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ABSTRACT

A discrete generative model to describe the dynamics of program behavior in a
virtual memory environment is presented. 1tis based upon the working set con-
cept and models the changes in the working set from one time interval to anoth-
er by comparing overlapping windows of references, to determine which pages
are new, and which ones are no longer referenced. The statistics about arrivals
and departures can be used in a stochastic string generation program. The
behavior of the new strings is then compared to the one of the original string, as
a test of the model’s validity.

1. INTRODUCTION

Program behavior in a virtual memory environment can be characterized
by analyzing the string of address references generated during a program’s exe-
cution. Various models of referencing behavior have been proposed in the past.
Crucial in most of these models are the notions of locality and phase transition,
ie., the shift in locality as a function of time. The working set concept
[DennSB,Denn’?Z] is intended to capture these properties of reference strings.
This cencept is pretty well known: the working set consists of the pages refer-
enced during a moving virtual time interval (the window), time usually being
measured in terms of references, rather than actual time units.

A continuous model characterizing a program's behavior based upon work-
ing sets has been proposed and implemented earlier [Ferr?G.FerrBla,FerrBlb,
Dutt81, LeeB2a]. In this model, the working set size is measured after each
reference, for a given window size; the extracted data can then be used to sto-
chastically generate an artificial string, whose properties are to be as close as
possible to those of the real string.

The model described here is discrete, i.e., the working set size is measured
after a fixed number of references. The advantage is that fewer measurements
have to be made, and that fewer numbers are needed to characterize the string.
If the interval's size is carefully chosen, the reduced number of observations
should still allow for accurate artificial string generation . Another advantage is
that fluctuations in the working set size become more visible, as opposed to the
+1 or -1 fluctuations in the continuous case. A disadvantage is that for each
interval two statistics have to be gathered: the number of pages in the previous
working set not referenced during the present interval, hereafter called depar-
tures, and the number of pages not in the previous working set and referenced
during the present time interval, called arrivals. This can, however, be viewed
also as an advantage, since these quantities reveal information about the
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composition of the working set, i.e., "old" versus "new' pages.

In the conlinuous case we also have Lo deal with pairs of numbers: the times
at which a change in the working set size occurs, and the size of the working set
at that time. Flat-faults, defined as instances of a working set’s change where an
arrival coincides with a departure, thus leaving the working set size unchanged
[Dutt81, LeeBlb], also have to be accounted for. These changes do, however,
occur rather infrequently. For the trace we are using in our experiments, con-
taining 500,000 references, and a window size of 5000, the working set size
changes only 1157 times [Lee81a] ; however, if we choose for instance a meas-
urement interval of 1000 references in the discrete case, only 500 observations
have to be made. The choice of the length of the measurement interval will be
discussed in a subsequent section.

As outlined above, the data gathered during the discrete measurement
phase are arrivals and departures. How this is done is described in more detail
below. The actual observations are used to generate probability distributions,
which in turn are used in a generative model to invoke page arrivals and cause
pages to depart.

Section 2 describes the model and the definitions used in more detail. In
section 3 a number of interesting theoretical aspects of the model and their
practical applicability are discussed. The next section describes the extraction
of arrival and departure statistics from the original string, which in our experi-
ments contains 500,000 references made during the execution of an APL pro-
gram on an IBM 360/91; this string is described in [Smit76]. We also show how
these statistics can be used to generate probability distributions. During the
same measurement phase, a program profile , i.e., a distribution of how often
the various pages are referenced throughout the program, is extracted. Section

- § describes the artificial string generation. It shows in depth how the generation
program operates, i.e., how it uses the above-mentioned probability distribu-
tions, how the generated string can be made "smooth", what boundary, begin-
ning and ending conditions to watch out for, and so on. The next step is to com-
pare the performance indices of the new traces with those of the original one,
under the LRU and WS policies. This is done in section 6. The final section is
devoted to conclusions .

2. MODEL DESCRIPTION

The purpose of our discrete model is to provide a viable characterization of
a program's working set fluctuations over time. Two parameters play a crucial
role in the model.

The first is the window size, i.e., the number of past references considered
when determining the pages in the working set. This parameter is analogous to
the one used in continuous characterizations. In this study, the window size is
referred to as T. We will assign different vaiues to 7, usually multiples of 1000
references, for reasons to become clear further on.

