The Differencing Method of Set Partitioning

Narendra Karmarkar and Richard M. Karp*

University of California
Berkeley, CA 94720

1. Introduction
We consider the following set partitioning problem:

Given a finite set S ¢ [0, 1] of real numbers, partition S into k subsets
Ay, Ap - A soasto minimize

D(A. Az, Ak)=m?x{zezA‘z}—m_in{‘z z]

vl

This is related to the well-known probiem of scheduling tasks on k identical
processors to minimize the completion time of the last task completed. Since
this is an NP-complete problem, we do not expect to find a polynomial time algo-
rithm unless P = NP. We present an O(n)-time algorithm which produces a
partition with D = O(n~cker) c >0, except in pathological cases. In order to
show that such pathological cases are extremely rare, we use the following pro-
babilistic model: The input to the problem is a set of n independent and identi-
cally distributed random variables, with density function S (z). We allow any
arbitrary function f(z). subject tothe Lipschitz condition:

368>0.st vz, yecl0 1, fz)~-fly)i=Blz -y

Under these assumptions, we prove that the algorithm performs as claimed with
probability -»1,as n -»=.

The algorithm is based on a new method of combining partial solutions to
the partitioning problem based on "Differencing Operations.” These operations
seern Lo oulperform any previously known heuristic methods such as LPT (Larg-
est Processing Time first) [1] or MULTIFIT [2]. Under similar probabilistic
assumptions, LPT or MULTIFIT cannot be expected to give a partition better than

D=0(;1L—).

Finally, we remark that many heuristic modifications to our algorithms are
possible, which do not change the asymptotic behaviour of the algorithm, but
can make it more practical for small values of m . Also, the differencing opera-
tions reported in this paper can be used as subroutines in other more compli-
cated heuristic algorithms. Thus, the main contribution of this paper is two-
fold: A set of differencing operations for the set partitioning problem, and a
provably good algorithm for partitioning based on these operations.

*Research supported by NSF Grant MCS1-05217

-2-

2. Partitioning Algorithm for 2-Processar Case

We now restrict attention to the case & = 2. i.e., we are interested in parti-
tioning a set S ¢ [0, 1] into two subsets A, B. so as to minimize D{(4, 5)
approximately.

In Section 2.1 we discuss the main concepts used in the partitioning algo-
rithm in an informal way. Section 2.2 contains the description of the algorithm
and statements of the inductive assertions about the algorithm. Proofs of these
assertions are given in Section 2.3.

2 1. An informa!l view of the main concez’s

The basic operation used in this algorithm consists of selecting a pair
a.b €S, such that |a —b | is small, and restricting the solution to those
partitions in which @ and b appear on opposite sides. The new (restricted)
problem is equivalent to partitioning

s=s-{a.bjutla-bl]
From a partition (4" B') of S, it is easy to construct a partition (A, B) of
S.sothat D(A, B)=D(4. B).
e.g., suppose a >b and la —b! €4
then A=A -f{'a-blj+ia}
B=F +1b}
gives the desired partition.

The following example illustrates an algorithm based on repeated applica-
tion of this differencing operation:

Algorithm A

While | S| > 1 dobegin
pick the largest two numbers a, b €5
S«S-fa, b+t a—-b e
end
This algorithm terminates when 1 S| = 1. The last numberis D{(A, B). 1t
is trivial to construct the actual partition (A, B) by backtracing through the
sequence of differencing operations.

Let S ={3. 86, 13, 20, 30, 40, 73}

Set a b b-a Partition
$3, 8, 13, 20, 40, 73} 40 73 33 $6, 13, 73] §3, 20, 30, 40]
{3, 8, 13, 20, 30, 33} 30 33 3 $6, 13, 333 13, 20, 30;
{3, 3, 6, 13, 20} 13 20 7 (3, 6, 13} {3, 20}
§3. 3, 6, 7} 6 7 1 $3, 6} (3, 7}
11, 3, 3§ 3 3 0 {3} {1, 34
§0, 1} 0 1 1 {0} §13
£ @ 138

In the first pass, the algorithm works down the table filling in the cotumns
headed 'set’, a,b,and b —a. Thenit proceeds bottom-up to fill in the column
headed 'partitiony’. The final result is

A=1{6,13 73}, B = {3, 20, 30, 40}, D{A. B) =1
Algorithm B

-3-

Eere is a second example of an algorithm based on the differencing opera-
tion:
(Assume n = 2F)
Sort the set S . Pair the largest two numbers, the next largest two, and so
"g‘ = 2k-1 and it appears that

the order of magnitude of the pumbers is reduced approximately by a factor of
n . Repeating this operation k times, we might hope to create a partition with

D(A, B)= o(n*)=0(n"9").

on. Differencing each pair, we get a set of size

There are a few problems with this scheme:
1. n may not be a power of two.

2. Although most differences produced after one phase are of the order of -:T

a few of them could be much iarger.

3. The distribution of the numbers after one phase is not the same as the one
we started with. In particular the numbers in the new distribution are not
independent random variables. In order to be able to prove any inductive
assertions about the behaviour of the algorithm. the same distribution
should be reproduced after one phase, or some relevant property of the dis-
tribution should be reproduced.

Eence we introduce the following modifice tions:
1. Random Pairing: Instead of pairing the numbers according to the scheme

i

above, we divide the interval [0, 1linto N = subintervals of equal length.

(K is a constant to be defined laeter.) Then we pick pairs of numbers at random
from each subinterval, until each subinterval has at most one number left.
Each of the differences created this way is smaller than —E— Assuming that

the initial distribution f(z) is reasonebly smooth, the distribution of numbers
in each subinterval is approximately uniform. (It can be treatec as if it were
exactly uniform by a resampling technique described later.) Therefore, the
difference of a pair randomly chosen from each subinterval is triangularly distri-

buted over [0, ;L}g-] Also, the differences are independent random variables.
The triangular distribution is again smooth enough that during the next phase,
subdivision of [0, 1%(—] gives an approximately uniforrm distribution in each subin-

terval. Thus the two essential properties ¢’ the distribution, viz smoothness and
independence are reproduced by tais scheme.

