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Application-Integrated Record-Replay of
Distributed Systems

Abstract

This report reviews bug catalogs and debugging systems
designed for distributed systems. It tries to find common pat-
terns in distributed systems bugs, highlights the characteris-
tics necessary in a debugging system to identify these bugs in
distributed systems, and proposes the Application-Integrated
Record-Replay (aiRR) system for addressing classes of these
bugs.

aiRR is designed specifically for distributed systems. aiRR
integrates the recording into the distributed system and lever-
ages this integration to reduce the overhead of recording in
the application. To have low overhead, our approach avoids
reducing application-level concurrency and avoids recording
application-level data that is not necessary for replay.

CCS Concepts

* Software and its engineering — Software testing and
debugging.

Keywords

Distributed Systems, Debugging, Failure Reproduction, Bug
Catalog

1 Introduction

Distributed systems are notorious for containing subtle
bugs that manifest only as failures in production [17, 20, 27].
Despite the vast literature of known testing and verification
techniques [13, 35], distributed systems bugs still often make
it to production.

Even widely production-deployed systems, such as Etcd [8]
and Zookeeper [9], get frequent bug reports from production
runs. These systems have been heavily tested, both by their
authors and by all the companies that deploy them in their
infrastructure. But the complexity of these systems means
that there are still many edge cases that are not handled prop-
erly and could become (and do become [2]) the trigger for a
production failure.

Reproducing the production failure in a controlled envi-
ronment for understanding the bug is a critical step in post-
mortem debugging. Because of the inherent complexity of
distributed systems, many bugs, particularly those that made
it to production, are hard to trigger and reproduce. It is also
often impossible to make any progress in bug fixing without
first reproducing the bug.
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Reproducing the production failure is also a time-consuming
step of debugging. Many publicly reported bugs in Zookeeper
and Etcd took months to resolve after the initial bug report was
submitted. According to some open-source issue board anal-
yses [41], HDFS, HBase, and Zookeeper developers spend
an average of 70% of bug resolution time reproducing the
bug. For example, it took 3.5 months from its first report for a
recent Etcd bug to be reproduced. The fix was merged shortly
after it was reproduced.

Existing post-mortem debugging tools cannot reproduce
distributed systems failures in a controlled setting. As a result,
although they are helpful in debugging performance issues,
they do not help in debugging one-off failures in distributed
systems. Selective logging systems such as Dapper [34] log
information about a tiny minority (about 0.1%) of requests, so
information about the fault may not even be in the recorded
trace. Even when it is in the recorded trace, using the logs
to make sense of the complex control flow of the distributed
systems is often impossible. Verified distributed systems [13]
promise to eliminate bugs by construction, but are often dif-
ficult to apply to production systems that are more tightly
integrated into an application and business logic. Off-the-
shelf record-replay systems [4, 5, 25, 26, 36], have too much
overhead to be enabled on production distributed systems.

In this work, we aim to improve the debuggability of pro-
duction failures in currently deployed distributed systems. We
first survey various approaches for debugging and their suit-
ability for distributed systems. We discuss the applicability
of these systems to concrete bugs from bug catalogs in the
literature.

Motivated by our findings from debugging and bug catalog
literature, we propose aiRR— an application-integrated record-
replay system that has many of the advantages of state-of-the-
art record-replay systems but takes advantage of the particular
structure and assumptions of typical production distributed
systems to be low overhead and, therefore, allows production
deployment of recording.

We notice that record-replay systems have two key sources
of overhead: 1) reduced concurrency and 2) the recording of
large app-level buffers. State-of-the-art recording systems re-
duce the overhead of recording concurrency primitives [25] or
avoid persisting recorded data [21] to improve performance.
The resulting overhead and the setting of not persisting full
recorded trace are not acceptable for debugging many produc-
tion distributed systems failures.
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In aiRR design, we aim to reduce the overhead from the
two sources above, by specializing record-replay system to
the distributed system under recording. We take advantage of
two key aspects of distributed systems that are not applicable
to general applications and that allow us avoid these sources
of overheads.

First, we notice that in distributed systems not all instances
of concurrency primitives (mutexes, atomics) need to be
recorded for successful replay of a wide range of bugs. We
categorize uses of concurrency primitives according to their
purpose within the application and only record the instances
of primitives that are necessary for replay.

Second, we notice that distributed systems typically use one of
the few RPC communication libraries. In aiRR, we provide in-
terfaces that integrate with these communication libraries and
allow the application developer to selectively avoid record-
ing costly application-level buffers that are not necessary for
replay.

The rest of this paper is organized as follows: we discuss
the related work on debugging and bug reproduction in Sec-
tion 3. We describe the prior work in terms of efficiency,
effectiveness, and accuracy and note that record-replay sys-
tems are getting close to being a good solution for debugging
distributed systems in production.

We then discuss a framework from the past bug catalog
literature for reasoning about distributed systems bugs in
Section 4. We discuss various bug catalogs in terms of the
framework, and create a bug map, positioning bugs according
to what kind and how much information is necessary to re-
produce them. We conclude the section with a discussion of
the effectiveness of past debugging systems (from Section 3)
in debugging various regions of the bug map.

In Section 5 we give an overview of our proposed dis-
tributed system record-replay system. We describe the imple-
mentation and API of aiRR in Section 6 and evaluate it in
Section 7 via microbenchmarks, production bug reproduction
examples, and recording overhead measurements.

2 System Model

Throughout this paper, we model distributed systems as
independent nodes that run some computation and can fail
independently. We model each individual node as an 1O au-
tomaton [22] that communicates via sending and receiving
messages and maintains an internal state that can change in
response to incoming messages.

Node faults and restarts are a special sub-category of inter-
nal state changes. The distinction is relevant for the discussion
in Section 4.5 where we discuss the record-replay overheads
of a system that follows this system model.

Each individual node communicates with other nodes as
well as with its environment. So, random numbers, timer
values and other external environmental parameters for a

node are modeled as messages sent from the environment to
the node.

An event in this model is one of the set {message arrival/send,
local computation, fault/reboot} elements.

We use an [0-automaton-like model in this work because
many algorithms for distributed systems such as Raft [28],
Zab [14], IPFES [6] are modeled in the IO automaton model in
literature. The real world distributed systems implementing
these algorithms such as Etcd [8] and Zookeeper [9] typically
follow a similar model in their implementation code.

We leverage this model in Section 4 to position bugs from
various bug catalogs on a common map, and use the model’s
assumptions in aiRR design to reduce recording overhead.