The second parameter is the interval size, or the number of references
between consecutive measurements. Note that the time we refer to is virtual
time, and is measured in references, rather than in actual time units. The inter-
val size will be denoted by 7, and will for practical reasons also be a multiple of
1000.

Figure 1 shows how T and 7 fit into the model. In this example, T is chosen
to be equal to 2000, and T'is equal to 10600.

In general T will be less than 7, otherwise not every reference would be cap-
tured by the model, as can be seen in figure 2.
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Figure 1. The parameters Tand 7.
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Figure 2. No overlap between measured reference sels when T > 7.

T and T will be input parameters to the extraction program used to deter-

mine the values of arrivals and departures, hereafter referred to as a and d. We
repeat here the definitions of these two variables as given in the introduction.

Arrivals is the number of pages referenced during a certain interval, which
are not contained in the previous working set. To denote a specific interval, a is
subscripted: a, means the number of arrivals during the n -th interval, which is
the interval between references (n-1)T and nT.

Departures denotes the number of pages in the previous working set which

are not referenced during the present interval. Whereas arrivals can occur at
any moment during the interval, departures take place at the end, for it is only
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at that time that one is sure the page has not been referenced. Analogously to
arrivals, the symbol d is subscripted: d, means the number of departures at the
end of the n -th interval, which coincides with reference nT.

The working set size at the end of the n -th interval is denoted by wn.

A second subscript can be used to denote the window size, if necessary.
This is shown further on in this section.

Figure 3 shows how the working set size fluctuates in time.
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Pigure 3. Working set size Sluctuations
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It should be kept in mind that only the encircled points of the curve are
part of our model. These are the points that coincide with the end points of an
interval.

Wicthin an interval, the curve is monotonically non-decreasing, i.e., arrivals
are added as they occur, while departures only take place at the end of an inter-
val.

Assuming that the working set at time 0 is empty (wg=0), the following
observations can be made:

(a) there are no departures at the end of the first interval: all pages referenced
are new, and no pages were referenced before, i.e., d;=0.

(b) the drops in the curve, or the number of departures, can never exceed the
size of the previous working set: if not, more pages would disappear than
are available, leading to negative values; hence, d,<wy, .

Figure 4 visualizes our definitions of the parameters T and 7 and of the vari-
ables a and d.

Thus the following equation holds:
%,Tzwn—l,r'*'ﬂ'n,‘r—dn,r
for all integer n, such that OSnS-[i',—, with initial condition wg,=0. L denotes the

total length of the string; in our experiments L=500,000.

4 4 A= e flnir b
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Figure 4. Visualization of arrivals and departures

The notation used here is as follows: the first subscript stands for the
number of the interval, the second subscript denotes window size T, i.e. the
value of T chosen in this case. Usually 7 can be omitted, unless one wants to dis-
tinguish between various values of 7, as is the case in the next section.

Thus, the previous equation can be rewritten as:
Wy, =Wy +0n —dn
with wg=0.

This means that, whenever the values of any pair of variables are given, i.e.,
g and d, a and w, d and w, the values of the third variable, w, d and a respec-
tively, can easily be derived.

We mentioned before that we favor multiples of 1000 as choices for T and T.
The reason is the following: for the discrete model to make sense, the minimum
interval size chosen should not be too small; on the other hand, one has to allow
for a fine enough granularity to capture the fluctuating behavior of the working
set size. Hence the choice of 1000 (as a minimum).

An important advantage is that, by considering references in blocks of 1000
instead of one by one, we only have to store the identities of the pages refer-
enced within that block, and, for profile extraction purposes, their frequency of
occurrence, and not the order in which they occur. Thus, instead of having to
keep on hand a sequence of 500,000 numbers, 500 records can be stored, which
look as follows:

record # page-idl frequencyl page-id2 frequency?2 ... page-idn frequencyn

As each interval contains 1000 references, the sum of the "frequency
counts” within an interval will be equal to 1000.
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After having converted the original string to this reduced or compressed
string, we can get rid of the former, saving over 95 % in disk space.

As in our discrete measurement model we do not keep track of the order in
which events occur befween two measurement points, no information is lost, as
long as we are satisfied with multiples of 1000 as values for T and 7. Of course, if
one so desires, nothing prevents one from using the same compression tech-
- nique for values other than 1000.

Compression methods are very helpful in trace driven simulations. In
[Smit77] some of them are described in detail.

3. THEORY

The following theorems can be used to obtain the values of parameters w, a
and d , for characterizations different from the original one.

