The Condition Number of Similarities that Diagonalize
Matrices

James Demmel

Computer Science Division
University of California, Berkeley

ABSTRACT

How ill-conditioned must a matrix S be if it (block) diagonalizes a given
matrix T, i.e. if $1TS is block diagonal? The answer depends on how the diago-
nal blocks partition T's spectrum; the condition number of S is bounded below
by a function of the norms of the projection matrices determined by the parti-
tioning. In the case of two diagonal blocks we compute an S which attains this
lower bound, and we describe almost best conditioned S’s for dividing T into
more blocks. We apply this result to bound the error in an algorithm to compute
analytic funtions of matrices, for instance exp(T). Our techuiques also produce
bounds for submatrices that appear in the square-root-free Cholesky and in the

Gram-Schmidt orthogonalization algorithms.

1. Introduction

Two measures of the illconditioning of the eigenvalues of 3 matrix T have appeared fre-
quently in the literature. One is the condition number of a matrix S which (block) diagonalizes
T under similarity ( i.e. S'TS is block diagonal), and the other is the norm of the projection
matrix P, belonging to the spectrum of the i-th diagonal block of S TS (if the i-th block is’1 by
1, the norm of P, is usually denoted 1/|s,|). Many authors have shown that the larger the con-
dition number of S is, or the larger the norm of P, is, the more sensitive to perturbations are at
least some of the eigenvalues of T. Bauer and Fike [3], Kahan [6], Rube [9], Wilkinson [13,14]

and otbers have all contributed theorems stating this result in different ways.

Our goal in this paper is to relate these two measures of ill-conditioning. The first measure
is somewhat ill-defined, since there must be many matrices S which block diagonalize T; we
therefore consider the best conditioned S among all candidates. In contrast, the second measure

is defined unambiguously given T and the partitioning T = | ] T, of T's spectrum into disjoint
=], N
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sets determined by the diagonal blocks ©; of 5~ 1TS: spectrum(©,) = ;. To each I, belongs a
projection P,. We show that the condition number of the best S is very nearly determined by the
largest || P,|| , where || P;|| is the norm of the projection P,. In fact we show how to compute
an S whose condition number is within a factor of dim(T') of the largest || P,||, and that this S
is nearly best.

Kahan [6] relates the two measures when S divides T into only 2 blocks. We sharpen his
results by exhibiting a best S for decomposing T into two blocks and compute its condition
pumber exactly in terms of the norm of a projection (see (2) below). Wilkinson {13, p 89} relates
the two measures when STS is completely diagonal; we generalize his results to diagonal blocks
of arbitrary sizes in Theorems 3 and 3a below.

To describe our results more formally, let || - || denote the 2-norm for vectors and also the

matrix norm induced by the vector norm:
[I il = lf;gll szi| /il =]l -
Let x(S) be the condition number of 5 with respect to -l

As)= sl s

Let Z= |} T, be a given partitioning of T's spectrum into m disjoint sets. We seek the best

TR Y

conditioned matrix S such that

SITS =6 = . and spectrum(©,) = L, ; (1)
6.
S will be the matrix that minimizes x(S) subject to the constraints (1).

When m==2 the best conditioned S will be expressed explicitly in terms of the projection

matrix P belonging to L,'s invariant subspace. The condition number of this best S will be
AS) =PIl + VIIPII*-1 . @

This result sharpens an estimate for (S) given by Kahan 6].

To prove (2) we will need a technical result, Theorem 1, that bounds the norms of subma-
trices of a positive definite matrix in terms of its condition number. Theorem 1 is a slight gen-

eralization of an inequality of Wielandt |4], and the proof technique used here yields several other
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inequalities (Theorem 4), one of which (65) is an inequality of Bauer [1].

When m>2 we show how to compute an S whose condition number is no larger than vm
times the smallest possible condition number. This is done by first splitting T into two diagonal
blocks in the optimal way mentioned above, and then continuing to split each diagonal block into
two smaller ones (recursively). The columns of the resulting S form an orthonormal basis for
each invariant subspace of T (i.e. the first dim(©,) columns of S are an orthonormal basis span-
ning the invariant subspace corresponding to T,, etc.). This result generalizes a result of van der
Sluis [10] in which he essentially comsiders the case where all invariant subspaces are one-

dimensional.

