternative approach to error detection
and location relies on the node to test itself and to notify the rest of the system when an

error occurs. This approach is discussed in Section 3.2.

3.1. System-Level Error Detection Techniques

As mentioned above, the best way to detect erroneous outputs from a component is
to compare those outputs with known correct outputs. Since the correct outputs are not
known ahead of time, this technique can only be approximated. One way to accomplish
this approximation is for each component in the system to subject all the information it

receives from other components to acceptance tests{Rand78]. It is assumed that the
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information is either correct, or it will fail to satisfy some simple criterion. For example,

if it is known that the correct results must be positive, negative results indicate an error.

Error detection based on acceptance tests is well-suited for a multicomputer where
the components (nodes) are “intelligent” enough so that they can be programmed to
perform the necessary acceptance tests. The problem is that the acceptance tests are
dependent on the application. For some applications it may be easy to come up with
simple low-cost acceptance tests that will detect most errors. For other applications, the
only acceptance tests that yield a sufficiently high probability of error detection require as
much computation as the original task that produced the results. In either case, the
application programmer is burdened with the task of developing and evaluating the
acceptance tests. While this may be reasonable for some special purpose systems, it is not

acceptable for a multicomputer intended for a variety of general purpose applications.

Instead of evaluating the results of each task using acceptance tests, error detection
can be achieved by performing the task simultaneously on two components (subsystems)
and comparing the results. As long as both components do not fail in exactly the same
way, errors are identified by results that are not identical. This scheme can be
implemented in a multicomputer so that when a process is initiated a duplicate process is
initiated on a diffsrent pode. Messages intended for the process are sent to both nodes
and both copies of the process send messages to other nodes. A node receiving “a

message”’ actually receives two copies of the message that are supposed to be identical.

Error detection is accomplished by the comparison of the two copies.

The above system-controlled node-level duplication and comparison scheme has the
advantage that error detection is implemented entirely in software and there is no need
for any special hardware. Furthermore, the scheme is completely independent of the
application. On the other hand, task assignment and message routing are more
complicated. Furthermore, as discussed below, the restrictions on the operation of the

system posed by this scheme result in lower performance.

The need to assign each process to two nodes increases the overhead of initiating new
processes. Since a pode can fail while simply forwarding a message, the system must
ensure that the results from the two copies of each process are sent to their destinations
via different paths. Thus, message routing can no longer always be done in a distributed

dynamic manner. Specifically, the source node of a message has to compute the entire
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path for that message rather than simply forward it to a neighbor and let that neighbor
decide on the next step in the path towards the final destination. Thus, dynamic local
load balancing of the link traffic and of the forwarding overhead of nodes is precluded.
The two copies of an application process must coordinate their choices of message paths to
ensure that they are disjoint. Since all the destination nodes for messages from a process
may not be known when the process is initiated, this coordination must be done during
normal operation whenever communication with a new node is initiated. The pre-
computed communication paths also make error recovery more complicated: messages *'in
transit” that have pre-computed paths through a failed node cannot simply be re-routed
locally; they must be removed and the source node has to send a mew copy of such
messages with pre-computed paths that are disjoint from the paths used by the duplicate

application process on some other node.

The two copies of a process cannot be allowed to both execute independently without
any coordination. For example, without coordination, if the process is accessing a disk
file, duplicate access requests will be received by the disk controller and result in duplicate
“writes" and in sequential “‘reads” that provide different data to the two copies of the
process. Furthermore, accesses to any centralized resource ‘must be checked to make sure
that they were not initiated by a process on a faulty node. Thus, all centralized resources
must be controlled by ‘“reliable” nodes that wait for two copies of each request and
compare them in order to detect errors. The implementation of these “reliable” nodes
requires the use of other fault tolerance techniques and the coordination of each access is

bound to result in lower performance.

Since each process can spawn new processes, and two copies of each new process
must be initiated, without coordination there will be an exponential growth in the number
of processes in the system. Furthermore, if one node is allowed to spawn new processes,
both copies of the new process may begin execution in an erroneous internal state that
will ot be detected and may cause system failure. Coordination of process initiation

requires overhead in time and in the storage for the extra ‘‘bookkeeping” information.

To minimize communication delays, the system must attempt to assign processes
that communicate often to nodes that are close to each other. With the above scheme,
the number of processes that interact “‘often” in a particular application is doubled. Since

eack node has only a small number of neighbors (equal to the number of its
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communication ports), the average distance between nodes executing these processes is

increased, resulting in increased communication delays in the system.

Even if the above problems with system-controlled duplication and comparison are
overcome, the scheme does not provide adequate support for locating faulty components
so that after an error is detected they can be logically removed from the system before
normal operation is resumed. When a node receives two unequal copies of a message it
cannot determine which one of the originating nodes failed or whether the error was

caused by a faulty communication link or by one of the nodes that forwarded the message.

The need to locate faulty nodes and links, rather than simply determine that they
exist, favors more localized schemes for error detection. If the failure of a node can be
detected by an immediate neighbor that is fault-free, the entire system can determine
which node has failed if the diagnostic information can be reliably distributed from the
neighbor.

One way for nodes to determine if their neighbors (or adjacent links) are faulty is to
periodically execute “‘diagnostics™ on these neighbors. Preparata et al[Prep67] performed
pioneering work on the correct interpretation of such diagnostic information under the
assumption that a test performed by a faulty node is invalid. Using this work, Hakimi
and Amin [Haki74] bave shown that if all the nodes test their neighbors simultaneously, all
faulty nodes can be identified based on the results of these tests if the following conditions
hold: (1) the number of faulty nodes is less than half the total number of nodes, (2) the

node connectivity of the system is greater than the number of faulty nodes.*

The results of the work mentioned above are not directly applicable to the diagnosis
of a multicomputer. In a multicomputer the nodes operate asynchronously and cannot
perform the tests “simultaneously’’ Furthermore, there is no ‘“central observer” that can
r.eliably obtain and interpret the results of all the local tests. The need for a central
observer is eliminated in a distributed diagmosis algorithm developed by Kuhl and
Reddy [Kuhl80]. In a system using this algorithm each node tests its neighbors directly
and then forwards to all of them the results of these tests. A node accepts and propagates
diagnostic information for a neighbor only after testing that neighbor to ensure that it is
not faulty. Based on the tests it performs and the diagnostic information it receives, each
node can independently diagnose the system as long as the node connectivity of the

t This is a simplification of the actual results.
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system is greater than the number of faulty nodes.t

There are several difficulties with the use of distributed diagnosis for error detection

as part of a fault tolerance scheme:

(1) The diagnosis relies on the ability of nodes that are interconnected via asynchronous
communication links to test each other. Furthermore, since these tests are
performed during pormal operation, they must be relatively short. Given the
difficulties of testing VLSI chips (see Chapter 2), the quality (coverage) of such tests

is doubtful.

(2) Most faults are transient rather than permanent [Cast82]. A node may produce

incorrect outputs and later pass an exhaustive test.

(3) A node can oniy ‘rust’ a message it receives after every node on the path of the
message has tested the link through which the message arrived as well as the node
that forwarded it. This requirement leads to more complicated communication

protocols and restrictions on the allowable behavior of applications [Hoss83].

3.2. Error Detection Using Self-Checking Nodes

The problems with error detection schemes based on periodic testing stem from the
distance between error occurrence and detection in both space and time. As a result of
the distance in space, once an error is detected, it is difficult to determine which
component was originally responsible for the error. As a result of the distance in time,

erroneous information is able to spread throughout the system before an error is detected.

The key to developing an effective error detection scheme is thus to minimize the
distance between error occurrence and detection in both space and time. Ideally, these
distances can be reduced to zero so that as soon as an error occurs, i.e., a component
produces incorrect results, the error is detected by all the other system components that
are receiving this erroneous information. This “ideal” can be achieved if all the
components in the system are self-checking so that in addition to their normal outputs

they also indicate to the rest of the system whether these outputs are correct.

All possible outputs from a self-checking component are divided into two disjoint
sets. Outputs that contain an error indication are called noncode outputs, and outputs

that do not contain an error indication are called code outputs. The self-checking

+ This is a simplification of the actual results.
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mechanism of the component is said to have failed if the component produces code output
that is incorrect. Another component tests the validity of the outputs of a self-checking

component by determining whether these outputs are code or noncode.

Just as complete testing of a VLSI chips is impossible (see Chapter 2), no component
can be self-checking with respect to all possible combinations of bardware faults. Instead,
for- all likely faults, the component must either produce the correct outputs or produce
poncode outputs. A component that satisfies this requirement is said to be fault

sccure [Ande73].

When a fault occurs, it does not necessarily cause immediate component failure; the
outputs from the component may continue to be indistinguishable from those of a fault-
free component for a long time. The fact that a fault occurs only means that there is a
possibility that, for a particular input or state, the outputs will deviate from those of a
fault-free component some time in the future, and that the deviation will be directly

attributable to the occurrence of the fault.

No component is fault-secure with respect to all possible combinations of all possible
faults. Since the component is not guaranteed to produce a noncode output immediately
following the occurrence of the first fault, several different faults may exist in a
component without any indication to the rest of the system. If the component is not fault
secure with respect to the particular combination of faults, future incorrect outputs from
the component may be accepted as correct by the rest of the system. In order to prevent
this situation, there should be a high probability that after a small number of faults occur.
a noncode output is produced by the component before the fault-secure property of the

component is destroyed by additional faults.

A component is self-testing[Ande73] if it is guaranteed to produce a noncode output,
due to the occurrence of one or more faults, before additional fauits can occur and lead to
the failure of the self-checking mechanism (in which case the component may no longer be
fault-secure). Thus, if one or more faults occur during normal operation of the
component, a noncode output will be produced within some bounded period of time. In
order to achieve the goal of providing reliable error detection, self-checking components
must be both fault-secure and self-testing. Such components are said to be totally self-
checking [Ande73] (TSC).

One of the difficulties in implementing self-checking nodes in a multicomputer is that
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such nodes must be capable of sending an error indication to the rest of the system while
failing to correctly perform their normal function. This implies that the transmission of
the error indication must not rely on the correct functionality of most of the node. It is
therefore unacceptable for the error indication related to a particular packet to be sent
separately from that packet. Not only does this introduce a distance in time between
error occurrence and detection, but also, the process of recording the error indication and
later transmitting it is relatively complex and unreliable in a node that is already failing.
The indication of whether a particular output is correct must therefore be transmitted

together with that output.

In one approach to implementing TSC nodes, a variety of techniques are used for
different parts of the node. For example, busses, memories and registers may include one
or more ‘‘parity bits" carrying redundant information that can be used to detect
errors [Tsao82]. Complex residue codes and parity prediction schemes can be used for
checking ALUs[Aviz71, Kraf81]. Error detecting codes are not useful for self-checking
shifters, modules that perform logic functions, and control logic; self-checking modules of
this type can only be implemented by duplication of the functional modules and

comparison of the results[Tsao82].

If the TSC npode is implemented using a variety of self-checking techniques for
different parts of the node, error signals from all the self-checking subcomponents must
somehow be combined to generate the error signal to the rest of the system.
Unfortunately it is not clear how such signals can be combined in a ‘‘reliable” manner.
The need to consider error detection in every part of the module increases the complexity
of the design and its verification, thereby decreasing the confidence that the design is
correct and reducing the overall reliability of the system. Furthermore, the effectiveness
of a combination of different localized self-checking techniques inside a chip is very

difficult to evaluate.

An alternative approach to implementing 3 TSC node uses two identical,
independent modules, each performing the function of the node. If the two modules
operate synchronously, their outputs should always be identical. As long as the two
modules do not fail simultaneously in exactly the same way, producing identical sncorrect

outputs, an error can be detected by a simple comparison.

If the outputs from the two modules are transmitted through independent links to
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the neighbors, then the comparison can be done by the neighbors. As long as the two
parts of the duplex link npever fail in exactly the same way at the same time, the
comparison done by the neighbor checks the link as well as the source node. There are
two disadvantages to this approach: (1) it doubles the required communication bandwidth,
and (2) the error signal is ot available within the faulty node for possible local action in

response to a mismatch (see below).

Instead of transmitting the outputs from both modules, the comparison can be done
inside the node (Fig. 3.1). The outputs from the comparator can be used as an error
indication to the rest of the system as well as for local action. The output from one of the

modules is the “functional” output from the node.
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Fig. 3.1: A Self-Checking Self-Resetting Node

An important property of the self-checking node in Fig. 3.1 is that the output from
the comparator is used to reset the node when an error occurs. This allows the node to
attempt to reestablish a ‘‘sane state” so that the system can continue to use it. At the
same time, the error signal is also received by neighbor nodes which can make an

independent decision whether they are willing to continue to interact with this node.

Since the comparison of the outputs of the two modules is done locally within each
node, some other technique is used to detect errors caused by faulty communication links.
This can be done using error-detecting codes. For example, using cyclic codes, any desired

probability of detecting errors can be achieved by adjusting the number of check bits sent
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with each packet[Elki82]. Errors in the encoding and decoding of packets are also
detected since packets are encoded before they are compared at the output of a node. and

packets are decoded separately by the duplicate modules in each node.

A component in which the TSC property is achieved by duplication and comparison
requires more than twice the hardware of a component that is not TSC. While at first
glance this approach may seem wasteful, it is well worth the cost when the resulting low

design complexity and high fault coverage are considered.

There still are situations in which duplication and comparison fails to detect errors:
(1) the comparator may fail and mask a mismatch between the outputs of the two
modules, and (2) the two modules may fail simultaneously in exactly the same way. Due
to the first problem, faults in the comparator must not remain undetected, s.c., the
comparator must be self-testing. The probability that two complex VLSI modules will
simultaneously fail in exactly the same way is very low. In Chapter 6 it is shown how this
probability can be reduced further, but for now it will be assumed that this probability is

Iero.

Even without the self-testing requirement, all possible outputs from the comparator
can be divided into two disjoint domains: code outputs that indicate that the two modules
are producing identical results and noncode outputs that indicate an error. For the rest
of the system it is important to determine whether the outputs of a particular node can be
“trusted”” It does not matter whether the node cannot be trusted due to the failure of the
functional modules or due to the failure of the comparator. Thus, the self-testing
comparator should be implemented in such a way that a fault in the comparator will
result in an output that is in the same domain as comparator outputs that indicate a

mismatch between the functional modules.

Unfortunately, it is not possible to implement a comparator that will produce a
noncode output immediately when a fault occurs. Different parts of any self-testing
circuits are tested by different inputs. Thus, the comparator must be driven by some
subset of the possible inputs in order to perform a complete self-test. Since during normal
operation the outputs from the two functional modules are always identical, only inputs to
the comparator generated by identical outputs from the functional modules are considered
(these inputs are code snputs to the comparator). In the worst case, all possible code

inputs may be required for a complete self-test.
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The realistic requirements from the self-testing comparator are therefore that it will

produce noncode output a ‘‘short time” after a fault occurs. In this case “‘short” is

relative to the failure rate of the hardware. The noncode output must be produced soon

enough after the fault occurs so that there is a very low probability that one of the

functional modules will fail in the interim. Thus, the minimal requirement of the

comparator used in a TSC node is that for any likely single fault there is some code input

that results in a noncode output. The implementation of a comparator that satisfies this

requirement is discussed in Chapter 4.
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Chapter Four
Self-Testing Comparators

In Chapter 3 it was shown that duplication and comparison is an effective techmnique
for implementing self-checking computing elements. One of the potential weaknesses of
this technique is that if the comparator fails, a subsequent mismatch between the outputs
of the two functional modules may not be detected and erroneous information will be
accepted as correct by the rest of the system. Hence, it is imperative that faults in the
comparator be detected soon after they occur so that the rest of the system can be
informed that the supposedly self-checking computing element bas lost its self-checking
capabilities. As discussed in Chapter 3, this requirement can be fulfilled by using a self-
testing comparator that signals its own faults during normal operation. The design,

implementation, and application of such a comparator are discussed in this chapter.

As discussed in Chapter 2, large VLSI chips are far too complex to allow detailed
analysis of all the possible physical defects that can occur and of the effects of these
defects on the operation of the circuit. On the other hand, PLAs are characterized by a
simple regular structure and are therefore more amenable to thorough analysis. PLAs are
therefore a preferred implementation technique for combinational circuits whose behavior
under faults is of critical importance. Since the correct operation of the self-testing
comparator is critical to the error-detection technique proposed in this thesis, this chapter

focuses on the use of PLAs for implementing the comparator.

Section 4.1 presents a new fault model for MOS PLAs that is based on the fault
model for general MOS VLSI circuits that was discussed in Chapter 2. The model reflects
some physical defects that are likely to occur in integrated circuits but are not taken into

account in previously published models.

Comparators implemented with two-level AND-OR or NOR-NOR circuits, which are
claimed to be self-testing, have been presented in the literature [Cart68, Wang79]. Some
of this work and related terminology are reviewed in Section 4.2. The comparator
implementation discussed in this chapter is based on the designs proposed by Carter and
Schneider [Cart88] and Wang and Avizienis[Wang79]. In Section 4.3 it is proven that

these previous designs, which require that the number of product terms grow
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exponentjally with the number of input bits, are optimal in terms of size. The correct
operation of the proposed circuit under fault-free conditions is verified in Section 4.4. In
Section 4.5 it is shown that the circuit cannot be self-testing with respect to several types
of faults unless a few simple layout guidelines are observed in its implementation.
Section 4.6 presents a formal proof that a comparator implemented as a NOR-NOR PLA,
based on the design of Wang and Avizienis[Wang79)] and following the layout guidelines of
Section 4.5, is self-testing with respect to all single faults in the fault model introduced in
Section 4.1. Section 4.7. discusses the application of the self-testing comparator as a

basic building block for implementing fault-tolerant systems.

4.1. A Fault Model for MOS PLAs

The effect of a single physical defect on the output of an integrated circuit is
dependent on layout details such as which lines are adjacent, which lines cross each other,
cte. One of the advantages of using PLAs is that their regular structure simplifies
analysis of the effects of faults on its outputs and therefore facilitates test vector
generation and determination of fault coverage. This section describes how the faults
discussed above affect the operation of a two-level NOR-NOR MOS PLA. To facilitate
this discussion, a “‘typical’’ NMOS PLA is shown in Fig. 4.1.

VDD Product ierm Line VDD Sh ll OR
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Fig. 4.1: A Self-Testing NMOS Two-Rail Code Checker

A commonly used fault model for MOS PLAs includes three types of faults[Mak82,
Osta79, Wang79):
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(I) A stuck-at fault on an input line, product term line, or output line.
(II) A short between two adjacent or crossing lines that forces both of them to the same
logic value.

(II1) A missing or extra crosspoint device in the AND array or in the OR array.

The first two types of faults were explained above and correspond directly to physical
defects in the circuit. The third type of faults refers to faults whose effect on the
operation of the circuit is equivalent to the effect of a missing or extra crosspoint device.
This may be the result of the gate of the crosspoint device stuck-at its “off”" value (0 for
NMOS, 1 for PMOS) when it should be connected to an input or product term line, or
connected to an input or product term line when, by design, it should be permanently

held at its “off”’ value.

A missing crosspoint device has the same effect as a device that always misinterprets
the line that drives it as a logic 0 even when it is a logic 1. Thus, a missing crosspoint
device fault in the AND array is equivalent to a weak 1 fault on the corresponding input
line while a missing crosspoint device fault in the OR array is equivalent to a weak 1 fault
on the corresponding product term line. "Hence, if weak 1 faults on input lines and
product term lines are considered, there is no need to consider missing crosspoint device

faults separately.

The above three fault types do pot include weak O and weak 1 faults or breaks in
lines that are not equivalent to stuck faults. Since breaks in lines are one of the main
causes of failures in VLSI circuits [Cour81, Galig0), it is clear that the above simple fault

model does not accurately reflect likely physical defects in a MOS PLA.

Some of the effects of breaks on general MOS circuits cannot occur in PLAs due to
their structure. This fact can be used to reduce the complexity of the fault model that
must be considered in analyzing the operation of PLAs under faults. One such
simplification relies on the fact that input lines are only connected to gates of devices in
the PLA. A break in an input line causes a segment of that line to ‘float” and is
therefore equivalent to a weak 0 and/or weak 1 fault. Hence, if weak 0/1 faults on inputs

lines are taken into account, there is no need to consider breaks in input lines separately.

Another important simplification of the fault model is based on the fact that product
term lines and output lines only have one pull-up (load) device and that this device is

independent of the inputs to the circuit. Every point in a product term or output line is
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either connected to the single pull-up (load) or permanently disconnected from it (due to a
break). For any input, segments of the line that are connected to the pull-up are either
set to logic 1 or set to logic 0 by some pull-down device that is turned on by that
particular input. A segment of the line that is disconnected from the pull-up is set to
logic 0 by the first input that is supposed to set it to 0 and stays stuck-at-O for a long
time thereafter. Hence no state is preserved on lines between inputs (clock phases). The
troublesome faults that can convert a general combinational circuits into a sequential

circuit canbpot occur.

Based on the above discussion, a realistic fault model for PLAs must include
weak 0/1 faults as well as the possible effects of breaks in product term lines and output
lines. Specifically, the following faults must be considered:

(A) Weak 0 or weak 1 or both on one input line.

(B) A short between two adjacent input lines.

(C) Weak 0 or weak 1 or both on one product term line.

(D) A short between two adjacent product term lines.

(E) Weak O or weak 1 or both on one output line.

(F) A shor: between two adjacent output lines.

(G) A short between an input line and a crossing product term line.
(H) A short between a product term line and a crossing output line.
(I) An ex:-a crosspoint device in the AND array.

(J) An extra crosspoint device in the OR array.

(K) A break in a product term line.

(L) A break in an output line.

4.2. Background and Terminology

Since self-testing comparators are key elements in many computer systems with onp-
line error detection, the design and implementation of self-testing comparators has been
an active research area for many years. This subsection discusses some of that work and

introduces the terminology and notation that will be used in the rest of this chapter.