2. Compaction

After random pairing, all subintervals with an odd number of points are left
with one point each. To get rid of these odd points, we introduce a compaction
operation. First, we execute Algorithm A on the set C' of odd points. Let ¢ be

the last single number left. With high probability, ¢ is less than flnn - -7-]5— for

sorme 8. This is proved as follows: If we divide [0, 1] into a sequence of intervals
of with endpoints L. N3, 2L, 2v2L -, and each of these intervals has at
least one point, then the result of applying Algorithm A is less than L. An inter-

val of length L = -:%ﬁlnn contains glnn subintervals of length 5— each.

The probability that each of these intervals contains an even number of peints is
very small. Hence with high probability, each interval contains at least one odd

point.
In order to bring c¢ into the range (0, -5—) we difference it against points
from (0. —T-}f—) which are otherwise meant to be used as input to the next phase.

Since the mean of the triangular distribution over (0, };(-) is %—g— the

expected number of such points required to compensate for ¢ s

3n, ¢ <381Inn . The actual number of such points used up can be shown to

be less than #'lnn with high probability, using the Chernoff Bound [3]. and
choosing 8’ suitably.

3. Resampling:
This is a conceptual operation uszad in the analysis and does not occur in
the actual algorithm.

Since the density function f(z). z €[0, am], of numbers input to the
m!* phase is smooth (i.e., satisfies a Lipschitz condition), it can be treated as if

it were uniform in each subinterval of length -_f— The resampling process is a

technique to rigorously analyze the eflect of this approximation. It takes a set
of points S in an interval I, distributed independently according to 2 density
function f(z), and labels a large subset of § as "good” and the remaining as
"bad.” The density function of the subset G of good points is uniform in each
subinterval of interest. The size of the bad set of points B is extremely small
with high probability. The labels creztes by resampling are used only in the
analysis and are not required in the actual algorithm. This is similar to radioac-
tive tagging of chemical molecules of interest so that they can be observed in a
chemical reaction, without interfering with the reaction itself.

2.2. Description of the algorithm

The algorithm is divided into a sequence of phases. The input to the mih
phase is a set of numbers Sn €0, am]. The output of each phase constitutes
the input to the next phase. For the purpese of analysis, each number in Sy, is
labelled as "good” or "bad,"” forming 2 partition Sy, = Gn \U Bm - Initially,

a1=1- 51'—'5. ‘Slt =n, B;=¢.

Each phase consists of four operations.
1. Partitioning
2. Conceptual Resampling
3. Random Diflerencing
4, Compaction

In the following description, of the mt phase, the suflix m will often be
dropped, when there is no danger of ambiguity. Thus Sp. a,, Wwill sometimes be
denoted by S. «.

1. Partitioning

Xen
Let ny = 1Sl N = 7—;?— Qm+1 = J

m
(X is a constant which is required to satisfy certain bounds described later).
Divide the interval [0, a,,] into N subintervals of length an+; each.

ie.,

-5-

Nm
[0, am] = th L = [(1 - 1) Cm+1s 1 Cm+l]
i=1

Construct the corresponding partitionof S into Sy, Sz S, -
S;«Snl
2. Resampling

Recall that the input set S is partitioned into good and bad points.

S=G_UFB

Let f(z) be the density function of points in G (During the first phase,

this is the sam? as input density function, in subsegquent phases, it is triangular,
2(am —

e, flz)= (-——&—2—).
Let
fi =min f(z)

ZTE

Define a function g(z), which approximates f(z) from below and remains
constant in each of the subintervals J; .

glz)=fiwhenz € [

A point z € G is relabelled as "good” with probability %(é_))' (when
\
f(z)>0) and "bad" with probability 1 - }L(-IE’— independently of other ran-

dorn variables. Hence the density function for points labelled as "good’” is uni-
form in each subinterval.

3. Randem Differencing

From each subinterval we repeatedly select a pair of points at random and
take their absolute difference.
For all i € §1, 2, Nj cdo beg.:
Sy ey
while | S;i =2 do begin
pick z,y € S; atrandom
S; « S; -tz yd ‘
S,«Sy+tiz -y}
<ifz,y € G, then label |z —y | as"good” else label it as "bad"” >

and

enc

S« U S'i
1=l
N
C « U S‘t
i=1
S' is the set of differences created by this process and C' is the set of
"odd” points left-over. Note that good points in S° are independent random
variables with a triangular density function.

4. Compaction
The input to the compaction process is 2 set €' ¢[0, a,} of "odd" points
and a set S’ < [0, amsq) of differences created during random differencing.

The first step of compaction is to apply algorithm A to the set C' and

-8-

reduce it to a single point, say ¢ . {Assumme C # ¢).

The second step is to difference c against randomly chosen points from
S’ until ¢ < Qs+ -

While ¢ > am+; do begin
pick z € S’ at random
S =iz}
c -z

end

The set S’ U {c | forms input to the next phase.
Sme1 =S U e

This completes the description of the m!* phase. The algorithm stops

when there is only one number left, which is D{A., B). The actua! partition can
be constructed by backtracing through the sequence of differencing operaticns.

2.3. Inductive assertions about the algorithr
Theorem 1.

Recall that D(A, B) is the difference between the two sides of the parti-
tion.

-—

= a constant a > 0 such that with probabiiity - 1l as n—»oe
D(A, B) satisfies the following bound:

D{A, B)<n-=len
Theorem z:

Let XM be the total number of phases.

Recall that the input to the m!* phase is a set of n,, pointsin the interval
[0, am]

let ¥ be such that 0 <8< -;'—--— -2—}—_-,- following statements are jointly true
with probability » 1 asn » =
1
Z_—ln n
1. There are at least i’ =] ——T—] phases. ie., M2 M’
In =—
4
-Birn
2. n,=d"'n,ana<e ? for m =1,2 .
i.e., the number of points decreases less rapidly than a certain geometric

series.
Theorem 3:

The set S, < [0, am]. the input to the m* phase, is partitioned into
"good” and "bad” numbers.

S =Gn U Bnm
Letg = |Gn! bm = | Bml

For any a > 0, 28, > 0 such that, for sufficiently large n,and for 1<m < M,

Im+a1 = 9™ -n gm = 9™ ln -
Pr {bm”s(m +1)fnn | bp=m B 1nn}2 1-n"%.

Theorem 4:

Define ;= the number of good points relabelled as bad during the
resampling process.

