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ABSTRACT

CPU pipelines need a steady flow of instructions in order to function
with maximum effectiveness. Branches which change the expected order of
instruction execution require that the pipeline be reloaded, resulting in
several lost machine cycles per such branch. By examining the type of
branch and the past execution behavior of that branch (taken/not taken) it
is possible to predict with high accuracy whether the branch will be taken
or not taken, and by remembering the previous branch target (destination),
to predict the current branch target. In this paper we use a systematic
approach to selecting good prediction strategies. Our studies are based
on 26 program address traces grouped into four IBM 370 workloads
(scientific, commercial, compiler, supervisor) and CDC 6400 and DEC PDP-11
workloads. Our results show the effectiveness of various prediction
strategies, the number of past branches that should be remembered, the
amount of state required for each and the effect of workload and branch
type. Improvements of from 5% to 20% can be expected in CPU performance
when a branch target buffer is installed. We also consider issues

relating to the implementation of real branch target buffers.
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I. Introduction

Modern high speed computer systems achieve their high performance by
two means: fast logic and parallelism. One of the most important aspects
of that parallelism is the pipelining of instruction execution. That is,
to execute each instruction, a number of operations must be performed
sequentially. A typical sequence might consist of instruction fetch (IF),
instruction decode, operand address generation, operand fetch, execution
and operand write. This sequence is illustrated in figure 1. Pipelining
consists of executing several instructions concurrently, with each
instruction in a different stage of the processing sequence (see figure
2.) The pipeline (pipe) shown in figure 1 could contain up to 7
instruetions, each in a different stage. We refer the reader to [Ram77]
or [Kogg81] for a comprehensive survey of pipelining.

Pipelines are very cost effective as a means to achieve parallelism
because although several instructions may be processed in parallel, each
is in a different phase of execution, and thus there need exist only one
set of hardware for each stage. Of course, the logic required to
implement a totally non-pipelined machine would be less, since there would
be less control logic, but a significant savings is still obtained.

For a number of reasons, the N-fold parallelism promised by an N
stage pipeline is seldom realized. First, we note that the pipeline is
constrained to run no faster than its slowest stage. Even if all of the
stages have the same average processing time, random variations in one or
more of them will disrupt the smooth flow of instructions [Pine791. For
example, the execution stage of the pipeline will generally run more
slowly for "decimal divide" than for "integer add". We will refer to the
minimum time for an instruction to advance one stage in the pipe as the
pipeline stage time (PST). Other delays encountered in pipelines occur
because of attempts to use busy resources (e.g. conflicts in accessing a
single port register file), or failure to have an input available. (E.g.

one instruction uses the output of the immediately previous one as part of
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an address calculation, but that previous instruction has not passed the
execute stage of the pipeline.) Cache memory misses are another major
source of pipeline delay [Smit79].

One of the major problems in designing a CPU pipeline is to ensure a
steady flow of instructions to the initial stage'of the pipeline. Such a
flow can be either impeded or interrupted for two reasons: (1) The memory
access time is long enough that a request by the instruction fetch (IF)
stage of the pipe for another instruction will not be satisfied in one
PST; or (2) a change in the expected sequence of instructions, due, for
example, to a branch, will cause the contents of part of the pipeline to
be discarded, and the pipeline tq be reloaded. We call this latter reason
the "branch problem". The branch problem is intimately related to the
timely fetch of instructions since the penalty for a branch will depend on
the time required to fetch the branch target.

The branch problem can be explained more fully as follows: The
nexecution" of a branch instruction consists of causing the instruction
fetch unit to select a different instruction as the next instruction to
execute. Thus, considering the pipeline shown in figure 1, all of the
partially executed instructions in the stages of the pipeline preceding
the execution wunit must be discarded; an additional delay is also
encountered in fetching the new, out of sequence instruction. Each of
these two delays can seriously impact the CPU performance.

There are a number of ways in which the performance degradation due
to branches in the instruction stream can be reduced. We list those
methods here; each is discussed in more detail in the next section: loop
buffer(s), prepare to branch, delayed branch, multiple instruction
streams, prefetch branch target, data fetch target, taken/not taken
switch, and the branch target buffer. The branch target buffer (BTB), the
principal topic of this paper, is a small associative memory which retains
the addresses of recently executed branches and their targets

(destinations). This puffer is used to predict whether the branch will be



taken this time, and if so, what the target of the branch will be. . The
instruction fetch stage then continues by fetching ipstructions from the
predicted target address.

In this paper we present a thorough and systematic study of the
design and effectiveness of branch target buffers. In the next section we
review the various existing solutions to the branch problem and also
discuss previous studies of the BTB. Our research is based on extensive
analysis of program instruction traces, whigh is explained in section III.
Section IV considers instruction behavior and tabulates a large variety c¢f
measurements on those traces. After that, we consider branch prediction
mechanisms of various complexity. There are a number of implementation
considerations which are discussed in section VI. Finally, we estimate

the overall effectiveness of the BTB.

II. Existing Approaches to the Branch Problem

Modern computers implement a variety of mechanisms to minimize the
branch problem. In this section, we briefly discuss each.

A. Loop Buffer(s)

A loop buffer is a small, very high speed buffer maintained by the
instruction fetch stage -of the pipeline. A single loop buffer contains
one set of seguential instructions. Multiple loop buffers contain n
sequences, one per buffer, but the contents of the various buffers need
not be contiguous with each other. The loop buffer functions in two ways:
first, it contains instructions sequentially ahead of the current
instruction fetch address; thus instructions fetched in sequence will be
available without the usual memory access time. Second, it will recognize
when the target of a branch falls within its contents (this may include
backward branches) and will deliver those instructions without accessing
memory. It is possible to fetch all of the instructions for a loop
entirely from this buffer; thus the name "loop buffer”. Among the

machines using a loop buffer include the CDC Star-100 [CcDCT73] with a




puffer of 256 bytes, the CDC-6600 with 60 bytes, [{Thor64,CDC74] and the
CDC 7600 with twelve 60 bit words [cocrsl.

The Cray-I maintains four loop puffers [Cray76,Russ78], and replaces
their contents in a FIFO manner. The idea here is that a loop may consist
of several non-contiguous instruction sequences and thus may be better
captured this way than by a mechanism that permits only one sequence.

B. Multiple Instruction Streams

A normal pipeline suffers a branch penalty because for a conditional
branch it must make a choice - the instruction fetch unit must either
fetch the next sequential instruction or it must fetch the branch target.
A brute force approach to this problem is to replicate the initial stages
of the pipeline, so that both the sequential instruction and the potential
branch target can be fetched, decoded, and _processed. There are three
problems with this approach: (1) The branch target cannot be fetched
until its address is determined. That may require a computation, as when
a displacement is added to both a base and index register. This
computation requires time even when all operands are available. Further
delays may occur when operands are not available, which occurs if an
operand is the result of a not yet completed instruction or when a memcry
feteh 1is required. There may also be contention delays, as, for example,
in accessing the register file. Also, additional memory traffic is
generated, further creating resource contention [Gare803. (2)y 1If
instruction I is a branch instruction, then there may be additional branch
instructions to enter the pipeline (either part) before I is resolved as
to taken/not taken and target. Riseman and Foster [Rise72] found that for
a typical 1length pipeline, more than two branches would have to be so
processed for there to be a significant improvement. The net amount of
hardware is 1likely to be impractical. (3) Finally, the cost of
replicating significant parts of the pipeline (including 1instruction
fetch, instruction decode, operand address generate) is substantial; thus

this mechanism is of questionable cost effectiveness.



Despite the problems with following multiple instruction streams, a
number of machines do so: The IBM 370/168 [IBM73] can fetch one alternate
instruction  path; the IBM 3033 [IBM78] can pursue two alternate
instruction streams. The 3033 ?nly fetches an alternate instruction
stream when it is predicted to be taken; this prediction depends on the
branch condition mask in the instruction, the operation code and the
target address operand register. (See also [Hugh81bl.)

C. Prefetch Branch Target

Rather than replicate several initial stages of the pipeline, it 1is
helpful to duplicate only enough logic to prefetch the branch target.
That is, when a branch is recognized, a special mechanism calculates and
prefetches the target of the branch; thus if the branch is found to be
taken, the target is loaded immediately into the instruction decode stage
of the pipe, with no additional delay for instruction fetch [Yamo80].
Several such prefetches can be accumulated along the main instruction
sequence, but since the secondary (prefetched) sequences are not decodeZd,
no additional prefetches can be generated there.

IBM 360/91 uses the simple prefetch mechanism described, whereby it
prefetches a double word target (Ande67, IBMT0].

D. Data Fetch Target

In the IBM 370 architecture, the Branch Conditional instruction has
the same form as the Load or Add (from memory) instruction; that is, the
target of the branch is computed in just the same way as the memory based
operand of the Load or Add. The Amdahl 470 computers [Amda76] use this
feature to produce an effect very much like the target prefetch mechanism
of the 360/91: the branch target is accessed as if it wére an ordinary
operand; if the branch is taken, the target is loaded into the instruction
decode stage of the pipeline. (Rather than being placed in a register, as
for Load, or being sent to the adder, as for Add.)

