Hidden Feature Elimination
and Visible Polygon Return in
UNIGRAFIX 2

Paul Wenaley

Master's Project Report
Under Direction of
Prof. Carlo H. Séquin

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
April, 1984

ABSTRACT

UNIGRAFIX is a graphics rendering system that runs under the UNIX *
operating system. It consists of a descriptive language and several programs that
allow a user to create, modify, and display scenes consisting of polyhedral objects.
UNIGRAFIX 2 is an enhanced and refined implementation of the original UNIGRAFIX
system created by Paul Strauss. ¢

UNIGRAFIX 2 relies on a new hidden surface algorithm based on the CROSS
algorithm by Hamlin and Gear. In this algorithm visibility information is passed
from vertices to edges, and through those to other vertices. At crossings of
contour edges, visibility is reexamined. This algorithm is ideally suited for
efficient computation of all visible polygons. A new option, -vf, has been added
to Unigrafix, that will write all visible polygons to a specified file.

® UNIX is a trademark of Bell Laboratories
1 See The Unigrafix System: User's Manual



1. INTRODUCTION

Hidden surface removal in the original UNIGRAFIX system was accomplished by a scanline
algorithm that maintained a list of edges that were crossing the current scanline. All faces were
implicitly described by bounding edges on the left and right. When a new edge was encountered,
the corresponding face was put on 3 depth sorted stack, referenced by the active edge. When an
ending edge was encountered on the scanline, the next visible face was determined by popping the
ending face from the stack; the new top stack face was then used to draw the next span. Readers
are referred to the UNIGRAFIX User’s Manual and Implementation Guide for further information

about UNIGRAFIX.!

After much experimentation, it was determined that a new hidden surface algorithm was
peeded for expanding UNIGRAFIX. What was desired was an algorithm that exploits more of the
object’s coherence and is able to return explicitly all visible faces with high precision in object
space. There are a number of hidden surface algorithms that can be called edge-intersection
algorithms that are object space algorithms that can be used to determine the visible portions of
faces. The first such algorithm was that of Appel? which defines a quantitative invisibility of a
point as the number of faces that lie between the point and the viewpoint. The solution to the
hidden surface problem requires computing the quantitative invisibility of every point on each
contour edge. The amount of computation is reduced by using edge coherence: the quantitative
invisibility of a contour edge can only change when the projection of that edge crosses another
contour edge. At such intersections, the quantitative invisibility can only increase or decrease by
one. The quantitative invisibility of an initial vertex can be found by an exhaustive search to see

how many faces hide the vertex.

Loutrel's® algorithm is very similar to that of Appel, with the comparison at the
intersections of contours being done in the two dimensional projection of the scene onto the
picture plane. Galimberti and Montanari? also have a similar algorithm except that instead of

computing the number of faces that obscure an edge, they compute the set of obscuring faces.

The CROSS algorithm by Hamlin and Gear® is also an edge-intersection algorithm that
exploits the edge coherence of the object but is more suitable for rendering the object on a raster
device. The algorithm, like Loutrel’s, calculates intersections in the two dimensional projection of
the scene to the picture plane. The algorithm is a scanline algorithm: it maintains an ordered list
of the edges that fall under the current scanline and limits the search for obscuring faces to the
faces that are bordered by the neighboring edges in the list. Visibility information is passed from

edges to vertices and from them to other edges so that the amount of computation is limited.

Since all visibility calculations are incremental, a number of unpleasant singularities can

occur with these algorithms that will propagate errors to other portions of the picture.
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Galimberti and Montanari have reported such problems and reported ad hoc solutions in their

paper. We describe our solutions to such problems as coincidence of points and warped polygons.

The algorithm as stated by Hamlin and Gear seemed well suited to cur application but was
too constrained. However, it was an ideal starting point for both a rendering algorithm as well as

an algorithm for recognizing visible portions of faces.

2. OVERVIEW OF RENDERING ALGORITHM

The new hidden surface algorithm in UNIGRAFIX 2 also uses a scanline algorithm as an
ordering principle to find and process all vertices and edges. The scene is processed from the
uppermost scanline to the lowest scanline (from max y to min y in viewing space) determining
visibility of each “interesting” point that is encountered. An interesting point is either a vertex or

a crossing between two edges.

When the UGPLOT program is invoked, the plotting options are read in from the command
line and checked for consistency. The various options allowed in UNIGRAFIX 2 are summarized in
the appendix. The scene file is then read and the internal data structure created. The viewing

transformation matrix and its inverse are generated at this time.

Back faces, i.e. those faces which are turned away from the viewer, are removed after
computing the plane equation for each face in viewing space. If the z component of its face normal
is non negative, then the face will be flagged invisible. For visible faces, the illumination value is
computed, taking into account the face pormal in world coordinates and all light sources.

All of the vertices in the scene are transformed to viewing coordinates by multiplication by
the viewing transformation matriz. If the view is a perspective view, then the perspective
transformation is applied at this time. The vertices are then bucket sorted according to the
scanline in which they will appear. The number of buckets is the same as the number of scanlines
in the output device.

