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ABSTRACT

We discuss the virtues of PROLOG in comparison to LISP, we come to the conclusion that: "If you

can’t fight them JOIN them”. We propose, as a solution, the APPLOG language which is a mixture of
LISP and PROLOG. APPLOG is embedded within the PROLOG language and thus the facilities of PRO-
LOG can be used through a simple goal function.
APPLOG is an applicative language where functions are applied to arguments. APPLOG variables are com-
patible with PROLOG variables and serve as a mean for data transfer between APPLOG and PROLOG.
APPLOG supports lambda and nlambda functions definitions and one-to-one, one-to-many and mized bind-
ing mechanis_rg like INTERLISP.

The main advantage of APPLOG is the simple integration of LISP and PROLOG into ONE powerful
language which hopefully incorporates the best features of both languages. We also extended APPLOG to a
simple relational data-base query language which is similar to Query-by-example and includes: Aggregates
and Grouping.

We provide the full listing of the APPLOG interpreter including: pretty-print, load, trace, toploop, his-
tory, autoload, Interface to relational database.

APPLOG has the following advantages over traditional LISP languages:

(1) Pattern directed invocation.

(2) Call by reference.

(3) Interface to PROLOG as a data-base query language.
(4) Operators (infix, prefix and postfix).

(5) Back-tracking.

(6) Generators.

* We acknowledge the help of the EECS, Computer Science Division, UC Berkeley in the production of this
paper.



The APPLOG Language

1. Introduction

The idea of 'logic programming’ was proposed <Kowalski 74> as the basis for a new programming
language. Kowalski concieved a clear and simple deductive language which is based on the LUSH resolution
of Horn clauses <Hill 74>. These ideas were realized in the programming language PROLOG by <Col-
merauer 73>, later it was shown <Warren 77> that PROLOG programs can run as fast as the
equivalence LISP programs. Finally a compiler written in PROLOG <Warren 80> is able to compile Horn

clauses into efficient machine Code.

Although PROLOG appears to be useful in a large variety of applications, there are still some doubts
concerning PROLOG's efficiency (Back-tracking), ”pure” mathematical background (cut,not)) etc ,especially
when PROLOG is compared to LISP. Other researchers <Sato 83> and <Robinson 82> came to similar
conclusions and proposed two different languages for programming in logic: QUTE and LOGLISP. (Both are
combin\a'tion of LISP and PROLOG). In our view, these two languages are too complicated, they introduce:
New syntax, special cases, many many Dew functions WHICH are really not needed.

The goal of this paper is to show that a combination of LISP and PROLOG is desirable and can be sim-
ply achieved.

In the first chapter we express our view concerning the issue: "PROLOG vs. LISP” and we come to the con-

clusion: "If you can't fight them join them ...".

In the next chapter we describe the APPLOG (APPlicative LOGic) which is a mixture of LISP and
PROLOG. In APPLOG both LISP and PROLOG environments (Variables, Data structures ...) are "unified”
and provide an easy way to express one's ideas in "applicative” style or "Jogic” style. Our mzin gozl is to
enable the LISP and the PROLOG users to write programs in their "native” language, while at the same
time allow them an easy access to the power and virtues of the other language. The result is 3 more power-
ful and efficient language which provides various features like: function application, logic inference, rela~
tional data-base query language, generators etc.

We provide (in the appendix) the full listing of our system implemented in PROLOG including facilities like:
trace, autoload, history, toploop etc. This definition (written in PROLOG) constitutes the operational

semantics of APPLOG.



The APPLOG Language

But before we continue we would like to present an example which explains the idea of generators in
APPLOG: Suppose we want to put eight queens on a chess board without having two of them on the same
liné, column or diagonal.
def( a8,

lambda( [Line, Board],
if( Line = 0, Board,
try( q8( Line - 1, Board ), or(1,2,3,4,5,6,7,8)))))-

def( try, lambda( [Board, Col],
if( noaim( Board, Col, 1), cons{Col, Board), fail))).
def( noaim,
lambda( [Board, Col, Add],
if( eq( Board, [} ), true,

and(

Col == car(Board),

Col+Add == car(Board),

Col-Add == car(Board),
noaim(cdr(Board), Col, Add+1)

)
To call g8 try: q8(8.{])
meaning: "try to put 8 queens on an empty board”. Function try is called with a partially filled board and
with 2 generator or which generates the numbers 1 to 8. try tries to put the next queen in the suggested

column Col. If it can’t do that, it fails (see fail latter), then or generates a new possible Col number and

try is re-tried.

1.1. LISP vs. PROLOG
Both languages are quite similar, they were designed to deal with: Understanding Natural languages,
Mathematical Logic, Algebraic manipulation and other Al applications. Arguments made by PROLOG and

LISP fans usually involve some of the following issues:

* Mathematical back-ground.
* Efficiency.
* Programming Style.

