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Abstract

A Predator-Prey Perspective on the Tumor Microbiome

by

Michael Lam

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Tomlin, Chair

It is difficult to model systems on the cellular level because of the large numbers of variables
involved in these environments. The tumor microbiome is no exception. Linear models are
too simplistic and unstructured to model long-term time dependencies while neural network
models are so complex that it becomes difficult to gain any biological insight from the pa-
rameters. We propose using the generalized Lotka-Volterra equations, a predator-prey model
that imposes an ecological structure onto the problem of inferring population-to-population
interactions within the tumor microbiome. Inference was performed via model optimiza-
tion on experimental data obtained from three-dimensional bioprinted tumor spheroids. We
found that this deterministic method can often produce results comparable to those produced
by stochastic algorithms in the past. This optimization procedure has the added benefit of
being robust to experimental noise.
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Chapter 1

Introduction

Accurately describing biological systems at the cellular level is a challenge due largely to the
enormous numbers of variables at play, each operating on hundreds, perhaps even thousands
of cells. This plethora of data complicates the all-important task of developing models in
order to gain insight into the systems that govern the properties of these cells as well as
the interactions between them, insights that can be essential to designing drugs and other
treatments that deal intimately with environments and their ensuing impacts on the entire
organism. The tumor environment is one such system that poses these difficulties. Not only
do even the tiniest tumor bodies include thousands of cells, but each individual cell can
be one of many cell types (fibroblast, cancerous epithelial, endothelial, etc.) [1]. The way
these cells interact with each other depends on parameters like type, the relative population
value, and even the three-dimensional spatial orientation among many other measures—the
system’s complexity is astounding.

Linear models, though easy to understand and optimize, only provide rudimentary in-
sights into the biological contexts to which they are applied and can be poor predictors of
variables within time-dependent systems[9, 8]. On the opposite end of the spectrum are deep
neural network architectures that can often be tuned to provide extremely accurate cell-to-
cell interaction predictions but whose enormous model complexity (perhaps even including
as many parameters as the experimental data itself, if not more) obscures any biological
insights due to its lack of interpretability. We focus on an ecologically-inspired differential
model that is more complex than the linear model but is simple enough to be interpretable
unlike neural networks: the generalized Lotka-Volterra equations, a system of differential
equations describing multi-population predator-prey interactions [12].

In this report, we infer the generalized Lotka-Volterra model’s defining parameters (self-
reproduction, self-interaction, and inter-population impact) from experimental data gathered
from bioprinted tumor environments [1]. This is done by first formulating the inference as
a constrained least-squares problem, then optimizing over the generalized Lotka-Volterra
parameters such that the resulting model describes the data with minimal error according
to a predefined error metric. The model’s robustness to experimental noise is also evaluated.
The results obtained through this deterministic process is compared to baseline parameter
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sets obtained via a stochastic genetic algorithm.
We found that, at least for the two-population model, the types of interactions inferred

by the deterministic model generally agreed with those predicted by the genetic algorithm.
Results were more unclear in three-population interactions. For both two-population and
three-population interactions, the deterministic algorithm predicts similar interactions even
in the presence of large volumes of experimental noise, implying model robustness.
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Chapter 2

Background

This chapter provides a brief overview of the past work that contextualizes and inspires the
approaches explained later in this report. It also introduces the specific formulations of the
generalized Lotka-Volterra model that will be used.

2.1 Bioprinted Tumor Tissues

A major challenge to understanding the inner workings of biological systems is the replication
of massively complex cellular environments in a controlled manner, systems that are governed
by a myriad of variables, including cell types, spatio-temporal interactions, physical and
chemical environments, etc. Moreover, gathering data about these environments in vitro
often involves killing the entities involved, which can deter the use of live subjects for these
kinds of studies. Bioprinting is one alternative to performing experiments on live subjects.
To study intercellular interactions within the tumor microbiome, the model inference in this
technical report is performed on population data obtained from three-dimensional bioprinted
tumor structures in the shape of a spheroid.

Each of these spheroids contains identically-sized cancerous cores surrounded by similar
numbers of human mammary fibroblasts and human umbilical vein endothelial cells (Figure
2.1). Depending on the specific spheroid, the cancerous core will be one of several subtypes:
luminal (MCF-7), HER2 amplified (SKBR3), basal-like (HCC1143), or claudin low (MDA-
MB-231). These spheroids were bioprinted using Organovo’s Novogen MMX Bioprinter
Platform, which generates complex, multicellular tissues free of scaffolding according to a
predefined architecture. On days 4, 7, and 10, a subset of each type of spheroid is fixed
and stained using Vimentin (VIM), Cytokeratin 8/18 (KRT8/18), and CD31 antibodies to
identify stromal fibroblasts, epithelial cancer cells, and endothelial cells, respectively. For
several of the spheroid slices, only cancer cell and fibroblast staining were performed [1].
This will be reflected later in our Lotka-Volterra data inference, which is accordingly split
into two parts: a two-population and a three-population analysis.
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Figure 2.1: An illustration of a spheroid from “Modeling Tumor Phenotypes In Vitro with
Three-Dimensional Bioprinting” by Langer et al.

2.2 Cell Slice Image Processing

Cell type population abundance data are extracted from images of these cell slices using the
Cyclic ImmunoFluorescence Automatic Analysis Pipeline (cycIFAAP) developed by Guil-
laume Thibault and Young Hwan Chang at the Oregon Health and Science University
(OHSU). This pipeline is composed of two main parts: registration/segmentation and feature
extraction [17].

The first segment performs registration on the raw images, aligning them to common axes.
It then uses a deep learning-based mask R-CNN to segment the individual cell bodies and
nuclei. Background subtraction is applied to stabilize the feature counts between different
images. After these pre-processing stages, the pipeline tabulates the individual marker levels
across four separate locations within each cell (nucleus, rim, ring, and cell body) for all cells
segmented earlier. Marker exclusiveness plots are derived from these data (Figure 2.2).
Although each marker only has an affinity for one cell type, in practice, many of the cells
are double-marked (or even triple-marked in rare cases). As such, the thresholds determined
by these exclusiveness are of utmost importance in determining which cell belongs to which
type when multiple markers may be present in the same cell.

Part two of the pipeline uses the marker levels and the thresholds calculated in the first
part to extract the cell counts for each type. Any cell that exhibits marker levels above the
threshold is categorized into that respective marker’s cell type.
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Figure 2.2: A cycIFAAP exclusiveness plot generated using the cycIFAAP software between
the Vim marker levels found at the cell rims and the KRT8 marker levels at the cell rings
[17]. Here, the KRT8 threshold (red dotted line) is set to 5500. Any cell that exhibits KRT8
levels above 5500 would be classified as a cancer cell.