E. Prepare to Branch

The Texas Instruments ASC computer [TI76] uses two buffers into which

it alternately prefetches instructions from memory. The Prepare To Branch
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and Load Look Ahead instructions can cause the machine to prefetch from
the branch target rather than to prefetch sequentially. The effectiveness
of this scheme depends on the programmer Or the compiler correctly
i{nserting these instructions.

F. Delayed Branch

The problem with a branch is that if instruction I is a taken
(suceessful) branch, then instruction I+l will be out of sequence, with
the consequences described above. The instruction set architecture can be
specified so that a branch is defined to affect the address not of
instruction I+1 but of instruction I+k, for some k. If k is equal to or
larger than the number of pipeline stages preceding the stage at which the
branch is resolved (executed) then the instruction fetch can (almost)
always be given the correct address from which to fetch. (The "31lmost"
refers to the occurence of asynchronous events such as interrupts, which
cannot be predicted from the instruction stream.)

There are several problems with designing a machine to use a delayed
branch. The most significant is that it is likely that human programmers
will find it very difficult to write code in which some instructions
(branches) have delayed effects. Thus code for such a machine must be
almost entirely compiler generated, with the consequent need for a bug
free and very efficient compiler. We also note that the delayed branch
requires a new architecture; it cannot be used as a technique to speed Up
an existing one. In addition, not all of the potential speed up of the
delayed branch may be realized; there may not be k-1 instructions that can
be usefully performed once the branch is resolved. 4

Despite the problems noted above, there are two existing exberimental
computers which use the delayed branch: the IBM 801, an experimental
minicomputer constructed at IBM Research, Yorktown Heights (Radi82], and a
dedicated microprogrammed machine constructed by E. R. Berlekamp
{Berl79] to insert and remove error correcting codes from signal

transmissions. It has been proposed for the RISC computer [Patt81].



G. Taken/Not Taken Switch

As we will show in the remainder of this paper, whether or not a
branch will be taken can be predicted with good accuracy. A prediction
mechanism which specifies whether a branch will or won't likely be taken
15 called the taken/ not taken switch. The idea is that with every
instruction in the cache memory, one or more bits are associated. The
setting of these bits determines whether the branch is predicted to be
taken or not. After the branch is resolved, the values of the bits may be
reset in the cache to reflect the prediction for the next time.

The taken - not taken switch has been proposed for the S-1 computer
{Widd77; see also Hail79,Wood76]. Two bits are stored with each
instruction. One bit specifies whether a jump should be predicted (the
Jump bit) and the other teils whether the last prediction wrong (the Wrong
bit). Two wrong predictions in a row cause the Jump bit to be changed.
The effectiveness of this prediction algorithm is discussed in (Widd771]
and below in section V.B. We note that this mechanism still encounters
delays due to target address computation and the out of sequence fetch., A
version of this scheme is proposed in {Lile79].

H. Look Ahead Resolution 7

Another proposed solution to the branch problem {Hugh81al] is to place
extra logic in the pipeline so that an early stage of the pipeline can
resolve a branch whenever possible. It is possible if the condition code
affecting a conditional branch has already been determined. See also
[Losq82b] and {Rao82].

1. Branch Target Buffer

The Branch Target Buffer is a small cache memory associated with the
instruction fetch (IF) stage of the pipeline. The BTB retains
three-tuples, each of which contains: the address of a previously
executed .instruction, information which permits a prediction as to whether
the instruction branch will be taken, and the most recent target address

for that branch (see figure 3). It functions as follows: The instruction



fetch stage compares the instruction address against the instruction
addresses in the BTB. If there is a match, then a prediction is made as
to whether the branch is likely to pbe taken. If the prediction is that
the branch will occur, then the target address field is used to select the
next instruction fetch address. When the branch is actually resolved, at
the execute stage of the pipe, the BTB is updated, if necessary, with the
corrected prediction information and target address. We note that the BTB
can be used for every instruction fetch, and thus it can have as many
predictions in force as there are instructions uncompleted in the
pipeline.

The major optimization problem in the design of a BTB 1is the
selection of the algorithm that predicts whether or not the branch will be
taken. There are also the implementation issues of how large the BTB
will/should be, and how it should be organized (e.g. set associative,
hashed, etc.). There have been two previous papers which study these
optimizations. Holgate and Ibbett [Holg80] study its effectiveness in the
context of the MU-5, which actually implements a branch target buffer,
roughly of the type described. (See also [Losq82c] which proposes this
idea.) J. Smith [Smit81] examines a number of BTB designs using traces
for the CDC Cyber 170 computer. In both cases, the results are similar to
our own, but in this paper we study three different machine architectures
(IBEM 370, DEC PDP-11, CDC 6400) and we consider prediction strategies much
more systemmatically. We compare their results to our own as appropriate

in the remainder of this paper.

III. Methodology and Data

There currently exists no statistically acceptable medel to
characterize any aspect of program behavior (although with respect to
paging and memory management, there has been much research [Smi£78c],
(Spir771). With respect to the design and evaluation of branch target

buffers, there is the need for a model of when branches occur, whether
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they will be taken or not, and whether the branch target will change.
Because there is no model which can accurately predict these things, our
research will be based on the thorough analysis and use for trace driven
simulation of program address traces.

A. The Data

We have available 26 program address traces (see Appendix I) which we
have grouped into six workloads. Four of these workloads are for the IBM
370 architecture and consist of compiler executions (PL/I, Cobol,
Fortran-H), business programs (Cobecl, PL/I), a scientific mix (Fortran)
and a supervisor state set of traces (MVS operating system). Six traces
form the Digital Equipment Corporation PDP-11 workload, and six more
traces comprise the Control Data Corporation 6400 workload. In Appendix I
we list each of the programs in each workload and also give their combined
total length in instructions.

From each program trace, the branch instructions were extracted,
along with their targets, addresses, number in sequence and operation
codes. All of the analysis was based on this extraction.

The large number of traces used in this research and the grouping of
them into workloads serves several purposes: First, the large number of
individual traces, and the use of several of them in each workload, should
give representative behavior; no individual trace, no matter how peculiar,
can significantly throw off the overall results. Conversely, the use of
workloads, rather than a grand average, serves to show the variation to be
expected from the different job mixes experienced on different computer
centers, different machines and at different times of day. It s well
known that certain workloads have different instruction mixes; e.g.
business programs use many more SS type operations on the IBM 370 than
scientific programs. Conversely, the scientific programs have far more
floating point operations. If.such differences affect the effectiveness
of a branch target buffer, it will be apparent in our studies. Similarly,

the use of traces from three very (1) different machiné architectures will
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.ve some indication of whether the results are sensitive to the
instruction set architecture.

Some of our studies will show results for various specific machine
instructions. For reference purposes, we show the branch instructions for
each machine in Appendix II. Some of our studies will be limited to
conditional branches only: the instructions considered to be conditional
branches are also listed in Appendix II.

B. Methodology

Trace driven simulation is a technique by which a trace is recorded
of the operation of some system. That trace is then used to drive a model
of the system, in which various parameters or features of interest can be
varied. If the variation in parameters does not affect the validity of
the trace, then the trace driven simulation can accurately predict the
effect of changes in the system. An early example of trace driven
simulation for the evaluation of paging algorithms is given in (Belabéb],
and for the evaluation of CPU scheduling, in [SherT72].

We use our program address traces in two different ways. First, we
examine them and measure various features of interest; for example, the
frequency of taken and not taken branches. We then use these measurements
as one basis from which we can formulate branch buffering strategies. The

traces are then used to evaluate branch target puffer designs.

IV. Branch Behavior

A. Taken/Not Taken and Branch Frequency by Opcode

For each trace, in table 1 we show the overall probability of a
branch being taken or not, and the ratio (r) of branch instructiéns to all
instructions in the trace. We note two important features here: first,
branches are taken twice as often as not; thus by just guessing that
branches are always taken, we are right 60 to 70% of the time. (In
(Smit81] the range over six traces is 57% to 99%, with an average of
76.7%.) Variation between workloads is moderate, and for all workloads,
branches are taken a majority of the time.

12



N O
T O
r O

Op
Code

BR,B
BAL
BALR
BCT
BCTR
BXH
BXLE
BC
BCR .
EX
SVC
LPSW
MC

Op
Code
BR,B
BAL
BALR
BCT
BCTR
BXH
BXLE
BC
BCR
EX
sSvC
LPSW

IBM
CPL
. 360
. 640
.317

IBM
BUS
0.343
0.657
0.189

IBM
SCI
0.296
0.704
0.105

IBM DEC CcDC
SUP PDP 11 6400
0.460 0.262 0.222

0.540 0.738 0.778
0.376 0.388 0.079

Ave.

0.324
0.676
0.242

Fraction of Branches, taken, not taken, and fraction
of branches overall(rl.

