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Abstract  

Novel Non-Volatile Memory Devices and Applications  

By 

Tsegereda K. Esatu 

Doctor of Philosophy in Engineering Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professor Tsu-Jae King Liu, Chair 

 

The performance of semiconductor logic and memory devices has improved significantly with 
advancements in complementary metal-oxide-semiconductor (CMOS) manufacturing technology 
to miniaturize transistors, resulting in increased integrated circuit (“chip”) processing speed, 
energy efficiency, and cost per function. The proliferation of the Internet of Things (IoT) and the 
generation and processing of large data sets, commonly known as “big data,” have increased 
demand for non-volatile (NV) information storage that can be embedded with energy-efficient 
logic switches so that certain computational tasks can be performed in the memory itself. To 
achieve ultra-low-power electronics, alternative switching devices that can be operated with much 
smaller voltages than CMOS transistors are required. Micro-electro-mechanical (MEM) switches 
have been shown to be promising for ultra-low-power digital computing applications due to their 
negligible IOFF and abrupt switching behavior across a wide range of operating temperatures. 
Therefore, they have attracted growing interest for embedded energy-efficient logic and NVM 
applications. In addition to energy efficiency, it is also crucial to maintain the security and 
confidentiality of information collected and shared by IoT devices. To address this issue, memory 
devices that can store data and function as hardware security key generator are desirable. Emerging 
Resistive Random Access Memory (ReRAM) is a promising technology for hardware security 
applications due to its inherent variability.   

This dissertation focuses on novel non-volatile memory devices and their applications.  First, 
logic MEM switches are demonstrated to be operable as NV memory devices using controlled 
welding and unwelding of the contacting electrodes. Reprogrammability with consistently low 
programmed state resistance, and excellent (essentially infinite) retention time at elevated 
temperature, are experimentally demonstrated. These results indicate that MEM switches are 
promising for low-cost implementation of ultra-low-power integrated systems. 

Next, this dissertation presents a prototype MEM switch design incorporating a floating gate 
(FG) for non-volatile charge storage. The FG-MEM NV switch potentially can achieve much 
longer data retention time than a conventional floating-gate MOS transistor, since there exists an 
air gap between conductive electrodes when the switch is in the OFF-state. Initial experimental 
results and FG-MEM NV switch design improvements are discussed.   

Finally, this dissertation proposes a new method of generating Physically Unclonable Function 
(PUF) encryption keys that leverage the inherent random variability of ReRAM device 
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programming time, for hardware security applications. The design and operation of a ReRAM 
device is presented, followed by a detailed discussion of the PUF key generation scheme. The 
randomness and reliability of the generated keys are then evaluated. The randomness of the 
ReRAM-based PUF is found to be of high quality compared to previous PUF implementations. 
Therefore, ReRAM technology enables the incorporation of both NVM and PUF functions within 
the same chip. 
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Chapter 1 
 
Introduction 
 
1.1 Brief History and Evolution of Integrated Circuits  
Integrated circuits (ICs), also known as microchips, are tiny electronic devices that integrate a 
large number of electronic components such as transistors, resistors, and capacitors on a single 
chip of silicon. The advent of the IC chip was a revolutionary innovation that transformed the 
electronics industry and paved the way for advanced information processing and communication 
systems [1]. This breakthrough has led to the development of personal computers, smartphones, 
and other portable electronic devices that have become vital in daily life. Furthermore, the 
proliferation of computing has profoundly advanced many areas of technology, including the 
Internet of Things (IoT), cloud computing, artificial intelligence, and other domains. By enabling 
the integration of numerous components onto a single chip, microchips have made it possible to 
design smaller, more powerful, and more energy-efficient devices that have enhanced people’s 
productivity and convenience. 

The history of ICs can be traced back to the invention of the transistor in 1947 by John 
Bardeen, Walter Brattain, and William Shockley at Bell Labs. The transistor was a replacement for 
the bulky and inefficient vacuum tubes that were used in electronics at the time. It was smaller, 
used less power, and was more reliable than vacuum tubes, making it ideal for use in electronic 
devices. In 1958, Jack Kilby of Texas Instruments invented the first integrated circuit. Kilby's 
circuit comprised a tiny piece of germanium with a few transistors and other components etched 
onto its surface [2]. In 1965, Gordon Moore, the co-founder of Intel Corporation, made an 
observation that the number of Complementary Metal Oxide Semiconductor (CMOS) transistors 
on a single chip doubled about every year and later in 1967 adjusted to every two years [3][4]. 
This prediction, which became known as Moore’s Law, has been remarkably accurate over the past 
several decades and has driven the rapid advancement of computer technology. Nowadays, modern 
microprocessor chips contain many billions of transistors enabled by the steady miniaturization of 
the transistor, which allows exponential pace of improvement in computational speed while 
lowering the cost and energy consumed per function [5].  



 2 

Along with transistor (switches used to implement digital logic and for signal amplification), 
the advancement of memory devices has also been a key factor in the development of modern 
information technology. In the early days of computing, data was stored on magnetic tape, punch 
cards, and other physical media which were large, heavy, and expensive. However, the invention 
of ICs led to the creation of the first solid-state memory device, the metal-oxide-semiconductor 
(MOS) memory [6][7]. Today, solid-state memory devices are ubiquitous and used in a wide range 
of applications, including personal computers, smartphones, wearable devices, servers, and data 
centers.  

 

 
 

Figure 1.1: Evolution of chip component density scaling trends. Transistor density is defined as 
the number of transistors on a chip divided by the chip area. SRAM bit density and DRAM bit 
density have advanced at the same pace as the transistor density (reproduced from [8]). 

 
Despite rumors of the end of Moore’s law in recent years [9], the semiconductor industry has 

continued to steadily advance IC manufacturing. This progress is driven by growing demand for 
easy access to information and mobile connectivity, resulting in the widespread acceptance and 
rapid advancement of internet and wireless communication technologies. Today we live in a 
globally connected society with universal access to information, which is increasingly collected 
by machines with the emergence of the IoT. 

The Internet of Things (IoT) refers to objects with embedded electronic devices that are used 
to collect, process and communicate information via a wired or wireless network. Over the past 
decade, there has been an exponential growth in the number of connected devices and data 
generated worldwide. This trend is primarily driven by the proliferation of IoT devices [10]. As 
shown in Figure 1.2, the number of connected devices is expected to reach 125 billion by 2030. 
The exponential growth in the number of connected devices has also led to an exponential growth 
in the amount of digital data generated. It is estimated that the total amount of digital data generated 
worldwide will reach 181 zettabytes by 2025, up from just 2 zettabytes in 2010 [11][12]. This 
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growth trend is expected to continue in the years ahead. However, this growth also brings 
challenges, such as data privacy and security concerns, as well as the need for more energy-
efficient and more reliable data storage and processing solutions.  
 

 
(a)             (b) 

Figure 1.2: Exponential growth of (a) connected devices and (b) data creation (adapted from [11]).  

 

1.2 Memory Requirements for IoT 
The widespread availability of electronic devices and the generation and processing of large data 
sets (“big data”) necessitate the need for a storage medium that is both non-volatile and energy-
efficient, with high endurance and retention, low manufacturing cost, and most importantly, 
embedded with logic circuitry so that certain computational tasks can be performed in the memory 
itself for faster processing speed [13]. Meanwhile, it is also crucial to maintain the security and 
confidentiality of information collected and shared by IoT devices. A recommended solution to 
achieve this is to utilize memory devices that can store data and function as hardware security keys 
as well.   

 

1.1.1 Traditional Memory Devices 

Modern computer architectures have a hierarchical memory system, as illustrated in Figure 1.3, 
comprising different types of conventional memory devices ranging from high-speed, small-
capacity storage devices to slower, large-capacity devices [14–16]. 

Conventionally the memory pyramid from top to bottom (small capacity to large capacity) 
comprises central processor unit (CPU) registers and cache memory on the same chip as the CPU, 
and main working memory and long-term storage memory on separate chips. CPU registers at the 
top of the pyramid are the fastest type of memory used in a computer. Registers are built into the 
processor and are used to store the instructions and data that are frequently accessed or currently 
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being executed by the processor. However, registers are the most expensive type of memory and 
have very limited capacity, typically only a few bytes [17].  

Next in the hierarchy is cache memory. Caches are designed to reduce the time it takes to 
access data from the main memory by temporarily storing copies of data frequently used. Typically, 
caches are slower than the CPU registers and mostly comprise Static Random Access Memory 
(SRAM) cell arrays due to their higher access speed compared to other types of memory [14][18]. 
A typical SRAM cell consists of six transistors (two cross-coupled CMOS inverters, forming a 
latch, plus two pass-gate transistors for accessing the two storage nodes of the latch) to store one 
bit of information while power is supplied. Yet, it has a limitation in terms of storage density 
(meaning that it stores less data per unit area on a chip compared to other types of memory). This 
makes it more expensive and impractical for large capacity and long-term storage.   

Main memory comprises Dynamic Random Access Memory (DRAM) chips. A DRAM cell 
stores one bit of information using a capacitor and an access transistor. One of the main benefits 
of DRAM is its high storage density, i.e., it can store more data per unit area compared to SRAM. 
This makes it more cost-effective for applications where large amounts of data need to be 
temporarily stored. However, the simpler cell design results in slower data access speeds [15]. A 
DRAM cell requires regular refreshing to restore charge on its capacitor (because the access 
transistor has non-zero leakage current). For this reason it consumes more power than non-volatile 
memory. 

Although both SRAM and DRAM are useful for temporary data storage, they are volatile, 
meaning data will be lost when power to the chip is turned off. For long-term data storage, hard-
disk drives (HDDs) have been used for over 50 years. HDDs have several benefits, including 
nonvolatility, large storage capacity, and low cost per bit. Their main downside is their slow data 
transfer rate for both reading and writing operations.  

 

 
 

Figure 1.3: Memory hierarchy diagram [19]. 
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In recent years, due to the performance (latency) gap between DRAM and HDD, flash memory 
devices have emerged as a solution. Flash memory stores information by injecting (erasing) 
electrons to (from) a charge-storage layer through an electrically insulating dielectric material. 
These devices have become widely used in solid-state drives (SSD), displacing traditional HDD 
for some applications because of their faster speed and lower power consumption. Flash memories 
have also found extensive usage in portable electronic devices, such as mobile phones, and USB 
flash drives [20]. Vertical (three-dimensional, or 3-D) stacking of flash memory cells has been 
adopted to increase storage density and increase storage capacity [21]. 

Among the well-established types of memory devices there exists a sizable gap in performance 
(latency) between volatile memory (DRAM) and non-volatile storage (Flash) devices. Emerging 
Non-Volatile Memory (eNVM) device technologies aim to bridge this gap. 

 

1.1.2 Emerging Non-Volatile Memory Technologies   

Increasing requirements for reduced IoT power consumption have driven efforts to develop new 
devices for storage-class memory (SCM), filling the gap in performance and storage density that 
currently exists between volatile memory and non-volatile storage devices [22]. Among several 
emerging memory device technologies, phase change memory (PCM), spin-transfer torque 
random access memory (STT-RAM), ferroelectric RAM (FeRAM), and resistive random-access 
memory (RRAM) are the most promising.  

These emerging technologies employ novel materials (metal oxides, ferroelectric oxides, 
ferromagnetic metals, chalcogenides, carbon materials, etc. [23]) and mechanisms such as 
quantum mechanical phenomena, redox reaction, phase transition, spin-state, molecular 
reconfiguration, etc. to change the state of the memory device and thereby store information. Some 
have a simple two-terminal cell structure that is most amenable for high-density storage. 

Although the dream of a “universal memory” (that offers high speed, large capacity and low 
cost) has not yet been achieved, SCM devices have the potential to bridge the performance gap 
between storage and memory, to enable new computer architectures such as brain-inspired 
computing systems and new applications such as hardware security systems. Practical 
manufacturing challenges exist, such as device-to-device variability and reliability. Therefore, 
there are still room for innovation in SCM devices to meet future computing needs. 

 

1.3 Energy-Efficient Computing for IoT 
1.1.3 Energy-Efficiency Limit for CMOS Technology 

Continual improvements in digital IC performance and reductions in cost per function have been 
enabled by the steady miniaturization of CMOS transistors. Ideally, as the dimensions of a 
transistor shrink, the operating voltage (𝑉!!) should decrease to avoid increasing the peak electric 
field [24]. However, since the 90 nm technology node, voltage scaling slowed down because the 
threshold voltage (𝑉"#) of a MOS field-effect transistor (MOSFET) cannot be too close to 0 V; 
otherwise, the off-state leakage current (𝐼$%%), which increases exponentially with a linear 
reduction in 𝑉"#, will result in  unacceptably high static power dissipation.  
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To explain this, Figure 1.4(a) shows a standard drain current vs. gate voltage semi-log plot, 
for two n-channel MOSFETs with different values of 𝑉"# as well as for an ideal switch. 𝐼$%% is 
defined as the drain current when 𝑉&' = 0𝑉 and 𝑉!' = 𝑉!!, where 𝑉!!  is the power supply 
voltage. 

 

                                                    	𝐼$%% ∝ exp(−
(!"
''
)	                                                           (1.1) 

 

where the subthreshold swing (𝑆𝑆) is defined as the inverse slope of the log(ID)-VG curve. The 
lower limit of SS is 60 mV/dec at room temperature due to the Boltzmann energy distribution of 
electrons in the source region of a MOSFET [25]. 
 