The following equation was derived in the previous section:
wﬂ.Tzwn—l,T+a’tl,T—d1l,T (0)
for any n>0.
THEOREM 1

The working set size at time n with window size T is equal to the working set
size at time n —1 with window size 7—1, plus the number of arrivals between
times n—1 and n with window size T—1:

Wy = Wp -1, 7-1F0n 7-1 (1)

Proof

From figure 5 it is clear that w, , covers all pages in W, .- plus the ones
that arrive between n —1 and n, when the window size is 7—1. Q.E.D.

Figure 5. Proof of theorem 1

THEOREM 2

The working set size at time 7 with window size T is equal to the working set
size at time n with window size 7—1, plus the number of departures at time
n with window size 7-1:
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'wn.f'_‘wn,r—l"'dn.‘r—l (2)
Proof
From (0) and (1) we obtain
A wn.r=wn—l,f+a‘n.f—dn,‘r

Wy .fzwn.-rﬂ_d-n.,r

(0
wn.1+1=wn,r+dn.1'

Wp, +=Wn r-1+ 00 11 QED.
THEOREM 3

a'n.r-dn,-rza-n.-r—-l—dn—l.f—l (3)

Proof
From (0) we obtain

G +—0n r=Wn s+ Wn-i7
from (1) and (2)
Oy +=dp 2= Wn —1,7-1F0n 71~ Wn-17-1"dn-17-1
aﬂ.r"dn,‘r:aﬂ.r—l—dn—l,-r—l Q.ED.

THEOREM 4

The number of arrivals between nn —1 and . with window size 7 is less than or
equal to the number of arrivals between n—1 and n with window size 7—1:

a’n,fsa'n,‘r—l (4)

Proof

The working set at time n—1 with window size T includes all pages which are
in the working set at the same time, with window size 7—1. Therefore, all
new pages at time n with window size 7 will also be new pages for a window
size equal to 7—1. Hence the number of arrivals with window size 7—1is at
least as large as the number of arrivals with window size 7. Q.E.D.

THEOREM 5

The number of departures at time 7 with window size T is less than or equal
to the number of departures at time n -1 with window size 7—1:

dn +<dn-1,7-1 (5)

Proof
From (3):
a'n,r"a'n.r—l‘:d'n.‘r—dn—l.-r—l B
The left-hand side is less than or equal to 0 (from (4)), and so is the right-
hand side. Q.E.D.

COROLLARY 1

If the number of arrivals between n—1 and 7 with window size 71 is equal
to 0, then the number of arrivals between n—1 and n with window size T is
equal to 0. Also, the number of departures at time n with window size 7 is
then equal to the number of departures at time n —1 with window size 7—1:
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wrio

if (an.+1=0) then (an;=0) (62)
and (dp +=dn-17-1) (6b)

Proof

The first part follows from (4); the second part is obtained by substituting
(6a) into (3). Q.E.D.

COROLLARY 2

If the number of departures at time n—1 with window size 7—1 is equal to 0,
then the number of departures at time n with window size 7 is egual to O.
Also, the number of arrivals between n—1 and with window size T is then
equal to the number of arrivals between n—1 and n with window size 7-1:

if (dp-1r-1=0) then (dn,=0) (72)
and (a‘n,'r-_-a'n.f-l) (7b)

Proof

The first part follows from (5); the second part is obtained by substituting
(7a) into (3). Q.E.D.
It is obvious that results (4) through (7) can be applied iteratively, ie.:

On 1+450n 7—3 for 820 (8)

dp sa7+a<dn 17— for 20 - (9)

if (anr1=0) then (am rea=0) (10a)
and (dn+ar+a=dn -1,r-1) for 4=0 (10b)
if (dn—l.r—lzo) then (d-rx+A.-r+A=0) (11a)
and (an.-r+A=a-n.'r—l) for A=0 (11b)

Applying these theorems can save us time when trying to extract statistics
about arrivals and depurtures for characterizations cifferent fromn the criginal
one. Consider for example how one could derive the values of w, a and d values
from a string with 7= 1and 7= 3 when the string has been deleted and only the
values of @ and d are known for 7= 1and 7 = 2; in other words, the only informa-
tion available is m pairs of arrival and departure values. Empirically, we have
verified that most intervals contain either no arrivals or no departures, some-
times neither. The probability of a = 0, or d = 0 grows for larger values of 7,
indicating less fluctuations in the working set when larger windows are com-
pared to each other. By applying corollaries (8) and (7), we were able to recon-
struct 73 % of the values of a and 73 % of the values of d. As shown later, this is
sufficient to approximate very closely the real arrival and departure distribu-
tions for T=1and 7 = 3. It is clear that this procedure, which only takes a cou-
ple of seconds of VAX-11/780 CPU time, compares favorably to having to extract
the same statistics from the real trace.