3 Related Work

We start by talking about the unique challenges that arise
in distributed systems, and then we lay out the key properties
that developers trade between when choosing a debugging
approach. We talk about four major categories of distributed
debugging tools characterizing their point in the trade-off
space, as well as their strengths and weaknesses.

There are three key properties to consider when designing
a debugging system [43]. Efficiency is the overhead on the
system to improve debugging. This is particularly important
for debugging in production. Effectiveness is the power of
the system to help developers diagnose a wide variety of
problems. Accuracy is the fidelity with which a debugging
system enables reproducing the execution state of the failure.
Now we describe where the common debugging approaches
land on this trade-off space.

Logging systems allow developers to trace execution paths,
as well as to understand the value of data by placing log
statements in the codebase. These log statements add extra
cycles to print messages to disk as well as pass values in
adding a good amount of overhead. Their effectiveness and
accuracy depends on either the developer or system’s ability
to: place log statements in places that disambiguate execution
paths, and choose values to print that are relevant to the failure.
These properties are summarized in Table 1.

Program analysis aims to use a semantic understanding
of the program to enable reproducibility of failures. Whether
this scheme is efficient or not depends on the approach used
(e.g. offline/online). The effectiveness and accuracy similarly
depend on the specific instantiation.

Formal methods aim to provably eliminate bugs from dis-
tributed systems alltogether. More lightweight formal meth-
ods try to relax the proof requirement and expand set of
systems the methods are applicable to. Although these meth-
ods work well for verifying the correctness of protocols, they
are less aplicable to real-world distributed systems implemen-
tations because of the significantly larger set of features that
need to be modeled in the formal model.
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Efficient

Effective

Accurate

)
Adds CPU cycles and
data marshalling

Logging

(+/-)
Depends on where
logs are placed and

what values are logged

(+/-)
Depends on where
logs are placed

(+/-)

Program Analysis Can be done online/offline

(+/-) (+/-)
Depends on the Depends on the
scheme used scheme used

Q) )

Formal Methods ) . Limited by expressiveness | Leaves gap b/w formalism
Done offline . : .
of formalism and implementation
O +) +)
Record/Replay Requires expensive loeoin Can record any Faithfully represents
q P geing kind of bug execution

Table 1: E-E-A trade-off for various approaches to distributed system debugging.

Lastly, record/replay schemes capture the statements in
the execution path that led to a failure. Since the statements
are not known a priori these statements are captured during
execution harming efficiency. However, since they capture
exactly the statements running during the failure they can
capture all bugs and accurately capture those bugs.

3.1 Logging Systems

Logging systems as previously described place statements
across the code base to provide developers with information
about the code’s execution. When considering systems that
use logging as a debugging tool, there are three relevant ques-
tions we must answer:

(1) Where should logs be placed? The location of the logs
has an influence on the ability of logs to discern differ-
ent execution paths.

(2) What variables should be logged? Variable values can
provide important information to developers such as
whether program invariants are being withheld, or per-
formance characteristics of the system.

(3) When do you make these decisions? Answering the
previous two questions at development time prevents
the developer’s finding bugs from tailoring logging to
their specific failures.

3.1.1 PivotTracing: PivotTracing [24] aims to help de-
velopers debug distributed systems bugs by providing them
the ability to ask system-level questions and automatically
translate these system-level questions into runtime logs. With
what they call “happened-before join”, Pivot Tracing gives
users, at runtime, the ability to define arbitrary metrics at
one point of the system, while being able to select, filter, and

group by events meaningful at other parts of the system, even
when crossing component or machine boundaries.

This can be helpful for debugging many of the bugs in all
of the bug map on Figure 1. However, since this is a runtime
query engine, the bug must be reliably triggerable so the
developer can continually trigger it, collect different system
level log data and trace down the root cause of the bug.

3.1.2 Dapper: Dapper [33] is a tracing system developed
by Google for general use for their applications. This system
focuses on a design that leverages the cooperative nature of
Google’s infrastructure. The first requirement they have is
ubiquitous deployment. The larger the coverage of a tracing
system the more informative. This might be impractical in
other scenarios where a distributed system might be mak-
ing use of external libraries of which it has no control, but
is sensible for Google. The next requirement is continuous
monitoring. Many papers have highlighted that bug repro-
duction takes up a considerable amount of resolution time
(as high as 70% [41]), so instead Dapper was designed to
always be running so that reproduction could be fast. And
while they want continuous monitoring they also want low
overhead since Google’s production applications are heavily
optimized to improve user experience. The last requirement
is developer transparency. In the common case developers
should not have to perform any instrumentation to receive
logging information from Dapper.

Dapper performs tracing at the request level. In order to
tune the overhead taken up by the system Dapper performs
adaptive sampling. For every request it chooses probabilisti-
cally whether the request will be a sampled request. Instead
of requiring developers to add instrumentation points in their
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code Dapper adds instrumentation points to common google
libraries. They modify their thread library to attach trace con-
text to thread storage, their async library to add trace context
to callbacks/invocations, and their RPC library to transmit
trace IDs from client to server. Traces in dapper are made
up of spans that form a tree. Spans represent individual units
of work and contain timing data, and annotations optionally
added by applications.

3.1.3 Log20: Log20 [42] focuses on determining where
log statements should be placed. They outline multiple prob-
lems with current log print statement (LPS) practices that they
discovered by studying revision history of multiple codebases.
First they found that LPSes are often added only after a failure
occurs, which means that the developer was not able to debug
the issue as it happened. Second, they found that it’s hard
to predict how useful and expensive adding an LPS will be,
pointing out that many revisions only modify the verbosity
level (e.g. from ERROR to INFO). Lastly, they find that the
scalar nature of verbosity levels is difficult for developers to
reason about.

Log20 makes it easier to use logs for debugging distributed
systems, but it still has many of the issues discussed above
for Dapper.

3.2 Program Analysis Systems

Program analysis uses a semantic understanding of the pro-
gram to enable reproducibility of failures. It’s an approach
that offers flexibility to the developer to navigate the trade-off
space as they see fit and optimize for a particular use case.
They are free to perform offline work to reduce overhead, but
could benefit from data gathered online.