With very high probability I, = O(ln n). More precisely,
for any « > 0, 3 8> 0 such that, for sufficiently large n,

Pril,=zflnn;<=sn"¢

Theorem 5:

Define ¢ to be the single bad number at the end of the first step of com-
paction.

c
Then

a = 0{ln m) with high probability. More precisely,
m+l

1. forany a >0, = 8>C suchthat
Pric >BInn ams}=n™

Define 3= the number of good points from S’ used up during the
second step of compaction to compensate for the bad point
c.

Then Iz = O(ln n) with high probability. More precisely,
2. forany a >0, >0 suchthat
Prilg>ﬂln77§.<_n“‘

2.4. Analysis of the cigorithm
In this section we give proofs of Theoram 5 through 1, in that order.

Proof of Theorem & In preparation for the analysis of the compaction opera-
tion, we require a lemma about algorithm A.

Lemma 5.1. Let S ¢ [0,1] be a set of points input to Algorithm A, and let d be
the final outcome, i. e. the last single number left. Subdivide the interval [0,1]
into a sequence of intervals

Io=[0=00 &) To = (& 02l oodm = [Gm amey =1

so that g, = &5 + &y j=2..m.

Suppose S n/; # ¢ for j = 1,2,..m i. e. each of the interval J; contains at
least one point from S.

Thend € Iz Vv /;.

Proof. Observe that
1. 2,y € iy => lz—y! € louly...Vf §>1
2.z €y €1; => lz—y| € Iguly... D50 3>1

At any time during the execution of algorithrn A, the following property holds:

All intervals up to the last non-empty interval contain at least one point
each. We can prove this inductively working backwards:

-8-

If the last non-empty interval I, contains an even number of points, say 2k,
then after k differencing operations it becomes empty and the intervals
Ig]1.... Im -y continue to have at least one point each.

If I,, contains an odd number of points, say 2k + 1, then after k differencing
operations it will contain a single point which will be differenced with a point
from Jn_1, since [,y is non-empty. Then /,, becomes empty and intervals
Ig Iy.... I;m -z continue to have at least one point each. /,-; may or may not be
empty. In either case, all intervals up to the last non-empty interval contain at
least one point.

Lemma 5.2. Suppose we throw n balls into ! +1 boxes B,, B,...B, and B. Let

the probability that a given ball lands in box B; be :—.;:— independently of other

random variables. (The probability that a given ball goes in box Bisl - Z _P_T:_

Further suppose that the p;'s are bounded from below by a positive con-
stant p.

and that
3Ip >0 suchthat p; =p wvi=1,.1

Let g, be the probability that every box except B contains an even number
of balls. {The significance of the sufix ¢ will become clear in the next lernma).
1 2p]l

Then g, <2 'l;—t—;—.———-j for sufficiently large n.

Proof: Llet m,; = number of ballsin B;, 1 = 1,...1
Lletm =), my

i=1
Eence B contains n —m balls.

Then g is given by

where &,, is given by

i m [p)™ (B)™ (1e=D™] [1+<-1)”‘*l
Q”‘_m‘i m,!myl..m,! [;_} [7!.—] { 2) 2)

Tmzm

,.go[nm] {I'er_i]n-m Z ;T[ﬁpl—*-z:---rp,}”‘

combinalions

|
h
™

11 I\l— Ef" +[¢P1tpg...4_-pl‘]]l"

-9-

Let S C{1,2,...1} be the subset of indices corresponding to negative terms.
Then

1 2
q — — ———
2 aus:zz;.z.... 1 { n T j

Using the fact that for

n
a>0, => [1-%—} < 2e~%Phe for m = af

p.=p. expi- ES p)< expt—-2. !5 .p}
€
1 L 2 [oo It
'4%55722 [nle“P("lp)— -rll*'e ZPJ

Lemma 5.3 As in Lemma 5.2, we throw balls into boxes with given probabilities.
Let T ¢ §1,2,...13.

Let g7 = prc,bability that zll the boxes F;, i€ T contain an odd number of
balls, and all B;, 1 €{1,2,...1}—-T contain an even number of balls.

Then gqr <9,
Proof: Define
1+ (=17 1 if m is even
oy = e |

2 {0 if m is odd

fo(rn) _ 1_§_1)m ={1 if m is odd

0 if m is even

2, [n][l__sz R

where &, is given by

= 9 m! (0,7 [p2]™% |m: ™ NEs ,
“n = ; my! mal..my! \H {T{% [?} ’ [ngO("H)} L];ITf‘ (7721)}

my
my

-10 -

Simplifying as before,

T 1 [1 2 » In [1 2 p}"
;= — - R _ £)
2 e scne.y l M jes 1} all Sci12. 4 l T €5 J
{ISnT| ewen | ST, odd
and
1 - In
P2 aus:ix.z,.ul n »;;5 1]

n

Since each of the terms ll - —:—Z p,-,l is positive, gr < g,

lemma 5.4 let S=GUEBC [0,1] be a set of points, where |G, = n, and the
points in G are independent random variables with the triangular distribution

over [0,1]. Let the interval [0.1] be subdivided into intervals of length =

Let 7 ¢ [0, :}.2—-] be a collection of [such subintervals, [, fz..../; i €.

I = Il U[g..,.[L.
Let g be the probability that each subinterval /; contains an odd number of
points from S.

2 |
Then g <2 1+e™® where p = kf L =2k (1- -—1—) and f(z) is the tri-
l 2 | V2 V2

angular distribution over [0, 1].
Proof: |SnlL'={G L'+ B~/
|Snl! mod2=|Gnl mod 2+ tBnl, mod 2
Define T € {1.2,..1} sothat T = {i, |BNnT,|is even}
|Gnl,' is odd fori €T
o 1S Ty is odd forall @ <> iGNl is even forie€{l,2,..lj =T

g =p 1Skl is odd for all i} =p, {1Gnllis odd if f i €T}
for any interval ; ¢ [0, Ul-_é—] the probability %— that a given point in set G
belongs to /;, is given by

}—:E—z_[fb(z)dz 2:12}1_‘ fA(z)' length (].‘)ZfA[Vl—z% . -f—l—
{

S.pizk -fa[ylg—} = Zk{ - -\-}z—]‘ = p (say)
J

-11-

Applying Lemma 3.3 and Lemma 5.2, the probability that

i
1+e~?P

{1GNLlis odd if f ieTi:gquGsZ{ >

[1 -Zp]l 1
'.qu}.—j—ze—-—j where P =2k[1—7_2%

Lemma 5.5 (Theorem 5.1). Let C' be the input to the compaction process and
let ¢ be the result of applying algorithm A to C Then, for any a>0 =

1B >0 s.t.
o-ic >ﬁlnn.£—§sn‘“

Proof: Llet the interval [0, 1] be divided into subintervals of length i—as before.

