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ABSTRACT

A stochastic model for analyzing the performance of randomized algorithms
for routing gate-arrays is presented; our model is based on an empirical observa-
tion known as Rent’s Rule. Using the model, we analyze the space requirement
of a wiring technique that only uses one-bend routes. We show how the tech-
nique can be extended to a case where several wiring layers are available, with
near-optimal saving in area. As a by-product, we obtain a random procedure for
converting a two-layer gate-array routing to 3 many-layer roating while reducing
area efliciently. Within our model, we also show that the one-bend strategy is
sub-optimal in terms of space tequirement. However, we also show that the
optimal strategy is not significantly superior to the random one-bend strategy.
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1. Introduction

Gate-arrays are finding increasing use as a framework for semi-custom VLSl design f1]. A
gate-array is an nXn array of gates (Fig. 1a) on a chip; a large number of such chips are
fabricated by a manufacturer. A customer who wishes to build a logic circuit decides on 3
mapping of the gates in her circuit onto the gates in the array. She specifies the interconnections
to be made between the gates in the array in order to realize the circuit she has in mind (Fig. 1b).
The manufacturer then makes the necessary connections using some routing algorithm, producing
a wired chip that might look like Fig. lec. Throughout this paper, we will consider circuits

consisting entirely of two-terminal nets, i.e. each wire in the circuit connects exactly two gates.
Considerable effort has been directed towards two classic problems concerning gate-arrays:

1. How much space must be allowed between the gates on an array so as to be able to route a
given circuit! In our model, each gate is represented by a square as in Fig. 1a. Each wire is
assumed to take up a unit space; the number of wires passing over a square (gate) is the
channel-width associated with the gate. The channmel width is a quantity that must be
decided beforehand by the manufacturer, without knowing the exact pattern of

interconnections specified by the customer.

2. Given a placement of the components of a circuit on the gates in an array, how best does
one go about making the specified connections? This is an instance of the routing probiem.
Fig. 1c is a solution to the instance depicted by Fig. 1b. Notice that all the routes in this

solution are wires having only one bend; such a solution is called a one-bend routing.

Donath e al. first studied the former problem and introduced the use of Rent's Rule, an
empirical observation concerning the average pumber of connections that leave a planar region on
the array that includes a collection of gates. A heuristic approach to channel-width estimation
was developed in [5]. Feuer [3] showed the relation between Rent's Rule and the distribution of
wire-lengths. El Gamal [4] provided a stochastic spproach to estimating channel widths by
considering wires as random walks. Karp ¢ al. [7) recently showed that in the worst case (i.c.

when the customer chooses an intercomnection pattern that forces large channel widths), the
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routing algorithm need only consider one-bend routings.

In practice, however, the customer is hardly an adversary; the worst case is thus not very
realistic (as it happens, it is extremely pessimistic). Although the placement problem in its
various forms is known to be NP-Complete [6], it is reasonable to assume that the customer has
made an intelligent attempt at placing the gates in her circuit on the array in such a fashion as to
try and avoid having long wires, congestion, etc. It is thus necessary to make some assumption
about the kind of interconmection patterns requested by the customer. Rent’s Rule is such an

assumption.

Rent’s Rule states that a region of the array containing C gates with 5 connections to each
has an average of 5.C? connections leaving the region. The Rent exponent p lies in the interval
[0.5, 1], and characterizes the type of logic being implemented; highly serial logic, for instance,
would typically have a low value of p. In this form, the rule is difficult to atilize to obtain
interesting results; we therefore use the connection distribution function derived by Feuer. Feuer
showed that g(r), the probability of the existence of a wire between two gates separated by a

(Manhattan) distance r is given by

q(r) = a .r=4¥9)

where a is 3 normalizing factor.

In the next section we introduce the mode! we will use, and state some straightforward
implications of the model. Section 3 contains general resuits for randomized routing; for the two-
layer case our results take on a form similar to those of El Gamal. We then show that with &
layers, random assignment is close to optimal. This is important in the light of the use of 6—8
layers in recently fabricated chips and proposals for constructing chips with even more layers of
interconnect. In section 4, we show that random one-bend routing is 3 good means of reducing
the wiring-space required for a high probability of success in wiring. In doing so, we study the

‘optimal’ randomized routing strategy possible under our model, making comparisons with the




random one-bend strategy as appropriate.