   
(a)                                                                                  (b) 

Figure 1.4: Conceptual illustrations of (a) the switching I-V characteristics of a high-𝑉"#   n-channel 
MOSFET, a low-𝑉"#   n-channel MOSFET, and an ideal switch; (b) dynamic, static, and total energy 
consumed per operation of a CMOS digital logic circuit. The lower limit for CMOS energy 
efficiency exists due to MOSFET OFF-state leakage (reproduced from [26]). 

 

The total energy dissipated (𝐸")") per digital operation is composed of a dynamic energy 
dissipation component (𝐸*+,) and a static energy dissipation component (𝐸-./0):  

                                                         𝐸")" = 𝐸*+, + 𝐸-./0                                                          (1.2) 

If 𝑉!! is lowered to decrease 𝐸*+, then the transistor on-state current (𝐼$1) will be lowered, 
resulting in slower digital circuit operation. The more time (𝑡*.-/+) it takes for a digital circuit to 
complete its function, the more energy is wasted due to transistor off-state leakage since 𝐸-./0 ∝
𝐼)22𝑉!!𝑡*.-/+. If 𝑉"# is lowered together with 𝑉!! to maintain 𝐼$1 for fast circuit operation, 𝐼$%% 
is exponentially higher, again resulting in higher 𝐸-./0. Therefore as 𝑉!! is lowered, 𝐸-./0 
increases while 𝐸*+, decreases, so that a minimum value of 𝐸")"	exists (at 𝑉!!	= 𝑉"#). 
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As illustrated by the green curve in Figure 1.4 (a), an ideal switch would have an abrupt switching 
characteristic with 𝐼)22 ≈ 0 and 𝑉"# ≈ 0 to enable ultra-low energy per operation. Thus, in order 
to achieve dramatically improved energy efficiency, an alternative switching device is needed.  

 

1.1.4 MEM Switches for Energy-Efficient Computing 

Microelectromechanical (MEM) switches operate by making and breaking physical contact 
between two conductive electrodes (drain and source electrodes) so they have essentially zero 
𝐼$%%, enabling zero static power consumption, and abrupt switching characteristics across a wide 
range of temperatures [27], enabling lower supply voltage 𝑉!!. Therefore, MEM switches have 
been investigated for energy-efficient logic switches and NVM device applications [28-30].  

Figure 1.5 shows the schematic cross-section of body-biased MEM switch consisting of four 
terminals: gate, body, drain, and source electrodes. The movable structure is referred to as the gate 
and has an attached conductive metal strip underneath, called the drain, that is electrically insulated 
from the gate by a thin dielectric layer. A fixed actuation electrode underneath the gate is referred 
to as the body; the source electrode is coplanar with the body and runs underneath the drain in the 
dimpled contact region. In the OFF state, an air gap separates the conducting source and drain 
electrodes, hence no current flows between them as shown in Figure 1.5(a). When a sufficiently 
large voltage is applied across the gate and body such that 𝑉&4 > 𝑉$1, the attractive electrostatic 
force (𝐹.-.5) actuates the movable gate electrode downwards towards the fixed body electrode, 
bringing the drain electrode into physical contact with the source electrode so that the device turns 
ON abruptly, allowing current to flow (Figure 1.5(b)). To turn OFF the switch, the voltage across 
gate and body is reduced below 𝑉$%%, so that the spring restoring force (𝐹67) of the deformed 
movable electrode actuates is upward to break contact between the drain and source. As shown in 
Figure 1.6, 𝑉$%% is smaller than 𝑉$1 due to contact adhesive force 𝐹/*# between the drain and 
source electrodes in the ON state. The hysteresis voltage (𝑉8) is the difference between 𝑉$1 and 
𝑉$%%, and can be engineered to be very small (on the order of 10 mV) [30]. 
 

 
Figure 1.5: Cross-section illustrations of a 4-terminal MEM switch in a) OFF–state, and b) ON–
state. 
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Figure 1.6: A typical IDS-vs.-VG characteristic of a MEM switch for bidirectional voltage sweep, 
showing abrupt switching behavior.   

Due to their negligible OFF-state leakage and abrupt switching characteristics, MEM switches 
are attractive for energy-efficient logic and NVM applications.  
 

1.4 Ensuring IoT Security 
IoT devices collect, process, and exchange a significant amount of potentially security-risking 
and/or private information. They are vulnerable to various malicious attacks, particularly because 
they communicate wirelessly and operate in an energy-constrained environment with very limited 
hardware resources [32][33], e.g., their memory capacity may be insufficient for storing encryption 
keys.   

Physically unclonable functions (PUFs) are promising for authentication and secure encryption 
key generation/storage without expensive hardware [34]. Rather than storing keys in digital 
memory, PUFs leverage inherent variability in the integrated circuit manufacturing process that 
results in random variations in physical properties and hence electrical characteristics from device 
to device. Although device variability is not desirable for circuit performance, it is crucial for PUF 
implementation.   

Resistive Random Access Memory (ReRAM) is an eNVM technology of keen interest for PUF 
key generation due to its low-power switching characteristics and relatively large device-to-device 
variability. As illustrated in Figure 1.7, a ReRAM device comprises two terminals with an oxide 
“switching layer” sandwiched between the two metallic electrodes. The ReRAM switching 
mechanism is based on the movement of ions under the influence of an electric field, to form or to 
remove an electrically conductive filament within the switching layer [35]. To program the 
ReRAM device, a positive voltage pulse is applied to the top electrode to cause a conductive 
filament to form, resulting in a low resistance state. To erase the ReRAM device, a negative voltage 
pulse is applied to the top electrode to break the filament, resulting in a high resistance state. 

Depending on the composition of the conductive filament, a ReRAM device can be classified 
as one of two types: metal ion based, also referred to as conductive-bridge random access memory 
(CBRAM); or oxygen vacancy based random access memory (OxRAM). In a CBRAM device, 
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filament formation/breakage occurs via migration of metal ions and subsequent 
reduction/oxidation (redox) reactions. In an OxRAM device, filament formation occurs via 
migration of oxygen ions or vacancies [36].  

 

 
Figure 1.7: Simple cross-section schematic illustrating the metal-insulator-metal structure of a 
ReRAM device.  

 
Random device-to-device resistance variability can be leveraged to generate a unique PUF key 

based on the resistance of each cell within an ReRAM cell array. ReRAM-based PUFs can be 
implemented within a standard ReRAM cell array, enabling information storage together with PUF 
storage. Moreover, ReRAM-based PUFs have relatively low power consumption and a small 
footprint, making them ideal for use in resource-limited settings like embedded systems [37][38].  

 

1.5 Dissertation Objectives and Overview 
The main objective of this dissertation is to investigate novel/emerging NVM devices for ultra-
low-power electronics applications. A significant portion of this work focuses on adapting micro-
electro-mechanical (MEM) switches for eNVM applications. Another area of focus is the 
application of Resistive Random Access Memory (ReRAM) devices for efficient implementation 
of physical unclonable functions (PUFs).  

In chapter 2, the concept of a reprogrammable NV-MEM switch is presented. After an 
introductory overview of the MEM switch design and fabrication process, program and erase 
operations are discussed. It is experimentally demonstrated that MEM switches can be 
programmed and erased with relatively small voltage (< 3V) and that they have excellent retention 
characteristics at elevated temperature (200°C). This allows non-volatile information storage at 
zero incremental fabrication cost. 

In chapter 3, a floating-gate MEM switch design is investigated. The device fabrication 
process and initial experimental results are presented. Challenges their possible solutions are 
discussed. 
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In chapter 4, a novel PUF key architecture and generation scheme that utilizes the inherent 
program-time variation of resistive random access memory (ReRAM) cells as an entropy source 
is presented. ReRAM design and robust nonvolatile memory operation is first discussed, followed 
by the PUF generation scheme and randomness evaluation using a standard NIST test suite. Further 
verifications to confirm the high reliability of the generated PUF keys are described. 

Chapter 5 summarizes the key findings and contributions of this dissertation. Suggestions for 
future research are also offered.  
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Chapter 2 
 
A Reprogrammable MEM Switch Utilizing 
Controlled Contact Welding 

 

2.1 Introduction  

With the emergence of the Internet of Things (IoT), the number of electronic devices has rapidly 
increased, and the volume of generated data has grown exponentially. The IoT refers to a network 
of objects that are wirelessly connected together. This is made possible by embedding into the 
objects (“things”) electronic information processing devices, sensors, actuators, etc. for the 
purpose of communicating data and information with other objects. The number of IoT devices 
worldwide is forecast to almost triple from 9.7 billion in 2020 to more than 29 billion IoT devices 
in 2030 [1], when the total amount of data generated would be approximately 10 times more than 
exists today [2].  

With the proliferation of IoT devices, as well as “edge” and cloud computing, electricity 
consumption of electronics is growing at an exponential pace. Therefore, new computing and 
memory device technologies are needed to enable much more energy-efficient digital computing 
and non-volatile (NV) data storage [3]. For IoT applications, low manufacturing cost is also an 
important requirement.  

Micrometer-scale electro-mechanical (MEM) switches are considered an attractive option for 
IoT applications and wearable/disposable electronics due to their negligible OFF-state power 
consumption and abrupt switching characteristics enabling zero standby power consumption and 
milli-Volt operation across a wide range of operating temperatures [4–6]. MEM switches can be 
fabricated using standard CMOS integrated circuit manufacturing processes and can be designed 
to be non-volatile, e.g., serving as reconfigurable interconnects [7], [8].  

In this chapter, MEM switches designed for digital logic applications are demonstrated to be 
multi-time programmable via controlled contact welding and un-welding. This newfound 
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capability provides for greater versatility of device operation, enabling non-volatile information 
storage to be embedded with digital logic circuitry with no incremental fabrication cost. 

 

2.2 MEM Switch Operation 
MEM switches operate by making and breaking physical contact between two conductive 
electrodes, separated physically by an air gap in the OFF-state. As shown in Figure 2.1, the 
movable top structure is referred to as the gate, which is mechanically suspended by a spring with 
effective spring constant 𝑘.22	while the underlying fixed electrode is referred as the body. 𝑔* and 
𝑔) are the as-fabricated contact gap size and the actuation gap size, respectively.  

 

 
Figure 2.1: Schematic diagram and mechanical spring model of a four-terminal MEM switch 
designed for digital logic applications. Electrostatic actuation and spring restoring forces are 
illustrated. 

 

In the OFF-state, an air gap exists between the drain and source conductive electrodes, 
preventing any current flow. When a voltage is applied across the gate and body (𝑉&4), an attractive 
electrostatic force 𝐹.-.5 is exerted on the top movable gate electrode toward the fixed body 
electrode. Displacement of the gate electrode from its equilibrium position produces a spring 
restoring force (𝐹67) opposing the electrostatic force (𝐹.-.5):  

                                             𝐹!" 	= 	−𝑘#$$ × 𝑔	                                                              (2.1)  

where 𝑔	is the displacement of the top electrode from its original position towards the bottom fixed 
electrode. (The negative sign of the spring restoring force indicates that the force is in the upward 
direction.) 



 15 

                                                     𝐹#%#& 	= 	
'
(
e!)"#$*%&

'

(,!-,)'
                                                                            (2.2) 

where 𝜀)  is the vacuum permittivity, 𝐴9:; is the effective actuation (overlap) area, and 𝑉&4  is the 
potential difference between the gate and body electrodes. The net force 𝐹,."	on the gate electrode 
is given by:  

                                           𝐹/#0 =	𝐹!" + 𝐹#%#& 

                                      =	−𝑘#$$ 	× 𝑔 +	
'
(
e!)"#$*%&

'

(,!-,)'
                                   (2.3) 

Taking a derivative with respect to 𝑔, one obtains the following equation: 

                                          12()*
1,

=	−𝑘#$$ +
e!)"#$*%&

'

(,!-,)+
                                                (2.4) 

 

As the applied voltage 𝑉&4 is increased, the movable structure is physically displaced (g > 0) 
to maintain force balance (𝐹,."	= 0). However, since the electrostatic force (𝐹.-.5) increases super-
linearly while |𝐹67| increases linearly with decreasing actuation gap size (𝑔 − 𝑔𝑜), eventually 𝑔 
reaches a critical value beyond which force balance is no longer possible and the movable structure 
is “pulled-in” to contact. The value of 𝑉&4 at which this phenomenon occurs is referred to as the 
pull-in voltage 𝑉<=. Both 𝑉<=  and the critical displacement 𝑔 can be calculated by setting 𝐹,."	and  
*%#$!
*>

	 equal to 0 in Equations 2.3 and 2.4: 

                                                         𝑉45 =	*
67),,,!+

(89!)"#$
                                                             (2.5) 

                                                                  	𝑔 = 	,!
:

                                                                      (2.6) 

For the MEM switch to operate in pull-in (PI) mode, the as-fabricated contact gap size 𝑔* 
should be greater than 1/3 of the as-fabricated actuation gap size 𝑔) [3][4][6]. If the as-fabricated 
contact gap size 𝑔* is less than 𝑔)/3, (i.e., 𝑔)	 > 3𝑔*	), however, then the switch turns ON before 
it enters into the PI region of operation, i.e., it operates in non-pull-in (NPI) mode. The applied 
voltage required to turn on a NPI MEM switch is 

 

                                               𝑉;< =	*
(7),,(,!-,-)'

9!)"#$
                                                   (2.5) 

In the ON-state there exists an attractive contact adhesive force 𝐹/*# between the contacting source 
and drain electrode surfaces, so the net force equation becomes 
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                                                        𝐹!"# =	𝐹$% + 𝐹"&"' +	𝐹()*                                                     (2.6) 

If the contacting surfaces comprise the same material, then the adhesive force is due primarily to 
Van der Waals force which is proportional to the apparent contact surface area [9,10].  