The resulting pipeline output is a set of cell type counts for individual cell slice im-
ages taken on different days of the experiment—time series population data on which the
generalized Lotka-Volterra model can be applied.

2.3 Differential Equation-Based Biological Modeling

Data is not particularly useful without a framework to organize and understand the patterns
expressed. Mathematical modeling has long been an important way of explaining natural
phenomena due largely to its ability to condense a massive collection of experimental data
into an abstract framework. These formulaic principles can then, in theory, be interpreted in
ways that elucidate aspects of the natural phenomenon that would otherwise have been ob-
scured by the sheer amount of irrelevant details and noise present in the raw data. This type
of modeling is thus particularly useful in biological contexts, where hundreds, perhaps even
thousands of cells can be abstracted into just a few distinct types based on common prop-
erties, and interactions between these cells can similarly be described in terms of relations
between these abstract types.

To further capture the temporal aspect of these phenomena, a time-dependent model is
needed. Differential equation-based models, by definition, fall into this class. In cases where
the general physics of the phenomena is known with respect to the time domain–whether
that be planetary motion, predator-prey interactions within an ecosystem, or even econo-
metric trends–these equations are particularly useful because they compactly and elegantly
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capture the changes of the relevant quantities with respect to time in terms of closed-form
mathematical expressions.

Notably, the parameters involved in these expressions often carry true, physical mean-
ings. In equations relating to predator-prey interactions, these parameters may represent
carrying capacity, predation interaction, or reproductive rates; in a mechanical system, per-
haps radius, spring force, or gravitational force. Importantly, this is not generally true of
the variables parameterizing the weight matrices in neural networks. While these neural
models often yield extremely accurate predictions, these models are often trained end-to-end
as ready-made “black boxes”, meaning the individual weights within the network aren’t spe-
cific to the phenomenon and thus offer little insight into the inner workings of the physical
phenomenon itself. It is largely because of this property that differential equations-based
models are so popular. Qualitative analyses of these differential models yield further phe-
nomenological understanding than traditional experimentation alone and can be thought of
as an extension of the statistical analyses usually performed on the experimental data [9].

We will focus on the usage of differential equations to describe physical changes that
occur only with respect to time. As such, our models will be governed specifically by ordinary
differential equations, equations with only one independent variable (time). These can be
written in the following form:

dx(t)

dt
= f(x(t),u(t), t) x(t) ∈ Rn,u(t) ∈ Rm (2.1)

x(t) is the state vector containing n states; u(t), a vector containing m distinct inputs. The
function f governs how the state vector x(t) changes with respect to the current state, the
current input, and the time. Note that this function may be nonlinear, making parameters
difficult to infer algebraically. However, in the special case where f is indeed linear with
respect to the function parameters, linear algebra techniques like least-squares regression
can conveniently be applied to solve for the optimal parameters. When the parameters must
be constrained within a certain range, as is often the case with parameters that must respect
biological feasibility, solving for these parameters can be reduced to a convex optimization
problem with a norm objective and affine constraints.

Linear time-invariant positive dynamical differential equation models have been effec-
tively applied to describing the differentiation-state transitions that allow triple-negative
breast cancer cells to evade certain drug treatments (Figure 2.3) [2]. This specific model
imposes the Markovian assumption that all transitions within a system can be described as
a function of the relative populations of each cell type in the previous time step and the
transition probabilities between these states; moreover, the current model, given the state in
the previous time step, is completely independent of all other time steps. Clearly, a certain
amount of information regarding long-term effects extending past the previous time step is
consequently lost, but even this model’s estimation of the dynamical parameters between
each of the cell types was enough to reveal that small-molecule targeted therapy strongly
affected the differentiation-state transition rates, allowing cancerous environments to resist
therapies [8]. A combination of empirical evidence and ensembling was used to derive the
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rate parameters in this linear dynamical model [2]. It is worth noting that the Markovian
assumption on which this approach is based is not generally true in biological systems, whose
states are likely to depend on past states well beyond the time step immediately prior. To
capture these long-term dependencies, different classes of differential equation models are
necessary.

Figure 2.3: A diagram of a finite state machine from Chapman’s “Modeling differentiation-
state transitions linked to therapeutic escape in triple-negative breast cancer”. Each of 4
nodes represents a differentiation state. A cell can either transition to a different state, divide,
or die. The value ρ represents the probability with which a cell in each of the differentiation
states takes the respective action [2].

2.4 The Lotka-Volterra Equations

The Lotka-Volterra equation is one such system of ordinary differential equations that better
captures these dependencies. This model has the added advantage that the derivatives are
linear with respect to the model parameters, meaning parameter inference can be performed
via constrained least-squares algorithms. Originally formulated by Alfred Lotka and Vito
Volterra to describe the oscillatory behavior of animal populations, these equations are now
best known as a “predator-prey” model that captures the predatory interactions between
species within an ecosystem [12]. The generalized form of these relations can be expressed
as
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dxi(t)

dt
= xi(t) (ri +

n∑
j=1

αijxj(t)) i = 1, ..., n (2.2)

where xi(t) is the population of species i at time t, ri is the population’s innate growth
rate, and αij is the inter-species “interaction” coefficient. Note that a positive value of αij

indicates that population j positively enhances population i’s growth rate while a negative
values similarly signifies a reduction of i’s derivative.

Though this model was primarily used to explain inter-species interactions in an ecosys-
tem on a macroscopic scale, recent research has shown that such these equations can be strong
descriptors of cell interactions in the microbiome, an important field of study that connects
with key areas of disease, ranging from immune and neurological responses to cancer. In this
vein, a study led by Brunner and Chia has found that a generalized Lotka-Volterra model
can accurately predict whether certain probiotics can successfully engraft themselves into
an individual’s microbiome [5]. The motivation for the somewhat unconventional use of this
model was the observation that cell type-to-cell type interactions within a microbiome are
ecological in nature and function not so differently from a macroscopic ecosystem of different
animal species.

As aforementioned, a strength of these differential equation models is their interpretabil-
ity. In this case, a species’ growth rate is completely parameterized by its innate growth
rate (a quantity that can actually be measured independent of other populations) and its
interaction coefficient with each of the other species in the microbiome. Conversely, and
perhaps more importantly, given just population time series data and estimates of their time
derivatives, we can use constrained least-squares algorithms to solve for these parameters to
gain insight into how different cell types affect each other.

