PHRED: A Generator for Natural Language Interfaces‘

Paul S. Jacobs

Berkeley Artificial Intelligence Research
Division of Computer Science
Department of EECS
University of California
Berkeley, CA, USA

ABSTRACT

PHRED (PHRasal English Diction) is a natural language generator designed
for use in a variety of domains. It was constructed to share a knowledge base
with PHRAN (PHRasal ANalyzer) as part of a real-time user-friendly interface.
The knowledge base consists of pattern-concept pairs, i.e., associations between
linguistic structures and conceptual templates. Using this knowledge base,
PHRED produces appropriate and grammatical natural language output from a
conceptual representation.

PHRED and PHRAN are currently used as central components of the user
interface to the UNIX Consultant System (UC). This system answers questions
and solves problems related to the UNIX operating system. UC passes the con-
ceptual form of its responses, usually either questions or answers to questions, to
the PHRED generator, which expresses them in the user's language. Currently
the consultant can answer questions and produce its responses in either English or
Spanish.

There are a number of practical advantages to PHRED as the generation
component of a natural language system. Having a knowledge base shared
between analyzer and generator eliminates the inevitable redundancy of having
separate grammars and lexicons for input and output. It avoids possibly awk-
ward inconsistencies caused by such a separation, and allows for interchangeable
interfaces, such as the English and Spanish versions of the UC interface.

The phrasal approach to language processing realized in PHRED has proven
helpful in generation as in analysis. PHRED commands the use of idioms, gram-
matical constructions, and canned phrases without a specialized mechanism or
data structure. It does so without restricting its ability to utilize more general
linguistic knowledge.

While PHRED affords extepsibility, simplicity, and processing speed, its
design incorporates a cognitive motivation as well. It diverges from the tradi
ticnal computational approach to language as a symbol manipulation process, and
treats it more as an associative process among knowledge structures. The phrasal
approach minimizes the autonomy of the individual word, the bane of some
Artificial Intelligence approaches to language. The treatment of most linguistic
knowledge as declarative bears cognitive as well as practical significance. The
two-stage process used by PHRED to select appropriate linguistic structures also
fits well with cognitive theories of language and memory.

PHRED: A Generator for Naturzl Language Interfaces

Paul S. Jacobs

Berkeley Artificial Intelligence Research
Division of Computer Science
Department of EECS
Utiversity of California
Berkeley, CA, USA

1. Introduction

Computer programs which can effectively communicate in natural language
must be capable both of analyzing a wide range of utterances to derive their
meaning or intent, and of producing appropriate and intelligible responses. His-
torically these two tasks have been treated independently, principally because
some of the hard problems in language production differ from those of language
analysis. In the MARGIE system, for example, the BABEL generator (Goldman,
1975) employed a discrimination net as its principal data structure to facilitate
the selection of an appropriate verb and an ATN grammar to apply syntactic con-
straints, while the ELI analyzer (Riesbeck, 1875) in the same system attached rou-
tines to individual words to control the interpretations considered during the pars-
ing process.

Throughout the short history of natural language generation systems, pro-
grams which produce language have treated generation as a process of dectsion
making (McDonald, 1980), choice (Mann and Matthiessen, 1983), or planning
(Appelt, 1982). These systems have employed knowledge structures specifically
geared, to varying degrees, to the task of constraining the selection of lexical and
grammatical elements. The design of analyzers, on the other hand, focuses on the
problem of ambiguity in natural language and makes use of knowledge structures
designed to constrain the consideration of alternative interpretations.

Even in systems with both analysis and generation components, the
knowledgé used to derive meaning from language is not used to produce language
from meaning. Such systems may be able to use a word or grammatical structure
without being able to recognize the same structure, or vice versa, and must dupli-
cate a great deal of information if the generator uses language similar to that
understood by the analyzer. Intuitively, it seems that the knowledge used to con-
strain the interpretation of language can be used to constrain the choice of
language. A cognitively realistic natural language system with a parsimonious
knowledge representation could encompass an interface capable of both analysis
and production without excessive duplication, with knowledge about language as
well as mechanisms for its analysis and generation.

Y This research was sponsored in part by the Office of Naval Research under contract N00O014-80-C-0732, the
National Science Foundation under grants IST-8007045 and IST-8208802, and the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3041, Monitored by the Naval Electronic Systeme Command under
contract N00030-82-C-0235. | am grateful to Robert Wilensky for his guidance and for his important comments
ob numerous drafts of this paper, and to Lisa Rau for many belpful suggestions.

-2-

PHRED (PHRasal English Diction) was conceived as the generation com-
ponent of such an interface. PHRED, along with its companion analysis program
PHRAN (PHRasal ANalyzer) (Wilensky and Arens, 1980), embodies an approach
to natural language processing founded on the principle that knowledge about
language is in essence declarative, consisting of associations between linguistic and
conceptual structures of varying degrees of specificity (Wilensky, 1981). Such
declarative knowledge should be used for both analysis and generation, and its
knowledge structure independent of the particular language. From its initial con-
ception the “English” part of PHRED’s acronym was anomalous, as both the
analyzer and generator were envisioned as being able to utilize knowledge bases of
multiple languages. ‘

PHRED and PHRAN currently make up the linguistic component of the user
interface for the UNIX Consultant System (UC) (Wilensky, Arens, and Chin,
1984), a program designed to aide novice users of the UNIX operating system by
conversing in natural language.. PHRAN analyzes the user’s input to UC, which
then passes its response in conceptual form to PHRED to be converted into
natural language output. Below are some examples of questions to UC, with the
responses generated by PHRED:

User: How do I delete a file?

UC: Typing ‘rm filename’ causes the flle filename to be removed from
the current directory.

User: Cémo se borra un archivo?

UC: Para borrar el archivo de nombre filename del espacio de trabajo,
se escribe ‘rm filename’.

User: How do I delete all the files from a directory?

UC: Typing ‘rm *' will remove =all files within the current directory
from the current directory.

Typing ‘rm -r directoryname’ will cause all files and directories
recursively inside of directoryname to be deleted from directo-
ryname and removes the directory directoryname from the work-
ing directory.

While PHRAN and PHRED were originally tested using an English vocabu-
lary used for various stories and news articles, it was a relatively easy task to
accommodate linguistic knowledge bases for English and Spanish in order for the
same programs to operate in the UC domain. Adding a new vocabulary or
language capability to the UC system has required no modification to the pro-
gram, although the system has not had extensive testing with many languages.

PHRED is implemented in Franz LISP and runs compiled on 2 VAX 11/780.
The English linguistic knowledge base of UC contains about 150 patterns, in addi-
tion to knowledze of the morphological characteristics of 30 verbs and 50 nouns.
The compiled program occupies about 100K bytes of memory, of which about
20K is code used also by PHRAN. Output from PHRED in the UC system
requires 1-3 seconds of CPU time, roughly a third of the total time used by the
system.

2. Design

The design and construction of the PHRED generator is the product of three
interacting goals:

(1) robustness

— A useful language generator must produce a variety of correct utterances,
with potentially complex and varied syntax, without being limited to a par-
ticular specialized domain.

(2) cognitive validity

— There is a growing body of evidence which sheds light on the way people
use language and access linguistic information. This includes data concerning
linguistic and conceptual categories and prototypes, associative priming,
language acquisition, use of speech acts, and conversational tendencies. A
system which takes this evidence into account is more likely to be extensible
and integrable with other cognitive mechanisms.

(3) efficiency

-- Efficiency of knowledge representation plays a role in determining not only
the space usage and search time of a system, but also the ease with which
new knowledge can be added. There are thus three measures of efficiency to
be considered: size, the amount of space used by the knowledge of a system,
access, the speed with which knowledge can be retrieved, and eztensibility,
the amount of space required to add new knowledge to the system. The
three measures are correlated, but there are often tradeoffs among them in
the development of 2 natural language system.

2.1. Representation

PHRED, like PHRAN, employs a knowledge base consisting of pattern-
concept pairs, which attach a conceptual structure or template te a linguistic pat-
tern or expression. The use of the pattern-concept pair as the unit of linguistic
knowledge representation, principally motivated by the desire to have a database
shared by analyzer and generator, has brought PHRED closer to achieving the
above three goals. For a discussion of the details of this representation and how it
relates in particular to language analysis, the reader is referred to Wilensky and
Arens (1980).

The underlying scheme for linguistic representation in PHRED is the same as
that originally proposed for PHRAN. While the actual knowledge structures
were modified to give PHRED a more powerful mechanism for handling agree-
ment among constituents and for determining the order in which constituents are
generated, the principal design of the PHRAN/PHRED representation is the same
as in Wilensky's description (Wilensky, 1981). This design has the following
essential features:

(1) declarative nature

The pattern-concept pairs used in PHRAN/PHRED are associations
between linguistic structures and their conceptual and functional representa-
tions. Historically, the declarative representation was motivated in part by
problems with analyzers such as Riesbeck’s (Riesbeck, 1875) which relied on
procedural knowledge. Declarative theories of linguistic representation have
since become more prevalent; however, some of the knowledge schemes used
in generation, such as systemic grammar (Halliday, 1968) and Incremental
Procedural Grammar (Kempen and Hoenkamp, 1982) have intimate pro-
cedural ties.

(2) phrasal patterns

The pattern component of the PHRED knowledge structures may represent
general syntactic information or knowledge about a particular idiom. Much
of linguistic knowledge is based not around individual words, nor around gen-
eral syntactic entities, but rather around phrases of varying degrees of flexi-
bility. Many systems employ ‘‘phrasal lexicons” to handle “canned” or fixed
phrases which behave in particular ways, but either ignore or handle as spe-
cial cases the unfixed idioms and other grammatical constructions not present
in “‘core” theories of grammar. The phrasal patterns in PHRED facilitate
the use of such elements without treating them as special cases.

(3) interaction among features

The PHRAN/PHRED framework allows for a grammatical constituent to
be specified using a combination of syntactic, functional, and semantic
features. The syntactic category of a pattern, treated as a special property
in many systems, is an undistinguished attribute to a pattern-concept pair.
While the pattern-concept pairs used by PHRED are similar to the
knowledge structures in unification grammar (Kay, 1983), PHRED differs
from most generators which employ a unification grammar in the facilitation
of the interaction of syntax with other types of knowledge.

The pattern-concept pair representation has developed is parallel with
research on formulaicity and idiomaticity done primarily by cognitive linguists.
Much of this work questions the cognitive validity of traditional generative
theories of grammar. Chafe (1968) identifies certain idioms, such as ‘by and
large” and “‘all of a sudden” which would be ungrammatical were they not given
special status as idiomatic constructions. Other expressions, such as ‘kick the
bucket”, are grammatical, but have a meaning which is not determined by any
compositional relationship among their components. Chafe 2 -ues that these
idiomatic constructs sufficiently pervade everyday language to warrant an
approach to language which handles these constructs not as special cases or excep-
tions but as an integral part of a language.

