Topics in the Theory of Learning

Electrical Engineering and Computer Sciences University of California, Berkeley

Technical Report No. UCB/EECS-2024-2
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-2.html
January 8, 2024

Copyright © 2024, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Topics in the Theory of Learning

By

Jonathan Shafer

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy
in
Computer Science
in the
Graduate Division
of the
University of California, Berkeley

Committee in charge:
Professor Shafi Goldwasser, Chair
Professor Peter L. Bartlett
Assistant Professor Shay Moran
Assistant Professor Avishay Tal

Fall 2023

Topics in the Theory of Learning

Copyright 2023
by
Jonathan Shafer

Abstract
Topics in the Theory of Learning
By
Jonathan Shafer
Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor Shafi Goldwasser, Chair

AI applications have seen great advances in recent years, so much so that the people who design and build them often have difficulty understanding, predicting and controlling what they do. To make progress on these fundamental challenges, I believe that developing a solid mathematical foundation for AI is both beneficial and possible. The research presented in this dissertation is an attempt to chip away at a few small aspects of that endeavor.

The dissertation is divided into three parts.
Part I addresses a question at the core of learning theory: "how much data is necessary for supervised learning?" Concretely, Chapter 2 considers statistical settings, in which training data is drawn from an unknown distribution. Here, we answer a question posed by Antos and Lugosi (1996) concerning the shape of learning curves. To do so, we define a new combinatorial quantity, which we call the Vapnik-Chervonenkis-Littlestone dimension, and show that it characterizes the rate at which the learner's error decays. Our result has a number of additional benefits: it refines the trichotomy theorem of Bousquet, Hanneke, Moran, van Handel, and Yehudayoff (2021); qualitatively strengthens classic 'no free lunch' lower bounds; and establishes that, in the distribution-dependent setting, semi-supervised learning is no easier than supervised learning. Chapter 3 considers adversarial settings, in which few or no assumptions are made regarding the source of the training data. Specifically, we chart the landscape of transductive online learning, showing how it compares to the standard setting in online learning, and how it relates to combinatorial quantities such as the VC and Littlestone dimensions.

Part II investigates whether it is possible to verify the optimality of a machine learning outcome offered by an untrusted party, such that verification would be significantly cheaper (in terms of compute, or the quantity or quality of training data) compared to the cost of running a trusted machine learning system. This question has many parallels in the theory of computation, and it also has tangible implications to the economics of selling machine
learning as a service. Our first contribution is to introduce a notion of interactive proofs for verifying machine learning. Here, the entity running the learning algorithm proves to the verifier that a proposed hypothesis is competitive with some benchmark, for instance, is sufficiently close to the best hypothesis in a reference class of hypotheses. Our primary focus is verifying agnostic supervised machine learning. Within this framework, we show a host of verification protocols and lower bounds, establishing that in some cases, verification can be significantly cheaper than learning, while in other cases it cannot. In particular, our results include: (1) for supervised learning, the sample complexity gap between learning and verifying is quadratic in some (natural) cases, and furthermore it can never be greater than quadratic; (2) whereas learning the class of Fourier-sparse boolean functions using i.i.d. samples is LPN-hard, we show that there exists an efficient protocol for verifying this class, wherein the verifier only uses i.i.d. samples.

Part III studies notions of stability in machine learning. We offer a taxonomy that can help make sense of an assortment of seemingly-unrelated stability definitions that have appeared in the learning theory literature. Our starting point is an observation that many of these definitions actually follow a similar abstract formulation. We call this the Bayesian formulation of stability, and we ask, to what extent are the various Bayesian definitions in the literature actually different from one another. To answer this question, we distinguish between two variants: distribution-dependent Bayesian stability, and distribution-independent Bayesian stability. Putting together results from a number of recent publications shows that many distribution-dependent Bayesian definitions, including approximate differential privacy, are in fact weakly equivalent to each other. To complete the picture, we investigate the family of distribution-independent Bayesian definitions. We show that here too, many definitions, including pure differential privacy, are weakly equivalent to each other. Our proof involves developing a boosting algorithm that simultaneously improves the accuracy and the stability of a learning algorithm.

The dissertation consists of five chapters, each of which is self-contained and can be read independently. However, a small number of basic notions crop up repeatedly in different guises. Taken together, the dissertation showcases the richness, versatility and unity of learning theory.

To the caring and kind people in my life.

Contents

Contents ii
List of Algorithms iv
List of Protocols iv
List of Figures v
List of Tables v
Acknowledgements vi
Sources vii
Preface viii
1 A Brief Overview 1
1.1 Learning 1
1.2 PAC Verification 3
1.3 Stability 3
I Learning 5
2 Fine-Grained Distribution-Dependent Learning C urves 6
2.1 Introduction 6
2.2 Preliminaries 12
2.3 Technical Overview 16
2.4 Proof of the Fine-Grained Characterization 21
2.5 Result for Half-Spaces 39
2.6 Directions for Future Work 41
3 A Trichotomy for Transductive Online Learning 42
3.1 Introduction 42
3.2 Preliminaries 46
3.3 Quantitative Bounds 48
3.4 Trichotomy 50
3.5 Multiclass Setting 52
3.6 Agnostic Setting 54
3.7 Directions for Future Work 55
II PAC Verification 56
4 Fundamentals 57
4.1 Introduction 57
4.2 Efficient Verification for the Class of Fourier-Sparse Functions 72
4.3 Separation Between Learning, Testing, and PAC Verification 85
4.4 Lower Bound of $\tilde{\Omega}(d)$ 103
4.5 Efficient Verification via Query Delegation 118
4.6 Directions for Future Work 121
5 Further Results 122
5.1 Introduction 122
5.2 Technical Overview 126
5.3 A Lower Bound for PAC Verification of VC Classes 131
5.4 Verification of Unions of Intervals 133
5.5 Discussion and Future Work 136
III Stability 137
6 The Bayesian Stability Zoo 138
6.1 Introduction 138
6.2 Technical Overview 145
6.3 Preliminaries 147
6.4 Proof of Stability Boosting 151
6.5 Proof of distribution-independent Equivalences 156
6.6 Proof of distribution-dependent Equivalences 161
Bibliography 165
A Appendices for Chapter 3 182
A. 1 Proof of Lower Bound for Littlestone Classes 182
A. 2 Multiclass Trichotomy 184
A. 3 Combinatorics of Trees 186
A. 4 Multiclass Threshold Bounds 187
A. 5 Proof of Agnostic Lower Bound 189
B Appendices for Chapter 4 191
mathematical proof

Elements

[^0]ε
\[

$$
\begin{aligned}
& \varepsilon \\
& f(n) \\
& f(n) \\
& 01 \\
& \text { n } \\
& n^{1} \\
& \frac{\Omega(d)}{n} \leq \quad \leq \frac{O(d)}{n}+C \cdot e^{-c \cdot n}, \\
& \mathrm{~d}= \\
& \text { (H) }
\end{aligned}
$$
\]

${ }^{1}$ Se Question 2.1.1 for a more careful formulation.
${ }^{2}$ The lower bound holds for in nitely many n, the upper bound holds for all n, d depends only on H, while C and c may depend also on the population distribution.

CHAPTER 1. A BRIEF OVERVIEW

C
decomposition

CHAPTER 1. A BRIEF OVERVIEW

taxonomy

> B ayesian
dependent
independent
independent pure
fractional clique dimension
what can be learned, and what quantities of resources (such as data and computation) are necessary for learning when learning is possible?

$$
\Omega(d)
$$

$$
\mathrm{d}
$$

CHAPTER 2. LEARNING CURVES

For a VC class, what is the largest $d \geq 0$ such that for every learning algorithm there exists a realizable distribution for which the expected 0-1 loss after observing n i.i.d. samples is at least $d \boldsymbol{h}$ in nitely often?

01

n

$$
=S \sim D\left[L_{D}^{-}\left(R_{S}\right)\right]
$$

D
Source: Bousquet et al. (2021), adapted with permission.
$|H| \geq 3$, exactly one of the following holds:

- H is learnable with optimal rate $\mathrm{e}^{-\mathrm{n}}$.

CHAPTER 2. LEARNING CURVES

- H is learnable with optimal rate ${ }_{\bar{n}}$.
- H requires arbitrarily slow rates.

H

H
learning at rate $R(n)$

CHAPTER 2. LEARNING CURVES

$$
\frac{c}{n} \quad c \geq 0
$$

$$
d / n \quad d=0
$$

CHAPTER 2. LEARNING CURVES

CHAPTER 2. LEARNING CURVES

universal consistency

k
n
d

$$
\not d
$$

1
ε
$=\{1,2,3, \ldots \quad$, i.e., $0 \notin$. For any $n \in$, we denote $[\mathrm{n}]=$ $\{1,2,3, \ldots, \mathrm{n} \quad\}$.

Let X be a set. We write $X^{*}=U_{t}^{\infty} X^{t}$ to denote the set of all nite strings or nite vectors with elements from $X . X^{*}$ includes the empty string, which we denote by λ.

For a set X, we write $\Delta(X)$ to denote the set of all distribution with support contained in X (with respect to some xed σ-algebra).

CHAPTER 2. LEARNING CURVES

We say that the in nite sequence $\left(\mathbf{x}_{s}, \mathbf{y}_{s}\right)_{s \in}$ is consistent with H if for any $\mathrm{t} \in$ there exists $h \in H$ such that $(\mathbf{x}, \mathbf{y})_{\leq t}$ is consistent with h.

Let X be a set, let $\mathrm{H} \subseteq\{0,1\}^{\mathrm{X}}$ be a hypothesis class, and let T be a $\mathrm{d}-\mathrm{VCL}$ tree as in Eq. . We say that H shatters T if for every $\mathrm{t} \in, \mathrm{t} \leq \ell$, and every $\mathbf{y} \in\{0,1\}^{d t}$ there exists a hypothesis $\mathrm{h} \in \mathrm{H}$ that is consistent with $\left(\mathbf{x}_{\mathbf{y}}{ }_{1}, \mathbf{y}_{\mathrm{s}}\right)_{\mathrm{s}}^{\mathrm{t}}$ in the sense that

$$
\forall s \in[t] \forall j \in[\mathrm{~d}]: \quad \mathrm{h}\left(\mathrm{x}_{\mathrm{y}}^{\mathrm{j}} \quad{ }_{1}\right)=\mathrm{y}_{\mathrm{s}}^{\mathrm{j}},
$$

where we use the notation

$$
\mathbf{y}_{\leq s}=y, \ldots, y \quad{ }^{d} \quad, \ldots, \quad y_{s}, \ldots, y \quad{ }_{s}^{d} \quad \in\{0,1\}^{d s}
$$

to denote a pre x of \mathbf{y}, and

$$
\mathbf{x}_{\mathbf{y}}=\mathrm{x}_{\mathrm{y}}, \ldots, x_{\mathrm{y}}^{\mathrm{d}} \quad \in\{0,1\}^{d}
$$

to denote the members of $\mathbf{x}_{\mathbf{y}}$.
d
strong

Let X be a set, let $d \in$. An in nite strong VCL tree with respect to X
is a set

$$
T={ }^{n} \mathbf{x}_{u} \in X^{s} \quad: s \in u\{0\} \wedge \mathbf{u} \in\{0,1\} \times\{0,1\} \times \cdots \times\{0,1\}^{s^{0}}
$$

Let X be a set, let $H \subseteq\{0,1\}^{X}$ be a hypothesis class, and let T be an in nite strong VCL tree as in De nition 2.2.12. We say that H shatters T if for every $t \in$, and every $\mathbf{y} \in\{0,1\} \times\{0,1\} \times \cdots \times\{0,1\}^{t}$ there exists a hypothesis $h \in H$ that is consistent with $\left(\mathbf{x}_{\mathrm{y}}{ }_{1}, \mathbf{y}_{\mathrm{s}}\right)_{\mathrm{s}}^{\mathrm{t}}$ in the sense that

$$
\forall s \in[t] \forall j \in[s]: \quad h\left(x_{y}^{j} \quad{ }_{1}\right)=y_{s}^{j},
$$

where we use the notation
to denote a pre x of \mathbf{y}, and

$$
\mathbf{x}_{\mathrm{y}}=\mathrm{x}_{\mathrm{y}}, \ldots, \mathrm{x} \quad \underset{\mathrm{y}}{\mathrm{~s}} \quad \in\{0,1\}^{s}
$$

to denote the members of $\mathbf{x}_{\mathbf{y}}$.
Let X be a set and let $H \subseteq\{0,1\}^{X}$. The Vapnik Chervonenkis Littlestone dimension of H, denoted (H), is the largest integer $d \geq 0$ such that H shatters an in nite d-VCL tree. If H does not shatter any in nite $1-\mathrm{VCL}$ tree, we say that $(\mathrm{H})=0$. If H shatters in nite d-VCL trees for d arbitrarily large, we say that $\quad(H)=\infty$.

CHAPTER 2. LEARNING CURVES

Let H be a concept class, and let
$R: \quad \rightarrow[0,1]$ with $R(n) \rightarrow 0$ be a rate function.

- H is learnable at rate R if there exists a learning algorithm such that for every $D \in \quad(H)$, there exist $C \quad \geq 0$ such that $\quad s \sim D \quad L_{D} \quad R_{S} \leq C \cdot R(c \cdot n)$ for all $n \in$.
- \underline{H} is learnable with rate no faster than R if for every learning algorithm R, there exists a $D \in \quad(H)$ and $C \quad 0$ for which $\quad s \sim D \quad L_{D} \quad R_{S} \geq C \cdot R(c \cdot n)$ for in nitely many $n \in$.
- H is learnable with optimal rate R if H is learnable at rate R and H is not learnable faster than R.
- H requires arbitrarily slow rates if, for every $R(n) \rightarrow 0, H$ is learnable at rate no faster than R.

Let X be a set, let $H \subseteq\{0,1\}^{X}$ be a hypothesis class, and let $d \geq 0$ and $Y \geq 1$. We say that:

- H is learnable with ne-grained rate d / n if there exists a learning algorithm A such that for any distribution $D \in \quad(\mathrm{H})$ there exist real numbers $\mathbb{C} \geq 0$ such that for all $n \in$:

$$
\text { S~D } \quad \frac{h}{L_{D}} \quad R_{S}^{i} \leq \frac{d}{n}+C \cdot \exp (-D)
$$

- H is learnable with ne-grained rate no faster than d / n if for any learning algorithm A there exists a distribution $D \in \quad(\mathrm{H})$ such that the inequality

$$
S \sim D \quad \stackrel{h}{L_{D}} \quad R_{S}^{i} \geq \frac{d}{n}
$$

holds for in nitely many $n \in$.

- H is learnable with optimal ne-grained rate d / n with gap factor γ if H is learnable with rate no faster than d / n, and is learnable with rate d / n, where $d \leq \phi$.

CHAPTER 2. LEARNING CURVES

coarse rates
Ideally, we would like to obtain a gap factor γ that is as close as possible to 1 , so that $d=d$ (see De nition 2.2.16). The extent to which this is possible is a topic for further research. Throughout this chapter we use $\gamma=800$.

Let X be a set, let $H \subseteq\{0,1\}^{X}$ be a hypothesis class. We say that H is learnable with a strongly distribution-dependent linear rate if for any (possibly randomized) learning algorithm h and any $c \geq 0$ there exists $D \in$
(H) such that the inequality

$$
\frac{c}{n} \leq s \sim D \quad h L_{D} \quad R_{S}^{i}
$$

holds for in nitely many $n \in$.
There are various technical issues related to measure theory that arise in the distribution-dependent learning setting and are germane to our results. We use the same assumptions as Bousquet et al. (2021), and refer the interested reader to their work for an in-depth discussion (e.g., Section 3.3 and Appendices B and C).

Every Gale Stewart game is determined.

CHAPTER 2. LEARNING CURVES

(c) The rst few layers of an in nite strong VCL tree. (In Bousquet et al. (2021) this structure was called an infite VCL tree . We add the modi er strong to distinguish it from d-VCL trees.)

VCL trees. Every nite branch is consistent with a concept $h \in H$. This is illustrated here for one branch in each tree, shown in red.

d

d

$$
1
$$

d

$$
\mathrm{D}_{\mathrm{X}} \in \Delta(\mathrm{X})^{1 / 2}
$$

D_{x}
$\mathrm{D} \in$
(H)
D_{x}

CHAPTER 2. LEARNING CURVES

that do not belong to the target branch

Proof idea for Theorem 2.3.1.
d

d / n

H
d
indi erence
d
$1 / 2$
d
There exists a constant $\propto>0$ as follows. Let $d \in$ and $X=d$. Let $H_{d} \subseteq\{0,1\}^{X}$ be the set of closed half-spaces in ${ }^{d}$. For any learning algorithm h there exists a distribution $D \in$
$\left(\mathrm{H}_{\mathrm{d}}\right)$ such that the inequality

$$
S \sim D \quad{ }^{h} L_{D} \quad R_{S}^{i} \geq \alpha \cdot \frac{d}{n}
$$

holds for in nitely many values $n \in$.
Proof idea.
$\left(H_{d}\right)=d$
d
H_{d}
H_{d}
d
${ }^{4}$ Consider the case where for some $\mathrm{x} \in \mathrm{X}$ there exist in nite branches $\mathrm{y}^{(0)}$ and $\mathrm{y}^{(1)}$ in the tree, both of which do not contain x, such that for all $b \in\{0,1\}$, it holds that all $h \in H$ that are consistent with $y^{(b)}$ satisfy $h(x)=b$. Then knowing the label for x allows the learner to diminate one of the branches.

CHAPTER 2. LEARNING CURVES

Let X be a set and let $H \subseteq\{0,1\}^{X}$ be a hypothesis class. Let $m:(0,1) \rightarrow$ and $k: \quad(H) \rightarrow \quad$ be functions. We say that H is eventually PAC learnable with sample complexity m and kick-in time k if there exist an algorithm 1 such that for any distribution $D \in \quad(\mathrm{H})$ and for any $\boldsymbol{\infty} \in(0,1)$ the inequality

$$
{ }_{S \sim D}{ }^{h} L_{D} \quad R_{S} \leq \varepsilon^{i} \geq 1-\delta
$$

holds for all $n \geq \max \{m(\underline{\infty}), k(D)\}$.
There exist constants 0 as follows. Let X be a set, let $H \subseteq\{0,1\}^{X}$ be a hypothesis class, and let $d \in$.

1. If $d=(H)<\infty$ then H is eventually PAC learnable with sample complexity $m(\Phi) \leq d \log (/ \delta) \xi$.
2. If H is eventually PAC learnable with sample complexity

$$
\mathrm{m}(\Phi)=\mathrm{d} \log (/ \delta) \xi
$$

then $\quad(H) \leq \beta$.
Proof idea.

$$
X \quad H \subseteq\{0,1\}^{X}
$$

$\mathrm{d} \in$
The online learning game for H of size d, denoted $G_{d} \quad(H)$, is an in nite full information game played between two players, a and an . At each time step $\mathrm{t}=1,2,3$,... :

1. The adversary chooses $\mathbf{x}_{\mathrm{t}}=\left(\begin{array}{ll}\mathrm{X}_{\mathrm{t}}, \ldots, \mathrm{X} & \mathrm{d} \\ \mathrm{t}\end{array}\right) \in \mathrm{X}^{\mathrm{d}}$.
2. The learner chooses $y_{t}=\left(\begin{array}{ll}y_{t}, \ldots, y & d \\ t\end{array}\right) \in\{0,1\}^{d}$.

For each $t \in$, the version space is de ned by

$$
\mathrm{H}_{\mathrm{t}}=\mathrm{H}_{\mathrm{x}_{1} ; \mathrm{y}_{1} ; \cdots ; ; \mathrm{x} ; \mathrm{y}}={ }^{\mathrm{n}} \mathrm{~h} \in \mathrm{H}: \forall \mathrm{s} \in[\mathrm{t}] \forall \mathrm{i} \in[\mathrm{~d}]: \mathrm{h}\left(\mathrm{x}_{\mathrm{s}}^{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{s}}^{\mathrm{i}^{\circ}} .
$$

If there exists a time step $t \in$ such that $H_{t}=$ then the learner wins the game. Otherwise, the adversary wins the game.

CHAPTER 2. LEARNING CURVES

$$
\mathrm{H}_{\mathrm{t}}=\quad \mathbf{x}_{\mathrm{t}} \quad \mathbf{y}_{\mathrm{t}}=\mathrm{f}\left(\mathbf{x}, \ldots, \mathbf{x}_{\mathrm{t}}\right)
$$

$$
\left(\mathbf{x}_{\mathrm{t}}, \mathbf{y}_{\mathrm{t}}\right)_{\mathrm{t} \in} \quad \mathrm{H} \quad \mathbf{y}_{\mathrm{t}}=\mathbf{y}_{\mathrm{t}}
$$

In the context of Lemma 2.4.3, Item $3 \Longrightarrow$ Item 1 .
Proof.
H

d		
		T
$\mathbf{X}_{\mathrm{t}}=\mathbf{X}_{\mathbf{y}} \quad 1$	$t \in$	$\mathbf{y}_{\mathrm{t}} \in\{0,1\}^{\text {d }}$
$(\mathbf{x}, \mathbf{y})_{\leq t}$		
$\mathbf{y}_{\mathrm{t}} \in \mathrm{y}_{\mathrm{t}}$	$t \in$	

Fix a function f as in Algorithm 2.1, and consider an execution of that algorithm using f in which the adversary plays the sequence $\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)$. For each $t \in$ let ξ^{t} denote the value of ξ at the beginning of time step t . We write

$$
y_{t}: X^{d} \rightarrow\{0,1\}^{d}
$$

to denote the function given by

$$
y_{\mathrm{t}}(\mathrm{x})=\boldsymbol{y}_{\mathrm{x} ; \mathrm{y}} \quad 1(\mathrm{x})=\mathrm{f}\left(\xi^{\mathrm{t}} \circ \mathrm{x}\right)
$$

that determines the learner's choice at time t , such that $\boldsymbol{y}_{\mathrm{t}}=\mathbf{y}_{\mathrm{t}}\left(\mathbf{x}_{\mathrm{t}}\right)$ for all $\mathrm{t} \in$.

CHAPTER 2. LEARNING CURVES

For any pattern avoidance function $\mathrm{g}: \mathrm{X}^{\mathrm{d}} \rightarrow\{0,1\}^{d}$ there exists a function A_{g} given by

$$
A_{g}:(X \times\{0,1\})^{*} \rightarrow\{0,1\}^{X}
$$

such that for any distribution $D \in \Delta X^{d} \times\{0,1\}^{d}$ for which $L_{D} \quad(g)=0$ and for any $n \in$,

$$
S \sim D{ }^{h} L_{D}\left(A_{g}(S)\right)^{i} \leq \frac{d}{n} .
$$

Proof.
g

$$
F={ }^{n} f \in\{0,1\}^{x}: \quad \forall x \in X^{d}: f(\mathbf{x}), \ldots, f \quad\left(\mathbf{x}_{d}\right) \in g(\mathbf{x})^{\circ}
$$

$$
\begin{array}{lccc}
g(x) & \mathbf{x} \in X^{d} & & (F) \leq d \\
X & d & A_{g} &
\end{array}
$$

$$
f \quad F
$$

$$
(X, Y), \ldots, \quad\left(X_{n}, Y_{n}\right)
$$

$L_{D} \quad(g)=0 \quad F \quad g$

$$
S(\mathbb{X}) \stackrel{d}{=}\left(X_{\sigma}, Y_{\sigma}\right), \ldots,\left(X_{\sigma n} \quad, Y_{\sigma n}\right) .
$$

If there exists a winning strategy for the leaner in the forbidden pattern game $G_{d} \quad(H)$, then H is learnable with rate d / n.
Proof of Lemma 2.4.15.

$$
\begin{array}{lll}
\text { 4.15. } & D \in & (H) \\
n \in & R_{S}=0 \text { optimal } R \text { at eL earner (S) } & S \sim D^{n} \\
& S \sim D L_{D} R_{S} \quad i \quad d / n+e^{-c n} . &
\end{array}
$$

c ≥ 0
$C, C \geq 0$

$$
\stackrel{h}{s \sim D} \quad{ }^{i} \geq 1-C \cdot e^{-c_{0} \cdot n} .
$$

$$
\begin{aligned}
& \text { A } F \\
& \text { SiD }{ }^{h} L_{D}{ }^{-}\left(A_{g}(S)\right)^{i} \\
& =S \sim D ; x ; Y \sim D\left[1\left(\left(A_{g}(S)\right)(X) \in Y\right)\right] \\
& =\mathrm{X}_{1} ; \mathrm{Y}_{1} ; \ldots ; \mathrm{X}_{+1} ; \mathrm{Y}_{+1} \sim \mathrm{D}+1 ; \sigma \sim \quad\left[{ }_{+1}\left[\mathrm{~L}_{\sigma ; f}\left(\mathrm{~A}_{\mathrm{g}}\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{(F)}{n+1} \leq \frac{d}{n+1} \text {. }
\end{aligned}
$$

CHAPTER 2. LEARNING CURVES

$$
[E] \leq[E \mid F]+[\neg F] \quad \mathcal{E} \in T_{D} \quad k=\Omega(n) \quad \mathcal{C} \geq 0
$$

B

$$
\begin{aligned}
S \sim D{ }^{h} L_{D}^{-} R_{S}{ }^{i} & =S \sim D{ }^{h} L_{D}^{-} R_{S} \cdot 1(B)^{i}+{ }_{S \sim D}{ }^{h} L_{D_{i}}^{-} A_{S} \cdot 1(-B)^{i} \\
& \leq S \sim D[B]+{ }^{i}{ }^{h} L_{D}^{-} R_{S} \cdot 1(\neg B)^{i} \\
& \leq C^{-c n}+S \sim D L_{D}^{-} R_{S} \cdot 1(\neg B)^{1},
\end{aligned}
$$

$$
\begin{aligned}
& \text { SiD }{ }^{h} L_{D}{ }^{-} R_{S} \cdot 1(-B)^{i} \\
& =s \sim D ; x ; \sim_{\sim}[1(\quad(a(X), \ldots, a \quad k(X)) \in Y) 1(-B)]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\left|\left\{i: a_{i}(X) \in Y\right\}\right|}{k} \geq \frac{1}{2} \wedge \frac{\left|\left\{i: L_{D} \quad\left(g_{i}\right)=0\right\}\right|}{k} \geq \frac{5}{8}{ }^{!} \\
& \left.\left.\leq \quad \frac{\mid\left\{i:\left(a_{i}(X) \in Y\right) \wedge\left(L_{D}\right.\right.}{k} \quad\left(g_{i}\right)=0\right)\right\} \left\lvert\, \frac{1}{8}^{!}\right. \text {\# } \\
& \leq \frac{8}{k} \cdot{ }^{h}\left|\left\{i:\left(a_{i}(X) \in Y\right) \wedge\left(L_{D} \quad\left(g_{i}\right)=0\right)\right\}\right|^{i} \\
& =\frac{8}{k} \cdot{ }_{i \in k} \quad{ }^{h}\left(a_{i}(X) \in Y\right) \wedge\left(L_{D} \quad\left(g_{i}\right)=0\right)^{i} \\
& \leq \frac{8}{k} .{ }_{i \in k} \frac{d}{n}=\frac{8 d}{n},
\end{aligned}
$$

$$
s \sim D^{h} L_{D}^{-} A_{S}^{i} \leq e^{-c n}+\frac{8 d}{n},
$$

CHAPTER 2. LEARNING CURVES

For any set X and any hypothesis class $H \subseteq\{0,1\}^{X}$ satisfying $d=$ with $1 \leq c k \infty$, there exists a distribution $D_{x} \in \Delta(X)$ such that for any (possibly randomized) learning algorithm A there exists $D \in \quad(H)$ such that the marginal distribution of D on X is D_{X}, and the inequality

$$
S \sim D \quad{ }_{S}^{h} \quad R_{S}^{i} \geq \frac{d}{100 \cdot n}
$$

holds for in nitely many $n \in$.

indi erent d

For any $\mathbf{u} \in\{0,1\}^{\text {d }}$, let $\quad(\mathbf{u}) \in$ denote the index of \mathbf{u} in the lexicographical ordering of $\{0,1\}^{\text {d }}$.

Let $d \in$, let X be a set, let $H \subseteq\{0,1\}^{X}$ be a hypothesis class, and let

$$
T={ }^{n} \mathbf{x}_{\mathbf{u}} \in X^{d}: \mathbf{u} \in\{0,1\}^{d^{*}}
$$

be an in nite $d-V C L$ tree that is shattered by H. Recall that this implies the existence of a collection

$$
H_{T}={ }^{n} h_{u} \in H: \mathbf{u} \in\{0,1\}^{d^{*}}
$$

of consistent functions, namely, for each $\mathbf{u} \in\{0,1\}^{d^{*}}, h_{\mathbf{u}}$ is consistent with the path from the root to node \mathbf{u}, as in the de nition of shattering a VCL tree (De nition 2.2.11).

We say that such a collection H_{T} is indifferent if for every $\mathbf{v}, \mathbf{u}, \mathbf{w} \in\{0,1\}^{\text {d }}$, if
$(\mathbf{v})<\quad(\mathbf{u})$, and \mathbf{w} is a descendant of \mathbf{u} in the tree T, then $h_{u}\left(\mathbf{x}_{v}^{j}\right)=h_{w}\left(\mathbf{x}_{v}^{j}\right)$ for every $j \in[d]$. In words, the functions for all the descendants of a node that appears after \mathbf{v} agree on \mathbf{v}.

We say that T is indifferent if it has a set H_{T} of consistent functions that are indi erent.