3.2.1 Failure Sketching: The authors propose Gist [15]
that relies on hardware watchpoints and hardware features
for extracting program control flow efficiently to record what
they call “failure scetch” of a failure. A failure sketch con-
cisely lists the statements that led to the failure and describes
the delta between a failed and successful execution. Gist auto-
matically produces failure sketches for a given failure using
hybrid static-dynamic analysis. It uses program slicing which
determines the set of statements that affect the values at a
given point in the program.

3.2.2 Execution Reconstruction: The author’s of Exe-
cution Reconstruction [43] believe that most debugging sys-
tems over commit to some of the properties in the efficiency-
effectiveness-accuracy trade-off and thus unnecessarily lose
out on some of the other properties. This project aims to use
symbolic execution but only to reconstruct the state required
to elicit a single control path, one that induced a produc-
tion failure. This is called shepherded-symbolic execution.

However, they state (based on evaluation) that shepherded-
symbolic execution is not sufficient to improve analysis times
due to the progressive complexity of input constraints.

The insight of this project is to record the minimal set
of data values that enable low overhead symbolic execution
while maintaining accuracy. They call this process Key Data
Value Selection and rely on some hardware support. This
involves constructing a constraint graph and using it to find
data values that are found in complex dependency chains.
In particular they look for long chains of symbolic writes
and look for accesses to large symbolic memory objects. Key
Data Value Selection is done iteratively. At each step it uses
the current data to determine which data values will help to
reduce the execution time of symbolic execution by choosing
values that fit the constraints output from symbolic execution.

3.2.3 Pensieve: Pensieve [41] recognizes that developers
don’t debug failures by reconstructing the full execution path
that led to the failure. Developers skip most of the code and
find statements that have a causal relationship with the failure.
For example, to understand why a variable has a certain value
a programmer would instantly jump to the place where it’s
defined, not scan the entire path. And to deal with ambiguities
where the variable could have been defined in 1 of many
places a developer uses print statements to determine the
relevant place.

Pensieve produces a partial trace with a set of events that
occurred during failure execution rather than a full execution.
The paper defines the event-chaining algorithm designed to
produce these partial traces. There are condition events rep-
resenting conditions that hold at a location, location events
that represent execution having reached a location, invocation
events that represent methods being called, and output events
representing messages being printed. The algorithm starts
with the output events that represent the failure execution
and works backward to generate the trace. For each event
Pensieve uses data flow analysis to find an event that explains
it, and that event is also analyzed to find some parent event.
It includes procedural analysis to ignore loop iterations that
have no bearing on events, as well as a process to determine
how to handle multiple possibilities to explain an event.

3.3 Formal Methods

Approaches discussed so far are reactionary - they assume
bugs have already made it to production software and discuss
ways to find and fix them. Given that the methods discussed
so far have not eliminated all bugs from production systems
already, you might wonder: Is it possible to prevent bugs from
entering production systems in the first place, so that there is
no longer a need to debug?
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Fueled by this desire, researchers have attempted to for-
mally verify (or, at least, comprehensively validate) the cor-
rectness of distributed systems before putting them into pro-
duction. This is akin to a Java compiler ensuring that each
function call in a program passes the expected number of
correctly-typed arguments, so that no bugs can arise at run-
time from argument mismatch.

Because formal methods require a very precise model, they
are typically applied to mathematical descriptions of algo-
rithms, as opposed to their real-world implementations. This
allows specifying security invariants in the same mathemati-
cal model and carrying out proofs about the system. Ivy [30]
is an example of such a system. Though the authors originally
used Ivy to prove invariants in simple procotols such as Chord
and distributed locking schemes, it was later extended [29] to
prove safty invariants of six Paxos variants.

More recent practical work on the Rabia state-machine
replication framework used Ivy to verify its core protocol [31]
but does not use any formal methods for the actual implemen-
tation of the system.

Applying formal methods to complex, practical distributed
systems has two bottlenecks. First, it is harder to model more
complex systems and second, it is computationally more ex-
pensive to carry out proof computations on more complex
systems. IronFleet [13] and Verdi [37] propose several tech-
niques to divide a system into simpler components, each of
which can be modeled and verified in isolation. Several recent
works [12, 16, 23, 38, 39] have made progress in reducing
the proof burden in complex system models.

A significant gap still remains between the verified pro-
tocols and their practical implementations. This disconnect
highlights a broader issue in the field: While the verification
of protocols is advancing, translating these verified protocols
into efficient, real-world systems remains a challenge.

3.4 Record/Replay Systems

Record/replay systems record events as they happen on a sys-
tem in order to replay them later if a bug arises. This enables
developers to capture bugs that happen infrequently and di-
agnose the root cause. These systems are often heavyweight
since they attempt to faithfully capture the execution envi-
ronment. Reducing this overhead is a big challenge in this
space.

3.4.1 RR This paper [26] introduces RR, a practical sys-
tem for recording and replaying program executions, origi-
nally designed by Mozilla engineers to debug the browser.
It is designed to be used in a wide array of applications like
reverse-execution debugging and black box forensic analysis
of failures in deployed systems. R maximizes deployability
by working with unmodified user-space applications, stock
Linux kernels, compilers, and language runtimes, without
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requiring pervasive code instrumentation or special privileges.
It records all OS-level and thread-scheduling level nonde-
terminism by continually monitoring the application under
recording.

RR has lower overhead than fully ptrace-based approaches.
This is largely due to the novel in-process system-call and
thread nondeterminism interception technique, which dramat-
ically reduces context switches during system call monitoring.
RR still has 2-5x overhead on typical distributed system ap-
plications, so it is not practical to run in production.

3.4.2 Lightweight RR [18] recognizes the usefulness of
record-replay for debugging and notes that with additional
assumptions overhead of recording could be lowered. Light-
weight RR is designed to record channel-based single-node
(not distributed) applications written in Rust. It instruments
the channel primitive to record message ordering and provides
exact replay of message of this order.

Despite the application-level instrumentation, the system
still incurs over 2x overhead. Although the authors do not
mention the sources of the overhead, our hypothesis is that it
is the overhead of recording large application-level buffers.

3.4.3 Castor [25] Castor is a record/replay system for
multi-core applications designed to provide consistently low
and predictable overheads so it can run recording on produc-
tion applications.

Castor is written for FreeBSD and takes advantage of
FreeBSD’s standard library HAL annotations to generate
most of the logic necessary to record OS nondeterminism.

Castor does not require modifying source code thanks to
compiler instrumentation for non-deterministic events.