IBM
CPL

0.222
0.056
0.036
0.024
0.022
0.004
0.032
0.544
0.051
0.009
0.000
0.000
0.000

IBM
CPL
1.000
1.000
0.659
0.584
0.007
0.404
0.865
0.462
0.539
1.000
1.000

IBM
BUS

0.243
0.036
0.050
0.013
0.050
0.000
0.000
0.521
0.081
0.005
0.001
0.000
0.000

IBM
BUS
1.000
1.000
0.555
0.899
0.173

0.994
0.571
0.348
1.000
1.000

Table 1
IBM IBM Op DEC
SCI SUP Code PDP11
0.254 0.138 JSR 0.1
0.013 0.036 SOB 0.008
0.079 0.065 BGET 0.113
0.027 0.016 BVCS 0.030
0.006 0.019 BHSL 0.031
0.000 0.000 BNEQ 0.278
0,188 0,003 RTS 0.074
0.318 0.674 JMP 0.190
0.112 0.034 BR 0.162
0.003 0.005 TRAP 0.002
0.000 0.001
0.000 0,005
0.000 0.005
Frequency of Branch Types
Table 2
IBM IBM Op DEC
SCI SUP Code PDP11
1.000 1.000 JSR 1.000
1.000 1.000 SOB 0.448
0.850 0.531 BGET 0.330
0.857 0.713 BVCS 0.155
0.000 0.207 BHSL 0.496
- - BNEQ 0.495
0.865 0.522 RTS 1.000
0.342 0.415 JMP 1,000
0.647 0.584 BR 1.000
1.000 1.000 TRAP 1.000
1.000 1.000
- 1.000
1.000 :

Probabilities of Branch Taken by Branch Type
(- indicates instruction not in that trace)

Table 3
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Op CDC
Code 6400

RJ 0.049
JP 0.017
XJ 0.560
EQ 0.157
NE 0.199
GE 0.000
LT 0.003
SYs 0.015

Op CDC

Code 6400
RJ 1.000
JP 1.000
XJ 0.604
EQ 1.000
NE 1.000
GE 0.8u8
LT 0.000
SYS 1.000

.
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The probability that a branch is of a specific operation code is
shown in table 2 for each workload. In the case of the 370 workloads, we
note significant variation in the frequency of the various operation
types.

Table 3 shows the probability that a branch is taken for each
operation code. It is worth noting, of course, that unconditional
branches are always either taken or not taken. (But BALR is sometimes
used to set up the base registers, and so is not taken). Those used for
indexing are usually taken (but BCTR is usually not taken because it is
often used as a decrement instruction).

B. Dynamic Branch Behavior

It is important to note that not all branches are executed equally
frequently. A good deal of our ability to predict branches will depend on
the fact that some branches are executed large numbers of times and
therefore from past behavior we can maké a good guess as to what will
happen next. To provide a clear vocabulary for discussing this, we first
define two terms:

Static Branch Instructions - This refers to the individual branch
instructions found in a program. For a given program, the number of these
branches is fixed and can be counted by looking at the program.

Dynamic Branch Instructions - This refers to the branch instructions
found in the trace of a program. A static branch instruction can occur
more than once as a dynamic branch instruction; every instance of the
execution of a static branch instruction results in a new dynamic branch.

In table 4 we show the probability distribution for each workload for
the number of times a static branch occurs as a dynamic branch. Table 5
shows the probability that a dynamic branch i{s due to a static branch
which is executed n times. As may be evident, the large bulk of dynamic
branches occur for frequently executed static branches; for example, the
23.4% of the static branches of the IBM/CPL mix get executed only once,

but they account for only .5% of the dynamic branches. On the other hand,
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-BM IBM IBM IBM DEC CcDC

n CPL BUS SCI SUP PDP11 6400
1 23.4 25.2 19.4 64.7 13.8 16.2
2 9.1 10.7 6.0 10.6 5.8 3.0
3 4.7 8.6 8.1 5.0 2.6 7.8
by 5.0 7.3 3.1 3.3 5.0 2.7
5 2.8 2.9 2.2 4.6 1.5 1.1
6 2.8 4.4 3.4 1.7 3.7 1.0
7 3.0 1.6 2.1 0.9 1.3 .71
8 2.2 2.0 2.1 1.6 .5 2.0
9 2.7 .5 2.6 .8 .3 .9
10 1.1 4.2 4.2 .5 .7 .7
>200 10.4 9.3 10.9 .1 40.1 32.0
Percentage of branch {nstructions executed n times
Table &
IBM IBM IBM IBM DEC cDC
n CPL BUS SCI SUP PDP11 6400
1 .5 .3 .1 18.5 .0 .0
2 .3 4 1 6.0 .0 .0
3 .2 .5 .1 4.2 .0 .0
4 L4 .7 o 3.8 .0 .0
5 .3 .U .0 6.5 .0 .0
6 .3 T .2 2.9 .0 .0
7 .5 .3 A 1.8 .0 .0
8 .4 L4 .1 3.6 .0 .0
9 LU .1 .3 2.0 .0 .0
10 .3 .2 .5 1.5 .0 .0
>200 48.2 74.5 80.4 16.5 98.4 95.6

Percentage of branch instructions executed n times weighted by n
{.e. Probabiility that Dynamic Branch Results from
Static Branch Executed n times.

Table 5

1 0000000000000000000000000000000

2 1111111111111111111111111111111

3 110100110100111

) 110110110111110

5 00000000000000100000000000001000000000000001

6 111111111111111111111111111111111111111111

7 1111111111111111101111111111111111111110111111111111111110
8 1111111111110111111111111100111111111110001111111111110000
9 1111111111111111111111111111111111111111111111111111111111
10 000000000000000000000000000000000000000000000000000000000O
11 0100011001010000011100110101000101100010010000000010001100
12 0000000000001000000000000011000000000001110000000000001111
13 0000111110000010000011111000000000011111000000000011111000
14 1111111100000011111111110000011111110000000111111100000000
15 1111111111111101111111111111101111111111111101111111111111
16 010101010101010101010101010101010101010101010101010101010
17 110110110110110110110110110110110110110110

18 111101111011110111101111011110111110111101111011110111101
19 001001001001001001001001001001001001001001001001001
20 0000000011111111111110000000000000111111111111000000000000

Some Sample Sequences of Takens and Not Takens
(0 = not taken; 1 = taken)
Table 6

15



the 10.4% of the static branches that were executed over 200 times
comprise 48.2% of the dynamic branches.

Many of our predictions of whether a branch will be taken will be
contingent on the past behavior (taken/not taken) of that branch. To
{1lustrate such branch behavior, we show in table 6 some sequehces of
taken/not taken for a number of branches. We observe that for many
branches, there are long sequences of either taken or not taken; it is
less common to see an alternation. Such a sequence of taken or not taken,
we call a "run"; a run is defined as a sequence of identical behavior
(taken, not taken, taken with a changed target) of a static branch as it
gets executed many times. For example, the sequence of takens (T) and not
takens (N) TTTTTNNTTTTNTNNN consists of run lengths of 5, 2, 4, 1, 1, etec.
Tables 7 and 8 show the distributions of run lengths for the conditional
branches and all branches respectively. The same data is shown weighted
by the run length in tables 9 and 10. (That is, tables 9 and 10 show the
probability that a given dynamic branch is an element of a run of lenéth
n.) As can be seen, most branches occur as parts of long runs.

C. Branch Clustering

Farlier, in section II.B, we described one method of coping with the
branch problem called "multiple instruction streams." That involved
recognizing branches at the instruction decode step of the pipeline, and
then fetching and decoding both the taken and not taken outcomes cof the
branch. As noted, one difficulty with that solution was the potential
occurence of a large number of closely clustered branches, so that it
would be impossible to follow all 2##¢ paths possible from k branches. A
measure of the size of k appears in tables 11 and 12. Those tables show
the probability that in H sequential instructions (H=10 and H=6
respectively), there are k branches. If the pipeline is long enough (and
6 and 10 are typical numbers for high speed machines), then there is 3
significant probability that there is more than one branch unresolved at

any one time.
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Distribution of Run Lengths
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IBM IBM IBM
cPL BUS SCI
0.542 0.448 0.512
0.118 0.096 0.174
0.063 0.058 0.047
0.047 0.047  0.020
0.034 0.023 0.050
0.021 0.017 0.014
0.020 0,017 0.013
0.015 0.011 0.011
0.011 0.008 0.012
0.009 ©0.012 0.009
0.011 0,003 0.013
0.007 0.004 0.030
0.007 0.002 0.021
0.005 0.003 0.009
0.006 0.002 0.003
0.004 0,003 0.017
0.080 0.226 0.044

Table 7

IBM IBM IBM

CPL BUS SCI
0.517 0.417 0.500
0.132 0.099 0.148
0.066 0.060 0.040
0.049 0.047 0.019
0.033 0,022 0.070
0.022 0.025 0.016
0.024 _ 0.015 0.014
0.014 ~ 0.017 0.012
0.012 0,007 0.014
0.009 ©0.019 0.011
0.011 0.030 0.018
0.007 0.005 0.025
0.007 ©0.002 0.018
0.005 0.002 0.009

©0.007 0.002 0.013

0.004 0.003 0.008
0.081 0.229 0.064
Distribution of Run
Table 8

IBM
SUP
0.670
0.114
0.048
0.035
0.039
0.015
0.009
0.012
0.007
0.004
0.023
0.003
0.003
0.001
0.001
0.001
0.013

IBM
sSuyP
‘0,674
0.112
0.050
0.034
0.036
0.014
0.009
0.012
0.006
0.004
0.026
0.003
0.003
0.001
0.002
0.001
0.013