Becker (1975) presents the idea of the phrasal lexicon as a means of handling
canned and idiomatic phrases. Becker identifies in particular a range of phrases
which are grammatical and even comprehensible via compositional rules, yet
which suggest specialized contextual knowledge. The expression ‘It only hurts
when [laugh” can theoretically be handled using traditional theories of grammar,
_ but treating it as such would be ignoring an important component of the
expression’s meaning. The existence of such expressions, which involve either

-5-

partially or entirely specialized knowledge, has generally been treated as of minor
importance in computational theories of language. However, a cognitively realis-
tic representation must take into account the role of both general syntactic
knowledge and specialized knowledge about particular phrases.

While these arguments are directed at developing cognitively valid theories of
linguistic representation, the handling of idiomaticity and of specialized phrasal
knowledge has a substantial influence on the robustness and efficiency of a system.
If specialized linguistic knowledge is indeed as pervasive as Chafe would argue, a
system which deals only with ‘“‘core” grammatical and productive constructs will
handle but a small portion of a language. A generator working within such a sys-
tem would be severely limited in the range of utterances which it could produce
and in its ability to produce an output appropriate to a given context. On the
other hand, failing to take advantage of linguistic generalizations can introduce
redundancy and possibly inefficiency into the knowledge base. Robust and
efficient language processing therefore demands a representation which takes
advantage of both specialized idiomatic and general syntactic knowledge.

Fillmore (1979) gives arguments for the idea of the structural formula, a
phrase or construction which cannot be described strictly as the composition of its
components but may still have a certain degree of structural freedom. Fillmore
presents ‘< Time unit> in and <Time unit> out” as an example of such a for-
mula, manifest in expressions such as “day in and day out” and “‘week in and
week out’’. More recently, Fillmore and others extend this idea to a theory of
grammatical constructions (cf. Fillmore, Kay, and O' Connor, 1984; Lakof,
1984), focusing on expressions which exhibit certain regularities and obey some
grammatical constraints but whose behavior cannot be determined by *‘core”
grammar. Examples of such expressions are ‘‘let alone” as in ‘““He didn’'t make
first lieutenant, let alone general”, and the deictic ‘‘there”, as in ““There goes
Harry, shooting his mouth off again”. Fillmore, Kay, and O’ Connor point out
the difference between attempting to develop a minimal base of knowledge from
which a linguistic competence can be computed, and attempting to develop a
knowledge base which represents how human linguistic knowledge is in fact
stored.

As an example of this distinction, consider the division drawn by Fillmore,
Kay, and O’ Connor between idioms of decoding, such as “kick the bucket”, and
“spill the beans”, and idioms of encoding only, such as “‘answer the door”, and
“wide awake.” All of these are grammatical idioms; that is, they have a syntactic
structure and word order compatible with core grammatical constructs. The
idioms of decoding, however, require specialized knowledge both for the
comprehension of their meaning and their appropriate use. The idioms of encod-
ing could possibly be comprehended using knowledge about their components
only, but specialized knowledge is required to predict their use. Whether this spe-
cialized knowledge is to be stored in a given representational model therefore
depends on what problem the model is addressing: competence, comprehension, or
production.

We have thus distinguished three potential classes of linguistic knowledge: (1)
The knowledge which is required to determine the membership of a given phrase
or sentence in a language, (2) that which is necessary to determine the meaning
of a phrase, and (3) that which determines appropriate use of the phrase. Modern
computational linguistics has emphasized the first class, and thus many systems
have attempted to define the second and third knowledge classes by adding auxili-
ary knowledge to a grammar for a linguistic competence. The PHRAN/PHRED
pattern-concept pair representation, on the other hand, attempts to subsume the
three classes into a single framework. Since the goal of PHRAN and PHRED is

-6-

proficient analysis and use of language, the distinction between grammatical and
extragrammatical idioms becomes of minor importance. It is counterintuitive to
treat phrases such as ‘‘all of a sudden” as of a different nature from “kick the
bucket’ simply because the former is extragrammatical. Further, the emphasis on
the ability to compute a linguistic competence using a small set of rules is dimin-
ished. If specialized knowledge about a given phrase is required for its appropri-
ate use, there is no reason why this knowledge cannot also be used for its syntac-
tic analysis, even if in a system which performs analysis alone such knowledge
would be redundant.

Consider the phrase ‘“‘answer the door”. A pure syntactic analyzer would
require no special knowledge to recognize the construct as a valid verb phrase. It
is possible as well that the meaning of the phrase could be determined based on
the structure of the verb phrase and its constituents. However, in order for
PHRED to give the phrase its deserved distinction from ““respond to the door” or
other less appropriate utterances, special knowledge, that ‘‘answer the door”
means to open a door in response to a knock or doorbell, is required. Since this
knowledge 1s encoded into the common knowledge base, it may also be used by
PHRAN to determine the meaning of the phrase.

The development of a knowledge base for the purposes of both language
analysis and language production therefore changes the nature of the linguistic
knowledge base and its use. Information which is redundant when considered
from a strict computational standpoint may be essential for a particular aspect of
language processing. Such specialized knowledge may then be used by other com-
ponents of the system. Thus the emphasis in the PHRAN/PHRED representation
is on the storage of such redundant information rather than on its computation.
Specialized knowledge about phrases and constructions is an integral part of the
knowledge base and is used preferentially to general knowledge which requires
more computation, both for analysis and production.

Of course, fundamental differences between analysis and generation still exist
in PHRAN and PHRED. While the two programs have a shared knowledge base,
they have entirely independent methods of accessing and applying their linguistic
knowledge. PHRAN accesses patterns by recognizing sequences of constituents;
PHRED must select a pattern based on the concept it is to express and the con-
‘iraints which the pattern must satisfy. The PHRED approach to language gen-
eration is committed to the representation of linguistic knowledge in a declarative
form which can be shared by the analyzer. The knowledge structures used by the
generator are the same as those used by the analyzer, but the process which
makes use of this knowledge to produce an utterance still reflects the basic choice
problem.

2.2. The Generation Process

The process by which PHRED produces an utterance from its conceptual
representation involves three stages. Fetching is the process of retrieving candi-
date patterns from the knowledge base of pattern-concept pairs. Restriction is
the matching of a candidate pattern to the specifications derived from the concept
and the addition of constraints to a selected pattern. Interpretation is the pro-
duction of grammatical output from the chosen pattern.

The fetching mechanism of PHRED uses a multiple-key hashing mechanism
to produce a stream of possible pattern-concept pairs, given a conceptual form
- and/or a set of constraints that the pattern must satisfy. In the restriction phase
a possible pattern is evaluated to determine whether it in fact fits the concept and

-7-

does not violate any of the constraints. The basic choice problem therefore
encompasses two different phenomena, which may be viewed theoretically as
predisposition and selection. Predisposition is the process by which access to a
knowledge base is influenced by various factors — such as the context, the concept
to be expressed, or specific constraints on the desired output — to influence the
order or priority in which elements of the knowledge base are considered. Selec-
tion is the evaluation of an element from the knowledge base. Intuitively,
predisposition is the underlying access process which influences the likelihood of
considering a particular word or phrase; selection is the judgement process which
determines whether the word or phrase is appropriate.

There are three motivations for a design which provides for both a predispo-
sition and a selection phase of the choice process. First, a system which employs
as its principal choice mechanism, for example, a discrimination net such as
Goldman's (Goldman, 1975) or a unification scheme such as McKeown’s
(McKeown, 1982) may apply its choice algorithm to many unlikely candidates,
sometimes causing inefficiency. For example, the system might consider the verbs
“smoke” and “inhale” every time it chooses the verb “‘breathe”. A fast indexing
mechanism which quickly selects candidates trims the time spent evaluating inap-

propriate choices.

The second motivating force lies in the distinction between utterances which
are technically correct in expressing a given concept and those which are generally
appropriate to a given context. ‘‘John inhaled air” is technically correct but gen-
erally inappropriate in place of “‘John breathed”. This type of distinction can be
embedded in a choice mechanism by attempting to axiomatize the rules which
determine appropriateness, or it can be embedded in a predisposition mechanism
which happens to order the choices according to the context. Predisposition thus
provides a means for biasing choice without blurring the distinction between
correctness and appropriateness.

The third motivation is cognitive validity. The predisposition-selection dis-
tinction fits the intuition that people have when they hear an unusual sentence:
“It's okay but I wouldn’t say it.” In the example of “breathe’” and “inbale air”
both utterances may fit the input conceptualization, but fluent speakers tend to
choose the former. Fluent speakers also bias their predisposition mechanisms
according to the nature and formality of the context. Pawley and Syder (1980)
find that one of the differences between native and non-native speakers of a
language is that non-native speakers take a long time to develop the predisposi-
tion component necessary for fluency. Chafe has pointed out some of the
influential factors in the variations between spoken and written, or informal and
formal, language (Chafe, 1984). While some of this work 1s still in its early stages,
the evidence strongly suggests a contextual biasing component distinct from the
selection or evaluation phase of production.

The goal behind the PHRED indexing scheme is to incorporate as much of
the choice problem as possible into the fetching, or predisposition, phase. Some
language generators (Goldman, 1975; McDonald, 1880) use indexing tools which
model choice as a multistage evaluation or decision-making process. The division
of this process into an ‘‘automatic” biasing component and a judgment com-
ponent has some practical advantages. The hashing algorithm which drives the
fetching mechanism orders the stream of patterns retrieved before any of them is
actually evaluated, and thus the more time-consuming restriction process is spared
having to apply heuristics to make certain choices. For example, a general heuris-
tic used by a number of language generators can be expressed as “Choose the
‘most specific pattern which matches the input constraints”. In PHRED, this
heuristic is realized by the hashing mechanism, which orders candidate patterns in

-8-

terms of the number of buckets which yield them. In this way the sentence “John
asked Bill to leave” is generally produced without considering the alternstive
“John informed Bill that he wanted him to leave”. The details of how the fetch-
ing scheme accomplishes this will be presented in later sections.

2.3. Language Planning and PHRED

Appelt (1982) has presented language generation as the multi-level process of
planning utterances to satisfy multiple goals. A division in this multi-stage process
can be made between the task domain and the linguistic domain, or between the
system level and the interface level. PHRED operates at the interface level. User
input to the UNIX consultant system is first analyzed by PHRAN, producing a
conceptual knowledge structure which motivates the system’s response (Wilensky,
Arens, and Chin, 1984). The planning component of the system exists entirely
within the task domain of UC. The UC planner makes the choice of illocutionary
act, speech act, and the message to be conveyed. PHRED expresses the message

in natural language.