We also bound x(S) above and below in terms of the norms of the projection matrices P;

belonging to L,s’ invariant subspaces:

max (| Bll + VITPTT-D S 8 < Vi -4/ BIIRI7 @)

The lower bound in (3) generalizes a result of Bauer [2], who considered the case of one-
dimensional invariant subspaces. The upper bound is similar to a number of results [2,11,13]

where again one-dimensional subspaces are considered.

Our result bears on the accuracy to which analytic functions of a matrix (such as the
exponential) can be computed. A typical algorithm to compute exp(T), for example, will first find
an S to reduce T to block diagonal form as in (1), exponentiate the blocks ©, and transform
back:

exp(T) = exp(S©5) = Sexp(6)S™ . (4)

Our bound for the error in computing exp(T) by this method includes x(S) as a factor. Thus, the

smaller x(S) is, the more accurately can exp(T) be computed.

Part 2 of this paper states the main theorem and uses it to display the best S for decompos-
ing T into 2 blocks. Part 3 discusses breaking T into m>2 blocks. Part 4 applies the results to
an error bound for computing an analytic function of a matrix. Part 5 applies a variation of the
main theorem to bound the matrices obtained from doing square root free Cholesky, and from the
Gram-Schmidt orthogonalization process. Part 6 has the proof of the main theorem and some

related results.
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3. How to Decompose T into 2 blocks

o-p.

be s Hermitian positive definite matrix, partitioned so that A is n by n, Bismbyn,and C is

Let

m by m.Let x = || H|| || H'|| be the condition number of H.

Theorem 1z If H and x are defined as above, then

-1/ /2 -1
1| (479#BC | < S (%)
or, equivalently,
1+ || (A73)+BC
> s 6
*2 T (4 B)eBc | ©)

where X~Y/2 can be any matrix such that X-Y(X1/%)s = X, Furthermore, this bound is sharp.
In fact, given any m by n matrix Z such that || ZIl <1, it is possible to construct an H such
that (A~/2)#BC-Y/2 = Z and both sides of inequality (5) are equal.

This theorem will be proved in Part 6. Let us use it here to analyze the decomposition of T
into 2 diagonal blocks.
Let £ denote the spectrum of T, a set of points in the complex plane, and let A denote any

proper subeet of L. There must be many similarity matrices S such that

S§ITS = E 2.] )]

where E and F are square matrices whose spectra are the disjoint point sets A and L-A, respec-
tively. (We change notation here temporarily to avoid a proliferation of subscripts.) These
requirements do not determine S, E, and F uniquely, but they do impose constraints on the
matrix S of the similarity. One constraint is a lower bound under the condition number

[1 SI| 11 S|l of S. Using Theorem 1 we shall show that
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inf || S| 117 =PIl + VITPIIF-1 )

where P2 = P is the projection onto T’s invariant subspaces belonging to A. Alternatively, P
can be replaced by the complementary projection 1-P onto T's invariant subspaces belonging to
T-A without changing the bound above because || 1-P|| = || P|| [7]. What characterizes P

besides the equations
P:=P and PT = TP
is the identification of P with A instead of some other part of T's spectrum. Thus
P = [ (d - T)" dg/(2xi)

where T is any closed contour with A strictly inside and L-A strictly outside [8]. Of course, we
would not compute P from this integral; another better way to compute P and show how it is

related to S is as follows.

By Schur’s Theorem [5], we may reduce T to upper triangular form by a unitary matrix @

't G
Q+TQ = E F'] (9)

where E! is similar to E and F' to F. Since
()= || SI| 11 S711 =1l @S|l {Isell

we may assume without loss of generality that T is initially upper triangular. Thus, we seek an S

' "G 0

and a corresponding projection P which projects onto the invariant subspaces corresponding to

such that

the spectrum A of E/ and E.

