Effects of Underflow on Solving Linear Systems

James Demmel!

Computer Science Division
Electronic Research Laboratory
U.C. Berkeley
May 1981

ABSTRACT

In this paper we examine the effects of underflow on solving systems of
linear equations using Gaussian Elimination. Our goal is to decide if reliable
software for solving linear systems in the presence of underflow can be written at
reasonable cost. We contrast the utilities of gradual underflow and "store zero”,
and show that only by using gradual underfliow can we achieve reliability easily.

1. Introduction

In this paper we examine the effects of underflow on solving systems of linear equations using
Gaussian elimination. In particular, we contrast the effects of gradual underflow [Coonen,1981]|
and "store zero” on the accuracy and stability of the algorithm.

Our ultimate goal is to decide whether reliable software for solving linear systems in the presence
of underflow can be written at a reasonable cost, where by reliable we mean a piece of software
that ideally

1. produces accurate results whenever they can be represented,

2. gives a warning whenever the computed results are inaccurate, and

3. avoids giving warnings when it is possible to compute accurate results.

Our motivation for this study is twofold. First, that underflow is a problem at all in linear equa-
tion solvers is not generally recognized. For example, the LINPACK Users’ Guide [Dongarra et
al.,1979| states in its introduction that "Any underflows which occur are harmless.” This state-
ment is almost always true, since underfiow’s status as an end effect means it may be safely
ignored in most situations, but it is not always true. The advantage of gradual underflow over
store zero is that it allows a cleaner line to be drawn between problems where underflow can be
ignored and those where it cannot, and thus helps the writer of reliable software who wants to be
able to guarantee when his program will work. Our first motivation, then, is to make people
aware that underflow can give reasonable looking but totally inaccurate results if it is handled
poorly or ignored.

Second, we wish to attenuate the controversy surrounding the recent decision on how to handle
underiow by the IEEE Microprocessor Standards Committee. The decision to use gradual
underflow instead of the usual store zero approach came after much argument about the advan-
tages of one over the other in making reliable numerical software easier to write. [Coonen,1981}.
In this paper we show that the advantage is significant.

1. The author gratefully acknowledges the support of the U. S. Department of Energy, Contract DE-AMOS-
76SF00034, Project Agreement DE-AS03-79ER 10358, and the Office of Naval Research Contract N00014-76-C-

0013.

-2.

Specifically, the algorithm to solve Az==) is as follows:

(1) Decompose A=LU = (lower tziangular){upper triangular) using pivoting, so that the
diagonal of L contains all 1's and all other entries of L are <1 in absolute value.

(2) Solve Ly==b for y (forward substitution).
(3) Solve Uz=y for z (back substitution).

The only gradual underflows that can poesibly contribute significantly to the error are underflows
in the final solution vector z. Intermediate gradual underflows contribute an error with a bound
scarcely worse than the bound for the error contributed by roundoff alone. Thus, by using gra-
dual underflow we are able to satisfy the first goal of reliable software since an alarm need not be
raised unless the results themselves underflow and are not representable (in which case the data
would have to be scaled to avoid underflow).

In contrast, storing zero in place of intermediate underflows during any stage of solution using
store zero can contribute significantly to the error, possibly producing reasonable looking results
whose error greatly exceeds the uncertainty attributable to roundofl alone (see the Examples).

We may also satisfy the second and third goals of reliable software more easily with gradual
underflow than with store zero. It is easy to tell which small class of possible gradual underflows
(they are the underflows in the answer itself) can contribute significant errors and require a warn-
ing; with store zero, on the other hand, we must either do tedious testing to tell which underflows
require a warning, or naively raise an alarm whenever an underflow occurs. This naive approach
produces "paranoid” code and many false alarms.

It is important to understand how the unavoidable uncertainty due to roundoff can aflect our abil-
ity to produce accurate results. Guaranteeing results to within a certain accuracy is not possible
for a price most people are willing to pay. We can only guarantee that our computed answer is
the solution of a new unknown problem perturbed slightly from our original problem. This is the
nature of Gaussian elimination, and confirmed by backwards error analysis, the approach used in
this paper; we want to bound that perturbation, to bound how different the new problem is from
the old. If the problem is ill-conditioned, then the solution of the new problem may be very
different from the solution of the original problem, and there is no way, at reasonable cost, to tell.
Thus, our original goal of producing accurate results should be modified to read: "satisfly the
equations as closely as possible; achieve a tiny residual.” This is an achievable goal.

In the remainder of this paper we will present examples to demonstrate the typical effects of
underflow, describe the model of arithmetic used and the approach used in the error analysis, and
present the conclusions drawn from the error analysis. Appendices contain program listings and an
analysis of Cholesky decomposition for solving positive definite linear systems.

3. Examples

We assume the reader is acquainted with arithmetic using gradual underflow (henceforth G.U)
and store zero (henceforth S.Z.) ([Coonen,1981],[Kahan and Palmer,1979),[Coonen et al.,1979]).
Let ¢ be the rounding error of the arithmetic, and \ be the underfliow threshold. Suppose, for
example, a binary floating point number is represented as f - 2° where f lies between 1 and 2
with an n bit fraction, and ¢ is an integer exponent in the range emia < ¢ < emax. Then
¢ == 2* (the diflerence between 1 and the mext largest number). The underflow threshold is
A m= 2"“; this is the smallest positive number in S.Z. arithmetic, and the smallest normalized
number for G.U. Whenever 3 nonzero pumber smaller than o' iy generated by arithmetic,
underflow is signaled and something special happens; S.Z. replaces the number by zero, and G.U.
by a nearest “denormalized” number or zero. Denormalized numbers lie between O and 2'== in
G.U. arithmetic for which the smallest nonzero number is thus g == eA. We will give a more pre-
cise model of rounding and underflow errors in the next section.

In this section we present three examples of the effects of underflow on performing the decomposi-
tion A==LU. The first example shows how store zero can produce a reasonable looking but com-
pletely inaccurate decomposition of a well conditioned matrix, whereas gradual underflow either

-3-

produces the correct decomposition or correctly decides the matrix is singular. (There are no
rounding errors or pivot growth in this example.) The second example shows that G.U. produces
the correct decomposition of a matrix which S.Z. incorrectly decides is singular. Finally, we
present an innocuous looking ordinary differential equation and show that the linear system aris-
ing from trying to solve it numerically leads to underfliow which is handled correctly by G.U. and
not by S.Z.

2.1. Example 1
Consider the family of matrices A(z) where

2 1
2 1
Az) =X 2 1}, (1)
21
1111z
(blanks denote zero entries). The LU decomposition obtained by G.U. is
i 1 B 1]
1 2 1
LSY(z)USY(z) = 1 DY 2 1 | = A(z), (2)
1 21
55551 | 4]
and by S.Z. is
1 1 B 1]
1 2 1
LSE(2)US% (z) = 1 “h 2 1| = A(z)+ E, (3)
1 21
55551 | z
where the error matrix E equals
E =)\ . (4)
- 4!

We see using S.Z. results in a large error in the U(z)ss entry, whereas using G.U. gives the correct
decomposition. If z=4, we see that by using S.Z. we decide the matrix is far from singular, when
in fact it is exactly singular. Note that the matrix A(z) is well conditioned when x is far from 4,
and if z is a small integer, no rounding errors occur in either decomposition.

3.2. Example 2
Let

2 3
A=x-[l 2], (5)

a well conditioned matrix. Using G.U. we obtain

LGV . U6V = [15 l] .x.[z :.35]344 , (6)

and by using S.Z. we obtain

-4-

1 3
LS . USE = [5 1]')"[2 0], (7)

Thus, using G.U. we correctly decompose the matrix A, whereas using S.Z. we incorrectly decide
the matrix is singular.

