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Abstract

Measurements of the Smalltalk Virtual Machine indi-
cate that 20X - 30% of the time is spent reclaiming disused
storage. Following the work of Deutsch, Bobrow, and
Snyder [Deutsch and Bobrow 76) [Deutsch 82a] [Deutsch
82b) [Snyder 78] we introduce a strategy that reduces the
overhead of storage reclamation dy more than 80%. We
discuss the design of hardware to support this strategy.
and compare the hardware to a traditional software imple-
mentation. We conclude by suggesting directions for
Juture research.
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1. Introduction

Smalltalk, an interactive system developed at Xerox PARC, is based on Alan
Kay's Dynabook concept [Kay 89]. Dynabook is & personal information system
comprising tools for communication and modeling of information [Goldberg 80].
Although Smalltalk possesses a powerful graphics interface, its most distinctive
feature is its object-based representation of information. This abstraction
mechanism is useful in the development of large software systems since it allows

the user to interact with information while hiding the implementation details.

For many years Smalltalk was used solely in-house; recently, Xerox
released the system. Berkeley is a member of the Smalltalk community, thanks
to the efforts of both Xerox PARC and Hewlett Packard Laboratories. Last fall
Hewlett-Packard provided a prototype version of the Smalltalk Virtual Machine
(STVM): under the direction of Prof. David Patterson, students in the Computer
Science department ported Smalltalk to a research VAX-11/780 and analyzed

several aspects of STVM performance [Baden 81] [Cole B81] [Hagmann 81].

As a result of these studies we discovered that a large percentage of STVM
execution time was spent reclaiming storage - 20% - 30%. In this report we show
how to avoid storage reclamation overhead by changing the STVM and by provid-

ing some hardware assist to the host CPU.

First we introduce the Smalitalk system. This covers a discussion of com-
mon terminology, attractive characteristics, and performance bottlenecks. We
focus our discussion on a few of these bottlenecks and present interesting
results about them. We then propose enhancements and hypothesize their
eflects on performance. Finally, we verify our claims through experimentation

and assess the benefits provided by the proposed strategy.

We will assume that the reader is familiar with the Smalltalk system; if not

he should consult the special issue of Byte for a useful tutorial on Smalltalk

[Byte B1].



2. Background

The execution environment of the Smalltalk system consists of a set of
obfects that communicate by sending messages to each other. The user in turn

communicates with Smalltalk via a graphical display and a keyboard.

In Smalltalk the uniform representation of information is called an object.
This is true for both user information (e.g. a phone number directory) and sys-
tem information (e.g. process lists, windows, compiled code). Each object con-
sists of a collection of fields and it has has an associated object-pointer, called
an oop. The object table maps an object’s oop onto its physical address. The
system avoids the object table indirection for certain frequently accessed

objects by cacheing their physical addresses in special registers.

Messages are polymorphic; that is, they can be understood by different
kinds of objects. This means that an object's response to a message cannot be
determined until runtime. Objects respond to messages in one of two ways: by
making a call to & primitive STVM routine, or by executing a compiled method.
A method is analogous to a procedure in traditional programming languages and
primitive methods are analogous to single opcode instructions, e.g., arithmetic
and special system instructions in a traditional instruction set architecture (The
latter are included for completeness, such as 1/0, or for efliciency, such as

integer arithmetic).

Most of the Smalltalk system is written in Smalltalk itself; we refer to this
portion of the system as the Virtual /mage. The stack-based STVM interprets
virtual instructions, or bytecodes, that the Smalltalk compiler generates.
Bytecodes may be 1, 2, or three bytes long, although most bytecodes executed
are 1 byte long (92% of the bytecodes executed by the STVM are 1 byte long).

There are 5 groups of bytecodes:

(1) Stack/memory reference operations.



(2) Branches.

(3) Primitive Integer Arithmetic.
(4) Primitive methods.

(5) Sends and Returns.

Smalltalk reclaims storage automatically since the user cannot explicitly

deallocate memory, as in UNIX [Joy and Babaoglu 79]. The STVM has been imple-

mented on at least four computers, including the Alto [Thacker 78], the Dorado

[Lampson B1], the Dolphin, and on the VAX-11/780 [DEC 81], under UNIX [Joy and

Babaoglu 79] [HP 81] [Ungar and Patterson 82]. The fastest implementation

runs 250 times faster than the siowest.

(1)

(2)

(3)

(4)

(5)

The Smalltalk system is attractive for a several reasons:

Ease of modification. Since the virtual image is written in Smalltalk, the

user may modify it to suit his or her own needs.

Windowing. The windowing mechanisms provide a convenient ‘‘modeless"’
interface [Tesler 81]. For example, if the user is composing a letter within
one window, then he could activate another window to check the progress of
an executing program without first having to pass through several layers of

software.

Polymorphic messages. The use of polymorphic messages eases the task of
program verification since every object can respond meaningfully to any

message.

Ease of Debugging. Smalltalk has a powerful window-based debugger. The
debugger was easy to implement due to the uniformity of object represen-

tation.

Graphics. Smalltalk provides full graphics capabilities on its bit-mapped

display.



These advantages do not come without a cost: Table 1 shows a comparison

of the "Towers of Hanoi"” benchmark, executed with arguments (18,3,1.2), that

was executed in:

(1)
(2)

(3)
(4)

(5)
(8)

UNIX C on the VAX-11/780 and 11/750 [Ritchie 78]

Berkeley Pascal on the VAX-11/780 and 11/750 (inter-
preted and compiled) [Joy 78).

Berkeley Pascal on the 88000 (compiled).

Franz Lisp on the VAX-11/780 and 11/750 (interpreted
and compiled) [Foderaro BO].

Xerox Smalltalk on the Dorado and the Dolphin.
Berkeley Smalltalk on the VAX-11/780 [Ungar B2].!