We group these subintervals into a sequence of intervals fg /,...Im with the fol-
lowing properties. Let L, = number of subintervals contained in I;. Then

¢ = a in:/L"é) the constant 8 will be specified later

2. I‘J = l\fé li—l]
l

1.4 € —L—< /2 when n is sufliciently large.

[

1. 1

Now we apply Lemma 3.4 to each interval [;, i <m. Note that
1. I, clo -\}_24 fori =01, .m-1

2. (' nl, =¢ « each subinterval of /; contains an even number of points

from S=GybB, the input to the phase.
1 &

, —, 1+2—2p“; - . _ 1
p,}Cr\]i—,agle——-—-z l p =2k |1 7]
—2p |
m=1 2p
o {3i€{0,1,. . m-1js. t. Cnl;=¢l< _20 211+;
1=

fCnl#¢ ¥i=01..m-1 then applying Lemma 5.1, ¢ = Blnn . ﬁ-

k =t [1+e‘2p].Li
fc >flnn . =< 2{-—-———-}
p‘l’ n :Z:Q 2
L; .
Z;?_—l—a 1.4 » L;=(14) ¢

!
[1+e'2?]°

1etT={—2———1

m=l)14 e %P homa 1+e™® YO]H‘
Y 2 5 < 2 2 5]
i=C ! 1=0 j

-12-

<2[T + T4+ TU?]
<2[T+T+T2+T8..]

1

sZT[1+ =T

<67 %—mce lim r=9, 7< -;— for suf ficient large n

M - ™
l+e'2p1_ [2 1 flnn
- R T R e

for any a > 0, the right hand side can be made smaller than —alnn, by
suitable choice of 8, and sufficiently large n.

In(6T)=InB+lgln

.3 8>0, st
k -a
pric >fInn . ;L—i <n

: : . & +1
This proves Theorem 5.1 by scaling by a factor of am, since —== ———
m

Lemma 5.6 (Theorem 5.2). foranya >0 Z 8> Ost pilg>pBlnni = n™%

Proof: for given o> 0, choose f; (using Lemma 5.5) so that
pric . Bylnmn > Qm+1) N2 Supposec < B InT . Gy

Let 4 ¢ S’ be the set of points used during the second step of compac-
tion. Let lg= |ANnG'}. Pointsin 4N G' are independently and triangularly
distributed over [0, 0m 4]

Let S, = sum of { independent randem variables triangularly distributed
over [0,1].

Pr52250§=f-’r§ Z z + 2 z <0

zEA Z2EANG z€ANE"

<pt Y =xz=<c
ZEANG

= Pl - Bmer <)
Sprzsls- Bm+1 < fy InT Opn 413
= poisi < frIn]

prilaz B Innlc <amsy By 1D n}<p1Sg Inn < Innj

Since the mean of a random variable with triangular density function is :—13—
_1
Ei{Si= 3 [

-13 -

By the Chernof Bound [3], = § such that

priS“ < l; < e—beta’.l

. choosing 8" > 481

Pr{Sgmn < F1 NN < Pr{Sg mn = ;Llnng <e” LE

4inn
Taking 8" > 4?—
—g'8 Irn
e 4 < e-—alr.n =n"°
. . . L I 4a\ .
_choosing g7 = max l-‘,ﬁl, 73—-] we get

rilg= f Inn.c < amey - B Inn]<n™®
=g lnn}<p-ilg= g Inn an? ¢ < Qm+; f1 1NN}
+p.flg=f Inn and ¢ > am+y g, Inn}
<p ilzg= g Innic <ama b Inn}

+ pric > amar £ nnlsn™@+n™%= 2n~°

. foranya >0, =8>0s.t.

pilz=flnnisn™®
This proves Thecrem 5.2.

Theorem 4
For any

a>0 38>st. Pr 2,2 flnnj=<n”?

for sufficiently large .

Proof: The density function Fm(z) satistles
, B \
Fn@) —fnly) € 2=z -y Ly <[0an]
m

Initiallv this is satisfied because f (=) satisfies Lipschitz condition and
a, = 1. In subsequent phases, fm(z) is triangular, hence the conditior: is
trivially satisfied. (B is independent of m.)

When

z,y €L fmlz) - fmy) | < ;‘82—- length(Z;)
m
_ B am K - Bk
- a’i n QAm T

Let P = probability that a given point is relabelled as "bad" during resam-
pling

P=3% [(=) -1 ds

i=1 7

-14 -

Bk __ Bk
< ﬁ:}”j‘-dﬂ = ==
Pril,=8nn}= Y [g]ps (1-pr*s=n [ﬁ'i’;’ln}p,mn

In Pr {i;= Blnn

s=8l
pfinn ginn
Sn‘[-ne $n'[3}ce‘

ginn finn I
Bk e‘.

‘Inn-flnninlnn
g A

=]

n

j<=inn +B‘ln[

< —a lnn, for a = § and suficiently large n

Pril,=z8nn}i<n™® for sufficiently large n

Proof of Theorem 3

Define l; = number cf “odd"” points created during random differencing.
Lemma:
m + b, — >
gma1 = = (b + 1) — Ls
bre1 = bm + i+ 1
Im + b = la . . .

Proof 5 is the total number of differences created dur-
ing random pairing. (by +1;) is the number of bad points
after the resampling process. Bach bad point creates at most
one bad difference. Forrm. the good differences created after
random differencing. At most lz may be used up during com-
paction. hence the bound on gm+; follows. At the end of com-
paction, there is at mos. on: bad point created, 272 (b + 12)
bad points existing alter resampling may creale cs many bad
differences. Eence the result.