2.5 Lotka-Volterra Representation of Tumor

Environments

A particularly interesting and important microbiome is the tumor environment, a hetero-
geneous mixture of multiple cancer types, fibroblasts, endothelial cells, and epithelial cells
among many other cell types. Given this rich variety of cell types, multiple studies have
been conducted to analyze the effects of other cell types on the cancer growth rate in hopes
of understanding the factors that promote or suppress cancer growth. Much groundwork
has been laid in the analysis of competing cancer cell lines in a simulated tumor spheroid
environment and the viability of the Lotka-Volterra model as a tool to infer the type of
interaction between the lines (competitive, mutualistic, or antagonistic) [10] [14].

It has been shown using simulated data sets that the Lotka-Volterra model is structurally
identifiable, meaning that a unique set of Lotka-Volterra parameters can be inferred from
the data. Perturbing a model parameter will not result in the same model output via
compensations from other parameters. The model’s further practical identifiability implies
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that these parameters can be uniquely estimated even in the presence of noise if proper
calibration is applied [10] [15].

These properties are encouraging because they imply that any set of parameters opti-
mally inferred from a time-series data set describes the changes unambiguously. In practice,
however, inferring such a parameter set from in vitro spheroid time series data is extremely
difficult. Unlike in simulated data sets, there are no guarantees that the noise in exper-
imental data will follow a certain distribution. The steep cost of running these spheroid
experiments in vitro leads to a paucity in data, complicating the estimation of derivatives
and rendering any noise estimates rudimentary at best. The bulk of this technical report will
be dedicated toward developing deterministic generalized Lotka-Volterra parameter inference
methods and verifying its robustness in the presence of these difficulties.

2.6 Genetic Algorithmic Approach

William Sharpless from the Lawrence Berkeley National Laboratory (LBNL), now at the
University of California, Santa Cruz, has applied an ensembled genetic algorithm to infer
the generalized Lotka-Volterra parameters from the bioprinted spheroid data [16]. A genetic
algorithm is a stochastic iterative optimization algorithm inspired by Darwinian evolution
and biological reproduction. The algorithm is initialized with a set (“population”) of random
parameter sets. At each iteration (“generation”), the error function is run on each of the
members of the “population”. The top k performing parameter sets are then used to seed
the creation of the next generation’s members, forming a new population of parameter sets
similar to the best performing k parameter sets from the previous generation. This iterative
process continues until convergence or some other predetermined criterion is reached.

For this specific application, the genetic algorithm was run 5 times on each of the cell
line experimental data sets in ensemble fashion, and the best-performing parameter set was
returned. Although this method could effectively infer parameter sets with very low modeling
error, the stochastic nature of this algorithm complicates error bound analysis. This report
will attempt to remedy that by utilizing a deterministic, linear-algebraic method with more
readily calculable error bounds. The genetic algorithm’s performance will be used as a
guiding baseline for the deterministic algorithm’s error bound analysis.

The genetic algorithm was only applied to the two-population spheroid data (fibroblast
and cancer cells). We will extend this model to three-population context by applying the
generalized Lotka-Volterra equations to bioprinted spheroid data containing cell counts for
fibroblast, cancer, and endothelial cells. The same genetic algorithm will again be used to
produce baseline error rates.
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2.7 Reference Formulas

This section serves as a reference for many of the formulas that will be commonly used
throughout the report.

dxi(t)

dt
= xi(t) (ri +

n∑
j=1

αijxj(t)) i = 1, ..., n

Figure 2.4: Generalized Lotka-Volterra (gLV) equations for n populations.

This report will focus entirely on the two-population and three-populations versions of
the gLV equations. These are listed here. Note that xi(t) is expressed as xi because time
dependence is implied:

dx1

dt
= r1x1 + α11x

2
1 + α12x1x2

dx2

dt
= r2x2 + α12x1x2 + α22x

2
2

Figure 2.5: Generalized Lotka-Volterra (gLV) equations for 2 populations.

dx1

dt
= r1x1 + α11x

2
1 + α12x1x2 + α13x1x3

dx2

dt
= r2x2 + α21x1x2 + α22x

2
2 + α23x2x3

dx3

dt
= r3x3 + α31x1x3 + α32x2x3 + α33x

2
3

Figure 2.6: Generalized Lotka-Volterra (gLV) equations for 3 populations.

When performing convex optimization on the two-population model, we will use one of
the two following matrix formulations. The first matrix equation corresponds exactly to the
above equation expressed as a matrix product. This is known as the integral formulation.
The second corresponds to a logarithmic integral formulation of the gLV equations:
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(2.3)

x
(j)
i := value of population i at time step j (2.4)

Figure 2.7: Integral formulation of 2 population generalized Lotka-Volterra equations.
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x
(j)
i := value of population i at time step j (2.6)

Figure 2.8: Logarithmic integral formulation of 2 population generalized Lotka-Volterra
equations.
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Chapter 3

Parameter Inference

3.1 Problem Formulation

Overview

Given experimental time-series population count data, find a set of biologically feasible gener-
alized Lotka-Volterra parameter values best describing it according to some predefined error
metric (Figure 2.5). The methods used to infer these parameters from the experimental data
should be deterministic and, ideally, robust to experimental noise. We will run an ensem-
bled genetic algorithm on the same experimental data to obtain a baseline parameter set
characterizing a baseline error to which to compare the errors produced by the deterministic
parameters.

Population Data

We will be operating on experimental data from 4 cancer cell lines: SKBR3, MDAMB231,
MCF7, and HCC1143. Each cancer cell line constitutes a single experiment. Parameter
inference will be performed on each of these experiments separately as each cell line is
expected to exhibit different ecological interactions.

As described in the background section, each experiment begins with a number of identi-
cal tumor spheroids with the specific line of cancer cells at its core. On days 4, 7, and 10 of
the experiment, a subset of these tumor spheroids is fixed, embedded, and sectioned; these
sections are then stained, imaged, and processed. These subsets must be non-overlapping be-
cause the spheroid cells die during this fixation process, so the same spheroid can’t be opened
at multiple different time points. As such, the data for each cell line is in the following form:
on each of days 4, 7, 10, there are xi counts of each of the cell types (fibroblast and cancer
for the two-population analysis; fibroblast, cancer, and endothelial for the three-population)
where xi corresponds to the number of spheroids processed on day i.