1‘

— I—
Language Machine Running R_elative Time
Time (sec) | (Time/Dorado
Smalltalk Ilgorad.o 16 1.0
(Compiled) olphin 205 13
VAX-1 1/780‘ 294 15
c VAX-11/780 14 0.9
VAX-11/750 20 1.2
Pascal VAX-11/780 173 11
(Interpreted) | VAX-11/750 338 21
VAX-11/780 20 1.3
fg:;;}ﬂe a [ VAX11/750 30 1.9
68000 20 1.1
FRANZ LISP VAX-11/780 505 32
(Interpreted) | VAX-11/750 830 52
FRANZ LISP VAX-11/780 52 3.2
!ComEiled! VAX-11/750 82 5.1

Table 1. Comparative Benchmark Times

* Berkeley Smalltalk [Ungar and Patterson 82].

1This system was written in C to run under UNTX. Both Xerox implementetions are microcoded.




3. An Overview of Performance Limitations

In this section we outline two kinds of performance bottlenecks in the STVM:
those owing to implementation specifics and those common to all existing

implementations.

3.1. Implementation-Specific Performance Bottlenecks

There are two major bottlenecks:

(1) Bytecode interpretation vs. compiliation. Compiling
Smalltalk directly into VAX native mode code would be
more efficient than having the VAX interpret bytecodes.

(2) Graphics. We use an external display (Barco monitor
and an AED-512 graphics interface). These are con-
nected to the VAX via a 9800 baud serial line. The VAX
does most of the graphics processing since the AED has
primitive graphics processing capabilities. This is
inefficient both from an 1/0 and from a computational
standpoint (see [Cole B1]).

3 2. Fundamental Limitations

Three activities consume a large portion of execution time in several

different implementations (see below):

(1) Message sending. Message sending overhead includes:
run-time type checking, context changes and context
memory management.

(2) Object-tadble indirection must be done in roughly 50%
of object memory accesses.

(3) Storage reclamation consumes 20% - 30% of the execu-
tion time.

We consider improving only storage reclamation overhead as the other
issues are beyond the scope of this report. In the next section we give a

thorough discussion of storage reclamation in the STVM.



4. Storage Reclamation

Smalltalk uses the reference count technique to reclaim storage, aug-
mented with occasional garbage collection. There are several descriptions of

reference count algorithms in [Cohen 81] [Knuth 73] [Standish 80].

Smalltalk has three types of reference count operations, listed in order of

increasing cost.

(1) Reference count requests that cannot be satisfied (the
object cannot be reference counted).

(2) Reference count increment (refl).
(3) Reference count decrement (refD).

(1) is decided by a simple check of the object table. (2) or (3) occur
depending on the outcome of the check in (1), and (3) is accompanied by &

check for zero, since the object might be free.

Next we argue the case for and against the reference count technique.

4.1. Advantages of Using the Reference Count Strategy

(1) By reclaiming storage incrementally the system will never run out of free

storage.

() The strategy avoids costly scans of main memory. Straightforward garbage
collection algorithms scan main memory at least once during the marking

phase and once during the gathering phase.

4.2. Disadvantages of the Reference Count Technique

(1) Overhead is associated with each pointer manipulation. On a storePointer
operation the STVM decrements the reference count of the displaced
pointer and increments the reference count of the replacing pointer. Other

operations have extra overhead: pushes onto stack (which do a



(2)

(3)

storePointer), pops, and returns from messages.

The reference counts are larger than mark bits and may overflow. If the
reference count overflows, then the system must resort to an alternative

reclamation scheme, such as garbage collection.

The reference count technique cannot recover cyclic structures. Consider
Figure 1. When -+A is removed the reference counts of A and B are still
non-zero, even though neither Anor B is accessible. The only solutionis to

garbage collect. In Smalltalk, the creation of cyclic structures happens

often enough to require occasional garbage collection®.

Figure 1. Attempting to free a cyclic structure.

(4) Recursive freeing gives rise to unpredictable work-loads. When dereferenc-

ing A (ref. Figure 2) we implicitly de-reference B, C and D. Whenever a

SFrom discussions with Peter Deutsch and Dan Halbert.



reference count reaches zero then the reference counts of all objects
reachable from the object's flelds (this is called “chasing the pointers'')
must be decremented recursively. Obviously it is not possible to predict a
priori the amount of work required to do any single recursive freeing opera-

tion.

B

A "-\/‘V — >

Figure 2. An example of recursive freeing.



6. Interesting Results

5.1. Where the STVM spends its time

Table 2 shows that Smalltalk spends most of its time dealing with message

sends/returns and reclaiming storage.

1 %
Measure HP Dorado* | Dolphin®
VAX /UNIX
Sends/Returns 27 38 34
Deallocation 24 20 4>
Allocation 5 6 150
Other bytecodes 18 18 22
Primitives 14 12 18
Misc 12 5 11

Table 2. Where the STVM spends its time.

* These numbers provided by Peter Deutsch at the Computer Science Sys-
tems Seminar given at Berkeley in Fall quarter, 1981.

b Only represents recursive freeing. Reference counting is distributed
throughout the other figures, owing to quirks in the Dolphin u-engine.

¢ In the Dorado this activity is accounted for in sends and returns. This
figure drops to 8% if this is taken into account.

5.2. Bytecode Frequency Analysis

Table 3 presents an analysis of bytecode frequencies taken from a Smalltalk
session of 559K executed bytecodes (the data appear in Appendix A). The data
are condensed into groups as listed in the Smalltalk specification: pushes, sends,
pops, returns, and branches [Goldberg 80]. The pushes and pops access local
and receiver variables. Since some bytecodes claim membership in two groups
{e.g. POP AND JUMP bytecodes are in both the pop and jump group). the total
exceeds 100%. Smalltalk changes contexts at a rate of one in every five

bytecodes executed. This figure could not be calculated from Table 3 since
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some sends will execute primitively and some primitive sends will fail. We deter-
mined the context changing rate by direct measurement of context activations
and deactivations. Table 4 lists the different causes of context changeé in

Smalltalk.