While the ability to handle complex problems in language planning might be
desirable even at the PHRED level, it is difficult to perform such planning within
a real-time system. It is both counter-intuitive and inefficient to treat language
production as primarily a reasoning process involving complex inference mechan-
isms. In fact, the need for such reasoning in language production seems rare.
Thus the UC system draws a convenient, if arbitrary, division between the choices
of responses and speech acts made by the UC planner and the lexical and struc-
tural choices made by PHRED.

3. The PHRED Knowledge Base

The knowledge base shared by the phrasal analyzer (PHRAN) and phrasal
generator (PHRED) consists of pattern-concept pairs, where the pattern contains
a linguistic structure and the concept its internal representation. The use of the
PC pair as a unit of linguistic knowledge distinguishes PHRED from some other
language production mechanisms (McDonald, 1870; Mann and Matthiessen, 1883;
McKeown, 1982) in which grammatical information and conceptual information
are separated. Associated with each PC pair is a list of properties used for index-
ing the pair in the database and for adding knowledge to the system, as well as
information about forms of agreement among constituents.

This section is intended to provide sufficient detail of PHRED's knowledge
representation to make transparent the examples to be covered later. For a more
complete discussion of the development and particulars of the pattern-concept
pair representation, the reader is again directed to (Wilensky and Arens, 1880).
The pattern-concept pair representation as presented here is, with some minor
variations, the same as that used in the original PHRAN.

The “pattern’ part of the PC pairs is a list of constituents, where each con-
stituent in a pattern is generally described either as a pattern of speech (p-o-s) or
as a member of a descriptive category (e.g. person, physical object). Patterns may
also be formed by conjunction and disjunction of other patterns and may contain
specifications of constraints. For example, the constituent

< and root=remove tense=present voice=active form=infinitive>

-9-

is a smgle—constituent pattern which would generate the infinitive verb ‘‘to
remove’’, while

< and p-o-s=noun-phrase <or person physob>>

represents a noun-phrase which refers to a person or physical object.

Patterns may be very specific phrases which refer to particular objects. The
pattern

<word=the> <word=big> <word=apple>

represents the phrase ‘‘the big apple’” used to refer to New York City. This
phrase can also be produced by the general pattern

< p-o-s=article> <p-o-s=np2>

when used to refer to an apple.

Idioms are often partially frozen patterns which behave as a particular gram-
matical unit. The phrase ‘‘kick the bucket’” behaves as a verb which conjugates
but does not passivize. It corresponds to the pattern

< and p-o-s=verb root=kick> <word=the> <word=Dbucket>

which functions as an intransitive verb.

Part of the knowledge associated with a pattern-concept pair is the
correspondence between the properties of the pattern’s constituents and the pro-
perties of the entire pattern. Associated with the “kick the bucket’” pattern
above is the knowledge that the person, number and tense of the pattern
correspond to the person, number and tense of the first constituent, the form of
the verb “kick’. In generation, this results in the recursive application of con-
straints from a pattern to its components: To generate a past-tense verb meaning
‘““died”’, the system will operate recursively on the pattern above to generate a
past-tense form of “kick".

Patterns are not necessarily fixed word-order. For example, in

< person> <root=tell> <person>
< <word=to> <word=get> <word=lost>>

the pattern retains its meaning when passivization is applied or when the subject
is deleted. Such patterns are used in combination with ordering patterns, which
control the various ways in which a pattern may be linguistically realized. An
ordering pattern which could be used in conjunction with the ‘“‘get lost’” pattern
above is the passive ordering:

<p-o-s=np> <p-o-s=verb voice=passive >
< <word=by> <p-o-s=np>> <#rest>

This pattern is accompanied by the information that the third constituent of the
accompanying pattern is the first constituent of the ordering, and the first consti-
tuent of the accompanying pattern is the third constituent of the ordering. The
extra set of angle brackets here is used to mark the enclosed phrase as being
optional to the pattern. The ‘“‘#rest” indicates where additional constituents are
generally inserted.

-10-

Thus some patterns have an unspecified word order and do not produce a
particular pattern of speech independently. These are combined by PHRED with
ordering patterns to allow for idioms or expressions which may appear in various
forms, such as ‘“‘bury the hatchet” in ““The hatchet was buried at Appomattox.”
The same effect could be accomplished without ordering rules by increasing the
number of fixed-word-order patterns combinatorially. The use of the ordering
patterns, however, has a certain elegance as well as a practical value: it allows
the specification of certain idiomatic constructs as relations among particular con-
stituents, regardless of where the constituents appear in the actual output. In this
case, the specialized meaning of ‘“telling someone to get lost’” is effectively
represented by the relationship between the verb “tell” and its complement ‘to
get lost”. This meaning may be realized in a variety of forms; for example, the
combination of the ‘‘get lost’” pattern with a passive ordering may produce the
sentence ‘‘John was told by Bill to get lost.”

While there are similarities between the ordering rules used by PHRED and
transformational grammar rules, there are some important differences. Most
importantly, PHRED assumes no underlying surface structure; rather, the final
ordering of a pattern of speech is produced by combining a set of linguistic pat-
terns. Furthermore, there is no strict sequence in which the patterns must be
used: A given ordering pattern may be chosen either before or after a pattern
with which it is to be combined. In this way PHRED is more flexible than other
systems which handle word order as a final phase of the generation process.

The concept part of the pattern-concept pairs used in the PHRAN/PHRED
knowledge base have generally been adaptations of conceptual dependency
representations (cf. Schank, 1975) with a variety of predicates, quantifiers, and
other additions. The representation scheme is intended not to incorporate an
irreducible set of primitives or a restrictive syntax, but to provide a functional
representation compatible with the UC knowledge base. The programs are flexi-
ble with respect to -the choice of knowledge representation, and have regularly
been used as a tool in testing new representational theories.

In addition to the linguistic patterns and associated conceptual representa-
tion, PC pairs contain a set of properties, or attributes, and other information
which guides their use. As described earlier, some of this information is used to
determine correspondences between a pattern and its constituents. Other proper-
ties are used for indexing purposes. There is also a facility for ‘“‘escapes’ or the
ability to call a special procedure from within the declarative knowledge represen-
tation. While this facility was often exploited in early versions of PHRAN, it is
problematic for knowledge bases shared with PHRED. Procedures called during
analysis are seldom useful to the generator or vice versa. Therefore such pro-
cedure calls have seldom been used in PHRED, and an attempt has been made to
encode all knowledge in a declarative form which can be used by both the genera-
tor and the analyzer.

A simple example of a pattern-concept pair is given below:
Pattern: <agent> <root=remove> <object> < <word=from> <container>>

Concept: (state-change (actor ?actor)
state-name location)
from (inside-of (object ?cont}))
to (not (inside-of (object ?cont)))))

-11-

Properties:
tense—(value 2 tense)
actor=(value 3)
cont=(value 5)
forms=(active-s passive-s)

The above PC pair can be used by PHRED, depending on the concept being
expressed, to produce the sentence ‘“You should remove the files from your direc-
tory’’ or the infinitive phrase “to remove a file from the top level directory’". The
special “value” indicator designates the association of a property of the PC pair
with a property of one of its constituents, specified by number. Thus
“tense==(value 2 tense)” implies that the tense of the pattern is the tense of the
second constituent, the verb. ‘‘cont=(value 5)” indicates that the token unified
with the variable “?cont” in the conceptual template corresponds to the fifth con-
stituent, the object of “from”. The final output is determined by the combination
of this PC pair with the input attributes and the ordering patterns selected.

A simple ordering PC pair is given below:

Pattern: <and #3 p-o-s=noun-phrase case==objective>
<and #2 p-o-s=verb form=infinitive voice==passive>
< <word=by> :
<and #1 p-o-s=noun-phrase case=objective>>
< #frest>

Properties:
p-o-s=inf-phrase
forms=(passive-s)

The “#2" and “#3” within the ordering pattern indicate that the con-
straints on the second and third constituents of the coordinated pattern are con-
joined with the first and second constituents of the ordering pattern, respectively.
The “p-o-s=inf-phrase’ property specifies that the pattern produces an infinitive
phrase, and the “forms=(active-s)” property restricts the use of this ordering to
patterns which have “‘active-s” among their forms. This ordering pattern could
be used, for example, in conjunction with the ‘‘remove” pattern above to produce
the passive infinitive phrase “‘the file to be deleted by the user from his top level
directory.”

4. Implementation

The production of an utterance in PHRED is a recursive process which can
be divided into the three phases outlined earlier. Fetching is the retrieval of
pattern-concept pairs from the knowledge base. Restriction consists of validating
a potential pattern-concept pair to confirm that it fulfills a given set of constraints
and the addition of new constraints to the pattern. Interpretation is the genera-
tion of lexical items which match the constraints of the restricted pattern.

Each of these phases and its role in the production process will now be dis-
cussed in further detail.

-12-

4.1. Fetching

While PHRAN and PHRED use the same knowledge structures, the way in
which these structures are accessed for the purpose of generation naturally differs
from their access by the analyzer. PHRAN must recognize a set of lexemes as
possibly corresponding to a pattern and thereby retrieve an appropriate pattern-
concept pair from the knowledge base. PHRED, on the other hand, accesses the
knowledge base by searching for a conceptual template which fits the concept that
is to be expressed.

Because fetching can be a time-consuming part of the generation process,
PHRED uses a hashing scheme designed to produce an ordering of candidate pat-
terns with a minimum of computation. As the generator uses the first available
appropriate utterance rather than evaluate all potential candidates, this ordering
inﬁue%ces the choice process as well as the number of patterns ultimately con-
sidered.

Indexing in PHRED is done by multiple-key hashing. Based on the input
concept and/or constraints on the desired pattern, the fetching mechanism deter-
mines a set of hash ‘“‘buckets” in which to search for pattern-concept pairs. The
buckets are lists of pattern-concept pairs attached to the property lists of specially
constructed atoms. These atoms are uniquely determined by a set of attributes;
thus the hashing scheme is not susceptible to random collisions due to fullness of
the knowledge base. In other words, the computation of a hash key is guaranteed
to yield only PC pairs which partially or entirely match the constraints.

Keys may be arbitrary collections of properties and attributes; thus the same
indexing scheme used for the most complex patterns is used for simple words. In
lexical choices and choices of grammatical constructions, the concept determines
the hash keys. For these concepts PHRED constructs hash keys based first on
large sets of semantic attributes, then on increasingly smaller sets of attributes.
Since a hash into an empty bucket takes very little time, there is no great loss of
time efficiency in using a fairly large number of hashes. Although the access to a
PC pair through multiple buckets requires some additional space, this space is
negligible compared to the size of the knowledge structures themselves.

The construction of hash keys based on successively smaller sets of attributes
assures that the PC pairs whose concept most closely matches the input concept
will be considered first. The fetching mechanism produces a stream of pattern-
concept pairs which are returned one at a time as they are requested by the gen-
erator. The rest of the program is insulated from the retrieval process. This way,
some of the hashing computation can be postponed until it is required. The use of
the stream simulates the predisposition phase of production, as the ordering of the
candidate PC pairs in the stream by the hashing mechanism could influence the
eventual choice of output.