The interesting points in the scene are then processed from top to bottom, generating the

type of output specified by the command line options.

- In pseudo code, the main loop is:
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e Read command line options and set viewing transforms
e Read data file and build topologically invariant structure
o Flatten all arrays and instances
o Convert all vertices to device coordinates
o If a perspective view, do the appropricte division
o Bucket sort all vertices according to their mazimum y coordinate
e For scanline = MAX to MIN do
e While a vertez or crossing occurs on this scanline:
o Choose object with largest y value
o If vertez chosen, call PROC_VERTEX
o If crossing chosen, call PROC_CROSSING
e Output the spans for this scanline from the ACTIVE EDGE LIST

3. INTERNAL SCENE STORAGE

As with the first version, UNIGRAFIX 2 constructs an internal representation of the scene
consisting of structures and pointers which can be more efficiently managed than their original
ASCII representation. However, the internal scene storage in UNIGRAFIX 2 is very different than

that of UNIGRAFIX 1.

3.1. Vertices

UNIGRAFIX 2 is vertex oriented and the vertex structures will be referenced by many other
types of structures. As each vertez command in the scene file is read in, 8 new VERTEX structure
is created and linked to the others in two ways. An ordered linking of the vertices is kept so that
the vertices may again be referenced in the same order as they appeared in the original file.
Moreover, to speed up lookups when other objects reference these vertices, they are also entered
into a hash table, with the key being the hashed value of the vertex identifier. The VERTEX
structure contains the three world coordinates of the vertex, a pointer to the list of edges that this
vertex belongs to, a pointer to the pame string that was entered into a global string table, and

various flags.

3.2. Edges

An internal EDGE structure is created for each pair of adjacent vertices that occur in a face
o1 wire command. Edges are unique; if more than one face or wire share an edge, then they all
point to the same internal EDGE structure. From each edge there are pointers to the two vertices

that form the edge as well as pointers to all wires and faces that make use of this edge.



3.3. Wires

A wire statement in UNIGRAFIX 2 describes a sequence of line segments. A WIRE structure is
created when a wire command is read from the scene file. Since a wire is specified by the vertices
that it goes through, as each pair of vertices is read, a lookup is done for the vertices specifying
the new edge. The list of edges belonging to the two vertices is checked to see if an edge already
exists between them. If 50, then mutual references are added to the EDGE and WIRE structures. If
the edge does not already exist, then a new one is created. Stored with the WIRE are a possible
wire identifier, a possible color value, and various flags. Each WIRE structure is also linked up in

a list of all wires in the order they are encountered in the input file.

3.4. Faces

Face statements in UNIGRAFIX are treated analogously to wires, except that the FACE
structure has additional room for the plane equations in world coordinates and in viewing

coordinates as well as an illumination value.

As an example, consider the UNIGRAFIX file:

vA001;
vBO10O;
vC100;
vD110;
£ face (A B C);
v vire (D C B);

A slightly simplified view of the internal structure of the various constructs discussed so far is

shown in figure 1.

4. THE CROSS ALGORITHM

4.1. Classification of edges

The hidden surface removal algorithm passes visibility information from edges to the
attached vertices and from them to the attached edges. The visibility of an edge gets checked
when it starts from a visible vertex or when edges cross. For efficient handling of the checks at
edge crossings, edges are classified as either LEFT, MIDDLE, RIGHT or WIRE. For each edge
inserted into the active edge list, the “direct” and ‘‘reversed’ usage lists are scanned to find the
top-most visible face on either side of the edge. If there are no visible faces and the edge does not

belong to a wire, then the edge is not treated in any further analysis. Because the vertices of
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Figure 1. UNIGRAFIX Data Structure

visible faces and thus the bounding edges are specified in clockwise order, the face will always be
on the right side of the edge when going from the starting vertex to the ending vertex and this

makes the classification simple. Edges that are horizontal are treated as if they were sloping

down to the right.



As an example, consider the UNIGRAFIX file:

4 4 4 4 4 4

o o =

This file produces the picture shown in figure 2 and the classification shown in table 1.

When edges are classified as LEFT, MIDDLE or RIGHT, the face that is visible on the left
and the right of the edge is determined. In the case of 3 “book” of faces (see figure 3), 3

t O 10
s -5 0

» 5 O

c -6 -10
d 5 -10
vl -10 -10
w 10 -10
1 (a b ¢);
12 (b d c);
vi (ath);

w2 (vl c d wr);

wl

Figure 2. Classification of edges

Member of | Starting vertex | Ending vertex | Edge classification
face/wire
f1 a b RIGHT
112 b c MIDDLE
f1 ¢ a LEFT
2 b d RIGHT
2 w2 d c LEFT
wl Y t WIRE
wl t b WIRE
w2 wl c WIRE
w2 d wr WIRE

calculation needs to be done to determine which face is visible.

Table 1. Classification of edges for figure 2.
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Figure 3. Determination of visible faces Jor an edge.
To determine which face is visible, the X-Y plane is divided into three sections originating at the

starting vertex of the edge in question (see figure 4).
? Poskive Y direction

/—— Edge Starting Vertex

Region 2 Region 1

Region 8

Edge Ending Vertex

Figure 4. Caoze analysis for vieible face determination.