The matrices S and P can be exhibited as follows. Define R by solving G = RF' - E'R;
this equation can be rearranged to form a triangular system of linear equations whose solution is

R with its entries rearranged to form a vector. Then S must be of the form:

b
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where V and W are arbitrary nonsingular matrices of the same dimensions as E’ and F' respec-

tively. Why must S be of this form? It is straightforward to verify that

1 VE'VY 0
STTS=1 o  wiprw

and so the first dim(E') columns of S span the right invariant subspace of T corresponding to A.
Any set of columns spanning the same subspace would serve equally well as columns of S, which
means precisely that V may be any nonsingular matrix. The same comments apply to the last

dim(F') columns of S.

Now observe that

1R

' E'R
PT=TP=1[ o |.

P projects onto the invariant subspace corresponding to E'. Note that || P]]2=1+ || R}|%

Since

Now we estimate x(S):

k}(S) = x(S1S) (13)

[ VsV VsRW ]
=KLl |[wsReV  We(I + R*R)W|) -

We can invoke Theorem 1 with AWV V) B = VsRW, and CVP= WY =R*R )-1/2, 20
that (A"/%)sBC Y = R(I + R*R y2, to find

1+ ||RU + RRYV?|

T-|| RU + R*R)F| (14)

«5) 2

Now we need to compute || R(J + R*R y¥/?|| . Assuming without loss of generality that

(I + R#R)*7 is the Hermitian square root, we obtain
| RU + ReRYZ||?= || (I + R*R F2R3R (I + R+R)'F|| (15)

= || R*R(I + R+R)||
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R 2
T 1+ RI7
|| PfI%-1
ey: -’
Substituting (15) in (14) gives
K(s) = VITPIIT-1+ || PI| . (16)

which proves the lower bound claimed in (8).

We pow show that the lower bound in (8) can be attained. According to (64) in the proof of

Theorem 1, by setting
Wa=|l+ RR| ad V=I (17)

where W can be any matrix such that WW# = (I + R*R )7, we obtain S for which the previous
inequality becomes equality. Thus have we perfected Parlett’s improvement of an estimate for inf
x(S) due to Kahan [6]. Note that W may be taken to be upper triangular by letting it be the
Cholesky factor of (I + R+R), where the Cholesky factorization is done starting from the lower
right corner of the matrix instead of the upper left. This choice of W maintains the upper tri-
angular form of 5 1TS, a fact we will use in Part 3. With this choice of V and W the first

dim(E') columas of S are orthonormal, as are the remaining dim(F') columns.

The best S is not unique. By applying the variation on Theorem 1 given by equation (70)

in Theorem 4, for example, we get the following alternatives for V and W:

+ 1

ct
W] ad V=[( e

) I - RR#]'/?

where V can be any matrix such that VV# is the matrix in brackets. For this choice of V and
W, the columns of S are no longer orthnormal, but the first dim(E') rows of S are multiples of

orthonormal vectors, and the remaining dim(F') rows are orthonormal.

3. How to Decompose T Into m>2 Blocks

Note that the choice of V and W above in (17) causes 5#5 to have the form

1 R(I + ReR)V?
S = kp(1 + ReRY)+ i : (18)
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Since the upper left corner of S¢S is the identity, the columns of S which span the invariant sub-
space corresponding to E (the first dim(E) columns) are orthonormal. Similarly, the last dim(F)
columns of S are orthonormal. This raises the following question: if we pick an orthonormal basis
for each invariant subspace we want to display, how far from optimally conditioned is this choice
of S?

First we will show that this choice of S has a condition number no larger than v'm times
optimal (where m is the number of invariant subspaces); second we will bound «(S) above and
below in terms of the || P,|| ; and third we will show how to compute this S given T in upper
triangular form. Finally we will discuss a different choice of S (also discussed in the literature

[11,13]) which is harder to compute and has slightly different bounds on its condition number.
Theorem 3: Let S be a matrix that block diagonalizes T as shown:
(5N*| |Tu - Tia |

|
SITS = . 1S 0] Sa (19)
S").' Toan | l

On

where S, denotes the columns of S spanning the right invariant subspace of T belonging to L,,
and (S7?), # denotes the rows of S spanning the corresponding left invariant subspace.

