CREATIVE GEOMETRIC MODELING
WITH
UNIGRAFIX

Edited by Carlo H. Séquin

With contributions by
Z. Gigus, E. Hunter,
M. Lebman, J. Mack,
G. Sanborn, M. Segal,
P. Ts’o, and P. Wensley.

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

This is a report on a new graduate course in Computer
Graphics and Solids Modeling, first offered in Fall 1983. The goal of
the course was to improve the spatial perception of the

participants by modeling three- and four-dimensional objects.

As part of the course, some utility programs for the UNIGRAFIX
system where developed that aid in the construction of polyhedral
geometrical objects. These programs were then used to create
artistic displays. Examples of both activities are also presented in

this report.

The development of the UNIGRAFIX system is supporied
by the Semiconductor Research Cooperative
under grant number SRC-82-11-008.

NEW IN FALL 1983:

Creative Geometric Modeling
CS 292 : 1.5 lect.hrs./week; 2 units; S/U or letter grade.

Algorithms and techniques for the creation of interesting
and artistic objects in two, three, or four dimensions.
Creation of a library of generator routines. Rendering of
such objects in various styles on different output devices.
Introduction to, use of, and extension of UNIGRAFIX.

1. THE COURSE CS 292A

Studies at Rensselear Polytechnic Institute have shown evidence that there
is a strong correlation between the pérformance of engineering students and the
stréngth of their spatial perception. The skills to visualize complex data as a
functional entity permits them to find more easily a good way to optimize the
solution to a multi-faceted problem. As a consequence, RP.l. has introduced
computer graphics as a standard tool in many of the courses in the main-stream
of the engineering curriculum. Simulation results, for instance, are presented
as a group of curves on an interactive computer terminal rather than simply as

a heap of numbers in a print-out.

Computer graphics in Berkeley has been revived in 1981 with the develop-
ment of the Berkeley Computer Graphics Laboratory under the direction of Prof.
Brian Barsky. In 1983 a new graduate course, "Creative Geometric Modeling”
was added to the catalog of our offerings in the area of computer graphics. The

main goals of this course were:

1) To give the recently developed UNIGRAFIX system a hard work-out to identify

bugs in the algorithms and in the user interface.

2) To enhance the UNIGRAFIX environment by adding facilities that make it

easier to create complex geometrical objects.

3) To develop the spatial perception of the participants and to train their skills
in geometry.

4) To satisfy the increasing demand from students to learn more about the

fast-moving and ever more pervasive field of computer graphics.

The course had eight formally enrolled students and three regular auditors. In
order to satisfy the course requirements, each participants had to complete the

following assignments:

1) Invent or extract from the literature an algorithm useful for the creation of

interesting geometrical objects and present this approach in class.

2) Implement the algorithm in C or in Pascal and document it with manual

pages and tutorial examples.

3) Use a combination of the evolving utility programs to create an artistic
display.

In addition, the course encompassed two take-home tests that contained a

variety of think-puzzles exercising spatial perception in 3 and 4 dimensions.

Syllabus

The course extended over 15 weeks with 1} lecture hours per week. This is

a rough outline of the lecture and discussion topics on a week by week basis:

1) Importance of spatial perception and geometric skills.
Course goals, class format, deliverables, background questionnaire.
Introduction to the UNIGRAFIX system, the language.
rendering with ugshow.
Assignment: Get familiar with UNIGRAFTX; do your initiais in 3D.

2) Concept of generator programs: example mkwarm.
Axfile specifications; worm parameters: radius, n-sides, azimuth, twist.
Ax-analysis files: axspec, axdist; use of "wordy" mode.
Mitred prismatic segments; reiation of ax-turn, azimuth, twist.
Implementation of mkworm, incremental transformation of local coordinates.
Need for other generators for linear sweep and rotational sweep.

Derivation of specifications for a universal sweep program: ugsweep.

3) Discuss experience with mkworm.
Problem of determining end-to-end axturn from local information.
Joining multiple cyﬁndrical pipes, aigorithm for intersection
Constraints that make mitring of prismatic joints possibie.
Knots: square knot - Granny knot, clover-leaf knot, torus knots.
Constraints for tight knots, use of symmetry to reduce degrees of freedom.

4) More on problem with ax-turn: 360 degree ambiguity.
Presentation by Paul Wensiey:
"Data structures and algorithms in UNIGRAFIX2".

Discussion: What makes a good project presentation.

5) New features in mkworm: options -L, -N, new distance aigorithm.
Presentation by Pauline Ts’o:
"Growth algorithm for trees, corals, shells”.
Mitring of cylinders of unequal diameter and of prismatic cones.

Discussion: What are good course projects.

8) Introduction to the Platonic solids. Construction and visualization of Pla-
tonic solids in n dimensions. '
Simplex, N-cube (measure polytope) and its duai (cross polytope).
Problems involving regular solids: e.g., how does a cube float.

7)

8)

9)

10)

11)

12)

13)

14)

15)

-3-

Construction of icosahedron and dodecahedron, duality.
Derivation of Archimedean solids.
Presentation by Mark Segal:

"Intersecting faces’.

Take-home test number 1.

Discussion of exam problems.
Hints for the use of AED and SUN terminals, the SUN file system.

Icosahedral symmetry generator and its application.
Presentation by Jeff Mock:

"Geodesic domes"
Exchange of first drafts of manual pages for software projects.
Presentation by Mark Liebman

"Projection from 4D space to 3D space’".

More on projecting from 4D to 3D space.

The more complicated 4-dimensional regular polytopes.

Presentation by Ed Hunter:
" Ugstar - putting pyramids on faces".
Presentation by Ziv Gigus:

" Ugsweep - universal sweep generator".

Presentation by Greg Sanborn:
" Mkstairs and Mkpath'.
Presentation by Eric Bier:
"Rendering half-spaces and infinite planes”

Take-home test number 2.

Discussion of exam problems.

Status check on programming projects.

Test-run for talk in front of CAD-Committee:
“TOOL-BUILDING: Computer Graphics and Solids Modeling at UCB"'.
Guide-lines for final manual pages, tutorial examples, and artwork.

Moebius band with a circular boundary.

Transformations between Platonic and Archimedean solids.
Truncation and dual operation for irregular solids.