The plane normal of two competing faces is checked according to the tests below:



Region 1
If finding the RIGHT face of the edge, the face with the smaller Y component of the face
normal is in front. If finding the LEFT face of the edge, the face with the larger Y
component of the face normal is in front.

Region 2
If finding the RIGHT face of the edge, the face with the larger Y component of the face
pormal is in front. If finding the LEFT face of the edge, the face with the smaller Y
component of the face normal is in front.

Region 3

If finding the RIGHT face of the edge, the face with the smaller X component of the face

normal is in front. If finding the LEFT face of the edge, the face with the larger X

component of the face normal is in front.

As we progress from the uppermost scanline to the lowest, a list of edges that intersect the
current scanline is maintained. This Active Edge List is ordered from left to right and contains
ACTIVE EDGE structures that point to the real edge from which they came, a flag to mark
whether the edge is visible or not, and pointers to the faces that are visible on the left and right

side of the active edge. The Active Edge List is doubly linked for easy insertion aad removal of

active edges.

4.2. Calculation of crossing points

Every time the active edge list changes, we peed to check for new crossing points for any
newly created pair of neighboring edges. Because we rely so heavily upon the topology of the
scene to propagate visibility information, we must guarantee that crossings are calculated reliably.
In particular, we never want to miss crossings that are necessary for a consistent treatment of the
scene. The edges are first checked to see if they have a vertex in common; if they do, then they
don't cross. Next, the slopes of the edges are checked to see if the edges diverge, thus making
future crossings of this pair impossible. Otherwise, if the two edges are E1 and E2 with

corresponding endpoints ‘‘top” and “bottom"”,
El (X, , V) X e+ Vi)
and

E2 (Xon ¥ 2) » Ko+ Yorur)

we form the parametrization of the lines as:

XX=X1*.+ tl '(XX-—XI__)

Yl = Yl*‘+ tl * (Yl~ - l_—)



-10 -

X2 = quﬁu+ t? * (X2~— X!.-)

Y2 = Y2I -+ tz * (Yz- - Yzl ’

The crossing point is the point where:
X, =X,
Y,=Y,
To find this point, we solve for the first edge’s parameter ¢ (the edge on the left). Let:
6.= X1~ Xt
51, = Yl., Vi

82'= Xz-"‘ qu.

by, = Yo, — Yoo

Then:

t — [ azn‘le- 62.‘}’10-- 62"X20- 621'*)’2“ ]
1=

52.'51,"'52 '51.

If the denominator is zero, then the lines are parallel and there is no crossing. I! t is less than
zero, then there is no crossing. If t is greater than one, then we force t to be one, knowing that
since the lines do not diverge, then they must cross, and we create an immediate crossing. Next,
calculate the second parameter by substitution into one of the above equations, i.e.

D, SN Xl P ST
tz = 52

or

[N, 1 ~Vor,
62

t, =

]
Which equation to use is chosen by which denominator has the greatest magnitude. Again if t is
less than zero, then there is no crossing and if t is greater than one, then force it to be one. X and

Y are calculated by substitution into one of the above equations.
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4.3. Scanline processing

We now want to process the next interesting point in the scene in descending y order. An
interesting point is either a vertex or 2 crossing point of two edges. Because vertices and crossing
points have been bucket sorted, this is very fast, just comparing the top two structures in the y
sorted vertex list and crossing list corresponding to this scanline (see Figure 5). If two structures
have the same y value, then the ordering is from left to right. If both y and x are the same, then

preference is given to the crossing point.

Xop, Yiop

( for edge A->B
scanline

+2
/A

o/ —
| / —

W scanlipe - 1
scanline - 2
E
F B scanline - 3
Xbot,Ybot
for edge A~>B
VERTICES CROSSINGS
scanline + 2 A
scaniine 4 1 c
current D
scanfine
D-E D—E
scanfine - 1 C—B A—B
scanfine - 2 E
B F A-B c—B
scapline - 8 E—~F E—F

Figure 5. Bucket sorted vertices and crossing points
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4.3.1. Vertex Processing

If a vertex is chosen as the next interesting object to process, we want to remove all edges
that end on the vertex, determine the visibility of the vertex, and add all new emanating edges.
In order to propagate the visibility and left and right face information correctly, all edges ending
on a vertex must be adjacent in the Active Edge List. To this end, we must group the edges by
forcing crossings to the left until all terminating edges are adjacent. The position of the ending
edges in the Active Edge List is maintained as the position of any new edges starting from this
vertex. All of the ending edges are now removed from the list. If any of the ending edges were
visible, then the vertex is determined to be visible, too.

If no edges ended on this vertex, then the position and visibility of the vertex must be
determined by scanning the Active Edge List from left to right, until the proper position is found
where the vertex and all associated starting edges should be inserted into the active edge list. The
1 component of the visible face at the location of the new vertex is calculated and compared with

the z component of the vertex and the visibility of the vertex is set accordingly.