2.3. Example 3
Consider the ordinary differential equation

s0)= I o), w(r) = @®)

T-
We tryNto solve this equation numerically by representing z(t) as the truncated power series

z(t)= Y z.t", the function 1/(T-t) by its truncated power series, and equating coefficients of

sl
equal powers of ¢ on both sides of equation (8). After we scale the last row (which represents the
initial condition) down to have largest entry equal to 1, we get the linear system Az="}, where

N -1/T -1/T* -1/T%]
N-1 -1JT -1/TN?
N2 -1/ TN?
A= ’ (9)
. 1 .-1/1'
L YT, Y12 ...y yry

bT=(0,--- ,0,¢/TY), and 2T = (zy, " * * ,20)

We chose M=15, N=14, T=512., T,=500., and ¢=100. for this example. We used an imple-
mentation of the IEEE Floating Point Standard [J. Coonen et al,,1979] on a VAXIL. ¢ was 27 3
and p was 2719, There was a switch on the compiler to enable/disable G.U., so we were able to
obtain numerical results using both G.U. and S.Z. This example was chosen to be simple but
realistic; even though it can easily be solved analytically, it could be changed easily into a two
dimensional problem without an explicit solution, but with the same sensitivity to underflow.

L and U have a simple structure. L will be zero below the diagonal, except for the last row,
which is graded from L5, == 7.14285,, -2 down to Lys14 == 534726y -35. U is identical to A in
all but its last row. A’s columns are badly scaled, although this is not obvious because no row nor
column is drastically smaller in norm than any other; nonetheless, bad scaling causes A to appear
very ill conditioned, and this ill conditioning shows up in the last row of U, making Uisas very
small, in fact barely above the underflow threshold. S.Z. and G.U. compute all elements of L and
U identically except for Uss5. If we scale up the last column of U to avoid all underflows, we
compute Ujg,5 = 2.09261¢-37. We get the identical value using G.U., but using S.Z. we compute
Uf;fm 2~ 1.72763¢-37, a relative difference of .174. This relative difference in the last entry of U
is very important, because one divides by Ujsas in the course of solution. The relative difference
in solution vectors z is

” 360 - 35‘ ” [

Nzl w

Thus, G.U. obtains markedly better results than S.Z. This example is very interesting because
there is nothing obviously wrong about the matrix. All its entries are normalized, and every row
and every column contains reasonably large values, yet 11 out of 14 products L1s,;*U, 15 in the
sum for U5 underflow just slightly below the underflow threshold. Since the true value of Uyg 5
is itself not much larger than the underflow threshold, this makes for a large relative error.

~ .21 .

3. Error Analysis

3.1. Assumptions

In this section we define our notation and our model of arithmetic. ¢ will denote the level of
roundoff error and p the smallest nonzero number when using G.U. Then) = p/e¢ will be the
underflow threshold and smallest normalized number. Using S.Z. the only number smaller than X
in magnitude is zero; using G.U. the numbers between A and zero in magnitude are called denor-
malized numbers. Zero and all numbers no smaller than)\ in magnitude are normalized in both
G.U. and S.Z.

Let be one of the operations (+,~*,/) and let i{a b) denote the foating point result of the
indicated computation. Traditionally, error analyses have used the formula

fi(a b)={(a b)1+ ¢) unless a b underflows or overflows. (10)
To take underflow into account, we write ([Kahan and Palmer, 1979})
fi{a b)={Aa B)1+ e)+ n unless ¢ b overflows. (11)

In the case of G.U. we have the following constraints on ¢ and 7
(1) Jel L €and [n] < X
(2) nxe=0,
(3) n=0if is either addition or subtraction.
In the case of S.Z. we have the following somewhat different constraints on ¢ and 7
(1) Jel S eand [g] <) 2nd
(2) nXe=0.
Note that n need not be 0 when performing an addition or subtraction using S.Z.
We define the function UN(z) to be

{l if z underflows (z <))
UN(z) =g it it does not

We assume no overflow occurs.

We ignore terms which are O(€?) or O(ep). This allows us to make the following substitutions
when convenient:

Replace 1/(1+¢;) by 1+ ¢35
Replace (1+¢,) by 1+ je,

Replace ﬁ(1+ e,)/fl(l+ ¢!';) by 1+(n+m)e

jat
Replace n,#(1+ ¢;) by 7, .

By replacing every appearance of an original datum a by 1. - a, and using the above formula for
error in multiplication, we can take into account effects of rounding and underflow errors in the
original data.

|| A|] and || 8]| denote the norms of the matrix A and vector b. || A|| o denotes the infinity
porm of A, and similarly for || 8] . k(A) = || All » || AY|| denotes the condition number
of the matrix A.

|A] (]8]) denotes the matrix (vector) whose entries are the absolute values of the corresponding
entries in A (b). Inequalities like [A] > |B| (|a| > |b |) are meant componentwise.

3.3. Approach
As stated in the introduction, we use backward error analysis. Thus, when trying to solve

Az =} (12)

for z we obtain an approximation % = z + 6z which satisfies the perturbed problem

(A+ 6A)z==b+ & . (13)
The task of backwards error analysis is to obtain bounds on 6A and 5b. These bounds can be used
in turn to bound the residual r:

r=Az-b = -fAz+ 5 (14)
and the error 6z.
Wilkinson's approach |[Wilkinson,1963] is to obtain a bound w on the errors

NéAllw SwlAllw and [[6b]lo<wl|b|le (15)
and then show
Hrllw Sw Al wll 2l o+ {131l (16)
and so
oz
115211 <wk(d) . (17)

Hellw+ ll2lle ~

Skeel's approach [Skeel,1979], modified slightly here, is to obtain bounds on the relative error w in
each entry of A and b:

16A] SwlA| sd 8] S wlb] (18)
by first obtaining an inequality (see [Skeel, 1979})
Helle S @Il 1AL 12] + 18] |l (19)

from which he shows
max(|4] 17| + b])

= ma(TAT T+ T8 (%0)

(where the min in the denominator is over the nonzero values of {|{A| |z|); only). From this
Skeel obtains

léellw . ML 1A 14] 12] + A7 18] [l e

————————— S w -
Hzllw (-wil 147 1A] o) |l 2]
We proceed by breaking the computation into three steps:

1) Decomposition : Try to decompose A into LU and obtain L and U where
A=LU - E; bound E in terms of A.

2) Forward Substitution : Try to solve Ly==) and obtain y where (L+6L)y = b+ Ab;
bound 5L in terms of L and Ab in terms of 5.

3) Backward Substitution : Try to solve Uz=y and obtain z where (U+ §U)z = y+ by;
bound §U in terms of U and &y in terms of y.

Thus, combining the above three steps we obtain

(A+ E+ LU + 6LU + SLEU)z==b + Ab + (L+6L)5y (22)

(21)

or
(A+ 6A)z=b+ 6 . (23)

The residual r = Az - b is

r=_6Az+4 6b=AE+ L6U + 6L(U + U))z+ Ab+ (L + SL)5y (24)
= -SAz + & .
Equation (24) shows that
A =FE + LSU + 6L(U + 8U) (25)
and
5b = Ab + (L + 8L)5y . (26)
In the style of Wilkinson we obtain the bound w in equation (15) by bounding
Il Ell » an HLSU + SL(U + 8U)|]| »
Al 1Al w

We also obtain bounds on

|| Ab]] (L + 8L)yl|
- and

(181 18]l w
by showing them to be no larger than || 4 || o/]| A} w if certain scaling conditions on A and b
are met. These inequalities are derived in the next gection. We conclude with Theorem 1, which
summarizes the results by giving explicit and simple requirements on A and b for the bound on
the error contributed by underfow (using either G.U. or S.Z.) to be scarcely worse than the bound
on the error from roundoff alone.

In the style of Skeel, we obtain the bound «' in equation (19) by bounding

||E‘z|!,,, and | (LU + 6L(l{+ 5U)z]| o
1Al 1zl e 014l 2] e
We also bound
Habtle o (L + 6L)6y!|
ol w 161l

by showing them to be no larger than || 8Az|| /1l |41 12| || o if certain scaling conditions on
A and b are met. These conditions are nearly identical to the conditions derived in the Wilkinson
style analysis above. These inequalities are derived in the mext section. We conclude with
Theorem 2 which summarizes the results as in the Wilkinson style analysis.