It is assumed that two p-bit vectors, A = (g,_,0a— ...,80) and
B = (by_1,bas - --,bo), are to be compared. In much of the literature two-rail code
checkers rather than comparators are discussed. Given two p-bit vectors

X = (Zpa_1,Znepy - - - 1Zo) aDd Y = (yay¥a—o - - - Vo) the combined 2n bit vector



XY = (Zacy, - - - 1 Z0.Yn—1r - - - s ¥0) 18 8 two-rail code word if z; =y for all i such that
0 <i<n-—1 (where y; means the complement of y;). An p-bit vector whose elements
are the complements of the elements of B will be denoted B°. Thus,
B’ = (b'ag,b'aez - - - ,0%) - A two-rail code checker whose input is the bit vector AB~’
is, effectively, a comparator of vectors A and B . Assuming that all the input bits are
available in both complemented and uncomplemented form, there is no difference between
the design of comparators and two-rail code checkers. Hence, the terms ‘‘comparator”

and “two-rail code checker” will be used interchangeably.

Pioneering work in the field of self-testing checkers was reported by Carter and
Schneider [Cart88] whose design of a self-testing two-rail code checker serves as a basis for
the comparator discussed in this paper. For the case n =2, Carter and Schneider
presented a design of a circuit that checks whether the input is a two-rail code word and
that is also self-testing with respect to any single stuck-at fault [Cart68]. The circuit,
shown in Fig. 4.2[Cart88], has two output lines ¢, and ¢, where (¢;,c0) = (0,1) or

(c1,¢0) = (1,0) for code input, and (cy,c0) = (0,0) or (cy,co) = (1,1) for noncode input.

a > —— b

Qg > :b(;

~

Fig. 4.2: A Self-Tzslting T\:&Rail Code Checker
Carter and Schneider's checker has the property that, with no faults, every line in
the circuit is O for at least one code input and 1 for at least one code input. If any line is
stuck-at-0 (s-a-0) or s-a-1, the code input for which the line is supposed to be at 1 or 0,
respectively, results in the output (0,0) or (1,1).
Wang and Avizienis[Wang79] extended Carter and Schneider's design to arbitrary
size input vectors. For each ome of the 2* input code words there is a single unique

product term that is selected (set to 1) only by that code word. Each product term line



selects exactly ome of the two output lines. Depending on the parity of the vector
A = (ay_;,6a_z - . - ,00), half the code inputs select output ¢, and the other half select
output ¢;.

The checker proposed by Wang and Avizienis can be described by sum-of-products
equations as follows: For any integer k,let I; denote the set of the & integers between
0 and k-1, se. I, ={01,...,k=2k=1}. If Q is a set, let |Q| denote the

number of elements in Q .

Co ™ pI) IT s II b% (1)

(QIQCand I Qleven} | |{11i€Q) {41 5&/a—Q)}
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(R QCIADd | Qiodd]} ] |{ii1EQ} {71 &1.—Q)}

As will be shown in Section 4.4, similar functionality can be achieved in NOR-NOR
form based on the Equation (2). An NMOS PLA which implements these equations for
the case n =2 is shown in Fig. 4.1. It should be noted that there are a total of 2n
input bits to this circuit: all the “a” bits uncomplemented and all the “b™ bits

complemented. Each “product term” contains exactly n literals.

o = (Qleé".&’?mm NOR[{a‘- 1ieQ} Y {b7! je(I,,-Q)}]] (2)
G QIaCTus QI ewn) NOR[{G‘ lieQ} U {67! je(I.-Q)}]]

4.3. Optimal Design of Self-Testing Comparators Using Two-Level Logic

Published work on self-testing checkers usually consists of a circuit design and a
proof that the circuit is self-testing. There has been no attempt to show that the
proposed designs are optimal in any respect. This section discusses the design of self-
testing comparators which are optimal with respect to the number of output lines, the

pumber of input lines, and the number of product term lines.

Since the comparator must be self-testing with respect to stuck-at faults on the

output lines, it must have at least two output lines[Cart88]. The use of more than two
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lines has been proposed|Son81]; however, since limited communication bandwidth is a
severe problem in VLSI systems, it is preferable to minimize the bandwidth dedicated to
transmitting self-testing information. Hence only comparators with two output lines will

be considered.

There are two possible ways to “code” the output from the comparator and still
allow self-testing of the output lines: {A) The code (correct) output is (0,1) or (1,0) and the
noncode (error indication) output is (0,0) or (1,1). (B) The code output is (0,0) or (1,1)
and the noncode output is (0,1) or (1,0). Option (A) is preferable since it allows the
comparator to be self-testing with respect to shorts between the output lines as well as
any other fault that causes a unidirectional error. A unidirectional error means that, due
to a fault, some lines that are supposed to be at logic 0 are at logic 1 or some of the lines
that are supposed to be at logic 1 are at logic 0, but not both. It has been shown that the
faults that are most likely to occur in PLAs (fault types (1), (II), and (I11) in Section 4.1),
can result only in a unidirectional error [Maks82]. Therefore only comparators with the

option (A) encoding of the outputs will be considered.

The self-testing comparator design proposed by Wang and Avizienis requires 2"
product terms for comparing n-bit vectors. However, it is possible to implement a
comparator that has two outputs that are (0,1) or (1,0) for code inputs and (1,1) for

noncode inputs based on the equations:
(om—] ]

coma o+bot 3 (6:b%i+a id;) cy=agtbot ), (a:b%i+a’:b))
) (L]
This comparator is self-testing with respect to faults in the input lines and output lines
but requires only 4n product terms. Unfortunately, this comparator is not self-testing
with respect to stuck faults on the product term lines. The question thus arises what is
the minimum pumber of product terms necessary for a comparator that is self-testing
with respect to a realistic fault model thai also takes into account faults affecting the

product term lines.

Although the design of a self-testing comparator presented by Wang and
Avizienis [Wang79] uses 2* product terms, one for each code input, this is never shown to
be a necessary property of self-testing comparators implemented with PLAs. In several
papers [Khak82, Wang79] it is claimed that it is “desirable” to use PLAs that are

nonconcurrent, i.c., where each code input selects only one product term. Wang and
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Avizienis propose a general approach to the design of self-testing PLAs that always results
in a nonconcurrent circuit. They also give an example of a PLA where concurrency leads
to a circuit which is not self-testing[Wang79]. However, nonconcurrency is not presented
as a neceasary property nor is there any mention of a problem with product terms that

are selected by more than one code input.

In the following we will show that the exponential growth in the number of product
term lines is indeed necessary for self-testing. For any two-level NOR-NOR
implementation, we also show that every code input must select exactly one product term
line and that no two different code inputs can select the same product term line. This is
necessary even if the only faults considered are single stuck-at faults on the input, output
and product lines. The proof that the same requirement also applies to two-level AND-

OR implementations is almost identical and will not be presented explicitly.

Lemma 1: Every product term must be selected (set to 1) by least one code word.
Proof: Assume that there is a product term that is not selected by any code word.
A stuck-at-0 fault on this product term line will not be detected during normal operation,

thus violating the self-testing requirement.

Lemma 2:  Every code word must select at least one product term.
Proof: If there is some code word that does not select any product term, the
comparator output for that code word will be the noncode output (1,1), which incorrectly

signals an error.

Lemma 8 All the product terms selected by a single code word must be connected to
the same single output in the OR array.

Proof: If any of the product terms selected by a code word is connected to both
outputs in the OR array, then, for that code word, the output will be the noncode output
(0,0), which incorrectly signals an error. Similarly, the output will be (0,0) if the product

terms are not all connected to the same output line.

Lemma §: No product term can be selected by more than one code word.

Proof: By contradiction. Assume that P, is a product term which is selected by
the two code inputs

AA = (Gu_y, . ..,00,8a, - - - ,00) aDd BB == (by_y, ..., bobacy, - .., b0) -

Since the two code words are different, there exists an integer k (0 < k¥ < n-1) such
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that a, 9% b, . P, is selected only if all the literals in the expression corresponding to P,
are 0. Since P; is selected by both code words, it must be independent of bit ¥ from
the two functional modules. Hence P; is also selected by the code input

WW == (Gay, .- .18k, - - - 180,8pmys - - - 8 ks - - - ,60) 3Dd by the noncode input

Q= (8gey, .. -,0 % -+ -,8008u0c1 - -,0k ---,00)-

Since Q is a noncode input, the corresponding output produced by the comparator must
be noncode. When P; is selected, it sets to O the one output line it is connected to.
Hence, Q must select another product term, P;, connected to the other output line, so
that the noncode output (0,0) will be produced. By Lemma 1, P; must also be selected
by at least one code word CC = (cay, - - - ,Chs -+ - 1€0.Cnets - - - sCks - - + s Co) -

Since in CC, bit k from both functional modules is the same, and in @ bit & from
one unit is the complement of bit k from the other unit, P; must not include the literal
corresponding to bit k from at least one of the two functional modules. Hence, since Q
selects P, , either AA or WW must also select P;. Without loss of generality, assume
WW selects P;. From the above, WW also selects P;. But in the OR array P; is
connected to a different output line from P,. Hence, Lemma 3 above is “violated” and
the code word WW results in the noncode output (0,0). Thus the assumption that there

exists a product term that is selected by more than one code input must be incorrect.

Lemma 5: Every code word must select one, and only one, product term.

Proof: By Lemma 2, every code word must select at least one product term.
Assume that the code word AA = (64, ...,80.8ac1, - - - ,Go) Selects the two product
terms P, and P;. By Lemma 4, no other code word exce‘pt AA can select P; or P;.
Hence, a stuck-at-0 fault on the P; or P; lines can only be detected by the input AA .
By Lemma 3, both P, and P; must be connected to the same output line in the OR
array. Hence, when the code word AA is applied, the output from the PLA will be the
same whether or not ome of the product term lines P; or P; is stuck-at-0. Thus a
stuck-at-0 fault on one of the product term lines P; or P; will not be detectable by any

code word, thus violating the self-testing requirement.

Theorem 1: A self-testing comparator of two n-bit vectors that has two output lines and
is implemented as a two level NOR-NOR PLA, must have ezactly 2* product terms.
Proof: By Lemma 1, every product term line is selected by at least one code word.

By Lemma 5, every code word selects one, and only one, product term line. Hence, the
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number of product term lines is equal to the number of code words. Since there are n
bits of output from each one of the two functional modules, there are 2" code words.

Therefore the number of product term lines is ezactly 2" .
Q.ED.

In summary: any comparator of two n-bit vectors must have at least 2n input lines
(two lines for every pair of bits being compared), at least two output lines are necessary,
and, based on the proof presented in this section, exactly 2™ product term lines are
necessary for any two-level NOR-NOR implementation. Hence, the design based on
Equation (2), which was discussed in the previous section, is optimal. In the next three
sections a PLA implementation of a self-testing comparator based on this design is

analyzed in detail.

4.4. Fault-Free Operation of the Comparator

In the previous section it was shown that any self-testing comparator implemented as
a single two-level NOR-NOR PLA must have 2* product terms. This section and the two
subsequent sections discuss a specific self-testing comparator, based on Equation (2) in

Section 4.2, which satisfies this necessary property.

Although a comparator based on Equation (2) has been discussed in the
literature [Wang79], there is no rigorous proof that it indeed functions as a comparator.
Such a proof is presented in this section. To prove that, with no faults, the circuit
described by Equation (2) is a comparator, it is shown that if A = B, the output is (0,1)
or (1,0). It is then shown that if A 3 B, the output is (0,0) or (1,1).

If A =B, there are exactly n ones and n geros at the inputs. If U is a set of
integers U= {i | o, =0}, then for every integer j such that j€(l,-U},
¢;m b;==1. Thus, b"; =0, and the one product term that corresponds to @ =U in
Equation (2) is selected. Every other product term includes the literal ¢; for some
j€(I,=U) or b for some i€U . Hence, all of the other product terms are set to 0.
Thus, only the one output line connected to the single selected product term is set to 0,
and the output is (0,1) or (1,0).

If A # B, the two bit-vectors differ by at least one bit. Consider the product term

NOR|{a;1i€Q} U {¥'s! jEU—Q)} (3)

for some Q C I,. Assume that A and B differ in bitr, r€l,, so o, =1 and
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b°, = 1 in the input AB . If r€Q, the product term is set to O since it contains the
literal a,. If r£Q , the product term is set to O since it contains the literal &°, . Hence,

all of the product terms are set to 0 and the output is (1,1).

Since the two bit-vectors differ by at least one bit, if there does not exist any integer
rel, such that o, =1 and b', =1, there must exist an integer s €/, such that
¢, =0 and b°, =0 in the input AB . If AB doesn’t select any product term, the
output is (1,1). Assume that the product term that corresponds to Q = Q,
(Equation (3)) is selected. If s€Q,, consider the set Q= Q,—{e¢)}. Since Q:C Q,,
I.-Q,=I,~Q,;+{s}, and b, = 0, the product term that corresponds to Q = Q, will
also be selected. If s£Q,, conmsider the set Q= Q,+{s}. Since q, =0 and
1,-Qs C I,—Q, , the product term that corresponds to Q = Q, will also be selected.
Thus, either the product terms corresponding to Q, and @Q; will be selected, or the
product terms corresponding to Q, and Q, will be selected. The number of elements in
Q, is one greater than the number of elements in Q; and is one less than the number of
elements in Q. Hence, either Q.| and [Qs! are even while 1Q,! is odd, or

|Q,! and |Qs! areodd while |Q,! iseven. Thus, the product terms corresponding
to Q, and @, are connected to the same output line, which is different from the output
line to which the product term corresponding to @, is connected. Therefore, product

terms copnectec o both output lines are always selected and the output is (0,0).

4.5. Identification and Elimination of Undetectable Faults

Given that the circuit described by Equation (2) functions as claimed when it is
fault-free, it remains to be shown that the circuit is self-testing with respect to any single
fault in the fault model described in Section 4.1. Specifically, it must be shown that for
any such fault there exists a code input that results in a noncode output (0,0) or (1,1) from
the comparator. In this section it is shown that there are a few faults in the fault model
with respect to which the circuit is not self-testing. These problematic faults are referred
to as undetectable faults. Layout guidelines that prevent these faults from occurring in

the actual circuit are discussed.
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4.5.1. A Short Between Adjacent Product Term Lines

Ope of the possible faults is a short between two adjacent product term lines that
forces both of the lines to logic 1 when they are supposed to be carrying different values
(fault type (D)). If the two product term lines are connected to the same output line,
there is no code input that results in a noncode output. In fact, the circuit continues to
function correctly despite this fault. The reason for this is that if one of the product term
lines connected to an output line is selected, that output line is set to logic O regardless of
the value of any other product term connected to it. It is undesirable to allow this fault
to remain undetected since the situation may deteriorate in time and intermittently cause
weak 0 or weak 1 faults that will not be detected and will later combine with an

additional fault to cause more serious undetectable faults.

As indicated by Wang and Avizienis[Wang79], the possibility that this undetectable
fault will occur can be eliminated by ensuring that product term lines connected to the
same output line are not adjacent. Since the same number of product term lines are
connected to each output line, this guideline is easy to obey and incurs no penalty in
terms of the size or performance of the circuit. The guideline is satisfied by simply
alternating between product term lines connected to one output line and those connected

to the other line.

4.5.2. A Short Between a Product Term Line and an Output Line

Another potentially undetectable fault is a short between a product term line, P,
and an output line, c,, , where there is no device at the crosspoint of the two lines. This
fault is undetectable if whenever the two lines are supposed to carry a different logic

value, they are both forced to logic 1.

The short between P, and c,, is not detectable since the faulty circuit will behave
as follows: For the code input XX that is supposed to select P;, P; is supposed to be
at logic 1 and ¢, at logic 1 (since the other output line, ¢,,-, is supposed to be at
logic 0). Hence there is no change in the output from the circuit. On the other band, P;
is supposed to be at logic 0 and ¢, is supposed to be at Ioglic 1 for every code input, YY,
such that YY € XX and the number of a; (i€, ) inputs that are at logic 0 in YY has
the same parity as the number of o, inputs that are at logic 0 in XX . For these code

inputs, P, is forced to logic 1 but this has no effect on c,,- which is supposed to be at
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logic 0. For the remaining 2*~' code inputs, P is supposed to be at logic 0 and ¢, is

supposed to be at logic 0. Hence there is no change in the output from the circuit.

The short between P, and ¢, can be made detectable if it is possible to ensure
that when P; is at logic 0, it forces c,, to logic 0 as well. In NMOS, this can be done by
using large crosspoint devices in the AND array so that a single device can pull down two
load devices — the output line pull-up as well as the product term line pull-up. In
CMOS, this can be done by using large crosspoint devices in the AND array so that a
single device can discharge the precharged output line and product term line together
within the circuit's clock period. Unfortunately, larger AND array crosspoint devices lead

to a larger PLA that is also slower due to larger capacitances.

It is possible that, due to a short between a product term line, P;, and an output
line, c,,, both lines always assume the value at which ¢, is supposed to be ( ¢
dominates). In this case, the short is undetectable regardless of whether or not there is a
device at the crosspoint of the two lines. This short is not detectable since the faulty
circuit behaves as follows: The output line ¢, always forces P; to the value that ¢, 1Is
supposed to be at. If there is a device at the crosspoint of 'P, and c,, , there is no device
at the crosspoint of P; and the other output line, c,-. Hence c,,- cannot be affected by
P; , so the output of the circuit cannot be affected and is a code output despite the fault.
If there is no device at the crosspoint of P; and the output line, ¢, , then when ¢,
forces P, to logic 0, ¢, is supposed to be at logic 1 and a possible change in P; to
logic 0 cannot change the value of c,,- from logic 1. When ¢, forces P; tologic 1, cp-
is supposed to be at logic 0 so the change in P, from logic 0 to logic 1 cannot possibly
change the value of ¢, from logic 0 to logic 1. Hence the output from the circuit
remains the code output despite the fault.

The short between P; and ¢, can be made detectable if it is possible to ensure
that when P, is at logic 0, it forces ¢,, to logic 0 as well. As previously discussed, this

can be done by using large crosspoint devices in the AND array.

4.5.3. Shorts Resulting in Simultaneous Weak 0 and Weak 1 Faults

In this subsection we consider the possibility that, due to a short, two lines that are
supposed to carry complementary values are both forced to a value between logic 0 and

logic 1. The result is a weak O fault on one of the lines and a weak 1 fault on the other
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line. Such shorts may be undetectable by any code input. To show that the circuit is not
self-testing with respect to such a short, it is sufficient to show that the fault is
undetectable under the worst possible combination of devices that misinterpret the values

on the lines.

1) A Short Between Adjacent FProduct Term Lines: As discussed in
Subsection 4.5.1, adjacent product term lines should be connected to different output
lines. If a short between two product term lines, P; and P;, forces both to a value
between logic 0 and logic 1 when they are supposed to be carrying different values, this
fault may be undetectable. For a code input XX , the short can affect the output only if
XX is supposed to select either P; or P;. Without loss of generality, assume that
XX is supposed to select P;. All other product term lines (including P;) are pot
supposed to be selected by XX . However, a short between P; and P; can cause the
OR array device connected to P; to misinterpret it as logic 0 and the device connected to
P; to misinterpret it as.logic 1. Hence, despite the fault, only one product term line
( P;) is interpreted as being selected and the output from the circuit is a code output.

Thus, this short is not detected by any code input.

It cém be shown that there exists a noncode input that, due to the short between
product term lines, results in code output. Hence this short, that is not detectable by
code inputs, can mask noncode inputs. Thus, the PLA should be laid out in such a way
that either this short canmot occur, or if it does occur, both lines are guaranteed to be

forced to the same logic value instead of some value between logic 0 and logic 1.

We have already shown that the crosspoint devices in the AND array should be
made large enough so that they can pull down both the product term line and an output
line that it may be shorted to. If pull-ups of the same size are used for the product term
lines and the output lines, each crosspoint device in the AND array is also able to pull
down two product term lines. Hence, a short between two product term lines is
guaranteed to force them both to logic 0 when they are supposed to be carrying
complementary values. It will be shown in Section 4.8 that this ensures that the short can

be detected by some code input.

2) A Short Between Adjacent Input Lines: A short, between adjacent input lines
may also be undetectable by any code input if, whenever the lines are supposed to be

carrying complementary values, both lines are forced to a value between logic 0 and
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logic 1. Consider a short between two adjacent input lines a, and a; (h 9 j). There
exists a code input XX == (Za_y, ... ,Z0,2 a1, - - - 52 0) for which a, is supposed to be at
logic 0 and g, is supposed to be at logic 1. Clearly z, =0 and z;=1 so
XX = (Zacy - - -0 Za40 0020t - - 0 T50 1aZpm, - - -1 200
T - sZ e 10 0T, 0027, .,Z2%)
Assume that the single product term line that is supposed to be selected by XX is P;.
Since z, =0, there is a device CA,; at the crosspoint of the input line a, and the
product term line P;. Assume that, due to the short, the common value of both &, and
a; is forced to some value between logic 0 and logic 1 and that CA, misinterprets line
a, to be at logic 1. Hence product term line P, is not selected by code input XX . In
the fault-free circuit, the code input
YY == (Zay, - - -0 Zagn 0020t - - < 02540 002501, - - <1 200
Zo% T 1020 T 2 ,2%)

is supposed to select product term line P, . Hence there is a device CAj; at the
crosspoint of input line a; and product term line P, . Assume that, due to the short,
when the input is XX , CA, misinterprets a; to be a logic 0 although it is supposed to
be at logic 1. In addition, we assume that CAy and CA, are the only AND array
crosspoint devices that misinterpret the values of a, and a; (in particular CAp
interprets a, correctly). Under these assumptions, all the input lines that are supposed
to be at logic 0 when the input is YY are interpreted as being at logic 0 by all the AND
array crosspoint devices connected to P, when the input is XX . Hence P, is selected
by input XX while P; is not selected by XX . Since no other crosspoint devices are
effected by the short, no other product term line except P, is selected by XX , and the
output is a code output. This short does not affect the output from the circuit for any
other code input since such input selects a product term other then P, or P;. Hence,

the short is not detectable by any code input.