All emanating edges are added to the active edge list at the position determined, from left
to right, setting the edge’s visibility and the left and right face pointers (see figure 6). If the
vertex was determined to be invisible, then all new edges must also be invisible. If, however, the
vertex was visible, then the visibility of each new edge must be calculated, because one of the new

faces could obscure other edges from the vertex.

If a LEFT edge is being added, then the edge will be visible if the z coordinates of the new
edge are less than those of the currently visible face on the left. If the z coordinates are the same
or the vertex belongs to the face on the left, then the ending z coordinate is checked to see if the

edge is in front of or behind the face to the left. If it is in front, then the edge is visible.

If a MIDDLE edge is being added, then the edge will be visible if its left face is the
currently visible face on the left. Anytime a RIGHT edge is added, the right face must be
determined by scanming the active edge list, from left to right, recording entries and exits from
polygons until the edge in question is reached. The z components of the polygons at the vertex
are compared and the one in front is the right face of the new RIGHT edge. If two polygons have
the same z coordinate, then the x and y coordinates for the bottom of the edge are inserted into
the plane -equations. If this test does pot result in a clear determination of which polygon is
visible, then we know that the polygons have an edge in common and the visible polygon can be

found from the same set of tests that were used to determine right and left visible faces of edges.
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Figure 8. Left and right polygon pointers

Procedure to process a vertex (PROC_VERTEX)

e Force adjacency of all edges that end on this vertez by forcing crossings
to the left
o Remove all ending edges from the active edge list
o If any ending edge was visible, mark the vertez as visible
o If there were no ending edges, calculate visibility of vertez and
position of any new edges:
e First check if the vertez is part of the currently visible polygon on
the left, in which case the vertez is marked visible.
Otherwise, the Z coordinate of the vertez is compared against the
currently visidle face on the left.
o Add all new edges, from left to right, for each edge:
e Classify edge as LEFT, MIDDLE, RIGHT or WIRE and determine left and
right visible faces. '
o If the edge being added is o LEFT edge, then if the vertex belongs to the face
on the left or has the same Z coordinate, then the slopes of the
line and the face must be checked to see if the edge should be visible.
The slope is checked by inserting the X and Y coordinates of the endposints
of the edge into the plane equation and comparing Z values.
o If the edge being added 18 o MIDDLE edge, it will be visible if its
left face is the currently visidble Jace.
The currently visible face on the right will be the edge’s right face.
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o If the edge being added is a RIGHT edge, it will be visible if ite
left face is the currently visible face.
e The currently visible face on the right of the edge is determined
by scanning the active edge list recording entries and ezits from faces,
and comparing the depths of the faces in the manner described above.
o Insert all new edges from this vertez as a group into the active edge list
checking for crossings to the left for the leftmost edge and checking for
crossings to the right for the rightmost edge.

4.3.2. Crossing Point Processing

When the next interesting point in the scene is a crossing between two edges in the Active
Edge List, the visibility on the edges must be redetermined. Since the Active Edge List must be
maintained from left to right, when two edges cross, they must be exchanged in the list. If the
edges are currently not adjacent in the list, then crossings must be forced to the left to make
them adjacent. The visibility of the edges and the left and right faces need to be updated

according to the matrix in Table 2.

Procedure to process a crossing (PROC_CROSSING)

o If the two edges that cross are not adjacent in the active edge list,
then force crossings to the left
o Swap the edges in the active edge list
o Set visibility of edges and left and right face pointers according to Table 2.
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1st Edge 2nd Edge
LV {MV | RV WV | L Ml Rl

RV C2 | I2b | 12a | C4b

MV Itb | Ec | Ed P

LV I1s Eb P Cla | C1b | Clc
wv Caa jJ P P

Rl Qe

M1 C3b

LI Cia

wi Csb

L = Left edge, M = Middle edge, R = Right edge, W = wire,
V = Visible, I = Invisible

Blank entries indicate no action need be taken; otherwise, apply the specified operation as

described below.
oP

‘Table 2. Edge crossing cases

Only the edge’s left and right polygon pointers need be updated.

oIl

In this case, we want to make the first edge invisible. The second edge’s left face is now the

first edge’s left face.
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Case 113

LV Lv
K N x
Ll
MV v
7
>

We want to make the second edge invisible. The first edge's right face is now the second

Case I1b

e I2

edge’s right face.

XX
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RV MV

Case I2b

e Cl

If the second edge is in front of the polygon visible to the left of the first edge, make the
second edge visible. For case Cla, the z component of the face to the left of the first edge is
compared to the z component of the second edge at the intersection. If they are the same,
then the depth of the ending points of the emerging edge is compared against the old face on
the left. If this edge lies in the left face, the slope of the two faces on the right are compared
by inserting the x and y coordinates of the endpoint of the first edge into both plane
equations. If all these tests yield no definite determination of who is in front, then the faces
are in the same plane and the visible face is chosen arbitrarily. If the depth ordering of the
two faces is redetermined at a later time in a manner inconsistent with this choice, the faces

become logically intersecting and great trouble will result.