The translation-rotation operation ("'snub” operation).
What is "ART" ?? Hints for artistic projects.

2. UNIGRAFIX PROGRAMS

This section gives a brief introduction to the programs developed or com-

pleted during this course offering. To put these programs in context, a brief

overview over the UNIGRAFIX system is first presented.

2.1. Object Description

UNIGRAFTX uses a terse ASCII format to represent polyhedral objects. A UNI-
GRAFX flle consists of statements, starting with a keyword and ending with a

semicolon. Statements consist of lexical tokens, separated by commas, blanks,

tabs, or newlines. The language is simple and has only a few different types of

statements:

vertices:
wires:
faces:

definitions:

instances:
arrays:
lights:

color:

ineclude flles:

comments:

[

include

{

ID zyz.
[ID](viv2...vn)(..)[coloriD];
[D]1(viv2...wm)(...)[caloriD];

defID ;
non-def-commands

[/D] (defID [transformations]) ;

[ID] (defID [transforms]) size [transforms]:
[[D] intensity [z y z]:

colar/D intensity [hue [saturation]];
filenama [transformations | ;

[anything {nesting is OK] but unmatched { or]] |

These descriptions are currently created with a text editor or with the gen-

erator or meodifler programs discussed in a later section. An interactive editor

ig still in the planning stage.

2.2. Rendering

Once an object description has been created, the object can be rendered on
a variety of output devices. Currently there are drivers for the following termi-
nals: Dumb terminals, HP2648A, AED 512, Vectrix, and lkonas frame buffer.
Hardcopy can be produced on an 11-inch-wide Varian printer or on a 36-inch

Versatec printer, both with a resolution of 200 dots per inch.

Programs that take a UNIGRAFIX description and produce a display or hard-
copy output are:

ugshow (Strauss),

ugplot (Wensley, Segal).
These are described in detail in the ““UNIGRAFIX 2 User’s Manual and Tutorial,”
CS-Technical Report, UCB/CSD 83/161, December 1983.

The collection of all bbjects in the scene can be globally transformed in the
world coordinate system with the program

ugxform (Wensley).
This program reads a scene from standard input and returns the transformed
scene to standard output. It permits scaling along each one of the three coordi-
nate axes, as well as mirroring of, rotation around, or translation along each
axes. In addition, the program accepts an arbitrary 4x4 matrix and performs

the corresponding transformation on the scene.

Some of the modifier programs can only handle hierarchically flat UNIGRAFIX
descriptions. Such a flat description of the scene can be generated with the
filter program

ugexpand (Wensley).

This program also permits the specification of a transformation as the previ-
ously discussed ugzform. '

Other programs that modify a UNIGRAFIX description to prepare it for render-
ing are: '

ugisect (Segal)
removes all intersections which cannot be handled by the rendering algorithms

in ugshow and ugplot.

These programs are also described in detail in the "UNIGRAFIX 2 User's Manual
and Tutorial.””

2.3. Generators
There are several programs that create an object description in UNIGRAFIX
format from scratch:

mkstairs (Sanborn)

creates spiral staircases or ramps according to a set of parameters.

mkpath (Sanborn)
creates a random orthogonal walk through.3D space and implements this

path with streets and stairs.
mktree (Ts’o)
grows trees, shells, or corals in conjunction with miworm.
mkworm (Séquin)
creates properly mitred prismatic tube sections around piece-wise linear

paths through 3D space.

2.4 Modifiers

These programs change a UNIGRAFTX description to produce a new object.
Some programs only meodify the individual faces:
ughole (Mock) .

cuts a hole into each face of the given polyhedron.
ug4hole (Mock, Liebman)
same as ughole but for 4-dimensional objects.
ugshrink (Séquin)
separates the faces of a polyhedron and shrinks them; can also be used to

cut holes or to produce concentric rings.

ugsweep (Gigus)
sweeps a polygon through space with an arbitrary transform and produces

the surface of the swept out volume.

ugfreq (Mock)

subdivides triangular faces into smaller similar facets.

Other programs change the actual shape of the object:

agtrunc (Séquin)
truncates the corners of a polyhedron

ugstar (Hunter)
constructs inside or outside pyramids on all faces of a polyhedron.
ugdual (Séquin)
" creates the dual of a regular solid and tries to do something reasonable for
irregular solids.

ugsphere (Mock)

projects all vertices radially from the origin onto a sphere.

Yet other programs preserve the underlying shape of the original object, but
render it by drawing sticks or worms along the original edges, or project it from
higher space into 3D space:

ugwire (Séquin)
creates a wire segment for every physical edge in the original polyhedron.

ugstick (Mock)
replaces each edge with an (irregular) prismatic stick.
ug4to3 (Liebman)

projects 4-dimensional vertex coordinates into 3D space.

2.5. Program Documentation

The following section presents the manual pages for the generator and
modifier programs. In some cases, these are followed by a few tutorial examples

to show the variety of effects that can be produced with these programs.

MKPATH(UG) UNIGRAFIX User's Manual MKPATH(UG)

NANE,
mkpath — make UNIGRAFIX description of a random three-dimensional path.

SYNOPSIS
mkpath [nint][sxyz][—R] > pathfile

DESCRIPTION
Mkpath outputs a UNIGRAFIX description of a random three-dimensional orthogo-
pal path. It uses a three-dimensional array to construct the path and avoid
gelf-intersections. It uses a tree-growing algorithm starting at a random place
near the center of the space array. This path is then followed with level streets
and with stairs or ramps created with the mkstairs algorithm, which has been
incorporated into mkpath.
Mkpath creates a description containing six main items. There are five
definitions: a simple segment for level straight paths, one for a single step, a
definition for a staircase one level high, a landing to jcin levels of staircases and
two landings that join a straight path to a staircase. The rest of the flle consists
of instances and arrays that form the path. The options are:

—n number build a path with number segments,
= K set space limits of path for the z, y, and z directions.

- build stairways as a helical ramp, made with triangles, instead of
the defauit stairs.