Although we were unable to run Castor ourselves, we ran
microbenchmarks that model Castor on the distributed sys-
tems we evaluated in this work. Our microbenchmarks indi-
cate that Castor in on-disk trace recording mode (necessary
for long-running distributed systems where a fault may not
immediately manifest itself) would have prohibitive over-
head when recording applications which make heavy use of
coordination primitives (locks, atomics) or which send or re-
ceive large application level buffers (distributed kv-stores and
databases with large values).

3.4.4 Debug determinism In Debug Determinism [40]
the authors recognize that current works have focused on
reducing the overhead of record/replay at the expense of
effectiveness. They argue that record/replay systems should
provide debug determinism, which means that the replay
system provides an execution that produces the same failure
as well as the same root cause of failure.

They then attempt to formalize a metric that displays the
power of a record/replay system. They define debugging fi-
delity (DF) as the ability of a system to accurately reproduce
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the root cause and failure. If the system does not reproduce
a failure DF = 0, if the system reproduces the root cause
DF = 1, otherwise DF = % where n is the number of possible
root causes for the failure that was replayed. Then they define
the debugging efficiency (DE) as the time the original execu-
tion took divided by the time the system takes to reproduce a
failure. They then define the utility of a debugging system as
DF = DE.

4 Bug Catalogs

In this section we explore previously identified and patched
distributed systems bugs to understand better the bugs that
commonly get to production in deployed distributed sys-
tems. We summarize the distributed system bug taxonomy
of TaxDC and use that as a framework to look at other bugs
from bug collections of FlyMC, DEMi and curated bugs from
Etcd. We summarize the discussion in a bug map in Figure 1.

Lastly, we discuss the trade-offs of using various debugging
systems presented in Related Work to address bugs in these
catalogs.

4.1 Ordering and Trigger Constraints

Distributed systems bugs are often very involved — they re-
quire long sequences of low-probability events to occur and
require those events to occur in some specific order for the bug
to manifest. To better understand such bugs, in this section
we adapt and extend a framework from TaxDC bug catalog
which looks at bugs from two distinct classes of constraints.

(1) Ordering constraints: For every bug, they identify the
smallest set E of concurrent events necessary for the
manifestation of the bug. Elements of E can be any type
of event specified in the set above. Note that here we do
not care about the likelihood of events we put in E and
only care about their ordering, taking their existence as
a prior.

(2) Trigger constraints: For the events in E to occur in
some order, regardless of the actual order, certain trig-
gers must occur in the system (e.g., node crashes, view
change/leader election, packet delay, etc.). Trigger con-
straints are the requirements on the occurrence and
order of such triggers to obtain the events necessary for
E. Here, we do not care about ordering the events in E
but merely identify triggers necessary to cause them in
an arbitrary order.

Ordering Constraints: Though most bugs have requirements
on both fronts, evaluating the bug along each dimension sep-
arately is helpful, as it allows us to create more general bug
categories. TaxDC further categorizes each constraint class
by observing certain commonalities in the bug reports in their
dataset. Overall, 64% of TaxDC bugs are triggered by a single
ordering constraint - a single message delivery constrained to

arrive at a particular order with respect to other messages or
computation is enough to trigger the bug, and changing the
delivery order of that single message makes the bug not mani-
fest. Note that the ordering constraints above refer to ordering
all kinds of events - messages w.r.t. other messages, messages
w.r.t. faults, or other internal state transitions. TaxDC does
not categorize ordering constraints of order-dependent DC
bugs in this manner. However, they mention the nature of
the ordering constraint in several of the bugs they describe
in detail. With that information, we can further categorize
ordering constraints into the following:

message-message,
fault-message, compute-message,
compute—fault, compute—-compute

where message, compute and fault are as defined in
our sytem model.

Each ordering constraint specifies the ordering of two
events necessary for a bug to manifest. These categories di-
vide the constraints in terms of event types. If the constraint is
on the order of two message deliveries (e.g., receive the Heart-
beat before ReadIndex in a raft/consensus system) or on the
order of a message delivery and a send (e.g. send VoteRequest
then receive a Heartbeat), then we have a message-message
ordering constraint to reproduce the bug. If the constraint is
on a message delivery with respect to a fault or a restart (e.g.,
MsgAck is sent before a crash), then we have amsg—-fault
ordering constraint. The other categories are defined similarly.
We will use these finer-grained ordering constraint categories
to map bugs from various studies on a 2D plane. Later, we will
use these categories to explain overhead-coverage trade-offs
of various bug reproduction and root cause analysis systems.

Trigger Constraints: Ordering constraints give simple
conditions regarding pairs of events to trigger a bug. These
are easy to understand as we are within a constrained and
well-defined event set E. However, the trigger of events in
E in practice is far from trivial. Many triggers occur “deep”
in the system execution. In other words, the events in E only
occur in the presence of specific node faults, link delays,
state transitions, and other triggers. Trigger constraints allow
us to characterize bugs in terms of the triggers required to
bring them about. Intuitively, trigger constraints measure the
“depth” of the bug - the more triggers the bug depends on and
the lower the likelihood of each individual trigger, the more
trigger-constraint the bug is.

Figure 1 shows a 2D plane with various bugs plotted on
it according to the categorization we just described. The X
axis represents the trigger complexity of the bug, and the
Y axis represents the ordering constraint complexity. The
labels on the Y axis are the subcategories of ordering con-
straints defined above. Unlike the Y axis, the breakdown on
X axis is subjective and is based on number of necessary
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Ordering and Trigger Constraints
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Figure 1: Various bugs on the 2D plane in terms of their
Ordering and Trigger Constraints. Y axis represents or-
dering constraints, and the labels are the first initials of
the subcategories Message, Compute and Fault.

X axis is the complexity of the trigger.

Though none of the bug catalogs we studied categorized
bugs in this manner, we found this setup useful for reason-
ing about bugs and systems designed to prevent, detect or
debug such bugs.

trigger conditions, likelyhood of their occurance under nor-
mal circumstances, and the difficulty to reproduce the bug in
practice.

Below are short descriptions of some of the bug triggers:

(1) H5780: Timing of two high probability events at one
node (e.g., Message Send & Vote Receive)

(2) m5358: Timing of two high probability events across 2
nodes. Two Map-Reduce nodes must concurrently send
to each other. Each receiver must receive the other’s
send after they have already sent

(3) DEMi 58: Upon transitioning from Candidate to Leader,
the Candidate sends an ElectedAsLeader message to
itself. It is possible that the newly elected Leader will
receive ClientMessages before the ElectedAsLeader
message is delivered, e.g. if it had the ClientMessages
in its mailbox before the transition occurred. Upon
receiving the ElectedAsLeader message, the Leader
then reinitializes its nextIndex and matchIndex fields,
overwriting their previous values that were more up to
date [32].