3. The Stochastic Model

1)

@)

We now formally present the model we will use to prove our results.

A two-dimensional array is an infinite array of gates in two dimensions. Each gate is a
square of fixed width W (measured in wire-widths). A gate-array is a square region of nXn
gates in the two-dimensional arrsy.

In an instance of the interconnection problem, each gate in the two-dimensional array emits
one wire; the probability that a gate at 3 Manhattan distance r is the destination of the
wire is ¢(r). The g(r) function is defined as

q(r) == a-r—H (2.1)

for 1 € r < Lypax, Where Loy, is the maximum wire length for the gate-array. Thus for a
square n Xn array, Lpgs € 2n (We assume that every wire follows a minimum distance
route to its destination). This definition automatically provides us with a distribution on the
wire-lengths. Note that we bave restricted our attention to two-terminal nets; we will aot

consider multi-terminal nets in this paper.

Note that in our model, only one wire leaves a gate, whereas several (or none) arrive at it.

We interpret a departing wire a8 3 fan-in lead; we are thus restricting ourselves to the case where

fan-in is one. All our results on channel-width scale up by a factor of & when there are b fan-in

leads to each gate.

@)

(4)

To begin with, we will allow the use of two layers of metallization for interconnection. We
will generalize this to k layers in the latter balf of section 3. We assume further that one of

the two layers will be used for horizontal wire runs, and the other for vertical runs.

One horizontal and one vertical channel are associated with each square. A channel is thus
a WX W region on one of the two layers. A vertical channel associated with a gate G is one
that is used to accommodate all wires passing over G in the vertical direction; a horizontal
channe! is defined similarly. All channels through which a wire passes are charged one track
for that wire; this includes the gates in which 3 wire begins/terminates (if a wire emitted by
3 gate leaves it in the vertical direction, the vertical channel is charged). The number of
tracks required by a channel for an instance of the interconnection problem is the channel
space requirement (physically, the width) of that chanmel. The maximum channel space
requirement taken over all the channels in the gate-array is the space requirement of that

instance of the interconnection problem.
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(5) A solution to an instance of the interconnection problem is an assignment of routes to wires

such that the space requirement under that assignment does not exceed W.

In this paper, we study the performance of randomized algorithms that solve the
interconnection problem. A randomized routing strategy is one that flips coins or casts dice to
decide the choice of route for a particular wire; no attempt is made to adapt to the congestion
prevailing on the chip at the time 2 wire is routed.

Each wire is thus routed independently of all others. Further, the performance of the
strategy depends on the particular sequence of coin-flips in a given instance; our analysis averages
the algorithm’s performance over all coin-flip sequences. If a solution exists for a given instance of
the interconnection problem under that strategy, then there exists a sequence of coin-flips (and
therefore a non-zero probability) that the solution is found. An example of a randomized routing
strategy is the random one-bend etrategy . Each wire is routed according to one of the two
possible one-bend (L-shaped) routes; either of them is equally likely.

To begin with, we will study the problem from the following standpoint. Given a
randomized routing strategy, we wish to find a width W such that with probability 1—¢ the space
requirement of a random instance of the interconnection problem does not exceed W, for some

positive constant ¢.

3. Routing Strategies with a High Probability of Success

 In this section, the fupdamental issue we will address is the prediction of the gate-width W.
Our prediction is probabilistically defined: the probability of the channel space requirement of any

channel exceeding W is bounded above by EE?' where ¢ is a positive constant. Since there are
n

2n? channels in the gate-array, we are then assured of being able to route the particular instance

of the interconnection problem with probability at least equal to 1—¢.

3.1. The Two-Layer Case
El Gamal provides a similar result under a slightly different model. His results may be

modified to obtain the ones here. Our motivation is to provide a general framework to facilitate
the analysis of the k-layer case that follows, and to lay the foundation for studying a class of

random routing schemes.

