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Abstract

The characterization and prediction of the behavior of a computer system is one of the main
goals in any performance evaluation study. Moreover, if one is interested in comparing different
computer installations, which may have diverse user communities and hence different natural
workloads, workload estimation and comparison, as well as user utilization, become central issues
of discussion.

In this paper we present the results of using a portable workload estimation technique, based
on the terminal probe method, to characterize the natural workload of interactive computer
installations and predict selected performance indices of interest. Studies performed on 12 com-
puter systems show that there are system independent statistical characteristics of the observed
performance indices which allow us to model system behavior and to compare installations. These
results can be used as a basis for load balancing strategies in distributed systems. We have found
a family of statistical models which fit our measured data in a comprehensive way: not only the
mean and the variance of our distributions are well approximated but the modelled distributions
fit the observed ones. Thus, order statistics can also be obtained.

All of the observed systems operate under the UNIX operating system. The methodology
utilized is easy to understand, quick to implement, and may be applied without bringing the sys-
tems down. The more than 16,000 measurements used for this study were obtained over a span
of two and a half years. Detailed analysis done with these data enable us better to control the
duration of the data gathering period and, what is more, achieve predetermined statistical
confidence in the modelled distributions.

Key Words: Benchmarking; installation comparisons; performance; performance indices; terminal
probe method; UNIX operating system; portable workload estimators; load balancing; generalized
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linear models; linear predictors.

1. Introduction

The utilization of portable software tools has become not only an economic necessity but
also an invaluable asset in any multiple-installation computing environment. In particular, the
possibility of using hardware independent portable performance monitoring software is a reality
since the advent of operating systems which run on several machines from different manufacturers
and possibly multiple models from any given manufacturer. We have used a UNIX portable set of
benchmarks to gather statistics in all of the systems.

In this paper we will present a study which shows that there exist system and task indepen-
dent statistical properties of performance data gathered using the Terminal Probe Method
(described in Section 2.1) which enable us to draw firm conclusions from studies based on approxi-
mate workload estimators. In fact, our results can be used as a basis for establishing load balanc-
ing, or task allocation, strategies in distributed systems. Moreover, this study also shows how one
can limit the duration of the data gathering period, and how, when modelling a system, one may
select a few predetermined values of the workload estimators as the sole objects of measurement.
These considerations enable us to reduce the data gathering overhead.

Over the years the so called Terminal Probe Method has been utilized in a variety of con-
texts. Indeed, not only has it been used to assess a specific configuration under a controlled work-
load, but there have also been studies which used it as a tool for comparing different installations
operating under their “natural” workloads. Thus, questions regarding the representativeness and
validity of these comparisons have been posed. These questions have remained unanswered. In
this paper we address the problem of inferring that a behavior observed through imprecise work-
load estimators corresponds to the real behavior of an installation. Moreover, we are also able to
use this observed behavior to rank different installations according to predetermined performance
criteria, and to model the behavior so as to estimate the impact of load growth.

Our results are based on 16,583 measurements taken on 12 systems over a span of two and
a half years. All of the systems were presented with the same benchmark, which runs on any UNIX
system. The methodology used is easy to understand, quick to implement, and does not require
bringing the systems down for its application. The set of benchmarks which were developed may
be installed in a few minutes.

Section 2 briefly explains the computer systems studied, the data gathering method, and the
tasks chosen for measurement. Section 3 presents the analysis of the observed data. Section 4
the approximation and the modelling of our data using Generalized Linear Models. Section 5 con-
tains a study of the robustness of our modelling. In Section 6 we present some “characteristic’
surfaces for our systems, and, finally, we present our conclusions in Section 7.

2. The Experimental Environment

All of the installations used for our measurements ran versions of the UNIX operating system.
UNIX is the name of a family of operating systems, first developed at Bell Laboratories, which has
evolved over the last 15 years [12,18]. In 1969 a first version was implemented on a PDP-7, and
since then the system was ported to PDP-11s, VAXes, IBMs, Amdahls, Interdatas, NCRs and
many others. In 1979, a group at the University of California at Berkeley implemented a paged
virtual memory extension to UNIX for the VAX [1], which is now part of what is known as ‘‘Berke-
ley UNIX'. Most of our measurements were done on this last type of system.

On logging into a UNIX system, each user is assigned a special process containing a command
interpreter, known as the shell [3], which listens to the terminal. The shell parses each input line
and decodes the command requested along with its flags and arguments. Then it forks and ezece
the command. Shells may also read commands from files. Thus, users may define sequences of
shell commands, known as shell scripts, and store them in files for later invocation. The versatil-
ity of these scripts is greatly enhanced by the fact that the shell language also contains control



flow primitives, string-valued variables, and arithmetic facilities. Since UNIX automatically han-
dles all file allocation decisions, the portability of these scripts is greatly facilitated.

2.1. The Data Gathering Method

Our strategy for monitoring the responsiveness of each system was the same as that used in
[4]. Tt consists of running a script which invokes a set of predefined benchmarks together with
commands to gather statistics about the workload and measure the time it takes the benchmark
to terminate. The script runs periodically in a totally automatic way. Each time the script cycles
through its commands, it executes a sleep command that suspends its execution and then wakes it
up after a predetermined number of seconds. We used 1200 seconds, so that there would always
be 20 minutes between any two measurement points. We decided to use the time command
because of our commitment to use standard UNIX tools. time has a rather low resolution and
truncates its measurements, it does not round them off. More details can be found in [4,5,18].

This data gathering technique can be categorized as a time-sampling method [10], and is in
fact very similar to Karush’s terminal probe method [11]. By using it with a system in normal
operation, one evaluates the performance of an installation (i.e., the hardware configuration plus
the workload being executed).

Table 2.1.1 presents a summary of the number of measurements for the various systems.
Hardware changes were made to some installations during the measurement period. For statisti-
cal reasons we had to consider the systems which existed before and after the change as being
different. (For example, in Table 2.1.1 VAA and VAB correspond to two such systems. This
change, a fairly trivial one, consisted of the addition of some ports to the installation.) The most
important mnemonic element in the names is given by the first letter. Those which begin with a
P are the names of PDP-11 systems. Those with a V are VAX systems. All VAXes were 11/780
[7], with the exception of V50, which was an 11/750. I a 7 appears, the system was an 11/70; a 4
means an 11/40.

System | No. of Measurements

vl 3427
P7A 3206
V50 2718
VE 2052
VM 1467
P7B 1016
VAA 844
vC 791
VB 435
P4A 301
P4B 235
VAB 91
Total 16583

Table 2.1.1: Systems measured and
total number of observations.

2.2. The Systems Measured

There were a total of five different installations, four at the University of California, Berke-
ley, and one at Purdue University. Those measurements labeled VC come from Purdue, where the
VAX 11/780 had, at that time, a configuration with 3 megabytes of main memory, 56 ports, three
RMO3 disk drives on Massbus 0, and one TE 16 tape drive on Massbus 1. V50 was our only VAX
11/750-based installation. It had 2 megabytes of main memory, three 330 megabytes disks on a



Massbus controller, 23 ports, and connections to three Ethernets. It ran Berkeley UNIX 4.2 BSD.

Measurements from P4A and P4B came from a PDP 11/40 which had 200 kilobytes of main
memory, one DIVA disk controller, and three DIVA disk drives with 50 megabytes disks. This
installation had 23 ports and no floating point arithmetic unit. The P4B measurements were made
on the installation without a cache memory, and the P4A with a 2 kilobytes cache memory. The
P7B measurements were made on a PDP 11/70 with 1.3 megabytes of main memory, a 2 kilo-
bytes cache memory, 81 ports, one DIVA disk controller with four DIVA disk drives, and an RS04
fixed head disk used as a swapping device. The P7A measurements were made on the same instal-
lation with 2 megabytes bytes of main memory and with the drum used for storing temporary
files instead of as a swapping device.