Lengths (All Types)

17

DEC
PDP11
0.504
0.081
0.076
0.046
0.023
0.019
0.018
0.016
0.014
0.009
0.010
0.007
0.006
0.011
0.002
0.007
0.151

DEC
PDP11
0.u87
0.142
0.067
0.041
0.028
0.028
0.014
0.016
0.010
0.010
0.009
0.009
0.004
0.005
0.004
0.005
0.121

coC
6400
0.611
0.192
0.028
0.031
0.015
0.017
0.006
0.005
0.003
0.008
0.045
0.002
0.004
0.004
0.001
0.002
0.026

(Conditional Branches)

cDC
6400
0.601
0.189
0.033
0.032
0.014
0.017
0.005
0.006
0.003
0.009
0.045
0.002
0.006
0.00%4
0.001
0.003
0.030
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IBM

CPL
0.069
0.032
0.026
0.024
0.021
0.016
0.018
0.015
0.014
0.013
0.016
0.010
0.012
0.010
0.010
0.008
0.685

0-
0.
o.
0.
0.
0.
05
00
OO
O.
0.
0'
0.
00
0.
0.
0.
Distribution of Run Lengths Weighted b

°o
0.
0.
0.
0.
o«
0.
0.
0-
0.
0-
0.
0.
0.
0.
0.
0.

DEC
PDP11
0.058
0.019
0.039
0.032
0.014
0.011
0.018
0.015
0.013
0.008
0.009
0.007
0.008
0.015
0.003
0.007
0.724

DEC
PDP11
0.032
0.016
0.017
0.014
0.011
0.014
0.007
0.0M
0.006
0.008
0.006
0.011
0.003
0.006
0.004
0.003
0.831

cDC
6400
0.215
0.123
0.021
0.025
0.011
0.024
0.010
0.010
0.005
0.008
0.105
0.003
0.005
0.008
0.001
0.005
0.u421

y n (Conditional Branches)

CcDC
6400
0.130
0.091
0.008
0.018
0.007
0.014
0.008
0.006
0.002
0.008
0.077
0.002
0.00u4
0.005
0.001
0.004
0.614

Distribution of Run Lengths Weighted by n (A1l Types)

0
1
2
3
n
5
6
7

0.
00
0.
0.
o.
0.
0.
1.

IBM
CPL
025
119
345
613
840
976
999
000

IBM IBM IBM
BUS SCI SuUP
030 0.110 0.218
014 0.083 0.074
013 0.025 0.046
015 0.014 0.045
010 0.086 0.064
007 0.014 0.030
009 0.014 0.022
006 0.014 0.031
005 0.013 0.018
004 0.011 0.014
002 0.011 0.083
oou4 0.021 0.011
002 0.016 0.010
003 0.012 0.004
002 0.008 0.006
003 0.047 0.007
871 0.501 0.317
Table 9
IBM IBM IBM
BUS SCI SUP
025 0.074 0.228
013 0.046 0.075
013 0.015 0.050
014 0.011 0.046
008 0.064 0.061
009 0.013 0.039
007 0.013 0.020
006 0.014 0.034
004 0.016 0.019
011 0.017 0.014
o[ol} 0.024 0.096
003 0.018 0.012
002 0.016 0.011
003 0.014 0.005
002 0.032 0.008
003 0.015 0.007
872 0.598 0.284
Table 10
IBM IBM IBM
BUS | SCI SUP
0.182 0.Uu0s% 0.028
0.u95 0.734 0. 140
0.722 0.878 0.402
0.855 0.959 0.739
0.911 0.985 0.940
0.983 0.996 0.995
0.999 0.999 1.000
1.000 1.000 1.000
Table 11

DEC
PDP 11
0.005
0.088
0.347
0.792
1.000
1.000
1.000
1.000

€DbC
6400
0.509
0.726
0.985
0.994
0.998
1.000
1.000
1.000

Probability of n or fewer Branches in Window of Size 10
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IBM
CPL
0.662

Probability ©
Op-Code, and
or Not Taken,

IBM

CPL
0.087
0.370
0.724
0.969
0.999
1.000

VI EWN O

Probability of n or

IBM
BUS
0.692

history IBM
CPL

NNNNN
NNNNT
NNNTN
NNNTT
NNTNN
NNTNT
NNTTN
NNTTT
NTNNN
NTNNT
NTNIN
NINTT
NTTNN
NTINT
NTTIN
NTTTT
TNNNN
TNNNT
TNNTN
TNNTT
TNTNN
TNTINT
TNTTN
TNTTT
TTNNN
TTNNT
TTNTN
TINTT
TTTNN
TTINT
TTTIN
TTTTT
NNNNN

+
TTTTT

Distribution o

0.407 O
0.013 O
0.012 O
o.oo4 O
0.013 ©
0.003 O
0.002 O
o.o04 O
0.018 O
0.005 O
0.029 O
0.008 0O
0.003 O
0.003 O
o.oou O
0.015 0
0.018 O
0.003 O
0.004 O
0.003° O
0.011 O
0.017 ©
0.003 O
0.015 0
0.003 O
0.003 O
0.003 O
0.011 O
o.oos O
0.011 O
0.011 O
0.338 ©
0.745 O

IBM

BUS
0. 341 0.
0.689 O.
0.875 0.
0.984 O.
1.000 1.

IBM IBM

SCI SUP

553 0.104
g57  0.430
969  0.827
995 0.985
000  1.000

1.000 ~ 1.000 1.000

IBM
sSCI

0.710

f 5 Consecut

fewer Bran

Table 12
IBM DEC
SUP PDP11
0.552 0.798

f Correct Branch
Assuming Branch I
Based on Op-Code.

DEC
PDP11
0.065
0.337
0.937
1.000
1.000
1.000

ches in Window

cDC
6400
0.778

Prediction, Given Only
s Always Either Taken

DEC
PDP 11
0.491
0.0M
0.012
0.003
0.012
0.001
0.001
0.003
0.014
0.002
0.005
0.004
0.001
0.003
0.007
0.012
0.012
0.004
0.001
0.001
0.003
0.007
0.002
0.016
0.001
0.001
0.005
0.014
0.002
0.017
0.012
0.320

0.8M11

cDC

6400
0.603
0.931
0.99¢
1.000
1.000
1.000

of Size 6

cDC
6400
0.170
0.008
0.006
0.002
0.008
0.003
0.003
0.003
0.006
0.006
0.025
0.002
0.003
0.044
0.003
0.020
0.008
0.001
0.005
0.003
0.003
0.025
0.0u4
0.019
0.003
0.002
0.002
0.061
0.003
0.019
0.019
0.471

0.641

jve Executions (Conditional Branches)

Table 13.

IBM IBM IBM

BUS sCI suUP

.u1e 0,437 0.422
.006 0.014 0.005
.oo4 0.014 0.005
.003 0.005 0.003
.005 0.019 0.005
.001 0.005 0.003
. 001 0.004 0.002
.002 0.004 0.004
,008 0.019 0.021
.002 0.010 0.004
.017 0.026 0.005
.005 0.006 0.026
.001 0.004 0,003
.001 0.014 0.003
.001 0.002 0.002
.013 0.020 0.020
,009 0,017 0.034
.002 0.005 0.003
.002 0.010 0.003
.001 0.003 0.003
,006 0.010 0.029
.010 0.016 0.021
. 001 0.014 0.004
.012 0.018 0.021
.002 0.004 0.002
.001 0.004 0.003
.000 0.003 0.002
.009 0.027 0.004
.002 0.004 0.002
.008 0.016 0.003
,009 0.018 0.004
.42 0.228 0.341
.856 0.665 0.763

Table 14
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V. Branch Prediction

A number of the solutions to the branch problem, as discussed in
section II, attempt to predict whether a branch will be taken or not. The
general problem can be stated as: what is the value of F(x1,x2,...) where
F is the probability that a branch is taken, and x1, x2, ... are
parameters on which F may be reasonably conditioned. If F{x1,x2,...) 2
.5, then we predict that a branch will oceur, and conversely. (We note
that if the costs of errors of commission are not equal to errors of
omission, then the best figure for deciding to predict a branch may not be
equal to .5. We discuss this issue below in section VI.A). Of particular
interest is x1s operation code, and x2= past execution history of this
branch. It is possible to continue with other factors (for x3, x4, etc.)
such as other dynamic branches that precede the current dynamic branch
(and their execution behavior) (Angi82], other dynamic instructions that
precede the current dynamic instruction, the source language of the
program, the direction of the branch (e.g. forward/back (Smit81]), etc.
For example, certain instruction sequences will generally indicate a taken
branch: others will almost always fall through.

Any solution to the branch problem must be implemented in hardware,
since it is part of the pipeline and must execute at machine cycle speeds.
For that reason, the complexity of the schemes that are practical is very
limited, and we will consider primarily only two cases: predictions that
depend only on the operation code (F(x1)) and predictions that depend only
on the past history of the branch (F(x2)).