* Readability and Clearity.
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* Gide effects.

* Special Features: Unification, Back-tracking, Functional.

Mathematical back-ground: PROLOG is based on the simple and well-investigated ground of LOGIC
theory. However only a subset of first-order logic known as Horn Clauses are expressible in pure PROLOG.
pure PROLOG does not include: Control, negation and functionals. Soon enough the PROLOG implemen-
tors added few "dirty” control structures < Warren 82> which enable to express functions which are other-
wise not computable in pure PROLOG (cut, not, setof). Pure LISP on the other hand is based on Lambda-
calculus which is also a well founded logic theory. Pure LISP supports Functionals and negation and virtu-

ally everything can be written in pure LISP.

Efficlency: In <Warren 80> they claim that PROLOG programs can be compiled and run as fast as LISP
programs. That indeed is not a surprise if we take their advice and use cut in the programs (i.e.: make it
deterministic). In addition they recommend to define for each functor the input and output variables.
Although these additions are not pure LOGIC they help indeed to eliminate back-tracking and thus enable

PROLOG programs to run as fast as LISP.

Lets take another example: Suppose we want to write a "program” that answers the following question:
»Who is the father-of the wife-of the brother-of X ?” In PROLOG we will naturally write:

query1(X,Y) :- father-of(Y,Z), wife-of(Z,W), brother-of(W,X).

This can result with a long search of the data-base starting with father-of relation. In the worst case PRO-
LOG will search all the facts in the data-base about father-of relation and for each Z it will search relation
wife-of and then for each W it will try to determine whether W is the brother-of X. It would be much
more efficient to write it in LISP:

(lambda (X) (father-of (wife-of (brother-of XN

Or even in PROLOG:

query2(X,Y) :- brother-of(W.X), wife-of(Z,W), father-of(Y,Z).

(conclusion: sometime one has to "reverse” his "logic” reasoning)
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Programming Style and Readability: In the above example we sce the versatility of PROLOG, the
predicate query (in either version) can be used:

1. Aa a p;;gi?ate (if both X and Y are instantiated.)

2. As a two way function (if either one is instantiated).

3. As 3 generator (if both are not instantiated)
LISP fans must admit that they can’t find a matching feature in LISP.

Other points: PROLOG supports flat programming” while LISP supports pested function calls. In PRO-
LOG when one wants to pass a value computed by one clause to the following clauses he needs dummy

variables:

£3(X,Y), 12(Y,2), 11(Z,W).

Y is passed to f2 which passes Z to /3. In LISP pested functions are used (like: (1 (f2 (f3)))) and there is no
need for dummy variables. However, when one needs to pass the same value to more than one function,

one needs to use lambda expression:

((tambda (x) (f1 x (2 x))) (3 ... )

The value of (f3 ...) is bound to z and then z is passed both to f1,/2. In PROLOG on the other band, one
simply uses the same variable name in both places like in: f1(I1,01), £2(01,02), 13(01,03).

(O1 is passed from f1to J2,13)

One of the main advantage of PROLOG over LISP is that it supports backtracking, while in LISP one has
to hardwire it into his programs. However the implicit use of backtracking in PROLOG leads to an exten-
give use of cut. The reasons are: (1) Usually programs are deterministic, (2) To imitate the if-then-else con-
struct.

Thus some might prefer the explicit use of backtracking and some might prefer its implicit use.

Side effects: We argue that when one wants to write real efficient programs he usually needs some "dirty

tricks” like ”side eflect”. Indeed the Logicians can say that: logic is above all, but is it really acceptable to
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use an unbalanced tree as a symbol table as proposed by Warren < Warren 80> for his compiler. Or when
one implements a window package to store a window as a list of characters ...

Let."s take a look at the following problem: Suppose we have a directed graph which is represented in PRO-
LOG:

¢(a,b). ; edge from a to b.

e(be). ; ...

We want to define the relation path(X,Y,P) which is true if P is the path from X to Y.

path1(X,X,[X]). ; trivial case
path1(X,Y,[X|Pz]) :- e(X,Z), path1(Z,Y Pz).

This "perfect” definition (logic-wise) might fail in reality because of cycles, for example if the graph consists
of: e(a,b). and e(b,a). To solve the problem we have to think 2 little bit more logically and introduce 2 new
relation pathl.

path2(X,YP) - path2i(X,Y.P,[}).

path2l(X X,[X],L) . ; trivial case

path21(X,Y,[X|Pz].L) - e{X,Z), not( member(Z,L)), path2}(Z,Y,Pz,[XIL]).