All of the other measurements were made on the same installation, which went through suc-
cessive changes. VB was an 11/780 with 512 kilobytes of main memory, two RPO06 disk drives,
one TE 16 tape drive and 16 ports. This was a “‘swapping”’ UNIX system. VAB was the same
installation but runping a paging version of UNIX. VAA was VAB with 8 more ports installed.
VM, VI, and VE, all ran paging versions of UNIX. Ounly VE ran the 4.2 BSD version of Berkeley
UNIX. VM had 2 megabytes of main memory, 2 RP06 disk drives, two CDC 300 megabytes disk
drives, and 32 ports. VI had 4 megabytes of main memory, 4 RPO06 disk drives, two CDC 300
megabytes disk drives, and 72 ports. VE, finally, had 8 megabytes of main memory, three 300
megabytes disk drives on a Unibus controller, two 167 megabytes disk drives on two Massbus con-
trollers, one tape subsystem, 72 ports, and one connection to an Ethernet.

2.3. Choosing Tasks and Work Load Estimators

Throughout our data gathering period we ran a script which contained three basic tasks: a C
compilation, a CPU bound job, and a text formatting job. This last task was the command man
man which retrieved and formatted the manual page entry of the on-line manual.  We also
measured three workload estimators: the number of users logged in (nu), the number of processes
in the process table (np), and the number of active users (nau). nau was obtained by counting the
number of ports which had more than one process associated with them. This generated a bias in
systems where there were several port-dependent daemons running. No correction was made
because the same number of them existed during the entire data gathering period. These “'shifts”
by a constant do not affect statistical correlations.

At a later stage, and only for the systems VI, VE, V50, and P7A, we appended two new
tasks to exercise aspects of the systems which were found not to be well observed previously.
These new tasks did not alter the measurements of the initial set of them. They were the copying
of a 60 kilobytes file within the same disk, and an editing session involving a series of commands
made to a 60 kilobytes file. These measurements were used to validate hypotheses about the sys-
tems, but are not included explicitly in our subsequent discussion.

The selection of these portable workload estimators and of the tasks has been justified else-
where [4,5,6]. The main tradeoffs in choosing the tasks were resource consumption versus work-
load representativeness of the (original) set of activities. The low granularity of the time com-
mand played a role in that it forced us to make our tasks longer than we would have liked. As we
wanted less than 5% error in each individual measurement, our tasks had to run for a sufficiently
long period of time. time returns three values: user time, system time, and response time. The
first two are accurate to one-tenth of a second. Response time is accurate to the second. Thus,
each of our tasks was chosen so as to take, in most cases, more than 5 seconds to complete. For
the workload estimators the criterion was semantic simplicity. However, as nu, nau, and np are

t Some recent optimised versions of man format the data only if it has not been retrieved for a long period of time
by preserving the formatted versions in files. Berkeley UNIX 4.2 BSD does this, as can be observed in Table 3.4.1.



related to each other, it was of interest to determine whether we could explain the same
phenomena with just a subset of them. Thus, we studied their correlations. These results are
presented in Section 3.1.

3. Analysis of the Data

The explosive combinatorial characteristics of the amount of data which was collected and
analyzed for this study precludes us from explicitly presenting all the different cases. We have
chosen, instead, to select appropriate representative displays for each of the analyses done. We
have heavily relied for these analyses on SPSS and Minitab [14,17].

Using the SPSS facility called scattergram [14], we were able to plot each of the observed
performance indices for our different tasks as an individual function of each of our workload esti-
mators. Moreover, scattergram also gives us an idea as to how each cross section distribution
looks like, i.e., the distribution obtained for each individual value of the workload estimator. It is
unfortunate that scattergram prints values only through the number 9, thus preventing immediate
sizing of samples which have more than 9 points. Further analyses enabled us to plot the exact
histograms of these distributions, and hence see their actual shape.

3.1. Correlations Between Work Load Estimators

The choice of nu, nau, and np as portable workload estimators has been justified primarily
in terms of their semantic simplicity and ease of measurement [4,5,6]. Given the amount of data
available, a question worth answering was whether a subset would suffice. Can we explain (in the
statistical sense of this term) the same phenomena with one of them? With two? Thus, the corre-
lation between pairs of them and their prediction power were studied. Table 3.1.1 presents the
results obtained for the correlation coefficients between each of the three pairs of workload esti-
mators used, computed using all the available measurements in each system.

Correlation Coefficients
System | nuvsnau | nauvsnp | nuvsnp
Vi .899 799 689
P7A 917 .849 791
V50 .954 942 933
VE 901 .885 .868
VM .880 .854 783
P7B .946 .903 .884
VAA .852 .838 .746
vC 881 .769 .686
VB .842 855 771
P4A 677 .828 .660
P4B 410 345 470
VAB 492 .906 .606

Table 3.1.1: Correlation coefficients between workload
estimators for the different systems.

From Table 3.1.1 we observe that there exists substantial correlation between the different
pairs of estimators. The coefficients are certainly larger than those observed in most of the social
sciences studies, which are usually on the order of .4, and smaller than those obtained in econom-
ics, which are usually on the order of .95. Moreover, we also see that the pair which tends to be
less correlated is <nu,np>, which suggests that these two estimators measure different aspects of
the workload. We also observe that, for P4A and VAB, nau and np are much more highly corre-
lated than the other two pairs. In Section 4 we shall see that, for most systems and tasks, nau



adds no significant additional information to that given by nu and np.

The fact that P4B presents values which are very different from those of all the other sys-
tems is explained by us in terms of hardware configuration. This system was a PDP 11/40 with
no cache memory. Response time because of this suffered a tremendous degradation. We believe
the user community changed its work habits while the system temporarily operated under these
conditions. P4A was the same installation with cache memory.

Our scattergram analysis told us that the high correlation values between workload estima-
tors came from data with almost no outliers. All of the data points were in one compact cloud.
The exception to this rule was observed in P7A, and is depicted in Figure 3.1.1. In this figure, the
secondary cloud, that parallel to the horizontal axis, contains a small number of points, and dep-
icts the system on a large number of users logged in but with very few doing work.

We also analyzed the dependency of our workload estimators on the time of day. The regu-
larity observed for all of them, reflected by the low dispersion of values and the periodicity, sup-
ports the claim of stability for the natural workloads. User communities seem to achieve steady
state working habits soon after hardware changes have occurred. Figure 3.1.2 depicts, for system
V50, the number of processes as a function of the time of day. Figure 3.1.3 presents, for system
VE, the number of active users as a function of the time of day.

3.1.1. Robustness of These Measurements

The correlation between workload estimators is a function of the working habits of the
installation’s user community. Table 3.1.1.1 presents, for each system, the correlation coeflicients
between pairs of our workload estimators obtained from random subsamples of the totality of the
measurements of our workload estimators. Indeed, the file containing all sample points was
sequentially scanned, and for each measurement a ‘random’ decision was made as whether to
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Number of % of total Correlation Coefficients
System | measurements | measurements | nu vs nau | nouvsnp | nu V8 np

VI 1708 49.78 .896 .785 .668
P7A 1471 49.71 .909 .849 795
V50 1366 50.25 954 933 941
VE 1031 50.24 902 884 877
VM 740 50.04 .880 .860 789
P7B 515 50.06 948 .899 .885
VAA 425 50.03 .842 821 740
vC 398 50.31 .887 776 684
VB 225 51.72 .836 .861 769
P4A 156 51.65 .705 834 698
P4B 114 48.30 .384 .343 .489
VAB 39 42.85 339 .856 481

Table 3.1.1.1: Correlation coefficients of random subsamples.

incorporate or not that measurement into the subsample. The size of the subsample and its per-
centage of the size of the whole sample are indicated.