EXAMNPLE
mkpath -s 3 2 3 >pathfile;
cat light pathfile | ugplot -sa -ed -9 2 -7 -dv -sy 7

~ug /bin/mkpath
~ug /src/MKPATH/*
SEE ALSD
mkstairs(UG), ugshow(UG), ugplot(UG)

BUGS
Stairs and streets float freely in space. Options for the number of steps per
level, supporting pillars and other embellishments may be added later.

AUTHCR

Greg Sanborn

Release 1984 1983-12-7 1

2

MKSTAIRS(UG)

NAME

UNIGRAFIX User’'s Manual MKSTAIRS(UG)

mkstairs — make UNIGRAFIX description of helical stairways

SYNOPSIS

. mkstairs [parameters] > stairsfile

DESCRIPTION

Mkstairs outputs a UNIGRAFIX description of a helical staircase or ramp. Each
step is an instance of a definition which describes a single step or ramp segment
with the proper geometry for a smooth fit. Parameters for the stairs are:

-n number
-R

P

—i radius
—o radius
—a angle

—A Angle
-r Tun

—h height
-H Height

make number steps. The default is 24.

build a smooth ramp with triangles instead of the default stairs.
attach hexagonal pads to the top and bottom of the staircase.
set inner radius of the staircase. The default is 2.

set outer radius of the staircase. The default is 4.

set the angle of each step. The default is 15 degrees.

set the total Angle of the staircase, the sum of the angles of all
the steps. The default is a full crcle, 360 degrees.

set the run of each step, the distance from the front of the stair
to the riser of the next step measured at the center of the step.

set the height of the risers. The default is 0.5.

set the total absolute Height of the staircase, from the bottom
level to the upper level.

The program may adjust the —a, —r and the —h parameters so that an integer
number of steps will result. If both angle options are set as well as the number
option, then the total angle value is used to calculate a new step angle value.
The same is true for the height options. If the number option is not set, then the
number of steps is calculated from the angle or height values.

EXAMPLE
mkstairs -a 18

FILES

~ug /bin/mkstairs
~ug /src/MKSTAIRS /*

SEE ALSO

mkpath(UG), ugshow(UG), ugplot(UG)

BUGS

Right now, instances are produced for every step;
arrays would give a more compact description.

AUTHOR
Greg Sanborn

Release 1984

1983-12-7 1

MKTREE (UG) UNIGRAFIX User’s Manual MKTREE (UG)

mktree — generate joint-coordinates for tree-like objects

SYNOPSIS

mktree[—a? slu] [4?slu] [-h?slu]
where “*?'* maybe either f (fixed), o (oscillating), or r (random).

DESCRIPTION

The program mktree outputs, in mkworm-format, the joint-coordinates of a
tree-like object based on the growth algorithm of Yoishiro Kawagushi. The joint-
coordinates are written into a file called "ax' in the user’'s current working
directory. The shape of the tree can be altered by a set of command-line
options:
—a? Default: ? = 0. < 3=20, I=5, u=45 >.

Specify bending angle for each joint of the tree. The values are in

degrees and must not lie outside the interval 5.. 45 degrees.
—t? Defauit: ? = r. < 3=998, 1=30, u=80 >.

Specify twist angle (in degrees) for each joint of the tree.
—h? Default: 7 =1, <size = 1.0>.

Specify size (length) of trunc (branch) segment in units of its diameter.
=71 <value>

Specifies a fixed <value> for one of the above three parameters.

—=%0 <step> <lower> <upper>
Specifies an oscillating value for one of the above three parameters. The
parameter changes by <step> from one joint to the next, sweeping back
and forth between the <lower> and <upper> bounds.

-7r <seed> <lower> <upper>
Specifies a random value for one of the above three parameters. Starting
from the given <seed>, a pseudorandom generator choses the values for
the joints in the intervai between <lower> and <upper> bounds.

-rb <beginning radius>
Specifies the radius of the beginning trunc segment.

—re <ending radius>
Specifies the radius below which the creation of branches is suppressed.

—g <max generation>
Specifies the maximum depth of the tree in the number cf generations.

N Suppresses the generation of all side-chains: results in a single "spiral”.
Default values of ail options are as follows: -oa 20 S 45 -tr 999 30 S0 -bf 1.0

Release 1984 | 1983-12-7 1

MKTREE (UG) UNIGRAFIX User’s Manual MKTREE (UG)

EXAMPLE
mktree -oa 20 5 45 -tr 999 30 90 -hf 1.0

mkworm -né
cat ~ug/lib/illum worm | ugplot -sa -ed -2 1 -5 -dv -sy 6

FILES

ax
~ug /bin/mktree
~ug/src/mktree

SEE ALSO
mkworm (UG), ugshow (UG)

Yoishiro Kawagushi, SIGGRAPH 1982 Conference Proceedings, ' A Morphological
Study of the Form of Nature "

BUGS
Yet to be reported.

AUTHOR
Pauline Ts'o

Release 1984 1983-12-7 2

Tutorial exampies for mictree

mktree; mikworm -n8; cat light worm | ugshow -sa -dv
(default tree, twist is randomr: angle is oscillating; height is 1.)

mitree -t£10; mkworm -n8; cat light worm | ugshow -sa -dv
(twist has been changed to a constant ten degrees; all other parameters remnain as
above)

Tutorial examples for mktree (cont.)

mktree -tf 0; mkworm -n8; cat light worm | ugshow -sa -dv
(twist has been removed, all other parameters remain as before)

mktree -tf 0 -af 20 -N; mkworm -n8; cat light worm | ugshow -sa -dv
(angle fixed at 20 degrees, side-branches suppressed)

MKWORM (UG) UNIGRAFIX User’s Manual MKWORM (UG)

NAMFE

mkworm — generate piecewise prismatic tubes in UNIGRAFX format
SYNOPSIS

miworm [options]
DESCRIPTION

Mikworm is a generator program for a UNIGRAFKX description of worm-like bodies
consisting of prismatic sections. Mkworm reads the file "ax’ in the current
directory and produces as output the file "worm" in UNIGRAFIX format.

The file "ax’ contains the description of the axis of the worm embedded in 3-
dirmensional space. The statements specifying each joint are of the form:

j x-coord y-coord z-coord radius;

One such statement is needed for every joint. The number of joints is currently
limited to 513. These statements can be grouped together into individual open
ended sections or into loops with the command pairs:

B(egin) — E(nd) : for open section with orthogonally terminated ends;
1{oop) — R{eturn) : for creating a closed loop.