The fourth argument is the list of nodes that we already visited and we don’t want to visit again. The
third parameter is also the list of nodes that we find along the path, HOWEVER the third list is built when
we return from the recursion and the fourth is built on the way in. Why can’t we use only one list ? why do
we have to build the same list twice * Well it has to do with PROLOG special treatment of variables.
There are ways to overcome this inefficiency:

path3(X,Y,L) - path3i(X,Y,L,[})-

path3l(X,X,[X|L]L).

path3l(X,Y,P,L) :- e(X,Z), not(member(Z,L)), path31(Z,Y P [XIL]).

Only when we reach the end of the search (second line} we assign the value of the fourth parameter to the

third. Note that you get the reverse list (i.e the list of nodes from Y to X).

This is not the end of the story: If you try to run this particular program on a very big graph you will
" wait a long time before you will get the result. The reason is member which consumes most of the time try-

ing to figure out if we already pass through a particular node. Another problem: If we get to a pode and
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there is no way from it to the target then we have to backtrack from it. BUT there is no way to remember

!

that this node is a "bad” one, so if we reach this node using a different edge we might as well try again the

wbble search from this node.

To overcome these problems we need to use side effect (assert) and store in the database those nodes that

we have visited.

path4(X.X,[X]).

path4(X,Y,[X1Pz]) - e(X,2), try_edge(Z), path4(Z,Y Pz).
try_edge(Z) :- was_visited(Z),!,fail.

try_edge(Z) :- assert(was_visited(Z}).

The first timg\ we visit node Z we use assert to store this information in the data-base (4th clause), next

time we visit the same node Z we fail (3rd line)

To solve the same problem in LISP we use property lists as the data-base and we hard-wire backiracking

into our functions.

(def path (lambda (x y)

(if (eq x y)
(list x)
(try_edges x y (get x 'edges))]

(def try_edges (lambda (x y edges)
(cond
((null edges) nil)
((get (first edges) 'was_visited)
(try_edges x y (rest edges)))
(t (putprop (first edges) 'was_visited)
(tryl x y (path (first edges) y)))]

(def try1 (lambda (x y nodes)

(if (null nodes)

(try_edges x y (rest edges))

(cons x nodes)))|
This definition is obviously less attractive than the previous ones (in PROLOG). It is much more compli-
cated and hard to understand, but this is not a surprise because LISP has no builtin mechapism for back-

tracking. We ran these programs on a 100 nodes graph with 1000 edges. The programs were interpreted

(not compiled) and the resuits:
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LISP vs. path4  1:4

path4 vs. path3 1:4

It means that the pure logic program path$ is slower almost 16 times than the LISP program. (no surprise:
the LISP program is not pure)

concluslon: Logic program is not pecessarily an efficient program.

Speclal Features:
Unification

No doubt "unification” is a more powerful tool than the simple binding mechanism of LISP. PROLOG fans
claim that one clause can replace different types of fun'ctions: constructors (like cons), modifiers (like rplaca)
and predicate (like listp). and I believe they are right, }or example:

conscell( [X1Y}], X, Y).
This dt;ﬁnition will do:
conscell{ (3?;,“2) -> C = [112] ; constructor
conscell( C, 1, ). X = 1; rplaca (well not if the CAR has a value)
conscell( C, Car, Cdr). ; Selectors

PROLOG fans also claim that » unification” helps to avoid repeated use of car,cdr combinations to break

the structure of list (or other constructs). In the following example we show that this is not always true.

The problem is to add two polynomials, so we define the predicate add(P1,P2,P3) which is true if P3 is
the sum of P1 and P2.

add( [, P2, P2).

add( P1, [}, P1).

add( | <(C1, E1) 1 P11, [ ¢(C2, E2) | P2],[<(C3,E2) | P3]) =
El1 == E2/,
C3is C1 + C2,
add(P1,P2,P3).

add( | ¢(C1, E1) | P1], [c(C2, E2) | P2], [e(C2,E2) | P3]) -
E2 < E1)},
add( | ¢(C1,E1) | P1], P2, P3).

add( [ ¢(C1, E1) | P1], P2, [(C1, E1) | P3]) - add(P1,P2P3).

Note that again and again (clauses 3,4,5) we unify the heads of the polinoms with the patterns. We need to

do it because if-then-else is not included in the PROLOG language.
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In LISP we would write:
(defun polyadd( pq) ;; P = ((exp-coef)(exp.coef) ....) same for q
(cond

((null p) q) ;; simple case

((null q) q)
(t (prog (el €2 cl c2) ; temp vars

(setq c1 (caar p) el (cdar p) c2 (caar q) e2 (cdar q))
(cond
((eq €1 €2) (cons (cons (plus c1 c2) e1) (polyadd (cdr p) (cdr )
((greaterp el e2) (cons (car q) (polyadd p (cdr q))))
(t (polyadd q p) ; switch pq
)i

the LISP function looks more efficient since it breaks the structures only once with setg. PROLOG fans will
say at this point that this problem is solved by the compiler which generates 2 good code for unification and
avoid the multiple unification, BUT so can a LISP compiler.