In cases C1b and Cle, the second edge will be visible if the left face pointer is the currently
visible face on the left. For case Clc, the visible face between the two edges is determined
by scanning the active edge list from left to right until the edge in qu'est,ion is reached. The
visible face is chosen by the same set of tests as used to determine a3 new RIGHT edge's

right face pointer, i.e. scanning the Active Edge List.
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e C2
Compare the depths of the polygons to the left of the first edge and to the right of the
second edge. The one with the closer polygon remains visible. The closer polygon is

determined by the same set of tests as described under case Cl.
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RV w
—_—>
Case C2a
RV v
S —
Case C2b

e C3

If the first edge is in front of the polygon visible to the right of the second edge, make the
first edge visible. The determination of the visible face is done the same way as described
under case C1. In case C3c, the face that is visible to the right of the edges is determined
by the same procedure described for determining 3 RIGHT edge’s right face pointer.



M RV
%

Case C3b

RV

KA

Case C3c

o C4

See if the wire should become invisible by comparing the 2 coordinate of the wire and the

polygon.

K=

Case Cla



RV wv

¢ C5

See if the wire should become visible by comparing the z coordinate of the wire and the

corresponding polygon.

Case cBa
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»Error” condition because the edges belong to the same polygon. This can only happen for
non-planar self-intersecting polygons that may arise due to floating point calculations for the

plane equation or non-planar input faces.
Lv MV
§ ?
Lv RV
X -
MV MV

—_—
@ % RV

Case B

Case Eb
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MV MV
____—-—> N
z ; % i v R

Case E2
MY RV
%
Case E4

Even though, in this manner, something “reasonable’” can be done for the display of these
polygons, warped polygons may lead to irrecoverable errors when they emerge in their twisted

state from behind a contour edge.

For all cases, any edge that is visible after the crossing caleulation may need to have its

right or left face pointers changed.

4.3.3. Colncidence of points

The scanline algorithm requires that there be an ordering of interesting points from top to
bottom and from left to right in the scene. When points have exactly the same X and Y
coordinates, an arbitrary ordering is chosen. To avoid ambiguities, the topology is fixed by the
order in which the points are processed. The first point processed is considered also to be the
geometrical ordering of the points, and edge crossings will have to be introduced correspondingly

once the edges diverge in directions incompatible with the original assumption.

In order to have a consistent analysis of the scene, this implied ordering must be carried to
all other operations in the analysis. A typical case where several crossing points must be

generated for the edges to propagate visibility information correctly is shown in figure 7.
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N7

Thick edges belong to V1

Narrow edges belong to V2

Figure 7. Treatment of coincident points.

This is the reason that when a vertex is being analyzed, the edges ending on the vertex must be
grouped together or when a crossing point is being analyzed, the crossing edges must first be made

adjacent in the Active Edge List.

This grouping of edges at vertices and crossing points means that other crossing points will
be generated in order for the edges to again be in left to right order. These crossing points will
again be at the same X, Y and will be executed as the next interesting point. Note that this

approach completely avoids the introduction of any “special case code” for such coincidences.

4.4. Warped Polygons

A particular problem is caused by non-planar faces. Such faces may arise due to the way
the scene is originally constructed, or they may result from arithmetic inaccuracies when parts of
the scene are subjected to multiple transformations. If such a face is seen almost “edge-on”, the
projection of its contour may be self-intersecting. This leads to crossings between edges that

belong to the same polygon, a situation that Hamlin and Gear 5 labeled as an error condition.

However, if this crossing is simply ignored, it leaves the scene description in an inconsistent
state from which the algorithm may not recover for a long time. The wrong edges are then

flagged visible, leading to incorrect rendering of the scene.

To alleviate this situation and to make the rendering algorithm more robust to such

imperfections in the scene description, the plane equations of the faces are calculated by the
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formula given by Newman and Sproull 8 which determines a best fit through a set of points. All
faces that are close to being viewed edge-on are rejected like backwards-facing ones. The
threshold for this rejection can be adjusted; rejecting all faces with z-component values of the

normalized face-normal greater than -0.01 has worked well for many “warped’’ scenes.

In addition, something “reasonable” can be done when such “error’ crossings do occur. The
edges that cross are reclassified to maintain the consistency of the contour description. This still
does not leave a completely consistent description, since such inconsistencies would require
additional flags on the edges to propagate this information until the face causing the problem has
been completely processed. In order mot to burden the algorithm by checking the topological
consistency every time when adding or crossing edges, we simply print a warning message when
such a warped face is recognized, and then continue as well as we can with the information

available in the data structure.

§. VISIBLE POLYGON RECOGNITION

The enhanced edge crossing algorithm detects all visible segments of the original polygon
edges. It is thus a natural starting point for the reconstruction of all visible polygons. Visible
polygon return consists of two tasks: finding the coordinates of all the corner vertices of the
visible polygon pieces, and proper collection and assembly of all the contour pieces of each visible

part of a polygon.

Because when we process the scene, we know exactly the points where lines begin, end, and
cross, and because we always know the face between every pair of active edges, we can recognize

the vertices that make up all visible polygons.

