Problems, Directions and Issues in

Memory Hierarchies"

Alan Jay Smith
Computer Science Division
EECS Department
University of California
Berkeley, California 94720
USA

Abstract

The effective and efficient use of the memory hierarchy of the computer sys-
tem is one of the, if not the single most important aspect of computer system
design and use. Cache memory performance is often the limiting factor in CPU
performance and cache memories also serve to cut the memory traflic io mul-
tiprocessor systems. Multiprocessor systems are also requiring advances in cache
architecture with respect to cache consistency. Similarly, the study of the best
means to share main memory is an important research topic. Disk cache is
becoming important for performance in high end computer systems and is now
widely available commercially; there are many related research problems. The
development of mass storage, especially optical disk, will promote research in
effective algorithms for file management and migration. In this paper, we look at
each component of the memory hierarchy and address two issues: what are likely

directions for development, and what are the interesting research problems.

1. Introduction

The memory hierarchy of a computer system
includes almost all aspects of a computer system's
storage, including cache memory, main memory, disk,
tape, and mass storage. The technology of the memory

sThe material presented bere is based on research supported in
part by the Natiooal Science Foundation under grant MCSS82-
02591 and by the Defense Advanced Research Projects Ageacy
under contract N00039-82-C-0235.

$This paper bas been prepared by invitation for the 18°th Annual
Hawaii International Conference on System Sciences, January 2-4,
1985, Honolulu, Hawaii.

§The opinions expressed in this paper are solely those of the author
and do not represent his institution or sponsoring ageacies.

bierarchy has advanced as or more quickly than any
other aspect of the computer system hardware, and the
Williams Tubes, delay lines and rotating random access
drums used in the 1940's and 1950's, with total storage
of bundreds or at most a few thousands of words, have
given way to cache memories with access times under 50
ns and main memories of over 32 megabytes. Despite
this advance, effective and efficient use of the memory
bierarchy is still one of the, if not the most important
aspect of computer system design and use. This point is
illustrated by comments in two recent papers (see also
| [Matis4)):
:From [Hopkg83}:

“The performance of the storage hierarchy may be

more important than any details of the computa-

tional instruction set. This suggests an approach

for those who want to exploit VLSI design. Expend
your effort on the memory hierarchy, not on exotic
instructions.”
From [Mate84]:

“The high performance 16-bit microprocessors intro-
duced over the last five years have broken ground in
a mew market for microprocessors: high performance
systems such as engineering and CAD workstations,‘
and even general-purpose mainframe-level comput-
ers. The 16-bit microprocessors generally bave,
plenty of computing power, but suffer in these
applications from an inefficient use of memory. The
principal purpose of the 32 bit microprocessors now,
reaching the market is to overcome this difficulty
and to provide efficient engines for high perfor-
mance systems.

“Designing high-performance microprocessor-based
systems requires viewing the memory and its buses
as the critical elements. DMA, graphics, and multi-
ple CPUs must all contend for this resource, and the
key design criterion for CPUs intended for this
environment is that they provide high levels of com-
puting power without hogging the bus.”

Each component of the memory hierarchy is impor-
tant for a different reason. The access time to the cache
is often the critical path in the CPU. The size and ease
of access to main memory affects both performance,
through memory access time, paging, swapping and fre-
quency of other I/O, and the ease of programming, in
the ability to trade space for running time and program-
ming time. The efficient use of disk affects performance,
the size of the disk address space affects the ease of pro-
gramming, the cost of the disk system is & major com-
ponent of the cost of the overall computer system, and
finally, the physical size of the disks is often a problem
in the computer installation. Efficient use of tapes and
mass storage impacts system performance, and overall
cost by its effect on the number of disks required, opera-
tions cost and operations errors.

There are some changes common to all components
of the memory hierarchy. First, all memories are becom-
ing logically bigger. This is due to two related trends:
memories are becoming denser and are also becoming
cheaper; thus it is both physically and economically pos-
sible to increase the memory size. Second, the increasing
performance of the processor is also necessitating addi-
tional memory. The performance of cache and main
memories are increasing steadily, as are the capacities of
disks.

Among the most important trends in general com-
puter system design is one toward multiple CPU’s and
distributed systems. This is having and will continue to

have an important effect on memory hierarchy design,
and as explained below, accounts for some of the most
pressing problems in memory hierarchies.

In the remainder of this paper, we present an up to
date view of problems, directions and issues in memory
hierachies; this paper can be considered to be an update
of a previous survey of this topic by the author
[Smit78¢]. There will be a section each on cache
memories, main memory, gap filler memory, disk, and
tapes and mass storage. Some discussion will also be

provided on the topic of the “logical” view of memorv,
as opposed to its performance and physical configuration.