By comparing Table 3.1.1 with Table 3.1.1.1, we see that there is indeed great stability in
these numbers. Another remarkable fact is that all relative orderings among coefficients are
preserved. In all systems the orderings of the correlations coincide. This clearly indicates a high
degree of uniformity, or stability, in user habits. On the other hand, some hardware changes do
bring different behavior patterns, as can be seen with P4B and P4A, VAB and VAA. From an
overall analysis of the behavior of each installation which underwent hardware changes, we were
able to detect changes in the user habits only when the hardware additions significantly altered
the responsiveness of the system at all levels of the load.

3.2. User Time Measurements

User time, as defined by the UNIX programmer’s manual [18], is the time spent in user mode
during the execution of a command. As our tasks were always run using the same set of inputs,
their behavior does not change between runs. The same user mode instructions are repeatedly
executed. Thus, a precise clock should always give the same reading. For the same reason, user
time measurements should not depend on the load of the system. Thus, for them, the accuracy of
the workload estimator is not relevant regarding the precision of user time measurements. The
same measurement should be observed at all levels of load. Nevertheless, because of the way time
is implemented (sampling at clock “ticks'") and of its resolution (only to the tenth of a second), we
expected to see measurement errors. Because of their random nature, we believed they should be
normally distributed. This turned out to be the case for most tasks and systems. In all cases,
though, the normal distribution was the best (and statistically valid) approximation to the
observed distributions for user time.

We have chosen to display scattergrams of that task which was most amenable to sampling
error: the CPU bound job. Other tasks had even more normal user time distributions. Figures
3.2.1 and 3.2.2 display scattergrams of our CPU bound task in two different systems. Figure 3.2.2
has a good number of ‘lower’ outliers, but the central trend is clearly that of normal distributions.
In both figures we verify that the median and mean values of each cross section remain practically
constant at all values of our workload estimator. As expected, user time is observed to be practi-
cally independent of load.

User time measurements also shared the following characteristic: the means and variances of
the distributions corresponding to a task in a system showed no real correlation. Figure 3.2.3 dep-
icts the variance (VAR) plotted against the mean (MEAN), for the task man man in the system
P7A, where nu was the underlying workload estimator. That is, for each value of nu, the mean



Scatteruras of

Y000

$.730

6,400

$.300

$.110

4,040

4,570

soen) LT VER 1]nr ecIo8n) MU nuraTh UF LSTRS
PLEJOUDOUE P SUURS Y L SUURE. D SN 1 S PEL SO LT TUOUNN P SO L !
PO W s4oa0w : o0 e ) tonoveoovéone -.o.o-- -...0
L]
L[]
L ] L]
* L] L
L] . L]
[ ] [ ]
2 [] . 3 L] F .
. . . ] 3 3 - .
[N N SEN S SR S R Y D D D R B
4 3 ] e L} L ] ] ) ’ ] ° ] ] 1 .
9 9 9 7 | | ] ] 9 1) ’ ] 7 2 4
[} ’ ] [} [} [} ’ [] ’ [ ] ) ] s 2 2
4 ) 4 3 ] 3 . . 1 ) 3 . .
H ] M . 13 d ) * H N *
. . 3 [
L ] L]
L ] * L ]
L J L ]
L ] L]
*
. M h M M N A tescngecent teates . * * * *
8,00 1,70 P [ 5,00 0,90 10,20 11,90 13,00 19,90 17,40

Figure 3.2.1: System VM. Scattergram of UT (user time) versus nu. Task: CPU bound job.

Sééttoraras of

v.870

0,040

8,210

7,700

7,380

6,920

6,400

6,000

$.200

557 0T g T e e S B IS UM e
* [ L] * 40 .; . :c ] o 03 . 22 H F] : 2 o ° 2 *
R SRR SIS 1R 3 IE E IR .
I LI I I L H AT T A
e iivl*e!iqwtu"}"'i}‘:gi-h'e:z-.z
a!ﬁ:ims:z: HER ::!!HZEE: i :;':1;:3 T .
b} ., ! ’l 99 :! 2 99 x 'i : :3 ¢ 4 :i ! 3e * 20 : z. : i [] :: z . Y "
R S LA
e - - . o o 00 2 ] L] L]
L ] : ;; L ] z’ . :: . ; . * ¢ .E . .I * o [ ] ¢ .
[ e 2 .
L[] ¢ L] ¢ * 3
i .
i .
;:00 .;.0 13:0" xl:oa M 3‘.;...'..i':....'.';;';-."..:;';;..'.'::'.'..'.';:‘....'.....l”
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and variance of the distribution of user time (a cross section of the scattergram) was computed.

Then, these values were plotted against each other.

We may also observe in Figure 3.2.3 that

most of the means fall between 0.17 and 0.21. This is almost constant, since time is accurate to
the tenth of a second, and the range of nu in this system was from 0 to 56. In this example the
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medians were almost always 0.2.

3.3. System Time Measurements

System time, as defined by the UNIX programmer’s manual (18], is the time spent in the
operating system while executing a user command. The accounting implemented in UNIX, however,
allows a process to be charged not only for those system activities done on its behalf (like the
opening of a file) but also for activities done on behalf of the community at large (like the servic-
ing of a page fault interrupt). System time is load dependent.

Figures 3.3.1 and 3.3.2 present scattergrams of system time for two of our tasks in different
systems. We have displayed nu as the workload estimator. There are two main differences
between the cross section distributions in these scattergrams and those for user time. First, we
clearly see that, towards higher values of our workload estimator (and this was observed for all
three of them), the distributions ‘shift’ upwards. Second, the distributions themselves show a much
larger degree of skewness towards the high end than those observed for user time.

The shift of the distributions is just the load dependency of system time. Even our inaccu-
rate workload estimators account for this dependency. The biased shape of the distributions,
however, appears to be the combined eflect of our measurement errors and of the nature of the
distribution. Not only does the precision of time play a role, but also the inaccuracy of our work-
load estimators. The ideal workload estimator in an interactive computer system is that which
exactly characterizes all the activities and their interrelationships within the system. System time
measured against an ideal estimator would behave as a function: i.e., the variance of the measure-
ments would be zero. The problem then is to find suitable statistical distributions to fit our data.
From them we may obtain estimates of our desired performance parameters.

Inspection of the system time distributions revealed that they could not be approximated by
normal distributions. The observed asymmetries were non negligible. While some of the
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distributions looked like exponential, others showed a left-truncated bell shape with a long tail
towards the high values of the observed variable. A family of distributions which could be used as
suitable approximations were the Gamma distributions.

In contrast with Figure 3.2.3, the means and variances of system time distributions for each
of our tasks in the different systems could be approximated very well through linear relationships.
The ‘slopes’ of these relations varied, but in general the variances grew slowly (with coefficients
between 0.05 and 0.45) as linear functions of the means. Figures 3.3.3 and 3.3.4 present the vari-
ance (VAR) plotted against the mean (MEAN) for the C compilation task in the system VM, and
for the man man task in the system P7A, respectively. As in Section 3.2, nu is the underlying
workload estimator. If in Figure 3.3.1 one does not take into account those distributions which
have very few points, those above 13 users, in Figure 3.3.3 we are left with those values which
have means less than 3.5. We see that the variance remains almost constant as a function of the
mean. In fact, for this reduced range, the variance remains almost constant as a function of load

as well.
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In Sections 3.2 and 3.3 we have chosen to display the same tasks and systems to allow a
detailed analysis of these tasks by the reader. The inherently different behaviors displayed by
user time and system time should be clear. In particular, Figures 3.2.3 and 3.3.4 should be con-
trasted to see the patterns regarding the relationships between variances and means.
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Figure 3.3.4: System P7A. Variance (VAR) versus mean (MEAN).
Task: Man man. Workload estimator: nu. Performance index: system time.