3.3. Error Analysis Detalls
We first state two propositions which analyze the error on computing inner products.
_ Proposition 1.

L]
Let g’ be a bound on the partial sums and individual terms of the inner product ¥’ a,b,:

=1
g = max (ﬂoat(gajbj), s;b,) . (27)
We can bound the error in computing i a, b, as follows:
In the absence of underflow we have =
(D ab) - a8, | < (2n-1)eg (28)
remd sod

where g = g’ /(1-¢).

In the case of G.U. we have

|ﬂ(ia, b,) - z.: 85| < (n-l)eg + nemax(), g) (29)
samm] smnd
<(2n-l)eg if g2

where g = g' /(1 - €).
In the case of S.Z. we have

m(g a:b,) - g ab,] < (2n-N)emax(2,) (30)
< (2n-1)eg if g > %—

where g = (g’ +)\)/(1-¢).

Note that the g used in equation (29) may differ from the g used in equation (30) because ¢
depends on the kind of arithmetic used (G.U. or S.Z.). Also, g depends on the order of the terms
a8, b,‘.

"
Proof: Let Sp = fi(Y] 6,5,). Then

=1
S,= 6,5, + ab + gy =00 + E,
Sp = (Sat + Omba(lt€n) + M)l + €ac)) + Za
= Sp 1+ Onbm + Enbubn + tail(Sa - Zn1)/(1+ €ma)l + Zmat+ NMm
== Sp 1+ 8ube + Eq -
In the absence of underflow
|Ex] <29 and |E] <eg .
In the case of G.U., z._,==0 and €, 1, =080
|Ea] € €g + emax(g,)) and | E;| < emax(g, \) .

In the case of S.Z. we have only eynu =0, 0
|Ea| < 2emax(g, 3;-) and |E,| < emax(g, -:-) .

.
Now |S. - Y 8,8, £ Y |E.|, and so the result follows by adding the bounds for | E; | above.
1mel

g
QED.
Proposition 3.

To analyze solving a triangular system, we need another expression for the error in computing an
inner product:

*

float(3 a,8) = S ab(1+E) + 1 . (31)

In the absence of underflow we have
|Ey| < ne (32)
C|Ejl L (n+2-5)e i 31 ’
In the case of G.U. we have the same bounds on the | E;|, and

In|] € nxe . (33)
In the case of S.Z. we have the same bounds on the | E, |, and

[n] < nX . (34)

Proof. Letting

Su = fl(i albl)

1]

= .ﬂ(sn—l + 4ubl)

= (Sa1t+ Ou bu(l+ €a) + Ne)(1+ Wug) + Zma

it is easy to prove by induction on m that

m-1

Sa = Glbl(l*‘ Cl)ﬁ(l‘l' W.) + ’]1H(1+ w,) +
sam} (L}

m-1

Z-: ap b (1+ ¢) 'ﬁl (14 w,) + f:ﬂgAH 1+ w) +
(= it 1 b k-l

m-1 m-1
E 2 H (l+ w;).
buml semb4-l

Zn_y == 0 always for G.U. In the case of S.Z., if na 7 0, so that fl(a,bs) has underflowed to O,
Su = Sm_1, 80 243 = 0. Thus, for either G.U. or S.Z., ze_11m = 0, so the contriblution from

underflow is at most n times the bound for n, and zs_;. Approximating (1+ e,,)ﬁ(l-i- w;) by
+ m=y

n
1+ (n-r+ 1)e we get the result. Note that the Y 8,8,(1+ E,) term is the same term as would
=

have been given by round-off alone. QE.D.

We now consider the decomposition of A.

Lemma 1: Error Analysis for Decomposition.

We assume
|L;| € 1and L, = 1 because of scaling and pivoting.
The mat)rix has been permuted so row (or column) exchanges are not needed (to simplify
notation).

Inner products are accumulated with roundoff error ¢, and smallest number z,, and other
operations are done with roundofl error ¢ > ¢, and smallest number g 2> u,. We also
assume A\ >), i.e. that the underflow threshold for inner products is less than or equal to
the underflow threshold for other operations.

Let },, be the largest absolute intermediate value encountered while computing L,; (for
i>7) and U, (for i<j). Note that g,; depends on the type of arithmetic used, as indicated
by superscripts G.U., S.Z., and no superscript in the absence of underflow. (The program
used is in Appendix 1.) .

Then in the absence of underflow

iti>j |E,| < @2i-1e9; + €| U;Ly! (35a)
ifi<i |E,| < ((2-Ve + gy - (35b)
It G.U. is used

ifi>;j |E,| < (j—l)e,},‘fu + je,mu(x,,},f”) + €} U”-lmax(|L,-,-|,X) (36a)

-10-

ifi<i |E,| < (i-1)e,95Y + ie,max(A,,9.57) + emax(\,95Y) . (36b)
If S.Z. is used
o :) Ay - A
iti>j |E,| < (21—1)e,max(7:-,g.‘f‘")+ £|U,-,-|max(|L,,-|,?) . (373)
A, - .
i< |E;| < (2i-1)e,max(—5%) + emax(%,a:i) . (37b)
]
I G.U. is used and },‘f U > X, the bounds become more similar to the bounds without underflow:
ifi>j IE., | < (21.‘1)51‘91?0 + ¢ U, Imax(lL,, I A) (38a)
iti<i |E,| < (@-1e + 9957 . (38b)

It S.Z. is used and },‘fz >)\, /¢,, then the bounds also become more similar to the bcunds
without underflow:

i oL s . - A

iti>j |E,| < (21-1)6,45‘”‘ + ¢ U,,Imax(IL.-,l,-e-) (39a)

iti<i |E,| < (2i-1)e + 5% . (39b)
Proof: The proof is an application of Proposition 1 to the program in Appendix 1. There are two

cases, 1>, and i<
Case i > j: We compute L;; by the following formula (see Appendix 1):

-1
L,‘j = flOdt((A,"‘ - S L,} Utj)/Ujj) . (40)
7=
Let },, be the largest intermediate value computed:
. 71
gi; = m:}x (float(A,, - EL,} U;,-),float(l,,j: U,fj)) , (41)
15,0y tamd
where },, depends on the arithmetic. We write equation (40) as
-1
L,’J' = (A,] - t:la,} Ukj + E' ,])/UJ,(1+ C) + 7]’ (42)
)
and apply Proposition 1 to bound E',; as follows:
‘E' ljl < (21."1)5:;-1 (43)
in the absence of underflow,
lE' 3] l S (J.“l)ct;gu + jfam“(x..;-fu) (44)

< (21.'1)5.}1?0 if ;.]G.U 2\

in the case of G.U,, and

) WA
|E', | < (2j—l)e.max(—c"-.¢5:'))
L]
. sz 5Z> M
< @i-Vess® ¥ "2
s

in the case of S.Z.
So

A, = 2],“ U, -E';j+ eL;U; - v U,(1+¢) (48)

-11-

= éLuUtj + E;
Fo %
where
|E,| € |E';| + max(|L; Uyel,|nUy;1) (47)
< |E';|+ ‘lUuIm“(ILulrl"l/f) .
[n] = |7 (1+¢)| is essentially bounded by \e for G.U. and X for S.Z.

Thus, in the absence of underflow,

'EIJ'I S (2].—1)6,;,‘]' + Cl U)jLijl . (48)
When using G.U.
|E,| < (.7.'1)‘:‘93” + e,jmax(k,,}gu) + €| U, | max(| Ly, |,2) (49)

< (25-1)e,35Y + €| Uy max(| L, |,\) if 752, .
When using S.Z. we get

) Ag -)y
|E,;| < (2J-l)f.mu(7'.ai 2)+ €| Uy |max(| L,y |,) (50)
]

. -) . A
< (2i-1)e,95% + €| Uy |max(| L],) o 95"26—' .
]
Case i <j: We compute U,; using the following formula (see Appendix 1):
i-1

U,‘j = ﬂoal(A.-j - 2 L,g Utj) . (51)
=1
As above, we let },-,- be the magnitude of the largest intermediate value:
. -1
g = mg (!’01‘(44,‘,’ - E L,,U,,-),float(L,»,-: U"J)) . (52)
1<¢ < fymry

There are two subcases, depending on whether ¢,=¢ or ¢, < ¢ We deal with the ¢, == ¢ case
first. We rewrite equation (51) as

Ay =Y Laly + E' (53)
tund

and apply Proposition 1 to bound | E' ;;].
In the absence of underflow

|E' | < (2i-Degy; - (54)
When using G.U.
|E' ;| € (i-DeadV + ie,max(\,,925Y) ’ (55)

< (2i-1)e,35Y it g§U2N, .
When using S.Z.