2. Cache Memories

Cache memories are used in modern medium and
high speed CPUs and new high end microprocessors to
temporarily hold those portions of the contents of main
memory which are currently (believed to be) in use. A
thorough survey of cache memories appears in {Smit82]
and has been updated in [Smit84a]; we assume that the
reader is familiar with cache memories.

2.1. Basic Issues

The two basic performance sasues in cache memories
are access time and hit ratio. Access time is the time
to read or write cache memory, when the desired infor-
mation is cache resident, and hit ratio is the probability
of finding the target of the reference in the cache.
Access time is crucial because in many, most or almost
all computers, the cache access time is the critical path in
the machine and is the factor most tightly limiting the
cycle time and overall machine performance. The hit
ratio is important not only for the traditional reason,
that it affects the average access time, but also for a
relatively new reason: memory or bus bandwidth is a
eritical and limiting resource in mulliprocessor systems,
and the hit ratio directly affects memory traffic.

2.2. Multiple CPU Systems

Recent trends in computer system technology are
encouraging the development of multiple CPU systems.
There are two reasons for this tendency: (a) The perfor-
mance of high-end CPUs is not keeping pace with the
demands for CPU power in certain applications, such as
modeling, simulation and numerical computation. (b)
The cost-performance ratio is significantly better for
small machines these days than large ones, which means
that it is cheaper to get a given ‘‘amount” of computa-
tion by combining many small machines than having one
(or few) large ones. (See [Saty80] for a bibliograpby on
multiprocessor systems.)

The basic and critical architecture and hardware
issue in multiple CPU systems is that of resource sharing.
Such systems, in particular, may share many of the parts

of the memory hierarchy, such as main memory, disk
and mass storage. There are two resulting problems: (a)
maintaining consistency of shared and modifyable infor-
mation, and (b) avoiding or minimizing gueueing and
arbitratation delays in accessing the shared resources.
Cache memories are directly concerned in both problems.

2.2.1. Cache Consistency

In the case that processors have cache memories and
also share main memory, the problem is to ensure that
the many processors see consistent values of the shared
data. There are a number of ways to do that, none of
them entirely satisfactory; a detailed discussion of these
appears in [Smit82] and [Smit84a]; we summarize here.
(1) The cache can be shared; this solution is usually
poor, since the cache doesn't have sufficient bandwidth,
and the shared design increases the access time. (2) All
writes by each CPU can be broadcast to all other CPUs,
and the relevant lines either updated or purged; this
solution fails for more than 2 or 4 processors, as write
traffic begins to interfere with access to each cache. (3)
Directory methods (see, e.g. [Arch84] for a recent study)
maintain distributed (in each CPU) or centralized (in
main memory) directories, that ensure that for each line
there is only one CPU able to access a line that has been
or is about to be modified. (l.e. many readers or one
writer.) Directory methods are expensive to implement
and can slow down the caches and memory system due
to the need to synchronize use of writable data. (4) In
the event that an architecture is new, requirements may
be placed on the software, causing it to issue certain
hardware commands (e.g. cache purge) that will main-
tain consistency. This solution is only feasible if the
architecture is pew, so that old software need not be
supported, and if the appropriate synchronizing com-
mands have been implemented. (5) A special type of
directory method, most suitable for multiple micropro-
cessors sharing the same bus, bas recently been
developed and is the preferred method for this type of

system. (See [Good83].) In it, all microprocessors have

logic to watch the bus and ensure that the 1 writer
/many readers condition holds at all times. The princi-
pal limitation of this method is that the bus must be
shared; the method does not extend to an arbitrary
number of processors.

Each of the above methods has been or is being
implemented in one or more systems, but as noted, none
effectively and efliciently solves the general problem of
maintaining consistency among N processors sharing
memory, where N is reasonably large (e.g. >4). Finding
such a solution to the cache consistency problem is a
difficult, significant and smportant research problem.

2.2.2. Cache and Memory Bandwidth

The second major problem with shared memory is
that of memory bandwidth, and this problem is most
apparent in the case of multiple microprocessors sharing
a single memory bus. (See [Bask78] for an analysis of
interleaved memory.) One would like to connect several
microprocessors to one memory bus. Using a high per-
formance microprocessor, and a moderate performance
bus, it is possible to saturate the bus with from I to 5
microprocessors; the addition of more microprocessors
brings no increase in overall performance, as the proces-
sors spend their time waiting for memory access.