Let $d \in$, let X be a set, let $H \subseteq\{0,1\}^{X}$ be a hypothesis class, and let T be an in nite $d-V C L$ tree that is shattered by H. Then there exists an in nite d-VCL tree \mathbf{T}^{\prime} that is shattered by H that is indi erent.

CHAPTER 2. LEARNING CURVES

Let ($\mathrm{X} \leq$) be a partial order relation. For $\ddagger \mathrm{m} \in \mathrm{X}$, we say that bis a child of a if $a \leq b$ and there does not exist $c \in X$ such that $a \leq c \leq b$ For $k \in$, we say that $(\mathrm{X} \leq$) is an in nite k -ary tree if every $\mathrm{a} \in \mathrm{X}$ has precisely k distinct children. We say that a partial order $\left(X^{\prime}, \leq\right)$ is a subtree of ($X \leq$) if $X^{\prime} \subseteq X$, and $\forall \notin \in X^{\prime}: a \leq b \Leftrightarrow a \leq b$

Let $T=(X \leq)$ be an in nite k-ary tree, and let $g: X \rightarrow\{0,1\}$ be a two-coloring of T. Then T has a monochromatic in nite k-ary subtree $T^{\prime}=\left(X^{\prime}, \leq^{\prime}\right)$, namely there exists T^{\prime} such that T^{\prime} is a subtree of $\mathrm{T}, \mathrm{T}^{\prime}$ is an in nite k -ary tree, and $\left|g\left(X^{\prime}\right)\right|=\left|\left\{g(a): a \in X^{\prime}\right\}\right|=1$.

Proof of Lemma 2.4.21.

$$
g\left(X^{\prime}\right)=\{1\}
$$

$a \in X$

$$
\underset{k}{a \in X}
$$

X
T'
$b \in X$
0 $g(r)=0$ T'
b a
a
$\begin{array}{cc} \\ g(b)= & 0 \\ T^{\prime} & \\ r & \\ & \square\end{array}$
Proof of Claim 2.4.19.
$H \quad\left\{h_{u}: \mathbf{u} \in\{0,1\}^{d}{ }^{*}\right\}$
d

H

H
T^{\prime}
$\mathrm{T}_{\mathrm{u}}^{\prime} \quad \mathrm{T}^{\prime}$
u

$$
\begin{gathered}
g:\{0,1\}^{d^{*}} \rightarrow\{0,1\}^{x} d^{\top} \quad g(u)=h_{u}(x) \\
T^{\prime}={ }^{n} x_{u}^{\prime}: \mathbf{u} \in\{0,1\}^{d} *^{0}
\end{gathered}
$$

$$
\mathrm{T}_{\mathrm{u}}^{\prime}, \quad \mathrm{x}=\mathbf{x}_{\mathrm{v}}^{j} \quad \mathrm{j} \in[\mathrm{~d}] \quad \mathbf{v}
$$

CHAPTER 2. LEARNING CURVES

$\mathbf{v} \in\{0,1\}^{\text {d }}$

$$
(\mathbf{v})<
$$

$$
(\mathbf{u})
$$

$$
\mathrm{j} \in[\mathrm{~d}]
$$

$\mathrm{T}_{\mathrm{u}}^{\prime}$
2^{d}

$$
\mathrm{T}_{u}^{\prime}
$$

$\mathrm{d} \quad \mathrm{T}_{\mathrm{u}}^{\prime} \quad 2^{\mathrm{d}}$
T^{\prime}

$\underset{\mathbf{q}, \mathbf{r},}{\mathrm{d}} \in\{0,1\}^{\mathrm{d}}{ }^{*} \quad \mathrm{k} \in[\mathrm{d}]$ $\mathrm{H}^{\prime} \mathrm{T}^{\prime}$
$(\mathbf{q})<\begin{gathered}(\mathbf{r}) \\ \mathbf{u}=\mathbf{r} \mathbf{v}=\mathbf{q} \quad j=k\end{gathered}$

$$
h_{r}\left(\left(\mathbf{x}_{\mathbf{q}}\right)^{\mathrm{k}}\right)=\mathrm{h}\left(\left(\mathbf{x}_{\mathbf{q}}\right)^{\mathrm{k}}\right)
$$

branch functions

$$
Y=\{0,1\}^{d} .
$$

Let $d \in$, let X be a set, let $H \subseteq\{0,1\}^{X}$ be a hypothesis class, and let

$$
T={ }^{n} \mathbf{x}_{u} \in X^{d}: \mathbf{u} \in\{0,1\}^{d} *^{0}
$$

be an in nite $\mathrm{d}-\mathrm{VCL}$ tree that is shattered by H with a collection

$$
H_{T}={ }^{n} h_{u} \in H: \mathbf{u} \in\{0,1\}^{d} *^{0}
$$

of consistent functions that are indi erent. Let

$$
X_{T}=\left\{\mathbf{x}_{u}^{i}: \mathbf{u} \in\{0,1\}^{\text {d }} \wedge \mathrm{i} \in[\mathrm{~d}]\right\} .
$$

For every $\mathbf{y} \in Y$, the branch function for \mathbf{y} is the unique function $f_{y}: X_{T} \rightarrow\{0,1\}$ such that for each $\mathbf{v} \in\left\{0, \overline{1\}^{d^{*}}}\right.$ and $\mathrm{j} \in[\mathrm{d}]$,

$$
f_{y}\left(\mathbf{x}_{v}^{j}\right)=h_{u}\left(\mathbf{x}_{v}^{j}\right)
$$

CHAPTER 2. LEARNING CURVES

for a node \mathbf{u} such that $\mathbf{y}_{\leq|\mathbf{u}|}=\mathbf{u}$ and $\quad(\mathbf{u})>\quad(\mathbf{v})$. In words, $\mathrm{f}_{\mathrm{y}}\left(\mathbf{x}_{\mathrm{v}}^{\mathrm{j}}\right)$ is the value assigned to $\mathbf{x}_{\mathrm{v}}^{\mathrm{j}}$ by the consistent function of any node on the in nite branch \mathbf{y} that appears after \mathbf{v} in lexicographic order. (Due to the indi erence property, $\mathrm{h}_{\mathrm{u}}\left(\mathbf{x}_{\mathrm{v}}^{\mathrm{j}}\right)$ is the same for any such node \mathbf{u}.)

Let T be an indi erent in nite $\mathrm{d}-\mathrm{VCL}$ tree with a collection of branch functions $\left\{f_{y}\right\}_{y \in Y}$. Then:

1. Every branch function f_{y} is , meaning that for any nite set $\{\mathrm{X}, \ldots \mathrm{X} \quad \mathrm{m}\}$ $\subseteq X_{T}$, there exists a function $h \in H$ such that for all $i \in[m], f_{y}\left(x_{i}\right)=h\left(x_{i}\right)$.
2. Each element in T is unique. Namely, for every $\mathbf{u}, \mathbf{v} \in\{0,1\}^{d^{*}}$ and every ij $\in[d]$, if $\mathbf{u} \in \mathbf{v}$ or $\mathrm{i} \boldsymbol{G} \mathrm{j}$ then $\mathbf{x}_{\mathrm{u}}^{\mathrm{i}} \boldsymbol{G} \mathbf{x}_{\mathbf{v}}^{\mathrm{j}}$.
3. Let $\mathbf{v}, \mathbf{u} \in\{0,1\}^{d^{*}}$. If $\quad(\mathbf{u})>\quad(\mathbf{v})$ then there exists $\mathbf{b} \in\{0,1\}^{d}$ such that for any $\mathbf{y} \in Y$, if $\mathbf{u}=\mathbf{y}_{\leq|\mathbf{u}|}$ then $\mathrm{f}_{\mathbf{y}}\left(\mathbf{x}_{\mathbf{v}}^{\mathrm{j}}\right)=\mathbf{b}_{\mathrm{j}}$ for all $\mathrm{j} \in[\mathrm{d}]$. In words, if \mathbf{v} precedes \mathbf{u} in lexicographical order, then all the branch functions for branches that pass through node \mathbf{u} agree on node \mathbf{v}.

Proof of Claim 2.4.24.
$\mathbf{u}=\mathbf{v}{ }_{d} \mathbf{x}_{u}^{i} \in \mathbf{x}_{v}^{j}$
f_{y}

$$
\mathbf{x}_{u}^{i}
$$

u
u

u
\mathbf{u} indi erent \mathbf{v}

Let $\left(\Omega, \mathrm{F}_{\mathrm{R}} \mu\right)$ be a measure space. Let $\mathrm{g}: \Omega \rightarrow$ be a non-negative measurable function such that $\quad g k \quad \infty$. For each $n \in$ let $f_{n}: \Omega \rightarrow$ be a measurable function such that $\forall \omega \in \Omega: f_{n}(\omega) \leq g(\omega)$. Then

$$
z \limsup _{n \rightarrow \infty} d \geq \limsup _{n \rightarrow \infty} Z_{n} d
$$

CHAPTER 2. LEARNING CURVES

Proof of Lemma 2.4.16.

$$
\begin{equation*}
\left\{P_{y}\right\}_{y \in Y} \subseteq \tag{H}
\end{equation*}
$$

$$
\begin{aligned}
& P_{y} \\
& k \in \quad \forall s \in: \quad[k=s]=(d-1) d^{-s} 5 \\
& \mathbf{u} \in\{0,1\}^{\text {d }} \quad \mathrm{k} \quad\{0,1\}^{\text {d }} \\
& j \in[d] \\
& \left(\mathbf{x}_{\mathrm{u}}^{\mathrm{j}}, \mathrm{f} \mathrm{f}_{\mathrm{y}}\left(\mathbf{x}_{\mathrm{u}}^{\mathrm{j}}\right)\right) \\
& \mathbf{y} \in Y \\
& \mathrm{P}_{\mathrm{y}} \quad \& 0 \quad \mathrm{kn}_{n} \in \\
& \text { [k* } \left.{ }^{*}\right] \leq \varepsilon \mathrm{f}_{\mathrm{y}} \\
& Z_{n}={ }^{n}{ }^{\mathrm{H}}\left(\mathbf{x}_{\mathrm{u}}^{\mathrm{j}}, \mathrm{f}_{\mathrm{y}}\left(\mathbf{x}_{\mathrm{u}}^{\mathrm{j}}\right)\right): \\
& \text { (u) } \leq \\
& \text { kn } \wedge j \in[d]{ }^{0}
\end{aligned}
$$

CHAPTER 2. LEARNING CURVES

$$
\begin{aligned}
& \mathbf{y} \in Y \\
& \text { U(Y) } \\
& S=(X, Y, K),(X, Y, K), \ldots,\left(X_{n}, Y_{n}, K_{n}\right) \sim P_{y}^{n} \\
& i \in[n] K_{i} \in \\
& \left(X_{i}, Y_{i}\right) \\
& \text { (} \left.\mathbb{K}^{(}\right) \sim P_{y}
\end{aligned}
$$

$\kappa \in \quad G(\kappa)$
$K=K \geq \max \left\{\begin{array}{l}K, \ldots, K \\ n\end{array}\right\}$
$\left|\left\{i \in[n]: K_{i}=k\right\}\right| \$ \mid 2$
$X \in\left\{X_{i}: i \in[n]\right\}$

$$
\begin{aligned}
& \text { G(к) } \\
& {[G(\mathrm{~K})] \geq(\mathrm{d}-1) \mathrm{d}^{-\mathrm{K}} / 4} \\
& n=n_{k}={ }^{j} \frac{d+1}{d-} \\
& C_{k}=\left|\left\{i \in\left[n_{k}\right]: K_{i}=\kappa\right\}\right|, \quad C_{>k}=\left|\left\{i \in\left[n_{k}\right]: K_{i} *\right\}\right| . \\
& {\left[C_{\kappa}\right]=n_{k} \cdot(d-1) d^{-\kappa} \leq \frac{d^{k}}{8(d-1)} \cdot(d-1) d^{-\kappa}=\frac{d}{8},} \\
& {\left[C_{>K}\right]=n_{k} \cdot{ }^{x^{\circ}}(d-1) d^{-s}} \\
& \leq \frac{\mathrm{d}^{k}}{8(\mathrm{~d}-1)} \cdot 2(\mathrm{~d}-1) \mathrm{d}^{-\mathrm{k}-}=\frac{1}{4} .
\end{aligned}
$$

CHAPTER 2. LEARNING CURVES

$$
\begin{aligned}
& y \sim Y ; S \sim P_{y}^{y} ; X ; Y ; K \sim P_{y ; \rho}{ }^{h} Y=1 \mid X\left\{X_{i}, Y_{i}\right\}_{i \in n_{y}}, G\left(K_{y ; t}\right)^{i}=\frac{1}{2}, \\
& R_{S}(X) \quad\left(X\left\{X_{i}, Y_{i}\right\}_{i \in n_{y}}, \rho\right) \\
& \left\{f_{y}\right\}_{y \in Y} \\
& \text { K } \\
& \begin{array}{l}
b \in\{0,1 \\
Y=f_{y}(X) \\
G\left(K_{y ; t}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& K_{y ; t}=\kappa \\
& =f_{y}(X)=1 \quad \begin{array}{ll}
\forall i \in\left[n_{y, t}\right]: X_{i}=\xi_{i} \wedge K_{i}=K_{i} \\
K=K_{y, t} \geq \max \left\{K_{i}: i \in\left[n_{y, t}\right]\right\}
\end{array} \\
& X=\xi \in\left\{X_{i}: i \in\left[n_{y, t}\right]\right\} \\
& \left\{f_{y}\right\}_{y \in Y} \\
& =\quad y_{t}^{j}=1 \quad \begin{array}{l}
\quad \begin{array}{l}
K_{y, t}=K \\
\\
\\
K=K_{y, t} \geq \max \left\{K_{i}: i \in\left[n_{y ; t}\right]\right.
\end{array} \quad=\frac{K_{i}=K_{i}}{2},
\end{array} \\
& X=\xi \mathcal{X} \in\left\{X_{i}: i \in\left[n_{y, t}\right]\right\} \\
& j \quad \mathrm{j} \quad \mathrm{~K} \\
& K=K_{y, t} \quad X \\
& \text { y }
\end{aligned}
$$

CHAPTER 2. LEARNING CURVES

$$
\begin{aligned}
& \mathbf{y} \in Y \\
& \underset{n \rightarrow \infty}{\limsup n \cdot} \underset{\rho ; S \sim P_{y}}{ }{ }^{h} L_{P_{y}^{-}} R_{S}{ }^{i} \\
& \xrightarrow{n \rightarrow \infty} \limsup _{t \rightarrow \infty} n_{y ; t} . \quad{ }_{\rho ; S \sim P_{y}}{ }^{h} L_{P_{y}^{-}} R_{S}^{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\limsup _{t \rightarrow \infty} n_{y ; t} \cdot\left[G\left(k_{y ; t}\right)\right] \cdot{ }^{h} R_{S}(X) \in Y \mid G\left(K_{y ; t}\right)^{i}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\limsup _{t \rightarrow \infty} \frac{d}{36} .{ }_{\rho ; S \sim P_{y}{ }^{y} ; x ; Y ; K \sim P_{y}}{ }^{h} R_{S}(X) \in Y \right\rvert\, G\left(K_{y ; t}\right)^{i} . \\
& y \sim y \limsup _{n \rightarrow \infty} n \cdot{ }_{\rho ; S \sim P_{y}}{ }^{h} L_{P_{y}}^{-} R_{S}^{i} \\
& \geq \frac{d}{36} \cdot y \sim \quad y \limsup _{t \rightarrow \infty} \underset{\rho ; S \sim P_{y} y}{ } ; x ; Y ; K \sim P_{y}{ }^{h} R_{S}(X) \in Y \mid G\left(K_{y ;}\right)^{i} \\
& \geq \frac{d}{36} \cdot \limsup _{t \rightarrow \infty} \quad y \sim Y^{h}{ }_{\rho ; S \sim P_{y}}{ }^{y} ; x ; Y ; K \sim P_{y}{ }^{h} A_{S}(X) \in Y \mid G\left(K_{y ; t}\right)^{i i} \\
& =\frac{\mathrm{d}}{36} \cdot \frac{1}{2}=\frac{\mathrm{d}}{72} . \\
& \mathbf{y} \in Y \\
& \limsup _{n \rightarrow \infty} \cdot \underset{S \sim P_{y}}{h} L_{p_{y}}^{-} R_{S}^{i} \geq \frac{d}{72} . \\
& {[\cdot] \leq 1}
\end{aligned}
$$

limsup

$$
\begin{aligned}
& \underset{S \sim P_{y}}{h} L_{P_{y}^{-}}^{-} R_{S}^{i} \geq \frac{d}{73 \cdot n} \\
& n \in
\end{aligned}
$$

Let $d \in$. We write ${ }^{d-}=\{x \in d: k x k=1\}$ to denote the unit sphere in d.

[^1]
CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

$$
\begin{aligned}
& \text { learner } \\
& \text { adversary } \quad n \in \quad X \quad Y \\
& H \subseteq Y^{X} \\
& \text { hypothesis class } \\
& \mathrm{t}=1, \ldots, \mathrm{n} \\
& \text { prediction } \hat{y}_{\mathrm{t}} \in \mathrm{Y} \\
& \text { label } y_{t} \in Y
\end{aligned}
$$

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

$$
\begin{aligned}
& \text { Y } \\
& \text { standard } \\
& \text { H } \\
& \mathrm{R}_{\mathrm{n}}(\mathrm{H}, \mathrm{n}) \\
& \Omega^{q} \quad(H) \cdot n \quad \leq R \quad(H, n) \leq 0^{q} \quad(H) \cdot n \cdot \log n . \\
& R \quad(H, n)=\theta^{q} \quad(H) \cdot n \\
& \text { transductive } \\
& 0<(H)<\infty \\
& H \subseteq\{0,1\}^{X} \\
& \text { H } \\
& \Omega^{q} \overline{(H) \cdot n} \leq R(H, n) \leq 0^{q} \quad(H) \cdot n \cdot \log n . \\
& \text { online }
\end{aligned}
$$

CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

Let X be a set and $\mathfrak{k} \in$. For a sequence $X=\left(\begin{array}{ll}x, \ldots, X & n\end{array}\right) \in X^{n}$, we write $X_{\leq k}$ to denote the subsequence ($\mathrm{X}, \ldots, \mathrm{X} \quad \mathrm{k}$). If $k \leq 0$ then $X_{\leq k}$ denotes the empty sequence, X.

Let $k \in$, let X and Y be sets, and let $H \subseteq Y^{X}$. A sequence $(x, y), \ldots, \quad\left(x_{k}, y_{k}\right) \in(X \times Y)^{k}$ is realizable by H, or $\underline{H-r e a l i z a b l e, ~ i f ~}$
$\exists \mathrm{h} \in \mathrm{H} \quad \forall \mathrm{i} \in[\mathrm{k}]: \mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}$.

CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

Let X be a set, let $H \subseteq\{0,1\}^{X}$, let $d \in$, and let $X=\{X, \ldots, X \quad d\} \subseteq X$. We say that H shatters X if for every $y \in\{0,1\}^{d}$ there exists $h \in H$ such that for all $i \in[d]$, $h\left(x_{i}\right)=y_{i}$. The Vapnik Chervonenkis (VC) dimension of H is $(H)=\sup \{|X|: X \subseteq$ X nite $\wedge H$ shatters X \}.

Let X be a set and let $d \in$. A Littlestone tree of depth d with domain X is a set

$$
T=x_{u} \in X: u \in_{s}^{\left[^{d}\right.}\{0,1\}^{s}
$$

Let $H \subseteq\{0,1\}^{X}$. We say that H shatters a tree T as in $E q$. if for every $u \in\{0,1\}^{d}$ there exists $h_{u} \in H$ such that

$$
\forall i \in[d+1]: h\left(x_{u} \quad 1\right)=u_{i}
$$

The Littlestone dimension of H, denoted $\quad(H)$, is the supremum over all $d \in$ such that there exists a Littlestone tree of depth d with domain X that is shattered by H .

Source: Bousquet et al. (2021).

Let X be a set and let $H \subseteq\{0,1\}^{X}$ such that $d=$ $(\mathrm{H})<\infty$. Then there exists a strategy for the learner that guarantees that the learner will make at most d mistakes in the standard (non-transductive) online learning setting, regardless of the adversary's strategy and of number of instances to be labeled.

CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

Let X be a set, let $\mathrm{H} \subseteq\{0,1\}^{\mathrm{X}}$, and let $d \in$. Then:

1. If $(H) \geq d$ then $(H) \geq\lfloor\log d\rfloor$.
2. If
$(H) \geq d$ then
$(\mathrm{H}) \geq\lfloor\log \mathrm{d}\rfloor$.

$$
\forall n \in: M(H, n) \leq 2 \quad H
$$

H
$\Omega(\log \log (\mathrm{H})))$
Let X be a set, let $H \subseteq\{0,1\}^{X}$ such that $d=(H)<\infty$, and let $n \in$.
Then

$$
M(H, n) \geq \min \{[\log (d)\rfloor,\lfloor\log (n)\rfloor\} .
$$

σ

$q \quad q$

Proof of Claim 3.3.4. $k=\min \{\lfloor\log (d)\rfloor,\lfloor\log (n)\rfloor\} \quad N=2^{k}$

$$
X=\{X, \ldots, X \quad N-\} \subseteq X
$$

$\mathrm{h}, \ldots, \mathrm{h} \quad \underset{\mathrm{h}-\underset{\mathrm{X}}{\in} \mathrm{H}}{\mathrm{h}} \mathrm{h}\left(\mathrm{x}_{\mathrm{j}}\right)=1(\mathrm{j} \leq \mathrm{i})$
ij $\in[N-1]$

CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

Let X be a set, let $\mathrm{H} \subseteq\{0,1\}^{\mathrm{X}}$, and let $\mathrm{n} \in$ such that $\mathrm{n} \leq|X|$.

1. If $(H)=\infty$ then $M(H, n)=n$.
2. Otherwise, if

$$
\begin{aligned}
& (H)=d k \quad \infty \quad \text { and } \quad(H)=\infty \text { then } \\
& \max \{\min \{d \boldsymbol{d} \quad\},[\log (n)\rfloor\} \leq M(H, n) \leq O(d \log (d \quad)) .
\end{aligned}
$$

Furthermore, each of the bounds in Eq. is tight for some classes. The $\Omega(\cdot)$ and $\mathrm{O}(\cdot)$ notations hide universal constants that do not depend on X or H .
3. Otherwise, there exists an integer $C(H) \leq(H)$ (that depends on X and H but does not depend on n) such that $M(H, n) \leq C(H)$.

CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

Proof of Theorem 3.4.1.
$(H)=\infty$
$X=$ $\left\{x, \ldots, x \quad{ }_{n}^{n}\right\} \subseteq X$
$t \in[n]$
$x=\left(\begin{array}{ll}x, \ldots, x & n_{n}\end{array}\right)$
$t \in\{0, \ldots, n \quad\}$
n
 $y_{t}=1-\hat{y}_{t}$ halving algorithm $\left.H\right|_{x}$

$$
x \quad\{0,1\}
$$

H

$$
H_{t}=\left.{ }^{n} f \in H\right|_{x}:\left(\forall i \in[t]: f\left(x_{i}\right)=y_{i}\right)^{o}
$$

version space
$t \in[n]$

$$
\hat{y}_{t}=\underset{b \in\{;\}}{\arg \max } \mathrm{n}_{\mathrm{f}} \in H_{t-}: f\left(x_{t}\right)=b^{o}
$$

\hat{y}_{t}

H_{t}

H_{t}

$$
t \in[n]
$$

$$
\left|H_{t}\right| \leq \frac{1}{2} \cdot\left|H_{t-}\right|
$$

$$
M=M(H, n)
$$

H H_{n}

$$
1 \leq\left|H_{n}\right| \leq 2^{-M} \cdot|H| \leq 2^{-M} \cdot O(d \mid)^{d}
$$

$$
(H) \leq \quad(H)=d
$$

$$
\mathrm{M}=\mathrm{O}(\mathrm{~d} \log (d))
$$

$\min \{c h\}$
$(H)=\infty$ $\mathrm{n} \leq \mathrm{d}$
$(H)=\infty$
(H) $\geq \mathrm{n}$

$$
(H)=k<\infty
$$

k
$C(H) \in\{0, \ldots, k \quad\}$

One can use Theorem 3.3.1 to obtain a lower bound for the case of Item 2 in Theorem 3.4.1. However, that yields a lower bound of $\Omega(\log \log (n))$, which is exponentially weaker than the bound we show.

CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

Let $d \in$, let X and Y be sets, and let $H \subseteq Y^{X}$. For an index $i \in[d]$ and vectors $y=\left(\begin{array}{ll}y, \ldots, y & d\end{array}\right) \in Y^{d}, y^{\prime}=\left(y^{\prime}, \ldots, y \quad, \quad{ }^{\prime}\right) \in Y^{d}$, we say that y and y^{\prime} are i-neighbors, denoted $y \sim_{i} y^{\prime}$, if $\left\{j \in[d]: y_{j} \in y_{j}^{\prime}\right\}=\{i\}$. We say that $C \subseteq Y^{d}$ is a d-pseudocube if C is non-empty and nite, and

$$
\forall y \in C \forall i \in[d] \exists y^{\prime} \in C: y \sim_{i} y^{\prime}
$$

For a vector $x=\left(\begin{array}{ll}x, \ldots ., x & d\end{array}\right) \in X^{d}$, we say that H DS-shatters x if the set

$$
\left.H\right|_{x}:={ }^{n} h(x), \ldots, h \quad\left(x_{d}\right): h \in H^{0} \subseteq Y^{d}
$$

contains a d-pseudocube.
Finally, the Daniely Shalev-Shwartz (DS) dimension of H is

Y

For every $n \in$, there exists a hypothesis class H_{n} such that $\quad\left(H_{n}\right)=1$ but the adversary in transductive online learning can force at least $M\left(H_{n}, n\right)=n$ mistakes.

$$
\begin{align*}
& \text { Proof. } n \in \underset{x \in X}{ } X=\{0,1,2, \ldots, n \quad 1 \quad \mathrm{~T} \\
& \text { X } \\
& T \\
& \begin{array}{ll}
\mathrm{T} & \mathrm{H}
\end{array} \\
& \mathrm{H} \quad \mathrm{~T} \\
& M\left(H_{n}, n\right)=n \\
& \text { H } \\
& \text { H } \\
& \text { T } \\
& \left(H_{n}\right)=1 \\
& 1 \\
& x=(x, x) \in X \tag{2}
\end{align*}
$$

CHAPTER 3. TRANSDUCTIVE ONLINE LEARNING

Additionally:

1. If $(H)=0$ (i.e., classes with a single function) then the regret is 0 .
2. If $(H)<\infty$ and $(H)<\infty$ then the regret is $R(H, n)=O^{q}-(H) \cdot n$, by Alon et al. (2021) (as mentioned above). Namely, in some cases the $\log (\mathrm{n})$ factor in Theorem 3.6.1 can be removed.
3. If $(H)=\infty$ then the regret is $\Omega(n)$.

$$
\Theta(1)
$$

$$
\Theta(\log n)
$$

Y

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

prover

interactive

Are there machine learning tasks for which the runtime and sample complexity of learning a good hypothesis is signi cantly larger than the complexity of verifying a hypothesis provided by someone else?

Are there machine learning problems where membership queries are necessary for nding a good hypothesis, but veri cation is possible using random samples alone?

PAC Veri cation
prover learner

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$П$

[^2]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

The veri er and prover each have access to an oracle, and they exchange messages with each other. Eventually, the veri er outputs a hypothesis, or rejects the interaction. One natural case is where the prover suggests a hypothesis \tilde{h}, and the veri er either accepts or rejects this suggestion.

$$
\alpha \geq 1
$$

α
A class of hypothesis
H is $\alpha-$ PAC learnable (or semi-agnostic PAC learnable with parameter α) if there exists an algorithm A such that for every distribution D and every $0>0$, with probability at least $1-\delta$, A outputs h that satis es

$$
L_{D}(h) \leq \alpha \cdot L_{D}(H)+\varepsilon
$$

α
A class of hypothesis
H is α-PAC veri able if there exists a pair of algorithms (\mathbb{R}) that satisfy the following conditions for every distribution D and every 0 :

- Completeness. After interacting with P, V outputs h such that with probability at least $1-\delta, h \in$ reject and h satis es (4.2).
- Soundness. A fter interacting with any (possibly unbounded) prover P', V outputs h such that with probability at least $1-\delta$, either $h=$ reject or h satis es (4.2).

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

We insist on double e ciency; that is, that the sample complexity and running times of both V and P must be polynomial in ${ }_{\pi}, \log _{\bar{\sigma}}$, and perhaps also in some parameters that depend on H , such as the VC dimension or Fourier sparsity of H .

Let H be the class of boolean functions $\{0,1\}^{\mathrm{n}} \rightarrow \quad$ that are t -sparse, as in De nition 4.1.20. Then H is 1-PAC veri able with respect to the uniform distribution using a veri er that has access only to random samples of the form $(\$(x))$, and a prover that has query access to f. The veri er in this protocol is not proper; the output is not necessarily t-sparse, but it is (it) -sparse. The number of samples used by the veri er, the number of queries made by the prover, and their running times are all bounded by $\pitchfork \log { }_{\bar{\sigma}}, \bar{\pi}$.