A, -
|E';] < (2£-1)e.max(-5-f-,v5 “) e

. . A
< @-Degs® it git2— .
s
When ¢, < ¢, we make one more rounding error when storing U;;. Thus, equation (51) becomes
i-1

U, = float[1X[A, - 3 LUyl (57)
iz %

-12-

which we rewrite as
1 1-1
U; = T—(Au' -y LU, + E)+ o (58)
+¢ fame}
or

AU = ELikUkj - E' 1] + CUlj -1 (59)
Lot

== ELU Ukj + E,'J' -
bl

where n =7/ (1+¢). |E’,;| has the same bound as above, so in the absence of underflow, we
get

|E;| < |E'y] + €9ss (60)
< ((23-1)e, + 9, -
When using G.U. we get
|E,| € |E';] + emax(\g5") (61)
< (i-1)e, 987 + fe,max(X,,05Y) + emax(),9.5Y)
< (@-De + 9gf? it g2 .
When using S.Z., we get

\ -
IEljl .<- 'E'ul + em“(—e':ﬂosjz) (62)
. A, - A -
< (2z-l)e.max(—eL,g,§z) + ema.x(-e-,g;f")
8

)

< (@i-Ve, + dis® i a5T2=

This completes the proof of Lemma 1. QE.D.

To see what this lemma means, we compare the bounds in the absence of underflow (which come
from roundoff contributions only) to the bounds in the presence of underflow.

Part of the bounds to compare is a multiple of e,}.-,- in the absence of underflow, e,max()‘,,},j)
using G.U., and ¢,max(},/¢,,g,;) using S.Z. Comparisons involve g;;8 with identical superscripts,
which we omit for simplicity. If g;; > X,, these bounds using G.U. are the same as the bounds
without underfiow. The condition g,; > X, is trivially satisfied as long as the original datum (or
some intermediate result) contains a nonzero normalized number. The analogous condition
9i; 2 Mo/, for S.2., on the other hand, requires a large danger region above the underflow thres-
hold \, where data may not lie.

Similarly, when ¢2>j we must compare the bounds ¢} U, L | without underflow,
¢| U;; |max(]| L, |,) using G.U,, and ¢| U, |max(|L,;| M\ ¢) using S.Z. Again, the bound for
G.U. is identical to the bound for roundofl alone as long as |L;;| 2), but | L, 2\ /e is needed
for S.Z. to be the same as roundofl.

In other words, with G.U., as long as the original datum jtself is normalized, we expect an error
no worse than we would have expected with roundoft alone. In contrast, with S.Z. the original
datum (or some intermediate result) must be larger than the underflow threshold)\, or X by a fac-
tor of 1/¢, or 1/ (2** on a machine with 24 bit precision) for the same bound as roundoff alone to
apply.)

It is possible, however, even with G.U. for g,; to be <),, or | L;;| €\, to occur, with apparently
disastrous changes to the solution. For example, consider the matrix

-13-

B

where both B and b are normalized numbers, larger than X\/e if desired, but so that /B
underflows to zero even using G.U. Then the factors L and U obtained are the exact factors of
the utterly different looking matrix

B
I IS A |

The solution of a system A'z = b can be utterly different from solution of Az = b, but the
important point is that the residual will remain small, in the sense that || r| o/l 141 2] |l »
is small:

Urlle _ WElle __Itml b
TTAT =1 e ~ W TAT 12 = Blml+ Blaal ~ B

for any computed solution z.

< Xe (65)

More precisely, we can show

Lemma 2: Wilkinson style error analysis of decomposition In the presence of underflow
Let 6pax = max|A,|, and g = max ;,v,-/a,,,.x > 1. g is Wilkinson's pivot growth factor, and
depends on t.l'xeJ arithmetic. We ch'gose ¢, = ¢ for this lemma; an analogous lemma holds for
€, < €

Then in the absence of underflow,

|| E]l o < n%€g8me + smaller terms (66a)
or
s < | o
Using G.U.,
1 El] o € 2es%Y o+ emax(,5%7 62us) (67a)
< 1% g i 957 Bmax 2 N,
or
—H—i—“—i— < n%gSY it g%V o 2N . (67b)
Using S.Z.
1 Ell o < nemax(s®® o) (68a)
< n%emax(g? am,-:—) it 5% Gooax 2 -:‘— ,
or
———::i“: < n2g5% by if 9°F Opx 2 -)Et- . (88b)

Proof: We replace },j by g6 in the bounds of Lemma 1 and sum. In the absence of underflow
we get

it i>j |E;] £2/¢d0mm (69a)

-14 -

it i25 |E;| < 2i¢ftmm -
Then

HEll o = max}] | Ey|
H} =1

»
< Y2ieqom
Jud

= (n2+ n)egapmy -

Since || 4]l 2 Sme

| Ell o
2 < (n®+ n)eg .
AT, =+
If G.U. is used,

it i>5 |E;] € 7e0Y omax + jemax(hg%Y omu)

< 29V apme il 99V Grax 2>)

it i<i |Ey| € (i-1)60%Y agme + (i+ Demax(7,g%7 o)

<2V ape i 97 ma =) .

Then

)
HEl o< L1760 6ume + jemax(h,g%Y o)
=y
2
= n ;' n eaG(la““_{,_ emax(k,gcvam))

=(n?+ n)eg®V 6mm U 0ma 2 .

If S.Z. is used,

it i>j |Ey| < 2J'cmaX(-)§.n“ 6 max)

<2%ep Fopm M 47T a2 -:-
it i<i |E;| < 2jema.x(%,g5‘- 6.ons)
<2eg Pt O 2 ':- .
Then
I N
HE]l o € Y 2jemax(—,0°% 8a)
st €
= (n? + n)ema.x(—:-,gs‘ 8 ras)
= (n® + ”)‘ﬂs‘ Omax if 952 tpax > -)5:' .

This completes the proof of Lemma 2. QED.

(69b)

(70)

(71)

(72a)

(72b)

(73)

(74a)

(74b)

(75)

-15-

The condition €U apx >)\ for the bound on || E{| /|| Al] o to be the same for G.U. as for
po underflow is trivially satisfied as long as one datum in the original matrix is normalized. The
constraint g% apex > A€ for S.2. is much stronger, and when it does not hold results can be
disastrous, as seen in the examples of section 2.

Similarly, we can prove

Lemma 3: Skeel style error analysis of decomposition in the presence of underflow

Let a; = max | A, |, g; = max 9., /8;, and gc = max g;. g; is a pivot growth factor for column
' ' J

j only. As usual, 3,,-, g,, and g¢ depend on the arithmetic. We choose ¢,=¢ for this lemma; an
analogous one holds for ¢, <e.

Then in the absence of underflow

I E2|| < 2n%gc || 1A 12] | o - (76)
To get the same inequality for G.U. we need g& s, > X, and for S.Z. we need g3%a, 2 Me.
We need the following proposition for the proof of Lemma 3.

Proposition 3.

Let P>0 be an n by n matrix and 220 be an n vector. Denote the column norms of P by
p; = max p,,. Then

I Pzl] o < Yops2 S]| Pzl - (77)
]

Proof:
| Pzl| o = max Yoy < b max p,z; = Yz
3 3 3

This proves the first inequality, and shows it is sharp if, for example, P has all rows zero but one.

Let p;2), = max 9,2, 80 Z):p,-z, < np, 2. Letp, ;o= p;, Then
213?131’ < np; 25, = NPii%,
< nz’:p.o,'z, < n-m'axgp,,z,
<n|l Pzl -

This inequality is sharp if, for example, P=1I, the identity matrix, and z has all entries equal.
Q.ED.