The other aspect of branch prediction concerns knowledge _of the
target address, since delays are encountered even: for a correctly
predicted taken branch when the target address is not immediately known.
We discuss that aspect of the problem toward the end of this (V) section.

A. Prediction Based on Operation Code

Earlier, in tables 2 and 3, we showed the probability that a branch

was of a specific op (operation) code, and the probability that for that
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opcode, whether the branch was taken. These two tables can be easily
combined to yield the probability that a branch can be correctly predicted
as to taken/not taken, given only the op code. That result is shown in
table 13. For example, we note that for the IBM CPL mix, the prediction
accuracy rises from 64% (assume all branches are taken) to 66.2% (assume
that only BR, B, BAL, BALR, BCT, BXLE, BCR, EX and SVC are taken; all
others never taken). While this 2.2% improvement is helpful, we shall see
that it is considerably less than can be obtained by predictions based on
branch history. (In [Smit81] a range of accuracy for opcode based
prediction of 65.7% to 99.4% is obtained, with a mean of 86.7%.)

B. Prediction Based on Past Branch History

?rediction based on past branch history uses the previous sequence of
taken/not takens for each branch to predict the taken/not taken behavior
of the next occurence of that branch. The most powerful such predictor,
of course, is one in which the entire past history of the branch 1is used
to predict the next choice. Such a predictor is infeasible due to the
large possible number of such past sequences, so the problem reduces to
the following two questions: for a given amount of past history, what
prediction accuracy can be obtained, and what is the most desirable amount
of past history to retain, given all cost and performance tradeoffs? The
basic data for this evaluation is given in tables 14 and 15.—where we show
the observed probability of all possible sequences of five taken/not taken
events (referred to as yl,y2,y3,y4,y5) for conditional and for all
branches respectively.

The data in tables 14 and 15 may be used for prediction as follows:
whenever the probability F(yl,y2,y3,y4.T) is éreater than
F(y1,y2,y3,y4,N), the branch should be predicted as taken, and conversely
(where y1,y2,y3,yl4 is the sequence of the four previous dynamic occurences
of this static branch). Predictions based on the previous 3 events,
F(y2,y3,y4,T) and F(y2,y3,y4,N), can be computed by noting that
F(y2.y3.y“,N):F(T,y2,y3,yH,N)+F(N.y2.y3,yu,N). Predictions based on the
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history IBM IBM IBM IBM DEC cDC
CPL BUS SCI SUP PDP 11 6400
NNNNN 0.275  0.310 0.196 0.378 0.230 0.129
NNNNT ©0.008 0.004  0.005 0.004 0.004 0.007
NNNTN ©0.008 0.003 0.005 0.004 0.004 0.006
NNNTT 0.003 0.002 0.002 0.003 0.001 0.002
NNTNN 0,008 0.003 0.008 0.003 0.005 0.007
NNTNT ©0.002 0.001 0.002 0.004 0.000 0.003
NNTTN 0.002 0.015 0.002 0.002 0.000 0.003
NNTTT 0.003 0.002 0.002 0.002 0.001 0.003
NTNNN 0.012  0.006 0.008 0.017 0.005 0.005
NTNNT 0.003 0,001  0.005 0.003 0.001 0.004
NTNIN 0.027  0.020 0.017 0.005 0.005 0.048
NTNTT 0.009 0.008 0.007 0.036 0.002 0.003
NTTNN ©0.001  0.000 0.002 0.002 0.000 0.003
NTTNT 0.002 0.001 0.012 0.002 0.001 0.0u0
NTTIN 0.002 0.001 0.002 0.002 0.001 0.002
NTTTT 0.014 0,012 0.030 0.024 0.004 0.017
TNNNN 0.011  0.006 0.007 0.028 0.004 0.007
TNNNT 0.002 0.001 0.002 0.003 0.001 0.001
TNNTN 0.003 0.001 0.005 0.003 0.001 0.004
TNNTT 0.001 0,001 0.002 0.003 0.000 0.003
TNTNN 0.007 0.0C5 0.005 0.024 0.001 0.003
TNTNT 0.016 0.012 0.013 0.028 0.005 0.046
TNTTN 0.002 0.001 0.012 0.003 0.001 0.040
TNTTT 0.014 0.013 0.030 0.029 0.005 0.018
TINNN 0.002 0.002 0.002 0.002 0.001 0.003
TTNNT 0.001 0,000 0.002 0.002 0.001 0.002
TINTN 0,002 0.001 0.002 0.002 0.001 0.001
TINTT 0.008 0.007 0.036 0,004 0.004 0.055
TTTNN 0.002 0.001 0.002 0,002 0.001 0.002
TTTNT 0.008 0.007 0.027 0.003 0.004 0.016
TTTIN 0.008 0.007  0.027 0.003 0.004 0.017
TTTTT 0.534 0.561 0.521 0,384 0.702 0.500
NNNNN
+ 0.809 0.871 0.717 0.762 0.932 0.629
TTTTT
Distribution of 5 Consecutive Execution (All Types)
Table 15

IBM IBM IBM IBM DEC cDC

n cPL BUS sScI SuUP PDP11 6400

0 64,1 6u4. U 70.4 54.0 73.8 77.8

1 91.9 95.2 86.6 79.7 96.5 82.3

2 93.3 96.5 90.8 83.4 97.5 90.6

3 93.7 96.7 91.2 83.5 97.7 93.5

4 94.5 97.0 92.0 83.7 98.1 95.3

5 9u.7 97.1 92.2 83.9 98.2 95.7

Percentage Correct Guess Using Past n Branches
Using Conditional Probabilities Dzawn From Only Given Trace
Table 1
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previous 2, 1 or 0 branches can be similarly derived. The accuracy of
such predictions are shown in table 16, where in each case, the prediction
is based only on the values of F(yi) for that workload. (For one previcus
branch, the success rate in (Smit81]) was from 76.2% to 98.9%, with a mean
of 90.4%.)

It is possible to create a composite predictive strategy; that is, a
prediction that is based on F(yi), where F(yi) is computed over all six of
the workloads used, rather than for just the workload in question. This
latter strategy is much more valid, since it |is unlikely to be cost
effective to vary the predictive strategy on a real computer depending cn
the program running. In any case, as can be seen in table 17, the
predictive accuracy is almost identical to that shown in table 16.

There are a number of interesting observations to be made from tables
16 and 17. First, we note that the predictive accuracy approaches very
closely to its maximum with 1, 2 or 3 preceding branches used for
prediction. Increasing the amount of history to 4 or 5 branches doesn't
seem tc add accuracy.

Second, the predictive accuracy for as few as two preceding branches
ranges from B83.4% to 97.5%, which is much higher than the accuracy using
only the branch type, and no branch history, as in table 13. Finally, we
note a very significant variation in the effectiveness of prediction
between the various workloads. Most striking is the variation of 83.9% to
97% between the IBM/SUP and 1BM/BUS workloads, both of which are for the
same architecture. (The authors speculate that the low prediction success
rate for the IBM/SUP workload is due to the low probability that a branch
is executed repeatedly (see table 4). This 1is to be expected 1in
supervisor code, in which loops aée relatively less frequent.)

C. Prediction Based on Non-Uniform History Retention

Tables 16 and 17, as noted, give the effectiveness of branch
prediction when that prediction 1is based on exactly the n preceding

executions of the branch in question, and whether that branch was taken or
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IBM IBM IBM IBM DEC CDC

n CPL BUS SCI SUP PDP11 6400
0 6u.1 6u. 4 70.4 54.0 73.8 77.8
1 91.9 95.2 86.6 79.7 96.5 82.3
2 93.3 96.5 90.8 83.4 97.5 90.2
3 93.7 96.6 91.0 83.5 97.7 93.4
4 94.5 96.8 91.8 83.7 98.1 94.8
5 9u.7 97.0 92.0 83.9 98.2 95.1

Percentage Correct Guess Using Past n branches
Using Conditional Probabilities Drawn From Average of All Traces

Table 17
Workload Figure 5 Figure 6
IBM/CPL 93.8 93.8
IBM/BUS 96.2 96.2
IBM/SCI 91.3 91.3
IBM/SUP B0.2 80.2
PDP=11 97.8 97.8
CDC64L00 86.4 89.1
Table 18

Prediction Success of State Diagrams
from Figures 5 and 6.

Workload Probability of
Target Change

IBM/CPL - 4.2%
IBM/BUS 2.1%
IBM/SCI 4, u%
IBM/SUP 1.4%

PDP 11 12%
cDCc6é400 2.9%

Fraction of Branch targets
found to have changed from previous
execution of that branch.

Table 19

Lost Cycles

\
\ Predicted
\ No Branch Branch
Actual \
[]
]
No Branch i 0 k
[]
]
Branch ! m J
1
]
Table 20
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.ot taken. Those n preceding executions may be remembered in the branch
target buffer with n bits, thosen bits representing the possible 2%#n
possible sequences of preceding taken/not taken.

