DISCRETE LOGARITHMS AND FACTORING

- Eric Bach?

Computer Science Division
University of California
Berkeley, CA 94720

ABSTRACT

This note discusses the relationship between the two problems of the title. We
present probabilistic polynomial-time reductions that show:

1) To factor n, it suffices to be able to compute discrete logarithms modulo n.

2) To compute a discrete logarithm modulo a prime power p°, it suffices to know it
mod p.

3) To compute a discrete logarithm modulo any n, it suffices to be able to factor and
compute discrete logarithms modulo primes.

To summarize: solving the discrete logarithm problem for a composite modulus is
exactly as hard as factoring and solving it modulo primes.

1. INTRODUCTION

The discrete logarithm problem is the following: given integers a and b, relatively prime to
n, we wish to solve

a*=b(mod n).

In general, to find such an z by known methods is quite slow; indeed, we could factor n in
an equal amount of time. Shanks in [8] presents an algorithm that will compute a discrete loga-
rithm modulo n in approximately V/n steps; this is about the time needed to factor n by brute
force. The fastest known method for discrete logarithms is that of Adelman [1]; it makes use of
the Morrison-Brillhart factoring algorithm and has the same complexity : an expected running
time that is O(exp(c-Viognloglogn)). These observations lead ome to look for relationships
between the two problems, and that is the subject of this paper.

To fix ideas, let us first consider the analogous problem of solving polynomial equations
modulo n. The following things are known:

1) Solving polynomial congruences f(z)=0(mod n) is as hard as factoring n; this was proved
for quadratic polynomials by Rabin in [7].

2) If one has a solution to f(z)=0(mod p) for a prime p, one can lift it to a solution modulo
any power of p in polynomial time; this follows from the proof of Hensel's lemma, see, e.g.

[4].

IThis research was sponsored by NSF Grant MCS 82-04506.

-2-

3) If we know the factorization of n, then we can take the solutions to f(z)=0 modulo p for
p | n and produce a solution modulo n in polynomial time by using the Chinese Remainder
Theorem.

The analogous theorems are all true for exponential congruences a*=5(mod n). More pre-
cisely, we prove:

a) If we can solve a*=) modulo n in polynomial time, then with high probability we can find
a proper factor of n in polynomial time. This reduction can be made deterministic if the
Extended Riemann Hypothesis is true.

b) All of the difficulty in solving a*=) modulo a prime power is in solving it modulo a prime;
if a solution exists modulo p°, we can get it in polynomial time from a solution modulo p.

¢) If we can factor in polynomial time, then to quickly solve a*==b modulo n, all we need are
solutions modulo the prime divisors of n.

To summarize: solving the discrete logarithm problem for a composite modulus is exactly as
hard as factoring and solving it modulo primes.

2. NOTATION AND BACKGROUND

In this paper "polynomial time” means time bounded by a polynomial in the number of bits
needed to represent the input; in practical terms, this means that an algorithm that works modulo
n takes time bounded by a fixed power of r-logn, where r is the number of input values.

Z is the integers, and 7ZZ, is the ring of integers modulo n. The additive group of 7, is
written Z;}, and its multiplicative group of units is written Z . When n is prime Z? is a cyclic
group; it is also cyclic if n is a power of a prime greater than 2. The Euler ¢-function ¢(n) is
defined to be the number of elements in Z ;.

If n has the the prime factorization

-4 4
n=pi' " p,
then the structure of Z , is given by the Chinese Remainder Theorem:

Z,=7 .x - XZ,.
p!l P,r

Both directions of this isomorphism are computable in polynomial time. To project z onto the ith

factor, we reduce z modulo p,e’. To go the other way, we use the following theorem: given any
set of linear congruences

8, 'z=b,(mod n,),i=1, ...k,
we can decide if they are consistent and if so, compute a solution, all in polynomial time.

p will always denote a prime number. The Prime Number Theorem guarantees that there
are enough of them: the kth one is asymptotic to klnk.

We define
v(z)=max{k:p* | z}.
v,(0) may be taken to be + co.
For real numbers z, |z | denotes the largest integer <z, and logz means log,(z).

-3

3. HOW TO FACTOR BY COMPUTING DISCRETE LOGARITHMS

Assume that n is an odd positive integer that is not a prime power (all of these conditions
are checkable in random polynomial time); let its prime factorization be

[[
— L., gk

Then
z:;Z.’lx .o xz’ .