Micworm. takes a number of parameters either on the command line or in an
interactive question and answer session. If any one parameter is specified on
the command line, the interactive session is suppressed. The parameters are:

-n <integer> Defauit: n= 4.
This specifies the number of sides that each prism section should have.
There is a built-in limit of 52. If n is specified to be less than 2, the output
in worm will be the UNIGRAFIX description of a wire along the ax of the
worm. :

< <real> Default:r=0. ‘
This specifies a global radius for the whole worm. If the value is ornitted
or explicitly set to 0, the data that appears with each joint specification in
the ax-flle is used. This makes it possible to generate worms of varying
thickness.

<4 <real> Default:t =0.
This defines the amount of twist in degrees that each prismatic section
should have. It allows one to smoothiy ciose non planar loops that have a
net twist from beginning to end. If the total twist is evenly distributed
among all the sections of the loop, the edges of the beginning and the end
sections can be made to merge.

-a <real> Defauit:a =0.

This defines the starting azimuth in degrees, so that the position of the
edges of the prisms can be properly positioned in space.

T This option specifies that the surface of the worm should be tesseilated
with triangles rather than with trapezoids. Planar ax-loops should have
an even number of joints so that the edges of the end sections will prop-
erly meet.

This option will produce labels in the generated face statements.

A b

This also suppresses the questions and uses defauit values.

Release 1984 1983-12-7 1

MKWORM (UG) UNIGRAFIX User's Manual MKWORM (UG)

w This "Wordy” mode reports various parameters about the ax-segment
orientation as it constructs the worm. This and the following options help
in the analysis of complicated axes.

S This prints Specifications for joints and segments.

D This prints Distances between ax segments; it is useful when constructing
tight knots.

N This option suppresses the worm output; it is useful when one is

interested in the ax-parameters only.

As the main product, mkworm will create an elliptical rib around each joint with
the minor half-axis equal to the radius specified for that joint. By connecting
subsequent ribs with prismatic sections, properly mitred corners are generated.

EXAMPLE

BEGIN
j7002;
j 0000.5
j-7002;
END

LOCP

j 0301;

j 0030.7
j 0-300.3;
j 00-30.7
RET

mkworm -n9;

cat ~ug/lib/illum worm | ugplot -ep -50 10 -100 -sa -dv -sy 3

FILES
ax, worm,
~ug /bin/mkworm
~ug /src/PASCAL/mkworm.p
SEE ALSO
ugworm (UG), sweep (UG), ugplot (UG)

BUGS
Cannot handle branches. May yield non-planar faces when there is twist or
radius changes. Very acute angles will create rather large protrusions. If the
specified axis doubles up on itself, the prismatic edges can really get mixed up.

AUTHOR
C.H. Séquin

Release 1984 1983-12-7 2

Examples generated with mkworm

UG4T03(UG) UNIGRAFIX User’s Manual UG4TO3(UG)

NAME
ug4to3 — project a 4-dimensional object to 3 space.
SYNOPSIS
© ug4to3[epxyzw] [-edxyzw] [D] < 4D-object > 3D-object
DESCRIPTION

Ug4to3 applies to each vertex the transformation specified by the -ep or -ed
options. The default transformation is a parallel projection along the w-axis, i.e.,
simply a removal of the w-component. In any case, the input vertex statments
must have four components, and the output vertices have three. All other lines
are passed unaltered to the output. Available options:
—ep <xXyzw>

Sets the eyepoint at the specified location in 4D-space.

—ed <xyzw>
Sets the eyepoint at infinity in the specified direction in 4D-space.

D Turns on debug mode and prints the transformation matrix to standard
output.

EXAMPLE
cat ~ug/lib/Hcube | ug4to3 -ep 1.7 0 0 0 | ugshow -dv -se -ed -3 2 -7 -sy 2.5

FILES
~ug /bin/ug4to3
~ug /src/PASCAL/ug4to3.p

SEE ALSO
ughole (UG), ugxform (UG), ugexpand (UG), ugplot (UG)

BUGS
Yet to be reported.

AUTHOR
Mark Liebman

Release 1984 1983-12-7 1

Tutorial Exampies for Ug4tod

/
7
™ !
—— /
.
\e
~= o ———
AN
{near cell-cell coincidence] fnear face-face coincidence]
cat ~lib/D4cube | cat ~lib/D4cube |
ug4to3d -ed 5.3 0.4 0.6 0.7 | ug4tod -ed 5.3 5.4 0.6 0.7 ! .
ugplot -ed -2 1 -12 ugplot -ed -2 1 -12
N — /

{near edge-edge coincidence] {near vertex-vertex coincidence]
cat ~lib/D4cube | cat ~lib/D4cube |
ug4to3 -ed 5.3 5.4 0.6 5.7 | ug4tod -ed 5.3 5.4 5.8 5.7 |

ugplot -ed -2 1 -12 ugplot -ed -2 1 -12

UGDUAL(UG) UNIGRAFIX User’s Manual UGDUAL{UG)

NAME
ugdual — create dual of a polyhedron described in UNIGRAFIX format

SYNOPSIS
 ugdual [options ??] < oldobject > newobject
DESCRIPTION
Ugdual forms, on the standard output, the UNIGRAFX description of the
polyhedron dual to the one read in. It uses a very simple parser for the input

which understands only vertex and face commands and ignores all others. In
face commands it only reads the first contour group.

EXAMPLE
cat ~ug/lib/illum ~ug/lib/icosa | ugdual | ugplot -ed -2 1 -5 -sa -dv -sy 3

FILES
~ug /bin/ugdual
~ug/src/PASCAL/dual.p ~ug/src/PASCAL/readug.i
SEE ALSO
ugtrunc (UG), ugstar (UG), ugplot (UG)
BUGS
If the original object is not a well-behaved, fairly regular solid, you may get
really weird results.