Given that there are n bits available to use in predicting the next
branch, they need not be allocated to show the past n executions, but can
record a state that does not map into the precise past history. That s,
given a state S(i) (for the branch in question) at time i, we have a
function G(S(i)) which yields the prediction T or NT, and a mapping
E(S(1),T/NT) => S(i+1) which maps the current state S(i) and whether the
branch is actually taken (T/NT) into the next state S(i+1). Thus, the
prediction algorithm can be specified by giving n (2%%n states), the
function G and the mapping E. For example, figure 4 shows the algorithm
which uses the past two executions to predict the next, the effectiveness
for which is shown in the line labeled "2" in table 17. In figure 4, the
states are labeled with the their past history (as a name) and the
prediction in force (e.g. NT/T), and each edge shows the transition
(mapping E) from state to state depending on whether the branch was taken
or not taken.

It is possible to suggest other mappings E and functions G than those
based on the last n executions of the branch. Two such are shown in
figures 5 and 6.

In figure 5, we show an algorithm in whieh two errors are required to
change the prediction. That is, assume that the current prediction is N
and the last two branches were N. Then two T's are required to change the
prediction toe T. The idea here is that a loop exit will not serve to
change the prediction. We note, however, that the sequencé NTNTNTNT...,
when started in the wrong state (either n? or £?) will yield 100% wrong
predictions: when started in either of the other two states, the
predictions will be 50% wrong.

Another algorithm in shown in figure 6. In this case, two Wwrong

guesses are again required to change the prediction, but two are also
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required to return to the previous prediction. (In figure 5, one step
could return to the previous prediction after two errors.) (This algorithm
was proposed for the S-1 [Widd77]; see section 11.G and VI.G). It can be
seen that the sequence NNTTNNTTNNTT... can cause every prediction to be
incorrect.

In both figures 5 and 6, close examination will show that the states
indicated do not correspond exactly with the previous two branches. For
example, state n of figure 5 implies 2 past history of NN, whereas state
n? implies a past history of NNT or TNN.

The success of the algorithms represented in figures S5 and 6 are
shown in table 18. Comparing the two, we see that their results are
almost identical. Further comparison with the line labeled "2" of table
17 shows that in most cases, (5 workloads), the algorithms of figures 5
and 6 are very slightly better. In the one remaining case, the IBM
Supervisor workload, the earlier results are 3% better. This latter
effect is likely due to the fact that branches in supervisor code are much
jess frequently used for loop control than in user programs.

It is possible to consider all possible functions G and mappings E
for n bits of state in order to derive the optimal algorithm. We have nct
done so, and the results in tables 17 and 18, and the comparison between
them suggests that such an exercise would yield very little, if oany,
improvement.

D, Branch Target Changes

As noted earlier, the branch target buffer contains a number of
entries, each of which consists of a branch address, state information and
a target address. It should be clear that the branch target can be
obtained only by either computing it directly from the instruction, or
remembering it from the past execution and assuming that it will be the
same. Since the purpose of the BTB is to immediately predict the target,
the previous target must be remembered. While target changes are likely

to be infrequent, they will sometimes occur. In particular, a target will

26



change if the source (higher level language program) contains a computed
goto or a case statement. Execute instructions (from the IBM 370
architecture) also generally change targets.

The possibility of branch target changes implies that when a branch
is resolved and found to be taken, the target address must be compared
with the target predicted in the BTB. If it is found to be different, the
BTB entry must be changed. Also, if the BTB had predicted a branch, then
the pipeline must be flushed, and the correct stream of instructions
fetched, just as if the BTB had predicted that the branch not occur.
(This suggests that perhaps a branch whose target has been found to change
previously should not predict a branch. We believe that predicting a
branch is better, if the cost of an incorrect prediction is the same as
the cost of an incorrect fall through. That is because a fall through is
very unlikely, whereas the target need not always change.)

Table 19 shows the fraction of all dynamic branches " executed for
whieh the branch is taken with a target address different than that
previous. Some of these target changes will cause predictions that were
otherwise correct (predict branch) to be incorrect. The other cases
(predict branch but none occurs, predict no branch but branch occurs,
predict no branch and none occurs) are not affected.

E. Writes Into The Instruction Stream

The branch target buffer is designed to search for the address of 2
previously executed branch. If there has been a write into the
instruction stream, such that the bits at the given address no longer
specify a branch, then the BTB will not operate correctly. There are two
ways to deal with this problem.: First, and most correct, thé instruction
in question, identified by the BTB, can be tagged (as it moves down the
pipeline) with a bit specifying "branch". If the instruction decode stage
finds that the instruction is not a branch, theh the pipeline can be
flushed of the following instructions and reloaded, and the BTB can either

be flushed or just the entry can be deleted. The alternative is to ignore
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the possibility of a write into the instruction stream on the basis that
the machine architecture forbids modifying instructions and correct
operation is not guaranteed. The latter solution is not acceptable for
older architectures, for which existing programs modify the instruction
stream.

F. Extensions and Alternatives

Above, we defined a general mechanism for predicting branches ‘and
showed some results for the more important cases. There exist some cases
we haven't considered, and some improvements have been suggested in the
literature. We note some of those in this section.

In [PomeB0al, it is suggested that a machine be built so that both
the taken and not taken directions can be followed (as in section II.B
above, "multiple instruction streams"). Then, if a change in locality is
detected (when there are instruction misses in the CPU cache), the
multiple instruction stream mechanism should be used instead of the BTB
predictions. More generally, such a scheme can be used whenever the BTB
fails to contain the desired entry. See also [Pome80bl.

[Smit81] proposes a strategy (his strategy number 3) in which all
backward branches are predicted to be taken (as loop closures) and all
forward branches are predicted to be not taken. He reports poor
performance. (Smith reports on the effectiveness of a number of his other
nstrategies", but in many cases, those strategies combine the prediction
algorithm with implementation issues such as the size of the BTB or its
addressing. It is thus difficult to compare most of his results with
ours. Some of his other ideas are: Keep a table of recently used not
taken branch instructions. (This, of course, fails to retain branch
targets for successful branches, and so can be of only limited use). Keep
a taken/not taken bit in the cache (as in section II.G). Use a hashed BTB
with one bit prediction. Use the same design, but with a two bit
predictor (as in (Widd771.)

An iﬁteresting use of the branch target buffer is described in

(DrisB81]. An address-generate interlock (AGI) in a pipeline is a logical
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~ependency between the address calculation function for operand addressing
and the register update function in the execution unit. This AGI ecan
delay the processing of a branch instruction due to the need to calculate
the target address. Since the BTB predicts the target address, this
interlock can be suppressed until the branch is resolved, and the target
address can then be calculated only if necessary. An unnecessary pipeline
interlock is thus avoided most of the time. See also [Losq82a].

One additional use to which a branch target buffer or similar buffer
can be put 1is to speed up access to indirectly addressed operands or
addresses. Indirect addressing is a major pipeline blocker since indirect
addressing requires a storage delay for each indirect step. If all
fetches (operand, branch target) which could be indirect (either by tag in
instruction or by tag in target) are matched against an nindirect buffer",
then the ultimate target of an indirect could be fetched in one step. The
branch target buffer could serve double duty for this purpose, or a
separate buffer could be used. We have not addressed this extension,
since none of the three architectures for which we have traces permits

indirect addressing.

VI. Branch Target Buffer Implementation Issues

A. Performance Costs and Optimal Predictions

Thus far in this paper, we have assumed that the performance impact
of the branch target buffer is as follows: A correct prediction by the
BTB incurs no lost cycles (fall through if no branch predicted, or correct
branch and target prediction), and all incorrect predictions (predict
branch and none occurs or predict fall through and ?ranch occurs) result
in the same number of lost machine cycles. In a real machine neither of
these assumptions need be true.

Specifically, it is quite possible that a prediction of a taken
branch will always cost a small number of ﬁachine cycles. The reason is

that a taken branch is out of sequence and storage access time (cache or
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_ain memory) may be long enough that the target cannot be fetched before
the instruction decode stage of the pipe is ready for it. As;ume that Jj
such cycles are lost for every predicted branch. (See table 20).

The cost of a branch predicted to be taken and then not taken may be
less than the cost of a branch not expected to be taken, but which is
actually taken. This can occur because the fall through sequence of
instructions may be already available (from a sequential fetch for more
than one instruction) and thus when the branch is resolved, the correct
target (i.e. the fall through instruction) may already be on hand.
Assume that the cost of an incorrect positive (predict taken) prediction
is k cycles and an incorrect negative (not taken) prediction costs m
cycles.

There are four events of interest, as noted above: predict no branch
and no branch occurs, predict no branch and branch occurs, predict branch
and none occurs, predict branch correctly. (We are omitting the target
change case here for simplicity.) The costs for these events are
respectively O, m, k, j. Previously, we assumed m=k and Jj=C. In that
previous case, the optimal prediction is to maximize the probability of
being right; i.e. predicting whether the branch occurs or not. In the
latter, more complex case, the optimal prediction is the one that has the
average minimum cost. Thus it is possible that the optimal strategy does
not have the highest prediction accuracy.

Because the values of m, K and j are very implementation dependent,
we have not developed strategies for the case of this (VI.A) section.
Such strategies can easily (but tediously) be generated, given tbe costs
m, k and Jj, from tables 14 and 15. This is done as follows: For each
sequence of preceding takens, not takens {yi}, there is some probability p
that the branch is taken and probability 1-p that it is not taken. If we
decide to predict that the branch is taken, the cost is (1-p)*k+ p*j. If
we decide to predict that the branch is not taken, then the cost is p*m.