Proof of Lemma 3;: We replace },,- by gca, in the bounds of Lemma 1, so in the absence of
underflow we get

it i>j |E,| £ 2jegca, (78a)
it i<j |E,| < Ziegcs, - (78b)

For these bounds to hold with G.U. we need gguaj >)\, and for S.Z. we need ggz'a,- 2 \e
Then

HElo <l 1E] 12] o (79)
-1 . s .
= max(Y 2jegco; |3, | + Y 2ieges;|z])
b g y—
L] -
< Y2%egco; |z
i

L -~
< 2negc) s}zl
=i

- 16 -

< 2n%egell 141 12] |l w

by Proposition 3. Q.E.D. ‘

The condition ggua, >) is trivially satisfied as long as one normalized number appears in each
column of A. g&? 8 2 A/¢ is a much stronger condition.

We now turn to the error in the solution of the two triangular systems Ly=>?% and Uz=y.

Lemma 4: Error Analysis of Solving a Triangular System

Consider the lower triangular system Ly=} where L does not necessarily have ones on the diago-
nal. (The analyses when only ones are on the diagonal or L is upper triangular are similar.) Then
in solving Ly=>) using the program in Appendix 2 (where inner products are accumulated with
roundoff error ¢, and smallest number p,) we obtain y = y+ oy which actually satisfies
(L+6L)y = b+ 5b, where

(i-l)e, it i>j=1

L6l | < 1Lyl Vit 1-g)e, it i>5>1 (80)
€+ ¢, if i=5>1
independent of underflow.
In the absence of underflow
b =0 . (81)
Using G.U.
it =1 [8] < Me|lLu| UN(1) if y, underflows
it i>1 |8 S iN\eg + intermediate underflows . (82)
Ne|L,| UN(p) if y, underflows
Using S.Z.
it i=1 165] < X|Lu| UN(¥) if y, underflows
it i>1 |8 S ix + intermediate underflows . (83)
M L] UN(w) if y, underflows

If L, is known to be 1, the only changes in the above bounds (besides substituting 1 for L) are
that E,, = 60, == 0 independent of underflow.

Proof: We apply Proposition 2 to the program in Appendix 2. We have two cases.
Case i=1: In this case,

by
= float(d,/L,) = ———a—"+V 84
h f (l./ ll) Lll(1+ Ell) 1 ()
80
Lyl+ Eyx)n=5b+ nly(l + Ey)UN(y) (85)
where
|[Eyl e and |n] <X or Me (86)
Case i >1: Now

i = float((b, - 2_:: Lyu,)/Ls) (87)

-17 -

= [(1+ e)(b; - ﬁl‘-j(l + Eu)”j -p)+ o)/(Ls(1 + 6)) + v

where
{(i-l)e, it j=1
LEyl S \(i4 1-5)e, it i>1 (88a)
le]l <e (88b)
o] <e (88¢)
and
{ﬁ"l)xcfn using G.U.
le] < (i-1)\, using S.Z. (89a)
A€, using G.U.
lo,| < b using S.2. (89b)
¢ using G.U.
vl £\ usingS.Z. (89¢)
In the absence of underflow, p, = o, = v; = 0. Rearranging equation (87), we obtain
i-1
Ln(l + ‘l)yi == (l + C,-)(b,- - Zl‘u(l + Eij)”j - pl) + o + Vl'Lu(l + S'o) (w)
]
or
e 1+ o, 1+ 6
b= L1+ Byl + L T‘;’T,'l”‘ R —u,L..[m] . ()

Using the bounds in (88) and (89) in (91), we obtain the bounds in the statement of the lemma.
QE.D.

_ Since the bound on &L is independent of the presence of underflow, the following two lemmas are
true no matter how underflow is handled (we assume ¢ = ¢, and p == p, for simplicity).

Lemma 5: Wilkinson style error analysis of forward and back substitutions
If g is the pivot growth factor of Lemma 2, then

3
|| L6U + 8L(U + 8U) || 0 £ %-egam + smaller terms. (92)

Proof:
HL6U + LU+ §U)|l o S | L8U]| o + [1EL(U + 8U)l] o - (93)
SN IL) U flo+ Il JEL] U+ 8U| || -

Bound each entry of L below the diagonal by 1, and bound each entry of 5L using equation (80)
as though L had all ones below the diagonal. Bound each entry of U (and U + 6U) above the
diagonal by 4., and bound §U using equation (80) as though U had all its entries equal to
00.0ax above the diagonal. A simple computation shows

n®+ 3n+ 2n
L] U] [lo S ——5—"¢0%max » (94)

and

2nd+ 3n2-5n+6

Il L] U+ U] e < 22225

€JBmey - (95)

QED.

-18 -

Lemma 6: Skeel style error analysis of forward and back substitutions
If gc is the columnwise pivot growth factor of Lemma 3, then

| [L6U + SL(U + 8U)z || o < ngc || 1A] |Z| |l + smaller terms. (96

Proof:

|[L6U + 6L(U + U)zll o < 1| 1L | |8U] 12] 1o+ Il 16L] U+ 8U) 2] | w (97)

As in Lemma 5, we bound |L,, | by 1, but now we bound | U, | by gcs,, where ; = max a,,.
13

Letting (1 denote the matrix all of whose entries are 1, we have
R n-n+2 . -
I 1L1 18U} |2] Il < go——"11 0 diagla,, . .- ,8.) 2] [l (98)

n®-n3+2n -
N VIR ETN

by Proposition 3. Similarly
n’+n
2

n3+ n? .
< e AL 1R

I 1sL] |U+ 8U] 2] lw < sc |1 02 diag(ay, - - -, 8) 2] |l (99)

by Proposition 3. Q.E.D.
Now we must bound 5 = Ab + (L + 8L)6y. From Lemma 4 and the fact that |L,;| < 1 we
see

|1 68]] o < nn?/2 all underfiows from Ly=>5 and

intermediate underflows from Uz=y .
. R . (100)
+ 7Y, UN(z))| Uy | underflows of result z

=)

+ smaller terms
where n = \e with G.U., and = X with S.Z.
We already know from Lemma 5 that the constant w bounding [1 6A]] o/l All © in equation
(15) is at least -;-n’eg. If we require that || 60]| /]| 8|l o be mo larger than this bound

—,} ndeg, i.e. that the bound on the error contributed by underflow be no worse than the bound on

the error contributed by roundoff, we get

Lemma 7: Wilkinson style requirements that underflows while solving triangular sys-
tems contribute error with a bound no worse than roundoff.

When using G.U. we require

18l o 2 -,1‘— A if there are intermediate underflows
5 . (101)
el > -27)y if the solution z underflows.
G max n
When using S.Z. we require
loll o 2 -:.- -)e'— if there are intermediate underflows

2 if the solution z underflows.

118l N (102)
€

:»l.;,

-19 -

Proof: If there are intermediate underflows, require that
n2
-1
2
S ey 103
Mol ~ 2 (103)

where we replace g by its lower bound 1. If the solution z underflows, require that

n

giun'lﬂ 1

2 < = nlg . 104
Tole = 2 (104)

.
where we replace Z |U,,| by its upper bound ngap.,. In both equations above, substitute

Jumy
n = \efor G.U. and n =) for S.Z.Q.ED.
We now turn to the Skeel style error analysis. From Lemma 6 we know the constant w’ in equa-
tion (19) is at least n®gc. If we require that

bl
14l [zl + 8] e

be no larger than this bound n3egc, i.e. that the bound to the error contributed by underflow be
no worse than the bound to the error contributed by roundofl, we get

Lemma 8: Skeel style requirements that underflow while solving triangular systems
contribute an error with a bound no worse than roundof?