AUTHOR
C.H. Séquin

Release 1984 1983-12-7 1

UGFREQ(UG) UNIGRAFX User’'s Manual UGFREQ(UG)

NAME
ugfreq — divide triangular faces into a number of triangles at a given frequency

SYNOPSIS
ugfreq[—ffreq] < oldobject > newobject

DESCRIPTION
Ugfreq reads a flat UNIGRAFIX description from standard input, divides each tri-
angular face into a number of triangles, and sends the resulting description to
standard output. The default is a tessalation into 2 rows, Le. four triangles.

—f{<number> Default: { = 2.
Specifies the number of rows of triangles to be created in each original
triangle.
EXAMPLE
cat ~ug/lib/illum ~ug/lib/tetra | ugfreq -f3 | ugplot -ep 4 1 5 -sa -dv -sy 3

FILES

~ug,/bin/ugfreq

~ug/src/PASCAL/freq.p ~ug/src/PASCAL/parse.h
SEE ALSO

ughole (UG), ugtrunc (UG), ugplot (UG)
BUGS

Works only for hierarchically flat descriptions.

AUTHOR
Jeff Mock

Reiease 1984 1983-12-8 i

UGHOLE (UG) UNIGRAFIX User’'s Manual UGHOLE(UG)

NAME
ughole — cuts holes in polygonal faces
SYNOPSIS
- ughole [—rratio][=N][=5] < oldobject > newobject
DESCRIPTION

Ughole reads a flat UNIGRAFIX description from standard input, cuts holes into
each face and turns each face into a thin, two-sided frame, and then outputs the
result to standard output. The shape of the holes is similar to the shape of the
original face but scaled down around the "center” of each face. The center is
the mean of all corner vertices of the face.

—<rim-ratic> Default:r = 0.2.
Defines the size of the resulting hole by specifying the width of the
remaining rim as a ratio of the distance from the center of the face to

the vertices.

- Causes each original edge of the face to be converted into a separate,
convex polygon; the polygons together then make up the new face with a
hole in the middle. The default is to generate a single face with an extra
contour for the hole.

-N No backfaces. Eliminates the default creation of the faces with opposite
orientation.

EXAMPLE
cat ~ug/lib/illum ~ug/lib/icosa | ughole | ugplot -ep 4 1 5 -sa -dv -sy 3

FILES
~ug /bin/ughole
~ug/src/PASCAL/hole.p ~ug/src/PASCAL/parse.h

SEE ALSO
ugshrink (UG), ugstick (UG), ugplot (UG)

BUGS
Faces with concave corners can cause problems, as the hole may intersect with
the outer contour.

AUTHOR
Jeff Mock

Release 1984 1983-12-6 ’ 1

UGISECT(UG) UNIGRAFTX User’s Manual UGISECT(UG)

NAME

ugisect — convert intersecting faces and wires into non-intersecting objects
SYNOPSIS

ugisect [options ??] < inputfile > outputfile
DESCRIPTION

Ugisect reads a UNIGRAFIX file and cuts up any intersecting faces and wires to pro-
duce a scene description with no intersecting elements. Each existing intersect-
ing element is partitioned into several pieces. The default is to keep all these
pieces together in a single statement with muiltiple contour groups.

Instances of definitions that are intersecting are expanded to the next lower
hierarchical level, where all components are again checked for intersection.

EXAMPLE
cat ~ug/lib/illum two_cubes | ugisect | ugplot -ed -2 1 -5 -sa -dv -sy 3

FILES
~ug/bin/ugisect
~ug/src/UGISECT/*
SEE ALSO
ugexpand (UG), ugxform (UG), ugshow (UG), ugplot (UG)
DIAGNOSTICS
Upon termination ugisect will print out some statistics concerning the number
of intersecting elements.

BUGS
So far, works only for flat UNIGRAFIX flles.

AUTHCR
Mark Segal

Release 1984 1583-12-12 1

UGSHRINK(UG) UNIGRAFIX User’s Manual UGSKERINK(UG)

NAME
ugshrink — shrinks all faces of a polyhedron

SYNOPSIS
ugshrink [£ 0.x] [-H] [-B] < oldobject > newobject

DESCRIPTION
Ugshrink reads a flat UNIGRAFIX description and forms, on the standard output,
the UNIGRAFIX description of a polyhedron in which all faces have been separated
and individually shrunk by the factor f.

~f <real>
This option specifies the amount by which each face is scaled down in the
range O to 1. Default is 0.999 which provides an invisible shrinkage, but is
sufficient to circumvent certain problems with coinciding vertices that
arise in UNIGRAFIX 2.

—H This option produces a frame with a hole rather than a shrunk face. Itis
’ similar to ughole. It can be applied multiple time to the same object and
will then lead to concentric rings if the scale factors are suitably chosen.

-B This option also generates the backface to each face.

EXAMPLE
cat ~ug/lib/illum ~ug/lib/cube | ugshrink -f 0.9 | ugshrink -H -B -f 0.6 | ugplot
-ed -2 1 -5 -sa -dv -sy 3

FILES

~ug /bin/ugshrink

~ug/src/PASCAL/shrink.p ~ug/src/PASCAL/readug.i
SEE ALSO

ughole (UG), ugtrunc (UG), ugplot (UG)

BUGS
Yet to be reported.

AUTHOR
C.H. Séquin

Release 1984 1983-12-7 1

Tutorial Exampies for ugshrink

cat illum ../lib/dodeca | ugshrink -f0.9 | ugshrink -f0.4 -H | ugshrink -f0.7 -H |
ugshrink -f0.85 -H -B | ugshow -ep -4 2 -10 -sa -dv -8y 4 -mi -4 2 -10 10 12

cat illum ../lib/octa | ugfreq -£3 | ugshrink -f 0.9 | ugshrink -f 0.7 -H -B | ugshow
-p 42 -10 -sa -dv -3y 4

UGSPHERE {UG) UNIGRAFIX User's Manual UGSPHERE (UG)

NAME
ugsphere — project a polyhedron onto a sphere

SYNOPSIS
ugsphere [—rradius] [—xzcenter][—yycenter][—zzcenter] < oldobject >
newobject

DESCRIPTION

Ugsphere reads a flat UNIGRAFIX description from standard input, projects the
vertices onto a sphere of a given radius around a specified center point, and
sends the aitered image to standard output. The parameters are specified as
follows:

—r<rodius> Default: r = 1.0.
Defines the radius of the sphere.