Proof Idea.
t
known
query access

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

There exists a sequence of classes of functions

$$
\mathrm{T}, \mathrm{~T}, \mathrm{~T}, . \subseteq\{0,1\}
$$

such that for any xed $\Phi \in(0,-)$:
(i) The class T_{d} is proper 2-PAC veri able, where both the veri er and prover have access to random samples, and the veri er requires only $\bar{O} \overline{\mathrm{~d}}$ samples. Moreover, both the prover and veri er are e cient.
(ii) PAC learning the class T_{d} requires Ω (d) samples.

2

2
(iii) 2-PAC learning the class T_{d} requires $\tilde{\Omega}(d)$ samples. This is true even if we assume that $L_{D}\left(T_{d}\right)>0$, where D is the underlying distribution. ${ }^{6}$
(iv) Testing whether $L_{D}\left(T_{d}\right) \leq \alpha$ or $L_{D}\left(T_{d}\right) \geq \beta$ for any $0<\alpha<\beta<\quad$ - with success probability at least $1-\delta$ when D is an unknown distribution (without the help of a prover) requires Ω (d) random samples from D.

Proof Idea. (ii)
(iii)
(iv)
(iv)
(i)

$\mathrm{T}_{\mathrm{d}} \quad \mathrm{L}_{\mathrm{D}}(\mathrm{H}) \geq \ell$| $\mathrm{L}_{\mathrm{D}}(\mathrm{H})$ |
| :---: |
| certi cate of loss |
| ℓ |

[^3]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

T
$\rightarrow\{0,1\}$
$A=[0, a) \times\{1\} \quad B=[b 1] \times\{0\} \quad a \leq b \quad D(A)=D(B)=\ell$
$L_{D}(T) \geq \ell$
A
$\mathrm{a} \leq \mathrm{b}$
B
A B
d
$\begin{array}{cc} & \ell \\ T_{d} & T_{d}\end{array}$
d
$\tilde{o}^{\sqrt{ }} \bar{d}$
d
A_{i}
B_{i}

There exists a sequence of classes $\mathrm{H}, \mathrm{H}, \ldots$
such that:

- It is possible to PAC learn the class H_{d} using $\tilde{O}(\mathrm{~d})$ samples.
- For any interactive proof system that proper 1-PAC veri es H_{d}, in which the veri er uses an oracle providing random samples, the veri er must use at least $\Omega(\mathrm{d})$ samples.

The lower bound on the sample complexity of the veri er holds regardless of what oracle is used by the prover.

Proof Idea.

$$
\left|f f^{-(0) \mid} \underset{O(d)}{ }=\left|f f^{-}(1)\right|\right.
$$

H_{d}

$$
\begin{equation*}
{ }_{x ; y} \oplus[y=1]=1 \tag{D}
\end{equation*}
$$

D X 0
$\Omega^{q} \overline{|X|}=\Omega(d)$

query delegation

(2)
(3)

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

For any probability space (Ω, F), let $\Delta(\Omega, F)$ denote the set of all probability distributions over (Ω, F). We will often simply write $\Delta(\Omega)$ to denote this set when the σ algebra F is understood.

Let $\mathrm{P}, \mathrm{Q} \in \Delta(\Omega, \mathrm{F})$. The total variation distance between P and Q is

$$
(P, Q)=\sup _{X \in F} P(X)-Q(X)=\frac{1}{2} P-Q
$$

Probably Approximately Correct

h Let $h \in H_{1}$ and let $D \in \Delta(X \times\{0,1\})$. The loss of h with respect to D is
$L_{D}(h)=\quad x ; y \sim D(h(x)-y)$. Furthermore, we denote $L_{D}(H)=\inf _{h \in H} L_{D}(h)$.
In the special case of boolean labels, where $y \in\{0,1\}$ and $h: X \rightarrow\{0,1\}$, the ℓ loss function is the same as the 0-1 loss function: $L_{D}(h)=\quad x ; y \sim D[h(x) G y]$.

[^4]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

We say that H is agnostically PAC learnable if there exist an algorithm A and a function $m_{H}:[0,1] \rightarrow$ such that for any $\$ \mathbf{D}>0$ and any distribution $D \in \Delta(X \times)$, if A receives as input a tuple of $m_{H}(\Phi)$ i.i.d. samples from D, then A outputs a function $h \in H$ satisfying

$$
\left[L_{D}(h) \leq L_{D}(H)+\varepsilon\right] \geq 1-\delta
$$

In words, this means that h is probably (with con dence $1-\delta$) approximately correct (has loss at most ε worse than optimal). The point-wise minimal such function m is called the sample complexity of H .

Let $h \in H$ and let $S=\left((x, p), \ldots, \quad\left(x_{m}, y_{m}\right)\right) \in(X \times\{0,1\})^{m}$. The empirical loss of h with respect to S is $L_{s}(h)=\bar{m} \quad i \in m\left(f\left(x_{i}\right)-y_{i}\right)$.

An empirical risk minimization algorithm (ERM) for class H is an agnostic PAC learning algorithm that takes $m=m_{H}(\Phi)$ i.i.d. random samples from D, denoted S, and outputs a hypothesis $h \in \arg \min _{f \in H} L_{s}(f) . .^{8}$

We say that H has the uniform convergence property if there exists a function $m_{H}:[0,1] \rightarrow \quad$ such that for any 00 and any distribution $D \in \Delta(X \times)$, if S is a tuple of $m_{H}(\Phi)$ i.i.d. samples from D, then ${ }_{s}\left[\forall h \in H:\left|L_{s}(h)-L_{D}(h)\right| \leq \varepsilon\right] \geq 1-\delta$.
$D \in \Delta(X \times\{0,1\})$
Let $h \in H$ and $C \subseteq X$. We denote by $\left.h\right|_{C}$ the function $C \rightarrow\{0,1\}$ that agrees with h on C. The restriction of H to C is $\left.H\right|_{C}:=\left\{\left.h\right|_{C}: h \in H\right\}$, and we say that H shatters C if $\left.H\right|_{C}=\{0,1\}^{C}$.

The VC dimension of H denoted
(H) is the maximal size of a set $C \subseteq X$ such that H shatters \bar{C}. If H can shatter sets of arbitrary size, we say that the VC dimension is ∞.

The following are equivalent:

1. $(H)<\infty$.
2. H has the uniform convergence property.
3. H is agnostically PAC learnable.
4. Any ERM algorithm agnostically PAC learns H using $m_{H}(\underline{0})$) random samples.

Furthermore, if $d=(H)<\infty$ then $m_{H}(\Phi)=\theta \quad \frac{d \quad(\underline{1})}{n_{2}}$ and $m_{H}(\Phi)=\theta \frac{d \quad(\underline{1})}{n_{2}}$.

[^5]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

F

$$
f:\{0,1\}^{n} \rightarrow
$$

The operator $\langle\cdot, \cdot\rangle: \mathrm{F} \rightarrow$ given by $\langle\mathrm{fg}\rangle:=\quad \mathrm{x} \in\{;\}[\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})]$ constitutes an inner product, where $x \in\{0,1\}^{n}$ denotes sampling from the uniform distribution. $\chi_{S}(x):=(-1)^{P} \times$. For any set $S \subseteq[n], \chi_{s}:\{0,1\}^{n} \rightarrow\{0,1\}$ denotes the function

The set $\left\{X_{s}: S \subseteq[n]\right\}_{反}$ is an orthonormal basis of F. In particular, any $f \in F$ has a unique representation $f(x)=s_{s \leq n} f^{f}(S) \chi_{s}(x)$, where ${ }^{f}(S)=\left\langle\left\{\begin{array}{ll}\mathrm{f} & \mathrm{s}\end{array}\right\rangle\right.$.

Let $f \in F$. Then (ff $\rangle={ }^{P}{ }_{S \subseteq n} f^{f}(S)$. In particular, if $f:\{0,1\}^{n} \rightarrow\{0,1\}$ then ${ }^{P}{ }_{S \subseteq n} f^{f}(S)=x[f(x)] \leq 1$.

Let $\mathrm{t} \in$. A function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow$ is t -sparse if it has at most t non-zero Fourier coe cients, namely $|\{S \subseteq[n]: f(S) \in 0\}| \leq t$.

We write

$$
\left[V^{\circ}\left(x_{V}\right), P^{\circ}\left(x_{P}\right)\right]
$$

for the random variable denoting the output of the veri er V after interacting with a prover P, when V and P receive inputs x_{V} and x_{P} respectively, and have access to oracles O_{V} and O_{p} respectively. The inputs X_{V} and X_{P} can specify parameters of the interaction, such as the accuracy and con dence parameters ε and δ. This random variable takes values in $\{0,1\}^{\times} \cup\{$ reject $\}$, namely, it is either a function $X \rightarrow\{0,1\}$ or it is the value reject. The random variable depends on the (possibly randomized) responses of the oracles, and on the random coins of V and P.

For a distribution D , we write V^{D} (or P^{D}) to denote use of an oracle that provides i.i.d. samples from the distributions D . Likewise, for a function f , we write V^{f} (or P^{f}) to denote use of an oracle that provides query access to f . That is, in each access to the oracle, V (or P) sends some $x \in X$ to the oracle, and receives the answer $f(x)$.

We also write

$$
\left[V\left(S_{V}, \rho_{V}\right), P\left(S_{p}, \rho_{P}\right)\right] \in\{0,1\}^{X} \cup\{r e j e c t\}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

to denote the deterministic output of the veri er V after interacting with P in the case where V and P receive xed random coin values ρ_{V} and ρ_{p} respectively, and receive xed samples S_{v} and S_{p} from their oracles O_{V} and O_{p} respectively.

$$
\mathrm{H} \quad \varepsilon
$$

$$
\alpha \geq 1
$$

$$
\alpha=1
$$

α
Let $\mathrm{H} \subseteq\{0,1\}^{X}$ be a class of hypotheses, let $\subseteq \Delta(X \times\{0,1\})$ be some family of distributions, and let $\alpha \geq 1$. We say that H is $\underline{\alpha-P A C}$ veri able with respect to using oracles O_{V} and O_{P} if there exists a pair of algorithms ($\boldsymbol{\nabla} \boldsymbol{P}$) that satisfy the following conditions for every input 0 :

- Completeness. For any distribution $\mathrm{D} \in$, the random variable $\mathrm{h}:=\left[\mathrm{V}^{\mathrm{O}}\right.$ ($\mathbf{\infty}$), P° ($\left.\left.\mathbf{D}\right)\right]$ satis es

$$
h \in \text { reject } \wedge \quad L_{D}(h) \leq \alpha \cdot L_{D}(H)+\varepsilon \quad \geq 1-\delta
$$

- Soundness. For any distribution $\mathrm{D} \in$ and any (possibly unbounded) prover P^{\prime}, the random variable $\mathrm{h}:=\left[\mathrm{V}^{\mathrm{O}}\right.$ (\mathbf{D}), $\mathrm{P}^{\prime \mathrm{O}}$ (\mathbf{D})] satis es
h G reject $\wedge \quad L_{D}(h) \cdot L_{D}(H)+\varepsilon \leq \delta$

A pair of algorithms (\mathbb{P}) satisfying soundness and completeness as above, is called an interactive proof system that $\alpha-P A C$ veri es H with respect to using oracles O_{V} and O_{P}.
α
Similarly, H is α-PAC learnable with respect
to using oracle O if there exists an algorithm A that for every input $0>0$ and every $\mathrm{D} \in$, outputs $\mathrm{h}:=\mathrm{A}^{\mathrm{O}}\left(\Phi\right.$) such that $\left[\mathrm{L}_{\mathrm{D}}(\mathrm{h}) \leq \alpha \cdot \mathrm{L}_{\mathrm{D}}(\mathrm{H})+\varepsilon\right] \geq 1-\delta$

Some comments about these de nitions:

- The behavior of the oracles O_{V} and O_{P} may depend on the speci c underlying distribution $D \in$, which is unknown to the prover and veri er. For example, they may provide samples from D.
- We insist on double e ciency; that is, that the sample complexity and running times of both V and P must be polynomial in ${ }_{\bar{\pi}}, \log \bar{\sigma}$, and perhaps also in some parameters that depend on H , such as the VC dimension or Fourier sparsity of H .

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

- If for every क్ర> 0, and for any (possibly unbounded) prover P^{\prime}, the value $\mathrm{h}:=$
 a function that is not in H), then we say that H is proper α-PAC veri able, and that the proof system proper $\alpha-$ PAC veri es H.

An important type of learning (studied e.g. by Angluin, 1987 and K ushilevitz and Mansour, 1993) is
. In this setting, the family consists of distributions D such that: (1) the marginal distribution of D over X is uniform; (2) D has a target function $f: X \rightarrow\{1,-1\}$ satisfying $\quad x: y \sim D[y=f(x)]=1 .{ }^{9}$ In Section 4.2, we will consider protocols for this type of learning that have the form $\left[\mathrm{V}^{\mathrm{D}}, \mathrm{P}^{\mathrm{f}}\right.$], such that the veri er has access to an oracle providing random samples from a distribution $\mathrm{D} \in$, and the prover has access to an oracle providing query access to f, the target function of D . This type of protocol models a real-world scenario where P has qualitatively more powerful access to training data than V .

T_{d}

[^6]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

T_{d}

Fourier-sparse functions
$\left.f={ }^{P}{ }_{T \subseteq n}{ }^{f l(T)}\right)_{X_{T}}^{10} \quad f:\{0,1\}^{n} \rightarrow$

According to the learning parity with noise (LPN) assumption (see Blum et al., 2003; $Y u$ and Steinberger, 2016), it is not possible to learn the Fourier-sparse functions e ciently using random samples only. Therefore, the query delegation protocols discussed below in Section 4.5 cannot be used to obtain a doubly-e cient PAC veri cation protocol for this class, as we do in the current section.

$$
f:\{0,1\}^{n} \rightarrow\{1,-1\} \quad x ; y \sim D[y=f(x)]=1
$$

f
Let $f:\{0,1\}^{n} \rightarrow$, and let $\tau \geq 0$. The set of τ-heavy coe cients of f is

$$
f^{f} \geq \tau=\{T \subseteq[n]:|f(T)| \geq \tau\} .
$$

[^7]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

There exists an interactive proof system $\left(\mathbb{P} *^{*}\right)$ as follows. For every $n \in, \delta>0$, every $\tau \geq 2^{-}{ }^{-10}$, every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, and every prover P , let

$$
L_{P}=\left[V(\mathrm{mpl} \quad \mathrm{~m}), \mathrm{P}^{\mathrm{f}}(\mathrm{np} \quad \mathrm{~m})\right]
$$

be a random variable denoting the output of V after interacting with the prover P , which has query access to f, where $S=(x, f(x)), \ldots, \quad\left(x_{m}, f\left(x_{m}\right)\right)$ is a random sample with $X, \ldots, X \quad m$ taken independently and uniformly from $\{0,1\}^{n}$, and ρ_{V}, ρ_{p} are strings of private random coins. L_{p} takes values that are either a collection of subsets of [n], or 'reject'.

The following properties hold:

- Completeness. ${ }^{h} L_{p} \in$ reject $\Lambda{ }^{\circ} \subseteq L_{p}{ }^{i} \geq 1-\delta$.
- Soundness. For any (possibly unbounded) prover P,

$$
\stackrel{h}{L_{p}} \in \text { reject } \wedge \text { fb> } \quad L_{p}^{i} \leq \delta
$$

- Double e ciency. The veri er V uses at most O $\frac{n}{\tau} \log \frac{n}{\tau} \log \bar{\delta}$ random samples from f and runs in time $n_{\bar{\tau}}, \log \bar{\delta}$. The runtime of the prover P^{*}, and the number of queries it makes to f, are at most $O \frac{n^{3}}{\tau^{5}} \log \bar{\delta}$. Whenever $L_{p} G$ reject, the cardinality of L_{P} is at most $O \frac{n^{2}}{\tau^{5}} \log \bar{\delta}$.

In De nition 4.1.23 we de ned interactive proof systems speci cally for PAC veri cation. The proof system in Lemma 4.2 .3 is technically di erent, satisfying di erent completeness and soundness conditions. Additionally, in De nition 4.1.23 the veri er outputs a value that is either a function or 'reject', while here the veri er outputs a value that is either a collection of subsets of [n], or 'reject'.

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

Let X be a nite set. We write $u(X)$ to denote the set of all distributions D over $X \times\{1,-1\}$ that have the following two properties:

- The marginal distribution of D over X is uniform. Namely, ${ }^{P} \underset{y \in\{;-\}}{ } D(y)=\frac{}{|X|}$ for all $x \in X$.
- D has a target function $f: X \rightarrow\{1,-1\}$ satisfying $\quad x ; y \sim D[y=f(x)]=1$.

Let $X=\{0,1\}^{n}$, and let H be the class of functions $X \rightarrow$ that are t-sparse, as in De nition 4.1.20. The class H is 1-PAC veri able for any $\varepsilon \geq 4 t \cdot 2^{-} \overline{10}$ with respect to $u(X)$ by a proof system in which the veri er has access to random samples from a distribution $D \in \cup(X)$, and the honest prover has oracle access to the target function $\mathrm{f}: X \rightarrow\{1,-1\}$ of D . The running time of both parties is at most $\mathrm{D}_{\pi}, \log \overline{\bar{\delta}}$. The veri er in this protocol is not proper; the output is not necessarily t-sparse, but it is内 ${ }_{\pi}, \log \bar{\delta}$-sparse.

```
    V
        r& 
            Li}\leftarrowIGL-It er ation(r )
            Li}= rejec
                                reject
        L}\leftarrow\mp@subsup{S}{i\inr}{}\mp@subsup{L}{i}{
```

 \(\operatorname{IGL}(\mathrm{D})\)
 Consider an execution of IGL-It er ation(r $\boldsymbol{\tau}$) for $\tau \geq 2^{-} \overline{10}$. For any prover P and any randomness ρ_{p}, if V did not reject, and the evaluations provided by P were mostly honest, in the sense that

$$
\forall i \in[n]: \quad{ }_{x \in H} \quad{ }_{\tilde{f}}(x \oplus e) \in f(x \oplus e)^{i} \leq \frac{\tau}{4}
$$

then

$$
\mathrm{h}_{\mathrm{f} \geq \tau} \subseteq \mathrm{L}^{\mathrm{i}} \geq \frac{1}{2}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\begin{aligned}
& f\left(x_{i}\right) \in\{0,1\} \oplus \quad 0 \\
& V \quad i^{*} \in[n] \quad \text { B } P \\
& B=\{b, \ldots, \ldots \quad k\} \subseteq\{0,1\}^{n} \\
& H=\operatorname{span}(\{X \oplus G, \ldots, \mathrm{X} \quad m \oplus \mathrm{E}\}) . \\
& \text { jj j } 1 \\
& 10 \\
& \text { P V } \\
& \{(x \oplus e, \tilde{f}(x \oplus e)): i \in[n] \wedge x \in H\}, \\
& z \tilde{f}(z) \\
& f(z) \\
& \text { P } \\
& \begin{array}{cccc}
V & i \in[m] \\
S & f\left(x_{i}\right) & V \\
&
\end{array} \\
& K=\{K: \quad K \subseteq[k]\} \quad V \\
& \text { L } \\
& \mathrm{L} \leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& i \in[n] \\
& \mathrm{a}_{\mathrm{i}} \leftarrow \text { majority }_{\mathrm{k} \in \mathrm{~K}} \tilde{\mathrm{f}} \mathrm{x}^{\mathrm{K}} \oplus \mathrm{e} \oplus \mathrm{y}^{\mathrm{K}} \\
& \left\{i: a_{i}=1\right\} \quad\left\{i: a_{i}=0\right\} \quad L \\
& \text { L }
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

(i)
(i)

$$
\mathrm{T} / \in \mathrm{L} \quad \#^{\mathrm{f}} \ell
$$

$x_{1}, \cdots: ; x[T / \in L \mid E] \leq \quad \exists i \in[n]:\left.\frac{1}{|K|}\right|_{K \in K} A_{i ; K}^{*} \leq \frac{1}{2}+\frac{\tau}{4} \quad E$

$$
\leq 25^{\times n} \frac{\operatorname{Var}{ }_{|K|}^{P}{ }_{k} A_{i, k}^{*} \quad E}{\tau}
$$

$$
=25_{i}^{\mathrm{K}^{\mathrm{K}}} \frac{\operatorname{Var}^{h_{p}}{ }_{K} A_{i, K}^{*} \mid E^{i}}{|K|_{h}^{\tau}}
$$

$$
\stackrel{i i}{\leq} 25_{i}^{\mathrm{K}^{\mathrm{P}}} \frac{{ }_{\mathrm{K}} \operatorname{Var}^{h} \mathrm{~A}_{\mathrm{i} ; \mathrm{K}}^{*} \mid E^{\mathrm{i}}}{|K| \tau}
$$

$$
\leq \frac{10 \mathrm{n}}{|\mathrm{~K}| \tau}
$$

$$
\leq-
$$

$$
=\frac{10 n}{\left(2^{k}-1\right) \tau} .
$$

(i)

$$
\mu:={ }^{h} A_{i, K}^{*} \quad{ }^{i} \geq\left[A_{i ; K}\right]-n \geq-+\frac{\mathrm{I}}{} \text { n }
$$

$\mathbb{K}^{\prime} \in K K \in K^{\prime}$
(i) $\quad \mathrm{E} \operatorname{Cov}\left[(] \mathrm{A}_{i ; K}^{*}, \mathrm{~A}_{i, K}^{*}\right) \leq 0$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\begin{aligned}
& x, \ldots, x_{m} \in\{0,1\}^{n} \quad\left(x^{k}, x^{k}\right) \\
& \left\{\left(\omega{ }^{\prime}\right): \omega \in \in \backslash\{0\} \wedge u \in u^{\prime}\right\} \\
& H \backslash\{0\} \\
& \mathrm{H} \backslash\left\{0,{ }^{\mathrm{K}}\right\} \\
& \mathrm{H} \backslash\left\{0, \mathrm{x}^{\mathrm{K}}\right\} \\
& \begin{array}{l}
x, \ldots, x \underset{H}{m} \in\{0,1\}^{n} \\
\left(x^{k}, x^{k}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { E } \\
& \left(\mathrm{x}^{\mathrm{K}} \oplus \mathrm{e}, \mathrm{x}^{\mathrm{K}} \oplus \mathrm{e}\right) \\
& \left.W=\left\{(\omega)^{\prime}\right): \omega \in \in \wedge u \in u^{\prime}\right\}, \\
& U=\{0,1\}^{n} \backslash\{\mathrm{e}\} \\
& A^{*}=\left\{x \in\{0,1\}^{n}: f(x)=\ell(x)\right\} \backslash\left\{e, e, \ldots, e_{i}\right\} \\
& \operatorname{Cov}\left[\left(1 A_{i ; K}^{*}, A_{i ; K}^{*}\right)={ }^{h} A_{i ; K}^{*} A_{i ; K}^{*}{ }^{i}-{ }^{h} A_{i ; K}^{*}{ }^{i}{ }^{h} A_{i ; K}^{*}{ }^{i}\right. \\
& =\quad x ; y \in w\left[x \in A^{*}\right] \quad x ; y \in w\left[y \in A^{*} \mid x \in A^{*}\right]-\quad x ; y \in w\left[x \in A^{*}\right] \\
& \leq \quad x ; y \in w\left[y \in A^{*} \mid x \in A^{*}\right]-\quad x ; y \in w\left[x \in A^{*}\right] \\
& =\frac{\left|A^{*}\right|-1}{|U|-1}-\frac{\left|A^{*}\right|}{|U|}<0 \text {. } \\
& E \quad\{X, . ., \mathrm{X} \quad \mathrm{~m}\} \\
& k=m \geq \log \frac{40 n}{\tau}+1, \\
& x_{1}=\cdots ;=x[T / \in L \mid E] \leq \frac{10 n}{\left(2^{k}-1\right) \tau} \leq \frac{\tau}{4},
\end{aligned}
$$

Consider an execution of IGL-Iter at ion($\boldsymbol{\pi}$). For any prover P and any randomness value ρ_{p}, if there exists $\mathrm{i} \in[\mathrm{n}]$ for which P was too dishonest in the sense that

$$
\underset{x \in H}{h_{\tilde{H}}}(\mathrm{x} \oplus \mathrm{e}) \in \mathrm{f}(\mathrm{x} \oplus \mathrm{e})^{i}>\frac{\tau}{4},
$$

then

$$
[L=\text { reject }] \geq \frac{\tau}{4 n},
$$

where the probability is over the sample S and the randomness ρv.

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\begin{aligned}
& \text { Proof. E } \\
& \mathrm{X} \subseteq \mathrm{H}^{*} \quad \mathrm{H}^{*} \\
& i^{*} \quad V \quad H^{*}=\underset{V}{H} \oplus e^{P} \\
& 1-\frac{\tau}{4}>x_{x \in H}^{h} 1(\tilde{f}(x)=f(x))\left|E^{i}=x^{h} \quad x \in x^{h} 1(\tilde{f}(x)=f(x))^{i}\right| E^{i}=x\left[h_{x} \mid E\right] \text {, } \\
& h_{x}:=x_{x \in x^{h}} 1(\tilde{f}(x)=f(x))^{i} \\
& x^{P} \\
& \mathbb{X}^{\prime} \in H^{*} \quad[x \in X]=\left[x^{\prime} \in X\right] \\
& x\left[h_{x}=1 \mid E\right] \leq x\left[h_{x} \geq 1 \mid E\right] \leq x\left[h_{x} \mid E\right]<1-\frac{\tau}{4} . \\
& {[L=\operatorname{reject} \mid E]=\quad \stackrel{h}{ } \exists x \in X: \tilde{f}(x) \in f(x) \left\lvert\, E^{i} \geq \frac{\tau}{4}\right.,} \\
& {[L=\text { reject }] \geq[L=\text { reject } \mid E][E] \geq \frac{\tau}{4} \cdot \frac{1}{\mathrm{n}} \text {. }}
\end{aligned}
$$

Proof of Lemma 4.2.3. $\operatorname{IGL}(n) \quad)$

$$
\begin{aligned}
& f \\
& \qquad(x \oplus e, f(x \oplus e)): i \in[n] \wedge x \in H\},
\end{aligned}
$$

V
honest

$$
\begin{array}{lll}
h_{p \not p \tau \tau} & P^{*} & L_{i} \leq-
\end{array} \quad f^{f \circ \tau} \subseteq L_{P} \geq 1-2^{-r} \geq 1-\delta \quad i \in[r]
$$

P*

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\begin{array}{ccc}
r= & { }^{\prime}\left(\frac{n}{\tau}+1\right) \log \bar{\sigma}_{\bar{\sigma}} m & \text { IGL-Iter ation } \\
m=\log \frac{n}{\tau^{4}}+1 & V
\end{array}
$$

$$
r \cdot m=0 \frac{n}{\tau} \log \frac{n}{\tau} \log \frac{1}{\bar{\delta}}
$$

f

$$
\begin{aligned}
& \text { f }
\end{aligned}
$$

$$
\begin{aligned}
& q=r \cdot n 2^{m}=0 \quad \frac{n}{\tau} \log \frac{1}{\delta}
\end{aligned}
$$

$$
\begin{aligned}
& D=1 \quad r^{\prime}:=r-\log (\overline{\bar{\delta}}) \geq \frac{n}{\tau} \log \overline{\bar{\sigma}} \\
& \begin{array}{lll}
\tilde{P} & \\
& r^{\prime} \quad \frac{\tau}{n}
\end{array}
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

It is possible to run all repetitions of the IGL protocol in parallel such that only 2 messages are exchanged.

\[

\]

V

$$
T \leftarrow \frac{-1}{t}
$$

$$
L \leftarrow I^{t} G L(\Omega \pi \quad \underline{x})
$$

$$
L=\text { reject }
$$

The output of Verif yFour ier Sparse is a function $\mathrm{h}:\{0,1\}^{\mathrm{n}} \rightarrow$, not necessarily a boolean function.

$$
\begin{aligned}
& \lambda \leftarrow \frac{q}{T \in L} \\
& \left.\alpha_{T} \leftarrow \text { Est imat eCoefficient (} \pi \quad \frac{\delta}{|L|}\right) \\
& h \leftarrow{ }^{P}{ }_{\mathrm{T} \in \mathrm{~h}} \alpha_{T} \chi_{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { P* O(q) V q } \\
& \text { Lp } \quad \text { V r } \\
& r \cdot 2^{m}=0 \quad \frac{n}{\tau} \log \frac{1}{\delta} .
\end{aligned}
$$

CHAPTER 4．PAC VERIFICATION FUNDAMENTALS

$$
1-\delta \quad L_{D}(h) \leq L_{D}(H)+\varepsilon
$$

P

$$
h \in \text { reject } \wedge L_{D}(h) \nsucceq D(H)+\varepsilon \wedge G>0 \text {, }
$$

G
h reject $\wedge L_{D}(h) \not$ セ $_{D}(H)+\varepsilon \wedge \quad L_{D}(h) \leq L_{D}(H)+\varepsilon>0$,

$$
\begin{gathered}
V \\
O \frac{n}{\tau} \log \frac{n}{\tau} \log \frac{1}{\delta}=O \frac{n}{\varepsilon} \log \frac{n}{\varepsilon} \log \frac{1}{\delta} \\
L \\
|L|=O \frac{n}{\tau} \log \frac{1}{\delta}!=O \frac{n t}{\varepsilon} \log \frac{1}{\delta}!
\end{gathered}
$$

$$
\begin{aligned}
& \text { for } \subseteq L \wedge \forall T \in L: \quad \alpha_{T}-f(T) \leq \lambda \\
& G \Rightarrow L_{D}{ }^{X} \alpha_{T} X_{T}(x) \leq L_{D}(H)+\varepsilon \\
& h \in \text { reject } \quad h={ }^{P}{ }_{T \in} \alpha_{T} X_{T}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { h }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{h} h \in \text { reject } \wedge \text { f仅 } \quad L^{i} \leq \frac{\delta}{2} . \\
& { }^{h} h \in \text { reject } \wedge \exists T \in L: \quad \alpha_{T}-f(T) \nexists^{i} \leq \frac{\delta}{2} .
\end{aligned}
$$

CHAPTER 4．PAC VERIFICATION FUNDAMENTALS

$$
\begin{aligned}
& \frac{{ }^{\delta} 2 \ln (2 \delta)^{\prime}}{\lambda}=0 \frac{\log (1 \delta)|L|^{!}}{\varepsilon} \\
& \text { O } \frac{\mathrm{n}}{\varepsilon} \log \frac{\mathrm{n}}{\varepsilon} \log \frac{1}{\delta}+|\mathrm{L}| \cdot \mathrm{O} \frac{2 \log (1 \delta)|\mathrm{L}|^{!}}{\varepsilon}=\text { ゅ } \frac{1}{\varepsilon}, \log \frac{1}{\delta} \\
& \text { ○ } \frac{n}{\tau} \log \frac{1}{\delta}{ }^{!}=0 \frac{n t}{\varepsilon} \log \frac{1}{\delta}=\text { 円 } \frac{1}{\varepsilon}, \log \frac{1}{\delta} \\
& h={ }^{P}{ }_{T \in} \alpha_{T} X_{T} \quad|L| \\
& |L|=O \quad \frac{n}{\tau} \log \frac{1}{\bar{\delta}} \quad=0 \quad \frac{n t}{\varepsilon} \log \frac{1}{\bar{\delta}} .
\end{aligned}
$$

[^8]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

A

$A \subseteq[0,1] \times\{1\}$
$B \subseteq[0,1] \times\{0\}$
B

A
B

$$
\min \{D(A), D(B)\}
$$

Let $\mathrm{D} \in \Delta([0,1] \times\{0,1\})$ be a distribution and $\sharp \geq 0$. A certi cate of loss at least ℓ for class T is a pair (四) where $0 \leq b<1$.