(4) Etcd5664: Requires an etcd/raft node restart and an out-
of-order receive message from the previous connection.
The bug can also be triggered with an exceptionally
slow sender and no restarts.

(5) c6023: Requires 3 message-message ordering constraints
and several low-likelihood triggers.
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4.2 TaxDC

TaxDC [17] is a large taxonomy of non-deterministic con-
currency bugs collected from widely deployed open-source
distributed systems (Cassandra, MapReduce, Zookeeper, and
HBase).

Local concurrency bug catalogs existed before and were
useful in understanding systems, finding strategies to avoid
bugs, etc. TaxDC, however, was the fist comprehensive study
of distributed concurrency bugs. Open-source distributed sys-
tems that were quickly gaining popularity at the time provided
the authors of TaxDC with a good opportunity to carry out
such a bug study.

TaxDC studies 4 systems from different categories defined
earlier (Cassandra, MapReduce, Zookeeper, HBase). They
start from the more general bug collection of the Cloud Bug
Study [10] and distill it down to distributed concurrency bugs,
which have been acknowledged as bugs by maintainers, are
clearly described, and have been fixed.

The authors note that distributed systems bugs are at least as
complex as their single-node counterparts. In the distributed
setting, in addition to all local concurrency problems, we must
deal with node failures, message delays, message ordering
inversions, etc.

They then randomly pick a subset of 104 bugs which they
further categorized according to various aspects.

The CBS study was conducted in 2011-2014, so TaxDC
bugs also originated in this time frame. The authors report that
similar distributed concurrency bugs were reported in the stud-
ied distributed systems after the study period. We can confirm
through our own bug categorization efforts that at least until
2023 we have not stopped producing wild bugs in distributed
systems. A lot has changed since 2014, but distributed system
bugs seem equally hard to reproduce, understand, and fix.

4.3 FLyMC

The authors FlyMC [20] propose stateless/software model
checking as a testing technique to uncover DC bugs in test-
ing before deployment. However, the path explosion problem
limits the scalability of current checkers, and they fail to scale
under more complex distributed workloads. The authors in-
troduce FlyMC, a distributed system software model checker
that combines dynamic partial order reduction (DPOR) and
bounded model checking (BMC) techniques to improve scal-
ability and coverage.

Of the 22 bugs FlyMC uncovers or reproduces, 20 re-
quire ordering constraints to manifest. Of the 20, 9 require
msg-msg ordering constraint to be reproduced, and 10 re-
quiremsg-fault,msg—compute and compute-fault
constraints in addition to msg-msg constraints. The remain-
ing do not fit into this cataloging method. A few of the bugs
found by the FlyMC model checker are plotted on Figure 1
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4.4 Fixed It For You

Fixed It For You [27] proposes a method to automatically gen-
erate patches for distributed system protocol bugs. It requires
implementing the system in a domain-specific language, but
functions differently than a model checker. It can leverage
correct and erroneous execution traces of real-world systems
implementations to identify the bug’s root cause. The au-
thors use data provenance to aid in the bug-finding process.
They introduce Nemo, a query language and framework for
expressing debugging questions as queries over provenance
graphs representing distributed program executions. When, in
addition to provenance information and debugging questions,
Nemo gets the protocol specification in its high-level speci-
fication language, it can go a step further and automatically
propose fixes to the identified bugs. The authors provide a new
taxonomy for 52 real-world distributed bugs from TaxDC.The
authors evaluate Nemo at repairing errors of omission and
identifying root causes of errors of commission on six proto-
col implementations. Among others, Nemo reproduced and
proposed fixes for m3274, m4157, m5358 bugs from Figure 1.

4.5 Debugging Systems and Bug Constraints

Having positioned the bugs from studied catalogs on a map
in Figure 1 we now highlight some aspects of relative posi-
tioning of the bugs on the map. We hypothesize that various
automatic debugging approaches will be better at finding and
reproducing bugs from a specific region on this map.

4.5.1 Logging: Since Dapper does logging at request
level, it can be useful at gaining insights into msg-msg bugs.
However, debugging deep bugs requiring multiple triggers
across the nodes of a distributed systems may still be challeng-
ing, even when the bug only contains msg-msg constraints.
This is because one has to be lucky that the particular mes-
sages involved in the bug have actually persisted (Dapper
samples and logs a small percentage of requests).

Additionally, even assuming the necessary logs are per-
sisted, it may be hard to tie together partitioned per-node logs
with application-level semantics for debugging. This is partic-
ularly true when trying to debug bugs on the right side of the
bug map (bugs with complex, multi-step triggers) as the bugs
necessary to put together the complete story for a failure are
likely scattered both in time and across system nodes.

4.5.2 Program Analysis Systems: ER, Gist and Pen-
sieve seek to automatically find short and concise set of trig-
gers for bugs in distributed systems. Since the systems try to
isolate a small set of triggers for the failure, they face an ex-
ponential explosion of paths for failures that require multiple
coordinated triggers. So, while approaches have a chance of
surfacing bugs on the left side of the trigger axis of the bug

map in Figure 1, they are unlikely to help debug bugs with
multiple triggers.

Additionally, the approaches assume that the failure is
visible immediately, so the system will know when to try
to collect a sketch. This is not the case for many silent failures
of the distributed system, such as a recent etcd corruption
bug [2].

4.5.3 Formal Methods: In theory, given a precise sys-
tem model and invariant specification of a system, a formal
approach can detect the presense of a bug, regardless of its
ordering constraints or trigger complexity. In practice, system
models of pracical systems often make simplifying assump-
tions and model only a subset of messages in the system.

So, today’s formal methods will likely help debug bugs on
the lower left side of the bug map. The evidence from Nemo
introduced in Fixed It For You is in line with this: Among
others, Nemo reproduced and proposed fixes for the bugs
m3274, m4157, m5358 from Figure 1.

4.5.4 Record/Replay Systems Since record-replay sys-
tems record and blindly reproduce machine-level events in a
system, they are able to reproduce bugs with arbitrary trigger
complexity with equal ease.