—x<zcenter>
—y<ycenter> Default: (x,y, z) = (0, 0, 0).
—z<zcenter>

Defines the center coordinates of the sphere.
EXAMPLE

cat ~ug/lib/illum ~ug/lib/octa | ugfreq -f2 | ugsphere | ugplot -ep 4 1 5 -sa -dv
-sy 3

FILES

~ug /bin/ugsphere
~ug /src/PASCAL/sphere.p ~ug/src/PASCAL/parse.h

SEE ALSO

ugdual (UG), ugtrunc (UG), ugplot (UG)
BUGS

The generated faces might not be planar.

AUTHOR
Jeff Mock

Release 1984 1983-12-6 1

UGSTAR(1) UNIGRAFIX User's Manual UGSTAR(1)

NAME
ugstar — construct pyramids on all faces of a polyhedron

SYNOPSIS
ugstar —h height [-N] [=C] [D] [—f filename] < cldobject > newobject

DESCRIPTION

Ugstar takes the UNIGRAFX description of polyhedron and creates a pyramid on
each face of the object. The tip of the pyramid lies on the face-normal through
the face-center, where the face-center is defined by the mean of all vertices of
the face, and the face-normal is computed from the vectors formed by the first
three vertices of the face. The height of the pryamid is determined by the —h
argument. If the height given is negative, or if the first three vertices of the face
form a concave corner, then the direction of the pryamid is info the body.

-N This causes the height of the pyramids to be normalized by the average
length of the line segments on the perimeter of the face. If all sides of
the face are of unit length, the height of the pyramid will be equal to the
value specified in the —~h argument.

- This causes ugstar to use the centers of the contour line segments of
each face as the base points for the pyramid.

-D Debugging mode which will cause verbose output to stderr.

—~£ <fllename>
This option will redirect the output into the specified file.

EXAMPLE
cat ~ug/lib/illum ~ug/lib/octa | ugstar -h 2.5 | ugplot -ed -2 1 -5 -sa -dv -sy 3

FILES
~ug /bin/ugstar
~ug,/src/UGSTAR/*
SEE ALSO :
ugdual (UG), ugtrunc (UG), mkworm (UG), ugplot (UG)
BUGS
For irregular faces with concave corners, the deflnition of what constitutes the
"center” of the face is somewhat arbitrary.

AUTHOR
Edward Hunter

Release 1984 1983-12-7 1

Tutorial Examples for Ugstar

Example 1. Example 2.
cat cube illum | cat cube illum |
ugstar -h 2 | ugstar -h 2 -C
ugshow -sa -ep -5 3 -15 ugshow -sa -ep -5 3 -15

Example 3. Example 4.
cat cube illum | cat icosa illum |
ugstar -h -.75 -C | ugstar -h -.5 -C | ugstar -h .25 -N !

ugshow -sa -ep -5 3 -15 ugshow -sa -ep -5 3 -15

UGSTICK(UG) UNIGRAFIX User's Manual UGSTICK(UG)

NAME
ugstick — produces a stick model of the input polyhedron

SYNOPSIS
ugstick [—rratio] [—tthickness] < oldobject > newobject

DESCRIPTION
Ugstick reads a flat UNIGRAFIX description from standard input, cuts holes into
each face and turns each created segment into a three-dimensional member by
projecting the remaining rim of the face towards the origin.

—r<rim-ratio> Default:r=0.2.
Defines the size of the resulting hole by specifying the width of the
remaining 7im as a ratio of the distance from the center of the face to

the vertices.

~t<thicknass> Default:t = 0.2,
Specifies the thickness of the members as a fraction of the distance of
the vertices from the origin.

EXANPLE '
cat ~ug/lib/illum ~ug/lib/icosa | ugstick | ugplot -ep 4 1 5 -sa -dv -sy 3

FILES
~ug /bin/ugstick
~ug/src/PASCAL/stickp ~ug/src/PASCAL/parse.h
SEE ALSO
ughole (UG), ugtrunc (UG), ugplot (UG)
BUGS
This program works well only for objects centered about the origin.

AUTHOR
Jefl Mock

o

Release 1584 1983-12-8

UGSWEEP (UG) UNIGRAFIX User’s Manual UGSWEEP(UG)

NAME

Ugsweep - a sweep generator for UNIGRAFIX
SYNOPSIS

ugsweep [[-n number | transformations] [options] < input > ouput
DESCRIPTION

Ugsweep takes faces and wires in a flat UNIGRAFIX format and produces a UNIGRAFKX
description of the bodies (for faces) and faces (for wires) that result from sweep-
ing those faces and wires through space. The sweeping is done according to the
specified transformations. It treats one face or wire at a time to produce its
swept envelope. Transformations are specified as follows:
—n <number of repetitions> Default:n = 1.
Repeat the subsequent set of transformations up to the next —n flag the
specified number of times. Note that when a new transformation starts
the coordinate system that aplies for the new transformation is the last
coordinate system transformed by the previous transformation.
-|x, —3y, —sz, —8a <faclor>
Scaling of the corresponding coordinate components.
—tx, —ty. tz <amount>
Traslation along corresponding coordinate axis.

—TIx,—ry.—T2z <angle>
Rotation around corresponding axis

M3 <3zx3 Matriz>
Takes up to 9 numbers as a transformation matrix

¥ Omit the initial face. Does not affect wires.
L Do not built closing face. Does not affect wires.

-T Swept surfaces are to be tessellated with triangles rather then with possi-
bly non-planar quadrilaterals.

—B Produce both sides of all faces. Always true for wires.

—fc <filename>
Use filename for command-line arguments.

—fi <filename>
Use filename as input. Default is standard input.

—fo <filename>
Use filename as output. Default is standard output.

Release 1984 1983-12-7 1

UGSWEEP (UG) UNIGRAFTX User’'s Manual UGSWEEP{ UG)

EXANPLES
ugsweep -flsquare -n2-tx-2-ry45-tx2 -n3-tz1 -n1-tz6 -sa 0.3 > left
cat sun left | ugshow -ed 0 1-1-sa -dv-sx 3

BavaRen
$$ -" SR f’

%
N

N\ }':g‘-

+
'
2

ugsweep -l wireW¥ -D -n 14 -rx 20 > right
cat sun right | ugshow -sa-ed -1 0-4 -dv-sx3

FILES

~ug/bin/ugsweep
~ug/sre/UGSWEEP/*

SEE ALSO .
ugstick (UG), ugrot (UG), ugplot (UG).