3.4. Response Time Measurements

Response time, as defined by the UNIX programmer’s manual [18], is the total elapsed (wall
clock) time spent by the system executing a command. As the events we were measuring never
took less than 3 seconds to complete, with the exeption of man man in systems V50 and VE as
explained in Section 2.3, see Table 3.4.1, and most of them always took more than 5 seconds,
workload estimation inaccuracies had the potential of aflecting more the response time

Tasks
System | C compilation | CPU bound | man man
[seconds] [seconds] [seconds)
VI 4 5 7
P7A 5 8 3
V50 6 12 0
VE 4 6 0
VM 11 5 10
P7B 7 8 4
VAA 9 5 13

Table 3.4.1: Minimum response time observed.
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measurements. Deviations from an ideal workload estimator produce distributions of measure-
ments which have to be handled through statistical analysis. As it is clear that our estimators are
fairly rough, what is of interest is to see whether they produce results which are amenable to sta-
tistical analysis.
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It should be remarked that the main advantages and interest of the chosen workload estima-
tors arise from their easy definition, their portability, and the low overhead involved in their
measurement. The problem is to find suitable statistical distributions which fit our data. From
them we may obtain reliable estimates of our desired performance parameters.
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In [6], where a preliminary version of this subsection and of Subsection 4.2.3 were presented,
we displayed the scattergram of the man man task, in the System VI, as a function of each of our
three (single variable) workload estimators. Here we have chosen to display scattergrams of the C
compilation and CPU bound tasks, in the systems P7B and VI, respectively. This set of figures is
representative of the response time behavior of all measured systems, with the sole exception of
P7A.

In P7A, np produced scattergrams with some anomalies towards the higher values. This did
pot occur for nu or nau. One explanation is that new software which altered the number of
processes continuously running was installed. A hardware change such as the addition of network
ports could also have had this effect.
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Figure 3.4.5: System V1. Variance (VA) versus mean (AV).
Task: CPU bound. Workload estimator: nau. Performance index: response time.
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In contrast with what has already been observed in user time and system time, the response
time scattergrams always show that the distributions have much larger variances for higher values
of the workload estimator. Never we observed a response time scattergram where the variances
were constant or grew very little as a function of load. As with the system time samples, they
have larger degrees of skewness towards the high values of load. We also observed in all systems
that the minimum response time, per task and per system, is achieved throughout a substantial
part of the range of each of the workload estimators. This points to the inaccuracy of our work-
load estimators. However, filtering out outliers from the scattergrams, we see that the maximum
response time is a clear function of the workload estimator. Moreover, the behavior of the means
of these distributions is best explained as an exponential function of the load [4,10].

As with system time, close inspection of response time histograms revealed that response
time does not follow a normal distribution. As before, our measurements indicate that response
time may always be accurately approximated by a Gamma distribution. This distribution offers
the appropriate flexibility to adequately fit our data. One has only to characterize the
distribution’s parameters.

We then looked for possible relationships between the first and second moments of the
response time distributions. We found that there were as strong linear relationships between them
as those observed for system time. Moreover, we also found high correlation between them. Fig-
ures 3.4.5 and 3.4.6 depict the variance (VA) plotted against the mean (AV) for the systems VI
and P7A (N7). The measurements were taken from the CPU bound task using nau as workload
estimator. The associated regression analysis showed that, in system VI, 92% of the variation in
the variance could be explained in terms of the variation in the mean. This was 68% for system
P7A. Other tasks and systems exhibited the same behavior. Their correlation coefficients were
always above 60%.

This empirical relationship provided the final reduction of complexity needed to appropri-
ately fit a Generalized Linear Model [13].

4. Using GLIM to Model Five Systems

GLIM is an interactive package for modelling data through generalized linear models [2,13].
Its use allows fitting different parameter combinations to the data and obtaining the modelling
results very efficiently. The theory behind the models is presented in Section 4.1. From the user’s
point of view, one defines a dependent variable, “yvar”, which for us will correspond to user time,
system time, and response time, and fits its expected value in terms of other observed variables.
Whenever more than one such observed variable exists, as in our case (where we have nu, np and
nau), linear combinations of them can also be fitted, as in ordinary regression analysis.

Moreover, GLIM permits choosing the underlying error distributions and has different model-
ling assumptions for each type of them. For example, normal errors are assumed to have the
same variance. This is not the case for gamma errors, where the variance is assumed to be a fixed
multiple of the mean. The analyses presented in Section 3 support these hypotheses.

The other degree of choice which GLIM offers is the type of relationship, called link by
GLIM, existing between the expected value of yvar and the estimating variables. Possibilities
include the identity relation, the inverse, the square root, and the logarithm, among others. If, for
example, one chooses the logarithm relationship, then the values of the fitting model, M, and yvar
are linked through the logarithm; i.e., the expected value of yvar, E(yvar), satisfies:

E(yvar)=eM®
where I"is the vector of estimators.

As a criterion for evaluating alternative fitting models, we not only considered the statistical
deviance given by GLIM, which is the maximized likelihood, but also looked at the sums of
squares of the differences between our estimates and the observations. GLIM minimizes this sum
of squares in the presence of normally distributed errors. Section 4.2 describes this study.



18

4.1. The Generalized Linear Models

Underlying the concept of a statistical model for a random variable is the idea that the vari-
able under investigation has a definite structure which will explain the values actually obtained as
well as predicting future values. The structure is in fact a description of the population and will be
mirrored in whatever sample we obtain. This underlying idea postulates that the variable can be
expressed in terms of other more basic variables: the components of the structure. If these latter
variables have fixed (though possibly unknown) values, they are termed systematic components,
whereas, if they too are random variables, they are termed random componentas.

4.1.1. Definition of a Generalised Linear Model

Even though one may consider any random variable Y, with y; denoting its i-th sample
value, to be representable by any combination of any number of components, for most practical
purposes simple structures suffice. A Generalized Linear Model (GLM) is determined as follows.
Let a set of independent random variables Y; (i =1, ..., n) have means y, so that

Y= ui + €.
Then there are three basic properties which define a GLM.

4.1.1.1. The Error Structure
The probability density function p of ¥; is given by

for suitable choices of a;, b and c. (Note that F, termed the scale parameter, is constant for all i.)
The mean and the variance of Y; can then be expressed in terms of @; and F:

E(Y;) = b,(QI)
var(Yy) = b"(Q;) * a(F)

where primes (') denote differentiation with respect to Q.

For example, the normal distribution is obtained by setting 2:(Q) = Q, b(Q)) = -é-‘Q,-2 and

Y;2
c(Y:,Q) = -é. * 10g(2TQ) + -If-.-, where F would usually be denoted by o2.

It is convenient to write b”'(Q;) = t,2, the variance function, which is a function of u,; only,

Q%

var(Yy) = Q) * t2 = -

’

where the w, are called the prior weights, and the functions a:(Q) have the form wL
1

4.1.1.2. The Linear Predictor

The role played by the remaining variables in the structure of each observation is expressed
as a linear sum of their effects for the observation, called the linear predictor, n;,

ng = gzu*bj

where the z;; are known and the b; are (usually unknown) parameters. The matrix X, of order ‘n
x p’, is called the design matriz. The right band side of the equation is called the linear structure.
If an z;; represents the presence or absence of a level of a factor, then b; is the effect of that
level; if z; is the value of a quantitative covariable, then b; scales z,4 to give its effect on n;.
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4.1.1.3. The Link Funection

The relationship between the mean of the i-th observation and its linear predictor is given
by the link function g;:

ne = gi(u¢)
where the g; are assumed monotonic and differentiable. We define h;, where
u; = he(n(),

as the inverse of the link function. Although each observation could in theory have a different
link function, this is rare in practice and so the subscript is dropped.