Bytecode Relative
| Group Frequenc
Push 43.8
Pops: 22.0
Return TOS 6.8
Pop and Store 7.4
Pop 2.0
Pop and jump 58
Sends: 30.2
Arith 11.7
Special 7.5
Others 11.0
Returns: 8.8
ret stk top 6.7
return 1.9
jumps 7.9
conditional 58
unconditional 2.1
Totals 112.6

Table 3. Bytecode Group Frequencies

Activations | Returns | Totals
Method 46139 45379 91518
Block 3168 3166 6334
Totals 49307 48545 97852

Table 4. Context Changes

5.3. Nemory Allocation
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Teble 5 shows that the STVM allocates small context objects more often
than any other class of object.

Object Tally | Freq
Type %
Sm. Meth. Context | 45734 82

Point 5266 10
Sm. Blk. Context 1185 2
Lg. Meth. Context 408 1
Others 3178 6

Table 5. Object Allocation Frequencies

Table 8 relates the frequency of various storage reclamation activities to
the number of bytecodes executed. Figures in Roman and boldface Roman script
represent frequencies in units of operations per bytecode while italicized figures
designate less frequent activities in inverse units, e.g. bytecodes per operation.
Since certain objects are not reference counted (either Nil, True, False, a small
integer or a permanent object), some reference count operations will not occur.
Measurements show this happens 80% of the time for reference count decre-
ments (refD's) and 80% of the time for reference count increments (refI's). The
reader should note that although refl's are requested less often then refD’s, the
two requests are satisfied at the same rate. This is due to inefficiencies in the

reclamation of method contexts which we discuss in §7.4.
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W“
Freq
Measure Tally ops/bytecode
bgtecodes Zop
Bytecodes 558889 -
All TefD'’s 1835502 3.5
Actually Done 410331 0.7
Recursive refD's 9260186 1.8
Actually Done 142263 0.2
Requested ref] 1004897 2.9
Actually Done 413805 0.7
Frees: 54430 10
All Rec. Frees 68938 81
Method Contexts 44953 12
Other Objects 9477 59
Allocations 55789 10

Table 8. Summary Table

5.4. Reference Count Memory

In a traditional implementation (e.g. using off-the-shelf equipment) refer-
ence count operations must be done serially, limiting the speed of object
memory references. As discussed in [Baden B1] it would be possible to add a
Reference Count Memory (RCM) to allow reference counting to proceed in paral-
lel with bytecode execution. The RCM contains the reference count of every
object plus a tag bit that identifies permanent, e.g. unfreeable, objects (As
shown in Appendix A, Table 14, the reference count needs to be only 3 bits long).
The RCM modifies its contents in response to external requests generated by the
STVM. To initiate a request the STVM writes to a distinguished memory location
while providing the oop and command code on the memory data-bus. The STVM
need never wait on the RCM since the latter is guaranteed to satisfy requests
more quickly than the STVM can generate themn. Since the STVM does not have

to wait for a reply, all reference count operations cost a single memory write

operation.’

3 In treditional software implementations a read-modify-write operation must be done. The refD
also includes & check for sero. We assume that the modify or check step takes one memory access
time, 8o the RCM speeds up reference counting by 70%.
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5.5. Context Registers

Hagmann observed highly localized call nesting in Smalltalk [Hagmann 81],
with a maximum nesting depth of 74. Contexts are stored in a stack of windows
as in RISC-] [Pattefson and Séquin B1], although window overlap is not included.
Table 7 shows that for a stack of B windows, only 2% of all sends and returns
result in a window underflow or overflow (on an underflow or overflow the cache
misses since it must transfer a window between the cache and the memory).
Hagmann also shows that the optimal number of windows to save or restore on
an overflow or underflow is only one. Since about 40% of all object memory
accesses are to contexts [Blau B2], use of a stack of context registers would

significantly reduce main memory traffic.

Depth . Miss '
Windows Rate
1 100
2 48
3 22
4 14
5 8
8 5
7 4
8 2
9 2
10 2
11 1
12 1
13 1
14 1
15 1

Table 7. Context Cacheing

Deutsch, Bobrow, and Snyder mention that most reference count opera-
tions concern stack and local variables [Deutsch and Bobrow 78] [Deutsch 82a]

[Snyder 80]. They advocate avoiding the reference counting of these flelds alto-
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gether. We introduce a variation of their strategy in the next section.

8. Our Approach

In our scheme the STVM buffers, in registers, the n most recent context
activations. Cached references are not normally accounted for; that is, they are
not reference counted (we will discuss exceptions to this rule later). The system
stores the contexts in FIFO order from a fixed region of physical memory. and it
does not assign oops to these contexts unless the region overflows (on an

overflow it assigns oops from the bottom of the stack).

Two pointers, the Top Window Pointer and the Bottom Window Pointer
mark the physical memory bounds of cached contexts. The si'stem uses these
pointers, as in in RISC-], to resolve references to contexts (e.g., is the context in
memory or in the registers?) [Patterson and Séquin 81]. Attached to the main
memory address and data busses is the Reference Count Memory (RCM), dis-

cussed in § 5.4.

We hypothesize that our cacheing strategy reduces reference counting
activity by 80%. This savings improves the STVM performance by 18%-19% (see
Table 2). Owing to the speedup oflered by the RCM our strategy speeds up the
remaining reference count operations by 70% which improves the overall perfor-
mance by an additional 2%-3%. The 80% reduction in object allocations and deal-
locations accounts for another 4%-5%. We postulate a general STVM performance
improvement of 22%-27%. Figure 3 shows the system configuration (we describe

the ZCTin § 6.1).
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OBJMEM
CPU

N

O

Figure S. System Configuration

8.1. Difficulties

Although the savings look promising, we note that there are several compli-

cations associated with our strategy:

(1) Storage cannot be reclaimed during bytecode execu-
tion.