The following table shows the percentages of the values of a and d that can
be derived from our string from the measured ( T=1, 7= 2) characterization
for(T=1,7=3)(T=17= 4) and ( T= 1,7 = 5) characterizations.
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T=1,7=2 T=1,7=3 T=1,7=4 T=1,1=5

a=100% 737% 68% 61%
d=1007% 73% B87% 59%

A similar table for ( T=1, 7= 11)( T=1, 7= 12) and { T =1, T = 13),
derived from ( T= 1, T = 10):

T=1,7=10 T=17=11 T=1,7=12 T=1,7=13

a=1007% 91% B6% 80%
d=100% 917% B47% 797%

A special case where these theorems can be applied is that of the continu-
ous characterization of a string, where the time between two consecutive meas-
urements is just one reference, i.e., T = 1. Of course, T can still take on any posi-
tive value. In the continuous case, a large majority of arrivals and departures
values are 0. As mentioned in [Lee82a), the working set size changes only 1157,
6819 and 525 times for 7 values of 5000, 10000 and 20000 respectively, and flat-
faults, i.e., instances where a page arrival and departure coincide, leaving the
working set size unchanged, occur very rarely.

The following example shows the derivation of arrivals and departures for 7
= 1001, 1002 and 1003, from the (T=171= 1000) characterization:

a=100110010010001
d=001000011101011f0r7=1000
a=1002100100?20007
d=000"000011”010?f0r‘r=1001
a=1007?7200100°?2000°7
d=0000?00001??01'?for‘r=1002
a=1007?2001007?2000°7?
d=00000?0000???O?for'r=1003

In this table there are a few gaps, mainly as a result of (e=0,d=1)(a=
1, d = 0) successions. It is easy to see why this pattern causes problems: a
departure, immediately followed by an arrival, when the window size is T, can
lead to one of two alternatives for window size T+1: if the departing page is
different from the arriving page with window size 7, the result with window size T
+ 1 will be a flat-fault ( @ = 1, d = 1); if on the other hand both pages are the
same, no arrival or departure will take place with window size 7 + 1{(a=0d=
0).

This example is unrealistic in that it contains a high percentage of working
set size changes. It is, however, intended to show the applicability of the
theorems introduced above. In practice, characterizations for 7 = 1001, 1002
and 1003 can be derived with over 98 % accuracy (i.e., 98 % of the arrival and
departure values can be extracted from the 7 = 1000 characterization).

4. EXTRACTION OF ARRIVAL AND DEPARTURE STATISTICS FROM THE ORIGINAL
STRING
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4.1. Compression of the string

The original string with 500,000 references, generated during the execution
of an APL program on an IBM 360,/91, was compressed using the technique
described above: for each group of 1000 references, only the identity of the
pages and their frequency of occurrence were retained. This method saves a
substantial amount of storage space. The disadvantage is the loss of the intra-
interval order of reference, but, due to the nature of our discrete rodel, this
information would be irrelevant anyway.

4.2. Determining arrivals and departures from one window to the next

The way the extraction program proceeds is as follows. The pages refer-
enced in a certain interval are stored as linearly linked lists. A window, being a
succession of intervals, is represented by a one-dimensional array, the elements
of which are the aforementioned linked lists. To determine the working set tran-
sition, defined as the change in pages in the working set from one window to the
next, one has to count the pages referenced during the second window but not
during the first (arrivals) and the pages referenced during the first window but
not during the second (departures). It is clear from figure 6 that only pages
referenced during the non-overlapping parts of the windows have to be con-
sidered as potential arrivals or departures.

Pigure 6. Determining arrivals and departures

Only pages in@, i.e., pages referenced before the beginning of the second
window, are eligible for departure at the end of the n -th interval, while only
pages in i.e., pages referenced after the end of the first window, can be
arrivals during the n -th interval. All pages referenced in between are common
to both windows and cannot therefore be arrivals or departures.