When using G.U., we require

(105)

61w > Eer A if there are intermediate underflows
Nollo o 1 : (106)
—_— 2 if the solution z underflows.
O nax n
When using S.Z. we require
Hollw 2 ?ln- -);— if there are intermediate underflows
b . (107)
-”-—l-'—";- 2 —1-2- L3 if the solution z underflows.
8 ax n® €
Proof: If there are intermediate underflows, require
n?
i s
—— S n'ege 108
Mol= (108)
where we replace gc by its lower bound 1. If the solution z itself underflows, require
®
n YU,
= < negc (109)

=
8]l
.
and replace E |U,;| by its upper bound ngc8me. Let 7 = \e for G.U. and n = X for S.Z.
yud
QED.

3.4. Results

Thus, combining Lemmas 2, 5, and 7 we finally obtain

Theorem 1: Wilkinson style error analysis solving Az=>) In the presence of underflow
Let 6pae=max|A, |, and g=[largest number appearing in decomposition]/ara,. ¢ is the pivot
growth facto; of Lemma 2.

Then in the absence of underflow

3
n -
lirlle € 5 elll All oll 7ll o + 81 (110)

When using G.U., as long as
Omax 2 M if there are any underflows during

triangular decomposition
1

Hollo 2 ~ A if there are any intermediate underflows (111)

during forward and back substitutions

b -
8l > _2? \ if the solution z itself underflows
O ez n

then we have
3 R
Hrllw < -§-n’ e[l All ol 2l 0 + 1 8]l] - (112)

When using S.Z., the above requirements apply with)\ replaced by X /e.

Proof: Combine Lemmas 2, 5, and 7. QE.D. ?

Combining Lemmas 3, 6, and 8, we obtain

Theorem 2: Skeel style error analysis of solving Az=+} In the presence of underflow

Let g, =max A, |, and yc=m?x([la.rgeat number appearing the the decomposition in column

jl/8;). gc is the columnwise pivot growth factor of Lemma 3.
Then in the absence of underflow
el o < ntgcll 14] |z] + |#] |l 0 + smaller terms. (113)

When using G.U., as long as
gco; 2 2 for all j,if there are any underflows during

triangular decomposition
ol 21—” A if there are any intermediate underflows (114)

‘during forward and back substitutions

3w

2 -17)Y if the solution z itself underflows
n

we have

Hrlle < 3n%gcll 141 12] + 8] e - (115)
When using S.Z., the above requirements apply with \ replaced by \/e.
Proof: Combine Lemmas 3, 6, and 9. QE.D.

-21-

4. Conclusions

First we apply Theorem 1 to show how to write reliable software for solving Az=?% from the
point of view of a Wilkinson style error analysis. We compare the requirements of Theorem 1 for
G.U. and S.Z. For G.U. as long as one normalized number appears during the decomposition
(98mx 2 N), error with underflow has a bound identical to error without underflow. If there are
intermediate underflows while solving the triangular systems, as long as some component of b is
pormalized (]| 8|] » =)), error with underflow has a bound at worst twice the bound without
underflow. If the answer z itself underflows, we can either issue an error message (which would be
very reasonable since the first goal of reliable software is only to compute an answer if it is
representable) or test to see if || b || oo/ 8max is DOt too small.

All these requirements are natural ones to make, since they say that when a problem’s inputs are
normalized and its computed solution is normalized, we should expect the solution to be scarcely
worse with underflow than without. Thus, the only underflows which can cause concern in a prob-
lem with normalized inputs are underflows in the solution itself.

In contrast, the bounds for S.Z. are all higher by a factor of 1/e. Thus, using S.Z. we can peither
solve as many problems as with G.U., nor decide so easily which underflows matter. Thus, from
the point of view of a Wilkinson style error analysis, G.U. makes writing reliable software easier.

From Theorem 2 we see the requirements for the bounds on error with underflow to be the same
as the bounds without in the Skeel type error analysis differ only by a factor of 1/2 from the Wil-
kinson style bounds, and so the comments in the above paragraphs still apply. The only diflerence
for G.U. is that a normalized number must appear in the course of computing each column, not
just somewhere in the whole matrix.

We wish to emphasize that we have only derived conditions under which error bounds with
underflow are about the same as without underflow. There is no way using this analysis to say
how closely this bound will be approached with and without underfliow. Even when the require-
ments of Theorems 1 and 2 are satisfied, G.U. can sometimes get a better result than S.Z., as in
example 3 of section 2. All the columns and rows of the matrix in that example have entries
much larger than the underfiow threshold, but the matrix appears so ill-conditioned that the last
pivot is approximately equal to the underflow threshold, and so can only be computed accurately
by G.U. and oot S.Z. The backward errors in computing the solution using either G.U. or S.2.
are both extremely small, but the condition number (Skeel's or Wilkinson's) is so large, that one
would not want to trust the answer anyway. From the point of view of this paper, it is an
accident” that G.U. got the right answer and S.Z. did not, but we conjecture that G.U. will
always get a "better” answer than S.Z., for any reasonable definition of "better”.

.22

Appendix 1: Program Listing of Triangular Decomposition

array A[1..N,1..N] of real;

array L{1..N,1..N] of real;

array U[1..N,1..N] of real;

/* note that arrays AL, and U can occupy the same locations in memory;
we use three different arrays here to keep the notation consistent with

the previous analysis */

/* Triangular Factorization: A=LU J

/* As in the analysis, we assume the matrix has been permuted so row or column
exchanges are unnecessary. We indicate the precisions of all computations
except stores into entries of A, L, and U, which are always with

precision (€,s). */

for p=1 to N do [# p=pivot number s/

begin

for j=p to N do /[# compute Ulp.i] */
begin
SUM=A[pi];
for k=1 to p-1 do SUM=SUM - L{p k]*U[k,j|; /* precision (€srtss) */
Ulp,j|]=SUM;
end

[test for singularity /divide by zero omitted 7

for i=p+ 1 to N do /* compute Lli,p] */
begin
SUM=Ali,p|;
for k=1 to p-1 do SUM=SUM - L[i,k]*Ulk,p|; /# precision (e,84) */
L{i,p]=SUM/Ulp,p}; /* precision (c.») */
end

end

Appendix 2: Program Listing of Solution of Both Triangular Systems Following Tri-
angular Decomposition

array B[1..N] of real;

array X|[1..N] of real;

array Y[1..N] of real;

/* Again, B,X, and Y could occupy the same locations in memory. Arrays

AL and U are defined above. As in Appendix 1, precisions of all computations
except entries of B, X, and Y are shown. s/

[+ Forward Substitution: LY==B ¢/

for i=1 to N do
begin
SUM=0;
for k=1 to i-1 do SUM=SUM + Llik]*Y[k]; /* precision (e,,u,) */
Y[i|=B[i]-SUM; [* precision (e,,6.) */
end

/* Back Substitution: UX=Y ¢/

for i=N downto 1 do
begin
SUM=0;
for k=i+ 1 to N do SUM=SUM + Uli,k]*X[k}; / precision (e, ,s,) */
Xlil=(Yli] - SUM)/ULi,i}; /# precision (e,,u,) */
end

-24-

Appendix 3: Analysis of Cholesky Decomposition

Introduction

Cholesky is an algorithm for solving positive definite symmetric systems of linear equations
Az=1) using Cholesky decomposition (A=L T where L is lower triangular) followed by forward
(L Ty=") and back (Lz==y) substitutions. Our analysis and conclusions are analogous to those
in the body of the report: G.U. makes Cholesky more reliable than S.Z. We will need the follow-
ing notation in addition to that used already: || Anrm2 and || bnrm2 denote the 2-norms of the
matrix A and vector b, and k;{A) the spectral condition number, the condition number with
respect to the 2-norm. Apu,(4) and Amm(A4) denote the largest and smallest eigenvalues of the
matrix A, respectively.

We also assume A< ¢ for the analysis of the Cholesky decomposition in S.Z.