However, in order to be able to replay a specific bug, suffi-
cient information must have been recorded about it. If record-
ing has happened at msg-msg granularity, the replay cannot
guarantee the replay of a compute-compute race.
Record-replay systems are immensely helpful for reproducing
bugs, wherever they are applicable. Unfortunately, because
of their high overhead, they often are not applicable in the
setting of the distributed systems discussed in this work.

This highlights a particular dimension of the design space
in record-replay systems. Various systems that record at dif-
ferent granularities and can replay different kinds of bugs,
trading off recording performance with replay effectiveness.
For example, RR and Castor are all the way up on the Y axis
as those record compute-compute interactions (thread
races). On the other hand, R2 [11] is somewhere in the mid-
dle, as it records at the application level.

The natural question then is “Is there a point on the trade-
off above where record-replay systems record little enough to
have acceptable overhead for production use, but still record
enough to replay large classes of bugs”?

aiRR described in the next section is our answer to this
question.

S Design Overview
In this section, we give an overview of aiRR and highlight
key design decisions. Our design decisions revolve around
the following design goals:
(1) Maintain low runtime overhead so aiRR can run on
production distributed systems
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(2) Make the common case of integrating aiRR into dis-
tributed systems easy

(3) Make the general case of integrating aiRR into dis-
tributed systems possible

Past literature discussed above and our own findings de-
tailed in Evaluation section indicate that existing record/re-
play approaches have prohibitive overhead when applied to
distributed systems. Our first design goal is to improve on this
in aiRR by making assumptions about the application under
recording.

For the second design goal, we identify a common ap-
plication development pattern and show how aiRR can be
integrated into applications following the pattern. Most of
the integration work in this case is within the bounds of the
communication and IO libraries used by the application. This
simplifies the common case of aiRR integration.

10 automaton: We notice that many practical distributed
systems follow an implementation similar to the system model
discussed in Section 2: These distributed algorithms are typi-
cally defined on a state machine in literature, and their real-
world implementations often follow a similar structure. For
the implementation, this means that the core algorithms are
encapsulated in single-threaded blocks of code that receive
some environment, run a computation, and return a result.
Crucially, the core algorithms themselves do not have non-
determinism. We leverage this insight to delineate what is
necessary to record for successful replay, given the applica-
tion semantics and the kind of bugs we would like to replay.

For example, to record the state transitions inside the raft
state machine, it is enough to integrate aiRR so that it encap-
sulates the transitions of the raft state machine. This means
that aiRR will be unable to replay and reproduce any bugs
that are a result of nondeterminism outside of the core raft
state machine. But, this also means that we will not pay the
overhead of recording anything outside of the core state ma-
chine. If most of the events in this system bypasses the raft
state machine (e.g. linearizable GET requests in etcd bypass
it, as they do not require agreement among the raft members),
then no recording will be necessary for the majority of the
traffic volume.

In contrast, an application-oblivious record-replay system
would be unable to differentiate between the two kinds of
requests and would have to record all nondeterministic in-
puts, including the requests and inter-node traffic relating to
linearizable GET requests in this scenario.

App integration via libraries: A key advantage of black-
box record-replay systems is that they require no or minimal
application changes so the cost of deployment and integration
is quite low. Although an aiRR-like application-integrated
approach improves on overheads, it comes at the cost of
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developer effort. With Design Goal (2) we aim to mitigate
this as much as possible.

We notice that modern distributed systems applications
have several structural commonalities, which we can exploit
to make aiRR-integration easier for the developer. In par-
ticular, distributed systems 1) are message-driven, 2) use
standard RPC libraries such as gRPC and CapnProto to
encode/decode messages and 3) process each message in a
single thread of execution within the application.

The message-driven architecture of these applications sim-
plifies the process of adding instrumentation for recording pur-
poses, as it reduces the number of necessary points for such
integration. This approach also decreases the number of com-
ponents that must be simulated during a replay. For instance,
when replaying a conventional desktop text editing applica-
tion, one needs to record all events from signal-controlled
input/output devices and accurately reproduce them during
the replay.

In contrast, in distributed systems, the main application
flow doesn’t rely on signals. Instead, these systems use a
centralized logical queue that receives incoming messages.
The application processes these messages sequentially, and
then the results are sent to another queue. This means that the
recorder only needs to know the order of incoming messages
and the replayer needs to recreate those messages in the same
order. This makes the integration task of aiRR simpler.

In addition to being message-driven, many distributed sys-
tems rely on RPC libraries to handle messaging (sending
receiving, serializing, deserializing and ordering messages).
As a result, the bulk of the modifications necessary to inte-
grate aiRR can be done in these RPC libraries, outside of the
application.

Note that modifying only the RPC libraries is not enough
if the message order at the boundary of the RPC library is
different from the message order at the serialization point of
the application. So, some effort is still necessary to integrate
an application with aiRR, even when it uses communication
libraries already integrated with aiRR.

When applications are multi-threaded, there is nondeter-
minism that needs to be recorded even when all application
inputs are deterministic as the non-deterministic thread sched-
uling can change program behavior during recording and re-
play.Past record-replay systems deal with this by either fixing
the thread scheduling [19, 26] or recording all thread syn-
chronization primitives such as locks, atomics, and assuming
data-race-free applications [25].

Both approaches can result in significant degradation or
result in inflated trace sizes when the application heavily uses
synchronization primitives. The microbenchmark on Figure 2
discussed detail in Section 7 helps shows that there is a fixed
cost to recording synchronization primitives that is the same
order of magnitude as the primitive itself.
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Figure 2: Lock recording overhead as a function of num-
ber of locks recorded

Informed by this, aiRR follows the approach of several
prior works and provides an API for recording application-
level synchronization. But, it in addition notices that the bulk
of synchronization and multithreading is happening in the
message-passing library, not in the core library. By recording
the order of the messages after the messages have passed
through the RPC library, aiRR can skip recording any RPC-
library level synchronization.

When message processing inside the distributed system
is happening in a single thread of execution, there is no
scheduling related nondeterminism, so incoming message
contents and order is the only nondeterminism necessary to
be recorded. This helps reduce both storage and runtime over-
head.

Large Buffer Overhead: When benchmarking SQLite’s
standard built-in benchmark, we noticed that while we can
record all non-deterministic events with no noticible over-
head, as soon as we started recording application-level buffers,
benchmark ran 3 times longer. The problem is that non-
deterministic events can be recorded in fixed 64 byte packets
and amount to a small amount of copying per event. On the
other hand, recording arbitrarily large application buffers re-
quires a much larger copy and therefore has higher overhead.