CHAPTER 3. PARAMETER INFERENCE 13

Performance Metric

To measure how well a given parameter set describes the experimental data, we first numer-
ically solve the system of generalized Lotka-Volterra equations defined by these parameters
using the SciPy differential equation solver. The initial condition is defined to be the average
of the cell type abundances across all cell slice images on day 4. Time points 4, 7, and 10
are then passed into the solution to the system of differential equations to obtain predicted
fibroblast and cancer cell counts on each of the 3 days. For each day, a mean squared error
is calculated by finding the average squared deviation between the predicted cell count for
that specific cell type and the cell counts for each of the spheroids of the same cell type on
the same day. The total error is the sum of all these mean squared errors across all cell
types. The following algorithm summarizes the error calculation:

Figure 3.1 Error Function

1: procedure ErrorFunction(modelData, expData)
2: totalError← 0
3: cellTypes← [Fibroblast, Cancer] ([Fibroblast, Cancer, Endothelial])
4: days← [4, 7, 10]
5: for cellType c in cellTypes do
6: cellTypeError← 0
7: for day d in days do
8: dayError← 0
9: for image i in images of cellType c on day d do
10: dayError← dayError+ (modelData[c][d]− expData[c][d][i])2

11: cellTypeError← cellTypeError+ dayError / (# images of c on d)

12: totalError← totalError+ cellTypeError
return totalError

The goal of the inference method is to find a set of parameter values that yields solutions
to the generalized Lotka-Volterra equations minimizing this error function.

3.2 Baseline: Genetic Algorithm

Overview

We will apply genetic optimization five times to the raw experimental data for each of the
four cell lines (SKBR3, MCF7, HCC1143, MDAMB231). Due to the algorithm’s stochastic
nature, the parameter sets returned at the completion of each run should be different and
will likely emit differing errors. The parameter set with the lowest error will be chosen as the
representative baseline to which the parameters returned by the linear algebraic deterministic
approach described in the next section will be compared.
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Details

We will be using bluepyopt’s DeapOptimisation module to run these optimization. This
package implements the genetic algorithm and allows the user to determine which values to
use for each algorithm parameter.

The error function defined in Figure 3.1 will be used as a fitness measure for each of
the generated gLV parameter sets (individuals) within the population for each iteration.
Intuitively, individuals with a high fitness value relative to other members of the population
will produce more similar offspring individuals in the next iteration. In other words, the lower
the gLV parameter set’s error, the more likely it will be that the next iteration’s parameter
sets will be similar to this one.

This gLV parameter values in this algorithm will respect the following biological feasibility
constraints:

• aii < 0 - Cells of the same type compete with each other for the same resources, so the
presence of other similar cells decreases the proliferation rate. All self-interactions are
negative.

• |aij| < 20 - We assume that the interaction parameters aren’t massive. This constraint
ensures that the resulting differential equations are not too stiff. Note that the upper
bound of 20 is somewhat arbitrary and is a debated subject among experts.

• ri > 0 - The innate growth rate is positive because cells of the same type should
reproduce exponentially in the absence of influence from other populations, including
self-interactions.

All individual parameter sets within the population will only contain parameters that satisfy
these feasibility constraints.

3.3 Deterministic Approach

Overview

The deterministic approach to the problem will be two-pronged. The first method will
revolve around optimizing the pure matrix formulation of the generalized Lotka-Volterra
model (Figure 2.7). The feature matrix on the left hand side can be constructed directly
from the experimental population counts. The derivative vector on the right hand side must
be estimated. From this equation, we will take the L2 norm of the difference of the left
and right-hand side of the equation to be the objective function. A convex optimizer is
then used to minimize this objective over all values of the parameter vector within biological
constraints.

The second approach uses the logarithmic integral formulation of the 2-population gen-
eralized Lotka-Volterra equations (Figure 2.8). All steps will be the same except for the
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derivative vector estimation. Rather than directly estimating the derivatives from the data,
the derivatives of the logarithms of the population counts will be calculated. This approach
reduces the complexity of the feature matrix A and should therefore, in theory, be less
sensitive to perturbations in the data [13]. We will verify this experimentally.

Approach 1: Integral Formulation

Populating the Feature Matrix and Derivative Vector

The feature matrix in the integral formulation is constructed entirely of values x
(j)
i , each

representing the cell count for population i at time step j. The raw experimental data
actually contains several values for x

(j)
i , one for each of the spheroid slice images taken

on that day of the experiment. The average of the all these values is taken to be the
representative for x

(j)
i , and it is this value that is used to populate the feature matrix:

x
(j)
i :=

1

n

n∑
k=0

x
(j)
i [k] (3.1)

where n is the number of images of population i on day j, and x
(j)
i [k] is the cell count of

that specific image.
The derivative vector is much more difficult to construct because the paucity of data

complicates accurate estimation for the slopes at each time point. The trapezoid method
is the most common approximation for this problem, though interpolation techniques have
also been used. Interpolation involves fitting a function through the data points (polynomial,
spline, etc.), then taking the derivative of this interpolated function at the specified points. In
separate trials, we will apply both trapezoid approximation and polynomial interpolation to
construct this derivative vector, and their respective errors will be compared. For polynomial
interpolation, we will experiment with polynomials of degrees 1 to 4 to see which interpolation
yields the lowest modeling error.

Aside: Polynomial Interpolation for Derivative Estimation
Polynomial interpolation is the process of fitting a polynomial curve through a set of
data points. Once the polynomial expression is determined, a closed-form expression
for the derivative can be calculated by symbolically differentiating the expression
using the power rule.

To fit a polynomial curve of degree n through m points, we first formulate it
as a least squares regressions problem with the exponentiated x values as the features
and the y values as the b vector:
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︸ ︷︷ ︸

A


p0
p1
...
pn


︸ ︷︷ ︸
p

=


y0
y1
...
yn


︸ ︷︷ ︸
b

(3.2)

For m ≥ n i.e. the system is not underdetermined, we can solve this problem for the
parameter vector by optimizing the following objective:

min
p
∥Ap − b∥2 (3.3)

which yields the solution:
p∗ = (ATA)−1AT b (3.4)

If m < n, then the system is underdetermined, meaning that there are infinitely many
p values that will satisfy the equality. We would like to choose the parameters with the
smallest L2 norm, which is reduced to the following minimum L2 norm optimization
problem:

min
p
∥p∥22 s.t. Ap = b (3.5)

The solution to this optimization is the following:

p∗ = AT (AAT )−1b (3.6)