Cache memories are one of the primary mechanismas
to solve the memory bandwidth problem. A cache memory
can be associated with each processor, either on the
microprocessor chip or off-chip. If such a cache has a 16
byte line, a 5% miss ratio per instruction, reads 6 bytes
per instruction and writes 2 bytes per instruction, and
uses write through, then the memory traffic has dropped
from 8 bytes per instruction to 2.8 bytes per instruction.
With copy back, and half of the replaced lines being
dirty, the memory traffic drops to 1.2 bytes per instruc-
tion, an 85% decrease. Thus, cache memories will be
necessary for high performance multi-microprocessor
computer systems. The trend, then, will be for future
bigh performance microprocessors to have on-chip or
outboard cache memories. (However, it is possible to
design a cache memory in such a way that memory
traffic actually increases; we are presuming good design.)

2.3. On Chip Cache

With increases in circuit density and chip area, it
is becoming possible to place useful cache memories on
the microprocessor chip; the new Motorola 68020
[Motog4] has a 256 byte instruction cache on chip, and
the Zilog Z80,000 |Alpe83] has a general purpose 256
byte on-chip cache. These caches serve two purposes:
they significantly decrease memory access times on hits,
and they also reduce the bus traffic.

There are a number of design issues regarding on-
chip caches; these issues have been addressed primarily
in the context of large, mainframe sized caches and
need to be reconsidered for small caches. Further, the
tradeoffs are somewhat different for on-chip caches,
since transfer times dominate latency times for misses,
in contrast to larger machines, and main memory traffic
is also important. These differences aflect optimal
choices for parameters such as line size and cache
organization; in [Hill84] some of these parameter choices
are considered and the sub-block cache organization
(sector cache) is analyzed and evaluated. Also, VLSI

permits ‘‘cheap and easy” associativity, which affects

the design (fully associative vs. set associative) of

caches and TLBs.

The trend here is toward on-chip caches. The
research issues are onmes of evaluating and selecting
cache design parameters in the context of smail size and
limited off chip bandwidth, and the availability of
‘‘easy’’ associativity.

2.4. Off Chip Cache

Of no less interest are off-chip caches. Micropro-
cessors recently announced and/or under development
are sufficiently powerful that they can benefit from, and
in fact need, more cache than current technology per-
mits to be on-chip. A single cache chip could be
expected to hold 4Kbytes or more of cache, and a cache
board could easily contain upwards of 32Kbytes of
cache. We can expect to see within the next 1-3 years
the availability of cache chips, and also of boards with
a substantial amount of cache in addition to the
microprocessor. Research issues here are the same as
apply to cache memories in general, including virtual
vs. rea] address caches, data/instruction caches, mul-
tilevel caches, line size, cache size, cache organization
and associativity, main memory update algorithm, and
multicache consistency. Some of these are further dis-
cussed below.

2.5. Multilevel Cache

There are trends in computer architecture suggest-
ing the further development and use of multilevel
cache. On-chip or on-board caches may be too small to
be fully effective, but are much faster than more remote
caches. Similarly, it may be cost effective to use
different consistency methods for each cache level, with
different cost and performance tradeoffs. Fujitsu, in its
Facom 382 [Fuji82, Hatt83] uses a two level cache and
reports that such a design has advantages. We believe
that multilevel caches will become more common.

2.8. Virtual Address Caches

Most cache memories are addressed using real
addresses; see [Smit82] for a discussion. There are per-
formance advantages, however, for caches addressed
using virtual addresses, as is done in the Amdahl 580
[Amda82]. We predict greater use of this design, espe-
cially in new designs and architectures where the
synonym problem can be eliminated or avoided. (The
synonym problem occurs when two different virtual
addresses map into the same real address.)

2.7. Data and Instruction Caches

Most current cache designs use s single cache
which serves for both instructions and data. The

advantage to splitting the cache into instruction and
data halves is that the bandwidth is doubled; the disad-
vantage is that if instructions can be modified, then
pew consistency and correctness problems arise. For
newer machine designs, in which compatibility with old,
self-modifying software is mot a problem, we predict
that split caches will become increasingly frequent.

3.8.

Microcode Caches In one special case, that of a
cache for microcode, the workload is predictable and
static. In that case, the cache can be optimized for the
workload, and conversely, the workload (microcode
words) can be specially modified to instruct the cache
with respect to fetching, replacement and branching.
The identification and parameterization of such optimi-
zations is an open and useful research problem.