Note that 𝐹/*# is additive to 𝐹.-.5, i.e., it helps to keep the MEMS switch in the ON–state. For 
this reason, the minimum value of applied voltage required to keep the MEMS switch ON is less 
than 𝑉$1. That is, a MEM switch exhibits hysteretic switching behavior. The spring restoring force 
of the movable plate must overcome both the electrostatic force and the contact adhesive force in 
order to turn off the MEMS switch: 

                                            	𝑘"++𝑔 = 	
,
-
e!."#$/%&&

'

(1!21)'
+	𝐹()*                                          (2.7) 

                                              		𝑉455 =	(
-(6())1*2	5+*,)(1!21*)'

8!."#$
                                   (2.8) 

The hysteresis voltage is defined as 

                                                          𝑉9 =	𝑉4: −	𝑉455                                                      (2.9) 

and is the minimum actuation voltage-swing required to operate the MEMS switch. 

Solving for 𝑉8 for a NPI-mode switch with 𝑔) ≤
1!
;

:  

                                                    𝑉9 ≈ 𝐹()*(
-1*

8!."#$6())
                                        (2.10) 

Previous studies indicate that PI-mode switch designs can provide for the lowest switching 
energy due to a relatively compliant (lower 𝑘.22) structure. However, this makes them prone to 
stuck-ON failure (i.e.,	𝐹'< <	𝐹/*#) [11]. Therefore, to avoid stuck-ON failures, body-biased (VB 
> 0) NPI-mode MEM switch designs with stiffer structures are more practical for reliable 
operation. Therefore NPI-mode switches are used for the work of this dissertation.  

 

2.3 MEM Switch Design and Fabrication Process 

Figure 2.2 is a plan-view scanning electron micrograph (SEM) image of a fabricated MEM switch; 
it is designed for digital logic applications and comprises two electrical switches and hence has 
two pairs of source/drain contact electrodes [6].  
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Figure 2.2:  Plan-view scanning electron micrograph (SEM) image of a fabricated MEM switch. 

As shown in the schematic cross-sectional views in Figure 2.3, the 2-contact (2C) device 
comprises a movable gate electrode suspended by four folded-flexure beams over a fixed body 
electrode. The drain electrodes are attached to and routed underneath the gate electrode and 
electrically insulated from it by an Al2O3 gate-dielectric layer. 

 
Figure 2.3:  Schematic cross-sectional views along A-A’ cutline in Fig. 2.2: (a) OFF–state (b) 
ON–state.  

In the OFF–state (Fig. 2.3 (a)), the as-fabricated air gap separates the conductive drain and 
source electrodes, so that no current can flow between them. The movable gate is electrostatically 
actuated downward toward the body electrode when a voltage is applied between the gate and 
body (𝑉&4). When 𝑉&4 is larger than the turn-on voltage (𝑉$1), the electrostatic force overcomes 
the opposing spring restoring force of the folded flexure beams. This causes each of the drain 

(a) 

 
 

(b) 
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electrodes comes into physical contact with its underlying source electrode, allowing current (𝐼!') 
to flow under the influence of an applied voltage between the drain and source electrodes (𝑉!'). 
This state is referred to as the ON–state (Fig. 2.3 (b)).  

To turn off the switch, VGB is reduced toward 0V so that the spring restoring force (𝐹67) of the 
folded flexure beams actuates the movable structure upward, causing the drain and source 
electrodes to break contact. The voltage at which 𝐼!' drops back to zero is referred to as the turn-
off voltage (𝑉$%%). Due to contact adhesive force between the contacting surfaces, 𝑉$%% 	is always 
smaller than 𝑉$1. The hysteresis voltage (𝑉8) is defined as 𝑉$1 −	𝑉$%% .  

Figure 2.4 illustrates key steps of the MEM switch fabrication process along cutlines B-B', C-
C', and D-D' of Figure 2.2. The MEM switches are fabricated using conventional planar processing 
techniques with a maximum substrate temperature below 450 °C for compatibility with post-
CMOS integration [4]. Initially, an 80 nm-thick Al2O3 layer is deposited on a silicon substrate 
using an atomic layer deposition (ALD) system (Fig. 2.4 (a)). Next, a 60 nm-thick tungsten (W) 
layer is deposited by sputtering (Figure 2.4 (b)) and patterned to form the fixed body electrodes, 
drain electrodes, and source electrodes as shown in Figure 2.4 (c). Then, a 160 nm-thick sacrificial 
low-temperature deposited SiO2 layer (LTO1) is deposited using low pressure chemical vapor 
deposition (LPCVD), followed by contact “dimple” region definition (Fig. 2.4 (d)). A second 
sacrificial layer of 60 nm-thick SiO2 layer (LTO2)  is then deposited and routing via regions are 
defined (Fig. 2.4 (e)). Note that the thickness of the second layer determines the as-fabricated air 
gap thickness between the drain electrode and the source electrode in the contact regions (𝑔*) 
while the combined thickness of  LTO1 and LTO2 layers determines the as-fabricated actuation air-
gap thickness ( 𝑔)) between the movable structure and the body electrode.  

Afterwards, a second 60 nm-thick tungsten is deposited and patterned to form drain electrodes 
(Fig. 2.4 (f)). Next, a 55 nm-thick gate-insulating Al2O3 is deposited and patterned to define anchor 
regions (Fig. 2.4 (g)). A 1.9 µm-thick p-type heavily in-situ doped polycrystalline- Si0.4Ge0.6 (poly-
SiGe) structural layer is then deposited using LPCVD and patterned to form the movable gate 
electrode (Fig. 2.4 (h)). Finally, the structural layer is released by selectively removing the 
sacrificial LTO layers using vapor hydrofluoric acid (HF). In this work, 𝑔* is designed to be less 
than one third of go so that the MEM switch operates in non-pull-in mode, which is beneficial for 
minimizing 𝑉8  [12].  
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Figure 2.4: Schematic device cross-sections along B-B’, C-C’, and D-D’ (cf. Figure 2.2) 
illustrating key MEM switch fabrication steps. 

 

2.4 Non-Volatile MEM Switch Operation 
A MEM switch can be operated as a non-volatile (NV) memory device if it remains in the ON-
state after the applied voltage is removed, and if it can be reprogrammed (reset) to the OFF-state. 
The feasibility of controllably welding and un-welding the contacting electrodes of a MEM switch 
is proposed herein to enable a MEM switch to be used not only for digital logic applications but 
also for embedded non-volatile information storage.   

In this work the MEM switch conductive electrodes are formed with tungsten, which oxidizes 
upon exposure to air. Prior to programming a MEM switch, the native oxide  layers on the surfaces 
of the conductive electrodes must be electrically broken down to promote current conduction and 
thereby achieve low ON-state resistance (𝑅$1). Therefore, a pulsed cold-switching oxide 
breakdown procedure [13] was used in this work. As illustrated in Figure 2.5, the switch is first 
turned on by applying a voltage  𝑉&4 =	𝑉$1 + 2𝑉; subsequently 3 voltage pulses (10 µs each) are 
applied across the drain-source contact. The initial magnitude of the drain-to-source voltage (𝑉!') 
is 6V. Afterwards 𝑅$1 is checked by measuring the drain current (𝐼!') with applied 𝑉&4 >	𝑉$1	and 
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𝑉!' = 0.5𝑉. If 𝑅$1 is larger than 1 kΩ then additional voltage pulses are applied with larger 𝑉!' =
	8V. This native oxide breakdown procedure was found to be effective for consistently achieving 
sub-1kΩ 𝑅$1 [13].  

 

                  

(a)                           (b) 
Figure 2.5: Pulsed cold switching oxide breakdown procedure: (a) circuit schematic and (b) 
voltage timing waveforms (not to scale). Adapted from [13]. 

 

2.4.1 Analytical Modeling 

An analytical model for contact welding was derived in [14]; only the key results are presented 
herein. When a voltage pulse with amplitude 𝑉!'	and duration ∆𝑡	is applied between the drain and 
source in the ON–state, the temperature of the contacting asperities on the contact electrode 
surfaces increases due to Joule heating. Assuming all contacting asperities are similar in size and 
that the size of an asperity is small compared to that of the switch, the rate of heating (�̇�) at the 
asperity is:  

                                                            �̇� ≈ *./'

=$!*01
' 	 ∙ 𝑅>                                                          (2.11)  

                                     𝑅< = 𝜌= (2𝑎>)⁄                                                           (2.12) 

 

where 𝑅: 	is the contact resistance, 𝜌? is the electrical conductivity, 𝑎) is the radius of the 
contacting asperity, and 𝑅;)"/- is the total drain-to-source resistance. 

From solving the heat equation (Equation (2.11)), the peak temperature at the contact (TC) is: 

                                                 		𝑇< =	𝑉?@ ∙
,
A&

B#
B$!-+.

5𝑓(𝜏)                                         (2.13) 
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where  𝑙 =	2.44E-8 W⋅Ω /K2 is the Lorenz number, 𝑓(𝜏) = 1 − 𝑒@ V1 − 𝑒𝑟𝑓X√𝜏Z[, 𝜏 = ∆𝑡/𝑡;8, 
𝑡;8 = 𝜌?𝑐𝑎)A/𝜆 is the thermal time constant, 𝜆 is the thermal conductivity, and 𝑐 is the specific 
heat capacity.  

As 𝑇:  approaches the melting temperature of the contacting material, atomic movement occurs 
at the contacting asperities and the area of physical contact increases. If atomic movement is 
diffusive, the rate of asperity growth should have an Arrhenius dependence on temperature 
[15][16],  

                                            1?
10
∝ 	 @

?(
⟹ 1?

10
∝ @!ABC	(-E"/7&G)

?(
                                  (2.14) 

Integrating Equation 2.14 over time t, the increase in the radius of the contacting asperity can be 
estimated as:  

                                                        	∆𝑎C 	 ∼ [𝐷C𝑒𝑥𝑝(−𝐸./𝑘D𝑇<)]∆𝑡                                               (2.15) 

where 𝐷 is the atomic diffusivity, 𝐷) is the diffusion coefficient, 𝑎 is the average radius of the 
contacting asperity,  𝐸9 is the activation energy, 𝑘4 is the Boltzmann constant and n is a factor 
between 2 and 4 that depends on the exact diffusion mechanism [14].  

The drain and source electrodes become welded together when the metal-to-metal bonding 
energy is greater than the spring restoring energy – i.e., when ∆𝑎) reaches a critical value. 
Substituting Equation (2.13) into Equation (2.15), we obtain the following relationship between 
programming time and programming voltage [14]: 

                                                 	∆𝑡 ∝ 𝑒𝑥𝑝 D D
//0
E	                                                    (2.16) 

where B is a constant that depends on the contacting material properties. In words, the time 
required to weld the contacting surfaces together decreases exponentially with increasing 𝑉!'. 

 

2.4.2 Program and Erase Operation 

Guided by the analytical modeling, a range of program and erase conditions were explored in this 
work. To program a MEM switch, a voltage (𝑉&4 >	𝑉$1) is applied between the gate and body 
to actuate the switch into the ON–state; then two voltage pulses are applied between the drain and 
source electrodes, as illustrated in Figure 2.6 (b). In order to  avoid permanent contact damage of 
the MEM switch due to the Joule heating, programming pulses (VDS) are applied as two 1ms 
pulses with  50% duty cycle instead of a one 2ms pulse. This provides a time for the contacting 
asperities to cool back down to ambient temperature before the second pulse is applied.  

The time required for the contact to cool down after the first programming voltage pulse is 
solved using heat dissipation analysis. In the heat dissipation process, thermal diffusivity (𝛼) is 
the characteristic affecting the rate of heat transfer due to a temperature gradient, and it is 
calculated as follows: 
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                                                            𝛼 = 	 7
H&2

                                                             (2.17) 

where  𝜌 is the material density and 𝑐7 is specific heat capacity of the material.   

The heating time constant (𝜏) is given by 

                                                                    𝜏 = 	 I
'

J
                                                          (2.18) 

where 𝐿 is the length of the material through which heat flows to reach the heat sink from the heat 
generation point. In this case, 𝐿 is the distance from the contacting drain/source electrode asperity 
to the wafer surface, which is approximately 12µm. 

 
Using Equation (2.18) and properties of tungsten material, the estimated time it takes for the heat 
to dissipate is ~2µs.  

                          

(a) (b)         
          

Figure 2.6: MEM switch program operation: (a) circuit schematic and (b) voltage timing 
waveforms (not to scale). 