Once the optimal parameter set p∗ has been obtained via equation 3.4 or 3.6, the
derivative at any point on the curve can be calculated using the power rule:


dy
dx
|x=x0

dy
dx
|x=x1

...
dy
dx
|x=xm


︸ ︷︷ ︸

v

=


1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1
...
1 xm x2

m . . . xn−1
1



p1
2p2
...

npn

 (3.7)

In the context of of the generalized Lotka-Volterra model, the derivative vector v is
what will be used on the right hand side of the matrix equation in figure 2.7.
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Graphically, this process looks like the following. Consider this toy example
with four points:

Figure 3.2: Raw data points: (2, 4), (4, 3), (7, 10), (10, 5)

We first interpolate a polynomial function through these functions using equation 3.4
if n < 4 or equation 3.6 otherwise (underdetermined case). Below are polynomial
interpolations of varying degrees:
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Figure 3.3: Polynomial interpolations, degrees 1-4

From here, we can take the derivative of the interpolated function at the x-value of
each data point to estimate the slopes at each of the four points. Here is an example
with the degree 3 interpolation:
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Figure 3.4: Derivatives of a degree 3 interpolation through the data points.

Optimizing for the Parameters

Once the feature matrix and derivative vector have been populated, recall that we obtain
the following equation (2.7):
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︸ ︷︷ ︸
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︸ ︷︷ ︸
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(3.8)

x
(j)
i := value of population i at time step j (3.9)

where A is defined to be the feature matrix; p, the gLV parameters; and b, the derivative
vector. Since this equation is overdetermined, the parameter vector p that minimizes the L2
discrepancy between the two sides of the equation equates to the solution to the following
optimization problem:



CHAPTER 3. PARAMETER INFERENCE 20

min
p
∥Ap − b∥2 (3.10)

This problem has a closed-form least-squares solution. Unfortunately the least-squares
solution will not generally satisfy the biological feasibility constraints previously mentioned
in the baseline algorithm section (innate growth rate must be positive, all self-interactions
are negative, the magnitude of each interaction coefficient cannot be too high). Those same
constraints will be applied here, resulting in a constrained least-squares formulation similar
to the one above:

min
p
∥Ap − b∥2

s.t. ri > 0 for i = 1, 2

aii < 0 for i = 1, 2

− 20 < aij < 20 for i, j = 1, 2

(3.11)

This formulation has a norm objective and affine constraints, meaning that it is a convex
problem that can be solved using standard convex optimization methods. We use cvxpy,
which applies the interior point method to solve for the parameter vector p.

Evaluation

We apply the Error Function (3.1) to the resulting parameter vector p, yielding an intuitive
squared deviation between this parameter set’s model predictions and the experimental pop-
ulation count values. This value will be used to compare this parameter set’s performance
to those obtained via the baseline genetic algorithm.

Approach 2: Logarithmic Integral Formulation

Derivation

The logarithmic integral formulation of the generalized Lotka-Volterra equations can be
derived from the regular integral formulation. We start with the general equations for n
populations (Figure 2.4). Note that xi(t) is represented as xi because time dependence is
implied:

dxi

dt
= xi (ri +

n∑
j=1

αijxj) i = 1, ..., n (3.12)

1

xi

dxi

dt
= (ri +

n∑
j=1

αijxj) i = 1, ..., n (3.13)

Using the following derivative of a natural logarithm:

d

dt
ln(x) =

1

x

dx

dt
(3.14)
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We can represent the left-hand side of equation 3.12 as the derivative of a logarithm:

d

dt
ln(xi) = (ri +

n∑
j=1

αijxj) i = 1, ..., n (3.15)

Equation 3.15 is the basis of the generalized Lotka-Volterra model’s logarithmic integral
formulation. Notice that the derivative now represents the change in the logarithm of a
population count xi. More importantly, the value of this derivative (the right-hand side of
equation 3.15) now no longer contains quadratic terms with respect to the populations values
xi. This latter property may have stability implications that will be experimentally explored
later in this report.

Populating the Feature Matrix and Derivative Vector

The same raw experimental data used in the integral formulation approach will also be used
for the logarithmic integral formulation optimization. Recall that the matrix equation for
the logarithmic integral formulation is the following (Figure 2.8):
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︸ ︷︷ ︸

bl

(3.16)

x
(j)
i := value of population i at time step j (3.17)

The feature matrix from Al will be populated using the same average values as the integral
formulation. To calculate the derivative vector, the natural logarithm will be applied to each
of the population values xi before averaging and interpolation will be used to estimate the
slopes at each point as before.

Optimizing for Parameters

The optimization objective and constraints are identical to that of the integral formula-
tion except for the fact that the feature matrix and derivative vector now come from the
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logarithmic integral formulation:

min
pl

∥Alpl − bl∥2

s.t. ri > 0 for i = 1, 2

aii < 0 for i = 1, 2

− 20 < aij < 20 for i, j = 1, 2

(3.18)

Cvxpy will be applied to solve for the optimal p∗l .
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Chapter 4

Experimental Evaluation

4.1 Two-Population Analysis

Baseline: Genetic Algorithm

Five runs of the genetic algorithm were applied to the experimental data for each cell line to
establish a baseline error to which to compare the results of the linear algebra deterministic
method. The specific parameter values used in the genetic algorithm for the runs are specified
in Table 4.1. Identical parameters were used for all four cell lines.

Parameter Value

Generations 100
# Offspring 500

Mutation Probability 100 %
Crossover Probability 100 %

Table 4.1: Genetic algorithm parameters for two-population analysis. The generation num-
ber is the number of iterations for which to run the algorithm. The offspring number is the
population size at each step. The mutation and crossover probabilities define how often an
individual changes its individual parameters according to some stochastic process between
iterations and the frequency with which it gets its parameters stochastically affected by other
members of the population, respectively [3].

The error for each iteration of the algorithm is plotted with respect to the generation
number for each cell type in Figures A.1 and A.2. Within each cell line, the errors for each
run converged to the same value, indicating that, for this specific set of data, the genetic
algorithm will consistently output sets of gLV parameters with nearly identical errors. Note
that this does not mean that the gLV parameters themselves will be identical; the values
of these parameters do vary, but not nearly enough to change the sign of the parameter
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value. Thus, the types of interactions this algorithm infers is identical across all runs since
the interaction type between two populations depends only on the sign of the gLV coefficient
describing that interaction (Table 4.2). This observation also corroborates the generalized
Lotka-Volterra model’s practical identifiability even with the presence of noise in the data.

Figure 4.1: An error comparison between runs from each of the cell lines for the two-
population case. Note the different convergence values.