2.9. Vector Processors and Caches

Vector processors rely on a steady stream of data
to drive the vector unit. Cache memories can be a
problem in such a system, since cache misses cause the
vector unit to wait until the main memory fetch com-
pletes. This can affect performance and can also cause
increases in complexity in the vector and cache control
logic. (Page faults are an even worse problem.) The
proper design of a cache in the context of a vector pro-
cessor has not, to the author's knowledge, been
addressed in the research literature and is an interesting
problem.

3.10. Workload and Performance Evaluation

The primary technique used for the performance
evaluation of cache memory designs is trace driven
simulation. There has been a tendency, however, to use
small applications programs for these traces, and then
to find that actual cache performance is significantly
worse than predicted, since large programs and systems
programs tend to dominate. The problem of selecting
an appropriate workload is very important to any cache
memory evaluation or research effort and is being
addressed in [Smit84c].

3.11. And So What Else is New?

Cache memories have existed since the late 1960’s
and the IBM 360/85 [Lipt68], and yet are still an active
area of research and are an important aspect of com-
puter design; the extensive bibliographies of [Smit82]
and [Smit84a] testify to this. The author also consults
widely on the subject of cache memories and with every
pew design and system, there are special twists that
raise new issues. We expect that the activity in cache
memory studies will continue for several more years.

3. Main Memory

The use and management of main memory has
been an active area of research since the early to mid
1960s; see [Smit78d] for a large bibliography of the
relevant literature and [Dennf0] for an overview of the
research. Traditionally, the research issues have
stemmed from the fact that up until the late 1970’s,
memory was expensive and thus was a critical resource;
the efficient use of memory was very important. Prob-
lems relating to paging, such as replacement algorithms
and control of the degree of multiprogramming were
stressed. These problems were exacerbated by the
many computer architectures with too few bits of
addressing, e.g. 16, which also limited the amount of
memory that could be usefully used.

Within the last few years, main memory has become
both plentiful and cheap. At a price (in quantity) of $2
for a 64Kbit memory chip, the parts for a megabyte of
memory cost about $250; it is possible to buy main
memory on a board with all access logic for less than
$5000/megabyte. Home computers such as the Apple
Maclntosh are available with up to 512Kbytes and
microprocessor based workstations such as the SUN
come with 2-4megabytes. (Apple is offering to add
384K of memory to the Maclntosh for $995.) Thus,
except for rare cases, memory fs no longer a scarce
resource, and the traditional research problems are of
much less interest.

There are still some research and development
problems relating to main memory. Probably the most
important question is how to design a cost and perfor-
mance effective shared main memory. For example, a
crossbar, such as was used in C.mmp [Wulf72] is expen-
sive, somewhat slow, has some queueing delays
[Bask76], and poses reliability problems. For a project
at the University of Texas, [Oppe83], a banyan network
is planned. Many of the various multiprocessor
research and development projects have as their central
issue the processor and memory interconnection stra-
tegy, and its impact on access time, cost, reliabilitv and
queueing delays. This is and is likely to continue to be

“an important and difficult research problem.

Another important question, which has thus far
been left almost entirely to the memory manufacturers,
is what is the best functional design for a high denaity
memory chip? Should the data come out 1 bit wide, 4
bits wide, 8 bits, or more? If it is desired to read a
word at a time, and a word is 32 bits, then 32 chips one
bit wide are required; if these are 256Kbit chips, then
32 chips yield a megabyte, which is too much for some
applications. It has been remarked to this author that
current chip designs are very poor for computer
designers; memory chips should be designed to latch the

inputs and outputs [Koto84]. Now the external logic to
perform this function is expensive and it has a negative
impact on performance. Another question is whether
“nibble mode'" (by which additional sequential bits can
be obtained in much less time than the first bit refer-
enced) is useful and represents a good design choice.

The function of replacement in eztremely large
main memortes has also been described to the author as
a problem. The clock replacement algorithm [Smit78¢]
is easy to implement given only a reference bit, but the
number of page frames that have to be examined
becomes unreasonably large in very large memories.
The use of set associative replacement for main
memories has been previously suggested and analyzed
[Smit78a] and was found to be quite effective; the use of
set associative clock replacement should provide an
effective replacement slgorithm yielding adequate per- .
formance at low overhead and needing no additional
bardware.

Another aspect of the replacement problem is to
find a way to have a consistent reference bit, when
there are multiple cache memories in the system, and
the reference bit is maintained locally.