(2) Fields of overflowed and underflowed windows must be
reference counted.
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(3) Upward funargs, linearized message nesting, and send-
ing messages to method contexts must be handled spe-
cially.

(4) The strategy places hardwired limits on message send-
ing depth. This characteristic is inconsistent with the
flexibility of the rest of the system.

To treat these problems we must change the strategy outlined earlier in

this section.

8.2. Reclamation

When an object’s reference count reaches zero it cannot be freed immedi-
ately since the reference count does not reflect cached references to it.
Instead, the RCM marks a entry in a candidate “'to be freed” table called the
Zero Count Table (ZCT). The ZCT is a Content Associative Memory (CAM) that is 1

bit wide and 32K entries deep (one entry for each object).

The STVM reclaims storage periodically; it suspends normal execution,
accounts for all of the cached references and frees any object marked in the
ZCT (since the STVM cannot reclaim storage incrementally, we must ensure that
it never runs out of storage between reclamation phases). To account for the
references the STVM tells the RCM to refl its cached oops. We call this process
stabilization [Deutsch g2a]. During stabilization the RCM may increment a zero
reference count of an object — we call such a count a spurious zero reference
count. The RCM clears the ZCT entry in response to a zero to one reference
count transition, to prevent the STVM from freeing an object that had a false
zero count. During the reclamation phase further storage may become free and
the oops of these objects will be entered into the ZCT. When reclamation
finishes, the system discounts all cacheable 'references and then it resumes
suspended execution. To discount for the references the STVM tells the RCM to

refD its cached oops. We call this process volatilization [Deutsch 82a).
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Our implementation of the 7.CT differs from the others. Since it uses a table
instead of a queue [Deutsch and Bobrow 78] [Snyder 79] [Deutsch 82a] the table
will not overflow. Another advantage lies in our treatment of the spurious zero
reference counts. Owing to the overlap of the ZCT, RCM, and STVM, spurious zero
counts do not slow down the system (spurious zero counts may be generated

during execution as well as during the reclamation phase).

Since we implement the ZCT as a table we must speed up the time spent
searching for a free object. This is why we use a CAM - the search time depends
on the number of free objects, rather than on the number of possible objects. It
is reasonable to build the 7CT as an associative memory since each entry is one

bit wide.

8.3. Window Overflows and Underflows

Since the depth of the stack is limited, some sends will cause & window
overflow and some returns will cause a window underflow. The system must sta-
bilize the bottom window in the cache on an overflow and volatilize the top win-
dow in memory on an underflow. Hagmann's result tells us that only 2% of all
message sends and returns cause the overflows and underflows [Hagmann 81] so

we expect negligible overhead here.

Non-linearities in the context nesting sequence are caused by upward

funargs (e.g. a message may return a block, the funarg, as a result), or by the
debugger, which sends messages to contexts. Block activations* and messages

to contexts® happen much less frequently than method activations and mes-
sages to other objects, so we assume that these activities are inexpensive
(Deutsch has a set of schemes for linearizing the calling sequence and sending
messages to contexts. He assures us that they are neither difficult nor expen-

give to implement [Deutsch 82b]J).

4 These account for only 8% of all activations, see Table 4.
8 According to Peter Deutsch.
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In fixing the region of memory devoted to contexts we do not place a
hardwired limit on message nesting depth. Deutsch advocates migrating the
least-recently used contexts into the object memory [Deutsch B2b]. We believe
that this solution is reasonable; the system can store 1K 32-word contexts in
only 32K words of memory. This number, in our experience [Hagmann 81], is
much larger than most software will ever need. The system responds to
extreme demands by a graceful degradation in performance. We assume this

condition never arises.

We believe that the costs of our strategy will be unnoticeable, ie., the
benefits outweigh the costs. In the next section we provide experimental

verification of our hypothesis.

7. Experiments and their interpretation

First we discuss our general methodology for gathering statistics, next, the

actual experiments, and finally, our conclusions.

7.1. General Method

The monitored *‘session’ involved the execution of system code and appli-
cation code: browsing, compiling, and execution of simple messages (559K
bytecodes were executed). As suggested, the initial portion of the trace

(approximately 300K bytecodes) was discarded to avoid measuring transient

behavior that occurs during system startup.®

The H-P code was written exactly as specified in the Smalltalk specification
[Goldberg 80], hence it is highly modular and easy to change. We modified the
VM code by inserting calls to special auditing routines that did not disturb the
virtual machine. Appropriate oops, method headers, and so forth were written
onto disk. Owing to its size (17 megabytes), the audit file was copied onto mag-

petic tape. A context cache simulator was written and ran directly from the

¢ Bob Ballance advises to gather statistics aftsr the system can bring up a pop-up memu.
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magnetic tape audit files. Complete documentation for the audit tape format

appears in Appendix B.

Several activities were audited:

(1) Bytecode execution.

(2) Reference Counting.

(3) Deallocations and Allocations.
(4) Method Lookups.

(5) Context Activations and Returns.
(8) Primitive Successes Failures.

7.2. The Experiment

We measured the effects of volatilization in a non-volatilizing system.
There are two experimental variables: stabilization period (in bytecodes) and
context stack depth (in 32-word windows). We begin by introducing a set of cri-
teria for assessing the validity of our approach. Next we discuss certein optimi-
zations, not present in the H-P code, that reduce reference counting activity by
48% [Deutsch 82b] [Ungar 82]. Since the H-P code was written according to the
specification in [Goldberg 80], we would not expect to find many of the optimiza-
tions in it. We mention the savings gained through these optimizations and com-

pare the volatilizing system with the optimized system.

7.3. Figures of Merit

We evaluate our results by reporting the net savings in:

(1) Reference Counting,
(2) Allocation Activities, and
(3) Deallocation Activities.