Backtracking:
In <Warren 82> he says: "A difficulty which programmers new to PROLOG soon come up against is that
they need to combine information generated on alternative branches of the program. However, in pure
PROLOG, all information about 2 certain branch of the computation is lost on backtracking to an earlier

point.”

Warren suggest to use setof:

setof(X,P,L)- X true if L is the set of instances of X that satisfy P.

This is a general mechanism, however it does not allow to record information from a subset of branches. In
LISP one can record information using the dynamic environment and the function setq to sct free variables
(global), while in PROLOG it is quite impossible because variables are defined and used only inside one

clause.

1.2. CONCLUSIONS

We summarize by reviewing the main issues:
Mathematical background - I can only quote Drew McDermott <McDermott 80> :” Most published

description (of PROLOG) are wretchedly misleading. The notion that programming in PROLOG 1is pro-

Q-



The APPLOG Language

gramming in logic is ridiculous. Some simple clauses can be thought of as first-order tmplications, but
not most.”

Efficiency - Pure recursive programs in LISP can be rewritten in PROLOG and run as efficient as the
corresponding LISP programs, In addition special type of programs (as I mention before: natural language
processing and relational data-base etc) can be run effectively more efficiently in PROLOG. However, in
many other cases, programs can become almost impossible to be run in PROLOG.

Style - Again Mcdermott: *It is often claimed that PROLOG programs can be used in more than one
way, and simple one can. — Everyone quickly learns how seldom a program works this way. Use (of this
style) will often introduce gross inefficiency or infinite loops. In practice this means programmers have
to devote as much time to think about the different task a relation might do, as they would in writing @
set of functions for these tasks in any other language”

Readability - There is no clear evidence that PROLOG programs are more clear or easy to understand
than LISP programs or vice versa.

Side Effects - There are ways to write side eflect programs in PROLOG (assert, retract) and our experi
ence (and other) shows that they are often used for reasons of efficiency, simplicity and even clarity.

Special features - No doubt PROLOG has two important features (Unification, Backtracking) which are

missing in LISP. It seems that they are powerful and well incorporated into the language.

It seems that both LISP and PROLOG are valuable tools for a variety of applications. In some appli-

cations (like natural languages processing or relational data-base management) PROLOG is better than
Ta

LISP, with its unification (like pattern matching) and backtracking (for non deterministic) features. LISP, on

the other hand, appears to be more general and applicable to a large variety of applications. In my view

LISP can be thought of as the C of Al where one has more control over his computation.

The solution is maybe to create one system which will support both LISP and PROLOG. In LISPLOG
<Robinson 82> the solution is to augment LISP with a package of functions (called LOGIC), the result is
one system with two different languages running under the same roof.

The QUTE language <Sato 83> is another attempt to "amalgamate” LISP and PROLOG by introducing
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a new syntax and a new notion of variable. We prefer our approach because it is simpler and straightfor-
ward: PROLOG remains exactly the same language and it is extended to enable "applicative” type expres-

sions. The LISP fans will find this »applicative” style very much the same as ordinary LISP expressions.

2. Language Definition

2.1. APPLOG Syntax

ATOM: starts with a small letter and followed by either: letters, digits or underscores.

Examples: qwqw, 2a_1, mnm_asksa .

If you want other chars in the atom use single quotations like: '$$$12A°. Unlike traditional LISP, atoms in
APPLOG are not variable names, therefor the value of an atom is the atom itself and it needs not be

quoted; Several atoms have special meaning when they are evaluated like: fail, terpri, ezit (they will be

explained latter).
Example: eval(aaaa) => 2a3aa
NUMBERS: Integers or reals.

LIST: Square brackets (to be compatible with PROLOG) and elements are separated with commas.

Example: [1,2,3,4,5] or {1,2,[4,5,6,6,7.8]

VARIABLES: start with big letter followed by letters or digits or underscores.
APPLOG variables bebave like PROLOG variables, they can be uninstantiated (i.e without a value) or
instantiated (with a value). To check this status we have the predicate var(X) which succeeds if X is unin-

stantiated (and returns X as its value).

TERMS: We introduce into APPLOG the notion of term which is similar to record in PASCAL.

Term syntax:
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<term> ;= <atom> | <number> | <list> | <variable> | <structured term>
<structured term> = <atom> <left parenthesis> <elements> <right-parenthesis>
<elements> = <term> < more-elements>

< more-elements> 1= NULL | <comma> <elements>

Examples:

a(1,2), bbb(aaa,ccc,ddd), fif(aaa(1,2), bbb(3,4))

Lists <--> terms

To transform lists to terms and vice versa use:

list_to_term(List).

term_to_list(Term).