We will for the moment concentrate on the randomized one-bend strategy. Thus each net is
assigned ome of two ‘L-bend” (one-turn) routings picked at random, independently of the
assignments of all other nets. In the next section, we will compare the one-bend strategy with
more general strategies that make use of other routing patterns. In our analysis, we make use of

the following powerful theorem due to Bernstein [10]. M denotes means and o deviations.



.6.

THEOREM (Bernstein): If ¥,,¥,....¥, are completely independent random variables such that
E(¥,) = M,, o(¥,)=o0, exist and | ¥,-M | <K (k=12---,n) then for
=¥, +¥;+ ..+ ¥, wehave

P(Il¥-M|2po)<2exp |- £ v (3.1)
17,4
o]

where

) )

M = ZMg

=1

and

12

o= [20,,’

where p is a positive number such that s < %.

Let us focus our attention on any one channel in the array. In our case, each of the random
variables ¥, is an indicator for the event that the wire emitted by some gate in the array passes
through the channel under consideration. The sum of these variables is then the channel space
requirement of that channel. It is easy to see that the average value of ¥ is one-half the average
wire-length; this holds under any choice of radially-symmetric wire-length distribution. Moreover,
the passage of a wire emitted by some gate through the channel of interest can be viewed as a

Bernoulli trial. Since we then have a series of independent Bernoulli trials,
og)’ < ¥ (3.2)

Here the subscript (2) denotes the fact that we are considering two-layer routing, and is not to be
confused with the ¥, of Bernstein’s Theorem. This is a very loose bound; we will consider tighter
omes in the next section. Applying Bernstein's Theorem, we find that the following choice of
gate-width ensures that no channel has channel space requirement exceeding W) with probability

€

of more than ——=—.
2n2

W = ¥, o 22
@ = Yot oele =~ (3.3)

The above result is independent of the wire-length distribution. For the wire-length distribution
derived by Feuer, f(,) grows as n?*!, so that the latter term (involving standard deviation) is

asymptotically smaller.



3.2. The k-Layer Case
The above analysis may readily be extended to k-layer routing. We study this problem from

two standpoints. First, given au instance of the interconnection problem, we wish to estimate the
gate-width W, such that 3 solution can be found with probability at least equal to 1—¢. Second,
given 3 two-layer routing of some instance of the interconnection problem, we wish to convert it
into a k-layer routing so that chip area is shrunk to the extent possible. We begin by giving a
brief account of our strategy for wiring gate-arrays on k layers, followed by the randomized

procedures for accomplishing each of the above goals.

3.2.1. A General Methodology for k-Layer Routing
We assume k is even. Our strategy for k-layer routing consists of partitioning the & layers

available into 12‘- groups of two layers each. If the layers be numbered 1,2,....,k, then we group

layers 2i—1 and 2 together, 1< is-g-. The odd-numbered layers 1,3,.....;- — 1 will be used for
horizontal wiring runs, and the even-numbered layers for vertical runs of wiring.
A pet will be embedded entirely in one of the above groups; there is thus nmo

“communication” between groups. We are now left with s case where each gate bas -;- horizontal

and % vertical channels over it; we wish to estimate the k-layer gate-width Wi, such that none of

these is congested. Notice that there are now kn? chanpels in the gate-array.

Thompson {11] first noted that in going from two to k layers, we cannot shrink each
dimension by more than a factor of k; we thus cannot hope to achieve 2 reduction in area by
more than a factor of k2. This observation stems from the fact that if we actually did shrink both
dimensions by more than a factor of k, the resuitant k-layer embedding could be “unwrapped” to
a new two-layer embedding smaller than the original one (the details of this are fairly

straightforward).