Proposition 4: Cauchy-Schwarts Inequality in Floating Point
In the case of G.U. we have

Iﬂ(i 8,5,)] < (1+2n¢) ﬂ(‘ja,’)-&- ne fl(ib,"')-i- nie + nle
sl 1wl ramy

If in addition ﬂ(i 8%) >)\ and fl(i: %) >), we have
[t} 1=

|ﬂ(ga. b)| < (1+ 4ne)\/f7(ga.’)\/ ﬂ(gb.’) -

In the case of S.Z. we have

IS ab)] < (1+2ne)\ﬁuizm+ nx\/ﬂ(i»m .
sam] e (1

If we know ﬂ(f: ¢?) 2> X and fl(i’,b,"') > X\ we can only assert
jomt yd

l,l(galbl)l < ("+ 1) !l(éalz) I’(gbsz)

" L J
but if we know fI(}] 6?) > \? and 71(Y 83 = X\? we can write
1omd sumi

Iﬂ(ga.'h)l < (1+3n¢) ﬂ(ga.’) ﬂ(gb.’)-
Proof: Since
m(g"a..».n smgm 15,1)

we can assume without loss of generality that s, > 0 and b, > 0.
In the case of G.U. we may use Proposition 2 and the usual Cauchy-Schwartz inequality to write

|ﬂ(g¢i51)| = g‘lba(l"’Ei)"']

< Y ab(1+ne)+ nhe

< (1+ ne)Ji “lzdi blz .

-25-

Also
miﬂwiﬁnm+n
> f:‘ 8%(1-n€) -~ nXe
50

gaf < (14 ne)(fi(ga,’) + nle)

with an analogous result for E b2 Then
1omn}

(R ab)] < (1 2ne)y /(S 6D + nxe\ﬂ(f)bfn nhe
yomd s =] =y

The case for S.Z. is somewhat different. In equation (10) we note), m < O because if n, % 0,
tw =080 0= fl(0pde) = 0o ba + Nu- Also z, =0 for all m since the sum is increasing.
Thus the total contribution n from underflow in (11) is <0, so

Ifl(galbi” = ga.b,(l+E,) +n

< 5:: 8,b,(1+ ne) .

Now
ﬂ(f: 8?) = i a*(1-ne) < nX
g0
T a2 < (1+nef (L 67 + 7))
rl |
and

|ﬂ(i 3,5,)| <€ (1+2n¢) ﬂ()’ja,’)-i- n\ ﬂ(éb,’)+ n\
1l [sl
as desired. QE.D.

Error Analysis of Cholesky Decomposition

We assume A is symmetric and positive definite. Writing A = LLT + E, we can bound the
error as follows:

In the case of GU., we let g == 8ppy if Gmue 2), and g == (n+ 2)d .y if We can only say
Oax 2> Ae. Then

2
|E} <€ -%-(ey + max(\e, €8,.,)) + lower order terms

< n%0pgy i O >N

80
2
-}%— < —'!2—(6 + max(;-):‘i-, €)) + lower order terms (¢1)

< nPe if Ogax > M

In the case of S.Z.
|E| € n’max(€0mm \) + lower order terms

< n%0pax Ommx > %

so
|E| 1
< n’max(e, ——\) + lower order terms (4.2)
|41 0 max

< n% if am>2;—.

As with Gaussian elimination, 28 long 28 6y is 3 DOD-ZEFO normalized number, the error from
underflow is no worse than the bound for round off alone, if G.U. is used. The threshold for 6 pex
using S.Z. is again higher by a factor of 1/e. A listing of the program being analyzed is in Appen-
dix 4.

Proof: As with Gaussian elimination, we have two cases, depending on § and j. We use the first
case, i==j, to provide a bound g in order to apply Proposition 1 to case 2, i>7.

Case 1: i=j. We have
= JP
L= 114, - tLJ"))
bend

=4y~ E13+ B[+)

-1
L1+ e)Pm Ay - 21.,“; + E
1 3
or
A= i:l’:% -E+ 2511‘;‘; - iL,’, + E;
Py ey

We want to apply Proposition 1 to get 3 bound on |E|. We claim the bound g required by Pro-
14

position 1 is 4,;, because if any term or floating partial sum of the increasing sequence 2 L ft
b=l

exceeds A,,, the algorithm will terminate because the matrix is (algorithmically) not positive
definite. :

In the case of G.U. we have
|E,| < |E| + {2al]]
< (j-1)eA;; + jmax(eA;, he) + 2¢A,
< (j+1)ed;; + jmax(eA,;, Me)
< (2i+1)eA, if A, > A
< (27+1)e0pax ¥ Somx > A
In the case of S.Z. we have
|E;| £ |E| + |2e,L 2]
< (27-1)max(ed;, A) + 2¢A

. . A
< (2J+ I)EA”' if A”‘ > -C-

< (2i+1)ea s i aw>-:—

Case 2: i>j. We may use Proposition 4 and the result of case i=j to write

(G Latal < arardy fIELD+ 4y S e+ av s
bwy el F: %

< (1+2i¢)4 /IS LD + 4§ UL+ &+ 6
F2 Lamg

< (1+2igVIA, + GV, + §+ 6

= B,‘;"” in the case of G.U., and B,f’z‘ in the case of S.2.

where £ and 5 are bounded as in Proposition 4.

If A, > > and A,; >) in the case of G.U, or A, > Meand A;; > N/ e in the case of S.Z., then
we get

B, < (1+4i¢/A A, < (1+ 4n€)om
If A, > Nand A); >)\, wecan only guarantee

BS% < (n+1) VAA,; < (n+1) 6y
The g needed to apply Proposition 1 will be the sum of B;; and 6.
We may now write

L, = fl{(A,; - §Lultjk)/"jj)
kam)

-1
=4 - SLuly + E)L,(1+e)+ n
bl
where the n appears only if L,, underflows. Rearranging

Au- = tgL'th -E + CL”L,-J- - qL”.(l.{. c)

J
= EL,gL,g + E.J
o

In the case of G.U.
|E;| < |E| + max(| eL,;Lj|, |nL,;(1+ ¢}|)
< (j-1)eg + jmax(Xe, eg) + max({eg, Aey/8 max)
< jeg + jmax(he, €g)
S 21-‘“!!-! ‘7 .m > X
We used the fact that X /e < 150 g < Aey/Gmy OBlY if S < 22 < \¢, implying 6 = 0.
In the case of S.2.
|E;| S |E| + max(| eLiyLy; |, | NeLy;(1+ €)})
< (2j-1)max(eg,) + max(eg, A 0za)

< (2j-1)max(eg, Me) + €5

< 2j€lpy V Oy > —);-
We used the fact that \/€ < 180 € < Ay/a g 00y if 8o < (M €)? <), implying ayax == 0.
Adding these bounds for | E,; | we get the results stated above. Q.ED.

Numerical Examples

Example 1

Let m2 be the smallest number > \ which is the perfect square of the floating point number m,
where we assume m2 < 2\. For example, m? == 2712 =) in the case of KCS single precision
[Coonen, 1979}, and 2° 128 gor the PDP-11, VAX, and Payne-Strecker proposal [Payne and
Strecker, 1979].

First consider the well-conditioned positive definite symmetric matrix
21
A,i=m%*R 21
111

which has the exact lower triangular factor
2
Ll =m-|{1 1
5 .5 V3

LEY, the factor provided by Cholesky using G.U., is the same as L, except for the rounding
error incurred by having to represent V.5 . LiZ, the factor provided by S.Z., is

Lif = m-1 1
510
80 S.Z. decides that matrix is singular. Note no rounding error occurred using S.Z.
As a second example, consider the well conditioned matrix

21
Ag- mz° 21
112
Its exact factor L, is
Lz- m-j1 1
5 .5 V1.5

The factor LY provided by G.U. is the same as L3 except for the rounding required to
represent 1.5. The factor L3* provided by S.Z., however, is

Li* mm-fl 1
511
and
2 1
(LEENLEE) = m*2 2 15 |=A2+ Ep
1 15 2.25

-29-

with a relative error || Ez] /|| A2l] © > 1. Thus S.Z. provides a reasonable looking answer
which is totally wrong. Note that no rounding error occurred using S.Z.