In the fault-free circuit, the noncode input
W (Zaey, - - - 520410 0 %0t - - -5 T 4410 1,244, ..-,2%0
PR LR B LSRN 270N 1,2%, .- ,2%)
does not select any product term and the output is noncode. However, due to the short
described above between a, and a;, W selects P, and the result is a code output from

the circuit. Hence this short, that is not detectable by code inputs, masks a noncode
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It can be shown that if the adjacent input lines are @, and b°;, a short between
these lines may also be undetectable by code inputs and can mask noncode inputs. Thus,
in order to ensure that the comparator is self-testing, it is necessary to prevent shorts
between input lines that can force both lines to a value between logic 0 and logic 1 from
occurring. This can be done by laying out the PLA so that the separation between input
lines is large enough that the probability of a short between them is negligible.
Alternatively, the circuits that drive the inputs of the PLA can be designed so that a
single pull-down device can overcome two pull-up devices so that a short between input
lines when they are supposed to be carrying different values will always results in both of
them being forced to logic 0. Unfortunately, these solutions lead to a larger PLA that is

also slower due to larger capacitances.

3) A Short Between an Input Line and a Product Term Line: Using arguments
similar to the above, it can be shown that if a short between an input line and a product
term line is allowed to force both of them to a value between logic 0 and logic 1, an
undetectable fault, that can mask noncode inputs, may result. Here again, one way to
prevent this situation is to guarantee that when the lines are supposed to be at
complementary values they are both always forced to logic 0. This can be done using
large pull-down devices in the circuits that drive the inputs of the PLA and using large
AND array crosspoint devices. A single AND array crosspoint device or a single pull-
down in an input driver must be able to overcome both the pull-up device of the input

driver and the pull-up device of the product term line.

4.5.4. Layout Guidelines for Eliminating Undetectable Faults

In the previous three subsections we identified several possible faults that are not
detectable by any code inputs. All of these faults are shorts between adjacent or crossing
lines. In particular, any short that results in both lines being forced to a value between
logic 0 and logic 1 when they are supposed to be carrying complementary values may lead
to an undetectable fault. The layout guidelines for preventing these faults from occurring

in the actual circuit are summarized below.

(1) Adjacent product term lines must be connected to OR array crosspoint devices that

control different output lines.
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(2) The AND array crosspoint devices must be large enough so that a single device can
pull down two pull-ups — a product term line pull-up and an output line pull-up or

two product term line pull-ups.

(3) The circuits that drive the inputs of the PLA must be designed so that a single pull-

down device can overcome two pull-up devices.

(4) The separation between adjacent input lines and between adjacent product term
lines should be larger than the minimum separation required by the design rules.

This can help reduce the probability of a short between adjacent lines.

4.6. The Self-Testing Property of the Comparator

In the previous section it was shown that the proposed comparator is not self-testing
with respect to some of the possible faults, unless certain guidelines about the layout of
the circuit and the size of some of its devices are followed. In this section we will show
that the circuit is self-testing with respect to all the other faults in the fault model. It is
assumed that some measures, such as those discussed in the previous section, are taken so
that the undetectable faults cannot occur. In particular, it is assumed that if there is a
short between two lines and the lines are supposed to be carrying complementary values,
the value of one of the lines is modified so that they both carry the logic value of the

other line.

4.6.1. A Weak 0 and/or Weak 1 Fault on a Single Input Line

1) A Weak 0 Fault: Assume that the input line with a weak 0 fault is @, for some
k€I, . By definition, there is at least one AND array crosspoint device, CAy , connected
to a, that always misinterprets a logic 0 on o, as a logic 1. Hence, the device CAy is
always turned on. Thus, the product term line P; that is connected to CA,; can never
be selected. Therefore the code input that is supposed to select P; results in no product
term line being selected and the output is noncode (1,1). An identical argument can be
made regarding a weak O fault on a b7 (j€/, ) input line.

In the presence of a weak 0 fault on one of the input lines, for every crosspoint
device that misinterprets the input line to be a logic 1 when it is supposed to be a logic O,
the code input that selects the corresponding product term line in the fault-free circuit
results in a (1,1) output. Thus the number of code inputs that detect this fault varies

between 1 and 2!, depending on the number of affected crosspoint devices.



2) A Weak 1 Fault: Assume that the line with a weak 1 fault is ¢, for some k€I, .

By definition, there is at least one AND array crosspoint device, CA,; , connected to g,
that always misinterprets a logic 1 on a, as a logic 0. We denote the product term line
connected to that crosspoint device by P;. In the fault-free circuit, P, is selected by
some code input XX == (Za_y, ...,Z02'ae1, --.,Z0). Since there is a device at the
crosspoint of o, and P, the literal o, is in the product term that corresponds to P; .
Hence z, = 0. Thus,

XX = (Zaep, - -+ Tk 0 o Thets - 1202 et -+ s T hgts 1Tty - - -, 2 0)
In the fault-free circuit, the code input

YY = (2aey, > Zhets 1 Bty - - 020 et - - 02041 002 5ty - - 42 )
selects some other product term line P;. Since CA, misinterprets a logic 1 on a, to be
a logic 0, code input YY selects P; . Since there is o device at the crosspoint of ¢, and

P;, P; is independent of a, . Thus YY also selects P; despite the fault.

Since the number of o, ( i€/, ) inputs that are at logic 0 in XX has a different
parity from the number of a; inputs that are at logic 0 in YY, P; and P; are
connected to different output lines (see Equation (2) Section 4.2). Since in the faulty
circuitvthe code word YY selects both P; and Py, the output is (0,0). An identical

argument can be made regarding a weak 1 fault on a b°; (j€I, ) input lipe.

4.8.2. A Short Between Two Adjacent Input Lines

As previously mentioned, we assume that appropriate layout guidelines are followed
so that a short between lines always forces both of the lines to the same logic value rather
then to a value between logic 0 and logic 1. Since the inputs to the comparator are the
outputs from one functional module and their complements from the duplicate module, no
two input lines are supposed to bave the same value for all code inputs. If the two
Qjacent_shorted lines are o, and b’ (0 < k < n~—1), every code input is transformed to
noncode input which, as previously shown, results in (0,0) or (1,1) output. Any other two
input lines are supposed to transfer different values for half of the code inputs. For these
code inputs, the short forces a change in value on one of the lines. Since we assume that
there are no other faults, this is equivalent to noncode input which, as previously shown,

results in (0,0) or (1,1) output.
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4.8.3. A Weak 0 or Weak 1 Fault on a Single Product Term Line

Each product term line is connected to only one output line. Hence, a weak 0 fault

on a product term line is simply a stuck-at-1 fault and a weak 1 fault is a stuck-at-0 fault.

1) A Weak 1 (s-a-0) Fault: If one of the product terms is s-a-0, for the code input
that is supposed to select that product term, all product terms are set to 0 and the output
is (1,1).

9) A Weak 0 (s-a-1) Fault: Assume that the product term line P; that corresponds
to set Q = Q, in Equation (3), is s-a-1. Fo: any code input that selects a product term
corresponding to some Q = Q,€J,, where the parity of 1@l and | Q.| are
different, product terms connected to both output lines are selected, and the output is
(0,0). Thus half the code inputs will result in a (0,0) output due to the s-a-1 fault on P; .

4.8.4. A Short Between Two Adjacent Product Term Lines

Since only one product term line is supposed to be selected by every code input, for
any pair of ad acent product term lines, P; and P; there is one code input that is
supposed to select P, but not P; and there is another code input that is supposed to
select P; but not P;. We consider the three possible effects of the short when the lines

are supposed to carry complementary values:

(1) Both lines are always forced to logic 0: In this case, for the two code inputs that
correspond to the two product terms (i.c. that are supposed to select them), no product
term line will be set to 1 and the output will be (1,1).

(2) Both lines are always forced to logic 1: Since the two product term lines are
connected to different output lines, for the two code inputs that correspond to these
product term lines, the output will be (0,0).

(3) Both product term lines always assume the value of one of the lines: Assume that
the two lines are P, and P;, and that P; always dominates. The code input YY, that
is supposed to select P;, does not select it, since P; is pulled to logic 0 by P;, which is
not selected by YY . Hence YY does not select any product term and the output is (1,1).
The code input XX , that selects P, also selects P; which is pulled to logic 1 by P;.
Since adjacent product term lines are connected to different output lines, XX results in

(0,0) output.
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4.6.5. A Weak 0 or Weak 1 Fault on a Single Output Line

The output lines do not fan out within the comparator circuit. Thus, we need only
consider the value on the output line at the point of interface with the “outside world
Hence, a weak O fault on a product term line is equivalent to a stuck-at-1 fault and a

weak 1 fault is equivalent to a stuck-at-0 fault.

Based on Equation (2), any code input where the number of o, (i €1,) bits that are
at logic 0 is odd, is supposed to result in the output (c;,co) = (1,0). Thus, in the faulty
circuit, if ¢, is s-a-1, the output is (1,1), and if ¢, is s-a-0, the output is (0,0). A similar
argument can be made for any code input where the number of o; bits that are at logic 0
is even and the output is supposed to be (c;,co) = (0,1). Hence 2" code inputs will
detect a s-a-1 on ¢, and a s-a-0 on ¢, while the other 2*' code inputs will detect a s-

a-0Oon ¢, and as-a-1on ¢, .

4.6.8. A Short Between Two Adjacent Output Lines

There are only two output lines that are supposed to carry different values for every

code input. Hence, a short will result in (0,0) or (1,1) output for every code input.

4.8.7. A Short Between an Input Line and a Crossing Product Term Line

Assume that the short is between input line a, and product term line P;. Let
XX denote the code input that selects P; in the fault-free circuit. We must consider
the case where a, is connected to a crosspoint device that is connected to P; ( CAy

exists) as well as the case where CA,; does not exist.

If CA, exists, every one of the 2" code inputs for which o, is supposed to be at
logic 1, is supposed to result in P; at logic 0. The code input XX is the only code input
for which a, is supposed to be at logic 0 while P; is supposed to be at logic 1. For the
rest of the 2"~'—1 code inputs, both a, and P; are supposed to be at logic 0.

If CA,, does not exist, the product term corresponding to P; includes the literal
b, . For the 2*! code inputs with b° at logic 1, both o, and P; are supposed to be
at logic 0. For the code input XX , b7 is supposed to be at logic 0, and both a, and
P, are .supposed to be at logic 1. For the rest of the 2*~'—1 code inputs, b% is
supposed to be at logic 0, ¢, is supposed to be at logic 1, and P; is supposed to be at

logic 0. Thus, if CAy does pot exist, there is no code input for which a, is supposed to



be at logic 0 and P; is supposed to be at logic 1.

As in the proof for a short between product term lines, we consider the three possible

effects of the short when o, and P, are supposed to carry complementary values:

(1) Both lines are forced to logic 0: If CA, exists, for the code input XX , P, is
supposed to be the only selected product term line, while o, is supposed to be at logic 0.
We assume that, due to the short, P; is forced to logic 0 by a, . Hence, no product term

line is selected and the output is (1,1).

On the other hand, if CA,; does pot exist, the literal s, is not included in the
product term that corresponds to P;. Hence, the code input that selects P; in the
fault-free circuit is of the form:

XX m= (Zacy, - Tty 1 oZamt, o - 020 T nets -+ 5T a1 002 s - - ,T%) .
Let YY be one of the 2°'—1 code inputs such that YY ¢ XX and YY is also of the
form

YY = (Yo - Ykt 1 Vet - - V0¥ et - o ¥t O ¥ ket - 0¥ )
In the fault-free circuit YY selects some product term line P;. Since there is no device
at the crosspoint of o, and P;, P; is independent of o, so the short between a, and
P; cannot affect P;. Thus P; is selected by YY despite the fault. In the fault-free
circuit, the code input

ZZ == (Yacs, - Vet O Vamt - - < s¥0¥ amts - - oV htts Wit - 19 0)
selects some product term P, . Since there is no device at the crosspoint of 4% and P, ,
P, is independent of &% . For the code input YY, a, is supposed to be at logic ! and
P; at logic 0. Due to the fault, P; forces s, to logic 0. Therefore, YY selects P, as
well as P, . Since the number of a; (i€l,) inputs that are at logic 0 in YY has a
different parity from the number of o, inputs that are at logic 0 in 2Z, P; and P,
are connected to different output lines (see Equation (2) Section 4.2). Hence, for the code
input YY the output is (0,0).

(2) Both lines are forced to logic 1: Let YY be one of the 2*2 code inputs for
which a, is supposed to be at logic 1 and the number of &, inputs that are at logic 0 in
YY has a different parity from the number of o, inputs that are at logic 0in XX . Due
to the short, when the input is YV, a, forces P; (that is supposed to be at logic 0) to
logic 1. In addition, as in the fault-free circuit, YY selects another product term that

controls a different output line from P; . Hence the output from the circuit is (0,0).



(3) Both lines are always forced to the value of a, or they are always forced to

value of P;:
(a) Line o, always dominates: The proof is identical to case (2) above.

(b) Line P; always dominates: There are at least 2"~'—1 code inputs of the form

YY = (Yuuy, - - ¥t D olhemts - - V0¥ hmtr - - - Va0 0 ¥ ks - - ¥ %)
that do not select P; in the fault-free circuit. In the faulty circuit, if P; always
“dominates’ YY selects two product term lines that are connected to different output
lines. One is the product term line selected by YY in the fault-free circuit and the other
is the product term line selected by

2Z = (Yuosy - 2 Uht O Wimts - - s¥0 Y mets - - - ¥kt L ¥ty - - -, 8 %)
in the fault-free circuit. Hence, the output is (0,0).

4.8.8. A Short Between a Product Term Line and a Crossing Output Line

Assume that the short is between product term line P; and output line ¢, , where

m€{0,1} . Let m* denote 0 when m is1 and denote 1 when m is 0. Let XX denote
the code input that selects P, in the fault-free circuit.

As in the proof for a short between product term lines, we consider the three possible
effects of the short when P; and ¢, are supposed to carry complementary values:

(1) Both lines are forced to logic 0: In the fault-free circuit there are at least AR
code inputs that do not select P; and for which the output is (cm,cm) = (1,0). For any
one of these inputs, due to the short, P; forces c,, to logic 0 and the outpui is (0,0).

(2) Both lines are forced to logic 1: If there is a device at the crosspoint of P, and
¢m (COum exists), in the fault-free circuit, for the code input XX that selects P, , the
output is (cm.cmJ = (0,1) . In the faulty circuit, due to the short, ¢, is forced to logic 1.
Since none of the product term lines are affected, the output is (1,1). If CO,, does not
exist, then, as discussed in Subsection 4.5.2, the fault cannot be detected by any code
input.

(3) Both lines are always forced to the value of P; or they are always forced to
value of ¢, :

(a) If the value of P; always “‘dominates)’ the proof is identical to case (1) above.

(b) If the value of c,, always “dominates;’ then, as discussed in Subsection 4.5.3, the fault



canpot be detected by any code input.

4.8.9. An Extra Crosspoint Device in the AND Array

In the fault-free circuit, every product term line, P;, is connected to n crosspoint
devices in the AND array. For every code input, n of the input lines are at logic 0 and
n are at logic 1. If, due to a fault, there are n+1 crosspoint devices connected to P, ,
every code input turns on at least one of these devices and sets P; to logic 0. Thus, the
single code input that selects P; in the fault-free circuit does not select P; in the faulty

circuit. Hence, for that input, no product term line is selected, and the output is (1,1).

4.6.10. An Extra Crosspoint Device in the OR Array

An extra crosspoint device in the OR array means that there is one product term
line, P, that is connected to both output lines. Hence, for the single code input that

selects P; , the output is (0,0).

4.6.11. A Break in a Product Term Line

Each product term line controls one OR array crosspoint device and is controlled by
n AND array pull-down devices and one pull-up (or precharge) device. All the pull-down
devices are connected to the “‘middle” of the line. The pull-up device and the OR array
crosspoint device are either connected on opposite ends of the product term line (as shown

in Fig. 4.1) or on the same end of the line.

If the product term line pull-up device and the OR array crosspoint device are on
opposite ends of the line, any break in the product term line prevents the segment of the
line connected to the OR array device from being pulled up. As a result, the product
term line is either floating or stuck-at-0. If the line is floating, its value is constant and
independent of the input. Hence, in any case, the product term line segment that controls
the output line is either stuck-at-0 or stuck-at-1. Earlier in this section it is shown that a

stuck-at fault on a product term line is detectable by some code input.

If the product term line pull-up device and the OR array crosspoint device are on the
same end of the line, a break in the product term line disconnects some of the AND array
crosspoint devices from the segment of the line connected to the OR array device. As a
result, the product term line is selected when it is not supposed to be selected. Let P;
denote the product term line that s selected by the code inmput
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XX =200y, - . %6 oo, 20T et -, 2%, - - -,2 %) iD the fault-free circuit. A break in
P; disconnects some AND array crosspoint device, CA,; , from the segment of P, that
controls the OR array device. Since CA,; is controlled by input line q, , in the fault-
free circuit, P, can only be selected if o, = 0. Hence, z, = 0. In the fault-free circuit,
the code input YY = (z,_),...,2%, ..., 20202t .. .,2p, ... ,x %) selects the product
term P; where P; and P; are connected to different output lines. Since the crosspoint
device CA,; is disconnected from P; in the faulty circuit, P; is not affected by e, and

the code input YY selects both P; and P;. Hence, the output is a (0,0).

4.6.12. A Break in an Output Line

Eacb output line is controlled by 2*' OR array pull-down devices and one pull-up
(or precharge) device. All the pull-down devices are connected to the “middle" of the line.
The pull-up device and the output from the circuit are either on opposite ends of the

output line (as shown in Fig. 4.1) or on the same end of the line.

If the output line pull-up device and the circuit output are on opposite ends of the
line, any break in the output line prevents the segment of the line that serves as the
output from the circuit from being pulled up. As a result the output line is either floating
or stuck-at-0. If the line is floating, its value is constant and independent of the input.
Hence, in any case, the segment of the line that serves as the circuit output is either
stuck-at-0 or stuck-at-1. Earlier in this section it is shown that a stuck-at fault on an

output line is detectable by some code input.

If the output line pull-up device and the circuit output are on the same end of the
line, a break in the output line disconnects some of the OR array crosspoint devices from
the segment of the line that is the output from the circuit. As a result, the output line is
selected when it is not supposed to be selected. Let c,, denote the output line with a
break. Let CO,» denote an OR array crosspoint device that is disconnected from the
segment of c,, that serves as the circuit output. In the fault-free circuit, the product
term line P, that controls CO,, , is selected by the code input XX. In the faulty
circuit, due to the break, the crosspoint device CO, cannot affect the output line c,, .
For the code input XX , P, is the only selected product term. Hence CO,, is the only
OR array crosspoint device that is turned on. Therefore neither output line is pulled

down and the circuit produces the noncode output (1,1).



4.7. Implementation and Application Considerations

In the previous three sections it was shown that, using a single two-level NOR-NOR
PLA, it is possible to implement a comparator that is self-testing with respect to any
single fault that is likely to occur in MOS VLSI circuits. This result is a pecessary
prerequisite for the use of duplication and comparison as the basic scheme for
implementing error detection. However, two main problems remain to be discussed: First,
the size of the comparator, implemented as a single PLA, grows exponentially with the
pumber of bits in the two vectors to be compared. Second, it is necessary to ensure that
all the code inputs will appear as inputs to the comparator often enough so that a
complete self-test of the comparator will be performed before there is a chance for

multiple faults to occur in the system.

In Section 4.3 it was shown that a self-testing comparator implemented as a single
two-level NOR-NOR PLA, must have 2" product term lines. If the output from each
one of the duplicated functional modules is, say, 16 bits, this implementation is
impractical since it requires 2'° == 65536 product terms. Fortunately, efficient
implementations of a self-testing two-rail code checker (comparator) for large input
vectors can be achieved by using checkers for smaller input vectors as cells that are

connected together in a tree structure (Fig. 4.3) [Khak82, Wake78].
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Fig. 4.3: A Self-Testing Two-Rail Code Checker Tree

Each cell is a self-testing comparator for relatively small bit vectors (two to six bits
wide) which is implemented with a single two-level NOR-NOR PLA as outlined in
Section 4.2. A complete tree with & levels of cells, where each cell is an m-bit
comparator, can be used to compare m* bits and contains (m*-1)/(m—1) cells. Hence,

if the vectors to be compared are n bits wide, the number of levels in the tree is [Iog,,,n]
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while the total number of cells in the tree is at most (n—1)/(m=1). Thus the number of
cells is (approximately) linearly related ton . Hence, tree-structured cellular

implementations of self-testing comparators are practical for large input bit vectors.

In the cellular tree-structured implementation of the comparator, a noncode output
from any one of the cells presents a noncode input to the cells at the next level. This
forces the output from the entire tree to be noncode. Hence, the tree-structured

implementation preserves the self-testing property of the cells.

If duplication and comparison is used for error detection, the first fault that occurs
in the comparator must be detected before additional faults can occur in the comparator
or in the functional modules. Thus, a set of code words that achieves a complete self-test
of the comparator must appear as inputs to the comparator within a time interval that is
significantly smaller than the mean time between failures for the two functional modules
and the comparator together. Based on the results of sections 4.3 and 4.6, a complete
self-test of a comparator implemented as a single NOR-NOR PLA requires all 2" code
words to appear at the inputs. If n is large, this requirement may imply that the
complete self-test takes so much time that there is an unacceptably high probability that
additional faults may ‘occur in the comparator or functional modules before the self-test is
completed. Fortunately, for the tree-structured cellular implementation, the number of
code inputs required for a complete self-test is only 2™, where m is the size of the bit
vectors compared by each cell [Boss70, Khak82]. This efficient self-test is possible since,
assuming that only one of the cells may be faulty, 2™ properly selected code inputs test all
the cells in parallel. Thus, if the cells are 2-bit comparators, four code inputs are

sufTicient for a complete self-test of the entire tree.