A pumber of factors suggest that optimal page sizes
will inerease over the next decade. Large pages load and
transfer information with fewer page faults, if memory is
plentiful. TLBs (of a constant number of entries) can
address more memory as page size increases. The
number of sets can be increased in real address caches as
page size increases, since additional bits are available for
addressing without trapslation. As transmission speeds
to and from I/O devices increase, the delay due to large
transfers will decrease relative to latency and will
become less significant. Right now, 4K pages are a rea-
sonable choice; 512 bytes, as is used on some smaller
computers is clearly much too small. We believe that
over the next decade, page sizes of 8K or 16K will
become desirable.

4. Gap Filler and Disk Cache

The management of main memory has in the past
been an interesting research problem because the large
gap in access times between main memory (<1
microsecond) and disk storage (10-100ms) meant that
transfers, expecially due to page faults, often caused sub-
stantial CPU idle time. This large access gap still exists,
and is likely to get worse, since CPUs and main memory
continue to get faster; disk performance has improved
very little recently and is not likely to improve overall
by a significant amount [Hoag79]. The impact of the
access gap still exists, but its focus has shifted more
towards explicit 1/O. Essentially, the problem is that
with the increasing density of disks, their nonincreasing
performance and the slowly or nonincreasing number of

data paths to disk, the disk system will be unable to pro-
vide sufficient I/O bandwidth to serve high performance
CPUs and multiprocessor systems. This problem is not
yet major, but is expected to become worse in the next
few years.

The existence of a “gap filler technology”, i.e. one
intermediate in performance and cost between main
memory and disk, would possibly provide a solution to
the performance bottleneck projected above. There is,
however, no such technology available. Although a few
years ago CCDs, magnetic bubles and EBAM (electron
beam accessed memory) were considered promising, none
is viable for a gap filler role at this time nor is likely to
be soon. (See e.g. [Spec84].)

It is possible to make the useful observation that
there is significant locality in I/O reference patterns:
data is both referenced sequentially and for some data
sets, there is significant reuse; see [Smit84b, Smit75,
Smit76, Smit78b] for data supporting this observation.
Thus it would make sense to cache portions of the disk
address space in main memory or outboard in an MOS

RAM based disk cache. The effectiveness of this idea is
shown in [Smit84b]. There are already several disk

cache products, including the Sybercache by STC
[Stor82] and the IBM 3880 model 11 and model 13
storage controllers [[BM81,IBM83]; for both companies’
products, the cache is outboard at the storage controller;
NEC has a disk cache which is associated with although
outboard to the CPU [Toku80].

The design of disk caches has been neglected in the
research literature (except for [Smit84b]) and is a fruitful
area for study. Questions to be answered include: what
is the best location in the system for a cache? How large
should the cache be for good performance? What algo-
rithms should be used for fetch and replacement? How
large should the blocks be? Should the design be write-
through or copy-back, and what are the performance
implications of each? The answers to these questions are
quite sensitive to the workload and additional workload
data needs to be gathered.

The disk caching problem also extends to distri-
buted systems. A recent trend in computer systems is
toward a number of processors, including personal com-
puters, workstations, and mainframes linked together
with a local area network, and backed by a file server.
In such a system, the file server and the network are lim-
ited resources, both subject to congestion, and the over-
heads of remote /O are substantial. Thus, there are

benefits to be gained in caching at the processors, either -

on local disk or in RAM, and also perhaps to caching in
RAM as well at the file server itself, to avoid unneces-
sary physical disk 1/Os. The research problems of cach-
fng in a distributed system include not only those men-
tioned above, but the following: should caching occur at

the processor, at the file server or both? What policies
and parameters are appropriate at each, and are the
same or different choices appropriate? How can one
maintain consistency in such a system when multiple
copies of the same data can exist!

We believe that the use of disk cache will be both
more important and more common in the future. The
number of interesting research problems in disk cache
will also stimulate related research activity.

6. Disks

Disk technology is evolving slowly and has been so
for some time [Hoag79]. Disk density is increasing at
about 209 per year; i.e. it doubles every 3-4 years. Con-
versely, disk access times are improving very little if at
all, with rotation times remaining essentially flat and
arm seek times dropping at a slow rate. These trends
should continue at comparable rates over much of the
next decade.

It can be expected, however, that disk I/ O transfer
rates will increase significantly. Currently, they reflect
the linear density of bits on the disk surface and also the
data transmission technology between disk and the CPU;
the transmission rate on high end IBM systems is 3
megabytes/second. There are three reasons to expect
this rate to increase: (a) Increasing physical bit density
on the disk surface will increase the rate of reading and
writing. (b) Technologies such as optical fibers are
becoming available and cost effective as 8 way to achieve
high I/O rates. (c) Performance considerations suggest
that higher transfer rates will help alieviate the
bottleneck discussed in the section above on gap fillers.