The savings in (2) and (3) equal the number of allocated and deallocated
method contexts. We do not include block contexts owing to the difficulties with
bhandling upward funargs (8 8.1). This will not eflect or results because only 7%

of all contexts allocated were block contexts. The savings in (1) equals the



number of reference counts of cached method context fields (e.g. in active and

deactivated contexts, also in initialized, but inactive, contexts) minus a small

overhead.

7.4. The Optimizations

Table 8 shows the reduction in reference counting due to four optimiza-

tions:

(1) Moving oops without doing any reference counting.
(2) Nilling the TOS on a pop.

(3) Distinguished use of non-reference countable objects,
such as small integers, nil, true, false.

(4) Special treatment of the context class-defining object.

These optimizations cut reference counting in half.

Object refl's refD’s
Requested Done Not Done | Reguested Done Not Done
All objects 1004897 413905 590992 1935592 410331 1525261
Vol. Contexts 793973 301384 492589 1723623 302476 | 1420650
‘A Savings 301083 104569 196514 875844 104569 771075
Oth. Objects 210924 112521 98403 211966 108855 104611
145177 97852 47325 145177 97852 47325
4486280 202421 243839 1020821 201421 818400

44 49 41 53 49 54 i

Tabie B. Savings in Reference Counting Due to optimizations

7.4.1. Moving Oops

On a move there is no net reference count change, but the specification
says to ref] the new reference and refD the old one. This is unnecessary in a

system with an atomic move instruction. The STVM moves oops in four situa-

tions:
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(1) When updating the active context oop register on a con-
text change.

(2) On a pop and store into a literal or instance variable.
(3) On returns of TOS.

(4) When transferring the receiver and arguments to a
newly activated context.

7.4.2. Nilling the Top of Stack on a Pop

In an unoptimized system the STVM reclaims context objects by examining
every fleld, even if it were never used. On a pop, an optimized system refD's the
top of the stack and replaces the old value with nil. This action is called nilling
the top of stack. On a return every field above the top of stack will be nil, and
hence, not subject to recursive freeing. The average method never uses more
than 4 out of 12 context fields, (we ignore large method contexts, since they are
used less than 1% of the time) so the optimization reduces context field refer-
ence counting by 87%. This optimization accounts for 25% of the savings. In a
traditional software implementation the improvement is less significant, since

the saved operations do not include an expensive reference count modification.

7.4.3. Use of Distinguished Values

Since nil, true, false, and small integers are not subject to reference
counting, we can optimize distinguished use of these values. The STVM uses dis-
tinguished values in four scenarios:

(1) Theip and sp fields of contexts are small integers.
(2) *Distinguished push’ bytecodes push: nil, true, false,

-1,0, 1,2

(3) 'Distinguished return” bytecodes return: nil, true,
false.

(4) Successful arithmetic primitives manipulate only small
integers.

When instantiating a new object the system increments the reference of

that object’s class-deflning object. This is unnecessary for contexts; the class-



defining object must never disappear or the system will fail.

7.5. Experimental Results — The Effects of Volatilization

We simplify the analysis of reference count savings by assuming & minimum
cache depth of two windows. This condition forces most context references to
always be in the cache, since they refer to contexts which are adjacent to one of

the following:

(1) The home context.
(2) The sender (the caller context for blocks) context.
(3) A newly created context.

Only two of these three contexts need be cached at one time since the STVM
disposes of the sender context when activating a new one. Although a reference

from a deeply nested block context to its home or sender may not refer to an
adjacent context, we ignore this case since it happens infrequent.ly." Table 9
shows that our volatilization reduces reference counting by 91% over the system

which has been optimized as discussed in § 7.4.

Object refl's refD's Totals
Volatile Contexts | 492890 | 894427 1387317
Other Objects 65747 86789 132536

Savings (%) 88 93 91

Table 9. Savings Owing to Volatilization

Two events reduce these savings:

(1) Window underflows and overflows.
(2) Periodic stabilization.

¥ The number of reference counts of references to & block's home and sender
context were inxignificant. See Appendix A, Tables 16 and 20.



To measure these costs we simulate a register cache. The simulator stacks
the active contexts (in memory and in tbe registers) and marks the bounds of
the cached contexts with two pointers, the top of stack (tos) and bottom of

_stack (bos) pointer. For each window the simulator maintains four values:

(1) Current value of the context's Top-of-stack pointer
(TOS), including the arguments and locals.

(2) Maximum value of TOS during the context's lifetime.
(3) Sender context (the caller if thisis a block).
(4) Context size (large or small) and type (block or

method).

On an overflow in the actual system, the STVM writes out part of the window
to memory: the stack, header, and temporaries (an average of 71flelds out of 1B).
The RCM reference counts the flelds while they are sent to memory. Owing to
overlap, the cost of an overflow equals the number of fields written to memory
and not on the number of reference count operatiohs = bence we include the
cost of writing the two beader fields (instruction pointer, ip, and stack pointer,
sp) which are not reference counted. Owing to linear context nesting the STVM
can infer the sender from the top of stack pointer: hence, there is no need for a

sender fleld and the context header is shortened to four fields.

On an underflow, the STVM restores the top window in memory into the
registers; this is accompanied by concurrent ref’'s. The cost of an underflow is
the same as an overflow. As shown in Table 10, for an 8 window cache, the cost of

underfiows and overflows offsets our gains by only 2%.

If the system does not have an RCM then it must unload and refl the regis-
ters serially. Since we assume that a refl costs three memory access times, we
expect an additional x2.3 increase in overflow and underflow penalties (the total
penailties are: {33%, 4-b%, md?}" for 4, B, and 18 windows respectively). The
penalty is x2.3 rather than x3 since 2 of the B context fields (ip and sp) are not

subject to reference counting.



