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 Abstract 

 The  purpose  of  this  project  is  to  demonstrate  the  capability  of  the  Restricted  Boltzmann 
 Machine  (RBM)  to  solve  NP-Hard  combinatorial  optimization  problems  at  scale.  It  uses  the  JAX 
 framework  to  distribute  the  model  across  a  mesh  of  interconnected  TPU  nodes  for  sampling.  The 
 RBM's  parallel  sampling  scheme  motivates  large  scaling  across  both  the  batch  dimension  and 
 problem  size  to  best  take  advantage  of  the  TPU's  architecture  for  fast  and  large  matrix  multiplies. 
 Various  sampling  algorithms  for  inference  on  RBMs  are  implemented  on  the  TPU  and  compared 
 to  other  hardware  accelerators.  It  can  currently  run  up  to  a  100,000-node  MAXCUT  problem 
 distributed  across  8  TPUv2  cores,  which  represents  one  of  the  largest  implementations  of  such  a 
 problem to date. 
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 1 Introduction 

 1.1 Background 
 Combinatorial  Optimization  problems  have  applications  across  a  variety  of  domains,  from 

 scheduling  logistics  to  VLSI  routing.  It  is  challenging  to  efficiently  solve  these  problems  since 
 their  search  space  scales  exponentially  with  input  size.  As  it  is  infeasible  to  exhaustively  test  all 
 possible  solutions,  combinatorial  optimization  problems  are  NP-Hard,  and  therefore  lack  an 
 algorithm to find a solution in polynomial time. 

 Many  NP-Hard  and  NP-Complete  problems  can  be  mapped  to  the  Ising  Model,  a  graph  based 
 in  statistical  physics  that  models  the  spin  states  of  magnetic  dipoles  [1].  It  has  been  of  interest  to 
 develop  different  approximation  algorithms  and  hardware  systems  to  efficiently  solve  the  Ising 
 Model problem, and therefore combinatorial optimization problems. 

 1.2 Motivations and Previous Work 
 Existing  physical  accelerators  that  work  on  solving  combinatorial  optimization  problems 

 mapped  to  the  Ising  Model  include  quantum  computers  (DWave  2000Q  Computer),  optical 
 oscillators  that  model  quantum  behavior  (Coherent  Ising  Machines),  and  hardware  accelerators 
 (GPUs, FPGAs, ASICs) that implement novel sampling algorithms. 

 The  purpose  of  this  work  is  to  investigate  the  Restricted  Boltzmann  Machine  (RBM),  a 
 stochastic  neural  network  that  maps  directly  onto  the  Ising  Model,  as  a  comparable 
 computational  approach  to  solving  large  combinatorial  optimization  problems.  The  RBM's 
 parallel  sampling  scheme  motivates  large  scaling  across  both  the  batch  dimension  and  problem 
 size,  which  takes  advantage  of  the  Tensor  Processing  Unit's  (TPU)  architecture  for  fast  and  large 
 matrix  multiplies,  as  well  as  distributed  programs.  We  also  implement  various  sampling 
 algorithms  suited  to  the  TPU  in  order  to  optimize  convergence  time  for  the  Restricted  Boltzmann 
 Machine (RBM). 

 The  largest  instances  of  Ising  Model  samplers  have  achieved  up  to  100,000  nodes  with 
 all-to-all  connectivity  [2,  3],  which  we  demonstrate  in  our  TPU  implementation.  With  further 
 scaling  and  improvements,  we  can  scale  up  the  RBMs  to  larger  systems  on  traditional  hardware 
 accelerators. 

 1.3 The Ising Formulation of Max-Cut Problems 
 The  Max-Cut  problem  is  one  example  of  a  combinatorial  optimization  problem.  In  order  to 

 demonstrate  the  RBM's  performance  on  the  TPUs,  we  benchmark  on  standardized,  complete 
 Max-Cut  graphs  ranging  in  size  from  1,000  to  100,000  nodes.  Solving  for  the  maximum  cut  of  a 
 graph relates to minimizing the energy of the Ising Model in the following way. 

 Given  a  graph  G  with  edges  E,  vertex  values  ,  and  edge  weights  ,  we  want    σ
 𝑖 

∈ −  1 ,  1 { }  𝑊 
 𝑖 , 𝑗    

 to  partition  the  graph  into  two  sets  V  +  (all  =  1)  and  V  -  (all  =  -1)  such  that  the  sum  of  edge    σ
 𝑖 

   σ
 𝑖 

 weights  between  the  two  sets  is  maximized.  E(V  +  )  is  the  set  of  edges  connecting  the  nodes  in  V  +  , 
 E(V  -  )  is  the  set  of  edges  connecting  the  nodes  in  V  -  ,  and  δ(V  +  )  is  the  set  of  edges  connecting  V  + 

 to V  -  . 
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 The  derivation  of  the  Max-Cut  from  the  Hamiltonian  of  the  Ising  Model  with  𝐻 (σ)
 interactions  between vertices  and  is shown below [4].  𝐽 

 𝑖 , 𝑗 
σ

 𝑖 
σ

 𝑗 

 (1)  𝐻 (σ)   =    −
 𝑖 , 𝑗    ∈ 𝐸  𝐺 ( )

∑  𝐽 
 𝑖 , 𝑗 

σ
 𝑖 
σ

 𝑗 
   

 (2)  𝐻 (σ)   =    −
 𝑖 , 𝑗    ∈ 𝐸  𝑉 +( )

∑  𝐽 
 𝑖 , 𝑗 

   −
 𝑖 , 𝑗    ∈ 𝐸  𝑉 −( )

∑  𝐽 
 𝑖 , 𝑗 

+
 𝑖 , 𝑗    ∈δ  𝑉 +( )