151 P

Each direct factor is cyclic of order

e-1
¢ = (pi—l)pl, ’
and so every element of this group has order dividing
A= lem(¢y, . .., 0:)

The following theorem was proved (essentially) by Miller in [6] : assume that we can solve
the congruence a*=1(mod n) for some z7£0 in polynomial time (such an z is called an ezponent
for 4). Then if we select a€Z ; at random, with probability > 1k we can use a to find a proper
factor of n in polynomial time.

Here is how to do it : let
K={a€Z}:a**== 1(mod n)}.
First, K7#Z ;, for we may as well assume that
vo(p1-1)2 vo(p,-1)
for all ¢, then let a have order ¢, modulo p:‘ and order ¢,/2 modulo the other prime powers.

We have now constructed one a@K, but by group theory we know more: if we select a random
element of Z), the odds are at least even that it is outside K.

If & is such an element and z is an exponent for it, then for some k, 0<k <log|z|,
a’/f% 1{mod n)
but
(a7/%)2=1(mod n).
To see this, let a be the order of a in Z; we can write A=a"§, and z=c-§; 2" for odd numbers
B, and 3,. Then
a*lzsawﬁza“/z(mod n),
and the result follows by taking k=v+1.
It follows that
gcd(n,(a’/zk+ 1)mod n)

is a proper factor of n. Moreover, if z is computed in polynomial time, it cannot be too large; we
can therefore produce our factor quickly.

We now show how to find an exponent for a by solving a*=5(mod n); note that b=1 will
not help us as z=0 is always a solution. We first need a prime p[¢(n); we don’t know ¢(n) a
priori, but we do know that it is less than n, and so among the first [logn |+ 1 primes there must
be one that will work. Then such a p is a unit mod ¢, and thus

(a?)=4a(mod n)

has a solution y. If we put
z=py"1!
then z57£0, and a*=1 as desired.

Two things should be noted. First, if the ERH is true, the above reduction can be made
deterministic: we are factoring n by finding an exponent for a¢K, and the ERH implies that the
least element outside K is O(logn)? (see [2]).

Second, Miller's argument works if we replace Z by the polynomial ring k[X], for some
finite field k. If f€k[X] has degree r and k has g elements, then [](g'-1) is an exponent for

1=l
any element in (k[X]/(f))’. Thus, with almost no extra work, we also have a proof that polyno-
mials over £ can be factored in random polynomial time (see [3]).

4. LIFTING SOLUTIONS TO A PRIME-POWER MODULUS

In this section assume that we have z, such that az“—_—-b(mod p) for a bEZ; we show how
to compute z such that a*=5(mod p°) (if one exists) in polynomial time. For now, assume that
p >3; the algorithm for p=2 is slightly different and the modifications will be indicated later.

Firsi, since Z;, is cyclic, we know that
;,'——-Z;X Z ::_1.

The projection onto Z; is given by reduction mod p, and it will be shown later that the projec-
tion ¢ onto Z;’;_, is polynomial-time computable. Assuming this latter fact, then, we compute z,

such that
z,-6(a)=8(b)(mod p*');
we already know z; such that
s7'=b(mod p).
We then find an integer z that satisfies

z=z,(mod p-1),

z=z,(mod p°7');
then a*=b(mod p°).
It remains to show how to compute §. We have the factorization
S =ZXU,
where
U={z€Z.:z=1(mod r)}-
The projection 7 onto U is given by raising an element to the p—1th power, and so we are done if

we have a polynomial-time computable isomorphism k:U—»Z:‘;_l, for then we set #=Xor. If we
define \ by

-1
z?

Mz)=| e—l Jmod p Y,
P

then we can compute it in polynomial time by evaluating the numerator inside brackets modulo
2e-1
p=.

-5

We now show that X\ has the right algebraic properties. First, if ¢,6€Z, v,(a-b)>1, and
k>1, then

vy(a? =67 Y=, (a=b)+ k (*)

by induction on k. In particular, then, p° | """ when a=1(mod p), so that X\ makes sense for
integer arguments. It is well-defined as a function on U, for if a=5(mod p°), then
=1

a® -1 bF 1 -
= (mod p*7Y)

by (*). Using the identity
zy-1=(z-1)+ (y-1)+ (z-1)(y-1)
we can prove that it is a homomorphism from U into E -1 Finally, to prove that it is an iso-
morphism, choose a €Z such that v,(a- l)—l Then by (*) v,(a? —1)=e so that the integer
—l

e

p
. This implies that X\ is onto, and must therefore be an isomorphism.

is invertible modulo p*!