Examples:
list_to_term( list(3,2,3) ) —> a(2,3).

term_to_list( quote( a(2,3))) -> (a,2,3].

NOTE: list_to_term will succeed only if the first element of List is an atom.

FORMS:

APPLOG forms are written a-la PROLOG style as terms.

Examples:
cons(1,2). => [112]

list(1,2,3,cons(3,4)). => 1,23 (31 4}]

List Notation is also possible although it is not too convenient:
[tist, 1, 2, 3] => 1,2, 3]

[cons, 2, 3] => [2 1 3]
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OPERATORS Infiz, prefiz and even postfiz operators are recognized in APPLOG forms:

Examples:

3*4. > 12

3*24(243). => 11

cons(2+3,3*5). => [5115]

Operators are APPLOG primitive functions which are stored as terms inside APPLOG memory, thus the

expression: 2*3 is actually the term: *(2,3). User’s defined functions can be declared as operators too.

2.1.1. PREDICATES (SUCCESS and FAILURE)

Success and fallure

Unlike traditional LISP we adopt PROLOG idea of success and failure. Any function is also a predi-
cate wl\:ich can succeed or fail, success means true, and failure means false. When a function succeeds, it
always ;eturns a value, predicate functions, like eg, return the atom true when they succeed, BUT when
they fail they DON'T return nil but cause the failure of the form that contains them. This failure chain is
stopped by the conditional functions: if, cond, or used in the predicates: and, or etc.

This mechanism of failure can be used to achieve the effects of back-tracking and generators (See the ICON

language).

Example:

if( b(X), then_part(Y), else_part(2)).

If b(X) succeed then then_part(Y) is called. If it fails else_part(Z) is called.

f( or(1,2,3,4,5)).
Function / is called with 1, if it fails then we try with 2 etc. until all the possibilities are exhausted, in which
case f returns with failure.

* To cause failure try: fail

and, cond and or are recognized with arbitrary number of arguments:

Example:
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cond(
(ea(X.Y), Z)
x>Y, X)
t Y)
).

2.2. USER's DEFINED FUNCTIONS

Function’s parameters are usually specified as a list of variables. However, in addition one can write
any legal term. APPLOG functions seem to be more readable with the inclusion of operators and additional
schemas for parameter passing: By reference, Pattern directed invocation. Nlambda functions (as in INTER-

LISP) are also available.

Examples:

Definition:
def(fact, lambda( [X], if (X=1, 1, X*fact(X-1)))).

Note: the use of infix operators
Example: fact(4) => 12

Definition:
def( app, lambda( [L1,L2],
if{ eq(L1,{]), L2, cons( car(L1), app{ cdr(L1), L2)))))-
Example: app( list(1,2,3) ), list(4,5,6)) => [1,2,3,4,5,6].

Definition:
def( faaa, lambda( [ aaa(A,B), C], list( A, B, C))).

Note: aaa is a record passed to faaa.
Example: faaa( quote( aaa(4,5)), 8). => [4,5.8].

Definition:
def( f4, lambda( [A,B], setq(B,A+A*A))).

Note: B is passed "by reference”
Example: list( f4(2.X), X+1). => [6,7].

Definition:
def( fibo, lambda{ [N], if{f N<2, 1, fibo(N-1) + fibo(N-2)})).

(def fibo (lambda (n) (if (1t » 2) 1 (+ (fibo (-n 1)) (fbo (-8 2.
Note: compare APPLOG fibo def. to LISP

Definition:
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def( last, lambda( [ (XIL] ], if( L={], X, last(L)))).
Note: pattern-directed invocation:
first parameter of last must be car-cdr, where X is bound
to the car and L to the cdr.
same function in PROLOG will be:
last([X],X).
last([X1L},Y) == last(L,Y).

Deflnition:
def( mylist, lambda(L,L)).

Note: one to many binding.
Example: mylist(1,2,3,list(7,8),4,5,6). => (1,2,3,[7,8],4,5.6].

Definition:
def( £5, nlambda( [A,B] , list(A,B,eval(A),eval(B)))).

Example: £5( 2*3, 5+6) —> [2*3, 5+6, 6, 11]

Definition:
def( 16, lambda( [A,BIC], list(A,B,C))).

Note: C is a "catch all” variable as in INTERLISP (lambda (AB.C)..)
Example: 6(1,2,3,4,5) => [1,2,{3,4,5]]

2.3. APPLOG <-> PROLOG

APPLOG -> PROLOG

PROLOG is called from APPLOG using the goal function. There are two ways to use goal:

1. goal(Goal,Form).
A PROLOG Goal and an APPLOG Form: The Goal is satisfied by PROLOG and then the Form is exe-

cuted by APPLOG.