In the case of the ‘“‘remove” entry given earlier, the PC pair is indexed
according to a combination of the semantic attributes ‘“‘state-change’’, ‘‘location”,
“ipside-of”’, and ‘‘not-inside-of”’. This combination is used at the time the PC
pair is read in to determine a special atom, such as i38246853", to which the PC

pair is attached. The indexing mechanism ignores variables (e.g. “‘?actor”).

During generation, the fetching mechanism may receive the following input
concept:

(state-change (actor filel)
state-name location)
from (inside-of (object directoryl}))

- 13-

(to (not (inside-of (object directory1)))))

The atom “i38246953" will be returned as a potential bucket, based on the same
semantic attributes as those under which the PC pair is indexed. Other atoms
will be produced as well, but will yield empty buckets. Buckets which correspond
to more complete sets of attributes are searched first. For example, if the
“‘delete’’ pattern were constrained to be used only for the deletion of files, it
would be retrieved before the “remove’” PC pair because the bucket identified by
the conjunction of the “file” attribute of filel with the other semantic attributes
of the concept is searched first.

A simple pattern, such as the word “the”, does not really have a concept
associated with it, and thus is indexed according to sets of its attributes: A search
for a definite article would construct a hash key based on the properties ‘‘p-o-
—article’” and “ref=def” and would thus yield the PC-pair for “the’’.

A fast, simple method of arranging the order in which patterns are con-
sidered is important to the efficiency of the generator. For example, the root of a
verb is a much better hash key than its form or tense. But with compound verbs
it would be wasteful to retrieve all possible patterns with the correct root without
a general, constructive pattern for the appropriate form. Such a search would

retrieve “‘removes’ and ‘‘removing” before producing “should remove'’, which is
generated from the pattern:

< and p-o-s=verb root==should > < and p-o-s=verb tense=none>

This pattern can be retrieved by hashing on the form and aspect of the verb
before hashing on the root alone. To accommodate this type of ordering, the
fetching mechanism in PHRED, as in most large databases, may be given informa-
tion about which keys to use for hashing for a given pattern type. The number of
inappropriate patterns which the program considers thus depends on the ordering
of the sets of hash keys, which can be specified within the knowledge base. In
Spanish, verbs must often be selected to agree with subject, object and indirect
object as well, and the speed of the fetching mechanism depends heavily on the
number of keys specified.

If no special hashing information is given for a particular PC pair, PHRED
will construct hash keys first from the semantic attributes of the concept to be
expressed, if any, and the pattern-of-speech (p-o-s).

The fetching component of PHRED, like the other parts of the system, is
geared for simplicity and uniformity. In spite of some of the differences among,
for example, the selection of a verb, the choice of a referring expression and the
selection of an article which agrees with its head noun, the same method is used
for fetching in all three cases. The same hashing scheme is employed also to
retrieve ordering rules from the database. Such orderings can be effectively
retrieved by a hash on their attributes just as any other PC pair can be fetched.
For example, a passive ordering can be located both in a hash bucket correspond-
ing to <and p-o-s=sentence voice==passive> and one corresponding to <p-o-
s—sentence>. It will therefore be retrieved before an z:tive ordering if the input
constraints to the fetching process include the passive voice attribute, but will
appear in the same bucket as the active ordering if only <p-o-s=sentence> is
given.

- The main loop of PHRED passes to the fetching component the set of con-
straints which a PC pair must satisfy. Typically, if there is a specific phrase,
structural formula or other pattern which directly satisfies these constraints, it

-14-

will appear in the stream before more general patterns. A pattern of unfixed
word order will generally appear in the stream before an ordering rule. In these
cases both the pattern and the ordering must be used to produce the desired out-
put. The fetching mechanism is repeatedly called to return patterns from the
stream until all possible constraints are satisfied. For example, to produce the
phrase ““... not to remove the file”, a negative ordering, infinitive, and *‘remove”
pattern must all be fetched before the phrase can be restricted. The manner in
which these patterns are combined is discussed in the next section.

The fetching component of PHRED constitutes about 10K bytes of object
code, one tenth of the total program. A profile of PHRED shows that more than
half of the CPU time consumed by the generator is spent in the fetching process.
Earlier versions of the program, which did no ordering of candidate patterns in
the fetching phases, spent less time fetching but more time overall.

4.2. Restriction

Each time a candidate pattern is returned from the stream by the fetching
mechanism, it is passed to the restriction phase, which creates an instance of the
pattern, adding new constraints to the pattern constituents while simultaneously
verifying that the PC pair meets the constraints given. There are three main
aspects of this process: unification of the variables within the PC pair’'s concep-
tual template and the associated properties with the target properties and con-
cept, elaboration of the pattern constituents to include properties from
corresponding properties in the pattern indicated by the ‘“‘value” marker, and
combination of the properties of constituents among the pattern and ordering
patterns.

The following is an example of an instance of the ‘‘remove” PC pair given

earlier after restriction:

Pattern: <and object concept=filel p-o-s=noun-phrase case==objective>
< and root=remove form=infinitive voice=passive>
< < word=by>
<and agent concept=userl case==objective>>
< <word=from>
< and container concept=directoryl case==objective>>

Concept: (state-change (actor filel)
state-name location)
from (inside-of (object directoryl)))
to (not (inside-of (object directory1)))))

Properties:
p-o-s=inf-phrase
tense=(value 2 tense)
actor=filel
cont=directoryl
forms=(passive-s)

This PC pair is the product of applying the restriction process twice in suc-
cession, once to the passive infinitive ordering and once to the ‘‘remove’’ pattern.

- 15 -

Unification has occurred to bind the variables “?cont” and “?actor’’. Elaboration
has added the tokens bound to these variables to the individual constituents.
Combination of the various patterns has produced a pattern whose constituents
are specified by the conglomeration of constraints of the PC pairs used.

Any of these three aspects of the restriction phase may result in failure. In
the above example, unification would fail in an attempt to bind the multiple
occurrences of “?cont” to different tokens. Elaboration results in failure if a pro-
perty to be added to a constituent does not fit the other properties. For example,
if “directoryl” in the example is not a container, the pattern would be judged
inappropriate. Combination could likewise result in failure if the constraints from
the ordering rule were incompatible with those from the ‘‘remove’ pattern, for
example if it had no passive form.

Properties marked by ‘“value” in the PC pair are treated as variables and
unified along with the other properties. If these variables remain unbound
throughout the restriction process, however, the pattern retains the property with
its “value’’ marker. This is necessary for future stages of the production process
to obtain the property on demand. For example, a noun-phrase pattern in Span-
ish, where there is gender agreement between the subject of a passive infinitive
phrase and the past participle, maintains the ‘‘gender=(value 2)"" property to
reflect that the gender of the NP is the gender of its NP2. This property is not
determined until the head noun is chosen, after which it can be retrieved through

the NP if necessary.
Restriction uses about 60% of the code of the generator and most of the CPU

time not consumed by fetching. The bulk of this time is spent doing repeated
unification when a large number of patterns are required.

4.3. Interpretation

The third major phase in PHRED is interpretation, the application of con-
straints to a restricted pattern to produce a surface structure suitable for output.

The process of interpreting a given constituent may have three possible
results: (1) the successful completion of an element of surface structure, (2) the
recursive application of the fetch-restrict-interpret sequence on the given consti-
tuent, or (3) failure because of the inability of the generator to produce a specified
pattern of speech.

The first result occurs when the pattern provides a complete specification of a
word or words for output, such as “‘the big apple”, which is specified by the pat-
tern

< word=the> <word=big> <word=apple>

The second case occurs if a constituent contains a more general set of constraints,
for example,

< and p-o-s=verb root=remove tense=past>

which requires another recurrence of the fetch-restrict-interpret sequence.

In the third result, where no output produces the desired pattern of speech
subject to the constraints given by the uninterpreted pattern, the system must
back up to select an alternate pattern. To be efficient, the system must utilize as
much as possible the patterns which have already been selected. If the

- 16 -

constituent which fails in the interpretation phase is optional to the pattern to
which it belongs, it is deleted. Otherwise, failure results in backing up to the level
where the failed pattern was fetched, getting another pattern from the stream,
and attempting restriction of the new pattern. Most often this new pattern will
be an ordering rule, and most of the failed pattern will be used in the restriction
of the ordering pattern. A simple case of this is where the generator fails to pro-
duce a pattern of speech for the subject of a sentence and instead generates a pas-
sive sentence. In this case the restricted version of the PC pair as it was before
the combination with the active ordering pattern is backed up on a stack so that
the passive ordering can be tried.

Failure during interpretation is rare, and generally results from an
insufficiency of the knowledge base in producing a reference. Although the back-
up algorithm employed in such failure is time-consuming, it increases the likeli-
hood that some successful utterance will be produced.

The agreement of constituents within a pattern is assured during the
interpretation phase. A constituent which must agree with another has a form
such as the following:

< and-p-o-s=verb root=remove tense=present
number=(matches 1) person=(matches 1)>

This specifies a past tense form of ‘‘remove” that matches its subject in person
and number. Interpretation results in the substitution of properties from the
matched constituent to produce, for example,

< and p-o-s=verb root==remove tense=present
number=singular person=third >

In English agreement occurs relatively infrequently. There are few examples
where it passes from right to left, such as in subject-aux inversion where the verb
agrees with a subject which follows it. In other languages agreement within a pat-
tern may be much more complex. In the Spanish example, “Juan les habl$ a sus
amigos” (“John spoke to his friends”) the indirect pronoun “les”, which precedes
the verb, agrees with the indirect object, which follows the verb.

In all cases PHRED can ensure proper agreement if some order of interpret-
ing the constituents allows the correct application of comstraints. The surface
order of the constituents is the default order for their interpretation, but interpre-
tation of a constituent where necessary is done only after that of constituents with
which it must agree. In English nouns within noun phrases are interpreted before
their attached determiners; in more inflected languages verbs must generally be
produced last.

Anaphora are handled specially during interpretation. In the case of consti-
tuents for which PHRED has already produced references, the generator applies a
set of heuristics which will remove the constituent entirely if it is not necessary to
the utterance, pronominalize, or regenerate the entire constituent. The principal
heuristics are (1) If the anaphoric constituent is optional, remove it from the
current pattern, and (2) pronominalize other anaphoric constituents wheiever pos-
sible. There are of course many cases in which an alternative reference would be
preferable, but the method used by PHRED is generally effective in producing
coherent references. The heuristics lead, for example, to the production of “Mary
~was told by John that he wanted the book to be given to him” rather than “Mary
was told by John that John wanted the book to be given to John by Mary”'.