3.2.2. A Randomized Strategy for k-layer routing

We now extend the randomized one-bend strategy mentioned earlier to k layers. For each
net, instead of flipping a coin to decide between one of two L-shaped routes, we now cast a k-
faced unbiased die to decide between one of the k possible L-shaped routes (for a wire traveling

“portheast’” we have -;- routes that first go north and then east, and —;— that go east first and then
north). To emsure a 1—¢ probability of success, we must make sure that each channel has a

pr‘obability of congestion that does not exceed F;? Since the probability that any group (of
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wire-layers) be used to route a wire is -E-, the average value of ¥ is now down by s factor of %;

let us denote this by !-'(,,, The variance (denoted by 0,%) is still upper bounded by this mean, so

1/2
. The required gate-width (by Bernstein’s Theorem) is then

2
that Oy == 02y -k-

kn2
‘V(.) - ;(.) +om)- In —:— (3.4)

To put these results in perspective, we first recall that the gate-width Wy derived for the two-

layer case exceeded the average by only an asymptotically small quantity. We are now able to

shrink each dimension by a factor of almost -;—

We should of course bear in mind that for the small values of k currently in use, 2 -;— saving

does not appear very attractive; it is conceivable that for a specific instance, a good design
engineer could (albeit laboriously) trim the dimensions down by close to a factor of k. However,
proposals for more layers are being investigated both theoretically (8] and experimentally [2] , and
as n and k£ grow larger, we believe that manual layer assignment can do little better than random
assignment. In essence, the law of large numbers can be put to advantage as designs grow large.
Assuming (reasonably) that an unbiased k-faced die can be implemented by means of
©(log,k) unbiased coin fips, the k-layer random one-bend strategy requires sbout log,k times as

much computation as the two-layer strategy.

3.2.3. Converting Two-Layer Routings to k-Layer Routings

The above strategy for k-layer routing can be viewed as 2 means of converting any given

two-layer (or k'-layer for k' < k ) routing to a k-layer routing. Given a two-layer routing R(;

produced by any algorithm, we cast a %-faced die for each of the nets in Rz The outcome of °
this die decides which of the % layer-groups the net will use in the k-layer routing Ry

There is no restriction on the style of routing in R(y) ; the nets could have several bends and,
more importantly, several terminals (recall that in the preceding subsections we were constrained

to two-terminal nets). We assume, reasonably, that a net does oot pass through the same chanpel
twice in Rz). As before, R is smaller than R(z) by almost a factor of -g- in each dimension. If

W) were the gate-width in Rz, then the k-layer width that will suffice to restrict the probability
of failure to ¢ is given by

i (3.5)




4. On the Relative Merits of Various Randomised Strategies

In the frst part of the previous section, we considered the random one-bend strategy on two
layers. We used the mean of the random variable ¥ to bound the variance of the number of wires
in a channel. In this section, we will investigate the tightness of this bound. We only consider

two-layer routings here, although similar results can be established for & layers.

There are two reasons to examine the actual variance. In equation (3.3), the two-layer

channel-width Wy, is expressed as the sum of an “average” term V(g) and a “standard deviation”

2
term a(z)-ln(z—:-). Although the latter term is asymptotically smaller, it is quite large for present

values of n. To illustrate this, consider a case where p = -:-, n == 30 and we desire ¢ = 0.1.

These are very typical values, and the standard-deviation term in W(z) (about 20) actually exceeds
the average term (about 3). It will thus require several generations of gate-array development

before they become large enough for the first term to dominate.

The second reason becomes relevant in the light of the first. In Section 3, we used the
bound 05 € ¥y for randomized one-bend routing. In fact, this bound holds irrespective of the
routing strategy used. The first (average) term of equation (3.3) is independent of the routing
strategy (for all minimum distance strategies), but we can attempt to find 3 strategy that

minimizes the standard deviation and thus the second term. Forp = g— and ¢ = 0.1 as before,

such a reduction would become particularly important at values of n around 200 (for larger
values of p, at smaller values of n). We would therefore like to know whether there exists an

optimal strategy whose variance is asymptotically smaller than that of the one-bend strategy.

In this section, we will show that the one-bend strategy is sub-optimal in this respect, but
that the optimal strategy canmot do much better. We begin by formalizing the notion of a
uniform routing strategy; informally, this is the class of random routing strategies where the
choice of paths available to a wire (and the probabilities assigned to each path) is independent of
the gate it emanates from. We do not restrict ourselves to the Feuer wire-length distribution

bere; consider a general distribution where the probability that s wire be of length r is p(r).