Prior work [11, 25] suggests skipping the recording of
these buffers by, e.g. skipping file IO operations altogether.
This is often undesirable and may not solve the problem. It
is undesirable as one may want to record only part of the
buffer in the trace and not another part. A file-system API-
level filtering will not allow such filtering. For example, an
inter-node raft message may have some metadata about the
current raft state and a set of Append logs. The application
developer may want to record the metadata to make sure raft
bugs can be successfully replayed but may be happy to record
arbitrary message buffers in place of the actual Append entry
content, when knowing the application logic does not depend
on the content.
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This may not solve the problem since not all IO comes
through the file system. Many distributed systems commu-
nicate via messages, so large buffers may be in the form of
incoming messages over the network. During replay these
have to be reproduced, and unlike files on a file system, under
no circumstances can be assumed to be there during replay
without no extra work.

aiRR addresses this issue by allowing the application to se-
lectively skip the recording of buffers at the application level.
As the microbenchmarks in SQLite indicate, this can make
the difference between allowing or prohibiting the system to
run under aiRR recording in production.

The successful replay in aiRR is defined in terms of the
recorded trace. A replay is successful if all recorded incom-
ing messages were delivered to the application in recorded
order, and aiRR observed the exact recorded responses from
the application in the exact recorded order. If at any point
during replay the application sends an unexpected message or
expects a message not available on the trace, then the replay
has diverged. This can happen with incomplete integration of
aiRR into the system under recording.

6 Implementation

aiRR is packaged as a shared library that can be linked
into the application. The same shared library is used during
recording and during replay, so no recompilation is necessary.
Whether the application runs in recording or replay mode
is controlled via an environment variable. In the distributed
system, each node of the system is recorded and replayed
in isolation. During the recording, due to the application-
level needs of the distributed system, all nodes need to be
running at the same time and need to communicate. The
recording at each node is oblivious to this application-level
communication and simply records a separate independent
trace for each node of the system. Note that aiRR can also
be used for non-distributed system record-replay. Although
many of our design decisions assume a distributed system
setting and are designed to allow low overhead recording for
production distributed system workloads. aiRR exports the
low-level following API:

bool isReplay ()
RecordReplay (const std::string &key,
protobuf :: Message& msg)
RegisterReproducer (const std::string &key,

ReproducerFunction f);

The function isReplay returns whether the system node
is currently in recording mode or in replay mode. The function
RecordReplay enables the application-level recording of
external nondeterminism (environment, incoming messages,
etc.).
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During recording, it saves key and msg in the global trace.
During replay, it expects to be called with the exact same key
in the exact same order with respect to other calls to aiRR’s
recording API. If during replay the function is called out of
order, it’s call is blocked and delayed inside the aiRR shared
library, until other calls that appear before the blocked one in
the global trace arrive and are processed. RecordReplay
is a kind of fence that records message ordering and enforces
it during replay.

Note that RecordReplay assumes that the messages
delivered during recording are also delivered during replay.
This is fine for many sources of nondeterminism recorded via
this API that initiate inside the node under recording (some
examples are sending out response payloads, timer timeouts,
and file IO-nondeterminism).

But it will fail for external messages that originated out-
side of the node under replay and will not be automatically
delivered during replay since other nodes in the system are
not necessarily running. RegisterReproducer API is
used for these cases and tells the aiRR replayer how to mock-
reproduce externally generated messages during replay. The
API registers a callback for a unique key. Whenever ther re-
play process sees that the next event in the global key is one
for which there is a registered hook, it calls the registered
hook in the dedicated replayer thread. The definition of the
reproducer function must itself interact with the aiRR API
and call RecordReplay to consume the next message from
the global trace.

Admittedly, the RegisterReproducer API is quite
tricky to use - there are strict requirements for what kind of
function the callback needs to be. Fortunately, this API is
only necessary external RPC messages which pass through an
RPC library and so it is enough to set up proper reproducers
at RPC level, thereby freeing the core application developer
from having to reason about external message reproducer
callbacks.

Various libraries between the OS and the core of the appli-
cation may use the aiRR API to record events that later will
be replayed. All these events are serialized into a global order
using their recording timestamps.

Note that aiRR also intercepts and RecordReplay’s cer-
tain libc functions out of the box. This simplifies the app-level
integration of aiRR- e.g. since at the libc level we record and
replay getpid (), there is no need to treat process PID as
external environmental dependency and the application can
assume that PID is fixed during recording and replay. We
are working on expanding the set of APIs we can record at
the libc level, thus simplifying the aiRR integration work
necessary at the application level.

During replay, each node is typically replayed in isolation.
The recorded trace has enough information to mock the pres-
ence of the rest of the distributed system for the isolated node
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under replay. The developer can still replay multiple nodes
independently, attach debugger sessions to them, and debug
some distributed invariant of the application. Note that coordi-
nation between nodes is not needed for the purposes of aiRR,
during recording or during replay. Because the recorded trace
is at a high level, it is possible to recompile the application in
debug mode and replay that version of the application. The
high-level nature of the recorded trace allows for debugging
with the same trace but an updated binary. For example, the
developer may wish to use a binary that has debug symbols
for replay, instead of the original binary from production.

7 Evaluation
In this evaluation we try to answer the following questions:

(1) Can aiRR replay real world distributed system execu-
tions?

(2) Does aiRR reproduce bugs from real systems?

(3) Is aiRR’s overhead low enough to allow recording in in
production?

To answer these questions, we integrate aiRR into the pop-
ular etcd [8] raft-based distributed key-value store. Figure 3
shows what this integration looks like. An etcd cluster typi-
cally consists of 3, 5 or 2n+1 nodes. When run under record-
ing, each node runs a version of the etcd binary that has aiRR
integrated and enabled.

Each node of etcd receives and sends messages in parallel
goroutines. These messages are parsed, serialized, and deseri-
alized in gRPC and other application layers in parallel. These
layers are represented as “parser’’s on the diagram. The core
logic for distributed state maintenance in etcd lives in the raft
state machine that runs in a single thread. It accepts messages
from the parallel parsers and posts outgoing messages to them.
aiRR intercepts between this state machine and the parsers.