BUGS
Will be found soon.

AUTHOR
Ziv Gigus

Release 1584 1983-12-7 2

UGTRUNC (UG) UNIGRAFIX User's Manual UGTRUNC (UG)

NAME

ugtrunc — truncate a polyhedron
SYNOPSIS

ugtrunc [-t 0.x] [-T] [—C] < oldobject > newobject
DESCRIPTION

Ugtrunc reads a flat UNIGRAFX description and forms, on the standard output, the
UNIGRAFIX description of a polyhedron that results by truncating the one read in.

Without the -t option, a new vertex is formed in the middle of every edge, and
these new vertices are linked in a circular manner around every old vertex to
form the new faces. It may result in nonplanar faces.

— <real> Default: t =0.999

This option guarantees planar truncation faces. The numeric value follow-
ing the -t specifies the amount of truncation in the range O to 1, where the
value 1 corresponds to the middle of each emerging edge, and for smaller
values the truncation is proportionally reduced. First, an approximate
plane is placed through all the vertices determined in this manner on the
edges emerging from a particular vertex; then the truncation plane is
moved through the new vertex that minimizes the distance of the plane
from the old vertex (to guarantee that the truncation on every edge is
less than 1). Vertices with emerging edges that occupy more than a half-
space (saddle points) will not get truncated.

-T This option returns the truncated tips instead of the remaining body.
- This option adds the special truncation color CT to each truncation face.

EXAMPLES
cat ~ug/lib/illum ~ug/lib/cube | ugtrunc -t0.7 -C | ugplot -ed -2 1 -5 -sa -dv -sy 3
cat ~ug/lib/illum ~ug/lib/cube | ugtrunc -t0.7 -T | ugplot -ed -2 1 -5 -sa -dv -sy 3

FILES

~ug /bin/ugtrunc

~ug /src/PASCAL/trunc.p, ~ug/src/PASCAL/readug.i
SEE ALSO

ugdual (UG), ugshrink (UG). ugplot (UG)
BUGS '

Yet to be reported.

AUTHOR
C.H. Séquin

Release 1984 1983-12-7 1

Tutorial Exampies for ugtrunc

cat illum ../lib/tetra | ugtrunc -t0.999 -T | ugtrunc -t0.998 -T | ugtrunc -t0.996 -T
| ugshow -sa -dv -ep -2 0.5 -5 -sy 4 -mi -20 5 -50 55 58

cat illum ../lib/cube | ugstar -h 4 | ugtrunc -t 0.99 | ugtrunc -C -t0.5 | ugshow -sa
-ed-21-5-dv-sy 4

UGWIRE (UG) UNIGRAFIX User's Manual UGWIRE (UG)

NAME
ugwire — create the wire-frame of a polyhedron

SYNOPSIS
ugwire [—t 0.x] < oldobject > newobject

DESCRIPTION
Ugwire forms, on the standard output, the UNIGRAFX description of the wire-
frame of the polyhedron read in. The wires sections are disassembled at the
corners and can be shortened by a specified amount. They can be used as ax-
input to the mkworm program. It understands only flat UNIGRAFIX descriptions.
It deals with vertex and face commands, passes through color definition and
light sources and ignores all other commands.

—A This option will output the wires as ax-segments and joints suitable for the
mkworm program. This can be used to create a stick-approximations of a
polyhedron, but with un-mitred corners.

—t <real> Default:t =0.5.

This option specifies the amount of truncation applied to each wire seg-
ment. It pulls the wires apart, so that mkworm will not produce inter-
secting faces, when run with a small enough radius. Default is 0.5, which
means that every wire gets shortened at both ends by 0.5 unit lengths.

EXAMPLE

cat ~ug/lib/cube | ugwire -A -t0.1

mkworm -r0.1 -n4; cat ~ug/lib/illum worm | ugplot -ed -2 1 -5 -sa -dv -sy 3
FILES

—
QE>
~ug /bin/ugwire

~ug /src/PASCAL/wire.p ~ug/src/PASCAL/readug.i

SEE ALSO
mkworm (UG), ugtrune (UG), ugplot (UG)

BUGS
Yet to be reported.

AUTHOR
C.H. Séquin

WS e

Release 1984 1983-12-7 1

Tutorial Exampies for ugwire

cat D4cube | ug4to3 -ed 2222 |ugwire -t 0.15-A: mkworm -0 6 -r 0.1
cat illum worm | ugshow -ed -5 2 -10 -dv -sa -sy 4

cat cube |ugwire -t 0.4 -A; mkworm -n 4 -r 0.3
cat worm | ugwire -t 0.075 -A; mkworm -n 4 -r 0.08
cat illum worm | ugshow -ed -52 -10 -dv-sa -sy 4

3. ARTWORK

Using a combination of the new programs, some crafty hand-editing of the
UNIGRAFIX description at some stage of the transformation process, as well as
clever arrangement of objects generated with different runs, the students
managed to create artistic displays — some of which are reproduced here. In
each case a short explanatory paragraph gives some information about the con-

cept and the necessary steps that were used to produce the artwork.

Somewhat more elaborate versions, often ranging in size up to three feet,
were exhibited at an UNIGRAFX Art-show in the CS Lounge on December 16, 1983.
(see poster below). We hope that the presentation of these examples inspires

the reader to make creative use of UNIGRAFIX.

UNIGRAFIX
ART-SHOW & RECEPTION

You are invited to come to the CS Lounge, 597 Evans,
on Friday afternoon of Finals Week (Dec. 16, 1983).

The 2924 Class, “Creative Geometric Modeling”,

will present its results ranging from computer-grown trees
through geodesic domes to the skeleton of a Klein-bottle.
You will also find out what happens to all the cardboard
tubes that carry the paper for the versatec printer.

The "Art Gallery” will be open from 1pm to 4pm.