Proof of the main thesrem:

From Theorem 4,

=8,>0 st Pril,=28 Inn,}<n™®

From Theorem 3,

Also,

Hence with probability at least 1 - 2n

lLi<ginn

3 B,>0 s.t. Prila=2j: Innpl<n™

n gm+bm
pE e ——
e % k
Since m < M'. My =g 2Vn
In n,y, 2 %-lnn
-
2

, the following bounds hold:

-15-

Gm + bm
lg< -

la<B:inn
gm=8" ' n
bp<m filnn

Combining these with the bounds on gm+ and b,,,, {rom the previous

lemma,
b <(m + 1) 8 Inmn,
Im m Im mginn
- e . - —_ - -
gm+1'— 2 2 61 Inn 2k 2k ﬂ‘. Inn 52 Inn
[I
1 1 Cinmm
> [S, S,
but
' \2 .7
m<k"lnn, and lim k (l‘n—n, k =C
n s> ﬂm l»n

Until now, ¥ was unspecified. Choose ¢ so that

11
v< T %%

Fence, for sufiiciently large n ,

gmlrlzﬂ'gmaﬂm'n

Proof of Theorem 2
Define an event

An = lgm2d™ - nend b, <m - B, Innj

P"iAmH‘.Ami?l-n

Pr {An+d = Pr {Am+y and An i = Pr {Am +1
Pr {Amii} =2(1=n"%) - Pr {Am]

Anlz(1-n"" =21-mmn”

>1—L]-n""zl—(M')zn"’zl—n'“',

-

| Am} Pr {Am}

Pr

Pr EAI and Az

for suitable a , since M' = 0(in n)

Prigm=d"!l - nvm=1-M{=21-n

Suppose gm = 8™

T%:gm'*bm?ﬁm—l'n

—m’l’_(y'-l)zn e 5.1 Inn =Vn
2 ln—l—

ngzd"l-nz2n-e

-+

ny‘a 1

- 16 -

There ere at least /" phases.
_ Qm _ Qm k' k' Oy
Cm+1 = N = n, n g™}

e\ BT
am+ls ?] B

Inopme < =m(inn —Ink’) - Ln—(mln %—]
m-—

2
m m , 1 1
>-inn Z[Znn 2lnk _Z_—Lnﬂ]

m m !
&~ — — — — S e e
> Inn 5 lnn -2Ink 4clnn]

m .

= --z—ln n for sufficiently large n
. .
. am+1 S e

Proof of Theorcm 1

1 (inn)?

_Minn T4 nt
3

D(A B)<say<e ? <e

with Prob -1 as n - =.

. 1
Taking o« = — , proves the main claim of this paper, for the case

4 1
1 —
0

of two processors.
3. Extension to k-Partilioning

3.1. Generalized differencing operations in k dimensions

1. Difference Yector
Let S be the set of numbers tc be partitioned into k subsets.

Let A,. Az 4, be any collection of disjoint subsets of S . (Their union
is not necessarily equal to S .) We will refer to such a collection as a "'par-
tial” solution to the k-partitioning problem, and it has the following
interpretation: We have restricted the solution of the problem so that any
two numbers belonging to the same set A; must appear on the same side of
the partition and any two numbers belonging to different A;'s must appear
on different sides of the pariition. Stated another way, if A}, A’z A isthe
fnal solution to the problemn then there exist s a permutation ¢ = {i,, iz, T}
of the set of indices {1, 2,--k} suchthat A < Agay Vi

let sy = 2 z

TEA
The vector (s, Sz.''Sg) is defined as the difference vector corresponding to
this partial solution and is denoted by D (4, Az.-Ac) - We consider two
difference vectors S, S’ as equivalent if

-17 -

1. One can be obtained from another by permutation of components.

2. Their corresponding components differ by equal amounts. ie. § —s';
is the same forall 1 = 1,2, "k .

Example 1 let S =4, 9, 11,23, 28, 32, 37}
let A; =14,23] Ap=1{11,28] A5= §373
S =427, 39, 374
let S' = {20, 32, 30}
then S, S' are eguivalent because
(S-S)=7fori=1,27
let S = {12, 10, 0}

then S” is equivalent to S, since it can be obtained from S
by subtracting 27 from all components and then permuting the
components.

Reduced forrn of a difference vector:

Let S = {s,, Sa....5¢} be a diflerence vector
Let s, = mins;
*

Define

s 82 Sk

Sv
as
$¢{ =8 —Sm
Then all components of S' are non-negative, at least one component is zero
and S'is equivalent to S .
e define S’ to oe the reduced ferm o" £ and denote it by Reduce (S).
Exemple 20 let S = {10, 15, 23] then Reduce (S) = {0, 5, 13].

2. Differencing Operadons

Now we introduce a method of combining two or more pariial solutions
to the problem to create a single and more restrictive partial so.ution.

Let 4y, 42 .. A, and 4", A%z, A% (all disjoint) be two partial solutions
and iet S, S’ be the corresponding diflerence vectors.

Let 0 = {i,. 4y . . . g} be any permutation of {1.2, k}{.
Define
00S = {s'{ .Sy sy} -

The combined partial solution is defined as:

A UA'S, AzUA' oA UAT

The corresponding difference vector is:

S+0oS ={s; +8' S+ S'igareees Sk +s'y {

-18 -

A similar operation can be defined for combining more than two
difference vectors. Also, the permutation ¢ can be chosen in many different
ways. A
Example 3: let S= {2, 7, 11, 14, 189, 22, 28, 35, 37§

let A, = {2, 19], 42 = {11}, A3 = {37{ be a partial solution
then S = {21, 11, 37{.

let 4, = {35] . A’ = ¢ . A3’ = {7, 22} be another disjoint partial
solution
thens' = 35,0, 293.

let =13, 1,2
g0 S’ = §29, 35, 03.

The combined partial solution By . Bz, By is given by B, = {2, 18, 7, 224,
B, = {11, 3%} , By = {37} . and the corresponding difference vector is:
S + 005 = {50, 46, 37} = {13, 9, 0}.

3. Binary Differencing

This is a particular differencing operation for combining S and S in
which the permutation ¢ is chosen so that the largest component of S is
combined with the smallest component of S', the second largest com-
ponent of S, with the second smallest component of S’ and so on.

Arrange the components of S in non-decreasing order and components
of S' in non-increasing order:

S,€S52€ £S5, S Sk
shizsh= S'e-1 =8
Take the sum
S+S ={s,+s'.s2+5%2 " Sk + 5%}

Then the reduced formof S + 5" is defined as the binary difference of 3
and S'.