Avoiding recording locks: Due to the chosen location
where aiRR is integrated, recoding does not at limit applica-
tion level concurrency and does not have to record any co-
ordination among the parallel parsers. The microbenchmark
in Figure 2 shows that this can potentially reduce runtime
overhead when the application uses extensive locking. The
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microbenchmark measures the locking throughput overhead
of recording variable number of pthread locks from a mi-
crobenchmark that uses these locks from 8 parallel threads.
As the number of locks being recorded increases, we see
that throughput overhead on threads using the recorded locks
increases. When no locks are recorded but the recording in-
frastructure is built into the microbenchmark, there is a 20%
runtime overhead. This is not fundamental and is the result of
the chosen implementation technique. The relative overhead
on lock instrumentation is lower in actual applications when
the logging frequency is lower. The key takeaway of the mi-
crobenchmark is that recording coordination primitives can
be expensive and should be avoided whenever possible. aiRR
allows not recording coordination primitives in etcd parsers,
while still enabling an exact replay of the recorded trace.

Q1: Etcd Integration and replaying production traces:
aiRR integration into etcd required less than 100 lines of
code changes inside the raft submodule of etcd and less than
20 lines of code changes outside of raft submodule in etcd.
Most of the changes in the raft submodule of etcd amount
to weaving aiRR between the message communication layer
and the raft state machine. aiRR records total order and the
necessary payloads of the messages at this boundary. Some
changes are also necessary to record environmental inputs,
such as random numbers and timers.

The few changes necessary outside of the raft submodule
disable certain components of the node that try to actively run
health-checks across nodes. Since these health-check mes-
sages are out of scope for recording, they will not be around
during replay, and with these changes, we ensure smooth
operation of the node during replay without the presence of
these messages.

Since, by definition, aiRR is integrated into an application
by its users, there are no system-level replay guarantees from
aiRR. A wrong or incomplete integration can always result in
divergence and replay failure.

The system can still be run under typical workloads and
ensure that the recording and replay under aiRR is running
properly. If an aiRR-integration can replay long traces of
recorded distributed systems to completion, it can replay bugs
contained in these tarces as well.

To gain some confidence that our integration of aiRR was
correct, we built a test-harness on an etcd cluster to randomly
change network conditions, restart nodes, add and remove
participants, produce load etcd. We recorded each node of the
etcd cluster and ensured that we can faithfully replay each
node to completion.

Q2: overhead We measure the overhead of recording an
etcd cluster while each node runs under aiRR. During the
recording, we connect to the cluster through an external node
and run a PUT workload at the capacity of the cluster with
typical etcd key and value sizes [3]. We then compare the
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request throughput achieved with and without recording. Fig-
ure 4 shows that the throughput overhead of the recording is
below 8% with a tail latency increase of <5%.

Issue Title

Candidate does not distinguish between
votes from the same follower.

Candidate should check term in VoteCan-
didate messages

Nodes should not forget who they voted
for

indexOnMajority is wrong

raft: panic term should not be set when
sending MsgReadIndex

Table 2: Highlighted bugs recorded and replayed using
aiRR, from etcd and akka-raft distributed systems, from
typical production-like cluster setups of these distributed
systems

System
akka-raft #45

akka-raft #46

akka-raft #56

akka-raft #42
etcd #6744

Q3: Bugs replayed. We reproduced a total of five bugs in
our etcd setup, summarized in Table 2. Four of the bugs were
taken from prior work on trace minimization [32] that found
and reported these bugs in another consensus distributed sys-
tem [1]. We ported these bugs to etcd and reproduced them
under our test harness and ensured that the replay with aiRR
recording succeeds.

We similarly reproduced one bug reported to etcd directly.
When reproducing these bugs, the bottleneck was not aiRR
but was our test harness - it was often not trivial to create the
necessary conditions to trigger the bug. This step is required
to obtain a aiRR trace and be able to test aiRR replay.

To reproduce these bugs, we set up a cluster of nodes
running the distributed system with aiRR recording, using
a system-specific typical production setting, recommended
from the system documentation. We then manipulated various
aspects of the cluster (link latency, packet drop, node avail-
ability, and crashes), until the bug we were trying to replay
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was triggered. Depending on the bug under question, this took
between minutes to hours. Whether we had a trace of only
a few minutes or a multi-hour trace, we were able to replay
them successfully using aiRR replayer.

7.1 Using aiRR for etcd: A Case Study

To give a sense of how aiRR is used in practice to repro-
duce and debug issues triggered in production, below is a
description of how we debugged etcd#6744.

We use the test harness described above to introduce fail-
ures into the test clusters and record traces from all etcd nodes
via our integrated aiRR system. We let the cluster run for a
while, check standard application logs to confirm that some-
thing went wrong, and then collect all aiRR traces into a
single node for replay and debugging. We also collect the
application binary that was used in the faulty run. To gain
confidence in correctness of aiRR integration into etcd, inde-
pendent of the specific bug we are reproducing, we ensure
that the replay of each node runs to completion without any
divergence.

Now that we have the ability to deterministically replay in
isolation any node from the cluster, we can use all of known
debugging tools to analyze the deterministic replay and find
the bug. In the following replay runs we attach a debugger to
the process and step through the relevant stack frames. Very
little is visible, since we are using the release build of the
distributed system binary. Thankfully, aiRR traces are high
level enough that we can replace the binary with the debug
build and expect it to work. Doing so makes us navigate the
source code as the replay is running under the debugger.

To allow for an even more powerful debugging experience,
we run aiRR replay under RR recording. RR produces a much
higher granularity recording by pinning the application to
single CPU and recording all OS, environment, scheduling
and instruction level nondeterminism. This almost triples
the runtime of aiRR replay. But it allows time travel debug-
ging in aiRR replay, powered by RR. Note that this kind
of combination of aiRR with RR is possible because aiRR
does not use the usual debugging mechanisms such as ptrace.
Instead, aiRR is integrated into the application, and so the
aiRR-replay can be recorded or monitored using the usual
debugging frameworks.

With aiRR recording and RR-assisted aiRR replay, we
found trigger of the bug (malformed message) with a handful
of gdb commands. In particular, we set a breakpoint at the
processing point of the first visible error message in aiRR
replay, and run RR backwards-continue to understand how
we got to that point.

8 Conclusion
We argue that distributed system bugs are here to stay,
as existing work on debugging in various methods are not
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sufficient to detect them before production deployment or
fix them quickly. We argue that even with state-of-the-art
systems, understanding production failures of real-world pro-
duction distributed systems—the likes of etcd, Dynamo [7],
and Amazon S3—is still out of reach.

We propose an application-integrated approach to record
production traces and enable an exact replay of the manifested
bugs from production.
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