Briefly, here are the modifications necessary for p=2. Assume that ¢>3, then
=
x=5XU,
where S={+ 1} and U= {z z=1(mod 4)}. The projections onto S and U send z to £ 1 and + z,

respectively, taking the + sign when z=1(mod 4). U is isomorphic to Z T2 Via

—1

X(I)'_[:)e+1]mOdp

This algorithm was presented in algebraic terms, but the intution behind it comes from
analysis (see [4]). Say that integers z and y are "close” if they are identical modulo a power of p;
the higher the power, the closer they are. Then we are seeking an approximation

af~b
If we had the right logarithm function)\, then we would expect that an approximation to

Ma)

A(b)
should be the required z. Amazingly enough, this ”p-adic numerical analysis” works; by approxi-
mating the p-adic logarithm defined in [5], we get a fast algorithm.

5. GETTING A REGIONAL SOLUTION FROM LOCAL ONES

In this section we assume that all needed prime factorizations are available. Let the prime
factorization of n be

n=py' - p,,
and let ¢,b€Z ;. We want to take the "local” solutions z, to
a"'=b(mod p,)
and produce the “regional” solution z to
a*=b(mod n).

By the results of the last section, we may assume that

-6

a":‘—.b(mod p,"),

and so we select z to be congruent to z, modulo the orderof ¢ in Z °,, for i=1, . ..,r.
'
The only thing left is to show how to compute the order of 4 modulo a prime-power divisor
P of n. Thisis

qu' {orden(a))

q] #(P)
¢peime

and

V,(order(a))=min{k:a’(P)/°kEl(mod P)}.

6. FINAL REMARKS

We have proved that the factorization of n is necessary for solving discrete logarithm prob-
lems modulo n; one might ask also whether the factorization of p-1 is necessary for solving
discrete logarithm problems modulo p. Conversely, one can ask for a fast algorithm for prime-
modulus problems, assuming all needed factorizations. Both of these questions remain
unanswered.

A traditional number-theoretic analogy is that "number fields” (e.g. @) are similar to "func-
tion fields” (e.g. Z,(X)); the results of the first section indicate that we would do well to inves-
tigate this correspondence from the algorithmic point of view.

7. ACKNOWLEDGEMENTS

Manuel Blum got me interested in number theory, and in this problem in particular. Many
people from the Berkeley TGIF seminar discussed these ideas with me: Po Tong read an earlier
version of this paper, and Faith Fich, Shafi Goldwasser, Silvio Micali, Joan Plumstead, Jeff Shal-
lit, Umesh and Vijay Vazirani, and Tim Winkler listened to many inchoate explanations of these
results. To all of you, thanks!

8. REFERENCES

[1] Leonard Adelman, A Subexponential Algorithm for the Discrete Logarithm Problem with
Applications to Cryptography, Proceedings of the 1950 IEEE Symposium on Foundations of
Computer Science, pp. 55-60 (1980).

[2] Eric Bach, Fast Algorithms under the Extended Riemann Hypothesis: a Concrete Estimate,
Proceedings of the L{th Annual ACM Symposium on Theory of Computing, pp. 200-265
(1982).

[3] David Cantor and Hans Zassenhaus, Factoring Polynomials over Finite Fields, Mathematics
of Computation $6, pp. 587-592 (1981).

[4) Neal Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, New York: Springer
(1977).

sl

(6l

7l

[8]

-7-

Heinrich-Wolfgang Leopoldt, Zur Approximation des p-adischen Logarithmus, Abkandlungen
aus dem Mathematischen Seminar der Universitat Hamburg 25, pp. 77-81 (1961).

Gary Miller, Riemann’s Hypothesis and Tests for Primality, Journal of Computer and Sys-
tem Sciences 18, pp. 300-317 (1976).

Michael Rabin, Digitalized Signatures and Public-Key Functions as Intractable as Factoriza-
tion, MIT Laboratory for Computer Science Report TR-212 {1979).

Daniel Shanks, Class Number, a Theory of Factorization, and Genera, Proceedings of the
1969 AMS Number Theory Institute, pp. 415-440 (1969).