-17 -

The interpretation mechanism occupies about 20% of the code of the genera-
tor, and requires a small amount of time relative to the rest o the program.

5. Other uses of PHRED

Restricted domains such as that of the UNIX Consultant provide only limited
exercise for some of the features of the generator, among these the mechanism
which produces anaphoric references as described above. Aside from its principal
function in the UNIX Consultant system, PHRED has been tested with simple
sentence paraphrasing and translation tasks, in conjunction with PHRAN. Below
are some examples of the responses produced:

Input: John had to tell Mary that a friend kicked the bucket.

Paraphrase: John had to tell Mary that a friend died.
Translation: Juan tuvo que decirle a Maria que un amigo
se murioé.

Input: John had to tell Mary that the bucket was kicked
by a friend.

Paraphrase: John had to tell Mary that a friend kicked a bucket.
Translation: Juan tuvo que decirle a8 Maria que un amigo
le pate6 a una cubeta.

Input: John told Mary to get lost.

Paraphrase: John asked Mary to leave.
Translation: Juan le dice a Maria que él quiso que ella se fuera.

This output is produced simply by baving PHRAN pass the conceptual form
it produces to PHRED. A much more sophisticated mechanism would be needed
to produce coherent paraphrases and translations involving anaphora.

6. Comparison with Other Systems

PHRED differs in design from most other natural language generation sys-
tems because of its conception as a generator to accompany PHRAN as part of a
language interface. The use of a declarative knowledge base shared between
analyzer and generator has helped to make the system practical and easily exten-
sible. Its simplicity and processing speed have made it well-suited for use in a
real-time natural language interface such as in the UNIX Consultant.

Primarily for historical reasons, most research in computational linguistics
has focused on rules governing syntax. In language analysis, it is often practical
to design systems whose principal function is to apply and test such rules by
determining the grammaticality of the input. Such systems generally use compo-
sitional rules, if any, for determining the semantic content of the input. The task
of language generation, however, is inextricably tied to the appropriateness of

the linguistic output as well as to its grammaticality. Because of this, work in

- 18-

generation focuses not on the representation of core syntactic rules but on the
means by which a choice is made among syntactic and lexical constructs. Compo-
sitional rules generally fail to constrain this choice adequately. For this reason
systems which are designed for language generation have often employed either
special choice systems of the type found in systemic grammar (Halliday, 1968), or
have had pattern-based grammars of the type found in PHRAN PHRED and in
unification grammar (Kay, 1983), which require a sophisticated mechanism for
dealing with the interaction of the patterns. Thus PHRAN/PHRED is the first
interface in a natural language-based artificial intelligence system to use a com-
mon representation and knowledge base for linguistic knowledge employed in both
analysis and production.

The pattern-concept pair representation differs on the surface from tradi-
tional grammars because the grammar is embedded implicitly in the knowledge
structures. These knowledge structures often require the combination of a
number of patterns to produce an utterance. In this way the representation is
comparable to unification grammar, which contains patterns associated with func-
tional descriptions. The restriction process described in this paper is similar to
the unification procedure in TELEGRAM (Appelt, 1883), which employs a
unification grammar.

One difference between PHRED’s knowledge structures and those in
unification grammar is that conceptual attributes of the PC pairs, as well as func-
tional attributes, or properties, are used to constrain a pattern. Unification gram-
mar, like most feature systems, generally fosters the separation of conceptual and
functional components. Another distinction is that, in unification grammar, the
syntactic category is given special status; in pattern-concept pairs it is treated as
an attribute, and does not necessarily have to be specified for every pattern. This
is important for patterns which can be used in conjunction with many different
orderings to produce a variety of syntactic structures. '

A general difference between the PC pair and other representations lies in the
level of specificity of the patterns. The PC pair makes it easy to encode special-
ized phrases and constructs to be used by the generator. It allows the generator
to apply the same mech:nisms to both general and specific constructions, and to
choose PC pairs based on their conceptual attributes.

The robustness of natural language output is especially enhanced by the
pattern-concept pair representation. Much of the knowledge used to produce
language, particularly in specialized domains, is specialized knowledge. Some
natural language programs treat grammatical constructions and canned or
idiomatic phrases independently of “‘core’ grammar and require special rules and
procedures to make use of such phrases. In PHRED specialized constructs are
selected and produced using the same mechanism as the more productive con-
structs, facilitating the interaction of linguistic knowledge of varying levels of gen-
erality. In this way a wider range of appropriate utterances may be produced
from a given conceptual form.

Semantic grammar (Burton, 1976) is another representation scheme which,
like that of PHRED, facilitates the use of semantic attributes in language process-
ing. There are versions of such grammars which allow for varying degrees of
interaction between syntax, semantics, and pragmatics. PHRED differs from true
semantic grammars primarily in that it facilitates the interaction of the more gen-
eral patterns with the more specialized. Semantic grammars are often too con-
strained to be adapted to a new domain. Many the knowledge structures in
PHRED, by comparison, are general enough so that much of the linguistic
knowledge used within the UNIX domain -existed in the PHRAN/PHRED
knowledge base before UC was even conceived.

-19 -

Many language generation systems used in conjunction with large programs
separate the linguistic knowledge base and lexicon from the conceptual knowledge
base of the system (McDonald, 1980; Mann and Matthiessen, 1983; McKeown,
1982). This has the advantage of modularity, allowing for the development and
modification of one module without aflecting another. It also has the disadvan-
tage of inhibiting the use of conceptual information by the generator, or of requir-
ing redundant representation of such information. In PHRED linguistic
knowledge is maintained separately from world knowledge, to permit such advan-
tages as the interchangeability of English and Spanish knowledge bases in UC.
However, the generator may access the conceptual knowledge base of the system
and such knowledge may interact with the syntactic knowledge. For example, the
verbs “remove’ and ‘‘delete” are synonymous when used to refer to actions on
files, but “delete’” may not generally be used with physical objects. PHRED res-
tricts the use of ‘‘delete” during elaboration by examining the semantic nature of
its object. If the object is not a file, the use of ““‘delete’’ to refer to the action of
removing it is prohibited.

A notable difference in implementation between PHRED and other genera-
tors is in the fetching mechanism. The division of the choice problem into
predisposition and selection components allows PHRED to bias its choice of utter-
ances using a specialized hashing scheme. This has proven a boon for both simpli-
city and efficiency, as some of the rules which govern choice are carried out by a
simple hashing process and thus fewer patterns reach the restriction phase.

PHRED's restriction process is similar to the unification carried out in many
other systems. It is complicated, however, by the interaction of general ordering
rules with specialized patterns. This requires the repeated combination and
unification of constraints obtained from the various patterns.

Other systems, such as Penman (Mann, 1983), and TEXT (McKeown, 1982)
attack the problem of generating coherent multisentential text. This involves the
influence of linguistic rules governing reference and focus on the process of decid-
ing what to say. PHRED 1s not well equipped for this problem. While PHRED
produces multisentential text when UC passes it successive concepts to express, it
has no knowledge of coherence. Nor is there substantial communication between
the PHRED level of production and the higher levels of language planning. Such
communication, as described by Appelt (1982), would allow for the generator sub-
sume multiple UC goals. In PHRED and UC much of the process of producing
utterances is not considered as planning per se but as the application of prestored
knowledge about how language is used. The distinction between this prestored
knowledge and general planning is analogous to the difference between compiled
and interpreted code in programs. More research is required on how knowledge is
compiled and on how the use of prestored knowledge about patterns of speech can
be used in conjunction with general knowledge about planning.

7. Future Directions

While PHRED is a successful implementation of a fairly efficient, robust, and
cognitively realistic generator, it has served also to open up new ground for
further work. This work involves aspects of language processing not directly
involved in PHRED as well as problems with the PHRED approach and imple-
mentation.

-20-

7.1. Hierarchical Representation

One deficiency with PHRED as described here is actually a problem with
most linguistic knowledge representations. This is the lack of an effective means
by which similarities among many linguistic structures can be encoded. The
specification of the pattern-of-speech property, such as *‘p-o-s=verb-phrase’’ or
“‘p-o-s=noun"’, provides a great deal of information about the use of a pattern, as
does the specification, for example, of attributes such as the voice and form of a
verb. However, often the similarity in behavior of linguistic elements cannot be
easily determined by the possession of a particular feature. When an arbitrary set
of features is used to constrain such behavior, this set of features is redundantly
represented among similar linguistic structures. This leads to inefficiency in the
knowledge base and the requirement that a great deal of redundant knowledge be
encoded for each structure added.

A simple example of the potential inefficiency of the use of features to deter-
mine complex linguistic behavior can be found in compound verbs. Such com-
pound verbs as ‘‘was eating”, “‘has gone', "is loved”, and ‘‘kept staring” have a
number of similarities in their linguistic behavior, such as the conjugation of the
“helping”’ part of the compound verb, the appearance of adverbials between parts
of the compound verb, and the reference of the participle to the event being
described. The verbs ““was’, “has”, and ‘“‘is” as used above act as auxiliaries, as
they may appear in inverted form and in elliptical constructs. Examples of such
linguistic behavior manifested by auxiliaries appear in the sentences, ‘‘Was John
eating?”’, “John has gone, hasn’t he?”, and “John is loved by his friends and Mary
is, too.” Other helping verbs do not appear in these forms, as evidenced by the
ungrammatical sentences, “Kept John staring?” and ‘“‘Mary got beaten in the race
and Bill got, too.” Some helping verbs, such as “‘dare”, may or may not have aux-
iliary status, depending on the speaker: Either “I dare not go’’ or.“l don't dare
go'’ is acceptable. One can further group helping verbs according to either syn-
tactic or semantic behavior. For example, “John was beaten” and ‘‘John got
beaten” exhibit numerous semantic similarities, although “‘get” and *‘be” differ
syntactically.

The common approach to representing the syntactic and semantic informa-
tion described above is to attach features to the compound verb patterns and to
the helping verbs, features which distinguish them from other verbs, although
they all share the same syntactic category. Thus a modal auxiliary verb would
have the syntactic category of verb, the modal and auxiliary attributes, and attri-
butes indicating its person, number, and tense, among others. Since all modal
auxiliaries share a common subset of these features, the representation is redun-
dant. A knowledge base with multiple entries for the verb “‘dare” could have an
entry for the modal auxiliary, a modal entry without the auxiliary feature, and an
entry for ‘“dare” as used with the infinitive form of the main verb. In
PHRAN/PHRED, as in many representations, each entry repeats a common set of
syntactic and semantic features.