Figure 2 shows a typical gate G that we will study. C is 3 Manhattan Circle of radius
Loas ; it contains all gates at a Manhattan (or L;) distance of Ly, of less from G. The wire
emitted by each of these gates can potentially pass through either channel over G (we are only
copsidering minimum-distance routings). Define a co-ordinate system [i,j] where i and j are
integers denoting respectively the z- and y- displacements of each gate from G. The gates inside

the circle satisfy

il + 151 € Lon (4.1)



Fig 3

For each such gate, we define Py to be the probability that the wire emitted by gate |i,J]
uses up a track in either the vertical or the horizontal channel of G (the notion of ‘“using up 3

track” is defined in assumption 4 in section 2). We place some additional restrictions on the Py
(and therefore routing strategies) we will allow.
(1) Reflezivity: The wire emanating from G passes through either channel over the gate at
[§,7] with probability Py.
(2) Symmetry: We ensure that the strategy behaves in the same manner in all directions by
imposing the following restriction:
P - P -t g
It follows from these two restrictions that

Pym=P_iyj= Piy= Pty (4.2)

The following key lemma applies to all uniform random routing strategies.
LEMMA 4.1: Every uniform random routing strategy satisfies the equality:

S Py = Pr), 1Sr<Llpm (4.3)
{{l4|flame

where P(r) depends only on the distance r and not on the strategy itself.

PROOF: The proof is simple, and follows from the reflexivity assumption that Py is the same as
the probability that the wire emitted by G passes through the gate at [i,7]. Each term in the
summation then becomes equal to the probability that the wire emitted by G passes through one
of the gates at distance r from it. The left-hand side is thus the probability that any wire is of
length >r; we denote this probability by P(r). s
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In fact, we can extend the above argument to the following observation:

L
Y py=3 Y Py=L (4.32)

1417 Sl rot ({141 S

where [ denotes the average wire leagth.

We impose an additional restriction to ensure that the behavior of the strategy is the same
in the vertical and horizontal directions. Let Pyy g be the probability that the wire emitted by G
passes through the horizontal channel over the gate at [i,j]; Py g is defined similary for the
vertical channel over [i,j]. The following restriction ensures uniformity in the vertical and

borizontal channel space requirements.

(3) Foralll € r < Ly, the values Py 4 and Py g must satisfy:

2 Pm‘_ﬁ= Z PWJI (4.43)
1417l e 114151 =
and
Y Puf= X Pusf (4.4b)
1417l me (€1414) =me
We note that
A= ¥ Pyg(1-Puyg) = Y Pag- E  (Paa 45
141 9) Slom 14+ §) S 1614151 Slem

where o2 denotes Lhe variance of the channel space requirement for the random routing strategy.
In the right-hand sides of both the above equations, the §rst term is the same; 2 good strategy
thus is one that maximizes the second. We note in passing that, by this criterion, a good strategy

is one that has a few relatively large values of Py, while the rest are very small.

The Hit-graph T'(S.E) of a routing strategy is a directed graph where each node v € S
represents one of the gates in the circle C. Thus, | S| = 4L, + 1. Each node u € S bas co-
ordinates [i,j] which are the co-ordinates of the gate it represents. An edge (u,v) is in E for
u,v € S if and only if the following two conditions are satisfied: (1) If « = [¢,j] then v = [5,7+1]
or v = [i+1,5]; (2) For any wire emitted by G which passes through v (henceforth referred to as
“the wire'’), there is a pon-zero probability that it passed through ». In addition, we assign to
each node and each edge in ' & real value in the interval [0,1] as follows: (1) The value a,, for
each edge (u,7) € E is the probability that the wire will pass through u on its way to v (the wire
does not pecessarily terminate at v). This probability depends on both the wire-length
distribution and the choices made by the routing strategy. (2) The value Py (alternatively, P,)
for each node u=|i,j] € S is the probability that the wire occupies » track in either channel over
gate u={i,j]. In general, this includes two terms - the probability py that the wire terminates in
[,5], plus the probability that it passes through [i,] en route to some other gate. As before, this
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takes into account the effects of both the wire-length distribution and the routing strategy. Note
that by reflexivity, the usage of Py here is consistent with the usage in equation (4.3).