By choosing the columns constituting S; to be any orthonormal basis of the (right) invariant

subspace belonging to £,, 5 will have a condition number no larger than Vm times the smallest

possible:
K(5) £ Vm - (Soprovar) - (20)

Said another way, choose S so that S#S has identity matrices (of various sizes) as diagonal
blocks.

Prooft This proof is a simple generalization of the proof that by diagonally scaling a positive
definite matrix to have unit diagonal, its condition pumber is within a factor of the dimension of
the matrix of the lowest condition number achievable by diagonal scaling [10]. We generalize
diagonal scaling for unit diagonal to be block diagonal scaling for block unit diagonal, i.e. to have

identity matrices (of various sizes) on the diagonal. We show that such a block diagonal scaling

July 5, 1983



-9-

produces a matrix whose condition number is within a factor of the number of diagonal blocks of
the lowest possible condition number.

Assume the columns of S form orthonormal bases of T's right invariant subspaces and let
D be a block diagonal nonsingular matrix whose blocks D, are the same size as T,;. Then any s

which decomposes T as shown in (19) can be written S' = SD. Now

”Sw”
max -
S T ol 5 127511 V1l Se.l

vmk(SD) = vm 2> , 21
(D) =Vm TSl 2 WD Twll omd) -
-1
o Tl D7l
where z, is chosen so that || z,}] =1 and I $2,]] = Ouin(S) = the smallest singular value of

S, and w, is chosen so || w,|| =1 and || D'w,|| = ouw(D™*). With this choice of w, the fac-
tor || D'z,|| /|| D w,|| is at least onme. Since D is block diagonal, w, can be chosen to have
nONzero components corresponding to only one block of D. Thus,

I} Sw, || 2 = || w, #S*Sw,|| = || w, #w,|| = 1. Since Tmu(S) = the largest singular value of S

satisfies
rendS) = 11511 < 4 / 11512 = § [E1=vm .
we get
Orrax(S) "

Since (22) is true for any D, it is true in particular when SD = Sopmuur- QE.D.

In the case of m==2 we expressed k(Sopmaus) in terms of || P||, where P was the projec-
tion matrix corresponding to the invariant subspace belonging to L,. We can also bound «(S)

here in terms of the || P, ||, where P; is the projection matrix belonging to I,.

Theorem 3: Let T, S and P, be defined as above. Then

mac (1Pl + VP D S s5) € VA - / BIAI? (23)

or weakened slightly,

max|| P,|| < dS) = m mxxf{ P] - (24)
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Proof: This proof is based a similar result of Wilkinson’s [13, p. 890] when all invariant subspaces

are one dimensional. First we will prove the lower bound and then the upper bound.

From (8) we know that any S (not just the one defined above) which displays the invariant

subspace belonging to £, has a condition number bounded from below:

o(s) 2 | Pll + VITPITP-T . (25)

Since (25) is true for all i, the lower bound follows easily.

We compute the upper bound as follows:
()=l S|l || sl <vm || S7| (26)

since || || € Vm (as mentioned in the proof of Theorem 2). Using the notation of (19) it is

easy to verify that
P =S (S").' . (27)
Since S, consists of orthonormal columns, (27) yields

A =157l - (28)

15 < /= /Een (29)

and the upper bound follows. Q.ED.

Thus

The lower bound in Theorem 3 has been proven by Bauer [2] in the case of one-dimensional
invariant subspaces.