The coordinates of the end-points of all visible edge segments in viewing coordinates can be
readily calculated. From the x-y-coordinates of contour edge crossings and from their line
equations in viewing space, the viewing-space g-coordinates of the corresponding two points in the
line of sight of an edge crossing can be determined. The actual coordinates of these contour
points in world coordinates can then be found by subjecting them to the inverse viewing
transformation. The world-coordinates of the original vertices can be saved if they are needed

later.

The visible parts of polygons are assembled with the same sweep-plane pass that was used
to determine visibility of the edge segments. The Visible Span List (VSL) (Figure 8) contains an
ordered list, from left to right, of all visible spans on the current scan line. No explicit
background polygon is introduced. If part of the current scan line is “empty”, the corresponding
span pointer of the last visible active edge is nil. Each visible span element points to the original

polygon of which the span is a part and to two ends of one or two vertex chains representing the
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partial contour of the corresponding visible polygon. In turn, each visible active edge points to
the visible span on the right. Every time a vertex or an edge crossing is encountered by the sweep
plane, the VSL is updated in parallel with the updating of the AEL: an entry is made in one or

more of the contour vertex chains.

Figure 8. Relation of Visible Span List and Active Edge Liat

The visible polygons under reconstruction are implicitly represented. by one or more such
chains of vertices. Every time a new span must be inserted into the VSL, e.g,, when the vertex
that forms the top-most tip of a visible polygon is encountered, a new vertex chain is started.
Each such chain has a left and right connection point, pointed to by the visible spans bounded by
this contour. When a visible active edge ends in a vertex encountered by the current scan line,
the vertex is appended at the proper end of the linked vertex chain(s) for the one (or two) visible
polygons that border this edge. When left and right border edges of a visible span merge in a
vertex, as is the case at the bottom-most tip of a visible polygon, the corresponding span is
removed from the VSL and the left and right border vertex chains are joined with the insertion of
the closing vertex. If this action closes off a complete contour, the corresponding contour is
transfered to a stack of contours for this polygon, to be output eventually into a file containing all
visible. polygons.
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There are only five distinct routines to handle all possible cases of arbitrarily shaped

polygons with multiple contours. These are the basic operations:

Open_face
A new span appears on the VSL. A new vertex chain is started with the L and R pointers of
the visible span element pointing to the two ends of this new “chain’’.

Split_face
This operation is often needed in conjunction with the Open-face case when the tip of an
object appears in front of a visible polygon. The old polygon span is split into two separate
spans with the new visible span element in between, and a new vertex chain is started with
the new span element. The two existing pointers of the original span element continue to
serve as the L pointer of the new left span and as the R pointer of the new right span. The
R pointer of the left span and the L pointer of the right span point to the appropriate ends

of the new vertex chain consisting so far of just the one vertex V (Figure 9).

Continue_face

A vertex is encountered on the current scanline but the sequence of spans on the VSL is
unchanged. The vertex is appended to the proper one or two vertex chains, and the pointer
to the visible span on the right is readjusted (Figure 10).

Close_face
A span disappears from the VSL. The two ends of the vertex chains representing its left and
right border are joined. If those two ends belonged to the same chain, the completed,
closed-off contour is saved on a contour stack for the corresponding face.

Merge_face
This occurs often in conjunction with the Close-face case. The two spans on either side of
the disappearing span may belong to the same polygon and must therefore be merged into a
single span. This is done by merging the two inner borders of the left and the right span
and retaining only the L pointer of the left spén and the R pointer of the right span to serve
as the two new pointers of the merged visible span element. If this merger joins ends that
belong to the same vertex chain, a closed hole contour is formed, which is then transferred

to the contour stack for this particular face (Figure 11).

Often a visible edge segment acts as a border for two polygons. When a vertex is encountered, it
becomes part of two separate comtours of visible polygons. Two calls to some of the above
routines may then be used to process the polygons bordering at that vertex. If the two faces do
not physically share an edge, i.e. if the latter is a contour edge, then a physical vertex on this

contour can belong to only one face. A mew vertex in the same line of sight must then be created
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for the polygon that lies behind the contour edge. This vertex has the same x-y-coordinates in
viewing space, but a new 1-value derived from the plane equation of the polygon to which it
belongs. In some cases, e.g., when two contour edges overlap in front of a third polygon, two

extra vertices need to be generated.

5.1. Dlustration of Some Typical Cases

To enhance understanding of our approach, we will illustrate how these routines are applied

in a few typical situations.

v Split current face F

Open new visible
Face G

Visible Span List Before Adding Vertex V

vO0—vi—s ... =vN

Visible Span List After Adding Vertex V

Figure 9. New face starts in front of another one.

The first example (Figure 9) shows the case of a new face G starting in front of another face
F. The masked face F is split into two parts with the procedure Split_face and is now
represented by two separate visible span elements on the current scan line. Two new contours are
started with Open_face, one involving the corner V of the new face, and the other starting with
the projection V' of this vertex onto the plane of the original face F. The latter contour will

become a hole in face F.