We now list some properties of the hit-graph T that characterizes s routing strategy. The
node representing the gate G is clearly a “root” of the graph in the sense that it is the only node
that bas no edges entering it. The frst of the two conditions to be satisfied for the existence of an
edge ensures that edges can only exist between nodes that represent adjacent gates (two gates are
adjacent if the L, distance between them equals one). Moreover, the edges are all directed away
from G; since every gate must be reachable from G, there must exist a directed path in T from
G to every other node in I'. The first condition also induces a partition on the nodes of the graph
- two nodes lie in the same equivalence class if they have the same L, norm. We will call these
equivalence classes levels; heaceforth, we will speak of two gates as being on the same level if they
both have the same L, norm. It is evident that T is a sub-graph of the directed two-dimensional
rectilipear lattice with the origin at [0,0]. The set of directed paths from G to a gate at [i,j] is
precisely the set of possible routes in which the wire can be embedded by the routing strategy if

and when it passes through or terminates at 15,51

The values py; and g, have to satisfy some conservation rules. Let F' (u) denote the set of
predecessors of v in T pamely, the set of nodes {w: (w,x) € E}. Likewise, let
C(u) = {v : (u,v) € E} be the succesaors of u. The probability that the wire occupies a track
in u == [i,5] is then

P“ == Z Gy = Pyt E . 3. (4.6)
wEFs) *€(s)

forall |i1 + 1j1 > 0.
We are now ready to prove our results. In doing so, we make repeated use of the following
fact:

Let A, p, and p, be non-negative real numbers, where 0 < A < p, < p;- Then
pi+p2 < (ps + AP +(p,— A (4.7)

This suggests the following strategy for converting routing strategies into new ones that are
at least as good. Whenever two probabilities must add up to some constant (typically, due to 3
conservation rule), we can augment the sum of their squares by increasing (if possible} the larger
one at the expense of the smaller. As noted in equation (4.3), this would lead to an overall

reduction in variance.
The following lemma states an important property of the optimal random routing strategy.

LEMMA 4.2: The bit-graph of the optimal strategy is a (spanning) tree.
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PROOF: The proof depends on showing that a hit-graph T" which is not a tree can always be
improved upon in the variance-minimization sense. Let there exist two pode-disjoint directed
paths from u = [i,j] to v = [k,m], where [il+151 € lkl+im| £ Loy, Moreover, let
[k,m] be the node of lowest level for which this is true. Clearly [i,j] is then the only node that
has two node-disjoint directed paths to [k,m], and no node of lower level has two incoming edges.
The lengths of both paths are equal to the difference 1kl +1ml=1il =151 = L. Let the two
paths be [um=tyouy;, 85 * " " 811 wy=v| and [umugy,un,8 Y2l uy=v]. Without

loss of generality, let

-

= -1
2 Po¢ 2 2 P (4.8)
-t -

We now show how edge {uz:; ., v) can be eliminated to give a new hit-graph that is at least as
good as T. Let the value associated with the edges (uy , Hee41) be ay, for t € {1,2} and
0<¢<L-l

87 is the probability that the wire enters v through u,;;; the wire has clearly passed
through all the nodes 4,482,842, * - ° - Let

P, = Py =02 , 1S¢SL-1 (4.92)

and

!
ol N

Gyy— 0201 » O <g¢g<L-1 (4.9b)

be the new values assigned to nodes and edges along the second path. Correspondingly, for the
other path, let

Py, = P, 4063 , 1S¢<L-1 (4.10a)

and

aly, = 3y, t 021 0<¢<L-1 (4.10b)

be the new values assigned to nodes and edges along the first path.