Figure 4.1 compares the error profiles across different cell lines. Note that the convergence
values are distinct by cell type. The SKBR3 cell line has the largest model error followed by
MCF7, HCC1143, and MDAMB231, in that order. Since all errors were normalized by the
number of experimental data points, this disparity likely represents the upper limits of how
well this method can describe the particular set of experimental data. When we perform gLV
parameter inference using the deterministic method in the next section, we will be comparing
the relative errors between the cell lines to identify whether this same trend is reflected.

Deterministic Algorithm

Integral Formulation

The linear algebra optimization algorithm was applied to the same data to infer the same
generalized Lotka-Volterra parameters. While the algorithm as previously introduced framed
this as a pure constrained least-squares problem, in practice, an L2 normalization is placed on
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Cell Line Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

SKBR3 - -
MDAMB231 + +

MCF7 - +
HCC1143 + +

Table 4.2: Inter-population interactions for two populations as predicted from the genetic
algorithm. An interaction between population A and B indicated by a negative sign indicates
that population A inhibits the growth of population B. A positive sign indicates the opposite.
Cancer has a negative effect on the fibroblasts in two of these lines while the presence of
fibroblasts promotes the growth of cancer cells in three of the cell types.

the generalized Lotka-Volterra parameters and added to the objective function because the
feature matrix A is underdetermined, yielding multiple minima. This leads to the following
formulation:

min
p
∥Ap − b∥2 + ρ∥p∥2

s.t. ri > 0 for i = 1, 2

aii < 0 for i = 1, 2

− 20 < aij < 20 for i, j = 1, 2

(4.1)

where ρ is a non-negative constant. For this specific run, ρ was set to 10−7 because it led to
the least overall error when compared to experimental data. The appendix contains a record
of the errors attained for each cell type using this optimization method compared to the
respective error from the genetic algorithm. Importantly, the relative ordering of the errors
for each cell type is the same as in the genetic algorithm case: that is, SKBR3, MDAMB231,
MCF7, and HCC1143, in that order from greatest to lowest error. This strongly suggests
that the relative ordering of the error is caused by noise inherent to the data from each cell
line and that both the above inference methods uncover it.

Table 4.3 summarizes the interactions predicted by this optimization. With the exception
of the predicted effect of cancer on fibroblast cells in the SKBR3 cell line, which changes from
a negative to a positive interaction, it is encouraging to see that the interactions predicted
by the deterministic optimization is nearly identical to the types predicted by the stochastic
genetic algorithm (Table 4.2), once again implying the generalized Lotka-Volterra model’s
practical identifiability and the deterministic algorithm’s viability as an inference method
even for noisy experimental data.
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Cell Line Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

SKBR3 + -
MDAMB231 + +

MCF7 - +
HCC1143 + +

Table 4.3: Inter-population interactions for two populations as predicted by the integral
formulation of the deterministic algorithm. The logarithmic formulation yielded the same
results.

Figure 4.2: 2-population Network Interaction Graphs. An arrow from node A to node B
indicates a positive interaction. A closed line from A to B indicates an inhibitory interaction.
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Figure 4.3: A comparison between the experimental data and the trend predicted by op-
timizing the generalized Lotka-Volterra model on two-population data using the integral
formulation.

Logarithmic Integral Formulation

The results from the logarithmic integral formulation of the generalized Lotka-Volterra opti-
mization problem were nearly identical to those inferred from the simple integral formulation.
The interactions this variant of the algorithm infers is identical to the ones predicted by the
integral formulation in Table 4.3. The trend graphs are also quite similar to those from the
integral formulation with negligible differences (Figure 4.4).



CHAPTER 4. EXPERIMENTAL EVALUATION 28

Figure 4.4: A comparison between the experimental data and the trend predicted by opti-
mizing the generalized Lotka-Volterra model on two-population data using the logarithmic
integral formulation.

4.2 Three-Population Analysis

Baseline: Genetic Algorithm

A nearly identical analysis was performed on the three-population experimental (fibroblast,
cancer, and endothelial). Not all time points had identical numbers of experimental abun-
dance data points. The MCF7 line, for example, only had one data point for day 10 while
day 4 had four points. The lack of data at these time points for some of the cell lines reduces
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Parameter Value

Generations 100
# Offspring 3000

Mutation Probability 100 %
Crossover Probability 100 %

Table 4.4: Genetic algorithm parameters for three populations. The only notable difference
between this configuration and that of the two-population model is the six-fold increase in
offspring size to stabilize error convergence.

the confidence in which we place on the models optimized on these data points and should
be the subject of further study. Again, five runs of the genetic algorithm was applied to the
experimental data for each cell line. Identical parameter sets were used for each line, the
specifics of which are recorded in Table 4.4. The only configuration difference between that
specified for the two-population model is the increased offspring size. Intuitively, the three-
population model is more complex and requires a more fine-grained offspring set to capture
any minimum directions. Increasing the offspring size raises the probability that some in-
dividual in the population pool will emit an error better than that of the best-performing
individual from the previous generation, leading to more consistent convergence.

The error plots are very similar to those in the two-population analysis, though con-
vergence is slightly less smooth, as expected. Again, the convergence value for each cell
line is different. Interestingly, with the exception of the HCC1143 cell line, the relative or-
dering of the other cell lines by convergence error is analogous to the two-population case:
MDAMB231 has the lowest error, and SKBR3 has the highest error with MCF7 in between.
The HCC1143 exception may likely have been caused by the small number of tissue samples
collected on day 10 for this cell line, leading to higher error rates.

Table 4.4 summarizes the interactions between the fibroblast, cancer, and endothelial
cells for each cell line. Results were very mixed. The only strong trend was the fibroblast
cell population’s inhibitory effect on endothelial cell growth. Slightly weaker patterns in-
clude the cancer population’s positive effect on the fibroblast population and the endothelial
population’s inhibitory effect on cancer growth.

Deterministic Algorithm

Integral Formulation

The same constrained least-squares optimization with regularization was performed on the
three-population experimental data. The interactions predicted by the deterministic algo-
rithm recorded in Table 4.6 agree very little with those inferred by the baseline genetic
algorithm, likely due to the increased data and model complexity imposed with the addition
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Figure 4.5: An error comparison between runs from each of the cell lines for the three-
population case. Note the different convergence values.

of the third endothelial population. The deterministic algorithm actually reveals several
much stronger trends in the data. Across all four cell lines, cancer actually benefits fibrob-
last growth while suppressing endothelial cell proliferation. Endothelial cells consistently
promote the fibroblast population’s growth, and fibroblast proliferation decreases endothe-
lial cell growth. It is worth noting that the same interaction type that the baseline genetic
algorithm between cancer and fibroblast cells and the interaction between fibroblast and en-
dothelial cells was also reflected here in the deterministic inference, but as a much stronger
trend.
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Cell Line Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

SKBR3 + -
MDAMB231 + +

MCF7 - -
HCC1143 + +

Cell Line Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

SKBR3 + -
MDAMB231 - +

MCF7 + -
HCC1143 - -

Cell Line Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

SKBR3 + -
MDAMB231 - -

MCF7 + -
HCC1143 - -

Table 4.5: Inter-population interactions for three populations as predicted by the genetic
algorithm.