Recall that if the Form fails it backtracks into the Goal and then if the Goal can be satisfied again then

Form is evaluated again.

Simple Example:
If the database contains a(3) then:

goal(a(X)X+X). => 6.
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Backtracking Example:
If the data-base contains: b(3,4), b(6,7) then:

goal( b(X,Y) N if( X>5, X+Y).

Then b(X,Y) will find b(3,4) but when if fails it will back-tracks and will come again with b(6,7) and then

the result will be 13.

2. goal(Goal).

Satisfy the Goal and return it as the value.
Example: goal(a(X)). => a(3)

To enter new facts to the database use assert:
Example: to insert the fact a(1,2,3)

Use: assert( quote( a(1,2,3))).

or: assertq( a(1,2,3)).
PROLOG --> APPLOG
To call the APPLOG interpreter from PROLOG use:

eval(Form Result).

2.4. System Utilities
Top Loop

To call the friendly APPLOG top-loop function type in PROLOG: top.
History expressions can be re-executed by: k(N).

History listing: h(From,To).

loading APPLOG programs
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Use: load(File).
The file <File> may contain any APPLOG forms. load reads and executes these forms.
Pretty print
Use: pp(Term).

or: pp(Term, Linelength).

2.5. Relational Database Interface

We use PROLOG database and APPLOG evaluation methods to propose a simple extension of APP-
LOG as a relational database query language. We use "lazy evaluation™ to access ”relations” and thus save

in space. First we describe the simple functions: rel and all.
rel <relation>

rel is a prefix operator (unary function) which behaves as a generator. It generates the "tuples” of relation
relation. One can avoid the use of rel by declaring it as a relation:
def(<relation name>>, relation).

and then only the relation name has to be mentioned.

all(Func,Generator)

or as an infix operator: Func all Generator

all behaves almost like the LISP function maplist, it applies the function Func to ALL possible values

which can be generated by Generator.
Examples:

1. print( rel a(X,Y) ) . /* to print a single "tuple” of "relation” a */

or: print{ a(X,Y)). if o is defined as a relation.
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9. print all a(X,Y). /* print all »tuples” of "relation” 3 */
3. print all 2(X,Y) ? (X>Y) /* selection */
4. print all d(X,Y,Z,W) -> e(X,2). /* project */

5. print all a(X,Y) x b(Y,Z) => ¢(X,Y,2) .

/* Join two relations a,b to form a third relation ¢. */
6. sum( personal(Name,Sex,Salary), Salary).
This aggregate function returns the sum of salaries from relation personal.

7. sum( personal(Name,Sex,Salary), Salary, Sex).

[* With grouping by sez, the functions sum is a generator which returns tuples: sum(male,lOOOOOO). and

then sum(female,1000000). */

N

3. PATH

We want to show the way APPLOG solve the problem of finding 2 path between two nodes. Note the

mixture of PROLOG and LISP features in the definition of path.
def( path, lambda( [X,Y],

if( eq(X,Y), list(X),

cons(X, try_edges( e(X,Z), Y)W

def( try _edges, lambda( | ¢(X,2), Y],

if( was_visited(Z), fail,

(assertq( was_visited(Z)),

path(Z,Y)))))-

def(e,relation). def(wa.s_visited,relation).

Note that relation ¢ is a generator which generates all the edges going out from X. In try_edges we
check if Z was visited and if so we fail. This failure causes backtracking to return to relation ¢ which

retrieves another edge and then try_edges is called again.
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4. SUMMARY
It seems that both PROLOG and LISP are here to stay, each with its own group of fans. We showed

that with almost no pain at all, one can enjoy the virtues of both languages. As a proof we supply in the

appendix the FULL listing of the APPLOG interpreter written in PROLOG.
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6. APPENDIX

Here is the listing of the APPLOG interpreter written in PROLOG (Cprolog 1.2). Hopefully, any real
PROLOG hacker will be able to adapt this version to his own system.
There are three files:
eval - The main interpreter.
rdb - The relational database interface.
pp - Pretty printer of APPLOG expressions.
Make sure the PATH names are correct in file eval (see instructions there).

®

APPLOG |Interpreter (file: eval)

»LISP vs. PROLOG: If you can’t fight them, JOIN them”
Written by: Shimon Coben (April 1983).

NOTE: Before loading this file make sure all path names are correct.
To do s0, search for lines with the string: “cohen”
and insert the right PATH. Make sure you have files: rdb,pp
in your directory.
*/
/* operators */
initop =
op(999,fx,is),
op(998,1x,q).

- initop.