We can use the splitting algorithm of Part 2 to compute such an S. Assume without loes of

generality that T is initially upper triangular. Build S as a product IIS(‘) where

. .
(I1 s (11 5 is block diagonal and upper triangular for all n and S(*+V js chosen as in
sumd 1ond

0 ) . ]
(17) to split one or more of the diagonal blocks of (HS"’)“T(HS("). After some easy computa~
L 1]

tion we may verify that S5 = (TIS“)#(I1S")) has identity matrices (of various sizes) as diago-
nal blocks.
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The other choice of S discussed in the literature is scaled so that the i-th diagonal block of
S¢S is || P,|| /2 times an identity matrix of appropriate size. With this choice of S the i-th diag-
onal block of (S¢S} has the same norm as the corresponding block of 5+, namely [} P.|| Y2 In
fact, in the case where all invariant subspaces are one-dimensional Smith [11] shows that this

choice of S is optimally scaled with respect to the condition number
cp(S)=1ISIp IS r

where || - || r is the Frobenius norm:

nsure,/ggls.,l’-

With this choice of S, Theorem 2 is weakened slightly to become:

Theorem 3a: With S chosen so that the i-th diagonal block of S¢S is || P;|} 1/2 times an iden-

tity matrix, we have
x(S) < m - &(Soprmaar) - (30)

Proof: Similar to Theorem 2.
Theorem 3, on the other hand, becomes slightly stronger:

Theorem 3a: With S chosen as in Theorem 2a, we can bound x(S) as follows:

max (1| 21| + VITPTTT-D) < o) < SURIL - (31)

Proof: Similar to Theorem 3.
The upper bound of Theorem 3a generalizes a result of Wilkinson [13, p 89} for one dimen-

sional invariant subspaces. Note that the "spectral condition numbers” 1/] 8| used by Wilkinson

and others [11,13] are just || P;|| when the invariant subspaces are one-dimensional. When

»
Y 1| Pl is large the upper bound in (31) is comparable with the upper bound on x(SoprimaL )
sund

given by Bauer [2, Theorem VII| in the case of one-dimensional invariant subspaces.

This choice of S is more difficult to compute than the S of Theorems 2 and 3 because of the
peed to compute norms of the P; (if the invariant subspaces are all one or two dimensional this is

not hard, of course).
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4. Computing a Function of a Matrix

In this section we want to show why a well conditioned block diagonalizing matrix S is
better than an ill-conditioned one for computing a function of a matrix T. Assuming f(7T) is an

analytic function of T, we compute f(T') as follows:

(81)
[(T) = f(565) = 51(8)s' =S : st . (32)
1(8a)

The presumption is that it is easier to compute / of the small blocks ©, than of all of T. We will
ot ask about the error in computing f(©,) but rather the error in computing ® = S'TS and
f(T) = Sf(6)S™. In general, we are interested in the error in computing the similarity transfor-

mation X = SYS™.

We assume for this analysis that we compute with single precision floating point with rela-
tive precision ¢. That is, when is one of the operations + ,-, ¢ or /, the relative error in comput-

ing fi(a b)is bounded by e
fi(a b)=1{(a b)(1+e¢) where |e]| <. (33)

Using (33) it is easy to show
Lemma 1: Let A and B be real n by n matrices, where ne < .1. Let | A| denote the matrix
of absolute entries of A: |A|,; = | A;;|. Then to first order in ¢ the error in computing the

matrix product AB is bounded as follows:
|Ji(AB) - AB| < nelA| |B] . (34)
Proof: See [12].

Computing X = SYS requires two matrix products: Z = I(SY) and X = fI(Z57),

where we assume S and S™! are known exactly. Applying Lemma 1 to these two products yields

Lemma 2: If ne < .1, then to first order in €

[| £1(SYS™) - SYSY|| < 3n*2k(S)]] Y] € . (35)

Proof: Straightforward.

Assuming this bound is realistic, it is clear that picking S to keep «(S) small is advanta-
geous. The error in computing similarity transformations of matrices is discussed in more detail in
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Wilkinson {13, chap 3|.

5. Applications of a Varlation of Theorem 1

It is more convenient here to use a slight variation on Theorem 1, stated as (66) in Theorem

| 47Bl| < 3 (VE-1/VA) .

Application 1: Cholesky without square roots. The square root free Cholesky algorithm decom-
poses a positive definite Hermitian matrix H into the product of a unit lower triangular matrix L,

a nonnegative diagonal matrix D, and L #:
H = LDL+*

We wish to bound the entries of L. Consider the following partitioning of the decomposition:
B 1 1 1¥ R#
H=1pg. c|=1r L,J| DoJ| 1Lof- (36)

LIDlR‘ == B

From (36) we see

or
R+ = (L,D,)'B
= L#(L,D,L4)'B
- L#,A"B .