Even with the relatively small pumber of code inputs needed for a complete self-test,
it may still be difficult to satisfy the requirement that all code words appear as inputs to
the comparator with some specified frequency. This would be particularly problematic if
the duplicate functional modules were low-level passive circuits such as an ALU or an
instruction decoder within a processor. Hence, for such low-level modules duplication and
comparison is inappropriate. On the other hand, the technique is highly effective if the
modules are high-level, “intelligent” subsystems, such as the computation nodes in a
multicomputer system, which are interacting with similar high-level subsystems. In this

case, a subsystem may periodically initiate action that causes it to generate all the
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Decessary patterns at its interface with other subsystems. The subsystem initiating the

self-test of its comparator can inform the other subsystems that the next ‘‘message’ is

simply a test and should not be interpreted as ‘“‘real work”’

Boss70.

Cart68.

Cour8l.

Gali80.

Khak82.
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Chapter Five

Error Recovery in Multicomputers

In Chapter 3 and Chapter 4 it was shown that a VLSI multicomputer can be
implemented using self-checking nodes that ensure that there is a very high probability of
detecting any error caused by node failure. As discussed in Chapter 3, errors caused by
faults in the communication links can be detected using error-detecting codes. However,
detecting an error is only the first step towards fault tolerance, i.e., the first step of any
technique that allows the system to continue correct operation despite a hardware fault.
When a component fails, the part of the system state that is stored in that component
may become inaccessible to the rest of the system. Thus, even if the fault-free
components of the system never accept the erroneous output of failed components, it may
be impossible to restore a valid system state from which normal operation can be
resumed. The recovery of a valid system state following component failure is discussed in

this chapter.

Section 5.1 presents some of the basic concepts and techniques for error recovery.
Section 5.2 is a brief survey of the current state of the art in error recovery techniques for
multiprocessors and multicomputers. Section 5.3 presents a new technique for error
recovery in multicomputers. This technique involves periodically saving the entire system
state and restoring a previously saved state when an error is detected. The section
includes algorithms for checkpointing the entire system state, distributing diagnostic
information, and using the checkpointed state for error recovery. An informal ‘‘proof”
that the algorithms are correct is presented in Section 5.4. An estimate of the overhead
required by this scheme is given in Section 5.5. Section 5.6 discusses how the scheme can
be expanded to allow interactions with the ‘‘outside world,’ deal more effectively with
transient faults, reduce the latency in detecting errors in communication links, and handle

the failure of disks and the nodes that control them.

5.1. Basic Concepts and Techniques

Error recovery is the process of transforming an erroneous system state, which may
lead to system failure, into a valid system state, that guarantees correct system operation

as long as all the system components continue to operate correctly. Most schemes for
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performing error recovery can be classified as forward error recovery schemes or
backward error recovery schemes[Rand78]. Forward error recovery techniques attempt to
modify an erroneous system state so that it becomes a valid state. Backward error
recovery techniques involve resetting (backing up) the system to a previous valid state

rather than trying to modify the current state.

Forward error recovery techniques are usually designed as an integral part of the
system they serve. By their very nature, they are only useful for recovering from
anticipated errors, i.c., the desigmer anticipates that a particular erroneous state may

occur and provides a specific technique for transforming that state into a valid state.

Forward error recovery is often used in systems where there are strict real-time
constraints. For example, the main controller of an unmanned aircraft my operate by
continuously reading several sensors and sending commands to various actuators. If one
of the sensors fails and sends a reading that does not pass the acceptance test [Rand78],
the controller does not use this erroneous reading for computing the next set of commands
to the actuators. Instead, the controller recovers from the error by replacing the
erroneous value with some “‘guess” of a reasonable value that is unlikely to have any

disastrous consequences.

If the use of fault tolerance techniques in the system has to be taken into account by
the application programmer, the programming task becomes more complicated, time-
consuming, and error-prone. Hence, fault-tolerant systems in general and, particularly,
those that are intended for more-or-less general-purpose use, attempt to ‘‘hide” their use
of fault tolerance techniques from the application programmer. Since forward error
recovery techniques are usually dependent on a particular application and can handle only

anticipated errors, such techniques will not be discussed any further in this thesis.

Backward error recovery techniques can cope with unanticipated errors. The state
of the system is periodically recorded. When an erroneous state is detected, it is
abandoned and the system is reset to this previously recorded error-free state, called a
recovery point or a checkpoint. The process of creating a recovery point is called

checkpointing.

The main advantage of backward error recovery techniques is their ability to handle
unanticipated errors. No matter what type of error occurs, as long as it can be detected,

some valid system state can be reinstated. Hence, a backward error recovery scheme can
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be totally independent of the application.

The main disadvantage of backward error recovery techniques is the overhead of
establishing and maintaining the recovery points. In a uniprocessor the recovery point
includes the contents of memory and other storage devices as well as the contents of all

the processor registers.

There are two basic approaches to maintaining the information necessary for
backward’ error recovery: (1) Maintaining, at all times, multiple up-to-date copies of the
entire system state [Kast83]. (2) Maintaining information that allows the restoration of a
valid system state by redoing some computations that were already performed by the
system [Bari83, Borg83]. The first approach allows pearly instantaneous error recovery
without any loss of work. The system is restored to its state that immediately preceded
the occurrence of the error. This scheme.requires the duplication of all system resources
just for error recovery, in addition to any redundancy used for error detection or system

reconfiguration.

The second approach above requires periodic saving of the entire system state.
When an error is detected, the system is restored to a previous state and the
computations that were performed since that state are redone. This scheme involves
overhead in both time and storage. The time overhead results from the periodical
creation of the recovery points as well as from the computation that has to be redone
when an error occurs. The storage overhead is the extra storage required to save the
recovery points. The frequency of generating recovery points is an important parameter
for minimizing the time overhead. Too much time may be spent generating recovery
points if the frequency is ‘‘too high!’ If the frequency is “‘too low)’ too much time will be

lost (on the average) redoing computations following an error.

The simplest way to generate a recovery point is to save the entire state of the
system, i.e., the contents of all registers, memory, and secondary storage. An alternative
technique is to usually save only the changes in the system state since the last recovery
point. Periodically, the entire state is saved since, at some point, the “history’’ of changes
can take up more space than the entire state and/or geperating the entire state from some

original state and a sequence of changes would take too much time.

In a uniprocessor system the recovery technique discussed in the previous paragraph

can be facilitated by a device called a recovery cache[Ande76, Lee78, Lee80, Rand75). In
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order to establish a recovery point, the contents of the CPU’s registers are saved. The
contents of memory are not saved. During normal operation, whenever the processor
modifies the contents of a memory location, the old contents are saved in the recovery
cache. The state at the recovery point can be reestablished at a later time by restoring
the contents of memory from the recovery cache and the contents of the registers from

where they were saved when the recovery point was established.

The recovery cache technique has been used for recovering from errors caused by
transient -hardware faults in a microprocessor chip. Kubiak et al designed a VLSI
recovery cache chip, called Penelope, that is connected to the processor/memory bus of a
microprocessor system [Kubi82]. Penelope maintains the previous content of modified
memory locations. Whenever Penelope’s “save stack” becomes full, a new recovery point
is established by saving the contents of the processor’s registers and reinitializing the
“‘save stack” to an ‘‘empty’’ "state. Initial measurements of Penelope's performance with a
save stack of 256 bytes show that the performance penalty caused by Penelope, when
compared with an equivalent system with no provisions for error recovery, is less than

10%.

A recovery point may be generated by periodically ‘‘freezing’’ the entire system and
saving this frozen state (or information necessary to generate this state). When error
recovery occurs, the restored system state is a state that actually existed in the past. An
alternative is to store different parts of the system state independently. For example, in a
uniprocessor system that is executing several processes, the states of the different
processes may be checkpointed at different times. If there is any interaction between the
processes, when recovery occurs, care must be taken to ensure that the recovery points to
which the different processes are restored are consistent with each other (i.e., that the
ordered set of the recovered external states of all the processes constitute a valid system
state). However, since the processes do not run in lock-step, communpicating at each step,
the state of one process, after executing ¢, time units, may be consistent with the state of
a second process that has executed anywhere between ¢, and t, time units. Thus the
restored system state is not necessarily a state that actually existed in the past. Rather, it

is a state that could have existed in the past and will result in correct system output.

The error recovery techniques discussed so far all require some special action

following error detection in order to recover 3 valid system state. Maasking
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redundancy [Rand78] or error masking techniques involve always performing some action
that hides the effects of a certain class of errors. These actions are performed regardless
of whether or not an error has actually occurred. A canonical example of error masking is
Triple Modular Redundancy (TMR)([Plat80, Siew78, Wake76]. In this approach a system
consists of three identical subsystems and a majority voting circuit. The output of the
system is the majority vote of the outputs of the three subsystems which are executing
identical tasks. An error caused by the failure of one of the subsystems is masked since
the majority vote is the correct output of the two fault-free subsystems. A relatively high
overhead during normal operation is always associated with error-masking techniques.
However, when an error occurs, the system continues to operate normally and error

recovery occurs ‘‘automatically’’

5.2. Error Recovery Techniques for Multicomputers

A multicomputer system consists of several more-or-less independent components
(the nodes) that interact with each other asynchronously. This makes the coordination of
any joint task, including error recovery, difficult and prone to subtle ‘‘bugs!’ Error
masking and backward error recovery techniques for multicomputers are discussed in this

section.

In the previous section, TMR with bhardware voting circuits was mentioned as an
example of error masking. The same idea can be used in a multicomputer in which each
task is executed on three (or more) different nodes and the results are transmitted to
other nodes via independent communication paths. A node receiving the results can take
a bit-by-bit majority vote, thereby masking the erroneous output from one of the nodes or
the corruption of one of the outputs during transmission. This technique has been used in
the SIFT multiprocessor system that was designed to serve as the main controller of an
aerodynamically unstable airplane[Wens78]. The performance requirements from SIFT
are rather modest since it reads and controls mechanical devices that change relatively
slowly. Due to the nature of the application of SIFT, there must not be any sudden break
in its operation, i.e., error recovery cannot involve temporarily stopping normal
processing. This type of TMR error masking is particularly well suited to the
combination of modest performance requirements and strict constraints on the operation

of the system following an error.

There are many similarities between the error recovery technique described in the
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previous paragraph and the error detection scheme based on system-controlled node-level
duplication and comparison discussed in Chapter 3. In Chapter 3 this error detection
scheme was shown to be unsuitable for a multicomputer used for gemeral purpose
applications. For similar reasons, the error recovery scheme discussed in the previous
paragraph is also not suitable for such a system. Sperifically, the shortcomings of this
technique are: (1) it dedicates two thirds of thc hardware for error recovery, (2) it
increases interprocessor communication delays, (3)it is pot, by itself, sufficient for
locating faulty components, (4) it does not adequately bandle erroneous routing of packets
by intermediate nodes on a communication path, and (5) it poses severe requirements on

the routing and task assignment algorithms used in the system.

Over the last five years, a great deal of research has been devoted to the
development of algorithms that enable all the working nodes in a multicomputer to reach
a unanimous decision despite the failure of some nodes and links [Dole81, Peasg0, Stro83].
Specifically, if one node broadcasts a packet, the problem is to ensure that all the other
working nodes agree on the content of that packet or agree that the sender is faulty since
the packets it sent to its immediate neighbors were not all equal. When these algorithms
are used, the faulty (even malicious) bebavior of links and nodes are masked. Hence, these
are error-masking algorithms. In the literature they are called algorithms for reaching

Byzantine Agreement.

Algorithms for reaching Byzantine Agreement are extremely useful for the very
specialized task of enmsuring that all the nodes in a system reach a consistent decision.
However, they are not useful for masking errors in transmission between pairs of nodes
unless every message in the system is broadcast. Hence, these algorithms are not directly
applicable to general-purpose computations performed on a multicomputer and will not be

discussed any further in this thesis.

As mentioned in the previous section, one technique for backward error recovery
involves maintaining, at all times, multiple up-to-date copies of the entire system
state[Jobhn84, Kast83]. In a multicomputer, one way to maintain a copy of the system
state is for the state of each node (primary node) to be maintained on some other node
(backup node)|Bari@3]. The primary node and the backup node contain the same code
and data, and execute this code at approximately the same time. If an error occurs as a

result of a transient fault in a node, the node may be reset and its state restored to what
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it was immediately prior to the fault using the information in the backup node. Since an
error may be a result of a permanent fault, the backup node must be able to take over the

task of a failed primary node.

In a multicomputer the system state is the ordered set of the external states of all
the nodes. For the rest of the system, the external state of a node is defined by the set of
packets that it has already received and the set of packets that it has already sent.
Keeping the backup node “‘completely up-to-date™ with the primary node requires that
the external states of these nodes be kept identical. This can be accomplished by sending
each packet to the destination node and the destination backup and notifying the sender's
backup that the packet has been sent. Since this entire operation must be performed
atomically (i.e. it must either be completed or aborted but never partially completed), a
two-phase-commit [Gray78] must be performed for cach packet (or message). The
disadvantages of this technique in terms of overhead and restriction of system operation
are obvious and similar to the problems with the the error detection scheme based on
system-controlled node-level duplication and comparison that was discussed in Chapter 3.
This technique is therefore not suitable for a multicomputer executing general-purpose

applications.

It should be noted that the above backward error recovery technique is used in
several multiprocessor and multicomputer systems in which all interprocessor
communication is over a common bus or Ethernet [John84, Kast83]. Since all the “‘nodes”
can easily monpitor all interprocessor communication, it is possible to implement an
efficient atomsic (indivisible) operation that transmits a message to a primary node and its
backup [Borg83).

Since neither error masking nor backward error recovery with up-to-date backups
are well-suited for multicomputers used for general-purpose applications, backward error
recovery in which some computations have to be redone as part of the recovery process
appears to be the best technique for such systems. As mentioned in the previous section,
a recovery point may be generated by periodically freezing and saving the entire system
state. The main disadvantage of this technique is that it requires normal computation
throughout the system to stop for the duration of the checkpointing process. An
alternative technique that appears more attractive is for the nodes to establish recovery

points independently and to attempt to restore a consistent system state from the
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individual recovery points during error recovery.

Establishing independent recovery points for the different nodes poses the problem
that restoring a previous state of one node may require that other nodes be backed up to
previous states. In the following situation, for example, restoring a previous state of a
node P, requires an interacting node Pg to restore its state: At time ¢, node Py establishes
a recovery point. At some later time t; > t, node P, establishes a recovery point. At
time t; > t, P, sends a message to Pg. The message causes P to change its state (e.g.
modify a memory location) and send a message back to P, at time ¢t > t,. At time
tg > t, an error in P, is detected and requires the state of P, to be restored to the state
saved at time t,. Since the state of P, is restored, it will send to Pg a message identical
to the one sent at time t;. For the computation to proceed correctly, the message
returned to P, by Pg should be identical to the message returned at time t,. If the state
of Py is not restored, the message it returns may be different leading to failure of the
computation. Hence the state of Py should be restore to its value before t;. Since a
recovery point for Pg was last established at time ¢t,, the state of Pg must be restored to

its value then.

If, in the above example, P, and Pg also interacted between time ¢, and ¢,, then,
restoring P to its state at time ¢, would, in turn, require that the state of P, be restored
to some recovery point established prior to ¢;. In fact, it is possible that a single error in
one node may result in an uncontrolled domino effect[Rand75], requiring that all the

nodes in the system back up all the way to system initialization.

Wood [Wood81] has developed a scheme for keeping track of the recovery actions
that must occur in all the nodes in the system if a particular node is rolled back. Each
node is required to maintain several recovery points, starting from an initial state.
Maintaining the multiple recovery points as well as all the information necessary to ensure
consistent recovery poses significant overhead both in time and storage. Furthermore,
there is always the possibility that the entire system will have to be rolled back to its
initialization due to the domino effect. In order to increase the efficiency of the recovery
scheme, either some restrictions have to be placed on the actions of the nodes or the nodes
must no longer checkpoint their state completely independently but rather must somehow

coordinate when and how to create checkpoints.

Barigazzi and Strigini [Bari83] propose an error recovery scheme for multicomputers
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that does nct require storing multiple recovery points. Like most other schemes, the
states of individual processes are checkpointed and recovered rather than the complete
state of nodes. The scheme involves periodic saving of the state of each process by storing
it both on the nnde where it is executing and on another backup node. All interacting
processes are checkpointed together, so that their checkpointed states are guaranteed to

be consistent with each other. Thus, the domino effect is avoided.

The recovery scheme described in [Bari83] is well suited for applications that must
satisfy strict real-time constraints. However, it results in significant perf.ormauce
degradation. For each process, a complete backup is maintained both on the node
executing the process as well as on another node. Thus, a large percentage of the memory
cannot be used by active processes. The resulting increase in paging activity also reduces
performance by increasing the average memory access time and the load on the

communication links.

Another difficulty with the recovery scheme described in [Bari83] is that it requires
the “send” and ‘‘receive’ operations to be atomic. In order to accomplish this, the use of
a two-phase commit protocol [Gray78] is proposed. Such a protocol requires explicit
acknowledgement for each message and implies that after a ‘‘send” operation, the sending
process is not able to continue executing until an acknowledgement is received. This
restriction on process ‘‘behavior’” and the associated increase in message traffic leads to
reduced performance relative to an identical system where no error recovery is

implemented.

The idea of simultaneously checkpointing the state of all processes belonging to the
same ‘‘task’'[Jone79] can be taken a step further: simultaneous checkpointing of the
complete state of all the user and system processes on the system, i.e., simultaneous
checkpointing the complete state of all the nodes in the system. Creating and saving such
a global checkpoint is expensive since it requires moving large blocks of data through the
system and then storing them ‘‘reliably!’ However, if the time between checkpoints is
sufficiently large compared with the time it takes to establish a new checkpoint, the net
system overhead for error recovery is relatively small. In a large multicomputer the
expected time to establish a new checkpoint is on the order of one minute (see
Section 5.5). Thus, keeping the overhead low requires that a new checkpoint be

established only once or twice an hour. It is clear that the loss of as much as an hour of
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processing when an error is detected is tolerable only for non-interactive applications.

The rest of this chapter presents an error recovery scheme that is based on
periodically checkpointing the entire system state. The global checkpoints are stored on
disk so that all of local memory can be used for active processes. It is shown that if global
checkpoints are used for error recovery, it is possible to avoid any restriction on the
behavior of processes and to eliminate the need for message acknowledgement.
Furthermore, there is no need to use up valuable communication bandwidth by encoding

the messages in some error-detecting code (see Subsection 5.3.2).

5.3. Implementing Error Recovery Using Global Checkpoints

The basic idea is for some designated node to periodically initiate and coordinate the
creation of a new global checkpoint. When any node detects an error, it initiates the
distribution of diagnostic information throughout the system. All the nodes are then set
to a consistent system state using the last global checkpoint. Finally, normal operation is

resumed.

In the following six subsections we describe in detail the creation and storing of a
global checkpoint and its use for recovery. In Subsection 5.3.1 we present some basic
assumptions that are made about the system. In Subsection 5.3.2 we differentiate
between normal packets that are used for the application tasks and fail-safe packets that
are used to coordinate the creation of checkpoints and the recovery from errors.
Subsection 5.3.3 contains a brief description of the eight types of fail-safe packets used by
the system. At each point in time, a node may be engaged in normal computation,
creation of a checkpoint, or recovery from an error. A description of the possible modes
or logical states of a node is presented in Subsection 5.3.4. Subsection 5.3.5 describes how
a consistent global checkpoint is established and stored on disk. Finally, in

Subsection 5.3.8, we show how the global checkpoints can be used to recover from errors.

§.3.1. Assumptions

We will begin by introducing several simplifying assumptions that will be used in the
algorithms for establishing global checkpoints and for using those checkpoints for error

recovery. We will later discuss bow some of these assumptions can be relaxed.

We assume a closed system that consists of nodes, links, and disks (or some other

form of mass storage). All “input” is stored on disk before operation begins. All
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“‘output” is stored on disk when the job ends (Fig. 5.1).

Regular
Nodes
Disk Node ?

Y

m Communication
Link

Disk Drive

Fig. 5.1: A Multicomputer

As previously mentioned, the nodes are self-checking and are guaranteed to signal an
error to their neighbors immediately when they send incorrect output [Tami83]. As a first
step, any node that generates an error signal is assumed to be permanently faulty and no

attempt is made to continue to use it.

Hardware faults either cause a node to generate an error signal or cause an error in
transmission. It is assumed that a fault can occur at any time, including during the
creation of a checkpoint. However, if a second fault occurs during recovery from a
previous fault, the system stops execution and does not attempt recovery. This and other
situations-where the system must stop due to an unrecoverable state will henceforth be
called a crash. It should be noted that, even if a crash occurs, the system still does not
generate incorrect results. Furthermore, since recovery takes only a few minutes and the
system has an MTBF of tens of hours, the probability of a fault occurring during recovery

is very small.

Since the disks are extensively used for paging, checkpointing, and 1/O, the average
number of “bops” from each node to the nearest disk should be made small. Hence, disks
are connected to several nodes throughout the system. As a first step, we allow an error
in disk I/O or a fault in a node that controls a disk (henceforth called a disk node) to

cause a crash. Each disk node uses an error-detecting code for all data written on the
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disk. When the node reads from the disk, any error caused by a faulty disk or a fault on
the path between the node and the disk is detected by using the code. If an error is
detected, the disk node signals a crash.