We say that the certi cate is η-valid with respect to distribution D if the events

$$
\begin{aligned}
A & =[0, a) \times\{1\} \\
B & =[b 1] \times\{0\}
\end{aligned}
$$

satisfy

$$
|D(A)-\ell|+|D(B)-\ell| \leq \eta
$$

$\mathrm{L}_{\mathrm{D}}(\mathrm{T})$

Let $D \in \Delta([0,1] \times\{0,1\})$ be a distribution and $\nsubseteq \geq 0$. If D has a certi cate of loss at least ℓ which is η-valid with respect to D, then $L_{D}(T) \geq \ell-\eta$.

$$
[0, \mathrm{a}) \times\{1\}
$$ $L_{D}(T)$

Let $\mathrm{D} \in \Delta([0,1] \times\{0,1\})$ be a distribution and $\ell \geq 0$. If $\mathrm{L}_{\mathrm{D}}(\mathrm{T})=\ell$ then there exists a 0 -valid certi cate of loss at least - with respect to D .

$$
\begin{aligned}
& t \in[0,1] \quad L_{D}\left(f_{t}\right) \geq \ell-\eta \\
& \text { t\& } \quad x \geq a f_{t}(x)=1 \quad B \\
& \forall(x) \in B: f_{t}(x) \in y \\
& D(B) \geq \ell-\eta \\
& L_{D}\left(f_{t}\right)=\quad x ; y \in\left[f_{t}(x) \in y\right] \geq D(B) \geq \ell-\eta \\
& t \geq a \\
& \text { B } \quad A=
\end{aligned}
$$

CHAPTER 4．PAC VERIFICATION FUNDAMENTALS

Proof of Claim 4．3．5．$\quad f_{t}$
$D \quad L_{D}\left(f_{t}\right)=\ell^{14}$

$$
\begin{aligned}
& \tilde{A}=[0, t) \times\{1\} \\
& \tilde{B}=[t .1] \times\{0\}
\end{aligned}
$$

$$
\mathrm{f}_{\mathrm{t}} \quad 15
$$

$$
\ell=D(\tilde{A})+D(\tilde{B}) .
$$

$$
D(\tilde{A})=D(\tilde{B})=\dot{(} \quad(\mathbb{L})
$$

$$
D(\tilde{A})>\frac{\ell}{2}>D(\tilde{B}) .
$$

$a \in[0, t)$
$\tilde{A}^{\mathrm{D}} \quad[0,1]$

（由）

[^9]\[

$$
\begin{aligned}
& A:=[0, a) \times\{1\} \text {, } \\
& A^{\prime}:=\left[\begin{array}{l}
\text { (}) \times\{1\}, ~ \\
\text {, }
\end{array}\right. \\
& D(A)=- \\
& \mathrm{B}^{\prime}:=[\text { (\#) } \times\{0\} \\
& f_{t} \\
& D\left(B^{\prime}\right) \geq D\left(A^{\prime}\right) \\
& \mathrm{f}_{\mathrm{a}} \quad \mathrm{f}_{\mathrm{t}} \\
& D\left(B^{\prime}\right) \geq D\left(A^{\prime}\right)=D(\tilde{A})-D(A)=\ell-D(\tilde{B})-D(A)=\ell-D(\tilde{B})-\frac{\ell}{2}=\frac{\ell}{2}-D(\tilde{B}) . \\
& b \in[由] \\
& D([\text { D }) \times\{0\})=\frac{\ell}{2}-D(\tilde{B}) . \\
& B:=[b 1) \times\{0\} \\
& D(B)=D([\mid \phi) \times\{0\})+D(\tilde{B})=\frac{\ell}{2} .
\end{aligned}
$$
\]

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

T

Let $D \in \Delta([0,1] \times\{0,1\})$ be a distribution and如 ≥ 0. There exists an algorithm that, upon receiving input (畃) such that $0 \leq b \leq 1$, takes $O \frac{(\underline{1})}{\eta^{2}}$ i.i.d. samples from D and satis es the following:

- Completeness. If ($\not \mathbf{D})$) is an η-valid certi cate of loss at least ℓ with respect to D, then the algorithm accepts with probability at least $1-\delta$.
- Soundness. If (\ddagger) is not a 2η-valid certi cate of loss at least ℓ with respect to D, then the algorithm rejects with probability at least $1-\delta$.

Furthermore, the algorithm runs in time polynomial ${ }^{16}$ in the number of samples.
Proof. A B
(x, y) , ..., $\quad\left(\mathrm{x}_{\mathrm{m}, \mathrm{y}}^{\mathrm{m}}\right.$)
A B

$$
\begin{gathered}
p_{A}:=\frac{1}{m}_{i}^{x^{m}} 1\left(x_{i}, y_{i}\right) \in A \\
l_{B}:=\frac{1}{m}_{i}^{x^{m}} 1\left(x_{i}, y_{i}\right) \in B \\
\left|p_{A}-\ell\right|+\left|p_{B}-\ell\right|<\frac{3}{2} \eta \\
l_{A}-D(A) \geq \frac{\eta}{4} \leq 2 \exp -2 m \frac{\eta}{4} \quad . \\
n \frac{2 \log }{\eta} . \\
\underline{\eta} \quad l_{B}
\end{gathered}
$$

[^10]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

There exists an algorithm as follows. For any distribution $D \in \Delta([0,1] \times\{0,1\})$ and any $\Phi \in(0,-)$, the algorithm outputs a certi cate (a B) for T that with probability at least $1-\delta$ is an η-valid certi cate of loss at least $\ell=L_{D}(T) / 2$ with respect to D. The algorithm uses

$$
\text { O } \frac{1}{\eta} \log \frac{1}{\eta}+\frac{1}{\eta} \log \frac{1}{\delta}
$$

i.i.d. samples from D and runs in time polynomial in the number of samples. Proof.

$$
\begin{aligned}
& \text { Esample } \\
& S=\left((x, y), \ldots, \quad\left(x_{m}, y_{m}\right)\right) \\
& \text { I } \\
& I=\{[\propto \mathcal{V}): \propto \in\} \cup\{[\alpha]: \propto \mathcal{V} \in\} . \\
& A=(\times\{0,1\}, I \times\{0,1\}) 2 \\
& \begin{array}{cccc}
1-\delta & \mathrm{S} & \eta^{\prime} & A
\end{array} \\
& \text { D } \quad \eta^{\prime}:=\underline{\eta} \\
& t \in \quad L_{s}\left(f_{t}\right) \quad f_{t} \\
& L_{s}\left(f_{t}\right):=L_{s} \quad\left(f_{t}\right)+L_{s} \quad\left(f_{t}\right) \\
& L_{s}\left(f_{t}\right):=\frac{|([0, t) \times\{1\}) \cap S|}{|S|} \\
& L_{S} \quad\left(f_{t}\right):=\frac{\mid([t]] \times\{0\}) \cap S \mid}{|S|} . \\
& \text { S } \\
& S \quad f_{b} \in T \\
& e:=\underset{t \in X}{\arg \min } L_{s}\left(f_{t}\right), \\
& X=\{X, \ldots, X \quad m, 1\}
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\begin{aligned}
& \ell:=L_{s}\left(f_{b}\right) / 2+3 \eta^{\prime} \text {. } \\
& p \\
& \text { S }{ }^{\prime} \\
& f^{*}=\arg \min _{f \in T} L_{D}(f) \\
& \text { S } \eta^{\prime} \\
& L_{D}\left(f_{b}\right) \leq L_{s}\left(f_{b}\right)+2 \eta^{\prime} \\
& =\min _{t \in X} L_{s}\left(f_{t}\right)+2 n^{\prime} \\
& =\min _{\mathrm{t} \in} \mathrm{~L}_{\mathrm{s}}\left(\mathrm{f}_{\mathrm{t}}\right)+2 \eta^{\prime} \\
& \leq L_{s}\left(f^{*}\right)+2 n^{\prime} \\
& \leq L_{D}\left(f^{*}\right)+4 n^{\prime} \text {. } \\
& L_{s}\left(f_{b}\right)-L_{D}\left(f^{*}\right) \leq L_{s}\left(f_{b}\right)-L_{D}\left(f_{b}\right)+L_{D}\left(f_{b}\right)-L_{D}(f *) \\
& \leq 2 \eta^{\prime}+4 \eta^{\prime}=6 \eta^{\prime} \text {. } \\
& p \\
& \left|p^{b}-l\right|=\frac{L_{s}\left(f_{b}\right)}{2}+3 \eta^{\prime}-\frac{L_{D}\left(f^{*}\right)}{2} \leq 3 \eta^{\prime}+\frac{L_{s}\left(f_{b}\right)-L_{D}\left(f^{*}\right)}{2} \leq 6 \eta^{\prime} . \\
& p=\frac{L_{s}\left(f_{b}\right)}{2}+3 \eta^{\prime} \\
& \geq \frac{L_{D}(f *)}{2}-\frac{L_{S}\left(f_{b}\right)-L_{D}\left(f^{*}\right)}{2}+3 \eta^{\prime} \\
& \geq \frac{\mathrm{L}_{D}\left(\mathrm{f}^{*}\right)}{2}=\ell
\end{aligned}
$$

$(A B):=\underset{a ; b \in X \min _{a \leq b}}{\arg L_{s}\left(f_{a}\right)-b+L_{s}\left(f_{b}\right)-b .}$
(1 B) $\quad \eta$
ℓ

$$
R=[0, \mathrm{a}) \times\{1\}, \quad A=[0, \mathrm{a}) \times\{1\}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

T_{d}

T
T_{d}

There exists a sequence of classes of functions

$$
\mathrm{T}, \mathrm{~T}, \mathrm{~T}, . \subseteq\{0,1\}
$$

such that for any xed $\boldsymbol{\infty} \in(0,-)$ all of the following hold:
(i) T_{d} is proper 2-PAC veri able, where the veri er uses ${ }^{17}$

$$
\mathrm{m}_{V}=0 \frac{{ }^{\sqrt{ }} \overline{\mathrm{d}} \log (\mathrm{~d}) \log \bar{\delta}}{\varepsilon}
$$

random samples, the honest prover uses
random samples, and each of them runs in time polynomial in its number of samples. ${ }^{18}$
(ii) Agnostic PAC learning T_{d} requires $\Omega \frac{d^{\underline{1}}}{n^{2}}$ samples.
(iii) If $\varepsilon \leq-$ then 2-PAC learning the class T_{d} requires $\Omega \xrightarrow[d]{d}$ samples. This is true even if we assume that $L_{D}\left(T_{d}\right)>0$, where D is the underlying distribution.
(iv) Testing whether $L_{D}\left(T_{d}\right) \leq \alpha$ or $L_{D}\left(T_{d}\right) \geq \beta$ for any $0<\alpha<\beta<\quad$ - with success probability at least $1-\delta$ when D is an unknown distribution (without the help of a prover) requires $\Omega \frac{d}{d}$ random samples from D.
T_{d}

For any $\mathrm{d} \in$, denote by T_{d} the class of functions

$$
T_{d}=\left\{f_{t_{1} ; \ldots ;:, t}: t, \ldots, t \quad{ }_{d} \in\right\}
$$

[^11]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

where for all $t, \ldots, t \quad{ }_{d} \in$ and $x \in[0, d]$, the function $f_{t_{1}, \ldots, t}: \quad \rightarrow\{0,1\}$ is given by

$$
\mathrm{f}_{\mathrm{t}_{1}, \cdots, \mathrm{t}}(\mathrm{x})=\begin{array}{ll}
0 & \mathrm{xt} \\
1 & \mathrm{rx\mid} \\
1 & \mathrm{x} \geq \mathrm{t}_{\mathrm{x} \times},
\end{array}
$$

and $f_{t_{1}, \ldots, t}$ vanishes on the complement of $[0, d]$.

T_{d}

T_{d}

As before, we present the separation result with respect to functions de ned over , we assume that the marginal distribution of the samples on is absolutely continuous

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

T_{d}

T_{d} is 2-PAC veri able with sample and runtime complexities as in part (i) of Theorem 4.3.8.
Proof. $\quad \mathrm{D} \in$
$\Delta(\times\{0,1\}) \quad \ell=L_{D}\left(T_{d}\right)$

$$
1-\underline{\delta}
$$

$$
\tilde{h} \in T_{d} \quad \ell+"
$$

m_{p}

$$
\begin{aligned}
& \left|D_{R}(E)-D^{*}(E)\right| \leq \quad\left(D_{R}, D^{*}\right) . \\
& \left(D_{R}, D^{*}\right) \leq v \leq 2 \quad\left(D_{R}, D^{*}\right) . \\
& 2 d+1 \quad D^{*} \quad M_{R}(S) \quad \begin{array}{c}
M_{R}(S) \\
m
\end{array} \quad D^{*} \\
& \left(D_{R}, D^{*}\right) \leq \lambda \\
& \text { 1- } \delta \\
& \left(D_{R}, D^{*}\right) \geq \lambda \\
& \left(D_{R}, D^{*}\right) \leq \lambda \\
& \quad v \leq \lambda^{\prime} \quad\left(D_{R}, D^{*}\right) \leq v \leq \lambda^{\prime} \\
& \checkmark 2 \lambda \quad \lambda<\underline{v} \quad\left(D_{R}, D^{*}\right) \\
& 1-\delta
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

2

T_{d}

T_{d}
Let 0 a<< $\quad 1$ and $d \in$. The (problem is the following promise problem. Given sample access to an unknown distribution $\overline{\mathrm{D} \in \Delta}([0, \mathrm{~d}] \times\{0,1\})$, distinguish between the following two cases:
(i) $L_{D}\left(T_{d}\right) \leq \alpha$.
(ii) $L_{D}\left(T_{d}\right) \geq \beta$.

Fix $0 \lll \lll \lll 1$ Any tester that uses sample access to an unknown distribution $\mathrm{D} \in \Delta([0, \mathrm{~d}] \times\{0,1\})$ and solves the ($)$-threshold closeness testing problem correctly with probability at least - for all $d \in$ must use at least $\Omega \underset{d}{d}$ samples from D.

Let $0 \lll \ll 1$ and let $n \in$. The ($\$ 1$)-support size testing problem is the following promise problem. Let $\mathrm{D} \in \Delta$ ([n]) be an unknown distribution such that $\forall i \in \operatorname{supp}(D): D(i) \geq{ }_{\bar{n}}$. Given sample access to D, distinguish between the following two cases:
(i) $|\operatorname{supp}(D)| \leq \alpha \cdot n$.
(ii) $|\operatorname{supp}(D)| \geq \beta \cdot n$.

Let 0 <k
$\beta<$ 1. Any tester that uses sample access to an unknown distribution $D \in \Delta$ ([n]) and solves the ()-support size testing problem correctly with probability at least - for all $n \in$ must use at least $\Omega \frac{n}{n}$ samples from D.

Proof of Lemma 4.3.19.

$$
\mathrm{T}^{\prime}
$$

$$
d \in
$$

[^12]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\begin{aligned}
& \mathrm{m} \text { (d) } \\
& \text { T (} 2 \alpha 2 \alpha \text {) } \\
& d \in \quad m(d) \\
& D \in \Delta([d]) \quad D^{\prime} \in \Delta([0, d] \times\{0,1\}) \\
& i \in[d] \\
& i \in[d] \quad a_{i}=i--\quad b=i-- \\
& D^{\prime}\left(a_{i}, 1\right)=\underline{D i} \\
& D^{\prime}(b, 0)=\frac{d}{d} \\
& \text { D } \\
& \left(a_{i}, 1\right) \\
& \text { D' }
\end{aligned}
$$

$=\frac{\mid \text { supp }(\mathrm{D}) \mid}{2 \mathrm{~d}}$.
(*)
$D(i) \geq{ }_{\overline{\mathrm{d}}}, \quad \mathrm{i} \in \operatorname{supp}(\mathrm{D})$
(2 α 2 α)
$D \in \Delta$ ([d])

$$
\begin{aligned}
& \text { T } \quad|\operatorname{supp}(D)| \leq 2 \alpha \cdot d \\
& |\operatorname{supp}(\mathrm{D})| \geq 2 \beta \cdot d \mathrm{~T} \\
& \mathrm{~L}_{\mathrm{D}}\left(\mathrm{~T}_{\mathrm{d}}\right) \leq \alpha \Leftrightarrow|\operatorname{supp}(\mathrm{D})| \leq 2 \alpha \cdot \mathrm{~d} \\
& L_{D}\left(T_{d}\right) \geq \beta \Leftrightarrow|\operatorname{supp}(D)| \geq 2 \beta \cdot d
\end{aligned}
$$

2-PAC learning the class T_{d} with $\varepsilon \in(0,-)$ requires at least $\Omega \xrightarrow[d]{d}$ random samples. This is true even if we assume that the unknown underlying distribution D satis es $L_{D}\left(T_{d}\right)>0$.

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

Proof of Claim 4.3.22.
A 2

$$
\mathrm{T}_{\mathrm{d}}
$$

$0 \frac{d}{d}$
D
T
(-, -, d)
$D \in \Delta([0, d] \times\{0,1\})$
$0 \stackrel{d}{d}$
$\varepsilon \leq-\delta \leq-T$

$$
1-\delta
$$

A D $h \in T_{d}$

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{D}}(\mathrm{~h}) \leq 2 \cdot \mathrm{~L}_{\mathrm{D}}\left(\mathrm{~T}_{\mathrm{d}}\right)+\varepsilon \\
& \mathrm{O}(1) \quad \mathrm{D} \\
& \text { D b } \\
& 1-\delta \\
& p-L_{D}(h) \leq \varepsilon \\
& P \leq-\quad T \quad L_{D}\left(T_{d}\right) \leq-\quad B>\quad T \quad L_{D}\left(T_{d}\right) \geq- \\
& 1-2 \delta \geq- \\
& L_{D}\left(T_{d}\right) \leq- \\
& p \leq L_{D}(\mathrm{~h})+\varepsilon \leq 2 \mathrm{~L}_{\mathrm{D}}\left(\mathrm{~T}_{\mathrm{d}}\right)+2 \varepsilon \leq \frac{2}{8}+\frac{2}{32}=\frac{5}{16} . \\
& \mathrm{L}_{\mathrm{D}}\left(\mathrm{~T}_{\mathrm{d}}\right) \geq- \\
& p \geq \mathrm{L}_{\mathrm{D}}(\mathrm{~h})-\varepsilon \geq \mathrm{L}_{\mathrm{D}}\left(\mathrm{~T}_{\mathrm{d}}\right)-\varepsilon \geq \frac{3}{8}-\frac{1}{32}=\frac{11}{32}>\frac{5}{16} . \\
& \text { T } \\
& \text { A }
\end{aligned}
$$

Proof of Theorem 4.3.8.
(i)
$\left(T_{d}\right) \geq d$
(iii)
(iv)

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

For any $\mathrm{d} \in$, we write $\mathrm{F}_{\mathrm{d} ; \frac{1}{2}}$ to denote the set of balanced boolean functions over X_{d}, namely,

$$
F_{d: \frac{1}{2}}=f \in\{0,1\}^{X}:\left|f^{-}(1)\right|=\frac{n_{d}}{2}=\left|f^{-}(0)\right| .
$$

For any $f \in F_{d ; \frac{1}{2}}$, we write D_{f} to denote the distribution over tuples in X^{t} in which t elements are samples independently and uniformly at random from supp(f). Namely, for any $\left(X, \ldots, X^{t}\right) \in X^{t}$,

Furthermore, for any $F=\{f, \ldots, f \quad k\} \subseteq F_{d ; \frac{1}{2}}$, we write D_{F} to denote the distribution over X^{t} given by

$$
D_{F}\left(\begin{array}{ll}
\mathrm{X}, \ldots, \mathrm{X} & \mathrm{t}
\end{array}\right):=\frac{1}{\mathrm{k}_{\mathrm{i}}} \mathrm{X}_{\mathrm{k}} \quad \mathrm{D}_{\mathrm{f}}(\mathrm{X}, \ldots, \mathrm{X} \quad \mathrm{t}) .
$$

Lastly, U_{x} denotes the uniform distribution over X^{t}.

$$
\mathrm{H}_{\mathrm{d}} \quad \mathrm{~d} \in
$$

Fix $\delta \in(0,1)$. For any $d \in$, let $X_{d}=\left[n_{d}\right]$ for $n_{d}=2 d$, and let $\mathrm{t}_{\mathrm{d}}=\mathrm{c} \cdot \mathrm{d}$ where

$$
c=\stackrel{\stackrel{v}{4}}{\frac{\log (1-\varnothing ~ 3)}{\log (1 / 2 e)}} .
$$

The class H_{d} is a subset of $F_{d ; \frac{1}{2}}$ of cardinality

$$
k_{d}=\frac{3 n_{d}^{v}{ }^{v}}{\delta}
$$

which is de ned as follows. For all values d in which this is possible, the subset H_{d} is chosen such that the following three properties hold:
($\left.\mathrm{D}_{\mathrm{H}}, \mathrm{U}_{\mathrm{X}}\right) \leq \delta$.
Every distinct $\mathrm{g}, \mathrm{g} \in \mathrm{H}_{\mathrm{d}}$ satisfy $|\operatorname{supp}(\mathrm{g}) \cap \operatorname{supp}(\mathrm{g})| \leq \mathrm{n}$.
All subsets $X \subseteq X_{d}$ of size at most ${ }^{\vee} \bar{n}$ satisfy

$$
\left|\left\{f \in H_{d}: X \subseteq \operatorname{supp}(f)\right\}\right| \geq \frac{1}{\bar{\delta}} .
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

However, if for some value of d there exists no subset of cardinality k_{d} that satis es these properties, then for that d the class H_{d} is simply xed to be some arbitrary subset of cardinality k_{d}.

It is not obvious that a set H_{d} as in the de nition above exists. In Lemma 4.4.11 below, we prove the existence of H_{d} for all d large enough.

For the remainder of this section, we often neglect to write the subscript d wherever it is readily understood from the context.

$$
\mathrm{H}_{\mathrm{d}} \quad \log \left(\left|\mathrm{H}_{\mathrm{d}}\right|\right)=\mathrm{O}(\mathrm{~d} \log (\mathrm{~d}))
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

Proof of Theorem 4.4.1.

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{d}} \quad \log \left(\mathrm{k}_{\mathrm{d}}\right) \\
& \log \left(k_{d}\right)=\log \frac{3 n_{d}^{v^{n}}}{\delta} \quad \leq 6 d \log \frac{6 d}{\delta}=O(d \log (d)) . \\
& \text { d } \mathrm{H}_{\mathrm{d}} \\
& 1 \\
& {\left[\mathrm{~h}=\mathrm{h}=\mathrm{h}_{\mathrm{u}}\right] \geq 1-\delta} \\
& {[\mathrm{h}=\mathrm{h} \text { G reject }] \geq 1-2 \delta} \\
& { }^{h}(h=h \quad \operatorname{reject}) \wedge L_{D_{1}}(h) \& \wedge L_{D_{2}}(h) \varepsilon^{i} \geq 1-4 \delta \\
& h_{i} \quad D_{f} \quad h_{i} \quad f_{i} \\
& i \in\{1,2\} \\
& \varepsilon \geq L_{D}\left(h_{i}\right):=x_{x \sim D}\left[h_{i}(x) \in f_{i}(x)\right]={ }_{x \in X}^{x} D_{f}(x) \cdot 1_{b x f}(x) \\
& =X_{x \in}^{x} \frac{2}{n} \cdot 1_{b x} f(x)=\left|\operatorname{supp}\left(f_{i}\right) \backslash \operatorname{supp}\left(h_{i}\right)\right| \cdot \frac{2}{n} . \\
& \left|\operatorname{supp}\left(f_{i}\right) \backslash \operatorname{supp}\left(h_{i}\right)\right| \leq \frac{\text { 日 }}{2} \text {, } \\
& \left|\operatorname{supp}\left(f_{i}\right) \cap \operatorname{supp}\left(h_{i}\right)\right|=\frac{n}{2}-\left|\operatorname{supp}\left(f_{i}\right) \backslash \operatorname{supp}\left(h_{i}\right)\right| \geq \frac{n}{2}-\frac{\theta}{2},
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\begin{aligned}
& h=h \quad|A \cap B|=|A|+|B|-|A \cup B| \\
& |\operatorname{supp}(\mathrm{f}) \cap \operatorname{supp}(\mathrm{f})| \geq|\operatorname{supp}(\mathrm{f}) \cap \operatorname{supp}(\mathrm{f}) \cap \operatorname{supp}(\mathrm{h})| \\
& =\operatorname{supp}(f) \cap \operatorname{supp}(h)+\operatorname{supp}(f) \cap \operatorname{supp}(h) \\
& \text { - (supp(f) } \cap \operatorname{supp}(\mathrm{h}))^{[}(\operatorname{supp}(\mathrm{f}) \cap \operatorname{supp}(\mathrm{h})) \\
& \geq \operatorname{supp}(f) \cap \operatorname{supp}(\mathrm{h})+\operatorname{supp}(f) \cap \operatorname{supp}(\mathrm{h})-\operatorname{supp}(\mathrm{h}) \\
& \geq 2 \frac{n}{2}-\frac{\mathrm{a}}{2}-\frac{\mathrm{n}}{2} \\
& \geq \frac{n}{2} \text { - } \text { - } \\
& |\operatorname{supp}(f) \cap \operatorname{supp}(f)| \geq \frac{n}{2}-\text { - } \geq 1-4 \delta \\
& |\operatorname{supp}(f) \cap \operatorname{supp}(f)| \leq \frac{3 n}{8} \geq 1-\delta \\
& \varepsilon<-\quad \delta<- \\
& \mathrm{H}_{\mathrm{d}} \\
& \text { k } \\
& d \quad H_{d} \\
& F=
\end{aligned}
$$

Fix $\delta \in(0,1)$. The following holds for any value $d \in$ that is large enough. Let F denote a set of k_{d} functions chosen uniformly and independently from $F_{d ; \frac{1}{2}}$. Then with probability at least $1-3 \delta, F$ satis es Properties , and .

$$
\left(U_{X}, D_{H}\right) \leq \delta
$$

X

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

For any set $X \subseteq X$ of size s,

$$
f \in_{1_{2}}[X \subseteq \operatorname{supp}(f)]=\frac{\frac{\overline{\bar{L}}}{s}}{\substack{n \\ s}} .
$$

For any $f \in F=$, we write $D_{f} \quad$ to denote the uniform distribution over tuples of length t that contain t distinct elements from supp(f). That is, for any $(X, \ldots, X \quad t) \in X^{t}$,

$$
D_{f} \quad\left(\left(\begin{array}{ll}
x, \ldots, x & t
\end{array}\right)\right)=\begin{array}{ll}
\overline{(z) \cdot t} & x, \ldots, x \quad t \in \operatorname{supp}(f) \wedge\left|\left\{\begin{array}{ll}
x, \ldots, x & t
\end{array}\right\}\right|=t \\
0 & \text { o.w. }
\end{array}
$$

Furthermore, let U_{x} denote the uniform distribution over the set of tuples of length t from X with distinct elements,

$$
{ }^{n}(x, \ldots, x \quad t) \in X^{t}:\left|\left\{\begin{array}{ll}
X, \ldots, x & t
\end{array}\right\}\right|=t^{\circ} .
$$

That is,

$$
U_{x} \quad\left(\left(\begin{array}{ll}
x, \ldots, x & t
\end{array}\right)\right)=\begin{array}{ll}
\left.\prod_{0}\right) \cdot t & x, \ldots, x \quad t \in X \wedge\left|\left\{\begin{array}{lll}
x, \ldots, x & t
\end{array}\right\}\right|=t \\
\text { o.w. }
\end{array}
$$