The same basic situation rotated counter-clockwise by 90 degrees is shown in Figure 10.
However, the routines involved in processing this case are now Continue_face because of the
different orientation. The sequence of visible span elements on the scan line does not change as

this vertex is passed. The vertex and its projection onto the face behind are simply added to the



Current Face F1
Visible Face F2
v A Add V" to visible
face on left
Add V to visible
face on right

Visible Span List Before Adding Vertex V

P

vO—vl— ... —vN u0—sul— ... —uM

v

Visible Span List After Adding Vertex V

LFl R f” R
SN

vO—vl— ... =~vN—V’ V—u0—ul— ... —uM

Figure 10. Corner in a contour edge.

respective contours, and some pointers are redirected.

A third case is shown in Figure 11. This time we assume that the scan-line approaches the
end of a hole in face F. The two spans that represented different parts of face F need to be
merged into a single span with Merge_face, while the hole contour gets closed off using
Close_face. The hole contour disappears from the VSL and is transfered to a stack of finished
contours for face F. If there is another polygon G behind F, visible through the hole, then its

visible contour gets closed at the same time and is also transfered to its output stack.

A last case is shown in Figure 12. In this case two contour edges overlap. At the crossing
location of the two edges the contour of face F is unaflected: no new vertex need be added to its
contour vertex chain. But face G will get a new vertex corresponding to the projection of V. The
background polygon behind the two faces F and G, if there is one, will be terminated at this

point. It requires yet another copy of the vertex V in its own plane.



Close face G
V;
Merge faces F1 and F2

Visible Span List Before Adding Vertex V

G F2 —
L R L R

vO—svles ... =N t0—tl=s ... =tP u0—sul—e .. —uM

Visible Span List After Adding Vertex V

VO—vl=s ... =vN=V—u0—ul—s ... =vM

Figure 11. End of a hole contour.

Add V to left
contour of F

0 new contour

of face G
Visible Span List Before Adding Vertex V’
F G [
L R L R
vO—vl—s ... ~vN ub—ul— ... =uM
Visible Span List After Adding Vertex V’
——3 F e
AL/ \RA
vO—vl— ... —vN V'—a0—ul=s ... —uM

Figure 12. Contour intersection.
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As an example, consider the picture and UNIGRAFIX file:

vy ga =-10. 10. O ;
v ub 0. 20. O ;

v uwc 10. 10. O ;

v ud 0. -6. 0 ;

v bha -5. 10. O ;

v bhb 0. 156 O ;

v be 6. 10. 0O ;

v hd 0. 1. O ;

vy la -10. -10. B ;
v 1b 0. 5. 10 ;
v 1lc 10. -10. 15 ;
v 1d 0. -20 10 ;

£ u (uc ud ua ub )( hd bec hb ha );
£1(1lalblc ld);

The generated UNIGRAFIX file returning just visible faces is:

v uwc 10. 10. O ;

v ud 0. -6. O ;

v ua -10. 10. O ;

v wb 0. 20. O ;

v hd 0. 1. O

v he 5. 10. O ;

v hb 0. 15 O ;

v ha -5. 10. O,

£u (ucuduaub )(hd he hdbba );

v l¢ 10. -10. 15 ;

v 1d 0. -20 10 ;

v la -10. -10. & ;

v Y82 -3.3333333333 0. 8.3333333333 ;

v l:ud 0. -6. 10. ;

v X#3 3.3333333333 0. 11.8888666667 ;

v 1:I81 1.2121212121 3.1818181818 10.6080606081 ;
v 1:I80 -1.2121212121 8.1818181818 9.3039393939 ;
v 1b 0. 5. 10 ;

£1 (lc 1d 1a X#2 1:ud X#3 )( 1:X#1 1:hd 1:X80 1b );

The vertices starting with X# are generated from the crossing of two edges of two visible
polygons. A vertex beginning with a face name, F, followed by a ”:” and then a vertex came, V,

is the generated vertex that corresponds the vertex V projected onto face F .
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Flgure 12. Visible polygon return in world coordinates.

Figure 12 shows the result of a visible polygon return in world coordinates. The scene
consisting of only the visible polygons is then rendered four times, first from the original view
point from where the visible polygons were determined, and then three more times from slightly

different angles to demonstrate that the polygons are indeed properly clipped.

6. OUTPUT OF LINES, SPANS AND CONVEX POLYGONS

For line drawings, and when adding borders to shaded faces, every time a visible active edge
is removed from the active edge list or a visible edge becomes invisible, the line from the starting
point to the ending point can be output. Obviously, when an invisible edge becomes visible, the
edge’s starting point must be suitably modified to correspond to the point at which it became

visible for correct output of the line.
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After all vertices and crossing points in the current scanline have been analyzed, the spans
and lines on the scanline can be generated from the active edge list. If shaded faces are being
displayed, then the active edge list is scanned from left to right, looking for pairs of visible active
edges. For each pair found, the span between them is output with the color determined by the
face between them. The X coordinates of the span are determined by keeping a current value of
X for each active edge. As the active edge list is scanned, a delta X value is added to the current
value of X, which corresonds to the intersection of the active edge with the bottom of the output
scanline, ensuring that the X value never extends beyond the bottom of the edge.