/* simple cases and special atoms */

eval( X)Y) - var(X),! X=Y.

eval( exit, R) :- 1,abort.

eval( fail, R) - 1.fail. /* cause failure */

eval( terpri, true) - !nl / * cause newline */

eval( X, Y) - (number(X);var(X);atom(X)),!,YsX.
eval( value(X),Y ) = LY=X.

eval( (A,B), R) - 1 eval(A,Ax)eval(B,R).

eval( [A!B], R) -1, T =.. [A|B], eval(T,R).

/* arithmetic functions ¢/

eval( A*B ,C) - !,eval(A,Ae),eval(B,Be),C is Ae*Be.

eval( A-B ,C) - 1,eval(A,Ae),eval(B,Be),C is Ae-Be.

eval( A+B ,C) - 1,eval(A,Ae),eval(B,Be),C is Ae+Be.
eval{ A/B ,C) - 1 eval(A,Ae),eval(B,Be),C is Ae/Be.

eval( A//B ,C) - 1,eval(A,Ae),eval(B,Be),C is Ae/[Be.
eval{ A mod B ,C) - 1 eval(A,Ae),eval(B,Be),C is Ae mod Be.

eval( A " B C) - 1,eval(A,Ae),eval(B,Be),C is Ae Be.
eval( A>B ,true) - !,eval(A,Ac),eval(B,Be), Ae>Be.

eval( A<B true) .- 1,eval(A,Ae),eval(B,Be), Ae<Be.
eval{ A=<B ,true) - !,eval(A,Ae),eval(B,Be), Ae=<Be.
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eval( A>=B ,true) - 1,eval(A,Ae),eval(B,Be), Ae>=Be.
eval A==B ,true) - 1,eval(A,Ae),eval(B,Be), Ae==Be.
eval( A==B ,true) - 1,eval(A,Ae),eval(B,Be), Ae===Be.
eval( A=B ,true) - 1,eval(A,Ae),eval(B,Be), Ae=Be.

/* basic LISPL functions */

eval( cons(X,Y) ,[XelYe]) - 1,eval(X,Xe),eval(Y,Ye).

eval( quote(X) )Y) - !1X=Y.

eval( q X Y) -1 X=Y.

eval( setq(X,Y) Z) - 1,eval(Y,2),X=Z.

eval( X is Y ,Z) = Leval(Y,2),X=Z.

eval( eq(X,Y) ,true) - 1 eval(X,Xe),eval(Y,Ye),eqq(Xe,Ye).

eqq(A,B) - (var(A);var(B)),!,A=B. :
eqq(A,B) - A==B.

eval( atom(X) X) - ! (var(X);atom(X})).

eval( car(X) ,Y) - Leval(X,[Y1.])

eval( cdr(X) ,Y) = Leval(X,[.1Y]). .

/* eval, if functions */

eval( if(BoolExpr, ThenF orm,ElseForm) ,Te)
.. eval(BoolExpr,Xe),!,eval(ThenForm,Te).
eval( if(BoolExpr, ThenForm ElseForm) ,Ze) = leval(ElseForm,Ze).

eval( eval(Form) ,Result) - 1 eval(Form,Z),eval(Z,Result).
eval( apply(FExpr,Args).R) - !,
eval(FnExpr Fn),
NewExpr=..[Fn|Args],
eval(NewExpr,R).
[*10 %/
eval( read(X), Y) - !,read(X),Y=X.
eval( prin1(X), R) - leval(X R)write(R).
eval( print(X),R) = 1,eval(X,R),write(R),nl.

/* interface to prolog */

eval( goal(Goal,Body) ,Result) :- 1,call(Goal),eval(Body Result).

eval( goal(Goal),Goal) = 1,call(Goal).

eval( goalall(Goal),R) - 1 setof(Goal,Goal R).
eval( goalall(Goal,Body),true) :- 1,doall(Goal,Body).
doall(G,B) - call(G),eval(B,R),fail.
doall(G,B).

eval( assert(Fact), Xfact) - eval(Fact, Xfact),assert(Xfact).
eval( assertq(Fact), Fact) - assert(Fact).

/* LOAD RELATIONAL DATABASE INTERFACE */

- consult(’/na/doe/guest/cohen prolog/ lispl/rdb’);true.

printall(G,B) :- eval(goal(G,B),R),write(R),nlfail.
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printall(G,B).