The resultant graph (let us call it ) satisfies all the properties of a hit-graph, including
conservation. The value a,;; has been made sero, signifying that the wire will never pass
through u, ., in going to v; in essence, the edge (ug sy . ¥v) can be deleted. Most importantly, it
represents an improvement in varizﬁce in the sense of equation (4.5); the inequality is in fact 2
strong obe since ag . is by definition mon-zero. Repeated application of the above procedure
reduces ' to a hit-graph IV which is a tree with lower variance than I'. That it is a spanning tree

follows from the fact that every node in I is reachable from [0,0]. ®



«13-

It is worthwhile to stop and reflect on the significance of this result. For any I' which is a
tree, we may speak of the descendants D(u) of a node u = [i,j] without ambiguity. Ogne

property that is immediately evident for any ' which is a tree is

P, = py+ ) o (4.11a)
wECs)
where
Y = 3 Pem (4.11b)
wEs) v m] €D(s)

What does a tree hit-graph mean physically? The fact that T is a tree implies that there is
exactly one directed path to every pode in T from the root G. This is turn implies that if the
wire terminates in some gate (node) [§ ,j], there is a unique path along which it is laid out, and a
unique set of intervening gates it will pass through. In essence, we leave the randomization to the
connection distribution function; additional randomization by the algorithm adds to the variance
of the channel space requirement. In practice, however, we cannot expect a customer to provide a
iwell-randomized” instance of the intercopnection problem; so the algorithm must in fact perform
some randomization. It is possible to produce “pathological” problem instances which can in
general be wired succesfully, but cause a fixed-route strategy (tree hit-graph) to fail. Such
instances could be solved by an algorithm that does some randomization of its own. Nevertheless,
out of purely theoretical interest, we now exhibit s fixed-route interconnection strategy that
outperforms the random one-bend stratgy.

The Clockwise Pinwheel Graph Quy 18 3 hit-graph defined as follows:

(1) There exist directed edges ([0.4] . [0.5+1]), Y 0<jSn—1.
(2) In addition, ¥ 0<i<n and 1< j<n—i—1, there are edges directed from [i,j] to [i+1,4].
(3) For 0<i,jkm <n, if there is an edge ([i.j],[k.m]) there also exist edges.

(=i,=51 . |=k,~m}), (l7,=i] , [m,—k]), and (=741, [-m.k]).

(4) Since Qu4 is 2 tree, the values Py and a,, have unique values that follow from the structure
of the graph in an obvious fashion.

The third condition, informally, makes four copies of the first quadrant by clockwise
rotation and replication in the other quadrants. The structure of the graph explains the name;
Fig 3 illustrates Q. The Counterdockwiee Pinwheel Graph Q. may be defined similarly. We
now perform the variance computation for the Clockwise Pinwheel graph Q,; notice that at each
level r, although every gate has a non-zero Py, many of the Py g of Py 4 are zero. We compute

the variance of the vertical channel space requirement by considering only the Py g values in

Qat (The Counterclockwise Pinwheel Graph Q. has the same variance).
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»
We evaluate the contribution 3, Py, V 1Sr<n. Recal that P(r) = 3 p(r).
(4141 J1 e et

We then have
< P!k!
Py ™ Prei= 3

The gates [0,r] and [0,—r] are counted as gates with Pyy 4= 0; this is because the number of
bends in a wire is exactly one under the pinwheel strategy, so that each wire takes up one track in
ope of the chanpels of all gates it passes over except the gate over which it bends. The wire uses
up a track in both the vertical and the horizontal channels over the gate over which it executes its
turn. The fact that there is only one bend per wire means that there is an average of only one
extra track in each chanpel over each gate when averaged over all gates, due to this phenomenon.
We therefore use the convention that a gate has non-zero Py gy if the wire from G enters it

vertically; a similar convention is used for Pyy 4
In addition, there are 2(r—1) gates each of which has Pyyq = ﬂ4:—) From these, it is clear

that for the Clockwise Pinwheel graph Q.4 has

2
P(r
+(r=1) -iir-,l (4.12)

Y Pus= -8-1; [4‘-:'1’(*)
[l Jimw r ——

A similar computation can be performed for the random one-bend strategy to arrive at:

2
1 < P!r!
Py 42 = e Pk + (r—1 4.13
PR Rl = LPE)| +(r=1) = (4.13)

It is evident that the sum of the squares of Py for the clockwise pinwheel strategy exceeds

the corresponding figure for the random one-bend strategy. The variance of the clockwise



pinwheel strategy (and therefore the space requirement) is thus lower than that of the random
one-bend strategy. It is worth noting that the hit-graph for the random one-beand strategy is in
fact the superposition of a clockwise pinwheel graph with 3 counterclockwise pinwheel graph. It is
thus possible to generalize our ‘upbiased’ random one-bend strategy into a family of biased
strategies where the route for an interconnection is chosen from the ‘clockwise’ pinwheel graph
with some probability 1—¢, and from the ‘counterclockwise’ piowheel graph with probability ¢,
for some positive ¢g < 1. As long 28 €o7£0.5, the variance of such a biased random one-bend
strategy is lower than that of the unbiased version.