  

As shown in Figure 2.7 (a), the bottom conductive electrode (source) has larger surface 
roughness than the top conductive electrode (drain) because the top electrode is formed from a 
tungsten layer deposited onto the LTO2 sacrificial layer conformally deposited over the bottom 
electrode resulting in a smoother surface. Due to surface roughness, physical contact between the 
conductive electrodes in the ON–state conductance occurs only at asperities. Current flow (in 
response to non-zero applied voltage 𝑉!') causes Joule heating, which raises the local temperature 
at the contact point(s), 𝑇: . If 𝑇:  is sufficiently high to soften the contacting material resulting in 
atomic movement, the area of physical contact increases and new bonds can form between the 
contacting electrode surfaces. Thusly, the contacts can be effectively welded together as illustrated 
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in Figure 2.7(b). In the programmed state, the strength of the weld is greater than 𝐹67 so that the 
switch remains ON when the gate voltage is removed, i.e., 𝑉&4 is reduced to 0V.  
 
 
 
 
(a) 

 
 

 

(b)  
     

 
 

 
 

 

 

 

 
Figure 2.7: Contact welding in a MEM switch, induced by Joule heating: (a) Due to surface 
roughness, physical contact and current flow occur only at one or more asperities. (b) During 
“Program” operation, Joule heating softens the contact, resulting in contacting asperity growth and 
increased area of physical contact, effectively welding the electrodes together.  

 

To erase the MEM switch, a voltage pulse is simply applied between the drain and source 
electrodes, as illustrated in Figure 2.8. If the Joule-heating induced temperature rise at the welded 
asperity is sufficient to soften the contacting material, i.e., weaken the bonding strength between 
atoms, the spring restoring force can cause the contact to be broken as illustrated in Figure 2.9 so 
that the switch turns OFF. 

Activated atom Cooled atom 
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Contact Welded 
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Figure 2.8: Illustration of erase operation (a) circuit schematic and (b) voltage timing waveform.  

 

 

 

 

 

 

 

 

 
Figure 2.9: Contact un-welding in a programmed MEM switch:  During “Erase” operation, Joule 
heating weakens the bonding strength so that the spring restoring force causes the contact to be 
broken. 

 

The state of the MEM switch can be easily read by applying a small 𝑉!' (e.g. 100 mV) and 
measuring 𝐼!', as illustrated in Figure 2.10. If any current flows (i.e., 𝐼!' > 0) then the switch is 
programmed. Program, erase and read conditions used for subsequent study are listed in Table 2.1.  
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Figure 2.10: Circuit schematic diagram of read operation. 

 
 

Table 2.1: Default parameters for MEM switch program, erase and read operations. 

  
Program Erase Read 

VGB VON + 2V 0 V 0 V 
VDS  2.5 V 2.7 V 100 mV 

Pulse Width 1ms 1ms - 
Pulse count 2 2 - 

 
 

Figure 2.11 shows measured 𝐼! − 𝑉&4 characteristics for a MEM switch before and after the 
first program/erase (P/E) cycle. It is observed that 𝑉$1 is reduced by approximately 2.5 V. This can 
be explained by contact asperity growth (in height as well as in diameter) resulting from the 
programming and erase processes, which effectively reduces the contact air-gap thickness (𝑔*). 
The hysteresis voltage (𝑉8) is also reduced from ~0.3V to 0V. This is consistent with the 
explanation of larger contacting asperity height, resulting in larger average separation between the 
source and drain electrode surfaces in the ON-state, which results in reduced Van der Waals force. 
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Figure 2.11: Measured IDS-VGB curves for a MEM switch before programming (blue) and after one 
P/E cycle (red).  

 

This explanation is supported by atomic force microscopy (AFM) analyses of the source 
electrodes for a fresh (never-programmed) switch and a cycled (programmed & erased, P/E) 
switch, in Figure. 2.12 (a) and (b), respectively. (The movable electrode layer stack – including 
the drain electrodes – was physically removed using scotch tape to expose the fixed electrodes.) 
Figure 2.13 shows SEM images of (a) fresh and (b) P/E-cycled source electrode surfaces.  

Both the AFM and SEM analyses show that the cycled source electrode has larger asperities 
within the contact dimple region than does the fresh source electrode. The surface height 
distribution for the fresh electrode is Gaussian whereas it is skewed for the cycled electrode, 
indicative of atomic movement to grow the size of the contacting asperities (Figures 2.12 (c) and 
(d)). The AFM line scan in Figure 2.12 (e) shows that a large asperity is approximately ~13 nm in 
height. Based on the measured reduction in 𝑉$1	and using Equation 2.5, the reduction in 𝑔* is 
estimated to be 30 nm; therefore, similarly sized opposing asperities are expected on the surface 
of the cycled drain electrode. Since the average spacing between the contacting electrode surfaces 
is increased by ~30 nm due to asperity growth, Van der Waals force (which is the dominant 
component of the contact adhesive force [9]) in the ON–state is greatly reduced and hence 𝑉8 is 
greatly reduced.  
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Figure 2.12: AFM analyses of MEM switch source electrode topography: Scans (1.6µm x 1.6µm) 
of electrode surfaces for (a) an unprogrammed contact, and (b) a P/E-cycled contact; height 
distributions within the contact dimple region for (c) the unprogrammed contact and (d) the P/E-
cycled contact. (e) Height vs. distance for an asperity, showing that it is ~13 nm tall. 

 

       
 

(a)                                                                     (b) 
 
Figure 2.13: SEM images of MEM switch source electrodes: (a) for a fresh switch and (b) for a 
P/E-cycled switch. More prominent features (asperities) can be seen in the contact dimple for the 
cycled switch.  
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2.5    Demonstration of NV-MEM Switch Reprogrammability 

A functionality that is desirable for embedded memory devices is re-programmability, i.e. the 
ability for the device to be reset to its original state and programmed again afterwards. The number 
of P/E cycles before failure (i.e. endurance) of NV-MEM switches is dependent on the program 
and erase conditions, as well as the electrical and mechanical properties of the structural and 
contact electrode materials [17]. Therefore, a range of program and erase conditions were 
investigated for tungsten electrode MEM switches in this work. 

Figures 2.14 (a) and 2.14 (b) show the experimental results for program and erase operating 
windows, respectively. If the voltage and/or pulse width are too small, then the switch does not 
change state. If the voltage and/or pulse width are too large, then irreparable damage is caused to 
the contact so that the switch no longer functions properly. The shaded regions in Figure 2.14 
indicate the voltage-time windows for reprogrammable operation.  

 

       

(a)             
  (b) 

Figure 2.14: Operating windows for MEM switch (a) program operation and (b) erase operation. 
The shaded regions indicate the combinations of VDS pulse duration and voltage for successful re-
program/erase operation. Damaged switches are not functional afterwards, i.e., they cease to 
conduct any current. 

Figure 2.15 shows measured 𝐼! − 𝑉&4 characteristics for a MEM switch before and after 
multiple program/erase cycles. It can be seen that 𝑉$1 varies substantially from cycle to cycle, 
indicating that the contact asperity height and shape change with each cycle. Nevertheless, low 
programmed-state resistance (< 1kΩ) is maintained with each cycle, as can be seen from the 
endurance testing results in Figure 2.16.  
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Figure 2.15: Evolution of MEM switch IDS-VGB characteristic through multiple program/erase 
cycles. The change in  𝑉$1	from cycle to cycle is non-deterministic because it depends on the shape 
and height of the contacting asperities. 

 

 

Figure 2.16: Evolution of the measured resistance of a MEM switch in the programmed state 
(Rprogram) and in the erased state (Rerase), over multiple P/E cycles. Rprogram is consistently below 
1kΩ. Rerase essentially indicates an open circuit, as the measurement limit due to noise is ~109 Ω.    

 

Before  
Prog. 
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It is also important to consider the basic data-retention requirement for non-volatile memory 
devices. Retention refers to the capability to retain a state (programmed or erased) over time with 
no voltages applied, across a wide temperature range. Figure 2.17 shows the results of data 
retention testing of multiple MEM switches (1 erased, 6 programmed) at high temperature (200˚C) 
in vacuum (~1 µTorr) over 5 hours. The programmed-state resistance is slightly larger at elevated 
temperature due to degraded electron mobility, but it is very stable over time; this indicates that 
the welded asperities are very stable, providing for excellent data retention. 

 

 

Figure 2.17: Data retention testing of multiple MEM switches (1 erased, 6 programmed) at high 
temperature (200˚C) in vacuum (~1 µTorr). The current noise floor is higher at elevated 
temperature, resulting in smaller apparent Rerase.  

 

2.6 Simulation Study 

To facilitate the understanding of MEM switch program and erase processes, COMSOL simulation 
of Joule heating in a MEM switch in the ON-state was performed. As shown in Figure 2.18, a 
welded-asperity structure with double napped conical shape – 100 nm wide at the base, 50 nm 
wide at the middle, and 13 nm tall for one side asperity – is simulated. Structural dimensions are 
selected to be consistent with AFM measurements (cf. Figure 2.12) and with measured electrical 
resistance values (cf. Figure 2.16). As indicated by the energy-dispersive X-ray (EDX) analysis 
results shown in Figure 2.19 and as discussed in [12], a thin native oxide forms on the surface of 
the tungsten electrode. Therefore, the simulated structure comprises 1.5 nm-thick tungsten trioxide 
(WO3)-coated drain/source contact asperities that are welded together. Table 2.2 summarizes 
material properties and values used in this simulation.   
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Figure 2.20 shows how the peak contact temperature changes with time when a 2.7V, 1ms 
erase pulse is applied at time t = 0 with a ramp time of 0.1 µs. The simulation results show that the 
peak temperature at the contacting asperity (𝑇:) reaches 1366˚C, which is close to the melting 
temperature of WO3 and certainly is sufficient to soften the contact material and cause atomic 
movement. Note that the heat is largely confined to the WO3 contacting layers because the thermal 
conductivity of WO3 is two orders of magnitude lower than that of tungsten.  

 
Figure 2.18: COMSOL simulation of Joule heating in a MEM switch during erase operation (cf. 
Table 2.1).  

 

Table 2.2: Key material properties and values used for simulation. 

 

 
Electrical 

Conductivity 
σ (S/m) 

Thermal 
Conductivity 
κ (W/(m K)) 

Heat 
Capacity 

Cp (J/(Kg K)) 

Density 
ρ 

(kg/m3) 
W 2x10 7 174 132 19,350 

WO3 1.6x103  1.63 170 7,160 
Al2O3 0 35 730 3,965 

Poly-SiGe 1.67x105  11 464 4,740 

Si Substrate 4 1.31x102 700 2,329 
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Figure 2.19: Measured EDX spectrum of source electrode showing the presence of W and O at the 
surface.  

 

 
Figure 2.20: Evolution of peak contact temperature (cf. Fig. 2.18) during erase operation.  

 

2.7 Discussion  

Simulations show that the properties of the structural and conductive/contacting electrode 
materials play an important role in determining the endurance of a NV-MEM switch. The SEM 
image in Figure 2.21 shows how repeated P/E-cycling can cause permanent damage to the heated 



 33 

portions of the switch (top left corner of the movable structure along with the folded-flexure beam 
and drain electrode). Alternative contacting electrode materials with lower melting temperature 
than tungsten can be explored in the future to reduce the thermal stress sustained by the other layers 
of the MEM switch during program/erase operation, to alleviate this issue. Table 2.3 lists the 
relevant properties of alternative contacting materials.   

 

 

 

Figure 2.21: Top view SEM image of a MEM switch that failed after 6 program/erase cycles. 

 

Table 2.3: Mechanical and electrical properties of alternative contacting electrode materials [18] 

 

 

Contact 
Material 

Tungsten 
(W) 

Aluminum 
(Al) 

Niobium 
(Nb) 

Nickle 
(Ni) 

Ruthenium 
(Ru) 

Gold 
(Au) 

Melting 
Point 
(K) 

3695 933.5 2750 1728 2607 1337 

Specific heat 
capacity 
(J/kg.K) 

132 904 265 445 238 129 

Resistivity 
(Ωm) 5.6 x10-8 2.6 x10-8 1.5×10-7 7 x10-8 7 x10-8 2.2 x10-8 

Thermal 
conductivity 

(W/(mK)) 
170 235 54 91 120 320 
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2.8 Summary 

In this chapter MEM switches designed for digital logic application are demonstrated to be able to 
function as non-volatile memory devices through controlled contact welding and un-welding 
processes. It is demonstrated that MEM switches can be programmed and erased with relatively 
small voltage (<3V). Re-programmability with consistently low programmed-state resistance, and 
excellent (essentially infinite) retention time at elevated temperature, are experimentally 
demonstrated. The experimental findings in this work indicate that MEM switches are promising 
for low-cost implementation of ultra-low-power integrated microsystems. Further work is needed 
to optimize the contact and structural materials to achieve greater program/erase cycling 
endurance.  
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Chapter 3 
 

Investigation of Floating-Gate MEM Switch 
for Non-Volatile Memory Application  

 

3.1     Introduction  
With the rise of cloud computing and the Internet of Things, the traditional von Neumann 
computing architecture – in which digital computation and information storage functions are 
physically separated – is facing new challenges related to the large amount of data and the 
increasing burden of communication between the memory and the processing unit [1]. Therefore, 
embedded memory technology is of interest for faster and more energy-efficient computing. 
Ideally, both the switches used for digital computation and the non-volatile memory (NVM) 
devices should be operated with very low energy [2]. Electrostatically actuated mechanical 
switches can achieve immeasurably low OFF-state leakage current (IOFF) and abrupt switching 
behavior enabling sub-50 mV operation at room temperature [3, 4] and sub-25 mV operation at 77 
K [5]; hence they are promising for ultra-low-power digital computing.   
 