There is a very rapid rate of change and smprove-
ment af the “low end’ for hard disks. It is possible to
buy 8 inch disks with up to 200 megabytes and 14 inch
disk drives that fit in a rack mount, take less than 4
cubic feet and hold close to 500 megabytes for under
$10,000. These high density small disks are rapidly being
incorporated into high end personal computers, worksta-
tions and small shared computers. Performance and
density will continue to increase and cost will continue
drop. Local disks are becoming an important part of the
memory hierarchy in a distributed system and will
become more so.

Another likely change in disk system design is to
associale more electronics with each disk. These elec-
tronics will act to correct errors, buffer tracks, cache
information and/or buffer I/O data streams so as to
mask physical latency and decouple transmission from
physical disk position and rotation speed. This change is
long overdue and should begin to occur at any time.

There are a few areas of research in disk systems.
The most promising is the general area of I/O optimiza-
tion, which is surveyed in [Smit81b}; see also [Smit81d].

With changes in technology, optimal solutions to issues
such as block size, angular placement of blocks, disk
loading, etc. change. For a recent implementation of
many disk optimizations, see [Mcku84]. Another
research problem is to determine the most promising
uses of electronics in the disk system.

8. Mass Storage and Tape

We define mass storage to be any storage system
with significantly larger capacity than disk, and it is
usually cheaper per byte stored and slower than disk.
Included in this category are tape and tape subsystems
(such as the IBM 3850, the Ampex Terabit memory and
the Calcomp automated tape library) and optical disk.
The technology currently undergoing the most rapid
development is optical disk, and Storage Technology is

promising a very high density and cost effective optical .

disk system in the near future. We believe that over
the near term, optical storage technology will advance
the most rapidly, and within 5 or 10 years, very large
optical archival stores will become common in large com-
puter systems. No other technology seems to be com-
petitive.

It is worth noting that IBM has announced a new
high density tape technology, using tape cartridges.
These new tapes and drives have advantages in terms of
density and convenience, but are likely to come into use
only slowly. It could easily be a decade before the
majority of drives in a typical high end installation are
of the new type, especially since not only are the drives
incompatible with the existing ones, but so are the
tapes.

Mass storage can be and is used for explicit I/O,
whereby one issues read and write commands to specific
devices and data volumes. The most promising use for
mass storage, however, is as an automatic backing store
for disk. In that circumstance, the disk address space
would be expanded, much like virtual memory is used
to expand main memory addressing, and automatic
migration algorithms would be used to move data
between mass storage and disk as needed.

There are numerbus research problems relating to
the efficient and effective use of mass store as an
automatic backing store for disk. Questions such' as
when to fetch data, how much to fetch, when to remove
data on disk and migrate it back to mass store, when to
compact mass storage volumes and which volume to
transfer it to are all interesting and significant research
problems. Some relevant work on file replacement algo-
rithms and file reference patterns appears in [Smit81a]
and [Smit81c); see also [Lawr82] for more work in the
same area.

7. Logical View of Memory Hierarchies

In addition to the problems discussed above, which
are primarily concerned with the physical design and
algorithmic use of memory hierarchies, there are some
interesting issues having to do with the logical view of
the memory system.

The most important issue is one of how large an
address space is needed. It has only been recently that
there has been a general realization that 16 bits of
addressing are not enough, and the newest generation
of microprocessors use 32 bits of address. Likewise, the
IBM System 370 architecture has been extended in the
newest machines (308x series machines [IBM82]} to use
31 bits of addressing. 31 or 32 bits (4 gigabytes) should
be sufficient through 1990 or 1995 for a single processor
system, but one can expect to need more addressable
memory for a uniprocessor sometime in the 1990's, and
earlier for a shared memory multiprocessor system. We
expect, therefore, to see architectural changes and
extensions to permit this over the next ten years.
(Anyone designing a computer at this time would be
wise to keep this in mind.)

The idea of object based architectures and capabil-
ity based addressing was a popular one in the 1970s,
and machines such as the Intel 432, the Cambridge
CAP machine and the IBM System/38 all embody and
use such concepts. Despite the advantages in program-
ming productivity and data security achieved by that
approach, the current belief is that inherant perfor-
mance penalties of such architectures suggest instead
the use of simple load/store (reduced instruction set
-like) architectures with simple addressing. This issue is
still an appropriate one for research and it may yet be
possible to use a sophisticated logical addressing scheme
and yet have good performance.