Example 4:
Let
A, =12,19] Az ={11} 4s= 14,27
D (A, A As) = {21, 11, 31] = {10. G, 201
Let

A, =15 170 Ap=1{7.14] A's= {25

D' (A, A Ag) = 122,21, 25) = {1. 0, 4
The binary difference of 2 and 2’ is
{20, 10, 0} + {0, 1, 4] = §20, 11, 4] = {16, 7, 0},

and the corresponding partitionis
B',=14,27,7,14] B2 = {2,19,5 17} B'3= §11, 25}

-19-

Now we prove some properties of binary differencing.
Lemma: Suppose S.S' €[0, m]* then z € [0, m]*
Proof: let j be suchthat s; +5; = rniin (s; +s'y)
then
=8 +8y = (55 +85) =(si —55) +(s% -s';)
one of these terms is non-negative and the other is non-positive and

the absolute value of each is less thanb or equal to m . Fence the
result follows.

An aprplication of this lemma:
let {S,, Sz~ Se}c{0.mf

be a collection of difference vectors. Take any two vectors S; and S; and
replace themn by their binary difference. By repeating this operation, the set
S, Sa. ~ Sp} can be reduced to a single difference vector S . By the
lemma above, S € [0, m]¥ . This idea will be used in the compaction opera-
tion.

4. Cyclic Differencing:

let S, Sa S bea collection of k difference-vectors, each with k
components.

let ¢ be the permutation (k, 1,2,k — 1) .
As before,

oo {z) ZTa T} = {2 20 T T -1}

et S=S,+0%0 S;+c0o S0 0 5

The reduced form of S is called the cyclic difference of S;. Sa - Sk-

Lernma:
let (S, Sa Sejca+[0.8]
and let S be their cyclic difference. Then
Scio kb}
(Notation: g = {a;, @z a,} is any k vector, and
(e +[0. b =iz cRY | qysz<a +b])

Proof:
§;€_q+[0.b]k-'_§i—_g_6[0.b]"
20105, - loge[0 b
n i n .
Y 6t7'e S - atloa € [0, kbl*
t=1 i1=1

All components of
Pl g
i=1

are equal to

Hence

2o n n)
S = Reduce [z o lo Si] = Reduce [Z ot~lo S; — 2 gtloga

i=1 1=1 i=1

Selo kb

Example 5:
let
S, = {302, 105, 404}
S, = {307, 102, 409}
S, = {306, 108, 401}

If we take g = §300, 100, 400} and b = 10, then
S;ca+[0b] fori=123

Now we compute the cyclic difference of S,, Szand Sz
o=13 1 2}
o® o S, = {302, 105, 404]
o' o S, = {409, 307, 102§
0% 0 Sz = {108, 401, 306]
0 S, +0lo S, +0%0 Sy= (615,813,812 = {7, 1, 03 [0, 30J°

3.2. Description of the algorithm
Now we describe a partitioning al-orithm using the cyclic differencing

operation. Each number in the input set is converted into a k-tuple by set-
ting the first & —1 components to zero and the last component equal to the
number. The algorithm is divided into a2 sequence of phases; the input set
S to the m® phase is a set of k-tuplzs contained in [0, &m J¢ . (and the
first component of each k-tuple is always zero). The cell [0. ap)* is
divided into O(n) subcells of equal size (where n. =S|). Then we pick a
set of k points at random from a subcell and take their cyclic difference.
We repeat this operation on each subcell as long as possible, i.e., until each
subcell contains fewer than &k points. The magnitudle of differences created

in this process is smaller by a factor of about O(nk-'). If the initial distri-
bution f({z) of k-tuples over [0, am J¢ is reasonably smooth (i.e., satisfies
a Lipschitz condition), then the distribution of k-tuples inside each subcell
is approximately uniform. (It is made exactly uniform by resampling.)
Cyclic differences of k -tuples drawn randomly from the uniform distribution
are distributed independently according to a distribution fa(z). which
again is smooth. Thus the essential properties of the distribution are repro-
duced form phase to phase, just as in the 2-processor case.

This process leaves some bad points behind: those created during
resampling and at most k£ —1 per subcell during random differencing. We
compact them as follows: First, by repeated application of binary
differencing, the set of bad points is reduced to a single bad point. This bad

-21-

point is brought in the range [0, am+i]f by differencing it against good
points from [0, am+]* , otherwise meant to be used as input to the next
phase. The number of good points left as input to the next phase is more
than some constant fraction of the number of points input to the current
phase, with very high probability. hence the total number of phases is about
O(Zog?) and each phase reduces the order of magnitude of points by about

O(n-’:‘_l.) leading to a final difference of O(n™* ogny |

Now we give a description of the algorithm and the associated notation.

Input to the algorithm is a set S c[0.1] of n real numbers distri-
buted independently and according to a common density function
f(z), z €{0, 1]. The functicn f(z) is arbitrary, subject to a Lipschitz
condition:

=g>0 st. vz,yc(01] [f@)-s@) =B lz-y]

The first step of the algorithm is a preprocessing operation that con-
verts each number in the input into a k-tuple by prefixing it with k-1
zeros.

Sy =¢
for all z € S do begin
0 i=1,2,%k -1

z;
=T

z =iz, z2 i}

S,=5, U g}
end
The algorithm is divided into a sequence of phases. The input to the
mih phase is a set Sp. {8} < [0, o, J¢ of k-tuples. The first component of

each k-tuple is always zero, b is a single bad point. There are three
parameters ng,. Gm, N,, associated with a phase and they satisfy:

n, = | Sp | = Number of k-tuples in the input
N. = 2™ = Number of subcells formin tition of [0, oy J*
= =] g partition of [0, opm

(k —1) K

Cm+r = B

Nn}-‘z-l

(k' is a constant parameter of the algorithm, which satisfles certain condi-
tions described in the proof of Theorem 5)

Initally, b =1, n; =7 .

Each phase consists of the following sequence of operations:
1. Partitioning

2. Resampling

3. Random Cyclic differencing

4. Compaction

We describe each of these operations in turn.

-22-

1. Partitioning:

o
Let Nm = 7::"1__' Qm+l = :':L_
Ng™t

Divide the cell §0} x [0, anJ¥~! into Np equal size cubic cells, each
with side am+; -
Construct the corresponding partition of input set S .