In summary, a particular GLM can be identified by specifying the error distribution of the
random component, the make-up of the linear predictor, and the function linking the means to the
linear predictors. All error distributions must belong to the exponential family, which includes the
exponential, normal, and gamma distributions among others.

4.2. Summary of the Analyses

In this section we present the results obtained using GLIM on the data of five systems.
Presenting all of the twelve systems would have been too long and would not have added any new
insight. We selectively present different tasks for user time, system time, and response time. We
display seven linear models based on the three workload estimators np, nu and nau. Higher order
models of the data were not explored because of the accuracy obtained with the linear models.

We have chosen to include all the information provided by GLIM so that one may indepen-
dently judge the accuracy of the modelling effort, and, better yet, have the ability to produce
graphic displays, as we do in Section 6, any of the modelled tasks in any of the systems. Indeed,
it L is the link function, and a, b, ¢, the parameters of the linear model, then:

L[E(yvar)] = %GM + aa + fb + 1c

where a, 8, and 7 are the estimates given by GLIM for the corresponding parameters, and %9GM
the base modelling value.

4.2.1. User Time

As in Section 3.2, we chose to present the results for the CPU bound job, since the process-
ing of this task represents the CPU power of each machine. The GLIM hypotheses used were

Linear Estimators

System np nu nau np,ny np,nau nu,nau | np,nu,nau
Normalized

Vi sum of sqr .4097 4010 .3965 3928 .3940 3943 3916
Normalized

P7A sum of sqr .1066 9837E-1 | .9940E-1 | .9837E-1 | .9930E-1 | .9817E-1 9817E-1
Normalized

VM sum of sqr | .3154E-1 | .3156E-1 | .3162E-1 | .3145E-1 | .3152E-1 | .3154E-1 3114E-1
Normalized

P7B sum of sqr 4947E-1 | .4746E-1 | .4748E-1 | .4746E-1 | .4783E-1 | .4743E-1 4742E-1
Normalized

P4A sum of sqr | .3408E-1 | .3704E-1 | .3760E-1 | .3392E-1 | .3408E-1 3611E-1 .3408E-1

Table 4.2.1.1: Normalized sums of squares for the different systems and linear estimators.
Task: CPU bound job. Yvar: ut. Error: normal. Link: identity.
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normal errors and identity link. Both are supported by our data, as seen in Section 3.2.

Table 4.2.1.1 presents the normalized sums of squares for each linear estimator in each sys-
tem. These quantities were obtained from the values given by GLIM by dividing the sum of
squares (of the differences between the fitted points and the observed ones) by the degrees of free-
dom of the corresponding sample. In this way we take into account the size of the sample. For
each system, a smaller table entry represents a better fit.

In Table 4.2.1.1 we see that the single variable estimators never fit better this data than the
multiple variable ones, with only one exception. This exception is in system P4A, where np fits
better than <nu,nau>. This behavior is probably due to the atypical characteristics that nu and
nau had in P4A. In fact, Table 3.1.1 shows that their correlation was 23% lower than that
observed for VM, and 31% lower than the one observed for P7B. We also have that, for VM and
P4A, np is the best single estimator, while for P7A and P7B nu is best. For VI nau predicts
better. This lack of pattern points to the coarseness of the estimators, as well as to the different
workloads of the installations and to the user’s habits.

S YSTEMS
Parameters Vi P7A VM
Estimate | Std. Error { Estimate | Std. Error Estimate Std. Error
%GM 4.365 J9366E-1 7.635 3796E-1 5.479 4323E-1
np 2221E-1 9793E-3 | .3938E-2 .3048E-3 .5053E-2 .9253E-3
scale .4100 1067 .3159E-1
%GM 6.047 .2064E-1 7.925 .1092E-1 5.679 .7963E-2
ny 3117E-1 .1276E-2 | .1035E-1 4974E-3 B6647E-2 1229E-2
scale .4014 9845E-1 .3161E-1
%GM 5.826 .2778E-1 7.915 .1175E-1 5.653 1273E-1
nau .5373E-1 2119E-2 | .1263E-1 B6335E-3 .8974E-2 1751E-2
scale .3966 9948E-1 .3167E-1
%GM 5.130 1119 7.893 .3992E-1 5.556 .5713E-1
np .1113E-1 .1335E-2 | .3171E-3 | .3709E-3 .2985E-2 .1370E-2
nu .2097E-1 1759E-2 | .1002E-1 .6301E-3 3721E-2 .1819E-2
scale .3932 .9846E-1 3152E-1
%GM 5.204 1224 7.844 .3924E-1 5.524 6225E-1
np .7228E-2 .1619E-2 | .6930E-3 | .3660E-3 .3621E-2 .1707E-2
nau .4093E-1 3561E-2 | .1174E-1 .7878E-3 3222E-2 .3226E-2
scale 3944 9939E-1 3159E-1
%GM 5.878 .3051E-1 7.915 .1168E-1 5.668 .1498E-1
nu 1172E-1 .2800E-2 | .7578E-2 | .1237E-2 .4803E-2 .2516E-2
nau .3614E-1 .4827E-2 | .3835E-2 .1568E-2 .3008E-2 .3582E-2
scale .3948 9828E-1 .3161E-1
%GM 5.294 1220 7.892 .3989E-1 5.541 .6285E-1
np .8027E-2 J1624E-2 | .2261E-3 | .3726E-3 .3562E-2 .1706E-2
nu .1326E-1 2897E-2 | .7T414E-2 | .1267E-2 4707E-2 .2514E-2
nau J1961E-1 5858E-2 | .3736E-2 | .1576E-2 | -0.2531E-2 | .4453E-2
scale .3920 9831E-1 .3154E-1

Table 4.2.1.2: GLIM parameters for three systems and seven linear estimators.

Task: CPU bound job. Yvar: ut. Error: normal. Link: identity.
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The pair which best approximates the measurements most of the time is <np,nu>. How-
ever, for P7A and P7B <nu,nau> is best. This split can be explained in terms of the workload
of this PDP 11/70 installation, as its use for instructional purposes does make the user related
estimators better predictors than the resource oriented ones. We shall see this again in Section
4.2.3.

In all cases using <np,nunau> produces better fits, but Tables 4.2.1.2 and 4.2.1.3 show
that the standard error of the nau coefficient is mot statistically meaningful in four of the five
cases. In System VI, the exception, it is only marginally meaningful. From this we conclude that
nau provides no additional prediction information in the presence of nu and np.

4.2.3. System Time

We have chosen to display the results of modelling man man. As in Section 3.3, we
observed that the distributions had gamma shapes and the variances had a linear relationship
with the means: we assumed that GLIM errors were gamma. We used log as the link function

S YSTEMS
Parameters P7B P4A
Estimate Std. Error | Estimate Std. Error
%GM 7.922 .6944E-1 1.643 .4440E-1
np 6842E-2 6364E-3 AT12E-2 .1378E-2
scale .4959E-1 .1004E-1
%GM 8.464 1770E-1 1.695 .1164E-1
nu .8734E-2 J7001E-3 9147E-3 .3305E-2
scale .4758E-1 .1009E-1
%GM 8.447 .1933E-1 1.675 .2086E-1
nau .1094E-1 .9001E-3 .3943E-2 .3612E-2
scale 4796E-1 .1005E-1
%GM 8.461 1137 1.624 .5114E-1
np 3137E-4 .1308E-2 .2589E-2 .1837E-2
nu .8703E-2 1469E-2 | -0.3177E-2 | .4394E-2
scale .4763E-1 .1006E-1
%GM 8.483 1257 1.647 .S006E-1
np -0.4319E-3 .1503E-2 .1375E-2 2209E-2
nou .1151E-1 2162E-2 .1131E-2 5787E-2
scale .4801E-1 .1007E-1
%GM 8.458 .1968E-1 1.673 2119E-1
nu .7006E-2 .2636E-2 | -0.2363E-2 | .4301E-2
nau .2295E-2 .3375E-2 .5601E-2 4710E-2
scale A4761E-1 .1008E-1
%GM 8.502 1254 1.631 .5392E-1
np -0.5262E-3 | .1498E-2 .2004E-2 .2345E-2
ny .T028E-2 .2638E-2 | -0.3666E-2 | .4566E-2
nay .2956E-2 .3866E-2 2417E-2 .6007E-2
scale .47T66E-1 .1009E-1

Table 4.2.1.3: GLIM parameters for two systems and seven linear estimators.