Such redundancy can appear in lexical entries or in patterns in
PHRAN/PHRED. The pattern-concept pair representation permits the represen-
tation of specialized knowledge about phrases and grammatical constructions, but
does not really identify the fact that these phrases and constructions are often
subclasses of other grammatical units. For example, the term *‘book marker’ in
PHRED is treated as ~ noun, since it behaves syntactically as a noun, but has
associated with it specialized knowledge about its meaning. In fact, there are
- quite a number of noun-noun pairs whick are similar (‘‘salt shaker”, ‘“door
stopper”, etc.). While there is certainly some specialized knowledge about what

-921-

the term “book marker’ refers to, it is redundant to treat each noun-noun pair
independently, since some knowledge—at least that the first noun of the pair
represents the object of an action referred to by the second noun—is common to
many such noun-noun pairs.

An apparent aid in eliminating these redundancies is a hierarchical encoding
of linguistic knowledge. In the case of the compound verbs described above, a
category for modal auxiliary helping verbs allows a set of syntactic features to be
parsimoniously specified by category membership. Multiple inheritance is impor-
tant, as a verb such as “‘dare” inherits its lexical and semantic properties from one
category and some of its syntactic properties from others. It is often desirable for
entries of different syntactic categories, such as nominalizations and their
corresponding verbs, to inherit the same semantic attributes. The passive con-
structions in ‘“‘John got beaten” and ‘“John was beaten’” inherit some of their
attributes from the passive verb category and others from a compound verb
category. In general, the hierarchical approach leads to a proliferation of
categories based on the common syntactic and semantic behavior of linguistic
structures.

A hierarchical representation of categories of linguistic structures which exhi-
bit such common behavior has the following advantages:

(1) It increases representational efficiency. The behavior of a structure can be
encoded more efficiently by representing explicitly the membership in a
category than by encoding a complex set of features for each category
member.

(2) It improves eztensibility. The extension of the knowledge base to include
new linguistic entities is facilitated by having organizational categories.

(8) It facilitates the representation of the relationships among syntactic and
conceptual categories. Having a hierarchy of linguistic knowledge allows the
pattern-concept pair to be represented as association between an element in
the linguistic hierarchy and an element in conceptual hierarchy. This is true
of general knowledge, such as ‘Verbs are used to refer to actions” and
specific knowledge, such as *“ ‘kick the bucket’ means to die”. The hierarchi-
cal structure allows the program to identify from the knowledge structures
themselves some of the levels of interacting patterns which otherwise would
be obtained through repeated calls to the fetching mechanism.

(4) It is in accord with psycholinguistic evidence. From the hierarchical organi-
zation of linguistic and world knowledge comes the potential of involving
categories into the language production task. Human categorization, particu-
larly the notions of basic level and prototypicality (Rosch, 1977), seems to
play a substantial role in language use. Ross (1973) argues that syntactic
categories have prototype characteristics. Recent research suggests that most
grammatical constructions also exhibit prototypes and their properties
(Lakoff, 1984).

Work is in progress to develop a hierarchical representation for use in both
analysis and generation. An outline of such a representation and its advantages
for PHRAN/PHRED is presented in (Jacobs and Rau, 1984).

7.2. Structured Associations

Much of the work on idiomaticity discussed earlier, as well as research on
metaphor by Lakoff and others (Lakoff, 1977; Lakoff and Johnson, 1980) has

-99.

suggested that there exist a range of underlying motivations* for many idioms
and grammatical constructions, knowledge of which can help govern the use of
language. For example, PHRED in its current form has the knowledge that the
phrase “‘kick the bucket’ does not passivize but “‘bury the hatchet’ does, without
any attempt to represent the motivation for the latter phrase. Knowing that
“bury the hatchet” is motivated, i.e., that “bury” refers to terminating and
“hatchet” to war, helps to explain the grammatical properties of the phrase. Ross
(1981) has suggested that in many cases the variety of forms in which idioms of
this type can appear depends on the ability of the noun component of the idiom
to function independently as a noun. Passivization, however, seems subject to a
more specific constraint; that is, the ability of the noun component of the idiom to
refer. To take advantage of this knowledge, a representation of the “bury the
hatchet” idiom must encode the information not only that the expression refers to
making peace, but that the “hatchet” part of the idiom refers to war or to the
tools of war.

As another example where motivation might be useful, PHRED now gen-
erates ‘‘John took a punch from Mary"” and “Mary gave John a punch’” without
representing the common metaphorical derivation of the two sentences. For exam-
ple, PHRED might have a pattern

<person> <root=give> <person> <striking-action>

to produce the sentence “Ali gave Frazier a punch”. This is thus specialized
knowledge about “‘giving”’ and a potential object. There might also be a pattern

<person> <root=take> <striking-action> < <word=from> <person>>

used to produce “Frazier took a punch from Al". Similar patterns might exist
for “‘getting a punch” and ‘“receiving a punch”. Treating these patterns indepen-
dently seems cognitively unrealistic, because motivated phrases are in general
easier to use and remember, and inefficient, since a more general representation of
the “'striking as transfer” metaphor might eliminate the need for some of the spe-
cialized knowledge about each of the patterns. While knowing the motivation
does not obviate entirely the need for specialized knowledge, it can lead to a more
parsimonious encoding of the specialized knowledge.

A potential improvement to the PHRAN/PHRED representation, still being
explored, is the treatment of knowledge used to associate language and meaning
as structured associations.t The structured association is an explicit relation
between two knowledge structures which also associates their corresponding
“‘components’’. These components may be aspectuals of the two structures or
other arbitrarily related structures. A structured association may be used to
relate the concept of a striking action to the concept of a tramsfer, with the
patient of the action corresponding to the recipient of the transfer and the actor
of the striking action corresponding to the source of the transfer. A structured
association might also relate linguistic structures to associated concepts. For
example, a structured association might exist between the “book marker” pattern
and its conceptual referent, an association which also relates the ‘‘book™ and
“marker’’ parts of the pattern to their corresponding conceptual components. The

* The term motivation is due to Chuck Fillmore and George Lakofl, personal communi-
cation.

4+ The term structured association and the use of structured associations in language pro-
- cessing were suggested by Robert Wilensky, personal communication.

-93.

“bury the hatchet” expression may likewise be related to a concept by a struc-
tured association, with the ‘‘hatchet” part corresponding to the “war’ part of the
concept and “‘bury” corresponding to the action of terminating the war. Meta-
phors and pattern-concept pairs alike may thus be represented as types of struc-
tured associations.

Often the relationship between two knowledge structures is itself a complex
concept, and can be related to other such relationships. .Structured associations
themselves form a conceptual hierarchy. In this way the specific association
between a linguistic structure and a conceptual structure may be a special case of
a more general association. The correspondence between agent of an action and
source of a transfer, for example, is not unique to the “striking as transfer’” meta-
phor. In fact, many other such metaphors exist, such as in “giving a kiss” and
“giving a shot”, where the agent of the activity is the source of the corresponding
transfer. These metaphorical associations, therefore, are descendents of an
““action as transfer’” association in the hierarchy. Many of the similarities among
the metaphors, such as the correspondence between agent and source and between
nominalization and action, need not be explicitly encoded for each metaphor but
are inherited from the more general association.

While much of the knowledge about a specific metaphor or pattern-concept
association may be inherited from structured associations above it in the hierar-
chy, specific knowledge is required to realize the association. For example, the
realization of the sentence ‘““Ali gave Frazier a punch” from its conceptual
representation demands special knowledge about which particular associations are
applied. The application of a sequence of general associations otherwise could pro-
duce “Ali gave Frazier a sock”, which fails to convey the same message but rather
suggests that Ali gave Frazier one of his stockings. Thus, the generation process
must make use of general as well as specific structured associations and rely on
specific knowledge to “trigger” general associations. In this example, the concept
of a punching action triggers the general “‘action as transfer’” association, along
with SﬁJeciﬁc associations between the action and the lexical items ‘‘give” and
“punch”.

The structured association bears some similarity to the idea of a ‘'view’ (cf.
Moore and Newell, 1673; Wilensky, 1984), but is more general. The term “view”
is used principally to describe relationships used to understand analogous con-
cepts, while the structured association relates arbitrary knowledge structures.
Also, the structured association is not a primitive relation, as structured associa-
tions themselves are a conceptual hierarchy.

Gentner's structure-mapping theory (Gentner, 1983) addresses problems in
understanding analogy which are comparable to some of the metaphorical issues
discussed above. Gentner focuses on the process by which structure-mappings are
synthesized rather than on the explicit representation of associations which may
be used for such mappings.

Incorporating structured associations into a hierarchical knowledge base
could further facilitate the interaction of general and specialized linguistic
knowledge. Thus PHRED, and PHRAN as well, could gain efficiency in represen-
tation from the generalizations which apply without losing the advantages of hav-
ing specialized patterns. -

7.3. Context and Memory Models

Another major area for future work is in the development of models of
memory which help account for the role of context in language processing. A

-924-

kind of spreading activation model (Arens, 1982) was used in UC to help resole
references and to activate particular goals, plans and speech acts. The idea
behind an activation-based model is that subtle changes in context can influence
language processing without requiring the addition of large amounts of conceptual
information to all of the linguistic knowledge structures.

A spreading-activation model has the potential of being especially useful in
the predisposition phase of generation. Information about objects and events
which have been explicitly referred to or activated in the current context, as well
as about the topic of conversation and the participants in the conversation, can
influence the language considered. There are, however, three major practical
difficulties with using spreading activation as a means of controlling the effect of
context on language production. First, the spreading activation model is a paral-
lel one which tends to produce slow, awkward simulations. Second, the encoding
of knowledge into a network suitable for such a memory model must involve
either a complex method of acquiring the knowledge from data or a contrived set
of associative strengths based on introspection. Finally, while spreading activa-
tion is often efective in describing subconscious effects such as associative prim-
ing, it is difficult to account for the interaction of such effects with conscious or
planned behavior. Most likely, a memory model will prove useful as a means of
modelling the predisposition process and will simplify, but not replace, language

planning and language selection.

8. Conclusion

PHRED is a practical language generator for use in patural language inter-
faces. The use of a knowledge base shared with the PHRAN analyzer makes it
easy to adapt the interface to a variety of domains in which understanding and
production of fairly robust language is required.

In addition to its value as a useful language processing tool, PHRED has
paved for the way for better models of language generation and linguistic
representation. Currently the PHRED approach is being extended to provide a
better account of the role of categories and of metaphors in language use. These
models are being explored with the goal of designing cognitively realistic, robust,
and efficient natural language interfaces.

- 95-

9. A Detailed Example

Below is a trace of PHRED while generating the sentence, ‘“‘Typing ‘rm
filename’ causes the file filename to be removed from the current directory.” This
is a fairly simple example, but demonstrates well the process used by PHRED to
produce an output.

The input to the generator is the concept which the UNIX consultant has
chosen to express, in response to a question about removing files in UNIX. The
concept represents UC's knowledge that using the ‘rm’ command is an established
plan (here “planfor”) for deleting a file.