Protection in most computer systems is primarily
associated with memory and the memory hierarchy.
Protection bits are usually associated with pages, seg-
ments and/or files. Existing protection systems tend to
be insufficient to stand up under sophisticated penetra-
tion efforts, and further research in this direction may
be warranted.

It has long been a goal of computer designers and
users to have a one level store, in which all stored infor-
mation would be addressable within the same address
space. Virtual memory is a step in that direction, but
does not usually include the file system. We expect
some additional research and possibly minor commercial
moves in the direction of a one level store, but over the
near term, results are not likely to be substantial.

8. Conclusions

In this paper, we have reviewed memory hierar-
chies, and have addressed two particular points: (a)
what are the likely directions for the development of
memory hierarchies, and (b) what are the interesting
research problems. As was explained in the introduc-
tion, the memory hierarchy is one of the or perhaps the
most important part of the computer system with
respect to both performance and utility. We therefore
believe that with respect to both research and develop-
ment, memory hierarchies will be a central area of focus
over the next decade.

Bibliography

Wp983 Don Alpert, Dean Carberry, Mike Yamamura,
ing Chow and Phil Mak, "32-bit Processor Chip
Integrates Major System Functions”, Electronics, July
14, 1983, pp. 113-119.

[Amda82] Amdahl Corp., "580 Technical Introduction”,
1982.

Arch84] James Archibald and Jean-Loup Baer, "An

conomical Solution to the Cache Coherence Problem”,
Proc. 11'th Anpual Symposium on Computer Architec-
ture, June 5-7, 1984, Ann Arbor, Mi., and in SIGARCH
Newsletter, 12, 3, June, 1884, pp. 355-362.

[Bask76] Forest Baskett and Alan Jay Smith, “Interfer-
ence in Multiprocessor Computer Systems with Inter-
leaved Memory”, CACM, 19, 6, June, 1976, pp. 327-334.

E)ennSQ] Peter Denning, "Working Sets Past and

resent”, [IEEETSE, SE-6, 1, 1980, p. 64-84.

g‘uji82] Fujitsu Corp., "FACOM M-382", third edition,
eptember, 1982, Tokyo, Japan.

g}ood&'}] James Goodman, ”Using Cache Memory to
educe Processor-Memory Traffic’, Proc. 10'th Ann.

Symp. on Computer Arch., June, 1983, pp. 124-131.

I_*Iatt83] Akira Hattori, Minoru Koshino and Shigemi
amimoto, " Three Level Hierarchical Storage System for
Facom M-380/382",

g{ill&i] Mark Hill and Alan Jay Smith, "Experimental
valuation of On-Chip Microprocessor Cache Memories”,
Proc. 11'th Annual Symposium on Computer Architec-
ture, June, 1984, Ann Arbor, Michigan, pp. 158-166.

[Hoag79] A. S. Hoagland, "Storage Technology: Capabili-
ties and Limitations”, Computer, 12, 5, May, 1979, pp.
12-18.

[Hopk83]IL M. E. Hopkins, "Compiling High Level Func-
tion on Low Level Machines”, Proc. IEEE International
Conference on Computer Design: VLSI In Computers,
November, 1983, Port Chester, New York, pp. 617-619.
[IBM81] International Business Machines Corp., ”Intro-
duction to IBM 3880 Storage Control, Model 117, IBM
Pub. No. GA32-0060, Sept., 1981, IBM Corp., Tucson,
Ariz.

[IBM82] IBM Corp., "IBM 3081 Functional Characteris-
tics”, GA22-7076, Poughkeepsie, New York, 1982.

[IBM83] International Business Machines Corp., "Intro-
duction to IBM 3880 Storage Control Model 13", IBM
Pub. No. GA32-0062, January, 1983, IBM Corp., Tuc-
son, Ariz.

[Koto84] Alan Kotok, private communication.

['Lawr82] D. H. Lawrie, J. M. Randal and R. R. Barton,
Experiments With Automatic File Migration”, IEEE
Computer, July, 1982, pp. 45-55.

[Lipt68] J. S. Liptay, "Structural Aspects of the Sys-
tem/360 Model 85, II The Cache”, IBM Systems J., 7, 1,
1968, pp. 15-21.

[Mate84] Richard Mateosian, "System Considerations in
the NS32032 Design”, Proc. NCC, 1984, pp. 77-81.
[Mati84] R. E. Matick and D. T. Ling, "Architecture
mplications in the Design of Microprocessors”, IBM Sys-
tems J., 23, 3, 1984, pp. 264-280.