Task: CPU bound job. Yvar: ut. Error: normal. Link: identity.




because system time is load dependent. For higher values of overhead, the effect tends to behave
in a multiplicative way akin to exponential growth.

In Table 4.2.2.1 we have both the statistical deviance and the sum of squares of the
differences between the fitted points and the observed ones. The values given by GLIM have been
divided by the degrees of freedom of the corresponding samples to take into account the size of
the sample. We have named these quotients the normalized deviance and the normalized sum of
squares. When GLIM errors are normal, these two coincide. We see that only twice did the two
likelibood estimators mot agree in selecting the best alternative. In VM for the single variable
estimators, and in P7A for the tuple estimators.

As with user time, there was variability when choosing the best estimator, even though nu
was favored among single variable ones. <np,nu> was best among the two variable ones. We
also had that, for P7B and P4A, the best two-variable estimators matched the fit produced by the
three-variable one. In Tables 4.2.2.2 and 4.2.2.3, we see that the coefficient for nau is statistically
significant only for VI and P7A. This confirms our earlier observation that nau provides no addi-
tional information in the presence of np and nu. Moreover, the fact that nau is not statistically
significant in the modelling of P7B and P4A, explains in part why the three-variable estimators
did not outperform all of the two-variable ones.

Linear Estimators

System np nu nau np,nu np,nau nunauy | np,nunau

Normalized

deviance 8611E-1 | .8006E-1 | .8000E-1 | .7928E-1 | .7994E-1 | .7889E-1 | .7880E-1
V1

Normalized

sum of sqr .1203 1137 1128 1124 1127 1119 1117

Normalized

deviance 1208E-1 | .8622E-2 | .9270E-2 | .8616E-2 | .9261E-2 | .8578E-2 | .8566E-2
P7A

Normalized

sum of sqr 3055E-1 | .2003E-1 | .2144E-1 | .1988E-1 | .2144E-1 | .1993E-1 .1990E-1

Normalized

deviance .2039 .2038 .2055 .2015 .2021 .2036 2012
VM

Normalized

sum of sqr 1.4383 1.4541 1.4657 1.4315 1.4397 1.4520 1.4287

Normalized

deviance 1345E-1 | .1288E-1 | .1312E-1 | .1267E-1 | .1294E-1 | .1284E-1 1267E-1
P7B

Normalized

sum of sqr | .5875E-1 | .5680E-1 | .5775E-1 | .5564E-1 | .5678E-1 .5661E-1 .5564E-1

Normalized

deviance 4882E-1 | .5086E-2 | .5120E-1 | .4879E-2 | .4826E-2 | .5080E-2 .4826E-2
P4A

Normalized

sum of sqr | .3795E-1 | .3974E-1 | .3982E-1 | .3795E-1 | .3749E-1 .3949E-1 3749E-1

Table 4.2.2.1: Normalized deviance and normalized sums of squares for the different
systems and linear estimators. Task: man man. Yvar: st. Error: gamma. Link: log.
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SYSTEMS

Parameters VI P7A VM
Estimate | Std. Error | Estimate Std. Error | Estimate Std. Error
%GM -1.033 .4314E-1 1051 .1262E-2 3773E-1 .1904
np .1115E-1 .4516E-3 .2285E-2 .1001E-3 .2082E-1 .2342E-2
scale .8616E-1 .1299E-1 .2042
%GM -0.2122 9174E-2 2574 3154E-2 .8505 .2019E-1
nu 1719E-1 .5701E-3 6961E-2 .1445E-3 2941E-1 3117E-2
scale .8010E-1 .8629E-2 .2041
%GM -0.3209 .1245E-1 .2534 .3490E-2 .7436 .2335E-1
nau .2853E-1 9532E-2 .8324E-2 .1892E-3 3878E-1 4452E-2
scale .8006E~1 9275E-2 .2058
%GM -0.5014 .5072E-1 .2765 .1098E-1 3354 .1439
np 3517E-2 | 6052E-3 | -0.1816E-3 | .9985E-4 .1244E-1 .3451E-2
nuy .1388E-1 .7924E-3 .7146E-2 .1768E-3 1725E-1 .4593E-2
scale .7934E-1 .8623E-2 .2020
%GM -0.4063 .5539E-1 2357 1118E-1 .
np .1161E-2 J7319E-3 .1685E-3 .1017E-3 E- E-
nau .2646E-1 .1603E-2 .8119E-2 \2274E-3 E- E-
scale .8002E-1 .9270E-2
%GM -0.2825 .1366E-1 .2525 .3358E-2 .8139 .3798E-1
nu .8925E-2 | .1300E-2 .5607E-2 .3612E-3 .2298E-1 .6390E-2
nay 1517E-2 | .2175E-2 .1866E-2 .4561E-3 .1041E-1 .9090E-2
scale .7898E-1 .8586E-2 .2041
%GM -0.4006 .5499E-1 2751 .1096E-1 .2328 .1582
np 1621E-2 | .7304E-3 | -0.2163E-3 | .9990E-4 .1652E-1 .4296E-2
nu 9192E-2 | .1306E-2 STT3E-2 .3687E-3 .2486E-1 6355E-2
nau .1188E-1 .2631E-2 .1941E-2 4573E-3 -0.1877E-1 .1126E-1
scale .7889E-1 .8576E-2 2018

Table 4.2.2.2: GLIM parameters for three systems and seven linear estimators.
Task: man man. Yvar: st. Error: gamma. Link: log.
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SYSTEMS
Parameters P7B P4A
. | Estimate Std. Error | Estimate Std. Error
%GM -0.3028E-1 .3585E-1 8841 .3126E-1
np .6597E-2 .3284E-3 .4283E-2 9711E-3
scale .1349E-1 4916E-2
%GM .5066 9211E-2 1.002 .8339E-2
nu .7810E-2 .3641E-1 6213E-2 .2371E-2
scale 1292E-1 .5122E-2
%GM 4911 .1009E-1 9890 .1495E-1
nau 9822E-2 .4694E-3 ST57E-2 .2591E-2
scale .1315E-1 .5155E-2
%GM .2987 .5764E-1 8781 .3591E-1
np 2428E-2 .6635E-3 4571E-2 .1289E-2
nu .S5379E-2 7519E-3 | -0.1042E-2 | .3083E-2
scale .1273E-1 .4931E-2
%GM .2800 6447E-1 .8536 3510E-1
np .2564E-2 J721E-3 .6560E-2 .1548E-2
nau 6428E-2 .1118E-2 -0.7623E- 4032E-2
scale .1299E-1 4874E-2
%GM .4996 .1020E-1 9929 .1513E-1
nu .5701E-2 .1365E-2 4795E-2 .3088E-2
nau 2792E-2 1744E-2 .2410E-2 3363E-2
scale .1289E-1 .5130E-2
%GM .2922 .6390E-1 .8562 3771E-1
np .2518E-2 .7647TE-3 .6462E-2 .1640E-2
nu .5650E-2 1357E-2 STT7TE-3 .3189E-2
nau -0.4796E-3 | .1997E-2 | -0.7831E-2 | .4195E-2
scale 1274E-2 .4890E-2

Table 4.2.2.3: GLIM parameters for two systems and seven linear estimators.
Task: man man. Yvar: st. Error; gamma. Link: log.