Since L#, is unit upper triangular, the last row of R# and the last row of A~'B are identical. But

the last row of R ¢ is the conjugate transpose of a subdiagonal column of L. Thus
|| subdiagonal column of L || == | last column of corresponding A™B||

< || all of corresponding AB]| ,

and so Theorem 4 implies
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|| subdiagonal column of L Il £ -;— (V% - 1/Vk) .

A 2 by 2 example suggested by the proof of Theorem 4 (see (66) and (70)) shows this bound is

achievable.

This bound is tighter than the simpler bound

ILs'jl S\/(Hu'Dn)/DjjS‘/(A-X)IX’V"'I ’ (37)
which is derived by considering the ¢,i-th entries of both sides of H = LDL+*:

L2D,, + D, + positive terms = H, .

This result can also be used to get a lower bound on x{H) given its Cholesky decomposition.
A similar application to Gauss-Jordan elimination appears in (1)
Application 2: Gram-Schmidt Orthogonalization Process. The Gram-Schmidt process takes a set
of independent vectors v,€C", 1<i<m, and produces 3 set of orthonormal vectors ¢,€C",
1<i<m, where g; is a linear combination of v, through v; and orthogonal to v, through v,_; for
i>1. We wish to bound the coefficients of ¢, to ¢ (or vy to v;_,) in the expression for ¢;. We do
this by showing Gram-Schmidt to be equivalent to square-root-free Cholesky performed on a cer-

tain matrix, and use Application 1.

The Gram-Schmidt process expresses ¢, as a linear combination of v, and ¢, through g,_;.
Let V be the n by m matrix whose columns are the vectors v; and let @ be the n by m matrix

with columns ¢,. Then the Gram-Schmidt process may be expressed succinctly as
vV = QD?U , (38)

where U is an n by n unit upper triangular matrix and D is an n by n nonnegative diagonal
matrix. The entries of U are the coeflicients we seek to bound. Multiplying both sides of (38) on

the left by their transposes, we obtain
VeV = UsDU . (39)

U is the factor of V¢V obtained by doing square root free Cholesky. Thus, from Application 2 we

|| superdiagonal column of U|| < % ( Ve[V#V) - 1V VeV}) , (40)
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which is the desired bound.

If we wanted to express ¢, as a linear combination of v, through v; instead of v; and ¢,

through g¢,_;, we would express the Gram-Schmidt process as
VUD W = Q . (41)

What is a bound for the columns of U? Multiply both sides of (41) on the the left by their tran-

sposes to obtain
DVRUsVsVUD R = QeQ =1 , (42)
or
(VeV)y! = UDU+ . (43)

U is the factor of (V#V)? obtained by doing square root free Cholesky starting at the lower right

comer of (V#V ) instead of the upper left corner as is usual. Thus, from Application 2 we see

|| superdiagonal column of U | £ % (Ve((VeVYY) - 1/VE((V#V]T) (44)

== -;-( Ve(V#V) - 1/Ve(V#V)) ,

since k(M) = k(M) for all M. Thus, we get the same bound on the columns of U as on the

columns of U.
8. Proof of Theorem 1
Unit vectors 2 € C™ and y € C*" satisfying
y*(A/?)eBC Pz = || (A7F)eBC | (45)
must exist. Use them to construct the unit vectors
s =AY A, w=CPf|| V], (46)
and
z sinf
o0 = [2529)] - (47)

We want to consider H acting on the 2-dimensional subspace in which #(8) lies. Now
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s*(0)Hs(0) < A

implies

[3#sind, wrcosd] b‘ C] [z:x:soo

or

sin20 - z#Az + cos?d - w#Cw + sinfcosd (w*B2z + z#Bw) S A .

To simplify notation, let 8 = 2#4z and ¢ = we*Cuw.