Cache Depth
Activity (In Windows
4 8 18
% overflows 19 { 3.0 | 0.0
7 underflows 20 | 3.0 | 0.0
% degradation g8 | 201 1.0}

Table 10. Cost of Overflows and Underflows

During reclamation the STVM accounts for all nfcrcncc-countable cached

references so it does not send the ip and sp flelds to the RCM. ¥When done it

revolatilizes the cache. This overhead degrades the savings by less than 1% (see

Table 11), and, as we show later, it basa negligible eflect on reclamation latency

time.
Volatilization Cache Depth
Period (Windows)
(bytecodes 4 8 18
x 1000) Penalty | Penalty Penalty | Penalty | Penally Penalty
0 S (] 0 S % 0 S %
B 3354 0.2 8707 0.4 13414 0.8
16 1878 0.1 3354 0.2 8707 0.4
32 838 0.08 1676 0.1 3354 0.2
64 419 0.03 838 0.08 16878 0.1
128 210 0.01 419 0.03 838 0.08

Table 11. Losses owing to Periodic Stabilization and Volatilization

Table 12 gives the time (in us) taken to account for references in the cache.

We assume that the cache is full (e.g. all windows in use), end that it takes 125

ns to send a cached field to the RCM. From our observations we noted that the

average method uses 3 stack and temporary fields; two others (the method

and receiver) must also be reference counted during the reclamation phase.



Ceche Depth | 4 8 18
(W'mdows§

Accounting 4.2 | 84|17
Time (us)

Table 12. Cost of Periodic Volatilization and Stabilization

Besides register examination, reclamation includes pointer chasing
(number of recursive refD's done), exclusi\}e of those done to method contexts.
plus object deallocations. Since this overhead is deferred (i.e. it is done incre-
mentally in & non-volatilizing lystem) it does not affect reference counting
activity but increases reclamation latency time. To calculate reclamation
latency we assume that the STVM executes 128K bytecodes/second and that it
takes 400 ns to read out and nill a memory location. In addition we assume that
it takes one 400 ns cycle to both locate a free object in the ZCT and to read and
modify the object table entry corresponding to that object. This is reasonable if
we pipeline 7CT scanning and OT access. Table 13 lists the latency period for
different combinations of the experimental variables. In all cases the latency
time .is less than 0.1% of the execution time between reclamation phases (the
time spent stabilizing and volatilizing the cache is insignificant compared to the
time spent reclaiming). go it does not slow down the system appreciably. A sys-
tem implementor will adjust the reclamation period to suit any response time
constraints, e.g.. the 8.’ ms latency due to & 128K bytecode'reclamation period

may be too long.



Reclamation Execution Fields Reclamation | Overhead
Period (K BC Chased
83 B11
18 125 1622
32 250 3245
B84 500 6489
128 1000 12978
Table 13. Reclamation Latency
8. Evaluation

Volatilization reduces storage reclamation time by B0% - 90% (82% of the
object allocations, 90% of the reference counts). The strategy incurs an
insignificant overhead and does not have an appreciable aflect on response
time. Unusable storage accumulates at a very low rate, so the system will not

run out of storage.

Our conclusions were based on a 400 ns processor cycle time. If a faster or
slower one is available then an implementor need only adjust the reclamation
period — he does not have to change the cache depth. For interactive use, we
recommend 128K bytecode periods. At this rate the accumulation of unusable
storage will still be reasonable — only 5K words (2 word points account for most
of the deallocated objects), and the latency time is short (6.1 ms). We recom-
mend an eight window cache. Eight Windows are far superior to four, but we
appear to reach a diminishing rate of return at 8: 16 windows do not improve

performance significantly.

9. Conclusions

By treating context objects specially it is possible to realize a tremendous
savings in dynamic storage reclamation time. The hardware is inexpensive and a

20% overall improvement in performance seems likely. The savings could be as



high as 30%, depending on the implementation.

Although the strategy looks attractive we must caution the reader that we
have not dealt with two significant issues: (1) How to reclaim cyclic garbage and
(2) how to handle the special cases (e.g. mentioned in § 8.1, items (3) and (4)).
In the first case we must resort to garbage collection or develop a scheme to
keep track of cycles [Deutsch 82b]. In the second case the system implemen-
tor must weigh the technique’s benefits against its complexity. The special
cases are not straightforward and their complexity may make our scheme
appear less attractive, i.e., we may want to replace the reference count tech-
nique by garbage collection. No clear-cut answer has been tound. The low-level
details of implementing a volatilizing Smalltalk system are under development

at Xerox.
10. Future Directions

There are a number of issues which would improve the reliability of our

numbers:

(1) We must justify our implementation of the Zero Count
Table by measuring spurious zero reference counts.

(2) We must deal with process switches properly. At
present we use only one stack and do not consider the
cost of flushing the registerson a context swap. Owing
to our results regarding periodic stablization these
times should not be significant. The omission of this
detail probably has an adverse effect on the maximum
context nesting depth — we measured a maximum
depth of 794 contexts. This is much higher than previ-
ous observations, and runs contrary to our intuition.
Since we were very careful in metering the code and in
writing the simulator, we suspect that process switch-
ing caused the problem.

(3) We may find that alternative reclamation strategies,
such as garbage collection, may be easier to imple-
ment and provide similar gains.

(4) We have ignored most of the bottlenecks mentioned in
§ 3.1 and 3.2, since they do not affect our results. We
would expect that changes in either the compiler [Hag-
mann 81] or the bytecode architecture [Deutsch 82b]
would aflect our results dramatically.
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Appendix A: Miscellaneous Data

From the following table we see that a 3 bit reference count is very reason-
able since only 1% of all allocated storage will become non-reference countable

owing to overflow.