In Chapter 2, operation of MEM switches as NVM devices using controlled contact welding 
and unwelding was demonstrated. In this chapter, a different approach is investigated, by 
fabricating MEM switches with a floating gate electrode embedded within the gate dielectric to 
store electronic charge. Unlike flash memory devices, MEM switches have an air gap in the off 
state that prevents charge leakage, which could provide for long data retention time both at room 
temperature and in a harsh environment (such as space). In Section 3.2 the structure and operating 
principle of a floating gate (FG) MEM switch for embedded memory application is presented. 
Section 3.3 presents a device fabrication process and initial experimental results. Improvements to 
the device design and fabrication process are then proposed in Section 3.4. Section 3.5 summarizes 
this chapter.  
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3.2     Proposed FG-MEM NV Switch Design 
Figure 3.1 illustrates the FG-MEM switch design used in this work, comprising 2 pairs of 
source/drain electrodes (therefore 2 separate contacts), as well as corresponding schematic cross-
sectional views in the ON-state and in the OFF-state. The FG-MEM switch comprises a movable 
gate stack consisting of the “control” gate and the charge-storing floating gate which is electrically 
insulated by dielectric material. The movable gate stack is suspended by four folded-flexure beams 
over a fixed body electrode. Each drain electrode extends underneath the gate electrode and is 
attached to it via an insulating dielectric layer. Herein the thinner dielectric material layer between 
the control gate and the floating gate is called the tunnel oxide while the thicker dielectric material 
layer between the floating gate and the drain electrode is called the gate oxide. The fixed source 
electrodes are co-planar with the body electrode.  

This switch operates similarly as the MEM switches discussed in Chapter 2: in the OFF–state, 
an air gap physically separates each drain electrode from its underlying source electrode, so that 
no current (𝐼!') flows; in the ON–state, the movable gate stack is actuated downward by 
electrostatic force between the gate and body such that each drain electrode comes into contact 
with its underlying drain electrode to allow current flow with applied drain/source voltage 
difference (i.e.,	𝑉!' ≠ 0𝑉). 

 
               (a) 

 

                
 

    
                                (b)                                                                           (c) 
 

Figure 3.1: (a) Schematic isometric view of the floating-gate MEM switch studied in this work 
and cross-sectional views along the ‘B’ cutline in (b) OFF-state (c) ON-state. 
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Similarly as in a metal-oxide-semiconductor (MOS) transistor based flash memory cell [6–8], 
the control gate is used to turn the device ON and OFF, while the floating gate is used to store 
electronic charge to change the turn-ON voltage (𝑉BC). Fowler-Nordheim (F-N) tunneling is the 
process used to transfer charges to or from the floating gate though a thin tunneling oxide [9–12]. 
F-N tunneling occurs when a large electric field is induced across a thin dielectric layer 
(approximately 10 nm or less in thickness) [12] resulting in a triangular (vs. rectangular) potential 
barrier which increases the probability of electrons tunneling through the barrier [10][13][14][15].   

The generalized FN tunneling current density (𝐽%1) is given by the following equation:    

                                                    𝐽%1 =	
D%(&'(

EF#G)"&'(
exp d− HIAJ$

∗ 	G)
%/("&'

K#D(&'
e                                 (3.1) 

 

where q is the electronic charge, 𝑉)L is the voltage dropped across the dielectric layer, 𝑡)L  is the 
thickness of the dielectric layer, h is Planck’s constant, 𝜙4 is the barrier height, and 𝑚.

∗  is the 
electron effective mass. A detailed derivation of this equation can be found in [10].   
 

A. Program, Erase, Read Operation  

When electronic charge is injected to or removed from the floating gate, 𝑉BC changes. Therefore, 
information can be encoded in the turn-ON voltage of a FG-MEM switch. Ideally, the total amount 
of charge on the floating gate does not change after the applied voltage is removed, to achieve non-
volatile information storage. 

If a large programming voltage (𝑉<N)>) pulse were to be simply applied between the control 
gate and body electrodes, as in a conventional floating-gate flash memory cell, the MEM switch 
would turn on and off, physically making and breaking contact. To avoid unnecessary contact wear, 
the switch should be maintained in the OFF–state during program and erase operations. Therefore, 
in this work, programming and erasing voltage pulses were applied to the drain electrode while 
the other electrodes (control gate, source, and body) were biased at ground (0 V). 

The application of a positive voltage to the drain electrode results in an electric field in the 
gate oxide and also an electric field in the tunnel oxide, attracting electrons toward the drain. 
Because the tunnel oxide is thin, electrons can tunnel from the control gate into the floating gate. 
(The gate oxide is much thicker, so electron tunneling into the drain electrode is negligible.) 
Similar to the situation of a floating gate MOS transistor [6][11], the electric field within the tunnel 
oxide is 

                                                                	𝐸 = (,-
"&'

                                                               (3.2) 

where 𝑡)L is tunnel oxide thickness and 𝑉%&  is the floating gate voltage, which can be calculated 
using the relationship 

                                                                       𝑄 = 𝐶𝑉                                                                (3.3) 

where	𝑄 is the charge stored, 𝐶 is the capacitance of the storage node, and 𝑉 is the voltage at the 
storage node. Considering the general case in which there is net charge stored on the floating gate 
(FG), i.e., 𝑄%& ≠ 0,  
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                   𝑄%& = 𝐶%&_!(𝑉%& −	𝑉!) +	𝐶%&_:& 	(𝑉%& − 𝑉:&) +	𝐶%&_4 	(𝑉%& − 𝑉4)	                 (3.4) 

where 𝑄%&  is the amount of stored charge, 𝐶%&_! , 𝐶%&_:& , 𝐶%&_4 are the capacitances between the 
FG and drain, between the FG and control gate, and between the FG and body electrode, 
respectively, as illustrated in Figure 3.2. 𝑉%&  is the FG voltage and 𝑉! , 𝑉:& , 𝑉4 are the voltages at 
the drain, control gate, and body electrode, respectively.   
 

  While the programming voltage (𝑉<N)>) pulse is applied the drain electrode (i.e., 𝑉<N)> =
	𝑉!) the other electrodes are grounded (𝑉:&= 𝑉4 = 0𝑉), so 
 

                             𝑄%& = 𝐶%&_!X𝑉%& −	𝑉<N)>Z +	𝐶%&_:& 	(𝑉%&) +	𝐶%&_4 	(𝑉%&)                      (3.5) 

 

                                   𝑄%& = i𝐶%&_! + 𝐶%&_:& + 𝐶%&_4j	𝑉%& − 	𝐶%&_!	𝑉<N)>                            (3.6) 

 

Solving for 𝑉%& , 

                                𝑉%& = 	𝑉<N)>	.	 k
:,-_/

:,-_/P:,-_0-P:,-_)
l + k	 Q,-

:,-_/P:,-_0-P:,-_)
l	                     (3.7) 

 

Herein the capacitive coupling ratio 𝛼 is defined as follows: 

𝛼 = :,-_/
:,-_/P:,-_0-P:,-_)

 =	:,-_/
:1

                                                        (3.8) 

where 𝐶; = 𝐶%&_! + 𝐶%&_:& + 𝐶%&_4 

 

 
 

Figure 3.2: Schematic illustrating capacitances within a FG-MEM switch in the ON-state.  



 40 

If electrons are stored on the floating gate, then a larger positive voltage or a smaller negative 
voltage must be applied to the gate electrode relative to the body electrode to induce the amount 
of electrostatic force needed to actuate the movable gate stack downward such that the drain 
electrodes come into contact with their respective source electrodes, i.e., to turn on the FG-MEM 
switch. When a positive shift in turn-ON voltage (Δ	𝑉BC > 0) is observed, the switch is referred 
as programmed or in the ‘1’ state. To erase the device, a negative voltage pulse is applied to the 
drain electrode to cause electrons to tunnel back to the gate. After programming and erase 
operations, if 𝑉BC returns to its initial value then the switch is referred as erased or in the ‘0’ state.  

The shift in 𝑉$1 due to (negative) charge stored on the floating gate is:  

                                                    	∆𝑉BC =	−
Q,-

:,-_0-
                                                                       (3.9)  

 
𝐶%&_:& = 𝐴𝜀9-($% 𝑡)L⁄  where 𝐴 is the area of the floating gate (which is roughly the gate actuation 
area) and 𝜀9-($% is the dielectric permittivity of the tunnel oxide. 
                                           

3.3      Experimental Investigation of FG-MEM NV Switches 
The fabrication process and initial experimental results for FG-MEM switches are presented in 
this section.  
 
 

3.3.1 Device Fabrication  
The device fabrication process used in this work is very similar to that used to fabricate 
conventional MEM switches (cf. Figure 2.4). The main difference is a thin tungsten metal layer 
added between gate-insulating layer formation steps, as described in detail below. 

An 80 nm-thick electrically insulating Al2O3 layer is deposited over the silicon wafer substrate 
by atomic layer deposition (ALD) (Figure 3.3 (a)). Next, a 60 nm-thick tungsten (W) layer is 
deposited by sputtering. Lithography and reactive ion etching (RIE) processes are performed to 
pattern the W layer to form fixed electrodes (body electrodes, drain electrodes, and source 
electrodes) as shown in Figure 3.3(b). Subsequently, a 160 nm-thick sacrificial SiO2 layer (LTO1) 
is deposited using low pressure chemical vapor deposition (LPCVD), followed by contact 
“dimple” region definition (Figure 3.3 (c)). A second 60 nm-thick sacrificial SiO2 layer (LTO2) is 
deposited and patterned to form via regions (Figure 3.3 (d)).  

To form the movable gate stack, 60 nm-thick W drain electrodes are formed (Figure 3.3 (e)). 
Afterwards, instead of a 55 nm-thick Al2O3 gate insulator layer, a 45 nm-thick Al2O3 gate insulator 
layer is deposited. Then a 5 nm-thick W layer is deposited to form the floating gate. Next, a 10 
nm-thick Al2O3 tunnel oxide layer is deposited and etched together with the LTO layers to define 
the structural anchor regions (Figure 3.3 (f)).   

The control gate electrode is formed by depositing a 1.9 µm-thick p-type heavily in-situ doped 
polycrystalline-Si0.4Ge0.6 (poly-SiGe) layer by LPCVD and patterning it. Finally, the gate stack is 
released by selectively removing the sacrificial LTO layers using vapor hydrofluoric acid (HF) 
(Figure 3.3 (g)). 
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Figure 3.3: Schematic cross-sectional views along A, B and C cut-lines in Figure 3.1(a) illustrating 
the fabrication process steps for the FG-MEM switches studied in this work. 

 

Table 3. 1:  FG-MEM design parameter values used in this study. 

Design parameter Symbol Values 
Poly-Si0.4 Ge0.6 Thickness t 1.9 µm 
Suspension Beam Width W 2 µm 
Suspension Beam Length L 12 µm 
Actuation Gap Thickness g0 220 nm 
Contact Gap Thickness gd 60 nm 

Gate Actuation Area A 1062 µm2 

Total Drain Electrode Area 
(Drains on left and right) ADrain ~216 µm2 

Total Contact Dimple Area ACONT 2 µm2 

(a) 

(b) 

(d) 

(e) 

(g) 

(f) 

(c) 

Section A Section B Section C 
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3.3.2 Electrical Characterization 

Electrical characteristics of fabricated FG-MEM switches were measured at room temperature in 
a Lakeshore TTPX cryogenic vacuum probe station at ~1.5 µTorr to minimize oxidation of the W 
electrode surfaces. Prior to collecting data, a native-oxide breakdown process was conducted by 
turning on the switch by applying 𝑉&4 	= 	𝑉$1 	+ 	2𝑉 and then applying a millisecond voltage 
pulse (𝑉!' = 3𝑉,~5𝑚𝑠) across the contact using the Agilent B1500A Semiconductor Device 
Parameter Analyzer. Afterwards, ON-state resistance 𝑅$1 is measured, and if 𝑅$1 > 1𝑘𝛺  then an 
additional voltage pulse 𝑉!' is applied. This pulsed oxide-breakdown procedure is discussed in 
[16].   

Figure 3.4 shows measured current-vs.-voltage (I-V) characteristics for a fresh FG-MEM 
switch, for positive and negative sweeps of the gate voltage with the body biased at ground and 
𝑉!' = 0.5	𝑉. It can be seen that the device turns on with positive gate voltage at 𝑉$1 =
	+14.3	𝑉	and with negative gate voltage at 𝑉$1 = −14.2	𝑉, which is approximately symmetrical. 
This indicates that there is no charge stored on the floating gate.  

 

 
Figure 3.4: Measured I-V characteristics of a FG-MEM switch showing symmetric values of 𝑉$1. 
(Negative 𝑉&4 sweep is shown in Black while positive 𝑉&4 sweep is shown in Red.)   