The correct prediction to make is the one with the lower expected cost.
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_. Branch Target Buffer Size and Hit Ratio

The branch target buffer, like the CPU cache or the translation
lookaside buffer (TLB), 1is a small high speed memory, and for both cost
and performance reasons, must be of limited size. Our analysis thus far
has always assumed that the BTB was unboundedly large, and could hold all
previously executed branches; of course, this cannot be true. In this
section, we examine the effect of the BTB being only a finite size.

Define the hit ratio of the BTB to be the probability that a branch
is found to be in the BTB at the time it is fetched. Then the hit ratio
of the BTB depends on two algorithms: the replacement algorithm and the
BTB fetch algorithm. The former determines which item in the BTB to
replace when a new entry is to be placed into the BTB. The latter
determines when to place entries in the BTB. In particular, it may be
better to not enter branches in the BTB if they are not taken, given that
the BTB is now of finite size.

In this paper we have used a nfetch all" algorithm; that is, whenever
a branch is recognized, it is entered in the BTB if it is not already
there. For replacement, we have used global LRU (Matt71] (remove the
least recently executed branch resident in the BTB). (The replacement
algorithm can be modified to reflect the fetch algorithm. For example, if
the fetch algorithm does not fetch a not taken branch, then when a branch
{s already in the BTB and is not taken, its replacement status is not
altered. I.e. if replacement is LRU, then the branch entry is not moved
to the top of the LRU stack.)

The hit ratios for various BTB sizes, given "fetch all" and global
LRU replacement, are shown for each workload in table 21. As may be seen,
the miss ratio varies widely. For example, for a 256 entry BTB, the hit
ratio varies from a low of 61.5% (for the IBM supervisor workload) to
99.7% hits for the CDC-6400 programs. These results are qualitatively
similar to the relative cache hit ratios (Smit79]) for the various types of
programs, as one would expect. (In [Widd77]) it is reported that 16 to 32

entries in a BTB yield over 50% misses for S-1 traces.)
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1 0.031

2 0.075

3 0.150

4 0.185

6 0.267

8 0.298
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Buffer
Size 1

1 0.031

2 0.057
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The branch target buffer is similar in cost and performance
constraints to a translation lookaside buffer and the range of feasible
sizes should be similar. Thus, we mention for comparison the TLB sizes
for the following machines: IBM 3033 (64), Amdahl 470V/6 (128) and Amdahl
470V/7 (256). |

A major effect of the 1imited size of the branch target buffer is to
decrease or remove }ts advantages over other n"branch problem™ solutions,
as discussed in section II. For example, the taken/not taken bit stored
in the cache will be more frequently available, if the cache is large,
than the BTB entry. Although the taken/not taken bit method 1is less
effective in improving performance, because of the fact that the branch
target address is not {mmediately available, the higher hit ratio may be
sufficient to compensate.

C. Buffer Addressing and Organization

The branch target buffer is accessed associatively; the address of
the instruction fetch is matched with the instruction address fields in
the BTB. If there is a match, then the appropriate prediction is made.
Associative memories are slow and expensive if implemented in other than
VLSI, so it is not always feasible to make the BTB fully associative. The
two reasonable choices are to make it set associative [Cont691], [Smit78a]
or hashed [Knut73] as is done for most TLBs [Smit79]. 1In the former case,
some middle bits of the address of the instruction are used to select a
nget", and then the remaining bits are used for the associative match
within the set. The replacement is within the set. Hashing is usually
.combined with set associative replacement as follows: the address of the
instruction is hashed (see (Smit79] for a discussion of ways to do this),
and a set of elements is selected. The search is then associative within
this set (the set size may be one) and replacement is also within the set.
Since experiments in [Smit79] showed the two methods to be about equally
effective, we select the standard set associative mapping as simpler,

cheaper and faster. ([Smit81) uses hashing in one of his strategies.)
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The effect of the set size is shown for the IBM/CPL mix in table 22.
(For the other mixes, the effects are available in [Lee82].) It can be
seen there and in [Smit79], [Smit78a] that set sizes of 4 or 8 are
sufficiently 1large and closely approach the hit ratio of the fully
associative design.

D. The Effect of Multiprogramming

Multiprogramming is important both to the design and the performance
of the branch target buffer. Whenever the address space in control of the
computer changes, the association between (virtual) memory addresses and
memory contents changes. (Since virtual addresses are the ones generated
by the program, the BTB must be accessed using virtual addresses.
Otherwise all BTB accesses would require translation first.) Thus the BTB
should be purged when the address space changes; otherwise incorrect
matches will occur and incorrect predictions will take place. Each such
incorrect prediction will have to be corrected. Since many of these
incorrect positive predictions will take place for non-branches, the
number of errors will be high and the performance cost significant.

The effect of purging the BIB, or equivalently, in correcting it
entry by entry, is that the BTB will usually contain far fewer valid
entries than our previous discussions and simulations would suggest. As a
very worst case example, we show the data in table 23. There we compare
the fraction of correct predictions using an infinite BTB with those from
an infinitely large BTB which is flushed every 1000 instructions. As may
be seen, these frequent flushes significantly impact performance. It is
the impression of the authors, however, that address space switéhes will
occur at intervals closer to 5000 to 25000 instructions than to 1000.
Therefore, the BTB flushes may have less of an effect on the miss ratio
than the finite size of the BTB.

It should be kept in mind that if the BTB is to be flushed when 2
task switch occurs, then the task switch must be detected. Further, some
time may be lost as the flush takes place. (Fast methods for flushing
TLBs are discussed in [Smit79].)
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E. Restrictions on Logic Complexity

The branch target buffer, as noted earlier, 1is closely associated
with the CPU pipeline, and must therefore function very quickly. Cost and
size limitations combine with the speed requirement to 1imit the feasible
degree of complexity for the BTB. We have therefore limited the range of
alternatives considered to those that are simple enough and cheap enough
to implement. Further, we have looked at the effect of BTB size and
organization for the same reason. Anyone proposing to either design a BTB
or to study them further should keep in mind this important constraint.

F. MU-5 Implementation and Results

The MU-5 Computer System [Morr79] uses a branch target puffer; its
effectiveness is discussed 1in (Holg80]. The BTB retains up to 8
previously taken branches and their targets. Only branches with fixed
(invariant) targets are placed in the BTB.

The effectiveness of the MU-5 BTB was studied using 2 hardware
monitor: measurements were made for a mix of compilations and executions
for both Fortran and Algol. Branches constitute 14% and 12.5% of the
jnstructions from Algol and Fortran executions respectively. The BTB
correctly predicts from u0% (Algol compilation) to 65% (Algol execution)
of the correct sequences after a branch (including fall throughs) as
compared to 15% to 25% without the BTB.

G. S=1 Trace Experiments

In [Widd77) some branch target buffer experiments on S-1 traces are
reported. Success rates range from 91% to 95% with 1 to S bit predictors,
and using the method of figure 6 above. The effectiveness of the figure 6
scheme varies from worse than the 1 bit predictor to almost as good as the
four bit predictor. These experiments were run on two traces of about
100,000 instructions.

H. Use For Tracing

In some computers, circular buffers are maintained of the last n

instructions (or branches) executed. The contents of these buffers are
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useful for debugging both hardware and software. It is worth noting that
the branch target buffer can be combined in function with the circular

branch buffer [Brow79,Boni81].

VII. Overall Branch Target Buffer Effectiveness

The reason to build a branch target buffer 1is to improve CPU
performance. The results above on correct predictions and hit ratios must
be integrated with the costs of hits and misses, and correct and incorrect
predictions, to get an overall estimate of performance impact. We
consider a few typical cases in this section.

One example is to consider the IBM/CPL mix, for which we can predict
the branch path with an accuracy of 93.8%, using the predictor of figure
5. A hit ratio of 86.5% is obtained with a BTB consisting of 128 sets of
4 entries each. Up to 4.2% of our predictions will be incorrect due to
target changes. This gives an overall minimum prediction accuracy of
(93.8-4.2)(.87) = T8%.

The prediction accuracy can be used to estimate the performance
impact by considering a real machine. As an example, we use the Amdahl
470V/6 [Amda76], which has a machine cycle time of 32.5 nsec¢, and runs at
about 4 MIPS [Peut7T71l. Excluding memory access delays, 5 MIPS is closer
and that is the figure we use. That yields a mean of 6 cycles per
instruction. Each branch taken results in a delay of 4 machine cycles.
Assume that the branches are 30% of the instructions, and 65% of the
branches are taken. Excluding the branch penalty, then, the mean
execution time for an instruction would be t = 6-(0.3)(0.65)(¥) = 5.22
cycles. Branch prediction using the BTB would then result in a mean
execution time of 5.22 + (0.3)(1-0.78)(4) = 5.48 machine cycles. Defining
performance as the rate of instruction execution, this gives a performance
improvement of 9.5%.