4.2.3. Response Time

For this performance indicator we have chosen to present the modelling of the C compila-
tion task, because of the relevance that the C programming language has in all UNIX systems
[12,18].

Since in Section 3.4 we had observed that the distributions had gamma shapes, and that the
variances had a high correlation with the means, we could assume that GLIM errors were gamma.
It is well known that response time, as a function of workload estimators, behaves exponentially
[4,10]. Thus, a logarithmic link function was used.

Table 4.2.3.1 displays the normalized deviance and the normalized sum of squares for
response time. In contrast with what was observed for user time and system time, response time
had clear best single and tuple estimators. With the sole exception of P7A, for all other systems
the best single variable estimator was np. For P7A, it turned out to be either nu or nau depend-
ing on the likelihood estimator used. In fact, this was the only time where the likelihood estima-
tors disagreed in the selection of the best single variable estimator. For the two variable cases,
this occurred twice: for P7A and P4A. The best estimator pair was <np,nu>. Again, P7A was
anomalous in this respect, in that both choices included nau. For both P4A and P7A, if one used
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Linear Estimators

System np nu nau | np,nu | npnau | nunau | np,nu,naeu

Normalized

deviance .1641 | 1719 | .1914 | .1483 .1587 .1783 .1484
Vi

Normalized

sum of sqr | 24.47 | 25.66 | 26.79 | 22.22 23.26 26.68 22.22

Normalized

deviance 4654 | .3237 | .3611 | .3167 3330 3135 3085
P7A

Normalized

sum of sqr | 910.9 | 360.3 | 347.5 | 357.5 347.5 347.7 341.53

Normalized

deviance 1750 | .1875 | .1977 | .1609 1732 .1854 .1563
VM

Normalized

sum of sqr | 179.8 | 207.0 | 209.5 | 179.3 181.0 203.9 1788

Normalized

deviance .2408 | 2566 | .2887 | .2334 .2410 2546 2157
P7B

Normalized

sum of sqr | 491.6 | 540.9 | 574.9 | 490.6 490.9 537.1 447.79

Normalized

deviance 1132 | .1463 | .1656 | .1091 21125 .1402 .1069
P4A

Normalized

sum of sqr | 210.2 | 237.2 | 245.7 | 210.1 209.3 236.8 208.0

Table 4.2.3.1: Normalized deviance and normalized sums of squares for the different
systems and linear estimators. Task: C compilation. Yvar: rt. Error: gamma. Link: log.

the normalized sum of squares, the tuple choice would be <np,nau>.

In P7A, the scattergrams for response time versus np show an anomalous behavior for the
high values of the workload. This did not occur for nu or nau. In contrast with all the other
scattergrams, the values of response time did not grow above those found half way through the
range of processes. This system did not exhibit the same patterns under np as the others, which
were akin to Figures 3.4.1 to 3.4.4. One explanation is that new software which altered the
number of processes continuously running was installed. A hardware change such as the addition
of network ports could also have had this effect. We did not record such a change.

In P7A nau does group the measurements much better. GLIM is correct when it gives nau
as a better fit than np. The failure of np to be the best single estimator may also indicate, in
addition to what we said in Section 3.4, that the users of this system behaved differently than
those of other systems. P7A was mostly used for instructional purposes. Since many users may
be concurrently executing the same code, such as a toy operating system for example, severe dis-
tortions from the np estimator point of view may exist. For example, the memory utilization of
several users executing the same shared piece of code is much less than it would be if each had his
own copy. Thus the load on the resources of the machine is less than that suggested by the
number of processes. This load is clearly more faithfully represented by the number of active
users.



SYSTEMSS
Parameters Vi P7A VM
Estimate Std. Error | Estimate | Std. Error | Estimate Std. Error
%GM -0.8103 .5845E-1 -1.0100 T959E-1 5254 .1008
np .3029E-1 .6104E-3 3135E-1 .6388E-3 S5679E-1 2155E-2
scale .1642 .4656 1750
%GM 1.533 .1329E-1 1.736 .1980E-1 2.748 .1933E-1
ny .3962E-1 .8237E-3 .5547E-1 .8986E-3 .8015E-1 .2968E-2
scale 1719 3237 .1875
%GM 1721 .1150E-1 1.747 .2234E-1 2.467 .3164E-1
nau .5028 1213E-1 | .6462E-1 .1200E-2 1047 4341E-2
scale .1914 23611 1977
%GM -0.3140E-2 | .6737E-11 .1430 J197E-1 1.1040 1282
np .1865E-2 .8011E-3 .5721E-~2 .6688E-3 3961E-1 .3075E-2
nu .2136E-1 .1057TE-2 | .4937E-1 .1128E-2 .4032E-1 .4090E-2
scale .1484 3166 .1609
%GM -0.2587 .7452E-1 6764 7219E-1 .8455 .1446
np .2310E-1 .8622E-3 .1001E-1 6731E-3 4586E-1 .3066E-2
nau .1800 .1587E-1 .5380E-1 .1435E-2 .2758E-1 .7516E-2
scale .1587 3330 1732
%GM 1.544 .1319E-1 1.666 .2082E-1 2.628 .3608E-1
nu .2973E-1 .1349E-2 .3582E-1 .2208E-2 .5818E-1 .6053E-2
nau .1696 .1882E-1 .2672E-1 2791E-2 .3467E-1 .8623E-2
scale .1679 3135 .1855
%GM .1097E-1 .7326E-1 1.174 .7104E-1 .7469 .1389
np .1849E-1 .8680E-3 4811E-2 .6636E-3 .5351E-1 3770E-2
nu .2098E-1 1320E-2 | .3161E-1 .2243E-2 .6612E-1 .5560E-2
nau 9277TE-2 .1917E-1 .2527E-1 2783E-2 | -0.6310E-1 | .9850E-2
scale .1484 .3085 .1564

Table 4.2.3.2: GLIM parameters for three systems and seven linear estimators.
Task: C compilation. Yvar: rt. Error: gamma. Link: log.

Tables 4.2.3.2 and 4.2.3.3 show all the parameters given by GLIM in the analysis of the C
compilation task. In Section 4.1 we saw how to obtain apalytic formulae to represent the expected
value of response time in terms of these parameters. Section 6 will present some of these surfaces.

It is interesting to notice, in Tables 4.2.3.1, 4.2.3.2 and 4.2.3.3, that in VI the addition of
nau to the estimator <npnu> does not increase the accuracy of the model. In fact, the devi-
ance got slightly worse. We also see that nau had a statistically significant coefficient in
<np,nu,nau> only in PTA. These observations lead us to conclude again that for most systems

nay does not add significant modelling information in the presence of np and nu.

In the case of a long data gathering period, after an exploratory amount of measurements,
one could assess whether nau is indeed significant for the systems, and, if not, omit gathering
statistics about it. This will reduce the overhead of the metering effort and its total cost, while
preserving modelling accuracy. However, our evidence does indicate that, for the types of work-

loads we measured, nau will provide no additional information in the presence of nu and np.
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SYSTEMSS
Parameters P7B P4A
Estimate Std. Error | Estimate Std. Error
%GM -1.229 1529 6347 11491
np 3951E-1 .1401E-2 T122E-1 .4629E-2
scale .2408 .1133
%GM 2.060 .4108E-1 2.4650 .4433E-1
nu .4390E-1 .1626E-2 .1509 .1258E-1
scale .2566 .1463
%GM 2.030 4724E-1 2.1620 .8466E-1
nau .5319E-1 .2201E-2 .1395 .1466E-1
scale .2888 .1657
%GM -0.1511 2514 9139 .1685
np .2589E-1 .2892E-2 .5752E-1 .6052E-2
nu 1728E-1 .3250E-2 .5109E-1 .1448E-1
scale 2334 .1091
%GM -1.381 2799 .5103 1673
np .4150E-1 .3342E-2 .8106E-1 .7384E-2
naou- 321E-2 4794E-2 | -0.3440E-1 | .1934E-1
scale .2410 1125
%GM 2.112 4508E-1 2.212 .7903E-1
nu .5862E-1 .5897E-2 .1140 .1604E-1
nau -0.1980E-1 .7526E-2 6519E-1 1757TE-1
scale .2546 .1402
%GM -0.9839 .2656 7749 1755
np 3762E-1 .3166E-2 .7059E-1 .7633E-2
nu .5266E-1 .5435E-2 6126E-1 .1486E-1
nau -0.6370E-1 | .7889E-2 | -0.5600E-1 | .1955E-1
scale 2157 .1068

Table 4.2.3.3: GLIM parameters for two systems and seven linear estimators.
Task: C compilation. Yvar: rt. Error: gamma. Link: log.