Cell Line Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

SKBR3 + -
MDAMB231 + -

MCF7 + -
HCC1143 + -

Cell Line Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

SKBR3 + -
MDAMB231 + +

MCF7 + +
HCC1143 + -

Cell Line Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

SKBR3 - -
MDAMB231 + -

MCF7 + -
HCC1143 - -

Table 4.6: Inter-population interactions for three populations as predicted by the determin-
istic algorithm.
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Figure 4.6: 3-population Network Interaction Graphs. An arrow from node A to node B
indicates a positive interaction. A closed line from A to B indicates an inhibitory interaction.
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Figure 4.7: SKBR3 Data vs. Model, three-population, integral formulation

Figure 4.8: MDAMB231 Data vs. Model, three-population, integral formulation
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Figure 4.9: MCF7 Data vs. Model, three-population, integral formulation

Figure 4.10: HCC1143 Data vs. Model, three-population, integral formulation
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Logarithmic Integral Formulation

Optimizing the logarithmic integral formulation of this problem yields the same as interac-
tions as predicted by the vanilla integral formulation (Table 4.6). As in the two-population
case, there are no notable differences between the trend graphs of the two different problem
formulations, as expected.

Figure 4.11: SKBR3 Data vs. Model, three-population, logarithmic integral formulation
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Figure 4.12: MDAMB231 Data vs. Model, three-population, logarithmic integral formula-
tion
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Figure 4.13: MCF7 Data vs. Model, three-population, logarithmic integral formulation

Figure 4.14: HCC1143 Data vs. Model, three-population, logarithmic integral formulation
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Chapter 5

Model Robustness

5.1 Integral Formulation

Ideally, the linear algebra deterministic approach should be robust to experimental noise. In
the presence of noise within some predefined absolute magnitude, the optimization should
still emit interactions types between the populations similar to what is inferred in its absence.
To analyze this, we start with this formulation of the generalized Lotka-Volterra optimization:

min
p
∥Ap − b∥2

s.t. ri > 0 for i = 1, 2

aii < 0 for i = 1, 2

− 20 < aij < 20 for i, j = 1, 2

(5.1)

Recall that A is our feature matrix constructed entirely from the experimental data and the
structure of the generalized Lotka-Volterra equations. Suppose that the experimental values
have been perturbed, leading to an overall perturbation of ξ of the A matrix. This yields
the following objective expression:

objective = ∥(A+ ξ)p − b∥2
= ∥Ap+ ξp − b∥2
≤ ∥Ap − b∥2 + ∥ξp∥2
≤ ∥Ap − b∥2 + ∥ξ∥F∥p∥2
≤ ∥Ap − b∥2 + ρ∥p∥2

(5.2)

where we define ρ to be a constant upper-bounding the norm of the perturbation matrix ξ
[7]. Note that since ξ represents the total perturbation in the feature matrix A, it captures
both the experimental error and the generalized Lotka-Volterra modeling error, the deviation
caused by using a model that doesn’t necessarily best describe the experimental data.

Optimizing the objective with the same constraints and increasing values of ρ will test
the robustness of the deterministic algorithm’s ability to infer the generalized Lotka-Volterra



CHAPTER 5. MODEL ROBUSTNESS 39

parameters. Here, robustness is defined by how resistant the parameters p are resistant to
sign changes as the parameter’s sign is what determines the interaction, not the value (the
norm of p will converge to 0 as ρ grows large and the model loss ∥(A+ ξ)p − b∥2 becomes
comparatively trivial). Note that this formulation is trivially robustly feasible because the
constraints do not depend on the experimental data, which matches the intuition that these
constraints represent hard biological boundaries [4].

Tables 5.1 and 5.2 summarize how robustly the deterministic algorithm predicts HCC1143
spheroid cell interactions for the two-population and three-population cases, respectively.
Tables for all cell lines can be found in Appendix B. Across all cell lines, the method can
robustly predict interactions across up to approximately seven orders of magnitude greater
than the baseline, up to a Frobenius norm magnitude of 0.1.

ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.0000001 + +
0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 - +

Table 5.1: HCC1143 robustness results for two populations. ρ is the magnitude of the
Frobenius norm of the noise matrix and captures the overall noise of the experimental data
and model. The optimization was run on increasing values of ρ to simulate increasing
amounts of added noise, and the predicted cell interactions are recorded here. Interaction
types that deviate from the baseline prediction, which typically only occurs at high ρ (noise)
values, is shaded red.ρ is capped at 1 because a value of 1 means that the gLV model loss is
weighted equally with the magnitude of the parameter norm; any higher ρ would imply that
there is so much noise that minimizing the magnitude of parameters to mitigate the effects
of noise is more “important” than minimizing the gLV model loss, which doesn’t make sense
in this context.

5.2 Logarithmic Integral Formulation

The two-population optimization exhibited much more robustness when using the logarith-
mic integral formulation. As shown in tables B.13, B.14, B.15, and B.16, there was no change
in the predicted interaction types all the way until the threshold of ρ = 1, implying that the
interaction prediction is robust to noise up until the point where the magnitude of the noise
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ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 + +

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 + +

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 - -
0.000001 - -
0.00001 - -
0.0001 - -
0.001 - -
0.01 - -
0.1 - -
1 + +

Table 5.2: HCC1143 robustness results for 3 populations.

makes it such that objective prioritizes minimizing the parameter’s magnitude rather than
the gLV model error. The robustness of this formulation for the three-population case over
the integral formulation is less pronounced. Both formulations became much less consistent
as the value of ρ approached 1, but it’s worth noting that, in the logarithmic integral for-
mulation, deviations from the noiseless predictions only occurred when the noise was at its
maximum (ρ = 1) while the integral formulation showed some signs of deviation when the ρ
was around 0.1.
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The stronger robustness exhibited by this formulation over the simple integral formula-
tion is likely related to the logarithmic integral formulation’s simpler feature matrix, which
only contains constant and linear terms with respect to the experimental population data.
The integral formulation contains quadratic terms, which intuitively increases the total un-
certainty characterizing the feature matrix with respect to the noise of each individual data
point. More studies are required to analyze the specific effects that noise has on each specific
inferred gLV parameter.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Results

Both formulations of the linear algebra deterministic algorithm perform similarly to the
baseline genetic algorithm on the two-population case, but with the added benefit that this
former’s robustness can be evaluated by upper-bounding the magnitude of the deviation from
the algorithm’s feature matrix. The deterministic algorithm infers a mutualistic interaction
between cancer and fibroblasts where both promote the growth of the other.