E\icku&i] Marshall K. Mckusick, William Joy, Samuel
effler, and Robert Fabry, "A Fast File System for
UNIX”, ACM TOCS, 2, 3, August, 1984, pp. 181-197.
g\/loto&i] Motorola Corporation, "MC68020 Technical
ummary”, 1984.
Oppe83] Eli Opper, Miroslaw Malek and C. Jack
ipovski, "Resource Allocation in Rectangular CC-
Banyans”, Proc. 10'th International Symposium on Com-
puter Architecture, June, 1983, Stockholm, Sweden, (also
Sigarch News, 11, 3}, pp- 178-184.
[Saty80} Satyanarayanan, "Multiprocessing - An Anno-
tated Bibliography”, IEEE Computer, 13, 1980, pp. 101-
116.
Emit75] Alan Jay Smith, A Locality Model for Disk
eference Patterns”, Proc. IEEE Computer Society
Conference, February, 1975, San Francisco, Ca., pp. 109-
112.
‘Smiﬂﬁ} Alan Jay Smith, "Analysis of a Locality Model
or Disk Reference Patterns”, Proc. Second Conference
on Information Sciences and Systems, The John Hopkins
University, Baltimore, Md., April, 1976, pp. 593-601.
[Smit78a) Alan Jay Smith, A Comparative Study of Set
Associative Memory Mapping Algorithms and Their Use
for Cache and Main Memory”, IEEETSE, SE-4, 2,
March, 1978, pp. 121-130.
Emit78b] Alan Jay Smith, "On the Effectiveness of
uffered and Multiple Arm Disks”, Proc. Fifth Computer
Architecture Symposium, April, 1978, Palo Alto, Ca., pp.
242-248.
[Smit78c] Alan Jay Smith, "Sequentiality and Prefetch-
ing in Data Base Systems”, IBM Research Report RJ
1743, March 19, 1976, and ACM Transactions on Data
Base Systems, 3, 3, September, 1978, pp. 223-247.
gmiﬂSd] Alan Jay Smith, "Bibliography on Paging and
elated Topics”, Operating Systems Review, 12, 4,
October, 1878, pp. 38-56.
Smit78e] Alan Jay Smith, “Directions for Memory
ierarchies and Their Components: Research and

Development”, Proc. COMPSAC Conference, Chicago,
IN., November, 1978, pp. 704-709.

EmitSla] Alan Jay Smith, ”Analysis of Long Term File
eference Patterns for Application to File Migration
Algorithms”, [EEETSE, SE-7, 4, July, 1081, pp. 403-417.

[Smit81b] Alan Jay Smith, "Input/Output Optimization
and Disk Architecture: A Survey”, Performance Evalua- |
tion, 1, 2, 1981, pp. 104-117. 1
EmitSlc] Alan Jay Smith, "Long Term File Migration: ‘
evelopment and Evaluation of Algorithms”, CACM, 24,
8, August, 1981, pp. 521-532.
[Smit81d] Alan Jay Smith, "Bibliography on File Sys-
tem and Input/Output Optimization and Related
Topics”, Operating Systems Review, 15, 4, October,
1981, pp. 36-54.
ESmit82] Alan Jay Smith, "Cache Memories”, Computing
urveys, 14, 3, September, 1982, pp. 473-530.
[Smit84a] Alan Jay Smith, "CPU Cache Memories”, to
appear in Handbook for Computer Designers, ed. Flynn
and Rossman.
[Smit84b] Alan Jay Smith, "Disk Cache - Miss Ratio
Analysis and Design Considerations” submitted for pub-
lication.
[Smit84c] Alan Jay Smith, "The Effect of Workload
Choice on Cache Memory Evaluation”, in preparation.
LSpecS4] “Whatever Happened to Magnetic Bubble
femories”’, IEEE Spectrum, September, 1984, p. 22.
[Stor82] Storage Technology Corporation, "Sybercache
8890 Intelligent Disk Controller”, Louisville, Colo. 1982.
Proc. IFIP 1983, pp. 693-697.
LTokuSO] T. Tokunaga, Y. Hirai and S. Yamamoto,
Integrated Disk Cache System With File Adaptive Con-
trol, Proc. IEEE Computer Society Conference, Sep-
tember, 1980, pp. 412-416.
kWulﬂ?] W. Wulff and C. G. Bell, "C.mmp, a Multi-
fini Processor”, Proc. FICC 1972, pp. 765-777.