Fetching

concept =
(planfor
(result
(state-change {actor filel)
(state-name locai.on)

{from

(inside-of

(object current-directory)))

(to

(not

(concept
{inside-of
(object current-directory))))}))
{(method
(mtrans (actor *user®)
(object

(command (name rm)
(args (filenare))
(input *standard®)
(output *standard®)
(diagnostic *standard*}))
(from *user*)

(to *UNIX*))))

There are a number of patterns which could potentially be rsed to express
the concept that an action is a plan for something. In this case PL.RED selects a
pattern with the verb ‘‘cause”. In examples such as this one, where PHRED's
retrieval mechanism does not favor a particular construct, the generator selects at
random from the alternatives. After the selection is made, the restriction process
is applied to the pattern.

-26-

***Restricting®**

Pattern: <p-o-s=act-phrase>
<and p-o-s=verb root=cause>
< and p-o-s=inf-phrase voice=passive>>

Concept: (planfor (result (*var* result)) (method (*var* method)))

Properties:
method=(value 1)
result=(value 3)
p-o-s==sentence
form={(declarative active)
tense=(value 2)

The restriction process here results in the addition of the appropriate concep-
tual components to the constituents of the restricted pattern. The conceptual
content of the first and third constituents, which will produce a gerund phrase
and passive infinitive phrase, respectively, have been added. This results from the
unification of the variables “method” and “result” in the list of properties above
and the elaboration of the constituents specified by the terms ‘/(value 1) and
“(value 3)"" attached to these variables. Combination with an active sentence pat-
tern adds the subject-verb agreement, and the restricted pattern enters the
interpretation phase:

Interpreting

Pattern:
< and p-o-s=act-phrase
concept=

(mtrans (actor *user®)
(object
(command (name rm)

(args {flename))
(input *standard®)
(output *standard®)
(diagnostic *standard*}))

(from *user®)

(to *UNIX*))>

< and p-o-s==verb root==cause
person=(matches 1) number=(matches 1)>
< and p-o-s=inf{-phrase
voice==passive
concept=

(state-change (actor filel)
(state-pame location)
(from
(inside-of

-7

(object current-directory)))
(to
(not
(concept
(inside-of
(object
current-directory)

m>

Properties:
tense=value 2
form=(declarative active)
p-o-s=sentence
result=value 3
method=value 1
concept= ...
method= ...
result= ...

At this point the generator has successfully applied the input concept to res-
trict the surface structure chosen, and recursively interprets this structure, start-

ing with the gerund phrase:

Interpreting

Pattern: <and p-o-s==act-phrase
concept==

(mtrans (actor *user®)
(object
(command (name rm)

(args (filename}))
(input *standard*)
(output *standard®)
(diagnostic *standard*})))

(trom *user*)

(to *UNIX*))>

Interpreting a simple constituent results in a reinvocation of the fetch-
restrict-interpret sequence on that constituent:

Letching

concept =

(mtrans (actor *user®)
(object

(command (name rm)
(args (filename))
(input *standard®)
(output *standard®)
(diagnostic *standard*}))
(from *user*)
(to *UNIX*)))

p-o-s=act-phrase

Since there is no pattern which directly generates a gerund phrase (here “p-
o-s=act-phrase’’) with the given concept, the fetch above yields an ordering pat-
tern which can be used for combination with a flexible pattern to produce the
final phrase. Thus another fetch is performed before any restriction is done, this
time without the ‘‘p-o-s’ attribute.

*#*Fetching***

concept=

(mtrans {actor *user®)
(object
(command (pame rm)

(args (filename))
(input *standard®)
(output *standard®)
(diagnostic *standard®})))

(from *user*)

(to *UNIX*))

PHRED searches for a way of expressing the transmission of the ‘rm’ com-
mand to the operating system. The hashing mechanism gives preference to the
cerme for technical transmission of commands, because the concepts associated
with these terms match the input concept more closely, but a problematic pattern
still results:

¥Restricting *
Pattern: <person> <root do> <command>

Concept:

(mtrans (actor (*var® actor))
(object (*var® command))
(from (*var* actor))

(to *UNIX*}))

Properties:
command=

(command (name (*var® name))

(args nil)

(input (*var®* input))
(output {*var® output))
(diagnostic (*var* diag)))

name=(value 3 command-name)

This pattern fails during unification because it requires that the command
not have arguments, something which the fetching mechanism failed to detect.
With the gerund ordering pattern still being saved, the fetching mechanism is
called again for another candidate.

Letching

concept=

(mtrans (actor *user*)
(object
(command (name rm)
(args (filename))
(input *standard®)
(output *standard®)
(diagnostic *standard*®)))
(from *user*)

(to *UNIX*))

The pattern returned here by the fetching mechanism is the next one in the
stream after the failed *‘do” pattern. This new pattern, with the verb *“type”, is
then passed through restriction:

Restricting
Pattern: <person> <root=type> <command-spec>

Concept:

(mtrans (actor (*var* actor})
(object (*var* commaed))
(from (*var® actor))

(to *UNIX*))

Properties:
command==

(command (name (*var* name))
(args (*var®* args})
(input (*var® input))
(output (*var® output))
(diagnostic (*var* diag)))

command=(value 3)

Unification of the variables in the above PC-pair with those in the input con-
cept is followed by elaboration of the constituents and combination with the

gerund ordering pattern. This yields the following result:

Restricting

Pattern:
< and root==type form=progressive>

< and command-spec
concept=

(command (name rm)
(args (filename))
(input *standard®)
(output *standard®)
(diagnostic *standard®})>

Properties:
p-o-s=act-phrase

The combination of the ‘‘type” pattern with the gerund ordering satisfies the
necessary constraints, producing a two-constituent pattern which then proceeds to

the interpretation phase:

%|nterpreting*

Pattern:
<and p-o-s=verb root=type form=nprogressive>
< and command-spec
concept=

(command (name rm)
(args (filename))
(input *standard®)
(output *standard*®)
(diagnostic *standard*})}>

PHRED recursively invokes the interpretation procedure on each of the two
constituents, starting with the progressive verb:

-31-

[nterpreting

Pattern:
<and p-o-s=verb root=type form=progressive>

Letching

p-o-s=verb
form==progressive
root=type

This fetch uses a hash on the root and form of the verb given to retrieve the
progressive form ‘‘typing’, whose properties unify trivially with the given con-
straints:

Restricting

Pattern:
< word=typing>

Properties:
form=progressive
p-o-s=verb
root==type

[nterpreting

Pattern:
< word=typing >

Properties: root=type
p-o-s=verb
form=progressive

The word ‘“‘typing” and its properties are now completely specified, so no
further restriction is needed. The next constituent in the gerund phrase, the noun
phrase which describes the command ‘rm’, is thus passed to the interpretation
mechanism:

-32.

[nterpreting

Pattern:
< p-o-s=rnoun-phrase comm and-spec
concept=

(command {name rm)
(args (flename))
(input *standard®)
(output *standard*®)
(diagnostic *standard*))>

As usual, interpretation first results in a fetch:

Letching

concept==

(command (name rm)
(args (filename))
(input *standard®)
(output *standard®)
(diagnostic *standard*})

p-o-s=noun-phrase

The pattern selected for the command is a specific formula for expressing
commands to UNIX, the command name following by its arguments, in quotes:

Destricting
Pattern:
<word=1|‘|>
<command >
< p-o-5==args>
<word=|"| >
Properties:
p-o-s=poun-phrase
concept=

(command (name (*var* command))
(args (*var® args))
(input (*var® input))
(output (*var® output))
(diagnostic (*var® diag)))

args=(value 3 name)
command=(value 2 command-name))

The formula for producing ‘rm filename’ is straight{forward, and results in
very little additional work by the generator:

Interpreting

Pattern:
<word=1‘l>
<and command command-name=rm>
<and p-o-s==args name=filename>

<word=|'|>
Properties:

p-o-s==noun-phrase

concept = ,,,

diag = ...
Interpreting

Pattern: <word=|'|>

Interpreting

Pattern:
<command command-name=rm>

Fetching

command-name=rm

"'Restricting“‘

Pattern: <word=rm>

-34-

Interpreting

Pattern: <word=rm>

***Interpreting®**
Pattern:

<and p-o-s=args pame=(filename)>

Interpreting

Pattern: <word=|{'|>

Having completed the clause “Typing ‘rm filename’ ", the generator now
returns to the highest level of the surface structure to finish the sentence. The
next constituent in this surface structure is the conjugated form of the verb
“cause':

Interpreting

Pattern: <p-o-s=verb root=cause person=(matches 1) number={matches 1)>

The interpretation mechanism finds the person and number of the first con-
stituent of the surface structure. Since this is a singular gerund phrase, it has the
third person and singular properties. These are then used in fetching the
appropriate verb form:

Fetching

p-o-s=verb
root=cause
form=Dbasic
persop=third
number=singular

As with “typing”, hashing results in the retrieval of the correct verb, and res-
triction is a simple process:

-35-

Restricting
Pattern: <word==causes>

Properties:
tense=present
person=third
number=singular
form=nDbasic

Interpreting
Pattern: <word=causes>

Properties: ...

The completed specification here results in the interpretation of the third and
final surface structure constituent, the infinitive phrase:

Interpreting

Pattern:
<and p-o-s==inf-phrase voice=passive
concept=

(state-change (actor filel)

(state-name location)
(value (*var* val))
(from (inside-of

(object current-directory)))
(to

(not
(concept
(inside-of
(object
current-directory)))})))>

Fetching

concept=

(state-change (actor filel)
(state-name location)
(value (*var* val))
(from (inside-of (object current-directory)))
(to

- 36 -

(not
(concept

(inside-of (object current-directory)))}))
p-o-s==inf-phrase

Fetching

The first fetch in this case again brings the orderin

the “remove” pattern. The restriction process is applie
pattern:

g pattern second brings
d first to the “remove”

¥Restricting*

Pattern: <person> <root remove> <physob> < <word=from> <container>>

Concept:

(state~change (actor (*var* rem-object))
(state-name location)
(value (*var* val))
(from (inside-of (object (*var* container))))
(to
(not
(concept
(inside-of (object (*var* container))

m)

Properties:
rem-object=(value 3)

After unification and elaboration of this
bined with the ordering pattern for the

the determination of the final ordering o
restriction:

pattern, the pattern is then com-
passive infinitive phrase. This results in
f the constituents, and another round of

-37.

Restricting

Pattern:
<and physob concept=filel1 >
<and p-o-s=verb root=be form=infinitive >
<and p-o-s==verb root=remove form=perfective>
< <word=from>
< and container concept=current-directory > >

Properties:
subject="inf-phrase-subject
voice==passive
object==?inf-phrase-object
p-o-s=inf-phrase
form=(passive)

Interpreting

Pattern:
<and physob concept=file1 >
<and p-o-s=verb root=be form=infinitive>
<and p-o-s=verb root=remove form=perfective>
< <word=from>
<and container concept=current-directory > >

Properties:
p-o-s=inf-phrase
concept= ..,

As the interpretation starts with the first constituent of the infinitive phrase,
PHRED now must produce a referent for the specified file. To do this, it expands
the token “filel” to get the necessary information from its attributes.