The deterministic algorithm agreed much less with the genetic algorithm in the three-
population case, likely due to the increase in model complexity. The only strong patterns
inferred were the inhibitory effects cancer and fibroblast cells had on endothelial cells as well
as the positive effects cancer and endothelial cells had on fibroblast proliferation. There was
much more noise in the three-population experimental data than the two-population set,
which likely impacted the parameter inference.

Both formulations of the deterministic algorithm are robustly feasible, and the inferred in-
teractions, indicated by the interaction parameters’ signs, are robust to experimental noise as
well as modeling error. Overall, the logarithmic integral formulation was slightly more robust
than the integral formulation for both two-population and three-population inference, and
the optimization algorithms for both formulations were more robust on the two-population
data than for the three-population set. Due to the lack of an adequate amount of data,
it is difficult to determine whether the deterministic algorithm or stochastic genetic algo-
rithm yielded more trustworthy inferences, though the deterministic method’s demonstrated
robustness does provide a greater degree of confidence. Further analogous studies with
longer-term time series data are required to further verify the reliability of these methods.
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6.2 Future Directions

Increasing the Amount of Data

The paucity of data was the main limiting factor for most of the analysis in this report. With
data for just three time points across both two-population and three-population inference,
it was extremely difficult to estimate derivatives, predict trends, etc. With spheroid data
for just two more time points, techniques like spline interpolation could be used for better
derivative estimation. The polynomial interpolation used in this report would also be more
accurate with more data points.

Model Discovery

In this report, we assumed the populations within the tumor spheroid would exhibit predator-
prey behavior, which was the main motivation for applying the generalized Lotka-Volterra
model for inference. With enough data, it would be interesting to do the reverse: analyzing
the “strength” of this model compared to a multitude of other models. Previous work by
Hayden, Chang, Goncalves, and Tomlin has suggested that the latter problem can be reduced
to the optimization of an L1 norm via compressive sensing, a procedure that optimizes the
fitting of data over the coefficients of a number of different functions [11]. The functions
whose coefficients have the largest magnitudes typically correspond to functions that can
best describe the data [6]. Theoretically, placing the functions involved in the generalized
Lotka-Volterra model alongside other potential descriptive functions in a sort of “bag of
functions” would allow for the comparison of the relative strength of the generalized Lotka-
Volterra functions in describing the experimental data with the descriptive strength of the
other functions within the “bag”.
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Appendix A

Training Curves

Figure A.1
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Figure A.2

Figure A.3
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Figure A.4



49

Appendix B

Parameter Robustness Charts

B.1 Two Populations

Integral Formulation

ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 - +

Table B.1: SKBR3 Robustness, Integral Formulation, 2-population
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ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.0000001 + +
0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 + -

Table B.2: MDAMB231 Robustness, Integral Formulation, 2-population

ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.0000001 - +
0.000001 - +
0.00001 - +
0.0001 - +
0.001 - +
0.01 - +
0.1 - +
1 + +

Table B.3: MCF7 Robustness, Integral Formulation, 2-population

ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.0000001 + +
0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 - +

Table B.4: HCC1143 Robustness, Integral Formulation, 2-population
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Logarithmic Integral Formulation

ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 + -

Table B.5: SKBR3 Robustness, Logarithmic Integral Formulation, 2-population

ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 + +

Table B.6: MDAMB231 Robustness, Logarithmic Integral Formulation, 2-population

ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.000001 - +
0.00001 - +
0.0001 - +
0.001 - +
0.01 - +
0.1 - +
1 - +

Table B.7: MCF7 Robustness, Logarithmic Integral Formulation, 2-population
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ρ Cancer’s effect on Fibroblast Fibroblast’s effect on Cancer

0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 + +

Table B.8: HCC1143 Robustness, Logarithmic Integral Formulation, 2-population
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B.2 Three Populations

Integral Formulation

ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 + -

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 + -

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 - -
0.000001 - -
0.00001 - -
0.0001 - -
0.001 - -
0.01 - -
0.1 - -

Table B.9: SKBR3 Robustness, Integral Formulation, 3-population
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ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + +

1 - -

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + +
0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 - -

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 - -

Table B.10: MDAMB231 Robustness, Integral Formulation, 3-population
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ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 - -

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + +
0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 - -

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 - -

Table B.11: MCF7 Robustness, Integral Formulation, 3-population
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ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 - -

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 - -

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 - -
0.000001 - -
0.00001 - -
0.0001 - -
0.001 - -
0.01 - -
0.1 - -
1 - -

Table B.12: HCC1143 Robustness, Integral Formulation, 3-population
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Logarithmic Integral Formulation

ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 + -

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 + -

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 - -
0.000001 - -
0.00001 - -
0.0001 - -
0.001 - -
0.01 - -
0.1 - -

Table B.13: SKBR3 Robustness, Logarithmic Integral Formulation, 3-population
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ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 - -

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + +
0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 - -

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + +
1 - -

Table B.14: MDAMB231 Robustness, Logarithmic Integral Formulation, 3-population
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ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -

1 - -

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + +
0.000001 + +
0.00001 + +
0.0001 + +
0.001 + +
0.01 + +
0.1 + +
1 - +

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 + -

Table B.15: MCF7 Robustness, Logarithmic Integral Formulation, 3-population
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ρ Cancer’s effect on Fibroblast Cancer’s effect on Endothelial

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 + +

ρ Endothelial’s effect on Fibroblast Endothelial’s effect on Cancer

0.0000001 + -
0.000001 + -
0.00001 + -
0.0001 + -
0.001 + -
0.01 + -
0.1 + -
1 + +

ρ Fibroblast’s effect on Cancer Fibroblast’s effect on Endothelial

0.0000001 - -
0.000001 - -
0.00001 - -
0.0001 - -
0.001 - -
0.01 - -
0.1 - -
1 + +

Table B.16: HCC1143 Robustness, Logarithmic Integral Formulation, 3-population
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