5,=SNG 1=12"Np

2. Resampling:
Let f(z), z €0} x[0, a,,]! be the density function of points in S .

Define f, = min f (z)
L&Yy

Define a function g{z). z € {0} x [0, am ¥ as follows:
gl)=fiwhenz € G

Thus g(z) approximates f (z) from below and remains uniform within
each cell (5 .
A point z € § islabelled as

"good" with probability g_—(é; (when f(z) > 0)

and "bad' with probability 1 - %, independently of other random

variables.
let G=iz €S | zislabelled good]
B =ib] Uiz €S |zislabelled bad }

G=GNG

3. Random Cyclic Differencing:
From each subcell G we pick
cyclic difference. The leftover points in eac
points.
S =¢
For i = 1,2, -- N do begin
while |g;! =k do begin
randomly pick aset z), T2 Ze € G
let z be their cyclic difference

sets of k points randomly and find their
h cell are merged with the bad

5'=5"U tz]
G = G - {Zy T Ze}
end
B«B UG

end

-23-

4. Compaction

First, we reduce the set of bad points to a single bad point by repeated
binary differencing.
While |B, =2 do begin
pick z,y € B arbitrarily.
let z be their binary difference.

B« B -z yj+z]

end

Suppose B = {b]. We bring b into the range
[0, am+1}* by differencing it against good points from S°.

while b £ [0, am+1)¥ do begin

pick z € S' at random

b « binary difference of b and z
end

S' i {b} constitutes input to the next phase.

3.3. Inductive assertions about the alge-ithm

In this section, we make a few more definitions and state the inductive
assertions about the algorithm. Prcofs will be given in the next section.

We define a function fa(z). z € [0 1}¥7! as follows:
1. Let u(z) be the uniform distrib:tion over [0, 1].

2. Llet wu,(z) be the sum of k independent random variables with com-
mon density function u(z).

3. Let z, zz -z, beacollectionof k independent random variables with
density we-,(z).
4. Llet z, =minz
1

x ' = 2,; — T 1#m
Let (z';, z's.-z'k-;) be the collection (suitably reindexed) of z';’s.
Let g(z',, T o T'k~y) be their densily function.

5. let falz)=(k -1 -g(lk -1 z) zelo 1.

Theorem 1
The input S to the mt* phase consists of independent random vari-
ables with density function ;1— Ry

m am

Theor=m 2
fa(z) satisfles a Lipschitz condition:

SB>0 st vz, yelo 1P| falz)- faly)!=Blz-ul

Let I, = number of points labelled as “bad" during resampling. Recall that
N is the number of subcells in a phase.

The following theorem says that {; is small with high probability.

-24 -

Theorem 3
v B>0 I Ny st. YN=N,, Pril,=Nj<e™®¥

Let l3 = number of good points used from the set S' to compensate for a

single bad point during second step of compaction.
The following theorem says that I3 is small with high probability.
Theorem 4

3 aconstant § >0 st Priiz> §-Nj= e BN

The following theorem says that the number of points is reduced by a con-
stant factor (approxi.mately) during each phase.

Theorem S

-

= aconstant >0 s.t

1
-4—-1nn
it me M =] ——T—'I
[el
3

Then Pr (Ama =9"n | Apm=d™In)21- o —BVR
The following theorem establishes the main claim of the paper:

Theorem 6
With probability -1 as n » .
1. There are at least M’ phases.

2. 3 constanta s.t
D(A,, Az A) < e oln n)?

3.4. Proofs of Lthe inductive assertions

Proof of Theorem 1: After resampling, the good points are uniform!y distri-
buted in each subcell. From the definition of fa{z) it trivially follows that
the cyclic difference of a set of k number randomly chosen from a subcell
has the density function falz).

Proof of Theorem 2:
1. fork =2 wu; (x)satisfies Lipschitz’s condition
fork =2 wp(z)=1-lz -1 z €[0,2]

" jug(z) -uz{y) <='z-Y

fork > 2,

w (@)= [welz - ult)e

{=~w

(=) =y @)1 5 J ez =)~ — 1) ()

-25-

< [z -ylu(t)dt= iz -yl

Hence the resuit follows by induction.

2. 1w {z)is bounded
fork =2 luz(z) =1

fork >2 lu. () = [tuy_(z —) w(t)dt < fu(t)dt =1

(1 7 2y = w22 8
g LYy A Zeens l;_]) az,i az,z ...az,k_l

3. G{(z';, T'3,...T k-1)» Where

G(z's 'z - T'er) =PriZm ST S I, +z'y)

=k p iz, €T, <z + T i# 1)

=k]uk_(:c)pri:z <z <z +zy 1#lds
=k [u (z)"ff[uk (z +z) - U (z)} dz
—w 1=1
gt k-1
glzza.) =k f we (z) 1] [we (z + z'y)] dz
- 1=1

=1

- [k k=1 1
lgz)-gwli=k :[ulc(z) | [Huk(l' +1"i)—1—_11uk(2 +y'y)| | d=

[} —

- - k-1
|Tf u (z + z)) —?—f 1, (2 + y'3) | iz —y'y! (using 1 and 2)
i=1 =

i=1 =1

.

A
™

c -1z -yl

lgEy—g@) sk -1 iz -

a.
falz) = falu)i = 1k =1) g (k—1)z) = (k= 1) g (& - D)]
sk(k-1z-yl =F.z -yl

Proof of Theorem 3: The probability that a number is lost due to resampling
(independently of other numbers) is given by

p=3 [-1
=1

-26-

{. Observe that p does not change by scaling the distribution so that it is
defined over [0, 1}¢~! rather than [0, a]¢™".

so that gz e[0alteyc[0.1]¢7) Let

|~

Proof: Let y =

gly)=at flay)
If the resampling process is applied to g {y) then

Q

p = Y [g) -9y dyz i
g
N dr, dzr, dz
= k-1 :\ — » 1 2 k — 1

i=

—

= il 'C/; [f.(.%) _f-i.] dx,, d-'-"g(..d.’rk_l

-

p'=p

it follows thatl, after scaling, the density function we

2. From Theorem 1,
are dealing with is fal<) which satisfies the Lipschitz condition by

Theorem 2.
. , vk -1
Ifz,y, € G then z -y = NVE-L

ey - s BE

¢ [(filz) - f.)dd
izl G

"
I\

B Vk=1 2”4 fdA_B\/_k—l

P Nk - N/E-)

=1 G
Nl/k

3.

s L \N
pity=m= § e oy £ [EQ;L] <n [__HENTM

n [ek”k"/"'] n
—_— i —_ -A' = ~fAN
In[p,it; 2 Njj<khn + " _nl e T RE Inn < -8n BN

for any g and sufficiently large N.
ppfly=Nj<se ¥

Proof of Theorem 4 Let b be the single bad point left after first step of
compaction. We are interested in finding a bound on I3, the number of good
points from S’ required to bring b in the range [0, am+1)%.