The structure of the system is relatively stable — it changes only due to bardware
faults. Since all the nodes in the system are informed of each fault, every node is able to
maintain tables that reflect the structure of the operational part of the system. This
includes information about which nodes and links are operational and which nodes are
disk nodes.

Each node has a unique identifier and there is a total ordering of these identifiers
(used to establish successorship for the designated node that initiates periodic
checkpointing). All the nodes in the system know the identifiers of all the other nodes.
For simplicity, we assume that the identifiers of an n pode system are the integers 1

through n.

In order to send a message, a process assembles the message in memory and executes
a system call. The kernel may divide the message into packets which are the unit of
information actually transmitted. Packets may arrive at their destination out of order (if
they arrive at all). We assume that it is the responsibility of the kernel of the receiving

node to put the packets in order before they are made available to the receiving process.

The interconnection topology of the system is of crucial importance for achieving
fault tolerance. A large body of research on the tradeoffs between various topologies is
available [Witt81, Prad82] and will not be discussed in this paper. One parameter that is
especially important for fault tolerance is the connectivity of the network. The
node/edge connectivity is the minimum number of nodes/edges whose failure partitions
the petwork so that there is at least one pair of working nodes that can no longer
communicate. We assume that the connectivity of our system is sufficiently large that
there is a very low probability of partitioning. Hence, it is acceptable if partitioning
causes a crash.

If a node or a link fails, routing of packets through the network has to be modified
to use alternate paths. This process of reconfiguration requires updating routing tables
throughout the network. We assume that ome of the well-known reconfiguration
procedures [Taji77, Bozy82] is used in conjunction with our recovery scheme but do not

discuss this problem any further in this paper.



§.3.2. Normal Packets and Fail-Safe Packets

As previously mentioned, one of the main advantages of our error detection and
error recovery schemes is that it does not require the substantial delays in normal inter-
processor communication that are a pecessary part of most other such schemes. In
particular, during normal operation (i.c nat in the process of creating a checkpoint or
recovering from an error), no redundant bits for error detection are transmitted with the
messages or packets, no acknowledgement of messages or packets are transmitted by their
recipients, and neither processes nor processors have to wait for acknowledgement of

messages or packets.

Since errors can occur in transmission, there must be some provision for detecting
errors in messages. However, since the probability of an error in transmission is low, it is
wasteful to check the validity of each message or packet independently. Instead, in each
node each port has two special purpose registers for error detection. One of these
registers contains the CRC (Cyclic Redundancy Check) check bits for all the packets that
have been sent from the port. The other register contains the CRC check bits of all the
packets received. Initially these special purpose registers are initialized to some known
value. By making these registers linear feedback shift registers (LFSRs) the contents of
the register can be updated in parallel with the actual transmission of each packet [Elki82].

In order to check the validity of all the packets transmitted through a particular
link, each node sends to its neighbor the contents of the LFSR used for outgoing packets.
The neighbor can then compare the value it receives with the value in its LFSR for
incoming packets and signal an error if it finds a mismatch. The normal procedure used

to recover from a node failure is then initiated.

The validity of all packet transmissions must be checked immediately prior to the
creation of a checkpoint. If this is not done, the state of a node corrupted by an
erroneous message may be checkpointed and later used for recovery. The procedure for
creating a checkpoint must therefore include checking all the links before committing to

the new checkpoint.

The above procedure is not appropriate for the packets used to coordinate the
creation of checkpoints and for error recovery. In this case the information in the packet
must be verified before it is used. Hence, for these packets, an error detecting code such

as CRC is used and redundant bits must be transmitted with the packet. Thus, there are
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two types of packets in the system: the normal packets that do not include any
information for error detection and special control packets that are used only for
transmitting information between kernels and that include a sufficient number of
redundant bits to recognize any likely error in transmission. These special packets are
called fail-safe packets since they are either error-free or the error is easily detectable by

the receiving node.

As discussed in Subsection 5.8.3, it is possible to speed up the detection of errors
caused by faulty links if some redundant bits are transmitted with each normal packet.
However, even if this is done, the normal packets can still be handled more efficiently
than the fail-safe packets. In particular, the latency associated with forwarding a normal
packet through a node can be significantly reduced if the node can begin forwarding the
packet before all of it has arrived [Seéqu83]. This is not possible for a fail-safe packet since
a node receiving such a packet must verify that it is correct before forwarding it. A node
receiving a normal packet may begin forwarding it immediately and initiate error recovery

if, after the complete packet is received, it is found to be invalid.

The first bit of each packet is used to distinguish between a normal packet (0) and a
fail-safe packet (1). If the bit is 0, the packet is usually accepted and processed or
forwarded regardless of whether it is correct or not. The LFSR for incoming packets is
updated as the packet is received. If the node is in the middle of making a checkpoint or
recovering from an error, it may expect to receive only fail-safe packets. In this case, if
the first bit of the packet is 0, the node signals an error. If the first bit of the packet is 1,
the packet is not accepted until it is checked. If an error in the packet is found, the node
signals an error. The two LFSRs in each port are not modified by incoming or outgoing

fail-safe packets.

It should be noted that the above scheme works in the case where a fault on the link
modifies the first bit of the packet. If the original packet is a normal packet, the fault
causes it to become a fail-safe packet. The receiving node checks the packet, assuming it
is coded using some error-detecting code, and finds an error. If the original packet is a
fail-safe packet, the fault causes it to become a normal packet. The LFSR for incoming
packets in the receiver node is modified. The error is detected when the two nodes
compare the value of the sender’s LFSR for outgoing packets with the value of the

receiver's LFSR for incoming packets.
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5.3.3. Types of Fail-Safe Packets
Any two nodes i and j are neighbors if, and only if, there is a link between them.

For every node ;j that is a neighbor of node i, CKV{i,j) is the correct CRC check
vector of all the normal packets sent by i to j since the last checkpoint was made. At
any point in time CKV{(s,j) is the value of CKV(i,;) generated and stored in the output
LFSR in node i. CKV{i,j) is the value of CKV{(i,j) generated and stored in the input
LFSR in node ;.

There are eight types of fail-safe packets:
checkp(CKV)
Used to initiate the creation of a new checkpoint. When sent by some node i to its
neighbor node ; it contains CKV,(i,;).
state(dest,node,seq,812¢)
Used to transmit the state of node node to node dest. The state is transmitted in
fixed length packets. The ssze field contains the number of these packets required to
transmit the entire state. Each packet includes a sequence number seq. These
packets are used to transmit the state of a node to a disk node during checkpointing
and to transmit the state of a node from a disk node during recovery.
saved(coord,node)
Used by a disk node to inform the checkpointing coordinator coord that the disk
pode is prepared to commit to a new state for node node.
reasume
Used to signal the end of a checkpointing ‘‘session’ or the end of a recovery session.
Jault(type location,source)
Used to broadcast the fact that a fault has occurred and to initiate recovery. The
field type contains the type of fault detected: node, link, or unknown. The faulty
node or link is indicated by location. The node that detected the error and initiates
the distribution of diagnostic information is indicated by source.
recover(version)
Used to let the disk nodes know which version of the node states stored on their

disks they should recover. Version may be O or 1.
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restored(coord,node)
Used by the node node to inform the current checkpointing coordinator that node has
received its complete state (as part of the recovery process) and is ready to resume
normal operation.

crash(type,location,source)
Used to broadcast the fact that an unrecoverable situation has been encountered.

The arguments are the same as those for the fault packet.

5.3.4. The Logical States of a Node

At any point in time, a node in the system may be engaged in normal operation,

checkpointing, distribution of diagnostic information, or error recovery. The node's
| response to various packet types depends on its current activity. Hence, we can define
several logical-states (henceforth l-states)t that are simply labels for the current activity

of the node:

normal
This is the l-state of the node during nmormal operation. Normal packets are
accepted and processed. The fail-safe packets checkp and resume may be received. A
checkp packet causes an lstate tramsition to checkp-begin. A resume packet is
ignored.

checkp-begin
This is the l-state of the node after it has received the first checkp packet from one of
its neighbors but before it receives a checkp packet from all of its other neighbors.
The checkpointing coordinator enters this l-state when it initiates checkpointing.
Normal packets may be received only from neighbors that have not yet sent a checkp
packet. Normal packets from other neighbors cause a transition to the error l-state.
The arrival of valid checkp packets from all the neighbors causes an l-state transition
to checkpointing.

checkpointing
This is the l-state of the node after it has received checkp packets from all its
neighbors but before it completes sending its state to a disk node. No normal packet

+ The Fstate of a node is not to be confused with the node’s “‘state’ that is the contents

of the node’s memory that defines the state of all the processes and packets currently on
the node.
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should be received while in this }-state. If a normal packet is received, it causes a
transition to the error )-state. The fail-safe packets state and scved may be received.
When the node completes sending its entire state to a disk node, it changes its l-state
to checkpointed.

checkpointed
This is the l-state of the node after it has completed sending its state to one of the
disk nodes but before it receives the resume packet. If a normal packet is received
by the node while in this l-state, it causes a transition to the error l-state. The fail-
safe packets resume, state, and saved may be received. A resume packet causes an
l-state transition to normal.

error
This is the l-state of the node after it has detected (or has been informed of) an error
but before it is ready to accept its recovered state. The node enters this |-state when
it receives a mismatch signal from a neighbor, receives an invalid fail-safe packet,
receives a normal packet when only fail-safe packets are expected, or receives a fault
packet. In addition, a transition to the error l-state may be caused by a valid fail-
safe packet whose contents indicate some error condition (see next subsection).
Normal packets are ignored if sent by neighbors that have not yet sent a fault
packet. Other normal packets cause a transition to the crashed I-state. The fail-safe
packets checkp, saved, resume, state, and restored are ignored if sent by neighbors
that have not yet sent a fault packet. The fault packet is ignored if the location it
refers to is the same as the location of the fault that caused the tramsition to the
error l-state. Any other fault packet causes a tramsition to the crashed l-state. The
fail-safe packet recover causes a tramsition the the recovering l-state.

recovering
This is the l-state of the node after it has received the recover packet but before it 1s
ready to resume normal operation with its recovered state. If a normal packet is
received, it causes a transition to the crashed l-state. The fail-safe packet recover is
ignored. The fail-safe packets state and restored are processed (see Subsection 5.4.6).
The arrival of the node's complete state via state packets causes a tramsition to the

recovered l-state.
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recovered
This is the kstate of the node after it has received its complete recovered state but
before it actually resumes normal operation. If a normal packet is received, it causes
a transition to the crashed l-state. The fail-safe packets state and restored are
processed (see Subsection 5.3.8). All recover packets are ignored. The resume packet
causes a transition to the normal l-state.

crashed .

This is the I-state of the node after an unrecoverable error has been detected.

Each node also includes the “state variable” version that determines what is the most
recent valid version of the node's state that is stored on disk. This variable may have the
values 0, 1, or unknown. When the system is initialized, the value of version in all the

nodes is set to 0.

5.3.5. Creating a Global Checkpoint

Initially, s designated node, typically node 1, is assigned the task of serving as the
coordinator for establishing global checkpoints. If the coordinator fails, all the other
podes in the system are notified and the next node, according to the total ordering

between the nodes, takes over the task of being checkpointing coordinator.

Every node includes a “timer” that can interrupt the node periodically.
Checkpointing is initiated by the checkpointing coordinator when it is interrupted by its
timer [Bari83] and it is in the normal l-state. Checkpointing is also initiated when a task
is complete so that the system can commit to the output stored on disk.

It should be noted that faulty operation of the timer is detected just like faulty
operation of any other part of a node. As previously discussed, the self-checking node is
implemented using duplication and comparison [Tami83). Each duplicate module includes
its own independent timer. Evenif a fault disables one of the timers, the other timer stili
operates and causes the module it is part of to “behave” differently from the module with
the faulty timer. As a result, the two modules produce different outputs, and an error

signal is generated by the comparator that constantly monitors those outputs.
(I) The Actions of the Checkpointing Coordinator

When the checkpointing coordinator, say node i, initiates checkpointing, it does the

following:
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Node i stops all work on application processes and stops transmitting normal
packets. The node’s l-state is changed to checkp-begin.
Node i sends to every neighbor node j the fail-safe packet checkp(CKV,(i,7))
Node i waits for checkp packets from all its neighbors.
If a normal packet arrives, it is included with the rest of the node state that
must be checkpointed.
If a checkp(CKV{ji) packet arrives from npeighbor ; then: If
CKV{j.i) ¢ CKV;(j,i), i changes its l-state to error and sends the packet
Jault(link (i,5),5) to all its neighbors.
If no checkp packet arrives from a neighbor ; within some fixed time limit, s
changes its l-state to error and sends the packet fault(unknown ji) to all its
neighbors.
Node i changes l-state to checkpointing and sends its complete state to the disk node
assigned to it.
Node i changes l-state to checkpointed and waits for fail-safe packets of the type
saved(i,j) for all nodes ; in the system that are known to be working.
If for one of the nodes, say node j, no such packet arrives within some fixed
period of time, ¢ changes its l-state to error and sends the packet
fault(unknown 0,i) to all its neighbors.
After all the expected saved packets arrive, node i complements its version variable,
changes |-state to normal, and sends the packet resume to all its neighbors.

Node i resumes normal operation.

The Actiona of a Checkpointing Participant

Every node j, that receives the packet checkp(CKV,(i,s)) from its neighbor i while in

its normal l-state, does the following:

(1]

[2]

8]

Node j stops all work on application processes and stops transmitting normal
packets. The node’s l-state is changed to checkp-begin.

If CKVi(i,j) ¢ CKV/i,j), node j changes its l-state to error and sends the packet
fault (link (i, 5),j) to all its neighbors.

For every neighbor node & (including ¥ = i), node j sends to node k the fasl-safe
packet checkp(CKV{j.k)).



[4] Node j waits for checkp packets from all its neighbors except .

If a normal packet arrives, it is included with the rest of the node state that
must be checkpointed.

If a checkp(CKVi(k,j) packet arrives from neighbor & then: If
CKV,(k,j) % CKV{k,j), j changes its |-state to error and sends the packet
Jault (link (k,7),7) to all its neighbors.

If no checkp packet arrives from some neighbor k (k ¢ i) within some fixed
period of time, j changes its l-state to error and sends to all its neighbors the
packet fault(unknown,k,j).

[5] Node j changes its l-state to checkpointing, and begins to send its state to the disk
node assigned to it using state packets. The complete node state except for one last
state packet is sent.

[8] Node ; changes its l-state to checkpointed, sets its old-version variable to version,
sets its version variable to unknown, and sends the last packet containing its state to
the disk node assigned to it.

[7] Node j waits for a resume packet from one of its neighbors.

[8] When node j receives a resume packet from its neighbor i, it sets its version variable
to 1 — old-version, changes its l-state to normal, and sends a resume packet to all of
its other neighbors.

[9] Node j resumes normal operation.
(III) The Actions of a Disk Node

A disk node may be a checkpointing coordinator or a checkpointing participant. In
either case, it executes most of the protocols (I) or (II) as a regular node. However, a disk
node also performs two additional tasks: (1) It stores node states so that they can be

recovered in case of an error. (2) It handles input/output.

/During a checkpointing session, a disk node accepts state packets and stores them on
its disk. Once the complete state of some node j is received and stored on disk, the disk
node sends a saved(coord,j) packet to the checkpointing coordinator. Once a resume
packet is received, the disk node commits to the most recently saved versions of the node
states. The version of these node states is the current value of the version variable of the

disk node.

In order to roll back the entire system to a previous state, it must be possible to roll
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back the state of the disks as well as the state of the nodes. Hence, all files that are
opened with write or read/write permission are duplicated by the disk node and 1/0
operations are performed on the duplicates until the disk node commits to the next
checkpoint. Newly created files exist only as “‘duplicates’” until the disk node commits to
the next checkpoint. Whean the disk node commits to a new checkpoint, all the new and
duplicate files are incorpurated with the committed state. Kiles that remain open with
write or read/write permission must, once again, be duplicated since all operations until

the nezt checkpoint must not affect the files that are part of the current checkpoiht.

5.3.8. Fault Handling

When a node detects an error, it informs its neighbors of the error. This diagnostic
information is then distributed throughout the system. Since an error may be detected in
the middle of creating a new checkpoint, some of the disk nodes may have access to
subsets of two different system states: the state currently being checkpointed or the
previous state. The first node that is informed of the error and which has the information
needed to determine which version of the state should be used, distributes this
information throughout the system. Once the disk nodes find out which version of the
system state they should use, they begin sending the state to all the nodes in the system.
When all the nodes receive their state, they inform the checkpointing coordinator, which
subsequently initiates the resumption of normal operation. Since all working nodes in the
system are informed of the cause of the error, these nodes are able to avoid using the

failed node or link so that it cannot be the source of any additional errors.

The rest of this subsection is devoted to a detailed description of the actions of the

nodes when an error is detected.
(I) The Actions of a Regular Node

When a node is in any l-state except error or crashed, it may change to the error
l-state at any time, as described in Subsection 5.3.4. When a node J enters the error
l-state, it does the following:

{1] Node ; stops all work on application processes and deletes all normal and fail-safe
packets that are waiting for transmission. If the fault is in ope of the node's
neighbors or in a link to a neighbor, all communication with that neighbor is

terminated.
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Packets that arrive at the node are handled as follows: All normal packets and all
fail-safe packets, except fault and crash, are ignored. Fault packets are ignored if
their location field indicates that they were generated as a result of the same fault
that caused node j to enter the error l-state.

Nede j sends fault packets to all its neighbors.

If the version variable in node 5 is uot set to unknown, node j sends a
recover(ver:uion) packet to all its neighbors.

If version is set to unknown, node ; waits for a recover packet from ome of its
neighbors. When thc recover packet arrives, node j sets its version to the value in
that packet and seads a recover(version ) packet to all its neighbors.

If the error is a result of a fault in the checkpointing coordinator, all the working
podes in the system may have their version variable set to unknown. Hence, if
pode j is a neighbor of the checkpointing coordinator whose version is set to
snknown, and if the fault packets indicate that the checkpointing coordinator has
failed, node j waits for a recover packet only up to some preset time limit and then
sets its version to old-version and sends a recover(version) packet to all its neighbors.

Node j changes l-state to recovering and waits for its complete state to arrive from
one of the disk nodes.

Node j sends a restored packet to the (possibly mew) checkpointing coordinator,
changes l-state to recovered, and waits for a resume packet from one of its neighbors.

If node j is the checkpointing coordinator, when it receives restored packets from all
the nodes which are known to be working (including jtself), it sends resume packets
to all its neighbors and changes l-state to normal.

If node j is not the checkpointing coordinator, when a resume packet arrives from
one of its neighbors, it sends a resume packet to all its neighbors and changes I-state
to normal.

Node ; resumes normal operation.
The Actions of a Disk Node

As previously mentioned, if an error is detected in a disk node, a crash is initiated

(in Subsection 5.6.4 we discuss modifications to the system that enable it to recover from

failed disk nodes). However, a disk node can participate, or even initiate, the recovery

process when the source of the error is some other node.
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During recovery, every disk node j sends the checkpointed state to those nodes
whose state is stored on the disk controlled by ;. The node states are sent using
sequences of state packets. Sending the checkpointed state to the nodes can begin only
when it is deterained which version of the state should be used. Hence, the disk node
begins sendiug the checkpointed states only after it has gone through step [4] of the
recovery proiocol described above. The value of version for the state that is sent by the

disk node is the value of the version variable of the disk node following step (4] above.

The disk nodes must ensure that the ‘files’” on the disks are restored to a state that
is consistent with the state of the nodes. If the value of the version variable in some disk
node is not unknown (i.c., it is set to O or 1) when it first enters the error l-state, the
system is rolled back to the checkpoint to which the disk node has already committed.
All updates to the disk that were performed after the last checkpoint must be undone.
Hence, the disk node removes all the duplicate files and creates new duplicates from the
“master copy'’ for all the files that are marked in the master copy as open with write or

read/write permission.

If the disk node is in the middle of a checkpointing session, its version variable may
be set to unknown. If recovery requires rolling back to the previous checkpoint rather
than to the one being established, the value of version changes to old-version when the
l-state changes to recovering. In this case the disk node is required to perform the same

actions as when the value of version is initially set to a value other than unknown.

If recovery requires ‘‘rolling back” to the checkpoint that is currently being
established, the value of version is unknown when the disk node first enters the error
l-state but changes to 1—old-version when the l-state changes to recovering. In this case
the disk node must commit to all updates that were done to the disk since the last
checkpoint. Hence, the disk node commits to the node states that were just received and
updates all files for which there are temporary duplicates with the contents of the
duplicates. For files that have been closed since the last checkpoint, the duplicates are
removed. For files that are still active, the duplicates remain and continue to be used by
the disk node.

A disk node may fail or receive an error packet in the middle of committing to 3 new

checkpoint. For the time being, we assume that any error in the operation of the disk

node causes a crash. If the disk node receives an error packet in the middle of
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committing to a new checkpoint, it forwards the packet to all its neighbors but does not
proceed with any recovery actions until it completes the process of committing to the new

checkpoint.

5.4. Correctness Arguments

Since a complete proof of the correctness of the protocols presented in this chapter
requires a lengthy case analysis, we limit our discussion here to showing that, despite
hardware faults, the system will never produce (‘‘commit to") incorrect results. It is
shown that errors that might lead to incorrect results are always detected. Furthermore,
when recovery occurs, the state to which the system is rolled back is valid. This requires
showing that disk nodes only commit to valid checkpoints and that during recovery all

the working nodes are rolled back to the same conasistent checkpoint.