Example 3
Let m?2 be as before. Consider the family of matrices
4 1]
4 1
A(z) = m* 4 1
41
1111 z
Its correct factor L(z), if it exists, is
b]
2
L(z)=m- 2 .
2
.5 5 .5 .5 Vz-2]

This matrix is positive definite if z>2, positive semidefinite if z=2, and has both positive and
negative eigenvalues is z<2. Both G.U. and S.Z. compute all entries of the factor L(z) except
the (5,5) entry correctly (using Cholesky). G.U. obtains the correct value (z-2)m? for its value of
L%, whereas S.Z. compute zm?2. Thus, as z decreases from 3 to 2to 1, G.U. correctly decides the
matrix is positive definite when z=3, and becomes non-positive definite when z<2. S.Z., on the
other hand, produces an (inconect) decomposition all the way down to z=1. Thus, S.Z. can not
only produce an inaccurate decomposition, but produces it after G.U. has correctly decided no
such decomposition exists.

S.Z. can produce a decomposition of a matrix when G.U. fails only if the matrix is either 1) so
ill-conditioned that the decomposition cannot be trusted, or 2) not positive definite at all. Here is
the reason. Assume 4., > X , since otherwise the matrix is identically 0 in S.Z. G.U. fails when
its computed value of L ;‘; either rounds to O or is negative for some ;. L}'; rounds to 0 when
L2 < eIt is easy to see that oy < Amex(4) and L} > Apun{A), because

1 1
= (\ LYW < L 2 A" T e

Therefore
) y—_— O mex 1
b A P —, 1 > - ’
)= = > > 2

which means that the matrix is so ill conditioned as to make it difficult to even recognize an accu-
rate inverse, let alone compute one. If L} is in fact negative, the matrix is not positive definite.

Error Analysis of Solving Both Triangular Systems Following Cholesky Decomposl-
tion

We have
(L+ dLXU+ dU)z=b+ db+ (L + dL)dy = b + Abd
In the case of G.U. we get
|db;] < (i + Ly UN(y.)) (4.3)
< Ae(i + Voum)

ldy,| < Ne(n-i+1+ L; UN(z)) (4.4)

< Ae(n-i+1+ Voms)
2
[((L+4dL)dy)| < L;—Xe\/ Goax + N\€8;ex + lower order terms . (4.5)

The n?\e\/apax/2 term in (4.5) is the result of intermediate underflows in the back substitution,
and if no y, underflows, (4.5) may be replaced by

[(L+dL)dy),| < nXelme - (4.6)
In the case of S.Z. we get
d5,] G + LaUN()) (47)
S M\i + Voom)
[dy.] € Mn-i+1+ Ly UN(z,)) (4.8)
< Mn-i+14 om)
[((L+dL)dy),| < -'-;—2-)\/:__, 4 NAGpey + lower order termes . (4.9)

The nZ\ey/ama/2¢ term in (4.9) is the result of intermediate underflows in the back substitution,
and if all y, terms exceed), (4.9) may be replaced by

[((L+dL)dy);| € nhopm - (4.10)
A listing of the program being analyzed is given in Appendix 4.
Proof: This is again a straightforward application of the result for solving one triangular system
and bound | L, | € vVom QED.

5. Writing a Reliable Program to Solve linear Systems Using Cholesky Decomposition
As with Gaussian elimination, we translate the condition
| db]
< kn3ge
el

where k is approximately 2, and g==1 (because the matrix is symmetric and positive definite) into

{ if there are any intermediatc underflowe
bome > X in the forward substilulion (4.11)
b
‘/;:.. > —"1—2-X if some y, underflows (4.12)
ax
b e { if some y; underflows and there are
m’ > intermediate underflows in the back substitution (413)
b
.:: > %X if some z; wnderflows . (4.14)
in the case of G.U., and
Y { if there are any intermediate underflows
boms > 3 in the forward substilution (4.15)
b
\F:-L > ”Lz-% if some y; underflows (4.16)
TORX
b max A { if some y, does not ezceed X end
ﬁ; >) there are any underflows in the back substitution (417)

«31-

b
=> l-)cl- if some z; underflows . (4.18)

Gax n
in the case of S.Z.
These results follow from (4.3) through (4.10).

When to Raise a Warning using G.U. ,

From (4.1) we know that underflows cannot hurt the triangular factorization as long as 6y is
pormalized. As discussed before, this is a reasonable requirement, so no tests need to be made dur- |
ing decomposition.

From (4.11) we know intermediate underflows in the forward substitution cannot hurt as long as
b ax is Dormalized, again a reasonable requirement.

Conditions (4.12) to (4.14) apply only if some y, or underflows. Thus one could simply raise a
warning if any 2, or ¥, underflowed, or if dpay and Gy, Were available, raise a warning only if
some y, underflows and (4.12) and (4.13) are not satisfied, or if some z, underflows and (4.13) is
pot true. Computing by requires n comparisons, as does computing 8pax (since it lies on the
diagonal of A), so the cost is small but not negligible. As discussed before, raising a warning
because the final result z; is not representable is not necessarily bad.

The event that y underflows without s underflowing can be used to detect ill-conditioning, as dis-
cussed below.

If underflow is not signaled during the computation at any time, then we know that a0 > A
and bgy >) with no comparison needed in our programs; this is the usual case.

A reliable program should be able to detect nonpositive-definite and very ill-conditioned matrices
(which could cause a divide by zero) and warn the user. This topic will not be discussed further
here.

When to Raise a Warning Using S.Z.

From (4.2) we see there is a more stringent requirement on 6y, that with G.U., and that inter-
mediate underflows can significantly affect the accuracy of the resuit. In contrast to G.U., tests
must be made during the decomposition, possibly including computing gy can comparing it to
/¢ (at the cost of n comparisons).

From conditions (4.15) and (4.17) we see intermediate underfiows can contribute significantly to
the error, and the conditions on by, b max/ V0 rax, 30d b max/ Bmax 3F¢ Mmote stringent than the
corresponding conditions for G.U.

Thus it is significantly easier to write reliable software using G.U. than S.Z.

32

Appendix 4: Program Listings

Cholesky Decomposition

array A[1..N,1..N] of real;
array L{1..N,1..N] of real;
/# as with Gaussian elimination, A and L could occupy the same locations. */

/* Triangular Factorization: A==LL Tef

for j=1 to N do /# j=column number */
begin
for i=j to N do /* i=row number +/
begin
SUM==Ali,j};
for k=1 to j-1 do SUM=SUM - L|i,k|*L[j,k];
if (i=j)
L[i,i]=sqrt(SUM);
/# test for nonpositive-definiteness/divide by zero omitted sf
else
L|[i,j]=SUM/LIj,i};
end
end

Solution of Both Triangular Systems following Cholesky Decomposition

array B[1..N] of real;

array X[1..N] of real;

array Y[1..N] of real;

[* As before, BX, and Y can occupy the same memory locations. Arrays
A and L were defined above. ¢/

/# Forward Substitution: LY=B ¢/

for i==1 to N do
begin
SUM=0;
for k-1 to i-1 do SUM=SUM + L[i,k]*Y[k];
Ylij=(8B[i] - SUM)/L[i,i]
end

/* Back Substitution: LT X=Y ¢/

for i=N downto 1 do
begin
SUM==0;
for k=i+ 1 to N do SUM=SUM + L[k,ij*X[k};
X[i]=(Yli] - SUM)/LiiJ;
end

«33 -

References

M. Payne, W. Strecker, "Draft Proposal for a Binary Normalized Floating Point Standard™, SIG-
NUM Newsletter, October 1979

W. Kahan, J. Palmer, "On a Proposed Floating-Point Standard”, SIGNUM Newsletter, October
1979

JH. Wilkinson,”Rounding Errors in Algebraic Processes”, Prentice Hall, 1963

J. Coonmen, et al.,”A Proposed Standard for Binary Floating Point Arithmetic®, SIGNUM
Newsletter, October 1979

J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart, LINPACK User’ Guide, Society for
Industrial and Applied Mathematics, Philadelphia, 1979

J. T. Coonen, "Underflow and the Denormalized Numbers”, Computer, vol. 14, no. 3, March
1981, pp 75-87

R. D. Skeel, "Scaling for Numerical Stability in Gaussian Elimination”, Journal of the ACM, vol.
26, no. 3, July 1979