For any ordered tuple $X \in X^{t}$ with distinct elements,

$$
{ }_{f \in f_{12}}{ }^{n} D_{f} \quad(X)^{i}=\frac{1}{\frac{n}{t} t!} .
$$

Proof.

$$
\begin{aligned}
\stackrel{h}{f G_{12} D_{f}} \quad(X)^{i} & =[X \subseteq \operatorname{supp}(f)] \cdot \frac{1}{\overline{\bar{t}} t!}+f \in_{12}[X \quad \operatorname{supp}(f)] \cdot 0 \\
& =\frac{\overline{\bar{t}}}{n} \cdot \frac{1}{\bar{t}}{ }^{\bar{t} t!} \\
& =\frac{1}{{ }_{t}^{n} t!} .
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

Consider k functions f,..., $f \quad k$ chosen independently and uniformly at random from $F=$. For any $\delta \in(0,1)$ and ordered tuple $X \in X^{t}$ with distinct elements, if

$$
k \geq \frac{n^{v} n!}{\delta}
$$

then

$$
f_{1}, \cdots \cdots ; f \in_{12} \quad U_{X} \quad(X)-\frac{1}{k_{i}} D_{f} \quad(X)>\frac{\delta}{{\underset{t}{n}}_{n}^{k}!} \leq \frac{\delta}{\sum_{t}^{n} t!}
$$

Proof. $X_{0} \quad f, \ldots, f \quad k$
[0,1] $\mathrm{U}_{\mathrm{x}} \quad(\mathrm{X})$

$$
\begin{aligned}
& 2 \exp -2 k \frac{\delta}{{ }_{t}^{n} t!} \\
& k \geq \frac{1}{2} \frac{{ }_{t}^{n} t!}{\delta} \log \frac{2{ }_{t}^{n} t!}{\delta}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} \frac{{ }_{t}^{n} t!}{\delta} \log \frac{2{ }_{t}^{n} t!}{\delta} & \leq \frac{{ }_{t}^{n} t!}{\delta} \\
& \leq \frac{\sqrt{n}_{n}^{n} \bar{n}!}{\delta} \\
& =\frac{n(n-1) \cdots\left(n-{ }^{\sqrt{n}} \bar{n}+1\right)!}{\delta} \\
& \leq \frac{n^{\sqrt{n}}!}{\delta}
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

For any $F=\{f, \ldots, f \quad k\} \subseteq=$, we write $D_{F} \quad$ to denote the distribution over X^{t} given by

$$
D_{F} \quad\left(\begin{array}{ll}
\mathrm{x}, \ldots, \mathrm{x} & \mathrm{t}
\end{array}\right):=\frac{1}{\mathrm{k}_{\mathrm{i}}} \mathrm{D}_{\mathrm{f}} \quad(\mathrm{x}, \ldots, \mathrm{x} \quad \mathrm{t}) .
$$

Let $F=\{f, \ldots, f \quad k\}$ denote a set of functions chosen uniformly and independently from $F=$. For any $\delta \in(0,1)$, if

$$
k \geq \frac{3 n^{v}!}{\delta}
$$

then

$$
\text { " } \quad U_{X} \quad, D_{F} \quad \leq \frac{\delta^{\#}}{3} \geq 1-\frac{\delta}{3} \text {. }
$$

Proof.
k $X \in X^{t}$

$$
\begin{aligned}
& f_{1}, \ldots, \ldots, f G_{12} U_{X} \quad(X)-D_{F} \quad(X)>\frac{\delta}{3{\underset{t}{n} t!}_{n}^{t}} \leq \frac{\delta}{3_{t}^{n} t!} . \\
& \text { 1- } \\
& U_{x} \quad(X)-D_{F} \quad(X) \leq \frac{\delta}{3_{t}^{n} t!} \\
& { }_{t}^{n} t \\
& U_{X} \quad, D_{F} \quad=\frac{1}{2}{ }_{x \in X}^{X} \quad U_{x} \quad(X)-D_{F} \quad(X) \leq \frac{\delta}{6} .
\end{aligned}
$$

Proof of Claim 4.4.12.

$$
\left(U_{x}, D_{F}\right) \leq U_{x}, U_{x}+U_{x}, D_{F}+D_{F}, D_{F} .
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

i $U_{x}, U_{x} \leq \underline{\sigma} n$
(*)

$$
\begin{aligned}
& \mathrm{n} \\
& c \leq \frac{1-\frac{\&_{2}}{\bar{n}}}{\stackrel{-}{4}} \xrightarrow{\mathrm{u}} \frac{\mathrm{n} \rightarrow \infty}{\log (1-\delta 3)} \\
& \log (1 / 2 \mathrm{e})
\end{aligned}
$$

ii $\quad{ }_{F}^{h} \quad U_{x} \quad, D_{F} \quad>\underline{\delta}^{i} \leq \delta$
iii $D_{F} \quad, D_{F} \leq \underline{\sigma} n$

$$
\left(U_{x}, D_{F}\right) \leq \delta
$$

$$
1-\delta
$$

F

$$
\forall i \in j:\left|\operatorname{supp}\left(f_{i}\right) \cap \operatorname{supp}\left(f_{j}\right)\right| \leq n
$$

$$
\begin{aligned}
& U_{x}, U_{x}=\max _{A \subseteq X} U_{x}(A)-U_{x} \quad(A)
\end{aligned}
$$

$$
\begin{aligned}
& =n^{\mathrm{t}}-\mathrm{n}_{\mathrm{t}}^{\mathrm{t}} \mathrm{l} \frac{1}{\mathrm{n}^{\mathrm{t}}} \\
& =1-\frac{\mathrm{n}(\mathrm{n}-1) \cdots(\mathrm{n}-\mathrm{t}+1)}{\mathrm{n}^{\mathrm{t}}} \\
& \leq 1-1-\frac{t^{t}}{}{ }^{\mathrm{t}} \\
& \leq 1-1-\frac{\left(c^{\sqrt{ }} \bar{n}\right)^{!} c_{2}{ }^{\vee} \bar{n}}{} \\
& =1-1-\mathcal{F}_{\bar{n}}^{!\frac{-}{2} \cdot c_{2}^{2}} \\
& \stackrel{*}{\leq} 1-\frac{1}{2 \mathrm{e}}{ }_{\mathrm{c}}^{2} \\
& \stackrel{* *}{\leq} \frac{\delta}{3} \text {, }
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

δ

$$
\frac{\delta}{\mathrm{k}}=2^{-n^{v} \bar{n}},
$$

$$
\mathrm{f}_{1} ; \mathrm{f}_{2} \in \boldsymbol{f}_{12}{ }^{\mathrm{h}}|\operatorname{supp}(\mathrm{f}) \cap \operatorname{supp}(\mathrm{f})|>\underline{n}^{\mathrm{i}} \leq \frac{\delta}{\mathrm{k}^{2}}
$$

$$
f_{1},: \cdots ;: f \in_{12}{ }^{h} \forall i \in j \in[k]:\left|\operatorname{supp}\left(f_{i}\right) \cap \operatorname{supp}\left(f_{j}\right)\right| \leq n^{i} \geq 1-\delta
$$

Proof.

$$
\begin{aligned}
f_{1} ;::: ; f & f_{12} \forall i \in j \in[k]:\left|\operatorname{supp}\left(f_{i}\right) \cap \operatorname{supp}\left(f_{j}\right)\right| \leq \frac{3 n}{8} \\
& =1-\quad\left[\quad\left|\operatorname{supp}\left(f_{i}\right) \cap \operatorname{supp}\left(f_{j}\right)\right|>\frac{3 n}{8}\right. \\
& \geq 1-x^{\lambda j}\left|\operatorname{supp}\left(f_{i}\right) \cap \operatorname{supp}\left(f_{j}\right)\right|>\frac{3 n}{8} \\
& \geq 1-k \cdot \frac{\delta}{\mathrm{k}}=1-\delta
\end{aligned}
$$

$$
\begin{aligned}
& f_{1} ; f_{2} \not \oplus_{12}{ }^{h}|\operatorname{supp}(f) \cap \operatorname{supp}(f)|>n^{i} \leq \frac{\delta}{k^{2}} . \\
& \text { Proof. } \operatorname{supp}(f)=\{x, \ldots, x \quad n=\} \\
& \operatorname{supp}(f) \quad \operatorname{supp}(f) \\
& \text { n } \\
& f_{1 ; f_{2} \in f_{12}}|\operatorname{supp}(f) \cap \operatorname{supp}(f)|>\frac{3 n}{8} \leq f_{f_{1} ; f_{2} \in f_{12}}{ }_{i}=1\left(x_{i} \in \operatorname{supp}(f)\right)>\frac{3 n}{8} \\
& =\mathrm{f}_{1 ; \mathrm{f}_{2} \in \mathrm{f}_{12}} \frac{2}{\mathrm{n}}_{\mathrm{i}}^{\mathrm{X}=} 1\left(\mathrm{x}_{\mathrm{i}} \in \operatorname{supp}(\mathrm{f})\right)>\frac{3}{4} \\
& \leq \mathrm{f}_{1 ;} ; \mathrm{f}_{2} \not \mathrm{~F}_{12}{\frac{2}{\mathrm{n}_{i}}}_{\mathrm{X}=} 1\left(\mathrm{x}_{\mathrm{i}} \in \operatorname{supp}(\mathrm{f})\right)-\frac{1}{2}>\frac{1}{4} \\
& \leq 2 \exp -2 \cdot \frac{n}{2} \cdot \frac{1}{4}^{!}=2^{-n} \text {. }
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\left|F_{x}\right| \geq{ }_{\bar{\delta}}
$$

$\sqrt{ }^{\bar{n}}$
Let $F \subseteq F=$, and let $X \subseteq X$. We write F_{X} to denote the set

$$
\{f \in F: X \subseteq \operatorname{supp}(f)\} .
$$

Fix $\delta \in(0,1)$. Let $F=\{f, \ldots, f \quad \mathrm{k}\}$ denote a set of functions chosen uniformly and independently from $\mathrm{F}=$. There exists N such that for all $\mathrm{n} \geq \mathrm{N}$, if

$$
k \geq \frac{n^{v_{n}}!}{\delta}
$$

then with probability at least $1-\delta$ over the choice of F, all subsets $X \subseteq X$ of size at most \bar{n} satisfy

$$
\left|F_{X}\right| \geq \frac{1}{\delta} .
$$

Proof of Claim 4.4.23. $X \subseteq X \quad|X|=t$

$$
\mathrm{N}
$$

$$
\begin{aligned}
& f \in \bigoplus_{12}[X \subseteq \operatorname{supp}(f)]=\frac{\overline{\bar{t}}}{\frac{\mathrm{t}}{\mathrm{n}}}=\frac{\underline{n}!}{(\underline{n}-t)!t!} \cdot \frac{(n-t)!t!}{n!} \\
& =\frac{n-t}{n} \cdot \frac{n-t-1}{(n-1)} \cdots \frac{\underline{n}-t+1}{\underline{n}+1} \\
& =\frac{n}{n} \cdot \frac{\underline{n}-1}{(n-1)} \cdots \frac{n-t+1}{n-t+1} \\
& \begin{array}{l}
\geq \frac{n-t^{!}}{n} \\
\geq \frac{n-\sqrt{n}!^{\sqrt{n}}}{n}
\end{array} \\
& =\frac{1}{2}-\sqrt{1}_{\bar{n}}^{!{ }^{\vee} \bar{n}} \geq 4^{-^{\sqrt{n}}} \text {, } \\
& \mathrm{n} \geq 16 \\
& \mu:=f_{1}, \ldots, \ldots \in \in_{12}\left[\left|F_{X}\right|\right] \geq k \cdot 4^{\vee} \bar{n} \geq 2 \quad n^{\vee} \bar{n}-V_{\bar{n}} \xrightarrow{n \rightarrow \infty} \infty, \\
& n \geq N \quad\left[\left|F_{X}\right|\right] \geq{ }_{\bar{\delta}}
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
k \geq \frac{1}{2} \cdot 4^{\vee} \bar{n} \cdot \log \frac{2 n^{\vee} \bar{n}!}{\delta}
$$

$$
\forall X \in \underset{t}{X^{!}}: \quad f_{1} ;: \cdots ; ; \epsilon_{12}\left|F_{X}\right| \leq \frac{1}{\delta} \leq \frac{\delta}{n^{\bar{n}}}
$$

k $n^{k}{ }^{\wedge}$

$$
\mathrm{f}_{1}, \cdots:: ; f_{12} \forall X \subseteq X \quad|X| \leq t:\left|F_{X}\right| \geq \frac{1}{\delta} \geq 1-\delta
$$

$$
{ }_{t}^{|X| \psi_{X}} \quad\left|F_{x}\right|
$$

X
H_{d}

$$
X_{p} \quad x^{t}
$$

$$
\begin{aligned}
& \text { f } \\
& X=\left(\begin{array}{ll}
x, \ldots, x & t
\end{array}\right) \quad D_{f_{1}} \\
& \text { X } \\
& \text { X } \\
& \text { f } \\
& \mathrm{H}_{\mathrm{d}} \\
& \left\{f \in H_{d}: X \subseteq \operatorname{supp}(f)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{n} \geq \mathrm{N} \quad \mathrm{X} \quad \mathrm{t}
\end{aligned}
$$

$$
\begin{aligned}
& \leq 2 \exp -2 k \frac{4^{-\sqrt{ } n^{n}}}{2} \text {. }
\end{aligned}
$$

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

$$
\begin{aligned}
& g \in H_{d} \quad x \in X^{t} \\
& {[f=g \wedge X=x]=[f=g \mid X=x][X=x]=} \\
& \\
& =[f=g \mid X=x][X=x]=[f=g \wedge X=x] .
\end{aligned}
$$

21

$$
\begin{aligned}
& X \\
& X
\end{aligned}
$$

$$
X
$$

$$
f: X \rightarrow\{0,1\}
$$

f
query delegation
$X, \ldots, X \quad m \in X$

$$
\tilde{y}, \ldots, \quad \tilde{y}_{m} \in\{0,1\}
$$

x_{i}

[^13]
CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

	V	V		
	$0 \frac{1}{n}$			
	$0 \frac{1}{n}$			
		$0 \frac{1}{n}$		

$$
\begin{aligned}
& \text { H } \\
& X \times\{0,1\} \\
& D_{x} X \quad D \in \\
& \text { D } X \quad D_{x} \\
& 1 \\
& X \quad\{0,1\} \\
& \text { Dx X } \\
& D \in \\
& \text { H } \\
& 1 \\
& \text { H } \quad \begin{array}{c}
m=m_{H}(\text { (} \\
D \in A
\end{array} \\
& \text { H } \quad \begin{array}{c}
m=m_{H}(\text { (} \\
D
\end{array} \\
& f_{D}: X \rightarrow\{0,1\}
\end{aligned}
$$

$x ; y \sim D\left[f_{D}(x)=y\right]=$

Under Conditions 4.5.1, H is 1-PAC veri able
using veri er V and prover P such that:

- V has random sample access to the unknown distribution D and to the marginal distribution $D_{x} . V$ uses only $k=O \xrightarrow{\underline{1}}$ labeled samples from D, and uses $O(m)$ unlabeled samples from D_{x}.
- P has query access to f_{D}, and uses $O(m)$ queries to this function.
- V runs in time $O(t(-=, \underline{\sigma}))$, and P runs in time $O(m)$.
- The protocol consists of two messages. First, V sends a message of length $\mathrm{O}(\mathrm{mlog}|\mathrm{X}|)$ to P, and then P sends back a message of length $O(m)$.

1

$$
\theta \quad \frac{d^{2}}{n 2}
$$

d
$\left\{H_{d}\right\}_{d \in} \quad\left(H_{d}\right)=d \quad d$

$$
\mathrm{D}_{\mathrm{x}}
$$

A

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS

Under Conditions 4.5.1, assume that there exists a pseudorandom generator that generates samples from a distribution $\tilde{\mathrm{D}}_{\mathrm{X}}$ over X, such that the algorithm A successfully 1-PAC learns H with respect to as above when receiving labeled examples in which the marginal distribution over X is \tilde{D}_{X} (instead of D_{X}). Then H is 1-PAC veri able using a veri er V and prover P that satisfy the same conditions as in Claim 4.5.2, except that V sends a shorter message of length $\mathrm{O} \frac{\underline{1}}{\sim} \log |X|$ to P. The security of the protocol is information-theoretic, and does not depend on any cryptographic assumptions. That is, soundness holds also with respect to an unbounded adversary that has full information about the pseudorandom generator mechanism and can distinguish whether a sample was taken from \tilde{D}_{x} or from D_{x}.
f_{D}

In the common random string model, under Conditions 4.5.1, H is 1-PAC veri able using a veri er V and prover P such that:

- V and P both have access to f_{D} and to a CRS that provides random samples from D_{X}.
- V uses $O \xrightarrow[\underline{\underline{1}}]{ }$ queries from f_{D}.
- P uses m queries from f_{D}.
- V runs in time $\mathrm{O}\left(\mathrm{t}\left({ }^{-}{ }^{-}, \underline{\delta}\right)\right)$, and P runs in time $\mathrm{O}(\mathrm{m})$.
- The protocol consists of a single messages of m bits sent from P to V.

In the above claims, we have reduced the sample or query complexity of the veri er compared to PAC learning, but the time complexity is modestly increased. In some cases, it might be possible to combine query delegation with existing general-purpose delegation of computation protocols, to reduce the time complexity as well.

CHAPTER 4. PAC VERIFICATION FUNDAMENTALS


```
=
creativity
        learning
1
    PAC veri cation
```

 h
 \(L_{D^{-}}(h) \leq \inf _{h \in H} L_{D^{-}}\left(h^{\prime}\right)+\varepsilon\)
 \({ }^{1}\) Probably Approximately Correct (PAC) is the standard theoretical model for supervised learning, introduced by Vapnik and Chervonenkis (1968, 1971) and Valiant (1984). Agnostic PAC learning is a generalization to the non-realizable case, introduced by Haussler (1992). See also Shalev-Shwartz and Ben-David (2014).
 CHAPTER 5. FURTHER PAC VERIFICATION RESULTS
$\begin{array}{lll}L_{D}^{-} & 01 & H\end{array}$

$$
\begin{aligned}
& \text { O(} \log (d) \text {) } \\
& d=\quad(H) \\
& \Omega^{\sqrt{ }} \bar{d} \\
& 0^{\sqrt{ }} \bar{d} \\
& \mathrm{~L}_{\mathrm{D}^{-}}(\mathrm{h}) \leq 2 \cdot+\varepsilon \quad=\inf _{\mathrm{h} \in \mathrm{H}} \mathrm{~L}_{\mathrm{D}^{-}}\left(\mathrm{h}^{\prime}\right) \quad+\varepsilon
\end{aligned}
$$

CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

$h \quad L_{D^{-}}(h) \leq\left[L_{D^{-}}\left(h_{A}\right)\right]+\varepsilon \quad h_{A}$
$\mathbf{q}_{\text {partition size }} \quad(\mathbf{q})$
$=\{1,2,3, \ldots \quad$, i.e., $0 \notin$. For any $n \in$, we denote $[\mathrm{n}]=$ $\{1,2,3, \ldots, \mathrm{n} \quad\}$.

For a set Ω, we write $\Delta(\Omega)$ to denote the set of all probability measures de ned on the measurable space (Ω, F), where F is some xed σ-algebra that is implicitly understood.

Let P, Q be probability measures de ned on a measurable space (Ω, F). The total variation distance between P and Q is $(P, Q)=\sup _{A \in f}|P(A)-Q(A)|$.

CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

denote the output of V after receiving input ($\mathrm{S}_{\mathrm{V}}, \mathbf{D}$) and interacting with P , which received input ($\left.S_{P}^{P}, \mathbf{S}\right)$). Then

$$
S \sim D \quad ; \sim D \quad h \quad \in \quad \wedge \quad L_{D}(h) \leq L_{D}(H)+\varepsilon \geq 1-\delta
$$

- Soundness. For any (possibly malicious and computationally unbounded) prover P' (which may depend on D, ε, and δ), the veri er's output $\mathrm{h}=\left[\mathrm{V}\left(\mathrm{S}_{\mathrm{V}, \mathrm{D}}\right), \mathrm{P}^{\prime}\right]$ satis es

$$
S \sim D \quad ; \sim D \quad h=\quad v \quad L_{D}(h) \leq L_{D}(H)+\varepsilon \geq 1-\delta
$$

In both conditions, the probability is over the randomness of the samples S_{v} and S_{p}, as well as the randomness of V, P and P^{\prime}.

There exist constants $\varnothing \quad 0$ as follows. Let $\varepsilon \in(0,1), \delta=1 / 3$, let X be a set, and let $\mathrm{H} \subseteq\{0,1\}^{X}$ be a hypothesis class with $(\mathrm{H})=\mathrm{d} \in$. Assume that ((\mathbb{P}) is an interactive proof system that PAC veri es H with parameters (\$) with respect to the set of all distributions $=\Delta(X \times\{0,1\})$, and the veri er V uses $m=m$ (d) i.i.d. labeled samples. Then $m(\mathbb{d}) \geq(C \cdot \bar{d}-c) \xi$.

Proof Idea.
$\Omega^{\sqrt{\theta}}$

$$
\begin{array}{cc}
& \mathrm{H} \\
\varepsilon & \\
& \mathrm{~d} \\
& -\varepsilon
\end{array}
$$

d

$$
\begin{gathered}
\text { Let } d \in \text {, and let } \\
\left.H_{d}=1_{X}: X={\underset{i \in d}{[}\left[a_{i}, b_{i}\right] \wedge\left(\forall i \in[d]: 0 \leq a_{i} \leq b \leq 1\right) \subseteq\{0,1\} ;}^{[}\right]
\end{gathered}
$$

be the class of boolean-valued functions over the domain $[0,1]$ that are indicator functions for a union of dintervals. There exists an interactive proof system that PAC veri es the class

CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

H_{d} with respect to the set of all distributions over $[0,1] \times\{0,1\}$, such that the veri er uses $m=0 \quad \bar{d} \log (/ \delta) \varepsilon^{-} \quad$ random samples, the honest prover uses

$$
\mathrm{m}=\mathrm{O}(\mathrm{~d} \log (\notin)+\log (1 \delta)) \varepsilon^{-}
$$

random samples, and both the veri er and the honest prover run in time polynomial in their numbers of samples.

Proof Idea.
$[0,1] \quad$ 臬
a

$$
\text { O(d) } \quad O^{V_{\bar{d}}}
$$

d
ε
ह
algorithm ${ }^{2}$
hypothesis class

CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

- Completeness. Let the random variable

$$
h=\left[V\left(S_{V}, \Phi \quad\right), P\left(S_{P}, \Phi \quad\right)\right] \in H \cup\{\quad\}
$$

denote the output of V after receiving input ($\mathrm{S}_{\mathrm{V}, \Phi}$) and interacting with P , which received input ($\mathrm{S}_{\mathrm{p}, \text {, }}$). Then

$$
S \sim D \quad ; S \sim D \quad\left[h \quad G \quad \wedge L_{D}(h) \leq L_{D}(A)+\varepsilon\right] \geq 1-\delta
$$

- Soundness. For any deterministic or randomized (possibly malicious and computationally unbounded) prover P^{\prime} (which may depend on D, ε, δ and $\left\{O_{D}\right\}_{D \in}$), the veri er's output $h=\left[V\left(S_{V}, \mathbb{S} \quad\right), P^{\prime}\right]$ satis es

$$
s \sim D \quad\left[h=\quad v L_{D}(h) \leq L_{D}(A)+\varepsilon\right] \geq 1-\delta
$$

The probabilities are over the randomness of V, P and P^{\prime} and of the samples S_{v} and S_{P}.

H

PAC veri cation of an algorithm A requires that $L_{D}(h) \leq \quad A+\varepsilon$ with high probability. Two natural candidate de nitions for \quad include (1) $\quad A=L_{D}\left(h_{A}\right)$, and (2) $\quad A=\left[L_{D}(h)\right]$. Candidate (1) requires that with high probability the veri er's output be at most ε worse than the output of executing algorithm A, while (2) requires that it be at most ε worse than the expected loss of A.

The loss $L_{D}\left(h_{A}\right)$ is a random variable that depends, inter alia, on the random samples used by A (more generally: on the randomness of the oracle used by A). A crucial aspect of PAC veri cation is that the veri er use less random samples than are necessary for executing A, and in particular it cannot access the random samples used by A. So the veri er cannot know what loss was obtained in any particular execution of A. Therefore, we reject candidate (1) and adopt candidate (2).
σ
partition size
9

Let A be a statistical query algorithm that adaptively generates at most b batches of queries with precision τ such that each batch \mathbf{q}

CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

satis es $(\mathbf{q}) \leq \mathrm{s}$. Then A is PAC veri able by an interactive proof system where the veri er uses

$$
m=\theta \frac{{ }^{\sqrt{s}} \overline{\mathrm{~s}} \log (\bar{B})}{\tau}+\frac{\log (1 \bar{\phi})!}{\varepsilon}
$$

i.i.d. samples.

Proof Idea.

A

A

$$
O\left({ }^{\sqrt{ }} \ddagger\right)
$$

τ

Let $\mathrm{d} \in$ and let A be a statistical query algorithm such that each batch of queries generated by A corresponds precisely to a σ-algebra with d atoms. Then simulating A using random samples requires Ω (d) random samples, but there exists a PAC veri cation protocol for A where the veri er uses O $\overline{\text { o }}$ random samples.

distribution learning

$$
\left.\begin{array}{rl}
& \Omega=[n] \\
Z=(Z, \ldots, Z & m
\end{array}\right) \sim D^{m} .
$$

CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

$\Omega\left({ }^{\sqrt{n}} \bar{n}\right)$
realizable

CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

Abstract

${ }^{\varepsilon} \underset{D_{U}}{\delta}\left\{D_{h ; "}: h \in H_{x}\right\}$

T $$
\mathrm{h}=\left[\mathrm{V}(\mathrm{D}), \mathrm{P}\left(\mathrm{D}_{u}\right)\right]
$$ $S_{v} \sim D^{m} \quad D_{u}^{m}$ D D_{u} D_{u} V T / $$
D=D_{h ; "} \quad h^{\prime} \in H_{X} \quad L_{D}^{-}(h)=/-4 \varepsilon \quad h \in H
$$ $$
\left.\mathrm{h}\right|_{\mathrm{x}}=\mathrm{h}^{\prime}
$$ $$
/ \quad \mathrm{h}=, \quad \mathrm{L}_{D^{-}}(\mathrm{h}) \leq /-3 \varepsilon
$$ $$
/ \quad L_{s}^{-}(h) \leq /-2 \varepsilon \quad \text {, } \quad \ell
$$ $$
D_{U} \quad\left\{D_{h ; "}: h \in H_{x}\right\}
$$ $$
\beta=5 / 12 \quad / \quad t=m+\ell \quad m \geq(0.3 \cdot \sqrt{ } \bar{d}-3) k
$$ proof of an $\Omega \quad \sqrt{ } \frac{\text { A previous version of this chapter (M utreja and Shafer, 2022) presented a }}{\bar{d}}$ lower bound, without the dependence on ε. That proof uses a reduction to a simpler distribution testing lower bound based on the 'birthday paradox' (instead of the Paninski bound), and it may be better suited for pedagogical expositions.

[^14]
CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

Let $\ddagger \in(0,1)$, let $\mathrm{n} \in$, and let $\mathrm{P}, \tilde{\mathrm{P}} \in \Delta([\mathrm{n}])$ be distributions. There exists a tolerant distribution identity tester that, given a complete description of \tilde{P} and $m=O\left({ }^{\wedge} \bar{n} \log (1 \delta) \varepsilon^{-}\right)$i.i.d. samples from P, satis es the following:

- Completeness. If $P, \tilde{P} \leq \xi^{\sqrt{\prime}} \bar{n}$ then the tester accepts with probability at least $1-\delta$.
- Soundness. If $\mathrm{P}, \tilde{\mathrm{P}} \approx$ then the tester rejects with probability at least $1-\delta$.