 
Figure 3.5 shows measured I-V characteristics for a FG-MEM switch before (red) and after 

(blue) it is programmed with a single voltage pulse of magnitude 𝑉<N)> = 30𝑉 and 10 µs width. 
As can be seen from the figure, there is an asymmetric shift in switching voltage (Δ𝑉BC is 
approximately +0.79V) indicating that some charge was successfully injected onto the FG.  
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Figure 3.5: Measured I-V characteristics of a FG-MEM switch before (red) and after (blue) 
programming for negative	and positive 𝑉&4 sweeps. 𝑉$1 is no longer symmetrical due to injected 
charges and is shifted by +0.79 V to the right, after programming. 
 

The programming/erasing characteristics of the FG-MEM switch device are shown in Figure 
3.6 for different program/erase voltages. Δ𝑉BC saturates as the program time increases because the 
electric field within the tunneling oxide decreases as the FG is charged (cf. Eqn. (3.7)). The much 
faster erase operation is due to a leakage path between the floating gate and the structural anchor. 
Figure 3.7 (cf. Figure 3.3 (g) Section C) shows that the fabricated floating gate is in direct contact 
with the anchor, providing a pathway for charges to leak away.  

 

          
(a)                                                                   (b) 

 

Figure 3.6: Change in FG-MEM switch turn-ON voltage with (a) program and (b) erase time, for 
different program/erase voltages.  
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Figure 3.7: Zoomed-in cross-sectional schematic of the initial FG-MEM NV-switch design (cf. 
Figure 3.3(g)) showing that the floating gate (FG) contacts the gate electrode in the anchor region, 
allowing charge on the FG to leak away. 

 
3.3.3 Data Retention 

Figure 3.8 shows data-retention characteristics for three different FG-MEM devices 
maintained at 200˚C in vacuum. First the initial 𝑉$1 values were recorded for the three fresh 
devices at room temperature (Device #1: 16.04V, Device #2: 16.85V, Device #3: 16.0V). 
Subsequently, a programming voltage pulse (30V, 10µs) was applied to each device, followed by 
𝑉$1 read to verify each device was programmed. Then the devices were heated to 200˚C for 
accelerated data-retention testing. Unfortunately, all devices’ 𝑉$1 returned to their initial values 
(or ∆𝑉BC went back to zero) within ~1 minute, as can be seen from Figure 3.8. This means that all 
the stored charges leaked out of the floating gate. This issue is also likely due to a leakage path 
between the floating gate and the structural anchor, as shown above in Figure 3.7.  

 
Figure 3.8: Data retention characteristics of three FG-MEM devices at 200˚C. Most of the charge 
stored on the FG in each of the three devices leaked away within ~1 minute.  
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3.4   FG-MEM NV Switch Design Improvements 
The initial experimental results presented above reveal some challenges for practical 
implementation of FG-MEM NV switches: (i) relatively small values of Δ𝑉$1, (ii) slow 
programming speed, and (iii) poor retention time. Causes and proposed solutions for these are 
discussed in this section.  

Since ∆𝑉BC	is inversely proportional to 𝐶%&_:&  (cf. Eqn. (3.9), it is desirable to reduce	𝐶%&_:&   
in order to increase ∆𝑉BC	or to reduce the amount of stored charge (𝑄%&) required to achieve the 
desired value of ∆𝑉BC. This means that the thickness of the dielectric material layer between the 
control gate and the floating gate should be increased.  

To increase programming speed, the electric field in the tunnel oxide layer during the 
programming process should be increased. This means that the floating gate voltage (𝑉RS) should 
be larger. The capacitive coupling ratio 𝛼 for the initial FG-MEM NV devices in this work is less 
than 0.05, which means that 𝑉RS is more than 20 times smaller than	𝑉7N)> (cf. Eqn. (3.7). Therefore, 
the thickness of the dielectric material layer between the floating gate and the drain should be 
decreased and/or the thickness of the dielectric material layer between the floating gate and the 
control gate should be increased. 

To achieve both larger values of Δ𝑉$1 and to improve programming speed, the positions of 
the tunnel oxide and gate oxide should be interchanged; that is, the gate oxide between the control 
gate and floating gate should be thick (45 nm) while the tunnel oxide between the floating gate 
and drain electrode should be thin (10 nm). 

The final challenge to address for the FG-MEM NV switch is the poor data retention time. 
Because the floating gate is not patterned with a separate mask, its edge is in physical contact with 
the anchor region of the gate electrode (Figure 3.7); this provides a path for charge to leak away 
from the floating gate, resulting in faster erase speed (cf. Figure 3.6(b)) and short retention time.  
To eliminate this leakage path, a separate mask must be used to pattern the FG; also, dielectric 
sidewall spacers (formed by conformally depositing a layer of Al2O3 after the FG is patterned, and 
then anisotropically etching the Al2O3 layer) can be used to completely insulate the FG. 

3.5     Summary  

A floating-gate-based non-volatile MEM switch is proposed and experimentally investigated in 
this work. Design improvements are proposed to achieve faster programming speed and long 
retention time (typically 10 years) to make this device technology practical for NVM applications.  
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Chapter 4  
  
Highly Reliable and Secure Physical 
Unclonable Function Using Resistive Memory 
Integrated into a 28nm CMOS Process  
 
4.1 Introduction 
With the proliferation of mobile computing and communication devices and the emergence of the 
Internet of Things (IoT), hardware security is becoming a key concern [1]. The connectivity of IoT 
devices is mandatory but also makes them vulnerable to malicious attacks and data leaks. 
Therefore, security and privacy are considered as key challenges to future growth of the IoT [2]. 
The requirements for encryption key generation and storage include a source of randomness to 
guarantee unpredictability and uniqueness of the key, and a protected memory to reliably store the 
key [3]. 

Software algorithms are commonly used to generate encryption keys to secure information 
and communication channels. While software-generated encryption keys are cost-effective and 
relatively easy to update and maintain, they can be less secure than their hardware equivalents. 
Also, continual encryption and decryption of data can significantly slow system performance [4].   

Hardware-based encryption is considered to be more secure and faster because circuitry within 
the hardware is responsible for encryption and authentication so only authorized users can access 
the data in the hardware [4] [5]. In the past, secured electrically erasable programmable read-only 
memory (EEPROM) or other battery-backed static random-access memory (SRAM) was used for 
secret key storage. Physical Unclonable Functions (PUFs) embedded in integrated circuits 
(“chips”) have attracted attention in recent years because they offer a lower-cost, lower-power and 
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tamper-resistant solution for authentication, as well as key generation for cryptography 
applications [6]–[8]. 

PUFs exploit inherent hardware variations to produce an unclonable, unique device response 
to a given input without the need for expensive hardware or secured memory modules [1].  Unlike 
other hardware security primitives, PUFs do not store keys in memory [9]. Rather, a PUF generates 
device-specific output (the device’s digital fingerprint) when queried with a certain input. 
Typically, the generated output is a string of binary digits (bitstream) determined by inherent 
physical variations that occurred during the chip’s manufacturing process [10]–[12].These process-
induced variations result in variability in transistor threshold voltage, transistor drive current, and 
parasitic resistances and parasitic capacitances across the chip. Although process variation may be 
an unwanted effect from the circuit designer’s viewpoint, it is vital for building PUF circuits 
because unpredictability increases security, as the device-specific output cannot be predicted based 
on some deterministic or quasi-deterministic algorithm. [1].   
 

 

 
 

Figure 4.1: Typical PUF based authentication scheme for IoTs. 
 

 
Various PUF architectures based on ring oscillators, arbiter circuits, and various types of 

memory cells (e.g., SRAM) have been reported [13]–[18]. Among these, filamentary resistive 
random access memory (ReRAM) based PUFs stand out due to their high degree of randomness, 
low bit error rate (BER), resilience to variations in environmental conditions and resistance to 
invasive attack [9],[19]. Therefore, ReRAM-based PUF is a promising candidate for applications 
requiring both hardware security and embedded non-volatile memory (NVM). In advanced 
security protocols, PUFs are required to cooperatively fulfill requirements for device 
authentication and encrypted communication between IoT devices and a cloud-based server, as 
illustrated in Figure 4.1. 
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In this chapter, a highly reliable and resilient ReRAM-based PUF architecture and generation 
scheme that is fully compatible with 28 nm-generation CMOS technology is presented. Both NVM 
and PUF functions are realized in the same chip. Generated PUF bitstreams satisfy all NIST 
SP800-22 randomness assessments and demonstrate 100% retention after 50 hours at 150˚C. 

 

4.2 ReRAM Structure and Operation  
Resistive random-access memory (ReRAM or RRAM) is a type of NVM that relies on the 
electrical resistance modification of a switching medium in order to store information. It is of 
particular interest for emerging high-density NVM applications, owing to its characteristics of 
simple cell structure, fast program and erase (P/E) speed, excellent scalability, low power 
consumption, and compatibility with standard complementary metal-oxide-semiconductor 
(CMOS) process technology [20-26].  

A ReRAM device is a metal/insulator/metal (MIM) structure comprising the switching layer 
(SL) sandwiched between an inert bottom electrode (BE) and a top electrode (TE) [26][27]. The 
application of a voltage across the ReRAM device enables a transition from a high-resistance state 
(HRS) or OFF–state to a low-resistance state (LRS) or ON–state. The physical mechanism of 
resistance change depends on the materials used.  

A wide variety of materials have been investigated as ReRAM electrodes. Among these, the 
most abundant and commonly used are elementary materials such as W, Al, Ti, Cu, Ag, and Pt or 
nitride-based compound materials such as TaN and TiN [28]. A variety of materials have been 
investigated for the ReRAM SL, but metal oxides and nitrides have been most extensively studied 
and are preferred primarily due to their compatibility with CMOS back-end-of-line (BEOL) 
processing [28]. Examples of insulating materials that exhibit non-volatile resistance switching are 
metal oxides such as TiOx, HfOx, AlOx, SiOx and nitrides such as  AlNx, SiNx [28].  

In this work, ReRAM devices are integrated into the BEOL process of a standard 28nm-
generation CMOS technology. Figure 4.2(a) shows the one transistor (1T) - one ReRAM (1R) 
memory cell configuration, with ~120nm ReRAM lateral dimension. The ReRAM device 
comprises a 30nm tungsten (W) bottom electrode, a 3nm AlOx switching layer, and a 90nm AlNx 
top electrode (TE) as shown in Figure 4.2(b).  
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Figure 4.2: (a) Cross-sectional transmission electron micrograph of a fabricated 1 transistor (1T) 
1 ReRAM (1R) cell (b) higher-magnification view showing ReRAM layer stack: inert bottom 
electrode (W), switching layer (AlOx), and Al-based top electrode (AlNx). 

 
The switching mechanism of the AlOx-based ReRAM device used in this work is the 

formation of a conductive metallic filament within the dielectric layer to electrically connect the 
two electrodes. Such ReRAM devices are called Conductive Bridge ReRAMs (CB-ReRAMs). 
Figure 4.3 illustrates the metallic filamentary switching mechanism. The application of a positive 
voltage on the TE relative to the BE ground potential causes metal atoms from the TE to become 
ionized through the process of oxidation [29]. The metal ions then drift through the SL toward the 
BE, forming a conductive filament. The metal ions are reduced when they come into electrical 
contact with the BE (Figure 4.3(a)). This process is called forming and is considered to be the 
initial soft breakdown of the MIM structure. The applied voltage used for the forming process is 
referred to as the forming voltage (Vf).  

Upon application of a negative voltage to the TE (or a positive voltage to the BE with the TE 
maintained at ground potential), Joule heating together with the induced electric field cause 
oxidation (ionization) of the metal filament [30][31]. The metal ions then drift back toward the TE 
and are reduced when they come into electrical contact with the TE (Figure 4.3(b)). The ruptured 
filament in this OFF-state results in relatively large resistance (ROFF) between the TE and BE. The 
voltage at which this rupturing process occurs is called the erase voltage (Verase).  

Subsequent application of a voltage to switch the device to the LRS is referred to as a program 
operation, and the applied voltage is referred to as the program voltage (Vpgm). The resistance 
between the TE and BE in the ON-state (RON) is relatively small. 
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Figure 4.3: Schematic illustration of the switching mechanisms of a Conductive Bridge ReRAM 
device: (a) program operation and (b) erase operation. 

 
Figure 4.4 shows a circuit schematic used to measure DC current and a typical measured DC 

current vs. voltage (I-V) curves for a ReRAM device after a 400°C alloying process. Unlike 
oxygen-vacancy-based resistive memory which usually requires a high-voltage forming step 
before program/erase cycling [32] [33], our ReRAM shows relatively small (less than 2V) forming 
and program voltages. This is because the switching-layer thickness and TE interface are 
engineered to achieve a low voltage in the first cycle, or “forming process.” In addition, cycle 1 
and 2 program voltages are almost identical, indicating that the filament formed within the 
switching layer during programming is retracted almost completely back to the top electrode after 
erase operation.  
 