In practice, the extraction program, when determining the number of
arrivals, compares the linked lists in with the linked lists composing the win-
dow ending at the end of interval n —1. When counting the number of departures,
the linked lists in(Dare compared with the linked lists in the window ending at
the end of interval n. In figure 7, an example is given for T= 2 and T = 5 (meas-
urements are made every 2000 references, and the window size is 5000
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references).

PFigure 7. Comparison of two consecutive windows

The arrivals are determined by comparing the two linked lists composing
the n -th interval with the five linked lists composing the window ending at the
end of interval n—1. Departures are counted in a similar way.

4.3. Extracting the program profile

The program profile gives, for each page referenced, its relative frequency
of occurrence. By keeping track of the number of occurrences within each inter-
val (1000 references), it is easy to reconstruct the profile. One just has to sum
up the numbers of a page’s occurrences over all these intervals. These numbers
are then used to obtain a cumulative frequency distribution, which is the basis
of the artificial trace generation process described in the next section.

4.4. Arrivals distribution

After having obtained the number of arrivals for each interval, a frequency
distribution is derived, which shows, for each number observed, how many inter-
vals contain that number of arrivals. The observed numbers of arrivals can thus
be used as inputs to the string generation program.

It should be noted that, unlike the program profile, this distribution is not
unique, and depends both on the interval size T and on the window size T.

4.5. Departures distribution
The extraction of departure distributions is essentially the same as for
arrivals.

4.6. Working set size distribution

To obtain this distribution, we have to determine the working set size at the
end of each interval. This is easily done by observing that the original working
set is empty, and by just adding the number of arrivals to, and subtracting the
number of departures from, the previous working set size.
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4.7. Derivation of arrival and departure distributions for related characteriza-
tions

We stated above that under certain conditions our theorems can be used to
derive arrival and departure statistics for related characterizations. The results
obtained in this way can be used to build frequency distributions, which can be
compared to the distributions obtained directly from the real trace.

Only a and d values which can be derived are incorporated in the distribu-
tion.

This leads to the conclusion that in some cases the time-consuming pro-
cedure of comparing linked lists to obtain arrivals and departures can be cir-
cumvented. Of course, the theorems can only be applied when their very strict
conditions are satisfied.

5. GENERATING ARTIFICIAL STRINGS

The validity of a model can only be verified by using it and comparing the
results with direct observations of the phenomenon we are trying to model.

In our particular case, this means generating artificial reference strings
and comparing their behavior and characteristics to those of the original string.

The properties of a good model can be summarized as follows: its parame-
ters should be easy to extract and as few as possible, it should accurately cap-
ture the phenomenon to be analyzed, and it should be capable of reproducing
that phenomenon as closely as possible.

In the second section we have given a description of our model, which is
essentially stochastic in nature.

The information needed to build the model, i.e., the program profile and the
arrivals and departures distributions, is easily obtained, and does not reguire
large amounts of storage space. As to the other two criteria above, the quality
of the model can only be verified after artificial strings have been generated.
This is done in the next section.

5.1. Distributions used in the string generation process

5.1.1. The program profile

It is necessary to take program profile information into account when gen-
erating new strings, as it will assist us in filling the intervals with the right "mix”
of pages, resembling the original one. The program profile will play a role both in
the determination of which pages to reference within an interval and how often
these pages are to be referenced.

5.1.2. Arrivals, departures, and working set size distributions

We proved earlier that any of these distributions can be derived from the
other two. While this could indicate that it does not make a difference which
ones we choose, we observe that the generation algorithm’s stability increases if
the working set size distribution is used, together with either of the other two
distributions. The reason is the following: if the arrivals and departures distribu-
tions are specified, the initial random choices for the numbers of arrivals and
departures will have too great an effect on the working set sizes over the
remaining intervals. For example, an unusually high value for a and a low value
for d will bring the working set size in too high an “orbit".

The use of the working set size distribution as a given protects against this
phenomenon by keeping the generated working set sizes closer to the ones
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observed in the original string.

The generation algorithm described below uses the departures distribution
and the working set size distribution. The reason for choosing the departures
distribution is explained below.

5.2. The generation process

Using these distributions, we now have the basic tools to generate artificial
strings. However, a number of precautions need to be taken to ensure that the
generated strings resemble the original one closely enough.

5.2.1. Starting conditions
While in general each interval contains both arrivals and departures, the ini-

tial intervals, i.e., the ones numbered from 1 through 77 only contain arrivals.
Therefore, one has to make sure that in these intervals the working set size
grows, and that no departures are allowed.