The above computation, using the same basic figures, has been

replicated, varying each parameter of interest, one case per table, and
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the results appear in tables 24, 25, 26 and 27. They show respectively
the percentage improvement for different basic instruction execution
times, the percentage improvement for different time penalties when the
wrong stream is processed after an unresoclved branch, and percentage
improvement for different hit ratios in the BTAB with basic instruction
times of 5.22 and 2 cycles.

We observe, from table 24, that the BTAB is most effective when the
cost of an incorrect guess is large relative to the mean instruction time.
That result confirmed in table 25, which varies the other parameter of
that pair. Table 26 shows that the hit ratio to the BTAB is important.

Its importance rises, as seen in table 27, when the machine cycle time is

short.

VIII. Summary and Conclusions

Taken branches have long been known to be one of the major obstacles
to high efficiency in a pipelined computer system (Scho71,Flyn66]l. A
great deal of effort has been invested in overcoming this problem, either
by facilitating the access to instructions (loop buffers, target prefetch)
or by directly attacking the branch problem (multiple instruction streams,
delayed branch, etc.). In this paper, we have discussed the branch target
buffer, which we believe |is the most effective way to minimize branch
penalties.

Our study of the branch target puffer has been based on a close
examination of instruction traces and analysis of their behavior. We have
developed a general prediction strategy, based on branch past history and
opcode, and have measured the effectiveness of the important variants of
this predictor. Our results show that 2 bits are sufficient to retain the
necessary state information for effective prediction. We also found that
on the order of 256 entries in the BTB are required for some workloads and
represent a good design target for a large machine.

Consideration has also been given to various implementation issues,

such as the design of the BTB addressing (set associative), the effect of
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Basic Instruction Instruction

Instruction Time Time Percentage
Time without BTB with BTB Improvement
2 2.78 2.26 22.8
3 3.78 3.26 15.8
4 4,78 4,26 12.1
5 5.78 5.26 9.8
6 6.78 6.26 8.2
Table 24

Percentage Performance Improvement with BTB
(Correct Guess Probability = 0.78
Incorrect Guess Penalty = 4 machine cycles)

Incorrect Instruction Instruction
Guess Time Time Percentage
Penalty without BTB with BTB Improvement
0 5.22 5.22 c.0
2 5.61 5.35 4.8
y 6.00 5.48 9.5
6 6.39 5.61 13.9
8 6.78 5.74 18.1

Percentage Performance Improvement with BTB
(Correct Guess Probability = 0.78
Basic Instruction Time = 5.22 machine cycles)
Table 25

Percentage Instruction

BTB hit Correct Time Percentage
Probability Guess with BTB Improvement
1.00 89.9 5.34 12.3
0.95 85.4 5.40 11.2
0.90 80.9 5.45 10.1
0.85 76.4 5.50 9.0
0.80 71.9 5.56 8.0
0.75 67.4 5.61 6.9
0.70 62.9 5.67 5.9

Percentage Performance Improvement with BTB
(Basic Instruction Time = 5.22 machine cycles
Incorrect Guess Penalty = 4 machine cycles)

Table 26

.ercentage Instruction

BTB Hit Correct Time Percentage
Probability Guess with BTB Improvement
1.00 89.9 2.12 31.0
0.95 85.4 2.18 27.8
0.90 80.9 2.23 24.7
0.85 76.4 2.28 21.8
0.80 71.9 2.34 18.9
0.75 67.4 2.39 16.3
0.70 62.9 2.45 13.7

Percentage Performance Improvement with BTB
(Basic Instruction Time = 2 machine cycles
Incorrect Guess Penalty = 4 machine cycles)

Table 27

38



multiprogramming on the hit ratio, the need to flush the BTAB when the
address space changes, and the problems of branch target changes and
writes into the instruction stream.

The use of six different workloads, taken from three different
machines, gives us reason to think that our results are representative of
the results to be generally expected and we believe that this paper will
have direct application to high speed computer system design. A number of
extensions to the basic branch target buffer design were mentioned,
including the use of the BTB or another similar buffer to avoid penalties
from indirect addressing. Improvements in CPU performance of from 5% to
20% can be expected when comparing a BTB design to a similar CPU design

without one.
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Appendix I

IBM System/370 Instruction Traces
1. Compiler Mix (IBM/CPL) (9,719,849 instructions)

PLIC.BILL PL1 compile of a report and billing program
COBC.SUM COBOL compile of a job step summary program
PLIC.SAM PL1 compile of a simulation program
FORC. FORTRAN-H compile

2. Business Mix (IBM/BUS) (11,930,003 instructions)
COBG.UPD COBOL go step of a master file update program
COBG.TVA COBOL go step of comparative analysis of power

plant alternatvies

PLIG.SMF PL1 go step of SMF billing program

3. Scientific Mix (IBM/SCI) (25,487,392 instructions)
FORG.STA FORTRAN go of single precision stress analysis
FORG.EM FORTRAN go of an EM wave computation program
FORG.FFT FORTRAN go of a FFT computation program
FORG.NUM FORTRAN go of double precision numerical analysis
FORG.SAT FORTRAN go of double precision analysis of

satellite information
4, Supervisor State Mix (IBM/SUP) (13,974,553 instructions)

NLOU466 All three traces are of the IBM MVS operating
NL0329 system with a commercial type workload.
NL0582

PDP-11/70 traces (8,995,386 instructions)

ED.C Execution of the line editor, ed, in UNIX, ed 1is
written in the language C and compiled. :

ROFF.AS Execution of the text formatter, roff, in UNIX. This
program is written in 11/70 assembler code.

PLOT.F Execution of a printer plotter program. The program
was written in FORTRAN and compiled with the fc
compiler of UNIX. The compiler generates intermediate
codes which are interpreted by a runtime program.

0s.C Execution of an operating system used by an
undergraduate course in operating system design. The
program is written in C and compiled by the cc compiler
of UNIX

SIMPIPE.FOR Execution of a pipeline simulation  program
written in FORTRAN and compiled with the FTN compiler.

CDC 6400 traces (23,818,580 instructions)

CMOTS.FORTG FORTRAN go of a MOS circuit analysis program.
The program was compiled with the RUN compiler.
TRACE.ASM Execution of the tracer tracing the go step of
a FORTRAN program which does curve fitting.

TWOD.FORTG FORTRAN go of a program that solves the two
dimensional scattering problem of an infinite circular
cylinder.

CAPPA.S.FORTG  FORTRAN go of a phase plane analysis program
solving a set of two simultaneous differential
equations. The trace was collected to include the
program startup portion.

CAPPA.L.FORTG Same as CAPPA.S.FORTG execpt than tracing
?egan after the program has gone into the iteration

oop.

DIPOLE.FORTG FORTRAN go of a program that solves the three
dimensional scattering problem of a cube using the
dipole approximation technique.
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BAL
BALR

BCT
BCTR

BXH
BXLE
BC,BCR
B,BR
EX

svC
LPSW

MC

Appendix II

System 370 Branch Instructions

Branch and Link. Used to make subroutine calls.

Branch and Link Register. Similar to BAL. Sometimes
used only to load base registers and as such the branch
will not be taken.

Branch on Count equal to zero. Used for loops.

Branch on Count Register. Similar to BCT. Often used
as decrement instruction and as such the branch will
not be taken.

Branch on Index High. For loop control.

Branch on Index Low or Equal. For loop control.

Branch on Condition. A 4 bit mask determines the
branch condition.

Unconditional Branch. These are actually BC and BCR
respectively, with the condition mask set equal to 15.
The single instruction at the operand address is
executed. Subsequent instructions following the EX
instruction are processed.

Generate a Supervisor Call Interrupt to pass control to
The operand data is loaded as the new Program Status
Word.

Monitor Call Interrupt. This instruction is similar to
the SVC interrupt instruction except that the interrupt
is vectored through a different location in memory.
This instruction is used by system software to pass
control to various modules.

The branch instructions of the PDP-11/70 are grouped as follows:

JSR
SOB
BGET
BVCS
BHSL
BNEQ
RTS
JMP
BR
TRAP

Subroutine call

Subtract one and branch if zero

Signed conditional branch

Carry, Overflow conditional branch
Unsigned conditional branch

Equal/Not Equal to zero conditional branch
Return from subroutine

Unconditional absolute address branch
Unconditional relative address branch
System call

The branch instructions of the CDC 6400 are grouped as follows:

RJ
JP
XJ
EQ
NE
GE
LT
SYS

Return Jump, subroutine call
Unconditional jump

Register Xj conditional jump
Jump on register Bi=Bj

Jump on register Bi~=BjJ

Jump on register Bi>=BjJ

Jump on register Bi<BjJ

Call to system

Branch instructions can be divided into functional types:

type

unconditional branch - always taken or always no

II subroutine call - always taken

III loop control = usually taken (loop back)

Iv decisions - either way

v computed goto - always taken (changing target)
VI supervisor calls - always taken

VII execute - always taken

Some of our analysis makes reference to nConditional

Branch Instructions". Conditional branch instructions for the
IBM traces consist of Op-codes BC and BCR; the PDP traces consist
of BGET, BVCS, BHSL, and BNEQ: the CDC traces consist of XJ, EQ,
NE, GE, and LT.

Ly