From (45) and (46) we know that
z#Bw = || (A¥3BC | (1| A7) - 11 €Pl)

= || (AABCA| - || AYz|| - || €V

(48)

(49)

(50)

(51)

Since (CY?)#C'/2 = C, we get ¢ = w*Cv = || we(CW?)2CY2uw|| = || CYVy|| 2. Similarly,

s = z#Az = || AY?z]| % so (51) becomes
1#Bw = || (A7) +BC?|| - Vac

Substituting (52) into (50) and rearranging, we obtain

(ﬁ%i'-)+ (55%) cont + Vac || (A% #BC1#]| sin20 < A

Since § was arbitrary, we can maximize the L.H.S. of (53) over # yielding

(28 + ([(552P + e 1A B2 A

or

| (4 BCiy) < YA=(et a)/2F - ((c=e)J2F

Vac

VA_J(A-¢)
o= :

Similarly, the inequality

X < s2(0)Hs(6)
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implies

NS (EEG) + (55) conte + || (AVBCIAYY || A¥%|] 1] €Ful| sin2e

2

Minimizing the R H.S. of (57) over @ we obtain

A< (c; a)__ (i;—a')2 + ac || (A BC2)| 2

or, rearranging,

-1 1/2 < a—X C"'x
Il o) < LN

Combining (55) and (59) yields

1] (A-¥?)¢BC || < min(V{a - N (c - N/(sc) , VIA - a) (A - c)/{ac)] .

All we know about z#Az =5 a isthat A < s < A, and similarly \ < ¢ = w#Cw < A. Thus

[| () BeA)| < max min(V{a=X) (7= W) , V&= @) (A =7/ra])-

(57)

(58)

(59)

(60)

Since (a - \)/a is an increasing function of a and (A - a)/a is a decreasing function of a in the

range A<a<A, we see the max in the last inequality occurs when the two arguments of the min

are equal. This equality implies
(@-N(1-N)=A-a)(A-1)
or
a+ 1T=A+ ).

Substituting (62) into (60) yields

| (A ) eBCR)| < max VT-NTA=7)/VAA + 2 -7)

<T1SA
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as desired.
Any 2 by 2 positive definite matrix whose diagonal entries are equal shows the the inequal-
ity of Theorem 1 is sharp.

We now show that given x and 2 = (AY/2)+BCY/? such that || Z|| <1 and the inequal-
ity of the theorem is sharp, it is possible to construct an H with the given constraints. Simply

choose
A=] , C=1I] aad B=2 (64)

corresponding to the (arbitrary) choice A =1 + [| Z]] and X\ =1-|| Z{|. It is easy to verify
that every inequality in the proof is sharp for this choice of A, B, and C. QE.D.

Theorem 4: Let H, A, ), and « be as above. Define X'/ such that X(XV?)s = X', Then

the following inequalities are sharp:

| BeH|| < 3 (VR - 1/VR) (65)

| 4Bl < 5 (V% - 1/VR) (660)
Bl < 3(4-% (67)
AR eB < VE- VR (68)
| BC|| < VK-VX (69)

Proof: All the proofs are analogous to the proof of Theorem 1. To prove (65), for example (also

proved in [1]), choose z and y unit vectors such that
z+BCy = || BC}]
and let
z = Cly/ll Cyll
Counsider H restricted to the two dimensional subspace in which
0= [

lies. The rest of the proof follows similarly to that of Theorem 1.
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We can also show that given x and arbitrary R = BC™ 1 such that (65) is sharp, it is possi-

ble to construct an H with the given constraints. Simply choose

2+ 1
2x

Cml , Am( )I ad B=R (70)

corresponding to the (arbitrary) choice A = (x + 1)/2 and ) = (x + 1)/2x. It is easy to verify
that every inequality in the proof is sharp for this choice of A, B, and C.

Note that Theorems 1 and 4 are still true when A, B, and C are conforming submatrices
extracted from a larger H (or @Q#HQ with @ unitary) since the bounds are monotonic in x {or A
and ). In particular, if A, B, and C are scalar Theorem 1 becomes an inequality of Wielandt (4]
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