5.2.2. Smoothing

In the continuous case, the working set size fluctuates smoothly, i.e., only
+1 and -1 changes are observed. In our discrete model, the measured working
set sizes fAluctuate with larger amplitudes. The strings to be generated, however,
will be measured continuously.

If the discrete model is applied without special precautions, arriving pages
suddenly emerge in a certain interval, possibly causing a drastic change in the
working set, and similarly departing pages suddenly disappear after a certain
interval. It is this suddenness which leads us to suggest the following measures:

(1) newly arriving pages are only referenced after the first half of each interval;
() pages to depart are only referenced during the first half of each interval.

One can of course imagine more sophisticated smoothing schemes, but in
order to keep the model simple yet powerful, the above scheme was preferred.

Figure 8 shows what could happen if smoothing were not applied. Newly
arriving pages will probably have their first reference near the beginning of the
interval. The reason is that even with a relatively low reference probability, say 1
%, the first reference occurs on the average at the latest after 100 references.
Hence, there is a concentration of arrivals at the beginning of the interval. Simi-
larly, pages with a low reference probability are likely to have their last refer-
ence close to the end of the last interval before their disappearance. Hence the
sudden drop at the end of the interval under consideration.

The above is of course only true when working set sizes are measured con-
tinuously.

It is clear from the picture that strings generated without the measures
described above will exhibit drastically overstated working set sizes: the curve
will rise from a value Wy, _; to Wy +0y,. stay at that level until close to the end of
the interval, and then drop to W, _;+a, —d,, a value which is equal to w,, the new
working set size. We discovered this in earlier experiments when we were not
yet aware of this phenomenon.

By applying the measures that we suggested above, the initial part of the
working set size curve in a given interval will generally be flat: new pages are not
yet allowed, and the pages which will have to disappear from the working set at
the end of this interval are still in the working set. The reason for this was
explained above. Near the middle of the interval departing pages, i.e., pages only
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Figure 8. The effect of smaothing

referenced until the middle of the n-7-th interval, cause a drop in the curve.
This drop is reversed by newly arriving pages which have their first reference
after the first half of the interval. Overall, the average working set size over the
interval is much closer to the one we observed for Lhe original string.

5.2.3. Ensuring that each page is referenced

As can be observed from the program profile, some pages have an
extremely low reference probability. To closely resemble the characteristics of
the original string, even these pages have to be referenced. Therefore, the gen-
eration algorithm will "force” them to be referenced.

This is done in two ways:
(1) for each page, an interval is chosen at random in which the page has to be
referenced if it has never been referenced before; and

(2) in each interval, it is made sure that all pages in the generated working set
are referenced at least once.

5.3. The string generation algorithm

This section describes how the profile and the working set size and depar-
tures distributions are used to generate references.
For each interval, the basic procedure is as follows:

(1) determine how many of the pages referenced during the present interval n
will not be referenced during the next interval; this value is equal to dn 5 .
This step explains why we need the departures distribution: in order to
cause pages to depart at the end of the m -th interval, we have to mark
them for deletion intervals in advance; hence we need the departures dis-
tribution to look T intervals ahead;

(2) determine the size Wn 4y ¢ of the next working set size, under the constraint
M, 41 7=y 2 DOte that the value of dj 2., is obtained as described in (1)

(3) knowing Wn r. Wn+1,r and Gny1r derive Gneis
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(4) choose 0n4) r NEW PAEES, using the procedure described below;

(5) choose dn+rr pPages not to be referenced again during the next 7 intervals,
also as described below. '

To choose pages to be added to the working set, we look at the set of eligi:‘ .

ble pages, i.e., the ones that are not in the present working set and that are not
"banned" by being marked as pages to depart at the end of a future interval.
Then, the program profile is invoked to select the new pages.

To choose the pages not to be referenced again, we first have to determine
how many there will be by sampling from the departures distribution. To deter-
mine which pages to choose, the complement of the program profile distribution
is applied; hence pages with a smaller reference probability are more likely to
be chosen.

Once we have determined the set of pages for the new interval, the program
profile is once again invoked to generate new references, of course under the
above described constraints for arriving and departing pages.

Using the program profile during the generation process ensures that the
generated strings will have profiles similar to the one of the original string.

6. RESULTS

Artificial strings were generated for the following (T,7) pairs: (1,5), (1,10),
(2,5). (5,10) and (10,20).