  

             
     

 

(a)                                                                   (b) 
Figure 4.4: (a) I-V measurement circuit schematic. (b) Typical measured I-V curves of a ReRAM 
device. ‘Cycle 1’ is the 1st cycle from pristine device (‘form’ and ‘erase’) and ‘Cycle 2’ shows 
‘program’ and ‘erase’ operation. Voltage sweep directions are indicated by arrows. 
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ReRAM operation can involve frequent switching between HRS and LRS; each transition 
between states can cause defects in the insulating switching layer, consequently resulting in lower 
OFF-state resistance (ROFF) and degrading ReRAM performance. Thus, it is important to perform 
endurance testing to determine the maximum number of program/erase cycles before the device 
fails (with indistinguishable HRS and LRS). This is done by performing multiple program/erase 
cycles and intermittently applying a read voltage (VRead = 0.3 V) and measuring the current (to 
monitor ROFF and RON). Table 4.1 shows the program/erase conditions used to obtain the endurance 
testing results for 1Mb of ReRAM cells shown in Figure 4.5. Due to ReRAM switching voltage 
variability, programming/erasing pulses were applied repeatedly until the device was verified to 
be programmed/erased.  

In Figure 4.5, The measured ON-state (‘1’ bit) and OFF-state (‘0’ bit) current distributions 
indicate excellent endurance, exceeding 10,000 program/erase cycles, making this ReRAM 
technology suitable for NVM applications. The increase in ON-state current with cycling is due to 
degradation of the electrically insulating property of the switching layer. 

 
Table 4. 1: Parameters for ReRAM program and erase cycling. 

 

 

 
 

 
 

 
Figure 4.5: Distributions of measured ReRAM cell current after verified program/erase cycles. 
Excellent endurance (more than 10,000 cycles) is seen for the two distinct states (ON and OFF). 
 

Cycling Parameters Value 
Form/ Program Voltage 3.2V 

Form/ Program Pulse Width 200µs / 5µs 
Form/ Program Current 300µA 

Erase Voltage -2.2V 
Erase Pulse Width 20µs  

    ‘1’ bits     ‘0’ bits 
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Data retention (stability of LRS and HRS after undergoing 10,000 program/erase cycles) is 
another NVM device performance requirement. As shown in Figure 4.6, excellent post-cycling 
data retention characteristics are seen. ON–state and OFF–state conductance remains well 
separated after a 1-hour 225˚C bake; the projected retention time exceeds 98 years at 85°C, 
assuming an activation energy (Ea) of 1.5 eV [34].  Figure 4.7 shows the current distribution of 
ReRAM devices after forming (pre-cycling). As can be seen from this figure, the devices well 
maintain their state after a 265°C 1-hour bake (which extrapolates to 10 years at 125°C), with 
good margin between ON and OFF states. This confirms that the ReRAM devices are 
compatible with a reflow soldering process, which is important for low-cost chip packaging.  

 
 

 
 

Figure 4.6: ReRAM retention performance. Clearly differentiated ‘ON’ (‘1’) and ‘OFF’ (‘0’) states 
are retained after baking at 225°C for 1 hour. The projected retention time at 85°C is greater than 
98 years. 

‘1’ bits 
‘0’ bits 

PreBake 
PostBake 



 55 

 
 
Figure 4.7: ReRAM forming current distributions before and after baking at 265°C for 1 hour, 
confirming solder reflow process compatibility.  

 

4.3 Inherent Stochastic Behavior of ReRAM for PUF 
Although ReRAM can be used for NVM applications, the inherently stochastic nature of the device 
is a significant limiting factor. The switching voltage, switching current, HRS/LRS resistances, 
and switching delay all exhibit a high degree of variation from device-to-device and from cycle-
to-cycle [35][36]. Such randomness arises from the formation and rupture of the conductive 
filament, manufacturing process variations, and/or defects in the switching layer. This stochastic 
behavior can be leveraged as a source of randomness for PUFs, however [37, 38]. In this section, 
different aspects of ReRAM randomness are investigated.  

The measured forming I-V characteristics for 74 ReRAM cells from a single wafer, plotted in 
Figure 4.8, show that the forming voltage varies randomly from device to device across a ~1V 
window from 2.4V to 3.4V. (The voltage step size was 50 mV, which is why many curves overlap 
in their transition regions.) The program voltage for each device also randomly varies from cycle 
to cycle, as can be seen from Figure 4.9 which plots Vpgm for 18 devices over 100 cycles.  

‘0’ bits 

‘1’ bits 
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Figure 4.8: Characterization of DC forming voltage randomness of 74 ReRAM cells. 

 
 

 
 

(a)                                                              (b) 
 

Figure 4.9: (a) Cycle-to-cycle program voltage distribution for 18 ReRAM devices. Each device 
is cycled 100 times. The edges of the box indicate the 25th and 75th percentiles and the median 
value is indicated inside the box. (b) Program/erase parameters used. More than 1 erase pulse was 
used if needed.  

 
The effects of program voltage pulse width (PW) and pulse count were investigated using an 

array of 163,840 1Transistor-1ReRAM (1T-1R) cells as illustrated in Figure 4.10. VRead = 0.3V was 
used for verification of successful switching. For each value of PW (e.g., 10µs) the program 
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voltage applied to the TE was successively incremented by 0.1V until the ReRAM device switched 
to the ON-state. The results shown in Figure 4.11 indicate that as the PW is increased, the range 
of program voltage required to switch ON the ReRAM generally diminishes. The effects of 
program voltage and PW on ReRAM switching time (i.e., product of PW and pulse count required 
to switch ON the ReRAM) are shown in Figure 4.12. Randomness in switching time is seen and 
is greater for lower program voltage and shorter PW.  

The stochastic nature of ReRAM switching time can be utilized as the source of randomness 
for PUFs. From the data in Figure 4.12, program voltage parameters to achieve 50% probability 
of switching can be determined, for PUF generation discussed in the next section. 
 
 
 

 
 
 

Figure 4.10:  Cell array architecture used for measuring ReRAM program/erase times.  ‘BL’, ‘WL’ 
and ‘SL’ denote bit line, word line, and source line, respectively. 
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Figure 4.11: Measured distributions of ReRAM program voltage for various program pulse widths. 
The edges of the red box indicate the 25th and 75th percentiles and the median program voltage is 
indicated inside the box.  
 

              
 
Figure 4.12: Measured distributions of ReRAM switching time for various values of program 
voltage. (The switching time is the product of program pulse width and pulse count.) The edges of 
the black box indicate the 25th and 75th percentiles and the median value of switching time is 
indicated inside the box.  

4.4 PUF Generation Scheme Using Switching Time Variation  
The scheme proposed herein exploits the stochastic nature of ReRAM switching time as an entropy 
source. Figure 4.13 shows measured voltage waveforms for two different ReRAM devices during 
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program/switching operation. The programming voltage pulse (black) is applied to the ReRAM 
device in series with a 5 kΩ resistor, while the output voltage (red) across the 5 kΩ resistor is 
monitored. The voltage across the resistor increases when the ReRAM cell switches to the ON–
state. For the same program voltage (Vpgm), the two ReRAM devices exhibit different switching 
times of ~140ns and ~35ns, confirming stochasticity. Therefore, it is proposed to exploit the 
mismatch in program time between two ReRAM devices for PUF generation. Figure 4.14 is a 
circuit diagram of an array of 1T-1R cells illustrating voltage-differential based PUF generation, 
where the TEs for a pair of ReRAM devices along a selected row are connected together to generate 
one bit of the PUF. 
 

 

Figure 4.13: Programming voltage pulse (black) and measured voltage (red) across 5 kΩ series 
resistor. (Once the ReRAM cell is programmed, the voltage across the resistor increases.) A large 
difference in switching time is seen for the two different ReRAM cells in (a) and (b).  
 

 
 

Figure 4.14: Circuit diagram illustrating voltage-differential based PUF generation. A pair of 1T-
1R cells (‘Cell 1’ and ‘Cell 2’) forms one PUF bit-cell. ‘BL’, ‘WL’ and ‘SL’ denote bit line, word 
line, and source line, respectively.  
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Reliable PUF generation requires two steps for each bit-cell: A gentle program step followed 
by a “soaking” step. In-between these steps, a read operation is performed to verify the state of the 
bit-cell. In the gentle program step, a program voltage pulse is applied to the two connected bit-
lines while the selected word line is pulsed high and source lines are grounded. Table 4.2 lists the 
parameter values used in this work, and Figure 4.15 shows a timing diagram for the PUF bit 
generation process.  

 
 

Table 4.2: PUF bit generation conditions used in gentle program and soaking steps. 
 

PUF Generation Parameters Value 
Gentle Program Voltage 3.2V 

Gentle Program Pulse Width 200µs 
Gentle Program Current Compliance 100µA 

Soaking Voltage 3.2V 
Soaking Pulse Width 200µs 
Soaking Pulse Count 1 

Soaking Current Compliance 450µA 
Read/Verify Voltage 0.3V 

 
 
 

 
 
 

Figure 4.15: Timing diagram for PUF bit generation during Gentle Program step. Once one cell is 
programmed, the voltage on the bit line (VBL) drops, preventing the programming of the other 
cell in the pair. Rtran is the ON-state resistance of the programmed cell transistor.  
 
 

Once one cell is 
programmed, VBL is 
lowered to prevent paired 
cell to be programmed 
(self-limiting) 
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Note that this PUF bit generation scheme requires peripheral circuitry to limit the maximum 
current flowing through a cell to ~100uA, to protect the ReRAM devices from being damaged and 
to ensure the switching-lowered bit-line voltage is insufficient to program the paired ReRAM cell 
connected in parallel. To verify this, a circuit simulation was performed and the results are shown 
in Figure 4.16. The simulated bit-line voltage is seen to drop from >3V to 0.4V within ~18ns during 
the gentle program step; this time window is much too short for the paired cell to be programmed.  

A soaking step is applied to all of the cells programmed (switched ON) by the gentle program 
step, to enhance the filament thickness and strength by applying a larger voltage pulse, ensuring a 
highly stable PUF key. Figure 4.17 illustrates the difference between measured cell current before 
and after soaking, showing the importance of this step.    

 
 

 
 
 

Figure 4.16: Simulation of bit-line voltages (for program voltages of 3.2V, 3.3V and 3.4V) when 
100uA current compliance is set. It takes ~18ns for the bit-line voltage to drop after a cell is 
programmed. 
 
 



 62 

 
Figure 4.17: Measured ReRAM current before and after soaking step. ON-state current is higher 
after soaking due to enhanced filament strength. 
 

The two-step PUF bit generation process described above is used to randomly produce 
complementary bit pairs. For higher throughput generation, multiple pairs of ReRAM cells can be 
programmed in parallel; the number is limited by the maximum current that can be supplied by the 
charge pump circuit. The PUF bitstream is then generated by reading/concatenating only the first or 
only the second bit of every pair.  

Due to the stochastic nature of ReRAM switching time, there is extremely low probability that 
both cells in a ReRAM pair are programmed simultaneously, detrimentally impacting the PUF 
quality of randomness. As shown in Figure 4.18, the ratio of generated ‘0’s to generated ‘1’s in 
our experimental dataset is very close to 50%, confirming that such cases are outliers and hence 
do not significantly diminish the effectiveness of the PUF key generation algorithm.  

It is also worthwhile to point out here that any portions of a manufactured ReRAM array can 
be used to implement PUF bit-cells; the regular NVM and PUF portions of the array are 
physically indistinguishable, which is advantageous for making the PUF more secure against 
attacks. Furthermore, our PUF scheme does not need additional circuitry beyond the standard 
NVM ReRAM circuitry.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.18: Percentages (%) of ‘0’s (OFF-state cells) and ‘1’s (ON-state cells) in 102,400,000 
generated PUF bits. The percentages are very close to 50%, the ideal value for randomness. 
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4.5 PUF Randomness Evaluation  
For assessing and quantifying randomness, 204,800,800 ReRAM cells are used to generate 
102,400,400 PUF bits. The PUF bits are divided to make 400,000 PUF keys of 256-bit length. 
Note that in practice the length of a PUF key varies depending on the application. 

Randomness quality is evaluated by assessing multiple criteria. The two most standard metrics 
for PUF evaluation are the intra-Hamming distance (HD) and the inter-HD. The intra-HD is a 
measure of stability of the PUF response under nominal conditions and characterizes a bit by the 
average number of varying output bits compared to a predefined reference output. As multiple 
readouts should not result in different PUF responses, the ideal intra-HD is 0%. Although the ideal 
value is 0%, in reality PUF readouts are nonzero due to electronic noise resulting in supply voltage 
variations, variations in environmental conditions such as temperature, and aging. [39] [40]. The 
inter-HD is a measure of uniqueness between different keys, indicating the average number of bits 
that differ from each other in two randomly selected PUFs. Ideally, this metric should have a 
Gaussian distribution with a mean of 50% [39-41].  

To estimate the Intra and Inter-HD values, the fractional Hamming distance (FHD) is used as 
defined in [40] [42]. For k devices and the challenges (inputs) C1 and C2, the intra-HD is estimated 
as:  
 

                                           		HDTUVWX	 =
Y
Z
	∑ 𝐹𝐻𝐷	(𝑅[,Y𝑅[,A)0

[]Y 	× 100%                                        (4.1)   

where Ri,1 is the response from device i for challenge C1 and Ri,2 is the response from device i for 
challenge C2. 

 
For k devices the inter-HD between distinct PUFs for a challenge C is defined as 

                                	HD=,".N =
A

Z(Z_Y)
	∑ ∑ 𝐹𝐻𝐷	(𝑅[𝑅a)0

a][PY
0_Y
[]Y 	× 100%	                             (4.2)   

 
where i and j correspond to two different devices. Ri is the response from device i for the challenge 
C. Rj is the response from device j for the same challenge C.  