At this juncture, it is worth investigating the seriousness of the variance problem. It is clear
that our class of strategies admits many that are superior to the unbiased random one-bend
strategy, even though they may be less likely to find 3 solution for some bad instances of the
problem. Specifially, we address the following question: can there exist an optimal hit-graph that
is asymptotically superior to any of the above strategies in the minimum variance sense? We
return to equation (4.5) for the answer.

A= Y Payg- X (Pusf (4.5)

{4l fl Slam 1414 S| Shog
> F B - T By (4.14)
rumd el

since the second term on the right-hand side of (4.5) is upper-bounded by the second term in
(4.14). Copsider P(r) = h-+=5 where h is a constant and & is positive. This corresponds to the

wire-length distribution function p(r) decreasing faster than -:7 The Feuer wire-length

distribution with p < 1 is such a distribution. Using integrals to approximate sums, we find that
the first term in (4.14) grows as Lgy,'™, while the second grows no faster than L '~%; the latter
is thus always asymptotically smaller. From this it is clear that our bound on the variance in
equation (3.2) is tight. It is therefore clear that the optimal strategy, whatever form it takes,

canpot improve very much on 3 sub-optimal one like the random one-bend.

5. Conclusions and Caveats

In conclusion, we would like to make some remarks on the validity of our results,
particularly in the light of the fact that some of them hinge on asymptotic comparisons between
the terms in the gate-width expression. The weakest link in the analysis, perhaps, is the
applicability of Rent’s Raule. Altbough this analytical representation of locality has been borne

out in practice [5], there are several reasons to suspect its continued validity.

Notice that Rent's Rule says nothing about logic circuits by themeelves; it only speaks of
circzits that have been embedded on a plane (p.c.b., chip, etc.). The rule thus assumes something



about the placement of logic componests on 3 plane. It is necessary to view this from two pointa:

(1) Can Rent’s Rule be assumed to bold for large n? Since GRAPH PARTITION and other
problems closely related to logic component placement are known to be NP-Complete, it is
pot clear that very large circuits can be “successfully” placed so as to comply with Rent's
Rule.

(2) Can locality in logic circuits be characterized without reference to their embedding on
planes? This would free us from the difficalty mentioned above. We do not have to assume
that a circuit embedding has a certain intrinsic locality. Moreover, a successful
characterization might lead us to provably good heuristics for the GRAPH PARTITION
problem applied to ‘circuit-like’ graphs.

Two other aspects of our model are worth noting while evaluating our resuits.

(1) Is it clear that as designs grow very large, minimum distance routings are in gemeral the
best? Note that a randomized strategy that permitted longer routes would suffer from a
larger leading term in the limit equation (3.3).

(2) Our analysis depends heavily on 3 uniformity assumption, but practical circuits will
certainly exhibit varying behavior at different parts of the physical chip. Gates pear the
edges will have their wire emission patterns polarized towards the middle, for instance.
From an algorithmic point of view, it is not clear whether uniform routing strategies are the
right approach.

These doubts notwithstanding, we believe that the basic principle delineated by the results
in Section 3 is that as designs grow very large, the law of large numbers makes an attractive case
for randomized algorithms. The result in Section 4 derives much of its significance from the
simplicity of one-bend routes, as also the fact that wires following such routes have only one via
in them. The minimization of the number of vias in 3 wire/layout has long been considered a
desirable feature in VLI layouts [9]. Moreover, we used the fact that if the number of bends
(vias) in a wire is 3 constant (either in the absolute or the average sense), gates over which a wire
bends do not pay a heavy penalty; the pumber of additional tracks in each channel is a constant.
Finally, the need to consider the second term in channel-width estimation once more highlights

the fact that asymptotic results can be misleading in VLSt
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