It took between 634 and 867 seconds of VAX-11/780 CPU time to generate
these five strings using the program profile, the departures distribution , and
the algorithm described above.

The strings for which 7=1 took the most time to generate. The reason is the
following: for each interval, a new set of pages needs to be gencrated; for T=1
this is done 500 times, while T=10 only requires 50 such computations.

It is guaranteed by our algorithm that every page is referenced. Therefore
the number of pages referenced in each of the five cases is equal to 110.

Another characteristic which gives a good indication of how well the gen-
erated strings resemble the original one is the coefficient of resilience, which
indicates the probability of two consecutive references to the same page. Its
value is 0.544 for the original string. The following table gives the coeflicient of
resilience for the generated strings:

string(T.7)  coefficient of resilience
(1.5) 0.540
(1,10) 0.539
(2,5) 0.540
(5,10) 0.542
(10,20) 0.543

Two paging policies were applied to the artificial strings: WS and LRU. The
statistics gathered are: mean working set size, mozimum working sel size,
changes of slope, page foult rate and mazimum interfault time.

6.1. Working set policy

The following table shows the values of the above statistics for the original
trace, executed under the working set policy with 7 = 5000, 10000 and 20000.
These numbers were obtained from [LeeB82al:
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Statistics for the original string
T= mean wss max wss  slope changes fauit rate max interfault time
5000  16.9 45 1157 0.00118 32092
10000 20.9 56 619 0.000648 111695
20000 26.17 78 525 0.000562 111695

The numbers for the artificial strings generated by our model are given
below:

Statistics for generated strings
string(7.7) mean wss _max wss slope changes _ fault rate max interfault time
(1,9) 16.9 44 1172 0.00123 60033
(1,10) 19.7 56 632 0.000663 1116895
(2,5) 17.0 44 1180 0.00120 83255
(5,10) 21.0 56 627 0.000661 111695
(10,20) 26.7 78 531 0.000570 111695

The results are close to those for the original string for the same 7, mainly
because the working set size is the critical factor in our model, and also because
of the precautions described in the previous section. It is intuitively clear that a
mode! based upon working set size characteristics will perform best under the
working set policy.

6.2. LRU policy

The values obtained from the real trace, and reported in [LeeB2a], are given
below. The number of page frames is LRU's counterpart of WS's window size 7,
and is in our experiments equal to 31. The reason for choosing this value is the
fact that, with 31 page frames available, the page fault rate is equal to the one
observed under the WS policy for 7 = 10000.

Statistics for the original string with 31 frames
page fault rate max interfault time
.00146 111416

The results for the artificial strings are given below:

Statistics for the artificial strings with 31 frames
string(7.7) _page fault rate max interfault time
(1,5) 0.142 112314
(1.10) 0.072 112211
(2,5) 0.138 113212
(5.10) 0.071 112375
{(10,20) 0.032 111843

As could be expected, the results are rather poor: the generated strings by
no means exhibit the behavior observed in the original one. Hence, they cannot
be used to perform experiments on the performance of the LRU policy. Similar
results are reported in [Lee82a). The reason is that the order of references, cru-
cial in LRU, is not reproduced by the discrete model, or any model which does
not deal with page identities. The page fault rate under the LRU policy is
extremely sensitive to the order in which pages are referenced.
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7. CONCLUSIONS

We have presented a model based upon a discrete characterization of the
behavior of a program in a virtual memory environment.

First, we have defined the variables of the model, and shown how their
values can be obtained from the program’s reference string for specific values.of
T, the interval size and T, the window size. The statistics of interest in our model
are the arrivals and departures of pages, as measured with respect to two con-
secutive intervals.

We have then shown how certain theoretical results can be used to assist us
in this measurement procedure.

The next step has been the description of the procedure that can be used to
generate artificial strings, whose performance indices under paging policies
were then compared to those of the original string.

From these comparisons, the following conclusions can be drawn: the gen-
erated strings approximate rather closely the original one when analyzed under
the working set policy. However, the same strings perform poorly when executed
under the LRU policy. The reason is that both policies are in sharp contrast to
each other: the working set concept basically acknowledges phase transitions
during the execution of a program, while the LRU policy is based on the assump-
tion of stationary reference patterns.

Our model tries to combine the advantage of a working set based model,
ie., the fact that it can capture program dynamics, with the advantages of
discrete models, i.e., their more compact characterization of the phenomenon
to be modeled.
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