Due to inherent stochastic properties of the ReRAM, there is an equal probability of either cell 
in a pair being programmed first, resulting in a bitstream with high entropy, characterized by inter-
HD and intra-HD. Figure 4.19 shows inter-HD and intra-HD of 400,000 PUF keys generated from 
ReRAM integrated into a 28nm-generation CMOS technology. No overlap between intra-HD and 
inter-HD (false rejection rate, false acceptance rate << 10-12) was observed. Inter-HD has the ideal 
Gaussian distribution with µ = 0.50000, σ = 0.03128.  

Stability over time is another PUF requirement. As shown in Figure 4.20, excellent (100%) 
retention of the generated PUF bits is seen after baking at 150°C for 50 hours, with minimal 
reduction in the conductance of the programmed (‘1’) bits. Accordingly, the inter- and intra-HD 
distributions are expected to be resilient to thermal stress and lifecycle decline. 
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Figure 4.19:  Inter- and Intra- hamming distance (HD) of generated PUF bits (102,400,000 bits). 
PUF key length is 256 bits and total PUF count is 400,000. Inter-HD follows an ideal Gaussian 
distribution. There is no overlap between inter- and intra- HD distributions. 
 

 

 
 
Figure 4.20:  Stability of ‘1’ and ‘0’ bits after 150°C, 50 hours (PostBake) compared to before bake 
(PreBake). 100% retention is achieved for both ‘0’ and ‘1’ states. 

Another important PUF metric is autocorrelation, that is, any patterns or trends over time 
which make PUF keys susceptible to modelling and machine learning attacks [43]. No correlation 
is required to prevent the possibility of predicting the PUF key using such patterns. Thus, an 
autocorrelation test is performed on the generated 400,000 PUF keys of length 256 bits each. The 
test results in Figure 4.21 show no correlation between the bits, ensuring the keys are safe from any 
attackers that reads patterns. Note that ReRAM cells are also immune to read disturbance, as cell 
states remain distinct after 5×1013 read operations (Figure 4.22).  
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Figure 4.21:  Auto correlation test results of 400,000 PUF keys of length 256 bits each, showing 
no correlation between PUF key bits. 

 
 

 
 

Figure 4.22: ReRAM read endurance (measured ICell vs. Read #) showing that distinction between 
ON and OFF devices is well maintained after 5E13 read operations.  

 
The final evaluation of the ReRAM PUF key uses the National Institute of Standards and 

Technology (NIST) platform, which provides a statistical test suite for random and pseudorandom 
number generators for cryptographic applications [44]. The NIST suite provides about 15 
statistical tests that can be applied to a sequence to compare and evaluate the sequence to a truly 
random sequence. Thus, the generated 102,400,000 PUF bit stream is evaluated using the NIST 
SP800-22 test suite [44], and the results are summarized in Table 4.3.  
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There are two methods to determine whether a bit stream is random. The first method is based 
on examining whether the distribution of p-values is uniform; the minimum value recommended 
by NIST for a bit stream to pass this test is 0.0001. The second method is based on computing the 
proportion of sequences that passed (i.e., with p-value ≥ 0.01); the minimum required values to 
conclude that a bit stream under test is random are indicated in Table 4.3. As can be seen from the 
table, each of the 15 different randomness tests conclude that the generated PUF bitstreams satisfy 
both criteria. 
 

Table 4.3: Detailed results for the standard NIST SP800-22 randomness check test suite. 
NIST SP 800-22 METHOD 1 METHOD 2 

STATISTICAL TEST P-
VALUE 

NIST 
SPEC CONCLUSION PROPORTION NIST 

SPEC CONCLUSION 

1 Frequency 0.181557 

> 
0.0001 

RANDOM 99/100 

≥ 
96/100 

RANDOM 
2 Block Frequency 0.834308 RANDOM 98/100 RANDOM 
3 Cumulative Sums 0.437274 RANDOM 100/100 RANDOM 
4 Runs 0.075719 RANDOM 99/100 RANDOM 
5 Longest Run 0.816537 RANDOM 99/100 RANDOM 
6 Rank 0.153763 RANDOM 98/100 RANDOM 
7 FFT 0.137282 RANDOM 99/100 RANDOM 
8 Non-Overlapping Template 0.851383 RANDOM 99/100 RANDOM 
9 Serial 0.816537 RANDOM 97/100 RANDOM 
10 Overlapping Template 0.474986 RANDOM 100/100 RANDOM 
11 Universal 0.816537 RANDOM 97/100 RANDOM 
12 Approximate Entropy 0.005762 RANDOM 100/100 RANDOM 
13 Linear Complexity 0.834308 RANDOM 99/100 RANDOM 
14 Random Excursions 0.654467 RANDOM 66/67 ≥ 

63/67 
RANDOM 

15 Random Excursions Variant 0.337162 RANDOM 66/67 RANDOM 

 

4.6 PUF Performance Benchmarking  
Herein the PUF generation scheme proposed in this work is compared against industry benchmarks 
for randomness, specifically the Intel True Random Number Generator (TRNG) and Intel Digital 
Random Number Generator (RDRAND). RDRAND [45] is a high-quality cryptographic 
randomness source available in Intel’s Ivy Bridge processors [46]. The randomness components 
of Intel’s TRNG (which uses non-deterministic hardware sources for RDRAND), Intel RDRAND, 
and the ReRAM-based PUF demonstrated in this work are tested with 100 1Mb bitstreams (totaling 
100 Mb) using the NIST SP800-90B test suite [47]. As can be seen from Figure 4.23, the ReRAM-
generated PUF demonstrates randomness quality comparable to Intel’s RDRAND.  

PUFs can be vulnerable to power analysis attacks that detect differences in read power 
consumption of bit-cells in different states [48]. An advantage of the ReRAM-based PUF proposed 
in this work is that it can provide a safeguard against power analysis attack [49] if the read operation 
is performed on bit-cell pairs, since the power consumption would be the same regardless of the PUF 
bit-cell state as there is always one ReRAM cell in the ‘1’ state and the other in the ‘0’ state.  
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Furthermore, if needed (e.g., when an attack is detected), the PUF bitstream can be erased by 

programming the ReRAM devices all to the ‘0’ state or all to the ‘1’ state; this “key zeroization” 
ability is an additional benefit of ReRAM-based PUF for increased security. Table 4.4 provides a 
summary comparison of previously reported PUFs with the ReRAM-based PUF in this work. 
 

 
Figure 4.23: Randomness comparison of Intel TRNG (which uses non-deterministic hardware 
sources for RDRAND), Intel RDRAND (Digital RNG), and the ReRAM-based PUF demonstrated 
using 28nm-generation CMOS technology in this work. Entropy of 0.990 indicates 2-0.990 = 50.3% 
chance for 0 or 1 in any sequence/circumstance. (1.0 corresponds to perfect entropy of binary bits.) 
 

Table 4.4: Comparison of advanced PUF implementations 

 
28nm 

ReRAM 
PUF 

IEDM’20 
[14] 

IEDM’20 
[15] 

IEDM’21 
[16] 

VLSI’19 
[17] 

Technology 28nm 0.13µm N/A N/A 14nm 
Entropy 
Source 

ReRAM 
program time 

RRAM 
retention time 

VRAM 
current 

Leakage 
mismatch dFuse 

Bit error 
rate in 

typical case 
0 0 5.10% @ 85˚C 1.66% @ 85˚C 0.78% 

Hamming 
distance 0.50000 0.49990 0.50004 0.49971 0.49758 

NIST test 
(SP800-22, 

SP800-
90B) 

SP800-22: all 
SP800-90B: 

all 

SP800-22: not 
all 

SP800-90B: 
N/A 

SP800-22: not 
all 

SP800-90B: 
all 

SP800-22:  not 
all 

SP800-90B: all 
N/A 
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4.7 Conclusion 
A highly reliable and secure PUF architecture and generation scheme that exploits the inherent 
randomness of ReRAM device program time as an entropy source is experimentally demonstrated 
using a 28nm-generation CMOS manufacturing process. The fabricated ReRAM devices show 
excellent non-volatile memory performance, with endurance exceeding 104 program/erase cycles 
and data retention projected to exceed 10 years at 125°C. The generated ReRAM PUF bitstream 
passed all of the NIST SP 800-22 randomness tests, showed 100% data retention at 150°C, and no 
overlap between inter- and intra-hamming distance (HD) with inter-HD following an ideal 
Gaussian distribution. The quality of randomness of ReRAM PUF is found to be comparable to 
that of Intel RDRAND. 
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Chapter 5 
 
Conclusion 
 
5.1 Contributions of This Work 
Advancements in integrated circuit (IC) manufacturing technology over the past several decades 
have significantly improved the performance of semiconductor logic and memory devices. 
Miniaturization of the transistor (the basic building block of an IC) has enabled the production of 
ever more complex integrated circuit, resulting in increased chip functionality and energy 
efficiency. In recent years, the proliferation of Internet of Things (IoT) devices and the generation 
and processing of “big data” have highlighted the need for non-volatile (NV) information storage 
that can be embedded with energy-efficient logic switches for NV memory (NVM) and hardware 
security applications. 

The objective of this dissertation is to investigate new NVM technologies and applications to 
address the need for embedded memory and hardware security in IoT devices. Micro-electro-
mechanical (MEM) switch designs which previously were developed for ultra-low-power 
computing are investigated herein for embedded NVM application. Emerging Resistive Random-
Access Memory (ReRAM) technology inherently has high device-to-device variability, which is 
leveraged in this work for hardware security application. 

MEM switches are promising for ultra-low-power digital computing because they have the 
ideal properties of abrupt turn-ON/turn-OFF behavior and zero OFF-state leakage current, 
enabling sub-50 mV operating voltage across a wide range of operating temperatures [1-2]. MEM 
switches can be designed to operate as non-volatile (NV) switches, e.g., for reconfigurable 
interconnects [3-4]. These properties make them attractive for IoT applications such as wearable 
or disposable electronics that require ultra-low power consumption and relatively low 
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manufacturing cost. In Chapter 2 the design, fabrication, and operation of logic MEM switches as 
multi-time programmable NV cells is presented. Controlled contact welding and unwelding is 
demonstrated to be a viable approach for programming and erasing, with relatively small voltage 
pulses (< 3V) and excellent retention at elevated temperature (200°C). This allows NV information 
storage to be embedded with digital logic circuitry with zero incremental fabrication cost.  

By inserting a floating gate (FG) layer in the MEM switch fabrication process, electronic 
charge storage within the gate stack is possible as an alternative means for data storage. In 
principle, the data retention time of a FG-MEM NV switch should be much longer than that of a 
conventional floating-gate transistor (used for flash memory devices), because an air gap exists in 
the FG-MEM NV switch in the OFF-state. In Chapter 3 the structure and operating principle, and 
the fabrication process flow for the first prototype FG-MEM NV switches are described. Measured 
electrical characteristics are presented and improvements to the switch design are discussed.  

As mobile computing and communication devices become more pervasive and the IoT 
continues to grow, hardware security is increasingly becoming a concern. Therefore, Resistive 
Random-Access Memory (ReRAM), an emerging NV memory technology that can be integrated 
into a conventional CMOS process, is investigated for hardware security application in Chapter 4. 
ReRAM is presented as a promising technology for implementation of Physically Unclonable 
Functions (PUFs). A highly reliable and secure ReRAM-based PUF architecture and generation 
scheme that exploits the inherent randomness of ReRAM device program time as an entropy source 
is experimentally demonstrated. Generated PUF bitstreams satisfy all the randomness assessments 
and demonstrate 100% retention after 50 hours at 150˚C. The quality of randomness of ReRAM 
PUF compares well against that of previously reported PUF implementation schemes. ReRAM 
technology enables both NVM and PUF functions to be incorporated within the same chip. 

 

5.2 Suggestions for Future Work 
While this research has investigated new applications for emerging switch and memory device 
technologies, there is still room for further enhancements. 
 

5.2.1 NV MEM Switches 

The NV-MEM switch design used to demonstrate controlled contact welding and unwelding in 
this work can be optimized to achieve greater program/erase cycling endurance. In this regard, 
alternative contacting electrode and structural materials should be explored. The use of contact 
materials with lower melting temperature than tungsten, such as Niobium, Ruthenium, Gold, etc., 
should reduce the energy required for program and erase operations, as well as thermal stress 
sustained by the other layers of the MEM switch during program/erase operation. Switch 
miniaturization is another pathway for reducing the voltage and time needed to weld and unweld 
a contacting electrode, as well as the cell area for lower cost and/or higher NV storage capacity.  

FG-based MEM switches are potentially advantageous for energy-efficient embedded logic 
and NVM applications due to their negligible OFF-state leakage and abrupt switching 
characteristics. The design improvements described in Section 3.4 should be pursued in order for 
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FG-MEM switches to achieve program/erase speed and energy, endurance and retention 
performance specifications for a wide range of IoT applications. 

 

5.2.2 ReRAM 

Future work for ReRAM-based PUFs should focus on real-world applications, particularly in 
the field of hardware security. These include device authentication, random number generation, 
memory protection, etc. It would be beneficial to conduct experimental demonstrations of these 
applications to assess the practicality of ReRAM-based PUFs. 
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