Let $\varepsilon \in[0,1]$, let X be a set and let $F \subseteq\{0,1\}^{X}$ be a set of functions. Let $D \in \Delta(X)$, and let $S \in X^{m}$ for some $m \in$. We say that S is an ε-sample for D with respect to F if

$$
\text { Vf } \in F: \frac{|\{x \in S: f(x)=1\}|}{m}-x \sim D[f(x)=1] \leq \varepsilon
$$

be a set and let $F \subseteq\{0,1\}^{X}$ be a set of functions with $\quad(F)=d$. Let $D \in \Delta(X)$, and let $\mathrm{S} \sim \mathrm{D}^{\mathrm{m}}$, where

$$
\mathrm{m}=\Omega \frac{\operatorname{dlog}(\mathrm{d} / \mathrm{n})+\log (/ \delta)^{!}}{\varepsilon}
$$

Then with probability at least $1-\delta, S$ is an ε-sample for D with respect to F.
Proof of Theorem 5.2.2.

$$
\begin{aligned}
& \tilde{P}_{j ;}+\tilde{P}_{j ;}=/ k \quad j
\end{aligned}
$$

$$
\begin{aligned}
& (F)=2 \mathrm{k}=\mathrm{O}\left(\mathrm{~A}_{\mathrm{A}}\right) \\
& 1-\Phi 2 \mathrm{~S}_{\mathrm{P}} \quad E\left(\begin{array}{c}
6 \overline{\mathrm{k}}) \\
\varepsilon
\end{array}\right. \\
& \text { m } \\
& \text { ค } \mathrm{P}, \tilde{\mathrm{P}} \leq \varepsilon\left(6^{\mathrm{V}} \overline{2 \mathrm{k}}\right)^{\mathrm{i}} \geq 1-\mathrm{\delta} 2 \\
& \text { 1- } \delta
\end{aligned}
$$

$$
\begin{aligned}
& 1-\text { ठ } 2
\end{aligned}
$$

[^15]CHAPTER 5. FURTHER PAC VERIFICATION RESULTS

$$
\begin{aligned}
& P, \tilde{P} \leq k 6 \quad h^{\prime} \in H_{d} \\
& L_{D}^{-}\left(h^{\prime}\right)-L_{P}^{-}\left(h^{\prime}\right) \leq L_{D^{-}}\left(h^{\prime}\right)-L_{P}^{-}\left(h^{\prime}\right)+L_{P}^{-}\left(h^{\prime}\right)-L_{p}^{-}\left(h^{\prime}\right) \\
& \leq L_{D}^{-}\left(h^{\prime}\right)-L_{P}^{-}\left(h^{\prime}\right)+\equiv 6, \\
& \mathrm{P}, \mathrm{P} \leq \not \leq 6
\end{aligned}
$$

$$
\begin{aligned}
& L_{D}{ }^{-}\left(h^{\prime}\right)-L_{P}{ }^{-}\left(h^{\prime}\right)=\quad x ; y \sim D\left[h^{\prime}(x) \in y\right]-\quad x ; y \sim D\left[h^{\prime}\left(x^{*}\right) \in y\right] \\
& =\quad x ; y \sim\left[h^{\prime}(x) \in y \wedge x \in Q\right] \\
& -\quad x ; y \sim D\left[h^{\prime}\left(x^{*}\right) \in y \wedge x \in Q\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { h D P } \\
& \text { Q }
\end{aligned}
$$

h'
d
2d
h

$\forall h^{\prime} \in H_{d}: \quad L_{D}^{-}\left(h^{\prime}\right)-L_{p}^{-}\left(h^{\prime}\right) \leq \notin 2$
$L_{D^{-}}(\mathrm{h}) \leq \mathrm{L}_{\mathrm{D}^{-}}(\mathrm{H})+\varepsilon$
$1-\Phi 2$

CHAPTER 6. THE BAYESIAN STABILITY ZOO

De nition A and De nition B are weakly equivalent if for every hypothesis class H the following holds:
H has a PAC learning rule that is stable according to De nition A

H has a PAC learning rule that is stable according to De nition B
not

Bayesian de nitions of stability
A
d $A(S), P$
d
$\mathrm{P} \quad$ prior distribution
A(S) posterior distribution
A

To understand our choice of the name come from Bayesian statistics. In Bayesian statistics the analyst has

[^16]
CHAPTER 6. THE BAYESIAN STABILITY ZOO

some prior distribution over possible hypothesis before conducting the analysis, and chooses a posterior distribution over hypotheses when the analysis is complete. Bayesian stability is de ned in terms of the dissimilarity between these two distributions.

$$
\begin{aligned}
& \text { P } \\
& \text { D } \\
& \text { independent } \\
& \text { P } \\
& \exists \quad P \forall \\
& D \forall m \in \quad: d(A(S), P) \\
& S \sim D^{m} \\
& \text { dependent D } \\
& \text { D } \\
& \forall \quad D \exists \quad P_{D} \forall m \in: d\left(A(S), P_{D}\right)
\end{aligned}
$$

α
$\alpha \in[1, \infty]$

CHAPTER 6. THE BAYESIAN STABILITY ZOO

α

α
H
H

Observe that DI -stability is equivalent to DI -stability, and DI one-way pure perfect generalization is equivalent to $\mathrm{DI}{ }_{\infty}$-stability. Therefore, T he above theorem can be viewed as stating a weak equivalence between pure di erential privacy and α-stability for $\alpha \in[1, \infty]$.

In this chapter we focus purely on the information-theoretic aspects of learning under stability constraints, and therefore we consider learning rules that are mathematical functions, and disregard considerations of computability and computational complexity.

	$s[(A(S) k P) \leq o(m)] \geq 1-o(1)$
α	$\left.s h^{2}(A(S) k P) \leq o(m)\right] \geq 1-o(1)$
	$s \forall O: A(S)(O) \leq e^{\rho m P(O)} \geq 1-\alpha(1)$

d

CHAPTER 6. THE BAYESIAN STABILITY ZOO

$(A(S) k P)^{A}$

H
P

weakly implies ----- assuming countable domain
same algorithm \qquad assuming nite domain

1. Lemma 6.6.6
2. Lemma 6.6.13, Pradeep, Nachum, and Gastpar (2022)
3. Lemma 6.6.11
4. Lemma 6.6.8, Livni and Moran (2020)
5. Theorem 10, Bun et al. (2020)
6. Theorem 17, Bun et al. (2020)
7. Corollary 3.13, Bun et al. (2023)
8. Lemma 3.14, Bun et al. (2023)
9. Theorem 3.17, Bun et al. (2023)
10. Theorem 3.19, Bun et al. (2023)
11. Corollary 2, Alon et al. (2019)
12. Theorem 3.1, Bun et al. (2023)
13. Theorem 1, K alavasis et al. (2023)
14. Theorem 2, K alavasis et al. (2023)
15. Theorem 4, K alavasis et al. (2023)
16. Theorem 3, K alavasis et al. (2023)
17. Theorems 2.2, 2.7 Alon et al. (2023)

A summary of equivalences between distribution-dependent de nitions of stability (Theorem 6.1.4). A solid black arrow from A to B means that de nition A weakly implies de nition B. A dashed blue arrow from A to B means that A weakly implies B only if the domain X is countable A dotted red arrow from A to B means that A weakly implies B only if the domain X is nite A double brown arrow from A to B means that every learning rule that satis es de nition A also satis es de nition B.

CHAPTER 6. THE BAYESIAN STABILITY ZOO

The following de nitions of stability are weakly equivalent with respect to an arbitrary hypothesis class H :

1. Approximate Di erential Privacy; (De nition 6.3.5)
2. Distribution-Dependent -Stability; (De nition 6.3.6)
3. Mutual-I nformation Stability;
(De nition 6.3.12)
4. Global Stability.
(De nition 6.3.11)
If the domain is countable then the following are also weakly equivalent to the above:
5. Distribution-Dependent -Stability;
(De nition 6.3.13)
6. Replicability.
(De nition 6.3.8)
If the domain is nite then the following are also weakly equivalent to the above:
7. One-Way Perfect Generalization;
(De nition 6.3.7)
8. Max Information.
(De nition 6.3.14)
Furthermore, for any hypothesis class H , the following conditions are equivalent:

- H has a PAC learning rule that is stable according to one of the de nitions 1 to 6 (and the cardinality of the domain is as described above);
- H has nite Littlestone dimension;
(De nition 6.6.3)
- H has nite clique dimension.
(De nition 6.6.5)

CHAPTER 6. THE BAYESIAN STABILITY ZOO

Name	Dissimilarity	De nition	References
KL-Stability	${ }_{S}\left[\mathrm{KL}\left(\mathrm{A}(\mathrm{S}) \mathrm{k} \mathrm{P}_{\mathcal{D}}\right) \leq \mathrm{o}(\mathrm{m})\right] \geq 1-\mathrm{o}(1)$	6.3 .6	McAllester (1999)
TV-Stability	${ }_{S}\left[\mathrm{TV}\left(\mathrm{A}(\mathrm{S}), \mathrm{P}_{\mathcal{D}}\right)\right] \leq \mathrm{o}(1)$	6.3 .13	Kalavasis et al. (2023)
MI-Stability	${ }_{S}\left[\mathrm{KL}\left(\mathrm{A}(\mathrm{S}) \mathrm{k} \mathrm{P}_{\mathcal{D}}\right)\right] \leq \mathrm{o}(\mathrm{m})$	6.3 .12	Bassily et al. (2018)
Perfect Generalization	${ }_{S}\left[\forall \mathrm{O}: \mathrm{A}(\mathrm{S})(\mathrm{O}) \leq \mathrm{e} \mathrm{P}_{\mathcal{D}}(\mathrm{O})+\delta\right] \geq 1-\mathrm{o}(1)$	6.3 .7	Cummings et al. (2016)
Global Stability	$S_{S \sim \mathcal{P}_{\mathcal{D}}}[\mathrm{A}(\mathrm{S})=\mathrm{h}] \geq \eta$	6.3 .11	Bun et al. (2020)
Replicability	${ }_{r \sim \mathcal{R}} \quad S h \sim \mathcal{P}_{\mathcal{D}}\left[\mathrm{A}(\mathrm{S} ; \mathrm{r})=\mathrm{h}_{r}\right] \geq \eta \geq v$	6.3 .10	Impagliazzo et al. (2022)

$O\left(^{\sqrt{ }} \overline{m^{-} \log m}\right)$
Let X be a set, let $H \subseteq\{0,1\}^{X}$ be a hypothesis class, and let A be a learning rule. Assume there exists $k \in$ and $\vee>0$ such that

$$
\forall D \in \quad(H): \quad S \sim D{ }^{h} L_{D}(A(S))^{i} \leq \frac{1}{2}-\gamma
$$

and there exists $\mathrm{P} \in \Delta\{0,1\}^{\mathrm{X}}$ and $\mathrm{b} \geq 0$ such that

$$
\forall D \in \quad(H): \quad s \sim D[(A(S) k P)] \leq b
$$

Then, there exists an interpolating learning rule A ? that PAC learns H with logarithmic -stability. M ore explicitly, there exists a prior distribution $P^{?} \in \Delta\{0,1\}^{X}$ and function b^{2} and $\varepsilon^{?}$ that depend on γ and b such that

$$
\begin{aligned}
& \forall D \in \quad(H) \forall m \in: \\
& \text { s~D } \quad\left[\quad\left(A^{?}(S) k P^{?}\right) \leq b^{?}(m)=O(\log (m))\right]=1, \\
& \stackrel{\text { and }}{\mathrm{h} \sim \mathrm{D}} \mathrm{~L}_{D}\left(A^{?}(S)\right)^{i} \leq \varepsilon^{?}(m)=0 \quad \stackrel{\mathrm{~s}}{\frac{\log (m)}{m}} \text {. }
\end{aligned}
$$

A?
k
A $\mathrm{O}\left(\log _{\mathrm{k}}^{\mathrm{kn}} \mathrm{S}\right)$
A?
A? P?
P
α

$$
\begin{array}{lll}
& \alpha=1 & \alpha=2
\end{array}
$$

CHAPTER 6. THE BAYESIAN STABILITY ZOO

Let $\alpha \in(1, \infty)$. The R Chyi divergence of order α of the distribution P from the distribution Q is

$$
{ }_{\alpha}(P k Q)=\frac{1}{\alpha-1} \log \quad x \sim P \quad{\frac{P(x)}{}{ }^{!}(x)}_{\alpha-}
$$

For $\alpha=1$ and $\alpha=\infty$ the RØnyi divergence is extended by taking a limit. In particular, the limit $\alpha \rightarrow 1$ gives the Kullback Leibler divergence,

$$
\begin{aligned}
(P k Q) & =x_{x \sim P} \log \frac{P(x)}{Q(x)}=(P k Q), \\
\text { and } & \\
\infty(P k Q) & =\log \operatorname{essup}_{P} \frac{P(x)}{Q(x)}
\end{aligned}
$$

with the conventions that $0 / 0=0$ and $\not x 0=\infty$ for $x>0$.

$$
\mathrm{h}: \mathrm{X} \rightarrow\{0,1\} \quad \text { empiriçal loss } \mathrm{h}
$$

$$
H \quad \inf _{h \in H} L_{D}^{-}(h)=0
$$

H		(H)	A
loss	$A(S)$	D	$\mathrm{~K}_{h \sim A S} L_{D^{-}(h)}^{i m}$

$$
\begin{array}{cc}
\text { H } & \text { Probably A pproximately Correct (PAC) learnable } \\
\mathrm{h} & \mathrm{D} \in \\
\mathrm{~h} & (\mathrm{H})
\end{array}
$$

Let X be a set, let
$H \subseteq\{0,1\}^{X}$, and let $D \in \Delta(X \times\{0,1\})$. For any $\beta \in(0,1)$ and for any $P \in \Delta(H)$,

$$
S \sim D \quad \forall Q \in \Delta(H): L_{D}(Q) \leq L_{S}(Q)+\frac{\text { y }}{\frac{(Q k P)+\ln (\beta)}{2(m-1)}} \geq 1-\beta
$$

X
$\mathrm{m} \in$
domain $\quad H \subseteq\{0,1\}^{X}$ randomized learning rule learning

CHAPTER 6. THE BAYESIAN STABILITY ZOO

rule
$D \in \Delta(X \times\{0,1\})$ $P \in \Delta\{0,1\}^{x}$

A: $(X \times\{0,1\})^{*} \rightarrow \Delta\{0,1\}^{X}$
population distribution prior distribution

Let $\Phi \in \geq$, and let P and Q be two probability measures over a measurable space (Ω, F). We say that P and Q are ($\$ 0$)-indistinguishable and write $P \approx{ }^{2} ; \mathbf{Q}$, if for every event $\mathrm{O} \in \mathrm{F}, \mathrm{P}(\mathrm{O}) \leq \mathrm{e}^{\prime \prime} \cdot \mathrm{Q}(\mathrm{O})+\delta$ and $\mathrm{Q}(\mathrm{O}) \leq \mathrm{e}^{\mathrm{e}} \cdot \mathrm{P}(\mathrm{O})+\delta$.

Let $\Phi \in \geq$. A learning rule A is ($\mathbf{\Phi})$-differentially private if for every pair of training samples $\$ \in(X \times\{0,1\})^{m}$ that di er on a single example, $\mathrm{A}(\mathrm{S})$ and $\mathrm{A}\left(\mathrm{S}^{\prime}\right)$ are ($\left.\mathbf{\Phi}\right)$-indistinguishable.
ε
$\delta(m) \leq m^{-!} \quad \delta=0$
A pure

H is privately learnable or DP learnable if it is PAC learnable by a learning rule A which is $(\varepsilon(\mathrm{m}), \delta(\mathrm{m})$)-di erentially-private, where $\varepsilon(\mathrm{m}) \leq 1$ and $\delta(\mathrm{m})=\mathrm{m}^{-!}$. A is pure DP learnable if the same holds with $\delta(\mathrm{m})=0$.
α
Let $\alpha \in[1, \infty]$. Let A be a learning rule, and let $\mathrm{f}: \rightarrow$
and $\beta: \quad \rightarrow[0,1]$ satisfy $f(m)=\alpha(m)$ and $\beta(m)=\alpha(1)$.

1. A is distribution-independent α-stable if
\exists prior $P \forall$ population $D \forall m \in: \quad s \sim D[\alpha(S) k P) \leq f(m)] \geq 1-\beta(m)$.
2. A is distribution-dependent α-stable if
\forall population $\mathrm{D} \exists$ prior $\mathrm{P}_{\mathrm{D}} \forall \mathrm{m} \in: \quad \mathrm{s} \mathrm{\sim D}\left[\alpha\left(\mathrm{~A}(\mathrm{~S}) \mathrm{k} \mathrm{P}_{\mathrm{D}}\right) \leq \mathrm{f}(\mathrm{m})\right] \geq 1-\beta(\mathrm{m})$.
The function f is called the divergence bound and β is called the con dence. The special case of $\alpha=1$ is referred to as _-stability (McAllester, 1999).

CHAPTER 6. THE BAYESIAN STABILITY ZOO

A learning rule A is _-stable if there exists $f: \rightarrow$ with $f=d(m)$ such that

$$
\forall \text { population } D \forall m \in: I(A(S), S) \leq f(m) \text {, }
$$

where $\mathrm{S} \sim \mathrm{D}^{\mathrm{m}}$.

Let A be a
learning rule, and let $\mathrm{f}: \rightarrow$ satisfy $\mathrm{f}(\mathrm{m})=\mathrm{d}(1)$.

1. A is distribution-independent -stable if

$$
\exists \text { prior } P \forall \text { population } D \forall m \in: \quad \mathrm{s} \sim \mathrm{D}[\quad(\mathrm{~A}(\mathrm{~S}), \mathrm{P})] \leq \mathrm{f}(\mathrm{~m}) \text {. }
$$

2. A is distribution-dependent -stable if

$$
\forall \text { population } D \exists \text { prior } P_{D} \forall m \in: \quad s \sim D\left[\quad\left(A(S), P_{D}\right)\right] \leq f(m) \text {. }
$$

Let A be a learning rule, and let $\bar{\Phi} \in \geq$. A has ($\mathbf{\Phi}$) -max-information with respect to product distributions if for every event O we have

$$
[(A(S), S) \in O] \leq e^{\prime \prime}\left[\left(A(S), S^{\prime}\right) \in O\right]+\delta
$$

where are $\$$ are independent samples drown i.i.d from a population distribution D.

Let $0 \leq \alpha \beta \leq \infty$. Then $\quad{ }_{\alpha}(P k Q) \leq{ }_{\beta}(P k Q)$. Furthermore, the inequality is an equality if and only if P equals the conditional $Q(\cdot \mid A)$ for some event A.

Let $\alpha \in[0, \infty]$. Let X and Y be random variables, and let $F_{Y \mid X}$ be the law of Y given X. Let P_{Y}, Q_{Y} be the distributions of Y when X is sampled from P_{X}, Q_{X}, respectively. Then

$$
{ }_{\alpha}\left(P_{Y} k Q_{Y}\right) \leq{ }_{\alpha}\left(P_{X} k Q_{X}\right) .
$$

CHAPTER 6. THE BAYESIAN STABILITY ZOO

$$
P_{x} \quad Q_{x}
$$

Given joint distributions $P(x), Q(x)$, the -divergence of the marginals $P(y \mid x), Q(y \mid x)$ is

$$
(P(y \mid x) k Q(y \mid x))=x_{x}^{x} P(x)_{y}^{x} P(y \mid x) \log \frac{P(y \mid x)}{Q(y \mid x)} .
$$

Let $\mathrm{P}\left(x^{\prime}\right), \mathrm{Q}\left(x^{\mathrm{y}}\right)$ be joint distributions. Then,

$$
(P(x) k Q(x))=(P(x) k Q(x))+\quad(P(y \mid x) k Q(y \mid x)) .
$$

For a distribution P_{X} and conditional distributions $\mathrm{P}_{Y \mid X}, \mathrm{Q}_{\mathrm{Y} \mid \mathrm{X}}$, let $\mathrm{P}_{Y}=\mathrm{P}_{Y \mid X} \circ \mathrm{P}_{X}$ and $\mathrm{Q}_{Y}=\mathrm{Q}_{\mathrm{Y} \mid \mathrm{X}}{ }^{\circ} \mathrm{P}_{\mathrm{X}}$, where ' \circ ' denotes composition (see Section 2.4 in P olyanskiy and Wu , 2023+) Then

$$
\left(P_{Y} k Q_{Y}\right) \leq \quad P_{Y \mid X} k Q_{Y \mid X} P_{X},
$$

with equality if and only if $\quad P_{X \mid Y} k Q_{X \mid Y} \quad P_{Y}=0$.

$$
\begin{aligned}
& Z=\left\{\begin{array}{ll}
, \ldots, \ldots & m
\end{array}\right\} \\
& i \in I \quad z \in Z \\
& u(\dot{\sim}) \in\{0,1\} \\
& \text { learner adversary } \mathrm{t}=1, \ldots, \mathrm{~T} \\
& w_{t} \in \Delta(Z) \\
& i_{t} \in I \\
& u_{t}=z \sim w[u(\dot{z} \quad t)]
\end{aligned}
$$

total utility

$$
U(L, T)={ }_{t}^{X^{\top}} u_{t} .
$$

CHAPTER 6. THE BAYESIAN STABILITY ZOO

$$
\begin{aligned}
& \text { regret } \\
& z \in Z
\end{aligned}
$$

$$
\begin{aligned}
& w_{t}(z)=1\left(z=z_{j}\right) \quad t \in[T] \\
& (L, T)=\max _{z \in} U(T)-U(L, T) \text {. } \\
& \text { T } \\
& \text { T } \\
& \text { Multiplicative Weights }
\end{aligned}
$$

In the setting of online learning with expert advice, there exists a learner strategy L such that for any sequence of T instances selected by the adversary,

$$
(L, T) \leq{ }^{q} \overline{2 T \log (m)},
$$

where m is the number of experts.

$$
\begin{aligned}
& \text { A } \\
& P \in \Delta\{0,1\}^{X} \quad b \geq 0 \\
& \forall D \in \quad(H): \quad s \sim D[(A(S) k P)] \leq b \\
& P^{?} \in \Delta\{0,1\}^{x} \\
& S \sim D{ }^{h} L_{D^{-}}\left(A^{?}(S)\right)^{i} \leq \varepsilon^{?}(m)=0 \quad \frac{\mathrm{~s}}{\frac{\log (m)}{m}} .
\end{aligned}
$$

CHAPTER 6. THE BAYESIAN STABILITY ZOO

$$
\begin{aligned}
& \text { (f ,...f } \mathrm{f} \text {) } \\
& \text { i } A^{\text {? }} \\
& \frac{T}{2} \leq_{t}^{X^{\top}} 1\left(f_{t}\left(x_{i}\right) \in y_{i}\right)=U(T) \text {, } \\
& \text { U(T) i } \\
& E_{t} \\
& S_{t} \\
& \text { t } \\
& {\left[E_{t}\right]=\left[\quad\left(A\left(S_{t}\right) k P\right) \geq 2 \neq 0 \quad\right] \leq * 2 .} \\
& \begin{array}{rl}
O_{s} & t \\
u_{t}^{0} & =\underset{\substack{S \sim w \\
f \sim A^{\prime} \\
x ; y \sim w}}{ }\left[1\left(f_{t}(x) \in y\right)\right] \\
& \leq{ }_{S \sim w}{ }^{h} L_{w}\left(A\left(S_{t}\right)\right) \left\lvert\, \neg E_{t}^{i}+\left[E_{t}\right] \leq \frac{1}{2}-v+\frac{\gamma}{2}\right.,
\end{array} \\
& U\left(O_{s}, T\right)={ }_{t}^{X} u_{t}^{O} \leq \frac{1}{2}-\frac{Y}{2} \cdot T \\
& \frac{Y}{2} \cdot T \leq U(T)-U\left(O_{S}, T\right) \leq \quad\left(O_{S}, T\right) \leq{ }^{q} \overline{2 T \log (m)},
\end{aligned}
$$

$$
\begin{aligned}
& S \in(X \times\{0,1\})^{m} \\
& \left(A^{?}(S) k P_{T}^{?}\right)=\left(\begin{array}{lll}
(f, \ldots, f & \text { т }) k \quad(g, \ldots, g \quad \tau))
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& ={ }_{t}^{x} \quad\left(\left(f_{t} \mid f_{<t}\right) k\left(g \mid g_{<t}\right)\right) \\
& \begin{array}{ll}
={ }^{\mathrm{X}^{\mathrm{t}}} \quad\left(\left(\mathrm{f}_{\mathrm{t}} \mid \mathrm{f}_{<t}\right) \mathrm{kg}\right) . \\
={ }_{\mathrm{t}}^{\mathrm{X}^{\top}} \quad\left(\mathrm{A}\left(\mathrm{~S}_{\mathrm{t}}\right) \mathrm{kP}\right) \leq \mathrm{T} \cdot 2 \neq 0 \quad=\mathrm{O}(\log (\mathrm{~m})),
\end{array} \\
& \mathrm{O}_{\mathrm{s}}
\end{aligned}
$$

CHAPTER 6. THE BAYESIAN STABILITY ZOO

```
                \(\alpha \in[1, \infty]\)
                                \(\alpha\)
                \(\alpha \in[1, \infty] \quad \alpha\)
            H
```


ii A
$\stackrel{H}{\sim} \underset{\sim}{\sim}$
iii

D

$$
f(m)=O(\log m)
$$

$$
\text { D } \quad{ }_{\alpha}(\mathrm{A}(\mathrm{~S}) \mathrm{kP}) \leq \mathrm{O}(\log m)
$$

$$
\beta(m) \equiv 0
$$

Proof of Theorem 6.2.1.
$\stackrel{\text { Theorem 6.5.1 }}{\rightleftarrows}$

$\xrightarrow{\text { Lemma 6.5.4 }}$
(*)
number H

$$
\omega_{m}^{?}=\omega_{m}^{?}(H)
$$

fractional clique
H

H
m
H
$H^{1 \omega}{ }_{m}^{?}$

CHAPTER 6．THE BAYESIAN STABILITY ZOO

Let H be a hypothesis class and let $m \in$ ．A clique in H of order m is a family S of realizable samples of size m such that（i）$|\mathrm{S}|=2^{\mathrm{m}}$ ； （ii）every two distinct samples $S^{\prime}, S^{\prime \prime} \in S$ contradicts，i．e．，there exists a common example $x \in X$ such that $(x 0) \in S^{\prime}$ and $(x 1) \in S^{\prime \prime}$ ．

Let H be a hypothesis．The clique dimension of H ，denoted (H) ，is the largest number m such that H contains a clique of order m ．If H contains cliques of arbitrary large order then we write $(H)=\infty$ ．

$$
=\Rightarrow
$$

Let H be a hypothesis class and let A be a（m ）－globally stable learner for H ．Then，A is an η－replicable learner for H ．

$$
\text { For every } ⿴ 囗 十[0,1]
$$

1．E very ρ－replicable algorithm is also $\frac{\rho-v}{-\nu}, \nu$－replicable．
2．Every（ $\mathbb{N} \downarrow)$－replicable algorithm is also（ $\eta+2 v-2$ ）－replicable．
Proof of Lemma 6．6．6．

$$
\begin{aligned}
& R \sim R \\
& \eta \\
&=
\end{aligned} \Rightarrow
$$

Let H be a hypothesis class that is distribution－dependent －stable．Then H has nite Littlestone dimension．

2

2
Let $m \in$ and let $N \in$ ．
Then，there exists $n \in$ large enough such that the following holds．For every learning rule A of the class of thresholds over［ n ］，$H_{n}=\left\{1_{x>k}:[n] \rightarrow\{0,1\} \mid k \in[n]\right\}$ ，there exists a realizable population distribution $\mathrm{D}=\mathrm{D}_{\mathrm{A}}$ such that for any prior distribution P ，

$$
S \sim D \quad(A(S) k P) \nexists \quad \text { or, } \quad L_{D}(A(S))>\frac{1}{4} \geq \frac{1}{16}
$$

CHAPTER 6. THE BAYESIAN STABILITY ZOO

$$
\begin{aligned}
& I(A(S) ; S) \leq f(m) \\
& \quad S \sim D \quad\left(A(S) k P_{D}\right) \geq{ }^{q} \overline{f(m) \cdot m} \leq \frac{s}{f(m)} . \\
& f(m)=o(m) \\
& q_{\mathrm{f}(\mathrm{~m}) \mathrm{m}} \xrightarrow{\mathrm{~m} \rightarrow \infty} 0 \\
& q \overline{f(m) \cdot m}=o(m) \\
& =\Rightarrow
\end{aligned}
$$

Let H be a hypothesis class with nite Littlestone dimension. Then H admits an information stable learner.

2
The information complexity of a hypothesis class H is

$$
(H)=\sup _{|S|} \inf _{A} \sup _{D} I(A(S) ; S)
$$

where the supremum is over all sample sizes $|S| \in$ and the in mum is over all learning rules that PAC learn H .