Design by Pauline Ts'o

CHS xs//z/s

" SKELETON OF A KLEIN-BOTTLE
Cario H. Sequin

Computer Science Division
Electrical Engineering and Computer Sciences
University of Califcrnia, Berkeley, CA 94720

A Klein-bottle is an object with a single surface — no inside and
outside — and without a rim. This particular Klein-bottle was
defined by specifying the joint coordinates of the axis of the main
tube and the radius of the tube at each joint. These ax-
specifications were then fed to the program mikworm that formed
the main body. The specifications were changed by trial and error
until a pleasing shape resulted.

A special filter was then used to remove the intersections of
the faces where the thinner part of the tube penetrates the side-
wall of the thicker tube to create a consistent UNIGRAFIX descrip-
tion. Finally the whole structure was sent through ugshrink —H to
cut holes into each surface facet so that one can gain some insight
into the non-existing inside. The —mu -option of ugshow darkens
the more distant wall. .

" SKELETON OF A KLEIN-BOTTLE "

Carlo H. Segquin

" icosaedre arabique "

Carlo H. Seéquin

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

It may be far from obvious, but this ball of worms was created
conceptually by wrapping the carved pattern from the window
pane of an arabic mosque around an icosahedron.

To realize this concept, the ax of a worm in the shape of a
clover-leaf knot was first defined. Two such worms were then inter-
locked with two pairs of their loops and with the proper angle
between their respective planes to match the dihedral angle of the
icosahedron. The waviness and the diameter of the worms were
then carefully balanced_ so that the worms do not intersect.

With the individual clover-leaf thus defined, twenty instances
were called with the proper angle of rotation around the center of
the icosahedron to form a symmetrical object with twenty inter-
locking clover-leafs. The —mi -option was used in ugshow to reduce
the contrast on the branches on the other side of this icosagdre
arabigue.

" jcosatdre arabique "

Carlo H. Séquin

* NESTED OCTAHEDRONS "
Ziv Gigus

Computer Science Division

Electrical Engineering and Computer Sciences
University of California, Berkeley, CA. 94704.

The basis for the figure shown is the simpie octahedron. Using
ugsweep the faces of the octahydron were swept towards its center so
that each face becomes part of a triangular prism consisted of three
joints. Next holes were created in each of the faces using ugshrink
and back faces were added to get the result presented here.

* NESTED OCTAHEDRONS

Ziv Gigus

» STAR PATTERNS OF AN DODECAHEDRON ”

Edward Hunter

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

The figure shown was formed by taking 3 dodecahedron and growing points
on the faces using ugstar. Next dimples were put on the sides of the points such
that the depth of the dimples is proportional to the perimeters of the faces on
which they reside.

Muitiple light sources were used in order to give some faces highlights while
allowing others to be shaded.

" STAR PATTERNS OF AN DODECAHEDRON "~

Edward Hunter

" ICOSAHEDRON STARFISH "

Edward Hunter

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

The figure shown was formed by taking an icosahedron and dimpling the
faces using ugstar. Next peaks were grown on the sides of the dimples such that
the height of the peaks is proportional to the perimeters of the faces.

The lighting was adjusted to give all of the faces a slightly shaded look.

” ICOSAHEDRON STARFISH "

Edward Hunter

and now & i

Y28 d -r‘wrh

/

BIBLIOGRAPHY

This is the beginning of a rather informal and incomplete collection of book

titles which] found to be all very interesting and helpful in my research in the
area of creative geometric modeling. Contributions of additional titles and
suggestions for improving the synoptic description of these works are wel-
come. s

References

1

10.

M.J. Wenninger, Polyhedron Models, Cambridge University Press, Cam-
bridge, England, 1971. Evans Hall Library: QA491 W391 - Contains 119 pho-
tos of paper models of all the Platonic and Archimedean Solids and of many
of their stellations. Contains explicit instructions and nets for building the
models.

M.J. Wenninger, Sperical Models, Cambridge University Press, Cambridge,
England, 1979. Evans Hall Library: QA 491 W43 — Contains 47 photos of
paper models of all the sperical frame projections of the Platonic and
Archimedean Solids and of many of their stellations. Contains explicit
instructions and nets for building the models.

H.S.M. Coxeter, Regwlar Polytopes, MacMillan Co., New York, 2nd edition,
1863. Evans Hall Library: QA691 C88 — Detailed discussion of regular and
semiregular polyhedrons in all dimensions.

H.S\M. Coxeter, Regular Complexr Polytopes, Cambridge University Press,
Cambridge, Great Britain, 1974. Evans Hall Library: QA691 C861 — Profound
geometric, algebraic, and group theoretic treatment of regular solids and
lattices in all dimensions.

L. Fejes Tbth, Regulire Figuren, Ungarische Akademie der Wissenschaften,
Budapest, 1965. Evans Hall Library: QA801 F3815 — Good construction for
the 4D regular polytopes. Interesting 3D stereograms of 3D semiregular
solids.

A. Pugh, Polyhedra, A Visual Approach, University of California Press, Berke-
ley, CA, 1976. Evans Hall Library: QA491 P831 — A concise, simple and very
attractive introduction to the regular and semi-regular solids and their
relationships.

D.W. Brisson, Hypergraphics, AAAS Selected Symposia Series, Westview
Press, Boulder, Colo., 1978. Doe Library: QA491 H97 — Visualization of the
commplex relationships in art, science and technology.

R. VWilliams, The Geometrical Foundation of Natural Structure, Dover Publi-
cations, Inc., New York, N.Y., 1979. Found at Cody’'s. — This work is subti-
tled: "A source book of design”. It indeed contains a rich set of ideas about
the interrelationships of the various Platonic and Archimedean solids and
transformations leading from one to the other. Particularly strong in the
issues of subdivision of 3-D space with these solids.

AL Loeb, Space Structures, Addison-Wesley Co., Reading, Mass., 1976.
Evans Hall Library: QA491 1831 — Nice coverage of 2-D tesselations and
space-filling polyhedra. Intuitive treatment of vertex and edge truncations.
B.M. Stewart, Adventure Among the TOROIDS, B.M. Stewart, Okemos, Mich.,
1970. Evans Hall Library: QA491 S75 — A mind-boggling book, full of crazy
constructions of toroidal solids bounded by equilateral polygons.