_— == = ——— - |
Max Tally | Cum. | Storage | Cum.
Count % %
1 8851 39 177318 45
2 11237 84 189805 94
3 1070 89 9442 96
4 347 90 6188 98
5 522 92 3789 89
8 922 298 1835 99
7 254 97 592 99
8 78 97 211 99
9 302 29 1209 100
L >9 | 361 100 809 100

Table 14. Cost of Reference Count Overflows

We measure the cost of an overflowed count in terms of the amount of addi-
tional storage which is no longer reclaimable (e.g. the size of the object). To

gather these data, some auditing code was added to the ref/ routine.

Sums were maintained for each reference count from one to thirty-one
(column four); when the reference count for an Oop was bumped to z then the
sum for row z was increased by the size of the object (in sixteen bit words). The
sum of all the rows from x-1 through 31 equals the amount of storage lost if the
reference count is limited to z-1. The figures we are most interested in are the
curmnulative percentages (column five)-- what percentage of the storage refer-
enced will remain reclaimable given a limitation z on the reference count (z+1
is the overflow value). For instance, if the maximum reference count were one,

then only 4% of the storage could be reclaimed.



There are some additional figures also shown in the table: column two tells
us how many times a particular reference count was reached, column three
shows a cumulative percentage of each tally (what percentage of refl's involved
an increment to a value of z or less). These figures are less useful than the

weighted tallies mentioned in the previous paragraph.

Column five tells us that a reference count of six will be sufficient to reclaim
99% of object memory that is used (since the reference count won't overflow),
assuming no cyclic structures. Two other values, zero and seven, must be
reserved for zero and overflow conditions. Thus we need only three bits of refer-

ence count!



BC Groups Tally Fre Cum %
pshTmpV 108354 19.4 19.4
push 66228 11.8 31.2
sndArith 85290 11.7 42.9
pshRevV 46648 B.4 51.3
sndSpec 41877 7.5 58.7
retst 37731 8.8 85.5
send0 34926 6.2 71.7
PoplF 22273 4.0 75.7
pstTmpV 19375 3.5 79.2
send1l 15385 2.8 81.9
PopP 11141 2.0 B83.9
return 10814 1.9 85.9
popJLF 10361 1.8 87.7
pstRevV 8545 1.5 89.2
pstExt B445 1.5 80.8
pshLitV 8440 1.5 92.3
jmpLong 8368 1.5 93.9
send2 7545 1.4 95.1
pushExt 7172 1.3 96.4
pshLitC 6891 1.2 97.8
storExt 4813 0.9 98.5
jump 3542 0.8 99.1
sendExt 1843 0.3 99.4
pushAct 1496 0.3 99.7
sndSExt 1385 0.2 | 100

send2Ext 180 0.0 { 100

dupe 13 0.0 | 100

popJLT 0 0.0 § 100

sndS2Ext 0 0.0 | 100

Total/avg | 558889 | 100 100

Table 15. Bytecode Group Tallies Sorted by Frequency

Table 16 lists the access frequencies of variables by variable type - the
majority of accesses are to temporaries and most of the rest are to the receiver

fields.



Variable % of all % of Var.
Access bytecodes | Accesses
Temp 22.9 80
Receiver 9.9 26
Literals 2.7 v
Variable 1.5 4
Constant 1.2 3
Extended 2.7 7
Totals 40 _ 100__|

Table 18. Variable Access Frequencies

Table 17 gives a breakdown of message argument counts. Most sends have
few arguments, the average is 0.7 per send. These data are derived from the
method header of the executed method and not from bytecode statistics, since
some send bytecodes invoke a primitive method (48% according to our figures).

‘Rest’ designates extended send bytecodes whose argument counts could not be

determined from the trace.

% of all |
Count. sends
0 46
1 37
2 11
3 2
4 0
rest 2
Total o8

Table 17. Message Argument Count Frequencies



Small Contexts

Large Contexts

Size | Tally | Cum | Savings Tally | Cum. | Savings
x %

1 2085 8 35820 0 0 0
2 5703 19 82733 0 0 0
3 11979 45 119790 0 0 0
4 11889 71 107001 0 0 0
5 8028 84 48224 0 0 0
8 3661 92 25627 0 0 0
7 1122 85 8732 0 0 0
B 560 28 2800 0 0 0
8 510 87 2040 0 0 0
10 510 28 1530 0 0 0
11 107 28 214 1+ 1 110
12 356 99 358 14 5 294
13 332 | 100 - | 5 20
14 - - - 174 48 3308
15 - - - B7 89 1588
18 - - - 42 80 714
17 - - - 1 80 18
18 - - - ] Bl 80
19 - - - 0 81 0
20 - - - 89 o8 897
21 - - - 0 o8 0
22 - - - 0 28 0
23 - - - 0 28 0
24 - - - 0 28 0
25 - - - 0 o8 0
28 - - - 1 99 7
27 - - - 0 99 0
28 - - - 5 100 25
29 - - - 0 100 0
30 - - - 0 100 0
38 - - - 0 100 0
32 - - - 0 100 0
Totals | 45742 100 412867 405 100 7045

Table 18. Savings due to pilling the Top of stack on a Pop
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Object refl's refD
Requested Done Not Done | Requested Done Not Done
MC Home 492443 145017 347428 492443 153950 338493
BC Home 5022 329 4693 5022 245 4777
New MC 2643968 147878 116718 264396 0 264396
Det MC 0 0 0 877110 135178 741934
Det BC 0 0 0 45342 1937 43405
Act Blk 32112 8360 23752 32112 9809 22303
Caller 0 0 0 7201 1859 5342
Unknown 153819 99810 54009 98149 98050 99
Oth Con 22170 5890 16280 50238 1223 49015
Oth Obj 3612 1698 1914 18546 8933 9613
Revr 21083 5123 15960 21127 1149 19878
Point 10240 0 10240 259086 0 253206
totals 1004897 413905 590992 1935592 410331 1525261
Table 19. Reference Counting: refl's vs refD's
Object Top-Level Recursive
T Requested Done Not Done | Requested Done Not Done
vpe
MC Home 492443 153950 338483 0 0 0
BC Home 5022 245 4777 0 0 0
New MC 264396 0 264396 0 0 0
Det MC 14963 1805 13358 862147 133571 728576
Det BC 45342 1937 43405 0 0 0
Act Blk 32112 9809 22303 0 0 0
Caller 0 0 0 7201 1859 5342
Unknown 98149 98050 99 0 0 0
Oth Con 22170 0 22170 28068 1223 26845
Oth Obj 3612 1323 2289 12934 5610 7324
Revr 21127 1149 19978 0 0 0
Point 10240 0 10240 15668 0 15666
totals 1009578 268068 741508 926016 142263 783753