For devices that can accept higher level output primitives such as convex polygons, the
visible polygon return gives the opportunity to speed up the rendering process. With a flag,
output of visible elements can be restricted to triangles and trapezoids. Associated with each
visible span are the X coordinates of the face contour on the left and right, as well as the
corresponding Y value at the last interesting point in that face. When a face begins to be visible,
these two X values are set to be the X coordinate at the top of the face, the Y value is set to the
corresponding Y value of the point and a flag is set signaling that the next output will be a
triangle. At the processing of each subsequent vertex or crossing point, a trapezoid can be output
that has on the top the saved X and Y values and a base that has a point corresponding to the
vertex or cross and the other X value found from the active edge to the right or left of the point,
depending upon which side of the face the vertex lies. When a face becomes invisible or
disappears, a triangle may be output that has at the top the saved X and Y values, and at the

bottom the single closing point.

Unfortunately, since the generation of the polygons is now directly controlled by the output
device, the order in which the polygons are output can aflect the final picture because for most
devices if a pixel is covered by the polygon, then it will be colored. Thus on the border of two
polygons, where the intersection lies within the area of the pixel, the order in which the polygons
are drawn can affect the final color of the pixel. For this reason, the borders of the polygons
drawn in this fashion can “waver” by one pixel, depending upon the bordering polygons. Figure
13 below shows a generated picture and the resulting output of convex polygons that would result
if rendered on a suitable device.?

Clipping of the lines and faces is accomplished by adding a clipping face to the scene that
has a hole the size of the output device and extends infinitely outward in all directions. Clipping

is then done automatically by the scanline algorithm.
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Figure 13. [llustration of convez polygon output.

7. CONCLUSIONS

The implementation of the extended cross algorithm, able to handle polygons with multiple
contours and holes, to the point where it gives clean results of practically all legal UNIGRAFIX
scene descriptions, turned out to be much harder than expected at the outset of this work. This
algorithm, because it carries so much information from previously analyzed parts of the scene to
later parts, is particularly unforgiving with respect to attaching wrong visibility information to
edges. A single error based on an ambiguous situation can carry its consequences through the

whole rest of the scene.

The possibility of encountering some “‘inconsistency’’ in scene descriptions is always present.
Slightly non-planar polygons, when seen almost edge-on, can lead to self-intersecting contour
projections. Two objects touching each other may result in intersections of faces, which, even
though they slice off only a tiny sliver of a face, can nevertheless confuse the algorithm. Thus the
algorithm needs some extra checks and built-in tolerances to give it the robustness required of a

general purpose rendering algorithm

On the other hand, this approach has some very attractive features. It leads directly to line
drawings of objects with hidden faces removed, and in this mode it is particularly fast and exceeds

in rendering speed even the rather fast algorithm used in UNIGRAFIX 1.

In addition, the new hidden surface algorithm gives rise to a number of interesting
extensions that were not easily possible with the original algorithm. Current research is involved

with the generation of shadowed pictures. It is well known that the methods involved in hidden
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surface removal are the same ones that can be used to determine the illuminated and shadowed
portions of a sceme. Our method of recognizing visible polygons is ideal for the splitting of an
original scene into the visible and invisible portions. To generate a picture with shadows, one sets
the eyepoint of the view to be the lighting direction and generates a file with both invisible and

visible portions of the polygons, suitable marked for the current illumination.

Thus, in spite of the difficulties that the implementation of this algorithm caused, we
consider it a good choice for the high-resolution rendering of polyhedral geometrical objects. A
consistent description of such objects contains a lot of valuable information that can be exploited

in the elimination of hidden features with a significant gain in rendering speed.

References
1. CH. Sequin and P.S. Strauss, “UNIGRAFIX,” Proc. 20th Design Automation Conf., pp.
374-381, Miami Beach, FL, June 1983.

2. A. Appel, “The Notion of Quantitative Invisibility and the Machine Rendering of Solids,"”
Proc. ACM, pp. 387-393, National Conference, 1967.

3. P. P. Loutrel, “A Solution to the Hidden-Line Problem for Computer-Drawn Polyhedra,”
IEEE Trans. on Computers, vol. C-19, no. 2, p. 205, March 1970.

4. R. Galimberti and U. Montanari, “An Algorithm for Hidden-Line Elimination,” Comm.
ACM, vol. 12, no. 4, p. 206, April 1969.

5. G.Hamlin and C.W. Gear, “Raster-Scan Hidden Surface Algorithm Techniques,” Computer
Graphics, vol. 11, no. 2, pp. 264-271, Summer 1977.

6. W.M. Newman and R.F Sproull, “Plane Equations,” in Principles of Interactive Computer
Graphics, ond Edition, p. 499, McGraw-Hill, New York, 1979.

7 M.E. Newell and C.H. Sequin, “The Inside Story on Self-intersecting Polygons,” Lambda
Magazine of VLSI Design, vol. 1, no. 2, pp. 20-24, May 1980.