As previously mentioned, the last action of the system, before committing to the
output of a task, is to establish a new checkpoint. Thus, in order to show that the output
is correct it is sufficient to show that a checkpointing session can terminate successfully
only if the states of all the nodes are correct and there are no errors in transmitting
output from the various nodes to the disks. In Subsection 5.4.1 it is shown that the states
of the individual nodes are correct. In Subsection 5.4.2 it is shown that the states of all
the nodes that are saved as part of a single system checkpoint are consistent with each

other.

5.4.1. The Correctness of Individual Node States

The correct operation of a particular pair of neighboring podes and the link
connecting them is verified when both enter the checkpointing l-state. Errors that are a
result of faults in either node are always detected immediately when they occur. The two
peighbor nodes can both enter the checkpointing l-state only after they have exchanged
checkp packets. These checkp packets follow any normal packets transmitted between the
two nodes. If the checkp packets do not cause one or both of the nodes to enter the error
Istate (i.c., the CRC check bits match), then there have been no errors in the
transmission of normal packets between the nodes since the last checkpoint. Thus, if both
nodes enter the checkpointing l-state, the only way for one of the nodes to have received
an incorrect normal packet from the neighbor is if the latter was correctly forwarding an

incorrect packet from some other node. It is shown in the next paragraph that this
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situation is also detected during the checkpointing process. Before checkpointing is
complete, all the nodes in the system must go through the checkpointing l-state. Thus,
all the normal packets received by any ome of the nodes since the last checkpoint must

have been correctly forwarded.

It is still possible for the internal state of a node to be erroneous. This erroneous
internal state can only be a result of incorrect processing of correct packets. Since the
nodes are self-testing, an erroneous internal state is detected when the state is sent to the
disk node. For example, if duplication and comparison is used to implement the self-
testing nodes (see Chapter 3), the internal state is generated and stored independently on
two identical functional units. When the state is sent to the disk node, the two versions
are automatically compared and if they are not identical, the neighbor receives an error
signal. Thus, if all the nodes complete sending their state (s.c., enter the checkpointed
l-state), all those states must be valid. It remains to be shown that the states of the nodes
that are sent to disk nodes during a particular checkpointing session are consistent with

each other and are stored and retrieved correctly.

The state of each node is sent to a disk node using fail-safe state packets. After each
“hop" these packets are checked and any error that resulted from a fault in the link is
detected. Since the nodes are self-checking, any error in forwarding the state packets is
detected immediately. The node detecting the error is always the next node on the path
to the disk node. Hence, if there is any error in transmitting the state packets from their
source nodes to the disk nodes, some of the packets will not arrive at their destination. If
a state packet from some node i does not reach its destination, the corresponding disk
node does not send the saved packet for node i to the checkpointing coordinator and the
checkpointing session is never completed. Hence, a checkpointing session can be

completed only if the states of all the nodes arrive at the disk nodes intact.

Since the disk nodes are self-checking, errors in the operation of these nodes is
detected immediately by neighbors and causes a crash. As previously mentioned, the disk
nodes use an error-detecting code when storing any information on disk. If there are any
errors in transmitting the information to the disk itself or in storing the information, the
error is detected when the information is retrieved. Thus, during recovery, the disk nodes

either retrieve the node states correctly or detect an error and initiate a crash.

During recovery, the node states are sent from the disk nodes to their destination
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nodes using state packets. Anpy errors in the transmission of the eotate packets are
detected immediately and cause a crash. Each node can determine when it receives its
entire state using the seq and size fields in the state packets. Normal operation is
resumed only after all the nodes have sent a restored packet to the checkpointing
coordinator. Thus, normal operation can be resumed only if the entire checkpointed state

is retrieved correctly.

5.4.2. The Consistency of Node States in a Single Checkpoint

The state of a node changes as a result of local computation, transmission of a
normal packet, or reception of a normal packet. The saved states of two neighbor nodes
are consistent if no normal packets are transmitted between the nodes after the state of
one of the nodes has been saved but before the state of the other node is saved [Barig3].
When a node enters the checkp-begin I-state, it stops local computation and transmission
of normal packets. A node enters the checkpointing l-state only after all its neighbors
have entered the checkp-begin l-state. Hence, after the node bas entered the
checkpointing l-state, no more normal packets are exchanged with any of its neighbors
until normal operation is resumed. As the checkpointing session progresses, each one of
the neighbors enters the checkpointing l-state and sends its own state to a disk node.
Therefore, the saved state of each node is consistent with the saved states of all its
neighbors. Thus, if a checkpointing session is not interrupted by an error, it is guaranteed

that all the node states that are part of that checkpoint are consistent with each other.

The system must be able to recover from an error that is detected in the middle of a
checkpointing session. Under these circumstances, some of the disk nodes may receive the
resume packet and commit to the nmew checkpoint while other disk nodes are still
committed to the previous checkpoint. As a result, the two groups of disk nodes may
cause working nodes to ‘‘recover” with inconsistent states, The version variable stored
with each node is introduced in order to solve this problem. During a checkpointing
session, before any node i completes sending its entire state to a disk node, it (node i) can
determine independently of any other node that any recovery must involve rolling back to
the previous checkpoint rather than the one being saved. Once i completes sending its
state, it can not longer determine whether recovery sbould involve rolling back to the
previous checkpoint or to the one stored during the current checkpointing session;

therefore, node i sets is version variable to unknown. After the checkpointing coordinator
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has received saved packets for all the nodes in the system, it is guaranteed that all the
disk nodes together have a complete and consistent new checkpoint. The resume packet
sent by the checkpointing coordinater informs all the other nodes that the new checkpoint
is valid. If an error is detected, the checkpointing coordinator always ‘knows’ whether
the system should Le rolled back to the previous checkpoint or to the one being
established. If the checkpointing coordinator is in the middle of a checkpointing session
and has already received saved packets for all the nodes in the system, the checkpoint
being established in the current checkpointing session must be used. Otherwise, only the
previous checkpoint is guaranteed to be correct and the checkpoint that is in the process
of being establisked must be discarded. Every node in the system either ‘“knows’’ to what
checkpoint the system should be rolled back, or “knows™ that it is not able to make that
determination. It is not possible for two nodes to have complementary values in their
version variables. Since the disk nodes begin sending the checkpointed state only when

their version variable is not unknown, the system is rolled back to a consistent state.

As previously mentioned, when the system commits to a new checkpoint, it also
commits to the output generated since the last checkpoint. Disk output in the system is
sent from the various nodes to the disk nodes during normal operation using normal
packets. A checkpointing session can terminate successfully only if no errors occurred as a
result of faults in nodes or links. Thus, if the checkpointing session completes, it is
guaranteed that all the output received by disk nodes since the last checkpoint is correct.
The disk nodes use error-detecting codes that guarantee that any error in storing the
output on the disk will be detected when the information is retrieved. Thus, when the
system commits to output on its disks, that output is either correct or, if it is incorrect,

the error can be detected based on the error-detecting code used to store the information.

6.5. Estimate of the Overhead for Fault Tolerance

Accurate estimates of the overhead of making the multicomputer fault tolerant using
the scheme proposed in this chapter require detailed simulation of the system, including
the queues at the communication ports, the time it takes to move data in memory, etc.
Such information can only be obtained for a particular application after a detailed design
of the system is complete. In order to provide a rough estimate of the expected overhead
associated with the proposed error recovery scheme, we make several assumptions about

the system based on the stated application environment and on current and near-future
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(1) The system includes one thousand nodes, each consisting of a high-performance (for
example, 5 MIPS[Barr83]) processor. The processor state is, on the average, 256
thousand bytes. It should be noted that the state does not include code-space.

(2) The topology of the system is dense, i.c., the diameter is proportional to the
logarithm of the number of nodes. Specifically, we assume a diameter of 15.

(3) Ten of the nodes in the system are disk nodes, each bandling checkpointing and
recovery of the state of 100 nodes.

(4) The communication links are assumed to have a bandwidth of
1.5X 10° bytes [second [Barr83, INMO84).

(5) Every fail-safe packet that is not a state packet is 16 bytes long, including redundant
bytes for error detection.

(8) Each state packet is 1000 bytes long and 260 such packets are required to transmit
the entire state of a node.

(7) Each node can be simultaneously receiving a packet, processing a previously received
packet, and sending a previously processed packet [Barr83, INMO83].

(8) The bandwidth of the interface between the disk node and the disk drives it controls
is much higher than the bandwidth of the communication links, and the node can

transfer data to the disk drive simuitaneously with all its other activities.

In order to initiate a checkpointing session, the checkp packets must propagate from
the checkpointing coordinator to all the other nodes in the system. The 16 byte checkp
packet goes through a link in 11 psecs. The processing required at each node to forward
the packet is relatively simple. For a 5 MIPS processor with an architecture that is
appropriate for a multicomputer (e.g., the INMOS Transputer [NMOB84]), 50 psecs is a
pessimistic estimate of the delay introduced by this processing. Since the diameter of the
systems is 15, all the nodes in the system can enter the checkpointing l-state within one

milliseconds after the checkpointing session is initiated.

The state of each node is transmitted to a disk node using 260 state packets. Each
1000-byte statc packet can be transmitted through a single link in 670 uasecs. Hence,
every disk node begins receiving state packets within one or two milliseconds after all the
nodes enter the checkpointing l-state. A regular node receiving a state packet, can

certainly verify it and forward it to the appropriate output port within the 670 psecs it
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takes to transmit the packet over a link. Hence, even if a disk node can only receive state
packets through one of its ports, these packets can utilize the full bandwidth of the link.
Since the bandwidth of the interface between the disk node and the disk drive has a much
higher bandwidth than the communication link, the disk node can store the state packets
as fast as they arrive. Thus, all 26,000 state packets containing the state of 100 nodes can
be received by a disk node in approximately 18 seconds.

Sending saved packets from the disk nodes to the checkpointing coordinator is a
similar process to distributing checkp packets from the checkpointing coordinator to the
rest of the system. Hence, this process is expected to take approximately one milliseconds
(see above). Similarly, distributing the resume packet from the checkpointing coordinator
to the rest of the system is also expected to take approximately one milliseconds. Thus,
the entire checkpointing session can be expected to take less than 19 seconds to complete.

If & checkpoint is created twice an hour, the overhead involved in maintaining the

checkpoint is, approximately 1.1 percent.

The process of recovery is very similar to the process of creating a checkpoint —
26,000 state packets are transmitted from the disk nodes to all the other nodes in the
system. Hence, recovery can also be expected to take approximately 20 seconds. When
an error is detected, the system is rolled back and any computation done since the last
checkpoint is lost. Since a new checkpoint is created every 30 minutes, on the average,
15 minutes of computation are lost every time the system is rolled back. If the MTBF of
the system is 10 hours, the total overbead for fault tolerance during those 10 hours
includes 6.6 minutes for creating checkpoints, 0.4 minutes for error recovery, and
15 minutes of lost computation. The total of 22 minutes amounts to an overhead of

3.7 percent.

5.8. Relaxing Some of the Assumptions

In this section we outline how some of the restrictive assumptions made in
Subsection 5.3.1 can be relaxed. In particular, it is no longer assumed that the system
must be “closed”’ Some communication with the “outside world” is allowed. Since
transient hardware faults are at least an order of magnitude more likely to occur than
permanent faults [Cast82], it is wasteful to logically remove a node or a link after it suffers
from a fault. A more efficient way of dealing with transient faults is proposed. Finally,
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modifications to the system that allow recovery from faults in disk nodes are discussed.

5.6.1. Input/Output from the System

The basic problem in allowing communication with the outside world is that it may
be impossible to roll back the effects of such comrunication: if a page is printed, it cannot
be erased; if a file is read and then deleted, it w2y not be possible to restore its contents;
if input is obtained from a terminal, it is not acceptable to ask the user to retype all his
commands after the system recovers from an error. The problem is especially difficult
with our scheme that allows the system to continue operating incorrectly for a relatively

long time (up to the time between successive checkpoints) after an error has occurred.

The multicomputer consists of nodes, links, and disk drives. We will call any other
system (computer) or device that interacts with the multicomputer, a ‘‘peripheral’’ Some
peripherals, such as another computer system, may be able to commit to checkpoints and
roll back to those checkpoints upon demand. We call such “devices” intelligent
peripherals. Most peripherals, such as printers or tape drives, cannot set checkpoints and

roll back to them. We call these latter devices simple peripherals.

Due to similarities between the actions performed by a node that controls a disk that
is part of the system and a node that interacts directly with the outside world, it is
convenient to refer to nodes that interact directly with the outside world as disk nodes.
Information transfer from a disk node to a peripheral is output while information transfer

in the opposite direction is snput.

5.8.1.1. Intelligent Peripherals

With intelligent peripherals, input/output may occur virtually at any time. As part
of each checkpointing session, when the disk nodes commit to the new checkpoint, each
disk node connected to a peripheral “commands” the peripheral to commit to any data it
received from the disk node or transmitted to the disk node since the last checkpoint. If

the peripheral signals an error, the disk node initiates a crash.

If an error is detected in the multicomputer and a recovery session is initiated, the
peripherals are instructed to roll back to a previous checkpoint or possibly, if the error is
detected in the middle of a checkpointing session, to commit to a new checkpoint. The
disk pnode connected to each peripheral is able to inform -the peripheral which of these

actions to take as soon as it determines the correct value for its verason variable (see
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Subsection 5.3.8).

If a peripheral accepts or transmits erroneous data without detecting the error, it is
possible that the multicomputer system will generate incorrect results. The probability of
such incorrect results is reduced by using error detecting codes for all data transfers

between disk nodes and puripucrals.

5.6.1.2. Simple Peripherals

As mentioned earlier, only disk nodes interact directly with peripherals. Regular
podes can interact with any peripheral indirectly by sending input/output requests to the
appropriate disk node. These requests are sent to the disk node using normal packets.
Some of these packets may be erroneous due to faults in links that are only detected
during checkpointing. Since operations on ‘‘simple peripherals” cannot be undone, the
disk node does not execute any of the I/O requests until they are verified to be correct by
a checkpointing session. Instead, I/O requests are accumulated in temporary files on disk
drives controlled by the disk node. If the system is rolled back to a previous checkpoint,
all these 1/O requests are discarded.

When the disk node commits to the new checkpoint, it also places the accumulated
I/O requests in a queue of verified peripheral operations to be executed. Since data
transfers to/from the peripheral cannot be repeated, this queue is not part of the node
state that may be rolled back during recovery. After the checkpointing session is
completed, the disk node performs the peripheral operations in the queue and keeps track
of all data transfers to/from the peripheral so that they are not repeated if the system is
rolled back.

When executing input operations, the disk node first stores the data received from
the peripherals in temporary files on disk and later forwards the data to the nodes that
had initiated the input requests. If an error is detected and the system is rolled back, any
packets transferring data from the disk node to other nodes are lost. These packets can
be considered ‘‘safely on their way" only after the next checkpointing session. Hence, the
disk node must keep the temporary files until the next checkpointing session so that it is
able to resend any packets containing data from the peripherals if the system is rolled
back. It should be noted that, immediately after they are created, the temporary files
containing data from the peripherals are treated as though they are part of the previous
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checkpoint. These temporary files are logically “‘removed” when the data is sent from the
disk node. However, since they are part of the previous checkpoint, they are only

physically removed during the nezt checkpointing session.

The disk node st evp track of input requests that have been verified as correct
(by a previous checkpoicti:g sessiva) but are not yet completed since the data has not yet
been sent to the node that requesied it. At the same time (during checkpointing) when all
1/O requests are placed in the queue of peripheral operations to be executed, the input
requests alone are also placed on another queue of “input requests that are not yet
completed!’ This queue is handled in the same way as the temporary files mentioned
above — it becomes part of the previous checkpoint and all modifications (updates) to it

are committed only during the next checkpointing session.

The above scheme does not allow interactive access to the multicomputer. However,
it does allow it to accept new tasks during every checkpointing session and to produce
partial outputs as the task progresses. Hence, the multicomputer is no longer required to
be a “closed system!' It is possible to allow regular data transfers with a a host system
that interacts with the users directly, “prepares” jobs for the multicomputer, and handles

the output from those jobs.

5.8.2. Handling Errors Caused by Transient Faults

Most of the errors in computer systems are a result of transient faults [Cast82]. Such
errors can corrupt the state of the system so that rolling back to the last checkpoint is
necessary. However, the hardware itself is not permanently affected and should be used

again once a valid system state is established.

Since a link does not contain any state, no special actions are required in order to
continue to use it after recovering from an error caused by a transient fault on that link.
vOn the other hand, the computation nodes do contain state that may be corrupted by a
fault thereby preventing it from cooperating with the rest of the system in establishing a
“sane state!’ Thus, a node that fails due to a transient fault should be resct to some valid
initial state that allows it to communicate with other nodes in the system. Once the node
is in this initial state, it can obtain information about the condition of the system (for
example, which nodes or links are faulty) and accept its checkpointed state so that it can

resume pormal operation.
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If the self-checking nodes are implemented using duplication and
comparison [Tami83], the ‘‘no-match” signal from the comparator can be used to reset the
pode to a ‘“‘sane” state following a transient fault. This reset causes the node to begin
executing resident ccde that is stored in ROM. It should be noted that neighbor nodes
must not be given the autlority to reset a failed state since that would allow a failed node

to reset its fault-free neighbors.

Given the ability to reset a failed node, recovery from an error caused by a transient
fault is simpler than recovery from an error caused by a permanent fault — there is no
need to reroute packets around failed nodes or links and it is not necessary to migrate
processes that were assigned to the failed node to other nodes. However, permanent faults
must be distinguished from transient faults in order to prevent repeated errors caused by
a single permanent fault from disrupting the operation of the system. When an error is
detected, the node or link that caused the error is identified by the location field in the
fault packets. Each node in the system can keep a record, in its own memory, of the
causes of the last few errors. If the same node or link is the source of several consecutive
errors, that node or link is considered permanently faulty by all the other nodes in the

system, which make no further attempts to use it.

5.6.3. Faster Detection of Errors Caused by Faulty Links

With the fault tolerance scheme described so far, errors caused by faulty links are
only detected during the next checkpointing session. Thus, after a faulty link causes an
error, the system continues processing the erroneous information until the next
checkpointing session. All this processing is useless since, upon detecting the error, the
system is rolled back to the last checkpoint. In addition, the delay in detecting errors
caused by faulty links can lead to system crashes. If two links are affected by faults
during normal operation, the two independent faults may be detected simultaneously

during the same checkpointing session and result in a system crash.

In order to detect errors caused by faulty links as soon as possible, every packet
must include redundant check bits that are checked after every transfer over a link (see
Subsection 5.3.2). When a node detects an error it can initiate a recovery session using
fault packets (see Subsection 5.3.8). The additional overhead required by this scheme
includes the communication bandwidth used to transmit the redundant bits, possible

additional delay in relaying the packet at each intermediate node on its path, and
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additional hardware and/or software (firmware) at each node for performing the validity

checks on each packet.

It should be noted that the above scheme does not detect lost packets and therefore
does not eliminate the need for checking the links during the checkpointing session, as
described in Subsections 5.3.2 and 5.3.5. Faster detection of lost packets requires much
more complicated protocols. After a node sends (or forwards) a packet to a neighbor, it
waits for an acknowledgement. If no acknowledgement is received within a set time, the
sender ‘‘times out” and initiates recovery. With the system discussed in this chapter,
losing a packet while it is transmitted from one node to its neighbor, is a very unlikely
failure mode. Hence, the additional overhead required for fast detection of lost packets is

pot justified.

Another possible scheme for detecting errors caused by faulty links is to verify the
validity of messages only at their final destination rather then at each intermediate node.
Instead of including check bits with each packet, the system may use only one set of check
bits for each message (that may be sent using several packets). The check bit are
generated by the source of the message and checked only by the destination. This scheme
involves less overhead than verifying individual packets. However, the delay in detecting
errors is greater and there are more possible errors that can only be detected during a

checkpointing session.

5.8.4. Faults in Disks and Disk Nodes

With the fault tolerance scheme described so far, the system cannot recover from
errors caused by faults in disks or disk nodes. The basic problem in recovering from such
errors is that data may be corrupted or no longer accessible. If the only access to parts of
a checkpointed state or to data required by the task is through a single disk node, there is
no way to recover from a permanent fault in this node. Similarly, if parts of the
checkpointed state or other data is stored on only one disk, the system cannot recover
from a failure of the disk or of the disk controller.

The solution to the above problem requires storing multiple copies of critical data
and providing multiple paths to the data. In several commercial systems [Borg83, Katz82]
this is being dobe by using multiple dual-ported disk drives and dual-ported disk
controllers. The two ports of each disk drive are connected to two independent disk
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controllers and the two ports of each disk controller are connected to two independent
nodes. Each critical file is stored on two disk drives. With this scheme, critical data
remains accessible despite he failure of one of the disk nodes, one of the disk controllers,

or one of the disk drives.

The hardware described in the previous paragraph is well suited to the fault
tolerance schemes of most commercial systems. These schemes involve the use of ‘‘process
pairs)’ a “primary” and a ‘‘backup,’ located on different nodes with the ‘‘backup’ ready
to take over the execution of the process if the ‘‘primary’ fails. In accordance with this
scheme, the process pair that interacts with the disk controller is located on the two nodes

connected to the ports of the controller.

The hardware described above can be used with the multicomputer. However, unlike
the fault tolerance schemes used in commercial systems, the scheme presented in this
chapter does not involve maintaining a process pairs. There are two possible ways of
using the pair of disk nodes connected to dual-ported controllers: (1) As long as both disk
nodes are operational, only one of the nodes performs the input/output tasks of a disk
node while the second node operates as a normal node but is kept ready to take over
input/output operations in case the first node fails. (2) Both nodes perform input/output
operations and one of them begins performing all these operations if the other one fails.

In this chapter we will only discuss the first, simpler, alternative.

For each pair of nodes connected to the same disk controller, we call the node that
performs input/output operations ‘‘an active disk” node and the other node “a passive
disk node”’ The other nodes on the system initially use the active disk node but they also
“know" the identity of the corresponding passive disk node and begin using it if the active
disk node fails.