Table 20. Refd's: Recursive vs Top Level




refl
! Activity tally Savings |
Context Changes 97852 1 1
op and Store 38385 1 1
gnf. countable) 10156 1 1
not ref countable) | 28209 1 1
Return Stk Top 37721 1 1
Arg + Revr Xfer 85294 1 1
On a Send
éref. countable) 56692 1 1
| Jot ref countable) | 28602 1 1
Nilling the TOS 412887 (¢} 1
on a Po

Examination

distinguished 33124 1 0

pushes

distinguished 3867 1 1 7334 J
returns

Successtful 59959 1 2 17987j
Arith Prims

Context Header 44953 0 4 179812

Context

Allocations

47325

Overflows
(% of Sends) (18) (3.0) (0.0)
Overflowed 15641 1759 182
Fields
(Avg /ovfl) (1.8) (1.2) (1.2)
Overflowed 35712 5792 804
Header flelds
Underflows 8921 1442 1583 .
(% of Returns) | (20) (3.0) (0.0)
Underflowed 15638 1756 180
Avg /unfl) (1.8) (1.2) (1.2)
Underflowed 35684 5768 [ 592
| Header flelds
i Total Fields |

Table 22. The Cost of Underflows and Overflows
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Appendix B: Audit Tape Format

The audit tape consists of a stream of variable-length records. Each record
begins with a 1 byte alphabetic activity code. To simplify the description we
group the activities into six classes:

(1) Bytecodes.

(2) Reference Counting.
(3) Deallocations.

(4) Allocations.

(5) Message Sending.
(6) Miscellaneous.

1. Bytecodes
case 'A": 1 byte bytecode follows.
case 'B’: 2 byte bytecode follows.

case 'C’: 3 byte bytecode follows.

2. Reference Counting

case 'U": /*refl */

container-code || reference-code || reference-count

case 'u: /* unsatisfled refl request ./

container-code || whynot

case 'D': /* Top-level refD */
container-code || reference-code || whynot || reference-count

if reference-count == 0 include a deallocation record.



case 'd": /* Recursive refD */
container-code || reference-code || whynot || reference-count

if reference-count == 0 include a deallocation record.

case 'W': /* Top-level unsatisfied refD request */

container-code || whynot

case 'W': /* Recursive unsatisfied refD request */

container-code || whynot

Container-code and reference code designate the class, and optionally, the

oop of, respectively, the containing and referenced object. The codes are:

cases 'H/h': Method/Block context home.

case 'B’: Active block context.

case 'S': Method context sender.

case 's’: Block context sender.

case 'C': Block context caller.

case 'R’': Receiver.

case 'M': Method.

case 'X': Other context (may be a newly created, but inactive

context), oop (2 bytes).

case '0": Other object (may be a newly created, but inactive

context), oop (2 bytes).

case 'P': Point.
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case 'Z': Unknown (some oops are contained by special registers,

e.g. activeContextOop register, rather than by objects).

“Whynot' is a 1 byte code designating the cause for not reference count-
ing:
case 'N': Nil.
case 'T": True.
case 'F': False.
case 'I': Sm. Int.

case '0': Miscellaneous.

The reference count value is 1 byte long: two values are reserved:

case 254: overflow.

case 255: negative reference count.

3. Deallocations

These records always follow a refD operation, so no activity code is needed.

A deactivation record includes the pointers/no pointers designation:
case 'N': does not have pointers.
case 'P': has pointers.

Also included: a two byte size value, and the objects’ class designation.

The scheme for encoding the class designation is the same as for



encoding the reference or container.

4. Allocations

case 'x': allocation with pointer.

case 'y'": allocation with words.

case 'z': allocation with bytes.

Each of these codes is followed by its size (2 bytes),
a class-code, and, in some cases, &n oop:

cases 'M'/'m': large/small method context.

cases 'B’'/'b': large/small block context.

case 'P': Point.

case 'D': Other object, followed by its oop (2 bytes).

5. Message Sending
case 'b’/'m'": Blk/Method Context Activation

Followed by the oop of the new context (2 bytes), the maximum

value of the old SP (1 byte), and the current value of the old SP.

case 'c'/'M": Blk/Method Return
Followed by the oops of the target context (e.g. where to return to),
the current context (2 bytes), and the maximum and final

values of the SP.



case 'N': Method lookup

Followed by the method's oop, the receiver oop, the method header,

and the header extension if necessary (all 2 bytes long).

case 'E': Error-- selector not found.

cases 'n'/'s": Generation of a new method/block context.

Followed by the oop (2 bytes) and the size (1 byte).

Size codes are:

case 168: Large.

case 38: Small.

deafult: error.

cases 'Q'/'R': Initial failure of an arithmetic/common primitive.

cases 'S’ /'F': Primitive success/failure.

case 'X': Fields transfer of arguments and receiver.

Followed by size of transfer and number of flelds that could not

be reference counted (both 2 bytes).

case 'Y'": Fields xfer of arguments from an array.



8. Miscellaneous

case 'i":

Synchronization marker.

cases 'J'/'K': Reference countable/non-reference countable oop transfer

on a pop and store bytecode.