Interpreting

Pattern:
<and physob concept=

(file
(size nilstruct)
(form nilstruct)
(location current-directory)
(use nilstruct)
(contents nilstruct)
(extent nilstruct)
(name (filename))
(type pilstruct)

-38 .

(owner *user®)
(protection nilstruct))>

Properties:
concept= ...
p-o-s=noun-phrase

“**Fetching***

p-o-s==noun-phrase
concept= ...

PHRED uses a structural formula to refer to the hypothetical file:

Restricting
Pattern: <word=the> <word=file> <name>

Concept:

(file
(size (*var* size))
(form (*var* form))
(location (*var* directory))
(use (*var* use))
(contents (*var* contents))
(extent (*var* extent))
(name (*var* name))
(type (*var* type))
(owner (*var* owner))
(protection (*var* protection)))

Properties:
ref=def
p-o-s=noun-phrase
person=third
number=singular
name=(value 3 name)

This pattern is the default reference for files, which is superceded when more
information about a given file must be conveyed. The noun phrase now reaches
the interpretation phase, resulting in the simple verification that its constituents
are complete:

-39-

Interpreting

Pattern: <word=the> <word=file> <and p-o-s=args name=(filename)>

Properties:
concept == ...

p-o-s=noun-phrase
ref=def

Interpreting

Pattern: <word=the>

Interpreting

Pattern: <word=file>

Interpreting
Pattern: <and p-o-s=args name==(filename)>
Having completed the reference, the system now continues with the infinitive

phrase. The second constituent of the infinitive phrase is the infinitive of the verb
L(be17:

Interpreting

Pattern: <and p-o-s=verb root=be form=infinitive>

As with the other verbs, fetching yields the appropriate form:

"‘Fetching“‘

p-o-s=verb
root=Dbe
form=infinitive

- 40 -

Restricting
Pattern: <word=to> <word=be>

Properties:
p-o-s=verb
root=be
form=infinitive
voice==active
tense==present

***Interpreting®**

Patterrn: <word=to> <word=be>

Properties:

The third constituent of the passive infinitive phrase is the past participle of
the verb ‘‘remove’’, which is interpreted next. This process similarly results in the
completed verb form: '

Interpreting

Pattern: <p-o-s=verb root=remove form=perfective >

Fetching

p-o-s=verb
root==remove
form==perfective

Restricting
Pattern: <word=removed>
Properties: p-o-s=verb

root=remove
form=perfective

-41-

Interpreting
Pattern: <removed>

Properties: ...

The final constituent of the infinitive phrase and of the sentence is the
optional prepositional phrase specifying from where the file is being deleted. The
extra angle brackets in the pattern below indicate to the interpretation mechan-
ism that if it fails to produce a reference or if the reference in the prepositional
phrase is anaphoric, the entire constituent may be omitted:

Interpreting

Pattern: <<word=from> <and container concept=current-directory > >

The first constituent of the prepositional phrase, the word “from”, is already
complete:

Interpreting

Pattern: <word=from>

The second constituent, the referent for the “current-directory”, is inter-
preted next:

Interpreting

Pattern: <and p-o-s=noun-phrase container concept=current-directory >

“‘Fetching'“

p-o-s==noun-phrase
concept==current-directory
ref==def

Unlike the previous noun phrase, there is no specific structural formula for
referring to the current directory. PHRED thus uses a general noun phrase

- 49 -

pattern:

Restricting

Pattern:
< and p-o-s=article consonance=(matches 2) number=(matches 2)>
< and p-o-s=noun number=singular>

Properties:
p-o-s=noun-phrase
person=third
number==singular

concept=(value 2)
number==(value 2 number)
person==(value 2 person)

Elaboration of the pattern results in a two-constituent pattern to be inter-
preted, the second constituent of which must refer to the ‘‘current-directory” con-
cept.

Interpreting

Pattern:
<and p-o-s==article consonance==(matches 2)
number=(matches 2) ref=def>
< and p-o-s=noun concept=current-directory
number=singular>

Properties: ...
While there is no special noun phrase for referring to the ‘““current-directory”

concept, there are special noun constructs. PHRED selects randomly between
‘“‘current directory’ and ‘‘working directory’ for this reference:

Interpreting

Pattern: <and p-o-s=noun concept=current-directory number==singular>

-43.

***Fetching®**

p-o-s=noun
number==singular
person==third
concept=current-directory

The reference selected for the directory is the noun-noun pair “current direc-
tory™. This is interpreted before the article within the noun phrase, since articles
are produced after head nouns to ensure agreement:

Restricting
Pattern: <word=current> <word=directory >

Properties:
concept== .
consonance==hard
person=third
number=ssingular
p-o-s=noun

Interpreting
Pattern: <word=current> <word=directory >

Properties: ...

The interpretation mechanism judges the noun-noun pair to be completed,
and the final determiner is then interpreted:

Interpreting

Pattern: <and p-o-s=article ref=def number=singular consonance=hard >

- 44 -

“‘Fctrching‘.‘

p-o-s=article
ref=def
number=singular
consonance=hard

As with verbs, the hashing process of the fetching mechanism yields the
appropriate article:

Restricting
Pattern: <word=the>
Properties:

p-o~s==article
ref=def

Interpreting
Pattern: <word=the>

Properties: ...

After the final part of the surface structure is complete, a walk through the
surface structure tree is used to produce the final output:

Typing ‘rm filename' causes the file filename to be removed
from the current directory.

10. References

Appelt, D. 1982 Planning Natural Language Utterances to Satisfy Multiple
Goals. SRI International: Al Center Technical Note 259.

Appelt, D. 1983. Telegram: A grammar formalism for language planning. In
Proceedings of the 21st Annual Meeting of the Association for Computational
Linguistics, Cambridge, Massachusetts.

Becker, J. D. 1975. The phrasal lexicon. In R. Schank and B. L. Webber (eds.),
Theoretical Issues in Natural Language Processing. Cambridge, Mass.

Burton, R. 1976. Semantic grammar: an engineering technique for constructing
natural language understanding systems. Bolt Beranek and Newman Report No.
3453.

Chafe, W. L. 1968. Idiomaticity as an anomaly in the Chomskyan paradigm.
Foundations of Language 6 (1). '

Chafe, W. L. Integration and involvement in speaking, writing, and oral litera-
ture. 1984. in D. Tannen (ed), Oral and written language. Ablex, Norwood, N.J.

Fillmore, C. J. 1968. The case for case. In E. Bach and R. Harms (eds.) Univer-
sals in Linguistic Theory. Holt, Rinehart and Winston, New York.

Fillmore, C. J. 1979. Innocence: a second idealization for linguistics. In Proceed-

ings of the Fifth Berkeley Linguistics Symposium, Berkeley, California.

Fillmore, C. J., Kay, P., and O’ Connor, M. C. 1984. Regularity and Idiomati-
city in Grammar: The Case of Let Alone. University of California, Cognitive Sci-
ence Working Paper.

Gentner, D., 1983. Structure—Mapping: A theoretical framework for Analogy,
Cognitive Science 7, pp. 155-170.

Goldman, N. 1975. Conceptual Generation. In R. C. Schank, Conceptual Infor-
mation Processing. American Elsevier Publishing Company, Inc., New York.

Halliday, M. A. K. 1968. Notes on transitivity and theme in English. Journal of
Linguistics 4.

Jacobs, P. 1983. Generation in a natural language interface. In Proceedings of
the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe,
Germany.

- 46 -

Jacobs, P., and Rau, L. 1984. Ace: associating language with meaning. In
Proceedings of the European Conference on Artificial Intelligence, Pisa, Italy.

Kay, M. 1983. Unification Grammar. Xerox Palo Alto Research Center Techni-
cal Report.

Kempen, G., and Hoenkamp, E. 1982. An Incremental Procedural Grammar for
Sentence Formulation. University of Nijmegen (the Netherlands) Department of
Psychology, Internal Report 82-FU-14.

Lakoff, G. 1977. Linguistic gestalts. In Proceedings of the Thirteenth Regional
Meeting of the Chicago Linguistics Society,

Lakoff, G., and Johnson, D. 1980. Metaphors we Live By. University of Chicago
Press, Chicago.

Lakoff, G. 1984. There-constructions: a case study in grammatical construction
theory. University of California, Linguistics Working Paper.

Mann, W. 1983. An overview of the Penman text generation system. In Proceed-
ings of the National Conference on Artificial Intelligence, Washington, D. C.

Mann, W., and Matthiessen, C. 1983. Ni-gel: A systemic grammar for text gen-
eration, University of Southern California, ISI Technical Report #ISI/RR-83-105.

McDonald, D. D. 1980. Language Production as a Process of Decision-making
Under Constraints. Ph. D. dissertation, MIT. -

McKeown, K. 1982. Generating natural language text in response to questions
about database structure. Ph. D. thesis, University of Pennsylvania.

Moore, J., and Newell, A., 1974. How can MERLIN Understand? In L. Gregg
(ed.), Knowledge and Cognition. Erlbaum Associates, Inc.

Pawley, A. and Syder, F. H., 1880. Two Puzzles for Linguistic Theory: Nativelike
Selection and Nativelike Fluency. Unpublished manuscript.

Riesbeck, C. 1975. Conceptual Analysis. In R. C. Schank, Conceptual Informa-
tion Processing. American Elsevier Publishing Company, Inc., New York.

Rosch, E. 1977. Human categorization. In Warren, N. (ed.) Studies tn Cross-
Cultural Psychology (Vol. I). London, Academic Press.

Ross, John Robert. 1973. Nouniness. In Osamu Fujimura, ed., Three Dimensions
of Linguistic Theory. Tokyo, TEC Corporation.

Ross, John Robert. 1981. Nominal Decay. Unpublished manuseript.

Schank, R. C. 1975. Conceptual Information Processing. American Elsevier
Publishing Company, Inc., New York.

- 47 -

Wilensky, R., and Arens, Y. 1880. PHRAN-A Knowledge-based Approach to
Natural Language Analysis. University of California at Berkeley, Electronics
Research Laboratory Memorandum #UCB/ERL M80/34.

Wilensky, R. 1981. A Knowledge-based Approach to Natural Language Process-
ing: A Progress Report. In Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, Vancouver, British Columbia.

Wilensky, R. 1984. KODIAK - A Knowledge Representation Language. In
Proceedings of the Sizth Annual Conference of the Cognitive Science Society,
Boulder, Colorado.

Wilensky, R., Arens, Y., and Chin, D. 1984. Talking to UNIX in English: An
Overview of UC. Communications of the Association for Computing
Machinery, June.