Each output operation is performed on both disk drives. Data is written with
redundant bits for error detection. After the data is written, it is immediately read by
the active disk node and verified as correct based on the error-detecting code. If an error
is detected on both disk drives, the node first retries the operation using the same disk
controller and disk drive. If the retry fails, the disk node switches to the other disk
controller. If the disk node detects the failure of both disk drives or both disk controllers,

it must initiate a crash.

The failure of an active disk node is detected by its neighbors just like the failure of
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any other node. The rest of the system is informed of the failure of the node by the fault
packets. The passive disk node connected to the same disk controller takes ownership of
the disk controllers and begins serving as the disk node[Katz82]. All the nodes in the
system are informed that an active disk node has failed and update their internal tables to
indicate that the correspouding passive disk node is now the active disk node. If an active
disk node fails and the other node in the disk node pair is known to be faulty, a crash is
initiated.

Recovery from the failure of a disk node is similar to the recovery from the failure of
any other node — the system rolls back to the previous checkpoint and resumes operation
without the failed node. If an active disk node fails, the corresponding passive disk node
must take over the tasks of the failed node, thereby becoming an active disk node, and
every other node in the system must begin sending all input/output requests to the new
active disk node. In order to be able to take over the tasks of an active disk node, the
passive disk node must have some information on how data is stored on the disk. In
particular the passive disk node must be able to access a prearranged location on the disk
that contains pointers to the last committed checkpoint including node states and disk
files.

If an active disk node fails, its passive ‘‘partner”” must be able to obtain the correct
version of the checkpointed state stored on the disks controlled by the two nodes even if
the failure is detected in the middle of a checkpointing session. If the failure is detected
before the checkpointing coordinator receives saved packets for all the nodes in the
system, recovery involves roll back to the previous checkpoint rather than to the
checkpoint currently being saved. In this case the previous active disk node has not yet
begun committing to a mew checkpoint and the new active disk node can access the
previous checkpoint in the same way as when the error is detected during pormal

operation.

If the failure of an active disk node is detected after the checkpointing coordinator
bas received saved packets for all the nodes in the system, recovery requires ‘‘roll back”
to the new checkpoint that has just been saved. At this stage the previous active disk
node may have completed committing to the new checkpoint, may be in the middle of
committing to the new checkpoint, or may have not yet started committing to a new

checkpoint. In order to be consistent with the rest of the system, the new active disk
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pode must be able to access the new checkpoint (see Subsection 5.3.8) in all three cases.

The key to solving the above problem is that the actions performed by the disk node
in order to commit to a new checkpoint are retryable. If the passive disk node “‘knows”
of a prearranged location oa disk that contains pointers to the new checkpoint, it can
restart the task of committing to the new checkpoint from scratch since all that is
required is copying pointers from the new checkpoint area to the committed checkpoint
area. After a disk node completes committing to a new checkpoint, it stores the value of
version that corresponds to the new committed checkpoint in a known place on the disk.
During recovery, the disk node can compare the value of version of the committed
checkpoint with the value of veraion that corresponds to the checkpoint it is supposed to
restore. If the two values differ, the disk node first commits to the new checkpoint and

then proceeds with the rest of the recovery session as usual.
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Chapter Siz

Implementation Considerations

The previous five chapters presented the basic principles of an approach to
implementing fault tolerance in a VLSI multicomputer and discussed the advantages and
disadvantages of this approach when compared with alternative approaches. However, the
material presented is, by no means, a complete detailed design of a high-performance
fault-tolerant multicomputer. Such a design must take into account the mix of
applications for which the system is intended, the required performance and reliability,
the properties of the particular implementation technology, the environment in which the
system is expected to operate, and the acceptable range of system cost. A discussion of
some of the issues and implementation tradeoffs that must be considered is presented in

this chapter.

The key to the fault tolerance technique presented in the previous chapters is the use
of self-checking nodes implemented with duplication and comparison. As discussed in
Chapter 3, one of the potential weaknesses of duplication and comparison is that if the
two functional modules fail simultaneously in exactly the same way, the failure is not
detected and incorrect results are accepted as correct by the rest of the system.
Techniques for reducing the probability of such common mode faslurcs are presented in
Section 6.1. This section includes a discussion of the possible causes of common mode
failures and some basic definitions. It is shown that it is mot possible to entirely
eliminated common mode failures. Instead, there are some practical implementation
techniques for reducing the probability of these failure in the context of commonly used
NMOS and CMOS circuits.

The technique presented in Section 6.1 is an important implementation detail that
can increase the effectiveness of the self checking nodes. Many other design choices and
implementation details must be considered. A brief overview of some of these issues is

presented in Section 6.2.
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6.1. Reducing Common Mode Failures in Duplicate Modules

We have discussed the use of duplication and comparison to implement self-checking
nodes. This technique is obviously also applicable to the implementation of any other
self-checking functional module (benceforth, SCFM). Hence, for geperality, SCFM will
be used instead of ‘“self-checking node™ throughout this section. A general SCFM is
shown in Fig. 6.1.

module module

) /
\ comparator /

v
output error input

Fig. 8.1: A Self-Checking Functional Module (SCFM)

Modules that perform identical functions may fail simultaneously in exactly the same
way and produce identical incorrect results. Such common mode failures (henceforth,
CMFs) may be caused by environmental factors such as power supply fluctuations, pulses
of electromagnetic fields, or bursts of cosmic radiation, that can affect both modules at
the same time, triggering similar design weaknesses and causing simultaneous identical
failures of both modules. Simultaneous module failures may also be caused by faults that
occur at different times in parts of the modules that suffer from identical design

weaknesses and are infrequently exercised.

With advances in VLSI technology it will soon be possible to implement an entire
SCFM (such as a self-checking node in a multicomputer), including the two functional
modules and the comparator, on the same chip. In addition to providing error detection
during normal operation, the self-checking capability of the chip may also be used to
simplify the testing of the chip throughout its life: from wafer probe testing that is part of
the manufacturing process through the acceptance tests by users and diagnostic testing for
repair and preventive maintenance of the system containing the chip. The simplification
of testing is achieved by eliminating the need to store the correct responses to long test

sequences and compare them with the actual responses of the chip during testing. Testing
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can proceed at the normal system clock rate and only the outputs of the comparator need

to be monitored.

Unfortunately, if the two modules are fabricated on the same chip, the probability of
CMFs during normal operation is greater than if they are on separate chips. This
increased probability of CMFs is due to the tighter electrical and physical coupling
between the two modules and to similar weaknesses in the two modules that may be
caused by fabrication flaws specific to the wafer containing the chip. Furthermore, CMF's
may be a significant problem if the self-checking capability of the chip is also be used to
simplify its testing, especially fabrication testing. In chips that have never been tested,
(i.e., have not yet gone through wafer probe testing), as a result of fabrication defects,
CMF's may be relatively common, especially if the modules are physical duplicates. Hence,
if wafer probe testing relies on the self-checking capability of the chip, different physical
implementations of the two modules must be used.

The simplest way to implement modules that perform identical functions is to use
identical physical duplicates. For such modules the meaning of the term *common mode
failures"‘appears obvious. However, if the two modules perform identical functions but
are physically different, there is no direct correspondence between physical faults in the
two modules, and the meaning of the term is unclear. Hence, there is a peed for a

definition of CMF's that is applicable to modules that are physically different.

In the rest of this section, F will denote the set of all single faults, where a single
fault is a fault caused by a single physical defect. In discussing the failure of the two
modules in 8 SCFM, a “double faults” (f,.f,) occurs when [, € F affects one of the
modules while f, € F affects the other module.

The two modules are denoted by A and B. When both modules are fault-free, both
are implementations of some function Z. The implementation of Z by module A is
denoted by Z,. For every input I, Z,(I) = Zg(I) = Z(I). When the module A is affected
by ‘a fault f € F, it performs the function Z.. The two modules may produce identical
incorrect results due to unrelated faults that just happen to affect the outputs in the same
way. In this situation, f, affects A, f, affects B (f,./ € F), and there is an input I such
that Z,{‘(I ) = Zé’(l ) even though Z,{'(I ) 9¢ Z(I). Hence, there is a non-zero probability
that a supposedly self-checking SCFM will fail to flag erroneous output. Thus, the SCFM
is not fault-secure[Wake78] with respect to certain ‘“‘double faults” that affect both
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modules even if the modules are not physical duplicates.

In the worst case, the new functions, Z,‘:‘ and Z;’,’, performed by the faulty modules

are identical, and the fault is never detected since for every input I, Zﬁ‘(l) - Zé’(!). In

this case, the SCFM is not even self-testing[Wake78] with respect to the “‘double fault™”
(f1.12)

While it is clearly impossible to ensure that the SCFM will be fault-secure with
respect to every double fault (f,f;) € FXF, one might hope that appropriate
implementation of the modules can ensure that the two module functions, as modified by
the faults (f,,/,), are not identical, so that the fault is detectable. If this is dome, the
SCFM is partially self-checking[Wake78] with respect to all double faults (/,,/;) € FXF.

We thus make the following definitions:

Def. 6.1: The two modules in a SCFM are said to be affected by common mode failures,
if and only if, there exists at least one input vector for which both modules produce

incorrect outputs, and for every input, the outputs from the two modules are identical.

Def. 6.2: Two modules are said to have independent faslure modes with respect to a
fault set F, if and only if, for every double fault (f,,f;) € FXF, such that /, affects one of
the modules and f, affects the other, there exists at least one input that resuits in

different outputs from the two modules.

In the definition above, F does not include faults on the input and output lines of the
modules since it is clearly impossible for the two modules to have independent failure
modes with respect to such faults. The technique for handling such faults for the self-
checking node in a multicomputer has been discussed in Chapter 3.

8.1.1. Implementing Modules with Independent Failure Modes

For a particular function it is sometimes possible to find two different
implementations with independent failure modes. For example, consider the
combinational logic function defined by the truth table in Fig. 6.2. Fig. 6.3 contains two
possible implementations of this function. It can be shown that these two
implementations have independent failure modes with respect to the single stuck-at fault

model.

Unfortunately, it is usually very difficult or impossible to find implementations with

independent failure modes for even simple combinational functions and under the
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Fig. 6.3: Implementations of the Function Defined by Fig. 8.2

assumptions of a simplistic fault model, such as the single stuck-at model. As an
experiment, the implementations of several simple combinational functions were
considered. [Except for the function described by the truth table in Fig. 6.2,
implementations with independent failure modes with respect to single stuck faults could
pot be discovered. It is likely that such implementations do not exist for most

combinational functions.

As noted in Chapter 3, one of the benefits of using duplication and comparison for
self-checking subsystems is that relatively little extra design effort is required in order to
implement the self-checking property. Even if it is possible to design very simple modules
that have independent failure modes with respect to single stuck faults, it is unlikely to be
practical and ecomomically feasible for complex functional modules (such as
microprocessors), especially if we take into account the more realistic fault model

described in Chapter 2.

Assuming that there is no practical way of implementing modules that have
independent failure modes with respect to all double faults, we concentrate our efforts on
reducing the probability of those double faults that are more likely to occur than random
double faults. The technology and circuits used to implement the modules in an SCFM
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determine which double faults are more likely to occur and whether they are detectable.
Hence, a particular implementation technology and “‘representative” example circuits are
considered rather than attempting to apply uniform analysis to all possible circuits. In
particular, only NMOS and CMOS VLSI implementations are considered. As a
“representative’ circiit we consider the Berkeley RISC microprocessor [Patt82] for which
there is an NMOS VLS] implementation[Sher84] as well as a nearly complete CMOS
layout [Taka83).

Many months (or years) are devoted to the design of VLSI chips in order to achieve
maximum functionality, performance, and reliability with the given technology. In most
cases it is unacceptable to double the design time and development cost of a VLSI chip
simply to achieve more reliable error detection by reducing the probability of CMFs.
Completely independent implementations of the two modules in the SCFM are therefore
not practical. The use of duplicate physical modules in the SCFM is the lowest cost
alternative. However, given the time and resources spent on designing a VLSI chip, it is
worthwhile to spend a few additional weeks on the implementation of both modules in
order to minimize some of the performance and yield costs of using duplication and
comparison. A practical approach to implementing modules with independent failure
modes involves spending most of the effort designing and optimizing one module and then
“designing” the second module by modifying the first one. In the following sections we
discuss how this overall approach can be applied for representative circuits in the RISC

mMicroprocessor.

6.1.2. Dual Implementations

For every combinational Boolean function f(z)= f(z,22 " ,I,) there is a
corresponding dual function g such that g(z) = J(£) for every z. In the circuits C; and
C, that implement the functions f and g, respectively, voltage levels represent the logic
values. If the circuits are implemented using positive-logic, the “high” voltage level
represents a logic 1 and the “low” level represents a logic 0. Because of the above
relationship between the functions f and g, C, is a negative-logic implementation of the
function f and C; is a negative-logic implementation of the function g. The circuits Cy
and C, are said to be dual implementations of the function f, and Cy and C, are said to

be dual cireusts.

Dual implementations of arbitrarily complex sequential logic circuits are also



possible. If the inputs to the negative-logic implementation are complements of the inputs
to the positive-logic implementation, the corresponding outputs from the two

implementations are complements of each other.

Sedmak and Liebergot [Sedm80] have suggested that the probability of CMFs in a
SCFM can be reduced by asing dual modules rather than pairs of identical modules. The
inputs to the SCFM are passed unmodified to the positive-logic module (henceforth called
the p-module), and are complemented for the negative-logic module (n-module). If the
two modules are operating correctly, their outputs are complements of each other and can

be “compared’ using a two-rail code checker [Cart88] (Fig. 8.4).

p-module n-module

&
y
two-rail code
checker

v 4

v
output error input
Fig. 8.4: An SCFM Based on Dual Implementations

There are several advantages to the use of the above scheme over the use of two
modulgs that are physical duplicates: (1) If the modules are VLSI chips and the same
masks are used in fabricating both modules, circuit design faults and faults in the masks
result in identical incorrect results. With the dual implementations, different masks must
be used since the circuits are different [Sedm80]. (2) Some pattern sensitive faults, such as
those caused by electromagnetic coupling between lines or marginal design of the circuit
timing, may be more likely to cause errors during voltage transitions in one direction.
With dual circuits, the voltage transitions on corresponding lines in the two modules are
in opposite directions; this reduces the probability of identical pattern sensitive faults
occurring in the two modules simultaneously. (3)If the two modules are physical
duplicates, all lines in both modules change value in the same direction at the same time.
As a result there may be “spikes” in the power supply lines to the SCFM which can
trigger intermittent faults. With dual circuits the problem is alleviated since values in the

two modules change in opposite directions.
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If SSI technology is used, dual logic implementation is relatively straightforward —
the positive-logic module can be designed first and then converted into a functionally
equivalent negative-logic module by a simple one-to-one replacement of gates and flip-flops
with their negative-logic equivalents. Both modules have the same structure and the logic
values on correspondiny lines of the two modules are identical. However, since a logic 1
(logic 0) in the n-modul: is represented by the same voltage as a logic 0 (logic 1) in the
p-module, the voltages on corresponding wires of the two modules are complements of
each other. Following De Morgan's theorem, and ‘‘labeling’’ gates with their positive-logic
functionality, for every OR (AND) gate in one of the modules there is a corresponding
AND (OR) gate in the other. Similarly, for every positive-edge-triggered flip-flop there is
a negative-edge-triggered flip-flop, and vice versa[Sedm80]. In this environment the
structure of the module and the performance of the corresponding ‘building blocks" is
identical (or very similar), so the extra design time for the negative-logic module is small

and there is no performance penalty.

If VLSI technology is used, dual implementations is more problematic since it is not
possible to convert an existing positive-logic chip to negative-logic by a simple replacement
of standard building blocks. Even the conversion of NOR gates and NAND gates to
negative-logic (i.c., replacing NOR with NAND and vice versa) may be quite difficuit due
to two main factors: (1) The different gates have different topologies so the layout of the
entire chip may have to be modified in order to accommodate the new gates. (2) The
fan-in capability of different gates may be different — for example, in NMOS, it is
possible to implement a NOR gate with a large pumber of inputs while a NAND gate with
more than three or four inputs is not practical. Furthermore, the circuit is not simply a
collection of standard logic gates and may contain transmission gates, precharged buses,
register files, PLAs, decoders, dynamic logic subcircuits, etc. In a given technology,
converting some of these types of circuits to negative-logic may require significantly more

area and/or result in lower performance.

In the rest of this subsection we will evaluate the dual implementations approach to
reducing CMF's by considering the conversion of positive-logic VLSI modules to negative-
logic. This conversion does not necessarily involve converting the entire module at the
lowest level (i.e., individual FETs) to negative-logic. It may be preferable to design the

p-module so that some of the subcircuits in the p-module have direct negative-logic
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equivalents in the n-module while other subcircuits are used unmodified in the n-module.
The only critical requirement is tbat. the n-module ‘“behave’ as the negative-logic
equivalent of the p-module at the interface between the n-module and the rest of the
SCFM. We will discuss the possible choices of subcircuits to be converted and the
consequences of these choices in terms of design effort and the types of CMFs that can

thus be eliminated.

6.1.2.1. NMOS Implementation

Standard NMOS circuits are fundamentally asymmetrical. The available devices are
enbancement mode FETs (EFETs) and depletion mode FETs (DFETs). The EFETs are
turned on by the “high" gate voltage and turned off by the “low™ gate voltage. The
DFETSs are always “on” but have a higher conductivity when their gate voltage is high.
There is no device that can perform the dual function of the EFET, i.e., be turned on by
a low gate voltage and off by a high gate voltage. There are important consequences to
this asymmetry:

(1) One of the useful building blocks of NMOS circuits is the transmission gate that can
be implemented using only one EFET without power or ground connections (Fig. 6.5-A).
The dual implementation of this function requires three FETs as well as a power and

ground connection since the control signal must be inverted (Fig. 6.5-B).

Control

Control i

_I_ —_ ‘—1,_., ¢ Voo

— — = _L
——e
A. Positive Logic B. Negative Logic

Fig. 6.5: An NMOS Transmission Gate

(2) Static logic gates use passive pull-up devices (DFETs). These gates are able to drive
capacitive loads from high to low much faster than from low to high.

(3) As mentioned earlier, positive-logic static NOR gates with a large number of inputs
can be implemented. However, a correspondingly simple and fast NAND gate cannot be
implemented since the delay of an NMOS ratioed logic NAND circuit increases in direct
proportion to the number of inputs[Mead80}.

(4) Precharged buses are often used in VLSI chips as a space-efficient method of allowing
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a large number of data sources to write to the bus. Since EFETSs are the only devices that
can be completely turned off, both the pull-up and the pull-downs must be EFETs. Since
EFETs make better pull-downs than pull-ups, it is much more efficient to precharge the

buses to high and drive data on the bus with pull-downs than the other way around.

The above consiraints on NMOS circyits prevent the simple conversion of many of
the common subcircuits ia an NMOS VLSI chip to negative-logic. One of the difficulties
is that many of the control lines in such a chip are connected to pass transistors that are
selectively turned on depending on the clock phase and the operation performed: buses are
precharged and discharged through EFETs selected by control lines, the inputs to the
ALU are selected with a multiplexer implemented with pass transistors, data is ““loaded™
to latches through pass transistors, etc. Due to the large number of these pass transistors,
it is not feasible to replace them with their negative-logic equivalents that require much
more area and power (Fig. 8.5). Given that it is impossible to convert the entire chip,
including all control circuitry, to negative-logic, we will consider selective conversion of
some subcircuits and study the effects of this conversion on the sensitivity of the system

to CMFs.

In terms of design effort, the most efficient way to ilhplement the n-module is to use
the original p-module and complement all its inputs and all its outputs. Unfortunately,
this approach has no benefits in term of reducing the probability of CMF's and results in a

performance penalty due to the delays of the inverters.

In order to reduce the probability of CMFs, more differences in the implementations
of the two modules must be introduced. The mext ‘‘step up"” in this direction is to
implement an n-module in which all data is stored and transferred in negative-logic but
positive-logic subcircuits from the p-module are used for data processing and for control.
The input data to the n-module is already in negative-logic (Fig. 6.4) and is transferred
.through internal buses and stored in internal registers without modification. The registers
and buses require no circuit modification in order to store and transfer negative-logic
data. Since the data on internal. buses is negative-logic while the data processing
subcircuits are designed for positive-logic inputs, the inputs and outputs of subcircuits
such as the ALU must be complemented at their interface with the rest of the chip.

This approach avoides the problems with control circuits described earlier: buses,

multiplexers, and latches are not modified and the transmission gate EFETs or pull-down
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EFETSs they contain are controlled by signals with the same polarity in both modules.
Since the instructions, as well as the data, are complemented before the n-module, some
modifications to the various decoders are necessary. Fortunately, decoders often require
that each input will be available in both complemented and uncomplemented form. In the
NMOS RISC chip, thc opcode decoder, the register file decoder, the shift amount
decoder, and the “jiiuj-condition-code” decoder, all already use inverters in order to
generate the complewented form of their inputs. Due to the regular structure of the
decoders, modifying them for the n-module is a trivial task: the connections made to the

complemented and uncomplemented versions of each input are interchanged.

In RISC, the main “‘data processing’ subcircuits are the ALU, the shifter, and the
program counter incrementer. As previously indicated, it is possible to use the p-module
implementation of these subcircuits in the n-module if they are preceded and followed by
inverters. In order to make room for the additional inverters, major parts of the circuit
must be moved. With appropriate design tools, making such a modification is not
difficult. However, these inverters require additional area and increase the power
consumption. Furthermore, the identical data processing circuits in both modules may be

a source of CMFs which originate from both hardware defects and design weaknesses.