5. Robustness of the Models

What duration should the data gathering period have? Or, how many sample points should
one take? In this section we present a robustness analysis of our GLIM modelling which sheds
light on this question. We do it for response time, the performance index which we consider most
important at the user level.

We present the parameters given by GLIM in three systems when random subsamples of
different sizes of the same set of measurements were analyzed. We considered the same task as in
Section 4.2.3: the C compilation. As in Section 3.1.1, these subsamples were made by sequentially
scanning the file containing all sample points, and for each measurement a ‘random’ decision, with
a fixed probability for membership, was made about whether to incorporate or not that measure-
ment into the subsample. We created three files with membership probabilities of 0.5, 0.25 and
0.125, to verify the robustness of the modelling technique.

In Tables 5.1.1, 5.1.2 and 5.1.3 we display the parameters given by GLIM when presented
with the random subsamples of different sizes. From the appropriate entries in those tables, we



conclude that the coefficients found in the tables of Section 4 are very robust. In almost all of the
cases (the only exception being the 170-point subsample in System VM), the estimators for the
smaller samples were within their standard error from those found in the larger samples, even
though we were cutting the sample sizes in half.

The price paid for fewer data points, as expected, was much larger standard errors of the
fitting estimators. Given that each smaller sample was roughly half of the larger one, we see that
standard errors diminished approximately 25% when the size of the sample doubled. This rule
can be a guide in deciding the duration of the data gathering period as a function of the desired
accuracy.

We also observed that, for the best linear estimators in each system, those found from sam-
ples which had more than 300 points showed high levels of significance, i.e., the standard errors of
the estimators were small. This gives us an empirical global bound on the minimum number of
data points one should gather in a system.

8. Characteristic Surfaces of the Installations

In this section we have chosen to display the surfaces obtained from modelling with GLIM
two tasks in three systems. We call these the ‘‘characteristic surfaces” of the installations, because
of the stationary behavior of the distributions of performance indices found in our analyses.
These plots were obtained using the UNIGRAFIX [19] graphics system.

Sample Size 1497 Sample Size 729 Sample Size 376
Parameter | Estimator | Std. Error | Estimator | Std. Error | Estimator | Std. Error
%GM .5640 .1021 6707 .1404 .6130 .1906
np .1120E-1 9473E-3 9783E-2 .1304E-2 .1069E-1 .1755E-2
nau .5146E-1 .2020E-2 .5608E-1 .2785E-2 .5173E-1 4124E-2
scale 3393 3146 3395
Table 5.1.1: System P7B. Robustness analysis of <np,nau>.
Task C compilation. Yvar: rt. Error: gamma. Link: log.
Sample Size 1722 Sample Size 851 Sample Size 428
Parameter | Estimator | Std. Error | Estimator | Std. Error | Estimator | Std. Error
%GM 01275 | 9481E-2 | -0.6774E-2 1405 6659E-1 1886
np .2020E-1 .1128E-2 .1893E-1 .1652E-2 .1765E-1 .2264E-2
nu .2008E-1 .1502E-2 .2032E-1 .2060E-2 2341E-1 .2055E-2
scale .1506 .1422 .1309
Table 5.1.2: System VI. Robustness analysis of <np,nu>.
Task C compilation. Yvar: rt. Error: gamma. Link: log.
Sample Size 739 Sample Size 365 Sample Size 170
Parameter | Estimator | Std. Error | Estimator | Std. Error | Estimator | Std. Error
%GM 1.348 .1828 1.428 2424 -0.5394E-1 .3657
np .3401E-1 .4387E-1 .3209E-1 .5783E-2 B6752E-1 .8716E-2
nu .4529E-1 .5835E-2 .4458E-1 .7294E-2 | -0.1081E-2 | .1062E-1
scale 1742 .1553 .1186

Table 5.1.3: System VM. Robustness analysis of <np,nu>.
Task: C compilation. Yvar: rt. Error: gamma. Link: log.
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Figure 6.3: Task: C compilation. Performance Index: Response Time.
System: P7A. Estimator: <nu,np>.

7. Conclusions

We have found that each of the three performance indices we observed as functions of our
workload estimators presented a statistical behavior such that the utilization of generalized linear
models, GLMs, was appropriate and called for. GLMs were used to model the observed distribu-
tions of our performance indices and to predict their values in regions where we had no data. We
call these models the characteristic surfaces of an installation. The behavior of our indices, in
turn, strongly suggests that the utilization of rather imprecise workload estimators, such as the
number of processes (np), the number of users (nu), and the number of active users (nau), is ade-
quate as a basis for estimating selected performance indices in a computer installation. All instal-
lations were monitored while processing their natural workloads. The experiments did not require
the systems to be shut down.

When measured against our three workload estimators (np, nu, and nau), response time and
system time appear to have gamma distributed values. User time has normally distributed
values. User time values are independent of load. This is not so for system time and response
time. The variances of user time distributions appear to be constant. Those of system time dis-
tributions grew slightly as a function of load. The ones of response time grew ostensibly as a
function of load. What is more, we have observed that the means and variances of these distribu-
tions are linearly related as functions of each of our workload estimators. In the case of response
time, they are highly correlated as well. For response time, the ratio between the first and second
moments of the distributions is almost directly proportional to the values of the workload estima-
tor. This behavior is essential when using a GLM with Gamma error. All of these observations
give us a better understanding of these indices, in particular of response time, in installations run-
ning their natural workload.
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The models obtained using GLIM proved to be very robust. We have seen that 300 measure-
ment points per installation appear to be necessary for obtaining minimum accuracy. This bound
is hardware configuration dependent, because in UNIX the range of np depends, for example, on the
number of terminals. Doubling the number of measurements reduced by 25% the standard error
of the parameters estimated by the model. With these rules we may assess the cost of achieving a
predetermined error in a performance study. The robustness of the models allows us to compare
different computer installations using the terminal probe method as a data gathering technique.
While the systems are executing their natural workloads, we may find their characteristic surfaces
and use them for comparisons. The observed stability of user behavior between hardware changes
justifies this approach. These results also lead us to believe that our methodology is an alterna-
tive for dynamic task assignment and load balancing in a distributed computing environment.

When analyzing in pairs the relationships that existed between our workload estimators, we
observed very few outliers. We also saw high correlation values among them. This points to some
degree of redundancy. The pair <nu,np> was the least correlated. When modelling our three
performance indices (user time, system time, and response time), we also observed that, for most
systems and tasks, nau adds no significant additional information to that given by np and nu.
These facts can be used to reduce the data collection cost and the overhead of the terminal probe
method by not gathering superfluous information. This can be done with essentially no sacrifice in
modelling accuracy.

In synthesis, we have presented results which show that easy to measure portable workload
estimators can serve as a basis for performance comparison studies among different computer
installations, and for load balancing strategies. These studies can be done without stand-alone
experimentation. We have also given bounds on the length of the data gathering period. Our pro-
cedures are based on the terminal probe method implemented in UNIX through scripts.
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