Arrange the components of & in non-decreasing order:

-27-

0= bls sz ba b = be
We say that component &; is rsmall” if b; € Qm+; and "big” otherwise. This
partitions the indices {1, 2,... k] into small (b) and Big {b):

Small (b) = {i|b; is small]

Big () = ti| b, is big}

Recall that b is differenced with some z €[0, om+1J¥. Under these con-
ditions the following property holds:

Lemma 1. After single binary differencing step. a small component remains
small, and a big component does not increase in magnitude. (Proof deferred
until the end of this section).

This suggests that we divide the sequence of differencing steps into
phases: During a phase, the set of small components remains the same and
a phase change occurs when a new component becomes small for the first
time. Hence there are at most & — 1 phases. If we can establish a bound L
on the number of good points lost during a phase, then we have

ly<(k —1) L

To analyze a single phase, we make a few definitions:
Let

KB'LgLQ)'\ = z,, by
1€Byg i)

Suppose b’ is the binary difference of & and z € {0} x [0, am+1)*7!
Define z,, = mf {z, |1 =2,.. .k}

Lemma 2 |Big (0)i = iBiz (&) = zm (Proof deferred) i.e. |Big)i is
reduced by an amount at least equal to z,,. Note that z,, is a random vari-
_z)

able with density function where gm (y) is density function

gm

m+l amﬂ} .

of the random variable y = mi'_in Y1 Yo Ye-1} and Yo Ye -y AE distributed

according to falw). The density function gm (x) has some finite non-zero
mean u. If S, is the sum of . independent random variables with density

gm (z) then we have by Chernoff bound [3] Pr{S, <7m . %{ < e P" for some
<

If I is the actual number of good points lost in a phase, then

Qs . S < |big () < am - (K1)

5 =N. (k-1)

copil= L} <p S < Nk —1)j= e,
by setting

L. g-=1v(k—1)

-28 -
Copella=(k-1) Ly (k—1) e~BL

Choose 6 = (k —1)%. %—so that

N=(-1)1L
Copeilaz 6N = (k—-1) e k-1 < g~BN

for suitable choice of 8’ and sufficiently large N. This completes the proof of
main theorern. Now we prove the lemmas.

Proof of Lemma 1: Arrange components of b and z as follows:

Let by + Zm = T (b + z).

Let b’ be the binary difference of b and x
then b’y = (b + 2,) = (bp. + Zrm)-

b”‘ +zm$bl+zl=z1SamH
b, £ Qm+

. m €small (b)

This has two consequences

i€ small LQ) => !Ebi—bm‘.sam+l
i€ Big (b) => 2, -z =0

To prove that a small component remains small, let i € small {b) then
b’y = (bi + zt) - (bm + 2:m) = (bt = bm) + (2,; -zm)
(B, = b € Qm+1 | Ti ~Tm i = Qme+1. ONE of these terms is non-negative and
the other is non-positive. Hence b'; £ Gm+1.

To prove that a big component does not increase, let i € Big (b) then
by = (b, +z) =~ (b + Zn) < by + (T = Zm) <O

Proof of Lemma 2.
b’y = (be + Tie) — (b + xm) =b, — (bm + Zn)
by = bk = (b +2m)2ml.;_n {z:]
b, -by=201i#k, 1€ Big (b)

|Big (b)) =1 Big@)i= ¥ (b-b3)= min 4z
i€ Biglh)
_ min

|Big (b)| < | Big (b)] - 2 where Zn =Ty (%)

-29-

Proof of Theorem S: Let S and S’ be the input and output of a phase.
let |S|=nand |S'' =n"
Recall that I; = Number of good points from S lost due to resampling
and l; = Number of good points from S lost in compaction.

Define l; = Number of left-over points after random cyclic differencing.
n-I[,-1
Then =n'= ———kl-——z-—la

l,, l; and 4 satisfy the following:

1. Z6>0 st p,.}la>5/vgsg—.8!\’
I, = (k —1) N, since at most k —1 points are left in each subzell.

3. W8>0 = Ngst N2Ng=>p il =2N{=< e BN In particular, choose
the same fas in 1.

Therefore with probability at least 1-2e™®* we have
ZISN, lz.<.. (k -1)]\7, ls <6 N.

_1__6+1]

n—N—(k-l):"\'_ -
N = z P }

k

n'>

Z—-—(6+ DN=n

Choose 9 such that 0 < ¥ < %—— 6]:, 1

the above inequality has a solution).

. (Note that k' must be so chosen that

S.n'2n .8

Now consider the input n to m!™ phase as a random variable ng,.

Suppose
[
Ny, 20" !. n and m sm’:l

S np, = Vn

1—2e ™M1 2 8VR > 1 —gBVn

for suitable £
but N =29 . Ny

oM =28 . n

C PefMme 20Ty 29 a2 1 e

Proof of Theorem 6:
am (k—1)
Nﬁde
(ama)™ _ (e —1Y71 _ k(e -1 K
(am)k-l Nm nm nm

Cm+y =

-30-

In the proof of theorem 2 for 2-processor case, we have

Cm+1 _

k
Om Ny,

With the exception of this change, the proof of this theorem is identical to
that of theorem 2 for 2-processor case.

Eence we get

2
(oY t=se” L {ln‘n z
- 4 inl/v
_L__{nn)?
Cap<e 3 k-Lin 1/

and D (A, Az... A&) sy

taking
S SR
4 (k-1)Inl/v’
we get

D(Al.Ag....Ak)Se"*“"“)z. with Prob - laos m ==

References

1. R.L. Graham, Bounds on multiprocessing timing anomalies, SiaM J. Appl.
Math, 17 (1969). pp. 416-429.

2 E.G. Coffman, Jr., M.R. Garey and D.S. Johnson, An application of bin-
packing to muitiprocessor scheduling, SIAM J. Comput., Vol. 7, No. 1,
Feb 1978.

3. Wozencraft and Jacobs, Principles of communication engineering, John
Wiley and Sons (1985).