Converting the ALU to negative-logic is suprisingly simple. Both the sum and the
carry circuits of a full adder are their own self-duals[Take80]. Thus, no medification is
required for that part of the circuit. In addition to the arithmetic sum, the RISC ALU
also generates the logical AND, OR, and XOR (exclusive OR) of its inputs. The actual
output of the ALU is determined by a 4-to-1 multiplexer. By interchanging two of the
control lines to that multiplexer, the postive-logic OR can be selected by the AND
instruction and the postive-logic AND can be selected by the OR instruction. The only
function that requires modification is the XOR. For this particular case, the simplest
solution is to connect an inverter to the output of the postive-logic XOR function. Since
the performance of the ALU is determined by the worst-case addition time, the delay of

the extra inverter in the XOR circuit does not affect system peformance.

One of the necessary modifications to the shifter is the conversion of the shift
amount decoder to accept negative-logic inputs. As discussed earlier, this modification is
very simple. The only other problem is with logical shifts that shift in logic 0's to replace
bits that are shifted out. In the n-module the “high” voltage level must be shifted in
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instead of the “Jow"” voltage as in the p-module. This change can be done with a small

modification to the control circuitry that drives the shifter.

There is no simple modification to the program counter incrementer. However, the
basic cell of this circuit is so small that a complete negative-logic replacement can be

developed very quickly.

There are numerous ways in which the circuit modifications described above can help
reduce CMFs. For example: (1) Shorts between data lines carrying complementary values
usually result in both lines at the low voltage. Thus, both lines in the p-module change to
logic 0 while the corresponding lines in the n-module that are similarly shorted change to
logic 1. (2) Buses that fail to precharge in both modules will be interpreted as all zeroes
in the p-module and all ones in the n-module. (3)If timing is not properly designed and
there is insufficient time to drive the bus from one of its sources, different lines on the bus
will be affected (the ones that must be discharged), and the failure will be detected.
(4) The worst case delay for the ALU is determined by the carry propagation. If the ALU
is modified as described above, the worst-case propagation for the two modules occurs for
different inputs since the sum and carry circuits are identical while the ALU inputs in the
p-module are always complements of the ALU inputs in the n-module. Hence, ALU
failure, due to careless design of the timing or a particular fabrication run that yields

especially slow devices, is unlikely to occur in both modules simultapeously.

Since most of the control circuits used in the n-module are identical to those used in
the p-module, one might assume that there are many CMFs possible due to identical
defects in those circuits in the two modules. This situation can be improved if the various
decoders in the chip are modified as described in Subsection 6.1.3. Furthermore, many
identical defects in the control circuitry lead to different effects on the data in the two
modules. For example, if several bus sources (pull-downs) are selected at the same time
(e.g., due to a fault in the opcode decoder), the resulting value on the bus will be the AND

function of all the sources in the p-module and the OR of all the sources in the n-module.

8.1.2.2. CMOS Implementation

The p-channel FETs (PFETSs), available in CMOS circuits, are turned on by the
“low” voltage and turned off completely by the “‘high™ voltage thereby providing the dual
function of the n-channel FETs (NFETs). As a result, at first glance, it appears that with
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CMOS technology it is relatively simple to convert the positive-logic module to negative-
logic. Specifically, it car be shown that a positive-logic, ratioless CMOS circuit can be
converted to a negative-logic circuit by replacing all NFETs with PFETs, replacing all
PFETSs with NFETS, connecting all Vpp lines to ground, and connecting all ground lines
to Vpp (Fig. 8.6).
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A. Positive Logic B. Negative Logic
Fig. 6.86: A CMOS NOR Gate

Unfortunately, due to the different mobilities of the majority carriers in NFETs and
PFETs, these devices are not completely symmetrical. The W/L ratio of a PFET has to
be approximately twice the W/L ratio of an NFET in order to achieve similar drive
capability. Thus, in order to optimize performance when similar high-low and low-high
propagation times are required, the PFETs used must be approximately twice the size of
the corresponding NFETs. Since the gate capacitance is proportional to the size of the
device, the delay caused by the PFETs due to their gate capacitance is larger than the
delay caused by NFETs with equal drive capability.

Due to the advantages of NFETs, even in the CMOS RISC layout many more
NFETs than PFETs are used. For example, NFETs are used in the shifter, which is
basically an array of pass transistors. In the register file, the word lines, that select the
register whose value drives the bus, do so by turning on a column of NFET pass
transistors. In both these cases, PFET pass transistors and buses that are “‘precharged”
Jow could be used. However, a design based on PFETs would be significantly larger
and/or slower, as discussed above. Due to similar reasoning, NFETs are also used in the

pull-down arrays of PLAs and decoders, while large PFETSs are used for precharging lines
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to the Vpp. Even with static gates used for random logic, the PFET pull-ups are

approximately twice the size of the corresponding NFET pull-downs.

In order to maintain similar performance and module area, the p-module cannot be
converted to an n-module by the simple procedure outlined earlier. The difficulties in
achieving an efficient conversion are often similar to the difficulties encountered for
NMOS circuits. Thus, similar solutions and considerations apply. On the other hand, the
availability of PFETs can, at times, simplify the conversion. For example, in RISC, a
large 32-input NOR gate is used to generate the Z flag, which is set when the result of an
operation is zero. This gate is dynamic, with a single pull-up and a column of NFET
pull-downs connected to a latch holding the result of the operation. In NMOS there is no
simple way to convert this zero-detect circuit to negative-logic: a column of 32 inverters
must be used to invert the output of the latch and drive the pull-downs of the large NOR.
With CMOS, a large negative-logic NOR gate ca;1 be implemented using a single NFET
pull-down and a column of PFET pull-ups connected to the output of the latch. If the
performance of the circuit is critical, the PFETs will have to be larger than the
corresponding NFET pull-downs in the p-module. However, the PFETs do not increase
the power consumption, and the extra area of the larger PFETSs is much smaller than the

area required by a column of inverters.

8.1.3. Other Implementation Techniques for Reducing CMF's

As indicated in Subsection 6.1.2, not all the subcircuits in a VLSI chip are amenable
to dual implementations. In those cases where dual implementations lead to unacceptable
costs in terms of area and performance, other techniques for reducing CMF's are needed.
The general “rule of thumb” is that the probability of CMF's can be reduced by increasing
the ‘‘differences” between the modules. These differences may be introduced not only in
the low-level circuits but also in the high-level module structure and in the fabrication
process.

Modules that are likely to fail in different ways maj' be developed from the same
specifications by two independent teams or, in the not too distant future, by two different
“silicon compilers!’ [Aviz82] The main problem with this approach is, of course, increased

design cost, which makes it impractical for most applications.

If the two modules are not on the same chip, chips fabricated by different companies
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may be ysed. Platteter [P1at80] utilized this idea in constructing a fault-tolerant processor
from three functionally identical microprocessors manufactured by different companies.
Obviously, this can be done only with modules that are “popular™ chips for which there

are ‘‘second sources!’

Even when it is not possible to convert a subcircuit to negative logic, it may still be
possible to modify its structure without changing its function. We have previously
discussed the modification of decoders for use with negative logic inputs. Another simple
modification to the decoder is to change the order of output lines in the layout so that
shorts between adjacent lines will affect logically different lines in the two modules.
Similar restructuring can also be done in a PLA where the order of both the product term

lines and the output lines may be changed.

If the register file decoder is restructured as suggested above, this also implies a
“restructuring’’ of the register file itself. Different registers are next to each other and
different registers are at the periphery of the register file where they may interact with

other subcircuits and cause a module failure.

8.2. An Overview of Design and Implementation Tradeoffs

The complexity of a fault-tolerant VLSI multicomputer system implies that the
designer of such a system is faced with a very large pumber of design choices. At the
highest level, choices include the topology of interconnections between the nodes and the
principles of the fault tolerance scheme to be used. Lower level choices include the design
of the nodes and communication links. Implementation details such as power distribution,
clock signal distribution, packaging, and cooling may be as important as the higher level

design choices in determining the system's performance and reliability.

As mentioned earlier, design and implementation decisions must take into account
the properties of the particular implementation technology, the environment in which the
system will operate, and the characteristics of the intended applications. The effects of
these factors on several key design and implementation issues in fault-tolerant VLSI

multicomputers are discussed in this section.
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8.2.1. Fault Tolerance at the Component Level

In the previous chapters we have discussed system-level fault tolerance techniques
that can increase the reliability of a multicomputer system. An alternative approach to
increasing the reliability of a multicomputer is to use fault tolerance techniques at the
component level to increase the reliability of individual components. The choice of ‘‘how
much” fault tolerance should be implemented at the component level and how much at

the system level is of critical importance.

The system-level fault tolerance technique discussed in the previous chapters is only
effective if the reliability of the individual nodes is high. If nodes fail “too often;’ the
system will spend all of its time recovering from faults and never do useful work. Thus,
some fault tolerance techniques (such as TMR) must be used at the node level to increase
the reliability of the individual nodes. Similarly, if the communication links are subjected
to ‘“‘too much" noise, local techniques must be used to increase the reliability of the
communication. For example, it is possible to use error correcting codes that allow the

correct information to be recovered from a packet that has been ‘‘damaged” by noise.

The disadvantage of fault tolerance at the component level is that the required
redundancy (overhead) is significantly higher than with system-level fault tolerance. If
the components in the system do not ‘“‘cooperate;’ they cannot share spare resources and
use them to recover from faults. Instead, each component must contain spare resources
to be used for recovery. If faults are rare, most of these spare resources are not needed,
so the component-level scheme is inefficient. For example, assume that within the
“mission time’ of some multicomputer system, consisting of one thousand nodes, only one
processor module in only one node is likely to fail. If fault tolerance is implemented at the
component level, TMR can be used in each node. Thus, approximately two thirds of the
system hardware is ‘‘wasted” for fault tolerance. Onb the other band, if fault tolerance is
'implemented with the system-level scheme described in the previous chapters, duplication
and comparison is used in each node for error detection and the system must contain one
spare node that will be able to take over the tasks of the failed node. With this system-

level scheme, only about half the hardware is dedicated to fault tolerance.

Given the inherent inefficiency of component-level fault tolerance schemes {po
sharing of spare resources), they should only be used when necessary. The use of such

schemes is pecessary if the components are not sufficiently reliable or the particular
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application has special requirements, such as instantaneous recovery (see Chapter 5), that
canpot be met by a system-level scheme. Furthermore, even if some component-level
fault-tolerance scheme is necessary, it is, in general, inefficient to attempt to achieve the
reliability requirements of the system by relying eolely on such scheme. Instead, the
component-level scheie: should be used only to increase reliability of the components to
the point that it is pessibie to implement a system level scheme while meeting the other

requirements of the system.

8.2.2. The Interconnection Topology

The interconnection topology of the system is a major factor in determining both its
performance and its reliability. Ideally, the system would be completely connected so that
there would be a communication link between every pair of nodes. This would minimize
communication delays and maximize reliability since the ability of any two mnodes to
communicate would not be dependent on‘ the correct operation of any other nodes.
Unfortunately, it is not feasible to implement a large fully connected system due to the
number of links required as well as the number of communication ports in each node. For
example, a fully connected system with 100 nodes requires 4950 links and each node must

have 99 communication ports.

The number of communication links per node is of critical importance in determining
the interconnection topology. In order to minimize the complexity of the nodes as well as
the difficulties of interconnecting the nodes (packaging), the number of ports per nodes
should be small. Since the nodes are implemented with a small number of VLSI chips, the
technological limitations on the number of pins per chip also limit the number of ports.
The limitation on the power that can be dissipated on a chip implies a limit on the total
bandwidth for transmitting information from the chip. Thus, even if the pin limitation is
ignored, there is a tradeoff between a small number of high-bandwidth ports and a large
pumber of low-bandwidth ports. Given this tradeoff, simulation studies have shown that
the best performance can be achieved with between three and five ports per node [Fu;ji83,
Sequ83).

In order to maximize performance and reliability, the diameter of the interconnection
topology must be minimized while the connectivity must be maximized. A small diameter
leads to low communication delays while large connectivity implies that a large number of

nodes or links may fail before the system is partitioned into two disconnected networks.
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It is also desirable for the topology to require that all the nodes have the same number of
ports so_that only one type of mode has to be designed and implemented. Another
desirable feature of the topology is the ability to use simple ‘‘algorithmic” routing rather
than rely on table-driven routing that requires extensive hardware and software

support [Prad82).

There are mapy different classes of toj~logies that achieve near-optimal diameter
and conpectivity under the above constraints. Rather than discuss them all, we will
mention one example. Pradhan|Prad83] has developed a class of topologies with the
following characteristics: (1) the number of ports per node is r, (2) the number of nodes in
the system is (r—1)™ with m >3, (3) the diameter of the system is 2Xm~1, (4) the
connectivity of the system is r—1. As an example, a system with 1024 nodes, each with 5
communication ports, has a diameter of 9 and a connectivity of 4. With these topologies
. simple algorithmic routing is possible not only when all the nodes are operational, but also

after some of the nodes have failed.

6.2.3. System Timing and Communication

The physical size of a multicomputer system with hundreds or thousands of nodes
and the high clock-rate at which it operates preclude the implementation of the system as
one synchronous unit with a single clock. Not only will it be impossible to distribute the
clock without significant clock skews, but the failure of this single clock may result in the
failure of the entire system. Higher reliability can be achieved using a large number of
independent clocks rather than one clock. In particular, each node or collection of a small
pumber of nodes can operate with their own crystal-controlled clock. Thus, the nodes

operate asynchronously.

Since the nodes are asynchronous, there is a non-zero probability of errors in packet
transmission due to synchronization faslures even if there is no noise on the link [Seit80].
However, the INMOS Corporation claims that in their implementation of the Transputer
they have achieved a rate of synchronization failures of 0.1 per billion part hours through
the use of appropriate circuitry and communication protocols [INMOB84]. Since this failure
rate is at least three orders of magnitude lower than the failure rate of VLSI chips, it is

not expected to be a significant factor in choosing a fault tolerance scheme.
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8.2.4. Power Distribution

The distribution of power and ground throughout the system is a difficult problem,
even if the issue of reliability is ignored. Power and ground must be routed to every
board in the system, to every chip within each board, and to every gate within each chip.
The noise on these lines suust be minimized and care must be take to ensure that the

correct voltage levels are available thronghout the system.

Unfortunately, just like every other part of the system, power supplies and power
lines can fail at all levels of the system. The complete failure of the power delivery system
is often easy to detect but difficult to tolerate. If the system bas only one power supply
and that power supply shorts, the entire system will stop operating. With such a
catastrophic failure there is no danger of accepting incorrect results as correct. However,
recovery is impossible. To combat the problem of catastrophic power supply failures,
most fault-tolerant systems employ multiple power supplies [Katz82]. Using special
circuitry on each board to “mix" the outputs of multiple power supplies, it is possible to
ensure that the board will continue to operate despite the failure of one of the

supplies [Katz82].

A technique similar to the above may be possible at the chip level. Specifically,
power lines from multiple supplies may be‘routed to each chip and ‘“‘mixed” internally.
The disadvantages of this scheme are the resulting increased complexity of the boards, the
chip area devoted to this “mixing” (which will have to be very large due to the current
levels involved), and the extra pins on each chip devoted to multiple supplies. Thus, in

most systems this scheme is impractical.

If the system is to tolerate the failure of multiple nodes due to problems with the
power supply, special care must be taken in the construction of the system so that the
failure of a set of nodes that depend on a particular supply ‘‘route” will not partition the
system. This must also be taken into account in allocating processes to nodes and in the

error recovery and reconfiguration schemes.

Failures of the power supply lines may also have less catastrophic effects that are
more difficult to detect but easier to tolerate than the effects discussed above. For
example, despite a break in the power supply line to a particular module inside the chip
(such as the shifter in a microprocessor chip), the chip may continue to perform many of

its tasks correctly yet occasionally produce incorrect outputs.
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In general, any ercor detection scheme must be able to detect the effects of faults in
the power supplies aud iheir interconnections at all level of the system. The error
detection scheme discussed and Chapter 3, Chapter 4, and Section 6.1 fares quite well in
this respect: (1) ‘The culpnis from the comparator (two-rail code checker) are supposed to
be 01 or 1C. If the p:wer to either the entire mode or just to the comparator is
disconnected, the ouiput will be 00 and the error will be detected immediately by a
neighbor. (2) Since dual implementation is used for the two functional modules within
each node, if power is disconnected to both modules (or the same submodules within each
module) their outputs are identical (zero volts) rather than complementary, and the
comparator detects the error. (3) Since duplication and comparison is used, there is no
need to analyze in detail all the possible effects of breaks and shorts in the power supply
lines internal to the chip containing the functional modules—error detection is guaranteed
even if the power-supply-line fault has the effect of multiple faults on logic lines and

causes some arbitrary submodule within the module to produce incorrect results.
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Chapter Seven

Summary and Conclusions

The current technology used for implementing high-end computing systems is fast
approaching fundamental physical constraints, such as the speed of light, that limit the
speed at which computations can proceed. The performance requirements of future high-
end computers will only be met by systems that facilitate the exploitation of the
parallelism inherent in the algorithms that they execute. One such system is a
multicomputer composed of a large number of independent computers (computation
nodes) interconnected by high-speed dedicated links. With a multicomputer high
performance is achieved by dividing each task into a large number of subtasks that are

executed simultaneously on different nodes.

Due to recent advances in VLSI technology, two important types of chips are, or will
soon be, commercially available: (1) general-purpose processors whose performance exceeds
that of current mini-computers, and (2) sophisticated communication processors that can
efficiently support high-bandwidth communication in point-to-point networks. With these
chips, the implementation of a multicomputer consisting of hundreds or thousands of

VLSI computation nodes is technically and economically feasible.

Some of the important applications of high-end computers, such as large circuit
simulation, weather forecasting, and aeronautical design, require continuous correct
operation of the system for many hours (or even days). Due to the rate of failure of VLSI
chips, this requirement cannot be met in a system that operates correctly only if all of its
chips are fault free. The reliability requirements of a multicomputer can only be achieved
with fault tolerance techniques that prevent component failure from leading to system
failure. Compared to other architectures, a multicomputer is particularly well-suited to
fault tolerance techniques since it does pot contain any single component (such as a

common memory or bus) whose performance is critical to the operation of the system.

The effective implementation of highly reliable systems requires the use of a
combination of hardware and software techniques, carefully tailored to the characteristics
of the implementation technology and the intended applications. In this dissertation we

have investigated the use of fault tolerance techniques to increase the reliability of VLSI



140

multicomputers. Many aspects of the design and implementation of the system were
considered: its basic architecture, details regarding the VLSI layout of key circuits, and
high-level protocols that can use this hardware effectively to achieve high reliability with
only a small penalty in performance. The techniques presented were developed in the
context of the entire system, taking into account all of the above-mentioned aspects of the

proposed general approach to implementing fault tolerance in the multicomputer.

A fault-tolerant system must be able to identify erroneous information produced by
faulty hardware. The detection of an error implies that the state of the system has been
corrupted. In order to recover from an error and resume correct operation a valid system
state must be restored. The proposed general approach to implementing fault tolerance in
a multicomputer involves a combination of hardware that performs error detection and

system-level protocols that handle error recovery and fault treatment.

It is shown that a very high probability of error detection can be achieved with self-
checking nodes that are implemented using duplication and comparison. This approach
seems wasteful since it more than doubles the required hardware. However, this cost is
justified by the resulting low design complexity, high fault coverage, and ability to bandle

transient faults effectively.

With duplication and comparison, all errors caused by hardware fauits are detected
as long as two requirements are met: (1) the comparator is fault-free and (2) the two
modules never produce identical incorrect outputs. A comparator failure may mask a
mismatch between the outputs of the two functional modules so that the rest of the
system may accept erroneous outputs from the pode as correct. It is imperative that
faults in the comparator be detected soon after they occur so that the system can be
informed that the node has lost its self-checking capability. This requirement is fulfilled
by using a seclf-testing comparator that signals its own faults during normal operation.
Based on a new fault model for PLAs, it was shown that with both NMOS and CMOS
technologies a PLA can be used to implement such a comparator.

Unfortunately, it is not possible to guarantee that the two modules that perform
identical functions do not fail simultaneously in exactly the same way and produce
identical incorrect results. Such common mode foslures may occur as a result of
environmental factors, common design weaknesses, as well as unrelated faults that just

bappen to cause the same incorrect results to be produced. Practical technique were
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developed for implementing pairs of VLSI modules that perform identical functions but
are less susceptible to common mode failures than pairs of identical circuits. Based on
examples of NMOS and CMOS circuits, it was shown that the likelyhood of common mode
failures can be reduced, at a relatively low cost, using a combination of techniques
carefully tailored to the functional and physical characteristics of the different types of

circuits in a typical VLSI chip.

An error recovery scheme for use in a multicomputer executing non-interactive
applications has been presented. The scheme is based on periodically checkpointing of the
entire system state and rolling back to the last checkpoint when an error is detected.
Since the nodes in a multicomputer operate asynchronously, special protocols are required
to ensure that the saved states of all of the nodes in the system are consistent with each
other. The proposed scheme involves first ‘“freezing” the entire system in a consistent
state and then saving the frozen state of each node individually. No restrictions are
placed on the actions of the application tasks, and the communication protocols used
during normal computation are simpler than those required by most other schemes. The
scheme includes efficient handling of transient faults, input/output operations, and disk
failures. For a “typical"’ multicomputer system with one thousand nodes, the

performance degradation due to periodic checkpointing is expected to be a few percent.

Although this dissertation does not provide a complete detailed design of a high-
performance fault-tolerant multicomputer, it does include a discussion of some practical
design and implementation tradeoffs. A particular system must be tailored to the details
of the intended applications, the operating environment, and the implementation
technology. Based on this dissertation, a multicomputer implementaﬁon that follows the
general techniques presented and uses the proposed self-checking nodes and error recovery
scheme can provide a general-purpose, high-performance computing environment in which

the fault tolerance features are completely transparent to the user.