2 Let H be a hypothesis class of with Littlestone dimension d . Then the information complexity of H is bounded by

$$
(H) \leq 2^{d}+\log (d+1)+3+\frac{3}{e \ln 2} .
$$

The Probabilistic Method

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ST OC 2019, Phoenix, A Z, U SA, J une 23-26, 2019

STOC 2021: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, J une 21-25, 2021

J ournal of the ACM

ArXiv preprint
and Computation Information

ArXiv preprint

Proceedings of the Ninth Annual Conference on Computational Learning Theory, COLT 1996, Desenzano del Garda, Italy, J une 28-J uly 1, 1996

BIBLIOGRAPHY

Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, M ontreal, QC, C anada, J une 19-23, 2017

9th Innovations in Theoretical Computer Science Conference, ITCS 2018, J anuary 11-14, 2018, Cambridge, MA, USA LIPIcs

Transactions
of the Fourth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes

Proceedings of the 29th Conference
on Learning Theory, COLT 2016, New York, USA, J une 23-26, 2016
J MLR Workshop and Conference Proceedings

P roceedings
of The 27th Conference on Learning Theory, COLT 2014, Barcelona, Spain, J une 13-15, 2014 JMLR Workshop and Conference Proceedings

J ournal of Machine Learning Research

2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS)

A Probabilistic Theory of Pattern
Recognition

2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)

BIBLIOGRAPHY

Proceedings of the T wenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018

SIAM J ournal on Computing
History of Cryptography and Cryptanalysis: Codes, Ciphers, and their Algorithms

Foundations and Trends in Theoretical Computer Science

Advances in Cryptology EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings Lecture Notes in Computer Science

Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings Lecture Notes in Computer Science

Science

Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, ST OC 2015, P ortland, OR, USA, J une 14-17, 2015

Information and Computation

BIBLIOGRAPHY

f
 IEEE International Symposium on Information Theory, ISIT 2020, Los Angeles, CA, USA, J une 21-26, 2020

$$
\begin{array}{ll}
\alpha & \text { ArXiv preprint }
\end{array}
$$

The Stanford Encyclopedia of Philosophy

Information and
Computation

Journal of Computer and System Sciences

Contri-
butions to the theory of games, vol. 2

Machine
Learning
Foundations of Cryptography: Volume I, Basic Tools

Computational Complexity and Property
Testing - On the Interplay Between Randomness and Computation Lecture Notes in Computer Science

Proceedings of the twenty- rst annual ACM symposium on Theory of computing

BIBLIOGRAPHY

Studies in Complexity and Cryptography: Miscellanea on the Interplay between Randomness and Computation Lecture Notes in Computer Science

J ournal of the ACM

SIAM Journal on Computing

Journal of the ACM

12th Innovations in Theoretical Computer Science Conference, ITCS 2021, J anuary 6-8, 2021, Virtual Conference LIPIcs
the Theory of Games (AM-39), Volume III

> CoRR $$
\text { Information and Computation }
$$

J ournal of
Combinatorial Theory, Series A

Information and Computation

BIBLIOGRAPHY

Advances in Neural Information Processing Systems 18 [Neural Information Processing Systems, NIPS 2005, December 5-8, 2005, Vancouver, British Columbia, Canada]

International
Conference on Machine Learning, ICML 2023, 23-29 J uly 2023, Honolulu, Hawaii, USA Proceedings of M achine Learning Research

Die Geheimschriften und die Dechi rirkunst: Mit besonderer Ber cksichtigung der deutschen und der franz sischen Sprache

J ournal of
the ACM

J ournal of Computer and System Sciences

Computational Learning Theory, 4th European Conference, EuroCOLT 1999, Nordkirchen, Germany, M arch 29-31, 1999, P roceedings

Lecture Notes in Computer Science

SIAM J ournal on Computing

Proceedings of the Eighteenth International Conference on M achine Learning (ICML 2001), Williams College, Williamstown, MA, USA, J une 28 - July 1, 2001

Bandit Algorithms
cial Intelligence: A Paper Symposium

BIBLIOGRAPHY

J ournal of the ACM
Information Theory: From Coding to Learning

IEEE International Symposium on Information Theory,
ISIT 2022, Espoo, Finland, J une 26 - J uly 1, 2022

Nature Reviews Drug
Discovery

SIAM J ournal on Computing
Proceedings of the Fourth
Berkeley Symposium on M athematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics

> ProofW iki

M odern Discrete Probability: An Essential Toolkit

ACM Transactions on Computation Theory

Symposium on Theory of Computing Conference, ST OC'13, Palo Alto, CA, USA, J une 1-4, 2013

BIBLIOGRAPHY

Human Compatible: Arti cial Intelligence and the Problem of Control

J ournal of Combinatorial Theory, Series A

M achine Learning

Boosting: Foundations and Algorithms
of Computer and System Sciences

Communications of the ACM
Understanding Machine Learning: From The-
ory to Algorithms

Paci c J ournal of Mathematics

Classi cation Theory: A nd the Number of Non-I somorphic Models Studies in Logic and the Foundations of M athematics

The New Science of Management Decision

The Shape of Automation for M en and M anagement

The Code B ook: The Evolution of Secrecy from M ary, Queen of Scots, to Quantum Cryptography

The Annals of Statistics

Proceedings of the National Academy of Sciences

BIBLIOGRAPHY

Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, J une 19-24, 2016

JMLR Workshop and Conference P roceedings

Proceedings of the USSR
Academy of Sciences

Algorithmic Approaches to Statistical Questions

Electronic Colloquium on Computational Complexity (ECCC)

> Electronic Colloquium on Computational Complexity (ECCC)

Communications of the ACM
puting

IEEE Transactions on Information Theory

Probability and Related
Fields
SIAM J ournal on Com-

Estimation of Dependencies Based on Empirical Data

Doklady Akademii Nauk

Theory of Probability and its A pplications

BIBLIOGRAPHY

Theory of Pattern Recognition

Communications of the ACM
The
New York Times

The New York Times

Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA

Festschrift for Lucien Le Cam

Annual International Conference on the Theory and Applications of Cryptographic Techniques

APPENDIX A. APPENDICES FOR CHAPTER 3

$$
\begin{aligned}
& x_{m+1} \log 2^{2(+1)}=2^{k} \\
& H_{m+1} \leq 2^{d-2+2}=2^{d} \cdot 2^{-2+2}=|\mathrm{H}| \cdot 2^{-2+2} . \\
& 2^{-2+1-} \leq 2^{-2+2} \\
& \mathrm{t}_{\mathrm{k}} \\
& H_{t+1} \geq\left|H_{t}\right| \cdot{ }^{t}{ }^{-}\left(1-\varepsilon_{t}\right) \cdot \varepsilon_{t+1} \\
& \geq\left|H_{t}\right| \cdot\left(1-1 m_{k}\right)^{m+1} \cdot\left(1 m_{k}\right) \\
& \geq\left|H_{t}\right| \cdot(1 / 4) \cdot\left(1 m_{k}\right) \\
& \geq|\mathrm{H}| \cdot\left(1 m_{k}\right) \cdot(1 / 4) \cdot\left(1 m_{k}\right) \\
& =|\mathrm{H}| \cdot 2^{-\cdot{ }^{2}} \cdot(1 / 4) \cdot 2^{-2+2}=|\mathrm{H}| \cdot 2^{-{ }^{2}-} \\
& \geq|\mathrm{H}| \cdot 2^{-\cdot 2}=|\mathrm{H}| \cdot 2^{-\cdot 2 \mid+1)}=|\mathrm{H}| \cdot\left(1 m_{\mathrm{k}}\right) . \\
& 2^{\mathrm{d}} \quad-1=\mathrm{n}_{\mathrm{T}} \quad \mathrm{~T} \\
& |F| \geq k^{*} \\
& k^{*}=\min \{\lfloor\log (d) / 2\rfloor,[\log \log (n) / 2\rfloor\} \quad m_{k} \leq 2^{d}< \\
& m_{k} \\
& \mathrm{~m}_{\mathrm{k}} \leq \mathrm{n} \\
& \text { k* }
\end{aligned}
$$

Let X and Y be sets and let $d \in$. A Littlestone tree of depth d with domain X and label set Y is a set

$$
\left.T=\left(x_{u}, y_{u}, y_{u_{0}}\right) \in X \times Y \times Y: u \in_{s}^{\left[^{d}\right.}\{0,1\}^{s} \wedge y_{u 0} \in y_{u^{\circ}}\right)
$$

 Eq. if for every $u \in\{0,1\}^{d}$ there exists $h_{u} \in H$ such that

$$
\forall i \in[d+1]: h\left(x_{u} \quad 1\right)=y_{u} .
$$

The Littlestone dimension of H, denoted (H), is the supremum over all $d \in$ such that there exists a Littlestone tree of depth d with domain X and label set Y that is shattered by H.

APPENDIX A. APPENDICES FOR CHAPTER 3

Let X and Y be sets, let $H \subseteq Y^{X}$, let $d \in$, and let $X=\{X, \ldots, X \quad d\} \subseteq$. We say that H Natarajan-shatters X if there exist $f, f \quad: X \rightarrow Y$ such that:

1. $\forall x \in X: f(x) \in f(x)$; and
2. $\forall A \subseteq X \quad \exists h \in H \quad \forall x \in X: h(x)=f \quad x \in A(x)$.

The Natarajan dimension of H is

$$
(H)=\sup \{|X|: X \subseteq X \quad \text { nite } \wedge H \text { Natarajan-shatters } X\}
$$

Let X and Y be sets with $k=$
$|Y|<\infty$, let $H \subseteq Y^{X}$, and let $n \in$ such that $n \leq|X|$.

1. If $(H)=\infty$ then $M(H, n)=n$.
2. Otherwise, if

$$
\begin{aligned}
& (H)=d k \quad \infty \text { and }(H)=\infty \text { then } \\
& \max \{\min \{d \omega \mid \quad\},[\log (n)]\} \leq M(H, n) \leq O(d \log (k d \quad)) .
\end{aligned}
$$

The $\Omega(\cdot)$ and $\mathrm{O}(\cdot)$ notations hide universal constants that do not depend on X, Y or H .
3. Otherwise, there exists a number $\mathrm{C}(\mathrm{H}) \in$ (that depends on X, Y and H but does not depend on n) such that $M(H, n) \leq C(H)$.

Let $\not \subset k \in$, let X and Y be sets of cardinality n and k respectively, and let $H \subseteq Y^{X}$ such that $\quad(H) \leq d$. Then

$$
|H| \leq \sum_{i}^{x^{d}} n^{!} k+1^{!} \leq \frac{1}{d}_{d}^{d}
$$

Proof of Theorem A.2.3.

$$
\min \{a h\}
$$

$$
\lfloor\log (\mathrm{n})\rfloor
$$

APPENDIX A. APPENDICES FOR CHAPTER 3

Let X be a nite set and let ($\mathrm{X} \leq$) be a partial order relation. For $\propto \in X$, we say that c is a child of p if $p \leq c$ and there does not exist $m \in X$ such that $\mathrm{p} \leq \mathrm{m} \leq \mathrm{c}$. We say that $\mathrm{z} \in \mathrm{X}$ is a leaf if there exists no $\mathrm{x} \in \mathrm{X}$ such that $\mathrm{z} \leq \mathrm{x}$. ($\mathrm{X} \leq$) is a binary tree if every non-leaf $x \in \bar{X}$ has precisely 2 children. The depth of $z \in X$ is the largest $d \in$ for which there exist distinct $x, \ldots, x \quad{ }_{d} \in X$ such that $x \leq x \leq \cdots \leq x_{d} \leq z$. For $d \in$, we say that ($\mathrm{X} \leq$) is a complete binary tree of depth d if ($\mathrm{X} \leq$) is a binary tree and all the leaves in X have depth d. We say that a partial order ($X^{\prime}, \leq^{\prime}$) is a subtree of ($\mathrm{X} \leq$) if $\mathrm{X}^{\prime} \subseteq \mathrm{X}$, and $\forall \notin \oplus \mathrm{X}^{\prime}: \mathrm{a} \leq^{\prime} \mathrm{b} \Leftarrow \mathrm{a} \leq \mathrm{b}$

Let $q \in$ be non-negative such that $p+q \in$. Let $T=(X \leq)$ be a complete binary tree of depth $d=p+q-1$, and let $f: X \rightarrow\{0,1\}$. Then at least one of the following statements holds:

- T has a 0-monochromatic complete binary subtree of depth at least p. Namely, there exists $\mathrm{T}^{\prime}=\left(\mathrm{X}^{\prime}, \leq^{\prime}\right)$ such that T^{\prime} is a subtree of $\mathrm{T}, \mathrm{T}^{\prime}$ is a complete binary tree of depth at least p, and $f(x)=0$ for all $x \in X^{\prime}$.
- T has a 1-monochromatic complete binary tree subtree of depth at least q .
Proof of Lemma A.3.2.
$d=0$

1

			d
	T	d-1	
a		$\mathrm{f}(\mathrm{a}$	

q

$\begin{array}{ll}a & 0 \\ f(a)=1\end{array}$

$$
p-1
$$

p

Let $\mathfrak{l d} \in$. Let $T=(X \leq)$ be a complete binary tree of depth $d \in$, and let $f: X \rightarrow[k]$. Then T has an f-monochromatic complete binary subtree $T^{\prime}=\left(X^{\prime}, \leq \leq^{\prime}\right)$ of depth at least

$$
d^{\prime}=\frac{d+1}{2^{\Gamma} \mathrm{k} 1} .
$$

Namely, there exists T^{\prime} such that T^{\prime} is a subtree of $\mathrm{T}, \mathrm{T}^{\prime}$ is a complete binary tree of depth at least d, and $\left|\left\{f(a): a \in X^{\prime}\right\}\right|=1$.

APPENDIX A. APPENDICES FOR CHAPTER 3

Proof of Lemma A.3.3.
$b \in \quad k \leq 2^{b}$
f
T

$$
\frac{d+1}{2^{b}}
$$

b
$b=1$
b

$$
b=\lceil\log (k)\rceil
$$

$$
b+1
$$

$$
\mathrm{f}: \mathrm{X} \rightarrow[\mathrm{k}] \quad \mathrm{k} \leq 2^{\mathrm{b}}
$$

$$
(d+1) / 2^{b}
$$

$$
g: X \rightarrow\{1,2\} \quad g(x)=1+(f(x) \bmod 2)
$$

g

$$
\begin{aligned}
\mid\{f(x): x \in X & \\
& \\
& \frac{d}{T}+2^{b} \\
& \\
& \frac{d}{2^{b}}>\frac{d+1}{2^{b}}
\end{aligned}
$$

Let X and Y be sets, let $X=\left\{X, \ldots, X \quad{ }_{\mathrm{t}}\right\} \subseteq X$, and let $H \subseteq Y^{X}$. We say that X is threshold-shattered by H if there exist distinct y,y $\in Y$ and functions $h, \ldots, h \quad{ }_{t} \in H$ such that $h_{i}\left(x_{j}\right)=y ~ j \leq i$. The threshold dimension of H, denoted is the supremum of the set of integers t for which there exists a threshold-shattered set of cardinality t .

Let X and Y be sets, let $X=\left\{X, \ldots, X \quad{ }_{t}\right\} \subseteq X$, and let $H \subseteq Y^{X}$. We say that X is multi-class threshold-shattered by H if there exist $y, y \quad . ., y_{r} \quad \mathrm{t}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}} \in Y$ such that $y_{i} \in y_{j}^{\prime}$ for all $\overline{i j} \in[t]$, and there exist functions $h, \ldots, h \quad t \in H$ such that

$$
h_{i}\left(x_{j}\right)=\begin{array}{ll}
\left(\begin{array}{ll}
y_{i} & (j \leq i) \\
y_{j}^{\prime} & (j \gg)
\end{array} . .\right.
\end{array}
$$

The multi-class threshold dimension of H , denoted $\quad(\mathrm{H})$, is the supremum of the set of integers t for which there exists a threshold-shattered set of cardinality t .

Let X and Y be sets, $k=|Y|<\infty$, and let $H \subseteq Y^{X}$. Then L (H)k J.

APPENDIX A. APPENDICES FOR CHAPTER 3

	x	x	x	x	x
h	y	\mathbf{y}^{\prime}	\mathbf{y}^{\prime}	\mathbf{y}^{\prime}	\mathbf{y}^{\prime}
h	y	y	\mathbf{y}	\mathbf{y}	\mathbf{y}
h	y	y	y	\mathbf{y}	\mathbf{y}^{\prime}
h	y	y	y	y	\mathbf{y}
h	y	y	y	y	y

$\{x, \ldots, x \quad\}$
$\{\mathrm{h}, ., \mathrm{h} \quad$ \}

Proof of Claim A.4.3.
Let X and Y be sets, let $H \subseteq Y^{X}$ such that $d=\quad(H)<\infty$, and let $n \in$. Then

$$
M(H, n) \geq \min \{\lfloor\log (d)\rfloor,\lfloor\log (n)\rfloor\} .
$$

Let X and Y be sets with $k=|Y|<\infty$, let $H \subseteq Y^{X}$. If
$(\mathrm{H})=\infty$ then $(H)=\infty$.

Proof of Theorem A.4.5. $\quad f_{k}(d)$
d

$$
\mathrm{f}_{\mathrm{k}}(\mathrm{~d})
$$

d $\quad f_{k}$

$$
\begin{aligned}
& f_{k}(d) \geq \begin{array}{l}
1 \\
1+f_{k}([d 2 k]-1)
\end{array} \begin{array}{l}
d=1 \\
d> \\
d=\begin{array}{l}
\text { (H) } \\
f_{k}(d)
\end{array} \xrightarrow{d \rightarrow \infty} \infty
\end{array} .
\end{aligned}
$$

$$
\begin{array}{llll}
(H) \in[d-1] & & (H)=d & T
\end{array}
$$

T
「d2k] y
H c \quad x T

$$
y^{\prime} \in y \quad H^{\prime}=\left\{g \in H: g(x)=y^{\prime}\right\} \quad H^{\prime}
$$

$$
c \quad\left(\mathrm{H}^{\prime}\right) \geq\left[\mathrm{d}^{2} 2 \mathrm{k}\right]-1
$$

$$
s=f_{k}([d 2 k]-1)
$$

$$
X=\left\{x, \ldots, x \quad{ }_{s}, X_{s}=x\right\}
$$

$\left\{h_{n}, \ldots, h \quad{ }_{s, h}=h\right\} \quad h_{s}\left(x_{j}\right)=y \quad j \in[s+1] \quad h_{i}\left(x_{s}\right)=y^{\prime}$
$i \in[s] \quad f_{k}(d) \geq s+1=1+f_{k}([d 2 k]-1)$

APPENDIX A. APPENDICES FOR CHAPTER 3

Let $k \in$, and let $\sigma, \sigma, \ldots, \sigma \quad \mathrm{k}$ be random variables sampled independently and uniformly at random from $\{ \pm 1\}$. Then

$$
{\underset{i \in k}{x} \sigma_{k} \geq{ }^{q} \overline{k 2} . . . ~}_{\text {. }}
$$

Proof of lower bound in Theorem 3.6.1. $\quad \mathrm{d}=\quad(\mathrm{H})$
(H) $\quad\left\{\mathrm{x}^{*}, \ldots, \mathrm{x} \quad{ }_{\mathrm{d}}^{*}\right\} \subseteq \mathrm{X}$
d $\leq n$ $\underset{x \in X^{n}}{d}$

H $k^{k \in}$

x

$$
i \in[d] \quad j \in[k] \quad y_{i}^{j}=y_{i-k^{j}}{ }_{x_{i}^{j}} \quad \hat{y}_{i}^{j}=\hat{y}_{i-k j}
$$

A

$$
=\frac{k}{2}-{ }_{y \sim(\{;\})} \min _{i \in d} \min _{\mathrm{h} H_{j \in k}}^{x} 1 h\left(x_{i}^{j}\right) \in y_{i}^{j} \quad H \quad\left\{x^{*}, \ldots, x \quad{ }_{d}^{*}\right\}
$$

$$
=x_{i}^{x^{d}} \frac{k}{2}-{ }_{y \sim(\{;\})} \min _{h \notin H_{j \in k}} 1 h\left(x_{i}^{j}\right) \in y_{i}^{j}
$$

$$
={ }_{i}^{x^{d}} \frac{k}{2}-y_{y \sim(\{;\})}\left[\min \left\{r_{i}, k-r_{i}\right\}\right]
$$

$$
r_{i}={ }_{j \in k}^{x} y_{i}^{j}
$$

$$
\begin{aligned}
& y \sim\{;\}\left[R\left(A H_{x}\right) \quad\right. \text {) } \\
& =y_{y \sim\{;\} \quad \text { y }}^{x} 1\left(\hat{y}_{t} \in y_{t}\right)-\min _{h \in H_{i \in n}} x\left(h\left(x_{t}\right) \in y_{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathrm{X}, \ldots, \mathrm{X} \quad{ }_{\mathrm{kd}}\right)=\mathrm{X}, \mathrm{X}, \ldots, \mathrm{X} \quad{ }^{\mathrm{k}}, \mathrm{X}, \mathrm{X}, \ldots, \mathrm{X} \quad{ }^{\mathrm{k}, \ldots, \mathrm{X}} \quad{ }_{\mathrm{d}}, \mathrm{X}_{\mathrm{d}}, \ldots, \mathrm{X} \quad{ }_{\mathrm{d}}^{\mathrm{k}}, \\
& x_{i}^{j}=x_{i}^{*} \quad i \in[d] \quad j \in[k] \quad k \notin Q \quad n-k d
\end{aligned}
$$

$$
\begin{array}{ll}
& \mathrm{O}\left(\frac{\left.\overline{m_{2}}\right)}{}\right. \\
\text { large } & \text { class }
\end{array}
$$

APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{aligned}
& Y \in \\
& X, \ldots, X \quad{ }_{n} \in \\
& \mathrm{f}(\mathrm{X}, \ldots, \mathrm{X} \quad \mathrm{n}) \\
& \text { Y } \\
& H=\left\{\begin{array}{ll}
h & \\
\mathrm{~h}
\end{array}\right\} \\
& h_{i}
\end{aligned}
$$

[^17]
APPENDIX B. APPENDICES FOR CHAPTER 4

APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{array}{llll}
-A & 1 & H & m_{H}(\Phi \delta) \\
-m_{H}=m_{H}\left(\begin{array}{lll}
k & 2
\end{array}\right) & m_{H} & & \\
H & & \\
-k=-\underline{2} & &
\end{array}
$$

V	$(x, y), \ldots,\left(x_{k}, y_{k}\right) \quad D$

$V \quad x_{k} \quad, \ldots, x \quad m \quad D_{x}$

P
$\left.\underset{\left(\tilde{y}_{\pi}\right.}{P} \ldots, \tilde{y}_{\pi m}\right) \quad V{ }^{f_{D}} \quad \tilde{y}_{\pi i}=f_{D}\left(x_{\pi i}\right) \quad i \in\left[m^{\prime}\right]$
$\left(\tilde{y}_{\pi}, \ldots, \tilde{y}_{\pi m}\right) \quad V$

A

Proof for Claim 4.5.2.
$h=A\left(\left(x, f_{D}(x)\right), \ldots, \quad\left(x_{m}, f_{D}\left(x_{m}\right)\right)\right)$
A 1

V
D_{x}
H
D

APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{aligned}
& \text { V } \\
& \begin{array}{c}
1-\underline{\delta} \\
\frac{\left|\left\{i \in[m]: \tilde{y}_{i} \in f_{D}\left(x_{i}\right)\right\}\right|}{m} \leq \frac{\varepsilon}{4} .
\end{array} \\
& 1 \text { - } \underline{\sigma} \\
& \text { h } \\
& \text { A } \\
& h \in \text { reject } \wedge \quad L_{D}(h) \not \text { Ł }_{D}(H)+\varepsilon \leq \delta \\
& t=\left|\left\{i \in[m]: \tilde{y}_{i} \in f_{D}\left(x_{i}\right)\right\}\right| \quad 4 \\
& \pi[\mathrm{~h} \in \text { reject }] \leq 1-\frac{k^{!}}{\mathrm{m}} e^{-\mathrm{kt}=\mathrm{m}} e^{-\mathrm{k}=} \leq \frac{\delta}{2}, \\
& k \geq \underline{\underline{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{D}}(\mathrm{~h}) \leq \mathrm{L}_{\mathrm{s}}(\mathrm{~h})+\boldsymbol{\mathrm { E }} 4 \\
& \leq L_{s}(\mathrm{~h})+2 k 4 \\
& \leq L_{s}(h)+2 k 4 \\
& \leq L_{s}\left(h^{\prime}\right)+3 E 4 \\
& \leq L_{s}\left(h^{*}\right)+3 E^{4} \\
& \leq L_{D}\left(h^{*}\right)+\varepsilon \\
& L_{D}(h) \leq L_{D}\left(h^{*}\right)+\varepsilon \quad h^{*} \in H \\
& m^{\prime}=O(m(\$)) \\
& \pi \\
& \text { A } \\
& \text { ' } \\
& \text { h } \\
& \text { h' } \\
& \text { H } \\
& X=\{0,1\}^{n} \quad D_{x} \\
& \text { (*)) D }
\end{aligned}
$$

APPENDIX B. APPENDICES FOR CHAPTER 4

${ }^{4}$ Technically, the x_{i} 's are sampled by repeatedly invoking Protocol B.2, as is done is Protocol B.3.

APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{array}{lll}
-\mathrm{f} & \ell & \mathrm{t} \\
-\mathrm{X} \in \mathrm{X} &
\end{array}
$$

Gener at eC ompr essed M essage (X)

$$
-I^{*} \sim \operatorname{Uniform}(\{0,1,2, \ldots, t \quad\})
$$

$$
-S \sim U \text { niform }\left(\{0,1\}^{\prime}\right)
$$

$$
\begin{aligned}
& W, \ldots, W \\
& X
\end{aligned}{ }^{t}{ }^{t}{ }^{\leftarrow}{ }^{f} \quad(s)
$$

$$
M \leftarrow(X, S)
$$

$$
\left(\begin{array}{ll}
\mathrm{M}
\end{array}\right)
$$

ExpandCompr essedM essage(M)

$$
(X, S) \leftarrow M
$$

$$
\mathrm{W}, \ldots, \mathrm{~W} \quad \mathrm{t} \leftarrow \mathrm{f} \quad(\mathrm{~s})
$$

 \(i \in[t]\)
 \(X_{i} \leftarrow X_{i-} \oplus W_{i}\)
 \(X, \ldots, X \quad \mathrm{t}\)
 APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{aligned}
& \text { - A } 1 \\
& \text { H } \\
& \mathrm{m}_{\mathrm{H}} \text { (\$) } \\
& -m^{\prime}=m_{H}\left(\begin{array}{ll}
(1, \delta 2) & m_{H}
\end{array}\right. \\
& \text { H } \\
& -\mathrm{k}=\underline{\underline{2}} \\
& \text { - } \quad f \quad t=\left\lfloor m^{\prime} k\right\rfloor \\
& \text { V } \\
& j \in[k] \\
& \left(X_{j}, Y_{j}\right) \sim D \\
& M_{j}, l_{j}{ }^{*} \leftarrow G \text { ener at eC ompr essed } M \text { essage }\left(X_{j}\right) \\
& \text { (M,..., M k) P } \\
& \text { P } \\
& \tilde{Y} \leftarrow \\
& \underset{X}{\mathrm{j} \in[\ldots, \mathrm{X}]} \quad \mathrm{X} \leftarrow \text { ExpandCompr essedM essage }\left(M_{j}\right) \\
& i \in\{0,1, \ldots, t \quad\} \\
& \tilde{\mathrm{Y}}_{\mathrm{j} ; \mathrm{i}} \leftarrow \mathrm{f}_{\mathrm{D}}\left(\mathrm{X}_{\mathrm{i}}\right) \\
& \tilde{Y} \quad \vee \\
& \text { V } \\
& X \leftarrow \\
& j \in[k] \\
& i^{*} \leftarrow I_{j}{ }^{*} \\
& \tilde{Y}_{\mathrm{j} ; i} \in \mathrm{Y}_{\mathrm{j}} \\
& \left(X_{j}, \ldots, \ldots \quad \mathrm{X}, \mathrm{t}\right) \leftarrow \text { ExpandCompressed } M \text { essage }\left(\mathrm{M}_{\mathrm{j}}\right) \\
& \text { ตn } \leftarrow\left\{\left(X_{j ; i}, \tilde{Y}_{\mathrm{j} ; \mathrm{i}}\right): \mathrm{j} \in[\mathrm{k}], \mathrm{i} \in\{0,1, \ldots, \mathrm{t} \quad\}\right\} \\
& h \leftarrow A\left(\begin{array}{c}
(\ldots) \\
h
\end{array} \quad 4, \delta 2\right) \\
& \text { h }
\end{aligned}
$$

APPENDIX B. APPENDICES FOR CHAPTER 4

Assume X is sampled uniformly from X, and then the subroutine G ener at e Compr essed M essage (X) is executed and outputs the tuple (\mathbb{M}^{*}). Then the random variables M and I^{*} satisfy that $M \perp I^{*}$.

Proof

$$
\begin{aligned}
&(X, S)=M \quad x \in X \quad s \in\{0,1\}^{\prime} \quad i \in\{0,1,2, \ldots, t \quad\} \\
& {\left[X=x|S=s \wedge|^{*}=i\right] }=X \oplus \quad M \quad W_{j}=x \quad S=s \wedge \|^{*}=i \\
&=X=x \oplus 1 \\
&=\frac{1}{|X|} .
\end{aligned}
$$

$$
\begin{aligned}
& {\left[X=x \wedge S=s \wedge I^{*}=i\right]=\left[I^{*}=i\right] \cdot\left[S=s \mid I^{*}=i\right] \cdot\left[X=x \mid S=s \wedge I^{*}=i\right]} \\
& =\left[I^{*}=\mathrm{i}\right] \cdot[\mathrm{S}=\mathrm{s}] \cdot\left[\mathrm{X}=\mathrm{x} \mid \mathrm{S}=\mathrm{s} \wedge \mathrm{I}^{*}=\mathrm{i}\right] \\
& \text { SIl * } \\
& =\left[1{ }^{*}=\mathrm{i}\right] \cdot[\mathrm{S}=\mathrm{s}] \cdot \frac{1}{\mid \mathrm{X\mid}} \\
& =\left[I^{*}=\mathrm{i}\right] \cdot[\mathrm{X}=\mathrm{X} \wedge \mathrm{~S}=\mathrm{s}] . \quad \mathrm{X} \perp \mathrm{~S}
\end{aligned}
$$

Proof of Claim 4.5.3.

APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{aligned}
& M_{j} \quad p=1-\frac{b}{t} \quad \frac{b}{m}>{ }^{-}
\end{aligned}
$$

$$
\begin{aligned}
& <1-\frac{\varepsilon}{4}{ }^{k}{ }_{-{ }_{4}{ }^{k} \leq \frac{\delta}{2}, ~}^{2} \\
& I_{j}{ }^{*} \\
& \text { k }
\end{aligned}
$$

APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{aligned}
& \text { - A } 1 \\
& -m=m_{H}(\notin 4, \delta 2) \quad m_{H}
\end{aligned}
$$

P
$X, \ldots, X \quad m \leftarrow f \quad\left(m^{\prime}\right)$
$i \in\left[m^{\prime}\right]$
$\tilde{Y}_{\mathrm{i}} \leftarrow \mathrm{f}_{\mathrm{D}}\left(\mathrm{X}_{\mathrm{i}}\right)$
$\left(\tilde{Y}, \ldots, \quad \tilde{Y}_{m}\right)$
v
$X, \ldots, X \quad m \leftarrow f \quad\left(m^{\prime}\right)$

$h \leftarrow A\left(\left\{\left(X_{i}, \tilde{Y}_{\mathrm{i}}\right): \mathrm{i} \in\left[\mathrm{m}^{\prime}\right]\right\} \xi 4, \$ 2\right)$
h

APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{aligned}
\mathrm{T}^{\mathrm{X}}= & \left\{\mathrm{f}_{\mathrm{t}}\right\}_{\mathrm{tex}} \subseteq \mathrm{~T} \\
& \mathrm{D} \in \Delta(\mathrm{X} \times\{0,1\})^{5}
\end{aligned}
$$

$$
X \subseteq[0,1]
$$

T^{x}

Let $[\beta] \subseteq$ be an interval, and let p be a distribution over that is absolutely continuous with respect to the Lebesgue measure. If p [β] $\geqslant \geq 0$, then there exists $\mathrm{y} \in[\beta]$ such that $\mathrm{p}[\boldsymbol{q}]=r$.

$$
\mathrm{T}^{\mathrm{X}} \quad \mathrm{Y} \in \mathrm{X}
$$

Let $N \in$, let $[\S] \subseteq$ be an interval with $\S \in X$, and let p be a probability mass function over X. If $p[\&] \ngtr 0$, then there exists a pair (fq) where $\gamma \in X \cap[\$]$ and $q \in[N]$, such that:

$$
p[q)+\frac{q}{N} \cdot p(\gamma)-r \leq \frac{1}{2 N} .
$$

Likewise, there exists ($\mathrm{y}^{\prime}, q^{\prime}$) such that

$$
p\left(\gamma^{\prime}, \beta\right]+\frac{q^{\prime}}{N} \cdot p\left(\gamma^{\prime}\right)-r \leq \frac{1}{2 N} .
$$

Proof.

$$
\begin{aligned}
& Y=\min x \in X: p[\alpha] \geq r \\
& q=\underset{i \in N}{\arg \min } \frac{i}{N}-\frac{r-p[\alpha]}{p(y)} .
\end{aligned}
$$

[^18]
APPENDIX B. APPENDICES FOR CHAPTER 4

$$
\begin{aligned}
p\left[(\mathcal{q})+\frac{q}{N} \cdot p(\gamma)-r \leq\right. & p[\boldsymbol{q})+\frac{r-p[\boldsymbol{q})}{p(\gamma)} \cdot p(\gamma)-r \\
& +p(\gamma) \frac{r-p[\phi])}{p(\gamma)}-\frac{q}{N} \\
= & \frac{r-p[\phi)}{p(\gamma)}-\frac{q}{N} \leq \frac{1}{2 N} .
\end{aligned}
$$

($\gamma^{\prime}, q^{\prime}$)

Fix $N \in$, and let $X \subseteq[0,1]$ be a nite set. Let $D \in \Delta(X \times\{0,1\})$ be a distribution and $\nrightarrow \geq 0$. A certi cate of loss at least ℓ for class T^{\times}with resolution \bar{N}_{N} is a tuple
(罒 a
where $0 \leq b<1$ and $q_{a}, q_{b} \in[N]$, and if $a=b$ then $q_{b}+q_{b} \leq N$.
We say that the certi cate is η-valid with respect to distribution D if

$$
\text { D }[0, a)+\frac{q_{6}}{N} \cdot p(a)-\ell+D \quad(b 1]+\frac{q_{b}}{N} \cdot p(b)-\ell \leq \eta
$$

Fix $N \in$, and let $X \subseteq[0,1]$ be a nite set. Let $D \in \Delta(X \times\{0,1\})$ be a
 $\mathrm{q}_{\mathrm{a}}, \mathrm{q}_{\mathrm{b}} \in[\mathrm{N}]$, which constitute a certi cate of loss - for the class T^{\times}that is ${ }_{\mathrm{N}}$-valid with respect to D.

APPENDIX B. APPENDICES FOR CHAPTER 4

A set system is a tuple (X S), where X is any set, and $S \subseteq 2^{X}$ is any collection of subsets of \bar{X}. The members of X are called points.
$\left\{1_{\mathrm{S}}: \mathrm{S} \in \mathrm{S}\right\}$
Let (X S) be a set system, let D be a distribution over X , and let $\varepsilon \in(0,1)$. We say that a multiset $A \subseteq X$ is an ε-sample with respect to D if

$$
\forall S \in S: \quad \frac{|A \cap S|}{|A|}-D(S) \leq \varepsilon
$$

There exists a constant $\mathrm{c}>0$ such that for any set system (X S) of VC-dimension at most d and any $0 \quad-$, a sequence of at least

$$
\frac{c}{\epsilon} \quad \operatorname{dog} \frac{d}{\epsilon}+\log \frac{1}{\delta}
$$

i.i.d. samples from D will be an \in sample with respect to D with probability at least $1-\delta$.

Let $\mathrm{D}^{*}=\left(\mathrm{d}, ., \mathrm{d} \mathrm{n}_{\mathrm{n}}\right)$ be a distribution over a nite set of size n , and let $\varepsilon \in(0,1)$. There exists an algorithm which, given the full speci cation of D^{*} and sample access to an unknown distribution D , takes

$$
\bigcirc \frac{V_{\bar{n}}}{\varepsilon} \log (n)
$$

samples from D, and satis es:

- Completeness. If

$$
\mathrm{d} \quad\left(\mathbb{D} \quad * \leq \frac{V^{\varepsilon}}{300} \overline{\mathrm{n} \log \mathrm{n}},\right.
$$

then the algorithm accepts with probability at least -.

APPENDIX B. APPENDICES FOR CHAPTER 4

- Soundness. If

$$
\mathrm{d} \quad\left(\mathbb{D}^{*}\right) \underset{x}{ }
$$

then the algorithm rejects with probability at least -.

Taking

$$
\mathrm{O} \log \frac{1}{\delta} \frac{\sqrt{ }}{\overline{\mathrm{n}}} \frac{!}{\varepsilon} \log (\mathrm{n})
$$

samples is su cient to ensure completeness and soundness at least $1-\delta$ (instead of -).

Let $\delta \in(0,1), X:=[n]$. Consider a sequence X, x...,X \quad t of i.i.d. samples taken from U_{X}, and let G denote the event in which all the samples are distinct, that is $|\{\mathrm{x}, \ldots, \mathrm{x} \quad \mathrm{t}\}|=\mathrm{t}$. Then taking

$$
n \geq \frac{\log (2 e)}{\log \frac{-\delta}{-\delta}} \cdot t
$$

entails that

$$
[G] \geq 1-\delta
$$

Let , be probability functions over a probability space (Ω, F). Then for all $\alpha \in[0,1]$,

$$
((1-\alpha)+\alpha,) \leq \alpha
$$

In particular, if X is a random variable and E is an event, then

$$
(\mathbb{X} \quad \mid E) \leq 1-[E]=\stackrel{\mathrm{h}^{\mathrm{i}}}{\mathrm{E}} .
$$

Proof.

$$
\begin{aligned}
& ((1-\alpha)+\alpha,)=\max _{A \in}(1-\alpha)(A)+\alpha(A)-(A) \\
& =\max _{A \in} \alpha \cdot((A)-(A)) \leq \alpha \\
& x, X|E \quad X \quad X| E \\
& x, x\left|E=\left(1-\overline{\bar{E}^{i}}\right) \cdot x\right| E+\frac{h \bar{E} i}{x \mid E}, x \left\lvert\, E \leq \frac{h \bar{E} i}{}\right. \text {. }
\end{aligned}
$$

APPENDIX B. APPENDICES FOR CHAPTER 4

Proof of Claim B.7.1.
g: $\{0,1\}^{n} \rightarrow$

$$
L_{D}(g) \leq(1+\beta) \ell \leq L_{D}(H)+\frac{\varepsilon}{2}
$$

$$
\begin{aligned}
& \left.L_{D}(h)\right)^{h}(f(x)-h(x))^{i}={ }_{T \in}^{x} f(T)-h_{(T)}+{ }_{T \in L}^{x}(T), \\
& \begin{aligned}
X \in f(T)-R(T) & \leq|L| \cdot \frac{\varepsilon}{2|L|}=\frac{\varepsilon}{2} .
\end{aligned} \\
& \beta:=-\quad \ell:=\max \left\{L_{D}(H),{ }^{\prime \prime}\right\} \\
& { }^{P}{ }_{T \in}{ }^{f(}(T) \leq L_{D}(H)+\cdot
\end{aligned}
$$

$$
\begin{aligned}
& \underset{t \in b 0 \mid b}{x}(T) \leq\left|b^{>}\right| \cdot \tau \leq t \cdot \frac{\beta}{t}=\beta
\end{aligned}
$$

d

Let Ω be a set, let $D \in \Delta(\Omega)$ be a distribution, and let $\tau \geq 0$. A statistical query is an indicator function $q: \Omega \rightarrow\{0,1\}$. An oracle O is a statistical query oracle for D with precision τ, denoted $O \in(D, \tau)$, if at each invocation, \bar{O} takes a statistical query q as input and produces an arbitrary evaluation $O(q) \in[0,1]$ as output such that

$$
O(q)-x \sim D[q(X)] \leq x
$$

In particular, the oracle's evaluations may be adversarial and adaptive, as long as each of them satis es Eq. .

The notion of PAC veri cation of an algorithm (Dep nition 5.2.3) requires that the veri er's output be competitive with $L_{D}(A)=L_{D} A^{0}$, the expected loss of algorithm A when executed with access to oracle O. For this expectation to be de ned, throughout this chapter we only consider oracles whose behavior can be described by a probability measure. In particular, oracles may be adaptive and adversarial in a deterministic or randomized manner, but they cannot be arbitrary.

A statistical query algorithm is a (possibly randomized) algorithm A that takes no inputs and has access to a statistical query oracle O. At each time step $t=1,2,3, \ldots$:

APPENDIX C. APPENDICES FOR CHAPTER 5

- A chooses a nite batch $\mathbf{q}_{t}=\left(q_{, ~ . . ., ~}^{,}{ }_{t}^{n}\right)$ of statistical queries and sends it to the oracle O.
- O sends a batch of evaluations $\mathbf{v}_{t}=\left(v_{t}, \ldots, v v_{t}^{n}\right) \in[0,1]^{n}$ to A, such that $v_{t}^{i}=O\left(q^{\dot{j}}\right)$ for all $\mathrm{i} \in\left[\mathrm{n}_{\mathrm{t}}\right]$.
- A either produces an output and terminates, or continues to time step $t+1$.

The resulting sequence $\mathbf{r}=(\mathbf{q}, \mathbf{v}, \mathbf{q}, \mathbf{v}, \ldots$.$) is called a transcript of the execution.$
t
$9 t$
$\left(\mathbf{r}_{<\mathrm{t}}, \mathrm{P}\right)$
$\mathbf{r}_{<t}=\left(\mathbf{q}, \mathbf{v}, \mathbf{q}, \mathbf{v}, \ldots, \quad \mathbf{q}_{t-}, \mathbf{v}_{\mathrm{t}-}\right)$,
A A
ρ
$(\mathbf{r}, \mathrm{\rho})$

Let Ω be a set, and let $S \subseteq 2$ be a collection of subsets. We say that S is a σ-algebra for Ω if it satis es the following properties:

- $\Omega \in S$.
- $\forall S \subseteq S: \Omega \backslash S \in S$.
- For any countable sequence $S, S, \ldots \in S$: $u_{i}^{\infty} \quad S_{i} \in S$.

Let Ω be a set.

- Let $A \subseteq 2$ be a collection of subsets. The σ-algebra generated by A for Ω, denoted $\sigma(A)$, is the intersection of all σ-algebras for Ω that are supersets of A.
- Let $F \subseteq\{0,1\}$ be a set of indicator functions. The $\underline{\sigma}$-algebra generated by F for Ω is $\sigma(F)=\sigma\left(\left\{A \subseteq \Omega: 1_{A} \in F\right\}\right)$.

Let S be a σ-algebra. The set of atoms of S is

$$
(S)=\left\{S \in S:\left(\forall S^{\prime} \in S \backslash: S^{\prime} \in S\right)\right\} .^{1}
$$

Let Ω be a set and let $F=\{f, f, \ldots, f \quad k\} \subseteq\{0,1\}$ be a nite set of indicator functions. The partition size of F is $(F)=|\quad(\sigma(F))| \in$, i.e., the number of atoms in the σ-algebra generated by F for Ω.

[^19]
APPENDIX C. APPENDICES FOR CHAPTER 5

Let $\mathbf{l} \boldsymbol{s} \in$, let Ω be a set and H be a discrete set. Let A be a statistical query algorithm that adaptively and randomly generates some random number T of batches $\mathbf{q} \ldots, \quad \mathbf{q}_{T}$ of statistical queries $\Omega \rightarrow\{0,1\}$ such that with probability $1, \mathrm{~T} \leq \mathrm{b}$ and $\quad\left(\mathbf{q}_{\mathrm{t}}\right) \leq \mathrm{s}$ for each $\mathrm{t} \in[\mathrm{T}]$, and the algorithm outputs a random value $h \in H$. Let $\subseteq \Delta(\Omega)$ be a set of distributions, let $\uparrow>0$, and let $L: \Omega \times H \rightarrow[0,1]$ be a loss function.

Then there exists a collection of oracles $=\left\{O_{D}\right\}_{D \in}$ where $O_{D} \in(D, \tau)$ for all $D \in$, such that algorithm A with access to oracles is PAC veri able with respect to by a veri cation protocol that uses random samples, where the veri er and honest prover respectively use

$$
\mathrm{m}=\Theta \frac{{ }^{\sqrt{ }} \overline{\mathrm{s}} \log (\sqrt{\delta})}{\tau}+\frac{\log (\sqrt{(})}{\varepsilon},
$$

and

$$
m=\theta \frac{s \log (\mathbf{f} \quad)}{\tau}
$$

i.i.d. samples, with $k=\lceil 8 \log (4 \delta) E\rceil$.

Let A be a statistical query algorithm as in T heorem C.2.8, and let $d \in$. Assume that in each time step $t \in[T], \quad\left(\mathbf{q}_{t}\right)=d$ and $\left|\mathbf{q}_{t}\right|=2^{d}$. Namely, \mathbf{q}_{t} is the set of indicator functions of a σ-algebra with d atoms. Consider an implementation of A that uses random samples to simulate the SQ oracle accessed by A, such that the implementation uses random samples only and does not use any oracles. Simulating an oracle $O \in(D, \tau)$ requires

$$
\mathrm{m}=\Omega \frac{\mathrm{d}+\log (1 \delta)}{\tau}
$$

i.i.d. samples from D. In contrast, there exists a protocol that PAC veri es A such that the veri er uses only

$$
m=\theta \frac{{ }^{\sqrt{ }} \overline{\mathrm{d} \log (\$)}}{\tau}+\frac{\log (\sqrt{ })^{!}}{\varepsilon}
$$

i.i.d. samples from D, with $k=\lceil 8 \log (4 \delta) k\rceil$.

APPENDIX C. APPENDICES FOR CHAPTER 5

Let A be a statistical query algorithm, let be a collection of distributions, and let $\boxminus>\quad 0$. We say that a collection of oracles $h=\left\{O_{D}\right\}_{D_{i} \in}$ is ε-maximizingwith respect to A and if for each $D \in, O_{D} \in(D, \tau)$ and $L_{D} A^{O} \geq \sup _{O \in} \quad D ; \tau \quad L_{D} A^{O}-$ ε.

Proof of Theorem C.2.8.

$$
A=\left\{O_{D}\right\}_{D \in} \quad \notin 4
$$

a_{t}
$\left(\mathbf{a}_{\mathrm{t}}\right)=1$

$$
b \cdot k
$$

m

$$
1-/
$$

Verifierlt er at ion

$$
\forall \quad i \in[k] \forall \in[T]: \quad k \tilde{\mathbf{p}}_{\mathrm{t}}-\mathbf{p}_{\mathrm{t}} \mathrm{k}_{\infty} \leq \frac{\overline{\mathrm{s}}}{\mathrm{~s} \overline{\mathrm{~s}}}
$$

$$
p_{t}^{j}=z_{\sim D}^{h} a_{t}^{j}(Z)^{i}
$$

$$
1-/
$$

$$
\forall \quad i \in[k] \forall \in[T]: k \tilde{\mathbf{p}}_{\mathrm{t}}-\mathbf{p}_{\mathrm{t}} \mathrm{k} \leq \frac{\sqrt{\top}_{\bar{s}}^{\tau}}{} .
$$

$$
\begin{aligned}
& \text { m } \\
& \text { 1- / } \\
& \text { Ident it yTest } \\
& \text { 1- / } \\
& \forall i \in[k]: \quad L_{D}\left(h_{i}\right) \leq L_{D}(A)+\frac{\varepsilon}{2} \geq \frac{\varepsilon}{8} . \\
& \text { k } \\
& \forall i \in[k]: L_{D}\left(h_{i}\right) \nsucceq \quad{ }_{D}(A)+\frac{\varepsilon}{2} \leq 1-\frac{\varepsilon}{8}^{k} \leq e^{-" k=} \leq \frac{1}{4} \delta \\
& \text { m } \\
& \forall i \in[k]: \quad L_{s}\left(h_{i}\right)-L_{D}\left(h_{i}\right) \leq \frac{\varepsilon}{2} \geq 1-\frac{1}{4} \delta \\
& \text { 1-1 } \\
& h \in H \\
& L_{D}(h) \leq L_{D}(A)+\varepsilon
\end{aligned}
$$

APPENDIX C. APPENDICES FOR CHAPTER 5

$$
\begin{aligned}
& L_{D} \\
& \qquad L_{D}\left(h_{i}\right) \leq{ }^{h} L_{D} A^{\circ}+\frac{\varepsilon}{2} G \leq \frac{\xi 4}{1+k 4} \leq \frac{\varepsilon}{8}
\end{aligned}
$$

Let $\neq \mathfrak{a n d} m \in$. Let $\mathbf{Z}, \ldots, Z \quad \mathrm{Z}$ be a sequence of i.i.d. real-valued random variables and let $Z=\frac{\bar{m}}{m}{ }_{i}^{m} Z_{i}$. Assume that $[Z]=\mu$, and for every $\mathrm{i} \in[\mathrm{m}], \quad\left[\mathrm{a} \leq \mathrm{Z}_{\mathrm{i}} \leq \mathrm{b}\right]=1$. Then, for any $\& 0$,

$$
\left[|Z-\mu| \gg \leq 2 \exp \frac{-2 \text { ■ }}{(b-a)}\right.
$$

APPENDIX C. APPENDICES FOR CHAPTER 5

$$
\begin{aligned}
& d / / \in \\
& k=12 \neq \\
& m=O\left((d \log (A)+\log (1 \delta)) \varepsilon^{-}\right) \\
& m=O \quad \text { d } \log (1 \delta) \varepsilon^{-}: \\
& S_{V} \sim D^{m} \quad S_{P} \sim D^{m} \\
& D \in \Delta([0,1] \times\{0,1\})
\end{aligned}
$$

Verifier ($\mathrm{S}_{\mathrm{V}, \boxed{〔}}$)

$$
\left(\begin{array}{ll}
1, \ldots, \ldots & k
\end{array}\right) \quad \tilde{P}_{j: y}{ }_{j \in k: y \in\{;\}}
$$

$\exists j \in[k] \quad \tilde{P}_{j}+\tilde{P}_{j} ; \in / k$

$$
x^{*}, \ldots, x \quad \underset{k}{*} \leftarrow \quad \forall j \in[k]: x_{j}^{*} \in I_{j}
$$

$$
\text { "/ } \% \quad P, \tilde{P} \in
$$

$$
\Delta([0,1] \times\{0,1\})
$$

P
$\left(x^{*}, y\right) \quad x^{*}=x_{j}^{*}$
\tilde{p}
$h \leftarrow \arg \min _{h \in H} L_{p}^{-}\left(h^{\prime}\right)$
h

$$
\begin{aligned}
& \operatorname{Prover}\left(S_{p}, \ldots\right. \text {) } \\
& \text { I , I ,..., I } k \leftarrow \\
& {[0,1]} \\
& U_{i \in k} I_{i}=[0,1] \\
& j \in[k] \\
& b \in\{0,1\} \\
& \tilde{P}_{j ; b} \leftarrow\left|\left\{(x) \in S_{p}: x \in I_{j} \wedge y=b\right\}\right| m \quad \triangleright \\
& \left(\begin{array}{ll}
\\
\text {,..., } & \text { k) } \quad \tilde{P}_{j ; y} \\
j \in k ; y \in\{;\}
\end{array}\right.
\end{aligned}
$$

```
        \Omega
        D \in\Delta(\Omega)
        A
        \tau \in ( 0 , 1 )
        A
        b}
        A
    $ \in(0,1)
    k= [8 log(4ठ )k ]
```



```
    m}=0(s\operatorname{log}({) \mp@subsup{\tau}{}{-}
    Sv,S V}~\mp@subsup{D}{}{m}\quad\mp@subsup{S}{p}{}~\mp@subsup{D}{}{m
    SV}=(\begin{array}{ll}{z,\ldots,Z}&{m}\end{array})\mp@subsup{S}{V}{\prime}=(\begin{array}{lll}{z}&{\ldots,Z}&{m}\end{array})\mp@subsup{S}{P}{\prime}=(\begin{array}{ll}{Z,\ldots,Z}&{m}\end{array}
V erifier ( Sv, S S
            i}\in[k
    hi
    i*}\leftarrow\operatorname{argmin}\mp@subsup{\operatorname{mikk}}{\mp@code{L}}{
            hi
Prover(Sp)
    q
    v\leftarrow\mp@subsup{m}{m}{v}
```


Verifierlt er ation(S_{v})
 $$
\mathrm{t} \leftarrow 1,2, \ldots
$$
 A

A
$9 t$
$t \geq b$

\mathbf{a}_{t} $\tilde{\mathbf{p}}_{t}$
Ident it yTest ($\left.\mathrm{S}_{\mathrm{V}}, \mathbf{a}_{\mathrm{t}}, \tilde{\mathbf{p}}_{\mathrm{t}}, \tau\right)$

$\tilde{\mathbf{p}}_{t}$

$$
\text { Ident it yTest }\left(S_{V}, \mathbf{a}_{t}, \tilde{\mathbf{p}}_{t}, \tau\right)
$$

$$
j \in[m]
$$

$$
\mathrm{i}_{\mathrm{j}} \leftarrow \mathrm{i} \in\left[\left|\mathbf{a}_{\mathrm{t}}\right|\right] \quad \mathrm{a}_{\mathrm{t}}^{\mathrm{i}}\left(\mathrm{z}_{\mathrm{j}}\right)=1
$$

$$
I=(i, \ldots, i \quad m)
$$

$$
1-\Phi 4 b
$$

$$
\left(\tilde{\mathbf{p}}_{\mathrm{t}}, \mathbf{p}_{\mathrm{t}}\right) \leq \frac{{ }^{q}}{2} \overline{\overline{\left|\mathbf{a}_{\mathrm{t}}\right|}}, \quad \tau \leq \quad\left(\tilde{\mathbf{p}}_{\mathrm{t}}, \mathbf{p}_{\mathrm{t}}\right)
$$

\mathbf{p}_{t}

[^0]: ${ }^{1}$ Some examples: the Vigentre cipher was touted in the early modern period as le chife indéchifable , but was occasionally broken by contemporaries (and was decisively broken by K asiski, 1863); the German diplomatic codes in World War I are infamous for the Zimmermann Telegram, compromised by the British Admi ralty; and, of course, the cracking of the Enigma in uenced the outcome of World War II. See Dooley (2018); K ahn (1996); Singh (1999) for accounts of this tumultuous history.
 ${ }^{2}$ See Hutchins (2004), p. 5.
 ${ }^{3}$ Simon (1960), p. 38; reproduced on p. 96 of Simon (1965), which also espouses a similar position in the

[^1]: ${ }^{1}$ Ben-David et al. (1997) call their moded 'o -line learning with the worst sequence', but in this chapter we opt for 'transductive online learning', a name that has appeared in a number of publications, including K akade and K alai (2005); Pechyony (2008); Cesa-Bianchi and Shamir (2013); Syrgkanis, K rishnamurthy, and Schapire (2016). We remark there are at least two di erent variants referred to in the literature as 'transductive online learning'. For example, Syrgkanis et al. (2016) write of a transductive setting (Ben-David et al., 1997) in which the learner knows the arriving contexts a priori, or, less stringently, knows only the set, but not necessarily the actual sequence or multiplicity with which each context arrives. That is, in one setting, the learner knows the sequence ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$) in advance, but in another setting the learner only knows the set $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\}$. One could distinguish between these two settings by calling them 'sequencetransductive' and 'set-transductive', respectively. Seeing as the current chapter deals exclusively with the sequencetransductive setting, we refer to it herein simply as the 'transductive' setting.

[^2]: ${ }^{3}$ In Chiesa and Gur's setting, it would also be su cient for the prover to only known the distribution up to $O(\varepsilon)$ total variation distance, and this can be achieved using random samples from the distribution. However, the number of samples necessary for the prover would be linear in the domain size, which is typically exponential, and so this approach would not work for constructing doubly-e cient PAC veri cation protocols.

[^3]: ${ }^{6}$ In the case where $\mathrm{L}_{\mathcal{D}}\left(\mathrm{T}_{d}\right)=0$, 2-PAC learning is the same as PAC learning, so the stronger lower bound in (ii) applies.

[^4]: ${ }^{7}$ That is, distinguishing between the case $d \geq \varepsilon$ and $d \leq \varepsilon / 2$ for $d=T V N(\tilde{\theta}, I), N(\theta, I)$.

[^5]: ${ }^{8}$ Assuming that the minimum always exists for H .

[^6]: ${ }^{9}$ Note that f is not necessarily a member of H , so this is still an agnostic (rather than realizable) case

[^7]: ${ }^{10}$ See Mansour (1994, Section 5.2.2, Theorems 5.15 and 5.16). ($A C^{0}$ is the set of functions computable by constant-depth boolean circuits with a polynomial number of AND, OR and NOT gates.)
 ${ }^{11}$ The real numbers $\mathrm{f}(\mathrm{T})$ are called Fourier coefients , and the functions χ_{T} are called characters.
 ${ }^{12}$ The veri er can approximate each coe cient in the list and discard of those that are not heavy. Alternatively, the veri er can include the additional coe cients in its approximation of the target function, because the approximation improves as the number of estimated coe cients grows (so long as the list is polynomial in n).

[^8]: ${ }^{13}$ We provide a more detailed description of the veri cation procedure in Claim 4.3 .15 below．

[^9]: ${ }^{14}$ Note that an optimal threshold $t \in[0,1]$ exists because $[0,1]$ is compact，and the mapping $t \nrightarrow L_{\mathcal{D}}\left(f_{t}\right)$ is continuous．
 ${ }^{15}$ Namely，\tilde{A} is the event in which a point has label 1 ，but f_{t} assigns labed 0 to it，and \tilde{B} is the event in which a point has label 0 ，but f_{t} assigns label 1 to it．

[^10]: ${ }^{16}$ Recall that we ignore the cost performing calculations with real numbers.

[^11]: ${ }^{17}$ We believe that the dependence of m_{V} on ε can be improved, see Remark 4.3.16.
 ${ }^{18}$ In Chapter 5, we strengthen this to obtain 1-PAC veri cation with better sample complexity bounds.

[^12]: ${ }^{19}$ See also the discussion following Theorem 3.1 in Ron and Tsur (2013), and Theorem 5.3 in Valiant (2012). Similar bounds that appear in Valiant (2011, Claim 3.10) and Raskhodnikova, Ron, Shpilka, and Smith (2009, Theorem 2.1 and Corollary 2.2) are slightly weaker, but would also su ce for separating between 2-PAC veri cation versus 2-PAC learning of T_{d}, as in Claim 4.3.22.

[^13]: ${ }^{21}$ See more formal de nitions in Conditions 4.5.1.

[^14]: ${ }^{4}$ See also Goldreich and Ron (2011) and the discussion following Theorem 5.4 in Canonne (2020).

[^15]: ${ }^{5}$ See also Alon and Spencer (2000), Theorem 13.4.4.

[^16]: ${ }^{1}$ An example for an application in the context of generalization is the classic PAC Bayes Theorem. The theorem assures that for every population distribution and any given prior P , the di erence between the population error of an algorithm A and the empirical error of A is bounded by $\tilde{O} \frac{(A(S) \mathcal{P})}{m}$, where m is the size of the input sample S , and the KL divergence is the measure of dissimilarity between the prior and the posterior. See e.g. Theorem 6.3.2.

[^17]: ${ }^{1}$ Such as singlenucleotide polymorphisms (SNPs).
 ${ }^{2}$ Buniello, MacArthur, Cerezo, Harris, Hayhurst, Malangone, McMahon, Morales, Mountjoy, Sollis, et al. (2019) is a catalog of over 70,000 di erent GWAS publications. Pe'er, Yelensky, Altshuler, and Daly (2008) and Palmer and Pe'er (2017) discuss statistical aspects of GWAS.

[^18]: ${ }^{5}$ That is, any probability space (Ω, D, Σ) with sample space $\Omega=X \times\{0,1\}$, probability mass function D, and σ-algebra $\Sigma=2^{\Omega}$.

[^19]: ${ }^{1} S^{\prime} \in S$ denotes that S^{\prime} is not a strict subset of S.