/* histroy expression */

eval( h(N),Result) - t history(N,Expr),eval(Expr Result).
eval( h(N1,N2),true} - 1, h(N1,N2).
h(N1,N2) .~ N1=<N2 history(N1,Expr),

write(N1),write(’: ’),write(Expr),nl,
Nx is N1 + 1,h(Nx,N2).
h(.,.)-

/* def trace load */

eval( load(File),File) - 1 see(File),nofileerrors,doload.

doload .- read(E),!, doE(E).

doE(E) - E == end_of_file,!.

doE(E) -« eval(E,R),doload.

doload - seen.

eval( trace(Fn),Fn) - !,(trace(Fn);assert(trace(Fn))),,

eval( untrace(Fn),Fn) - ! retract({trace(Fn)).
eval( def(F.L), F) = 1,dodef(F,L).
dodef(E,L) :- putq(L,Lq),
(retract(def(F,autoload(_)));tme),
assert(def(F,Lq)).

eval( Cond Result) - functor(Cond,cond,N),!,

Cond =..[cond | Clauses],!,evcond(Clauses,Rcsult).
evcond([C1ICr|R) = Cl1=. [Stam,PIE],eval(P,Px),!,evand(E,R).
evcond([(P)!Cr|R) = eval(P,R).
evcond(|C1{Cr|R) = evcond(Cr,R).
evcond({].{])-

/* list or and functions */

eval( List,Result) - functor(List,list,N),!,
List =..[list | El],evlist(E],Resuit).
evlist([].[})-

evlist([E11Er],[X11Xr]) - eval(E1 X1),evlist(Er Xr).

eval( Term, Result) - functor(Term,term,N),!,
Term =.. [term| El|, evlist(E1L,Ex),!,
Result =.. Ex.

/* term <=> list */

eval( list_to_term(L), R) = t,eval(LLx), R =..Lx.
eval( term_to_list(T), R) = 1,eval(T,Tx), Tx =.. R.

eval( Or Result) - functor(Or,or,N),!,Or =..lor | Er],evor(Er,Result).
evor([E1|Er| Result) - eval(E1,Result).
evor([E1|Er| Result) - evor(Er,Result).
eval( And [Result) = functor(And,and,N),!,
And =.[and | Er] evand(Er,Result).
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evand([E],R) - eval(E,R).
evand([E1|Er] Result) - eval(E1,Stam),! evand(Er Result).

/* apply user functions * /

eval( Form Result) -
Form =..[Fn|Args]|,
do_args(Fn,Args,Vars,Body),
enter_trace(Fn,Vars,L),
eval(Body Result),
exit_trace(Fn,Result,L).

/* binding(B,B). isn't it simple ??? */
/* arguments evaluation if lambda ¢/

do_args(F,A,V,B) :- def(F, lambda.(V,B)),eval_args(A,V).

do_args(F,A,V.B) =- def(F,nlambda(V B)),A=V.

do_args(F,A,V B) = def(F ,autoload(File)), consult(File),
(retra.ct(def(F,autoload(File)));true),do,args(FA,V,B).

do_args(F,A,V.B) :- der(F,relation),eval_args(A,V),T =_. [F1V]B=.[goal, T).

v

def( pp, autoload( '/na/doe/guest/coben/prolog/lispl/pp' )).
def( pplen, autoload( '/ na/doe/guest/cohen /prolog/lispl/pp’ ) )-

eval_args([A1[All[X1] X)) - eval(Al,Xl),eval_args(Al,Xl).
eval_args([).[})-

/* trace printout */

enter_trace(F X,L) - trace(F)!,
(retract(trace_lvl(F,N));N==0),L isN+1,

tab(L),
assert(trace_lvi(F L)),
write(’ -enter- ’),write(F),write(' ARGS "),
write(X),nl.

enter_trace(F, X,L).

exit_trace(F,R,L) - trace(F)!,
retract(trace_Ivi(F,N)),
tab(L),
L1 is L - 1,assert(trace_IVI(F,L1)),
write(’ -exit - '),write(F),write(' RESULT: "),
write(R),nl.

exit_trace(F,R,L).

/* avoid re-evaluation of vars */

putq(A,A) - (atom(A);integer(A)),!.
putq(A,value(A)) - var(A),!.

/* The first argument of sp_fn functions is not "valued” */
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putq(A,B) = A=.[FX1 [ Xs],
sp.fa(F),!,
doputq(Xs,Y),
B=.[F,X11Y].

/* simple functions */

putq(A,B) = A=.[FIX],
doputq(X,Y),
B=_[F|Y].

sp_fn(setq).
sp_fofis). - ..
sp.fo(goal). e
sp_fn(goalall).
sp..fn(q).
sp.fn(quote).
sp_fo(lambda).
sp_{n(nlambda).
sp_fn(assertq).

doputq([].{]) - !-

doputq([CID],{Cql Dq}) =- putq(C,Cq),doputq(D,Dq).

/* friendly top loop */

top :- abolish(history,Z),top(l).

top(N) :=-
repeat,abolish(trace,lvl,l),
write('-'),write(N),write('- '),
write('APPLOG: ),
read(E),

((functor(E,def,2),Eq=E);putq(E,Eq)),!,

assert(history(N,Eq)),
((eval(Eq,R),write( RESULT IS: ’),write(R))
-write’ FAIL’)
),nl,
N1is N + 1,!,top(N1).
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