∑  𝐽 
 𝑖 , 𝑗 

 (3)  𝐻 (σ)   =    −
 𝑖 , 𝑗    ∈ 𝐸 ( 𝐺 )

∑  𝐽 
 𝑖 , 𝑗 

   +  2 
 𝑖 , 𝑗    ∈δ  𝑉 +( )

∑  𝐽 
 𝑖 , 𝑗 

 The  first  term  of  (Eq.  3)  is  independent  of  the  vertex  values,  so  minimizing  is  𝐻 (σ)   

 equivalent  to  minimizing  .  By  defining  the  weights  of  G  as  ,  the  objective  is 
 𝑖 , 𝑗    ∈δ  𝑉 +( )

∑  𝐽 
 𝑖 , 𝑗 

 𝑊 
 𝑖 , 𝑗 

−  𝐽 
 𝑖 , 𝑗 

 equivalent to maximizing the cut. Defining the cut value  , δ  𝑉 +( )| |   ≡     1 
 2 

 𝑖 , 𝑗    ∈δ  𝑉 +( )
∑ −  𝐽 

 𝑖 , 𝑗 

 (4)  𝐻 (σ)   =    
 𝑖 , 𝑗    ∈ 𝐸 ( 𝐺 )

∑  𝑊 
 𝑖 , 𝑗 

   −  4 δ  𝑉 +( )| |
 (5)  𝐸 

 𝐼𝑠𝑖𝑛𝑔    
=  1 

 2  𝐻 (σ)

 (6) δ  𝑉 +( )| | =    −  1 
 2  𝐸 

 𝐼𝑠𝑖𝑛𝑔    
   +     1 

 2 
 𝑖 , 𝑗    ∈ 𝐸 ( 𝐺 )

∑  𝑊 
 𝑖 , 𝑗 ( )

 1.4 Mapping the Ising Model to RBMs 
 The  Restricted  Boltzmann  Machine  (RBM)  is  a  two-layer  stochastic  neural  network  of  binary 

 states.  Its  structure  consists  of  a  layer  of  visible  nodes  and  a  layer  of  hidden  nodes,  with 
 connections  only  existing  between  the  visible  and  hidden  layers  (i.e.  no  intra-layer  connections). 
 The  RBM  is  parametrized  with  weights  and  biases  that  represent  a  target  distribution,  and  Gibbs 
 sampling  between  layers  probabilistically  activates  states  to  converge  on  the  minimal  energy 
 (highest  probability)  configuration.  With  its  two-layer  structure,  Gibbs  sampling  on  the  RBM  can 
 be massively parallelized as states are updated independently. 

 The  Ising  Model  can  be  embedded  into  the  RBM  by  copying  each  logical  node  from  the 
 original  Ising  matrix  (A)  and  replicating  it  into  the  hidden  and  visible  layers  (B),  with  a  coupling 
 coefficient C forcing corresponding nodes to match states [5]. 

 Figure 1: Mapping from the Ising Model to the RBM with twice as many nodes. 
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 Equating  the  energy  functions  of  the  RBM  and  Ising  Model  formulations  results  in  the 
 following  transformations  when  mapping  an  -node  Ising  problem  onto  the  RBM  with  visible  𝑛  𝑛 
 states  and  hidden  states.  are  bipolar  variables  in  ,  and  and  are  binary  variables  𝑛    σ {−  1 ,  1 } 𝑛  𝑣  ℎ 

 in  . { 0 ,  1 } 𝑛 

 (4)  𝐸 
 𝐼𝑠𝑖𝑛𝑔    

=    −  1 
 2 

 𝑖 = 1 

 𝑛 

∑
    𝑗 = 1 

 𝑛 

∑  𝐽 
 𝑖 , 𝑗 

σ
 𝑖 
σ

 𝑗 

 (5)  𝐸 
 𝑅𝐵𝑀    

=    
 𝑖 = 1 

 𝑛 

∑
    𝑗 = 1 

 𝑛 

∑  𝑊 
 𝑖 , 𝑗 

 𝑣 
 𝑖 
 ℎ 

 𝑗 
+

    𝑗 = 1 

 𝑛 

∑  𝑏 
 𝑗 
 ℎ 

 𝑗 
   +    

    𝑖 = 1 

 𝑛 

∑  𝑐 
 𝑖 
 𝑣 

 𝑖 
   

 To  equate  the  two  energies  and  transform  from  an  Ising  problem  over  states  to  an  RBM ±  1 

 over  binary  states,  we  set  =  =  ,  and  =  =  -  ,  where  is  a  vector  of  𝑊 
 𝑖 , 𝑗 

 𝑊 
 𝑗 , 𝑖 

−  4     𝐽 
 𝑖 , 𝑗    

 𝑏 
 𝑗 

 𝑐 
 𝑖 

 2  𝑊  1 ( )  1 
 ones.  The  mapping  from  the  Ising  Model  to  the  RBM  informs  which  data  structures  are  needed 
 to  be  stored  on  the  TPU.  The  weight  matrix  ,  biases  and  ,  along  with  hidden  and  visible  𝑊  𝑏  𝑐 
 layers  and  are  necessary  to  perform  sampling.  Additionally,  the  adjacency  matrix  is  also  𝑣  ℎ  𝐽 
 placed  on  the  TPU  for  calculating  cut  values  from  the  Ising  energy  as  we  sample,  though  those 
 calculations can also be performed offline on saved sample states. 

 2 TPU Architecture 

 2.1 Background 
 TPUs  have  been  benchmarked  for  a  variety  of  high  performance  computing  applications, 

 from  Ising  Model  simulations  on  a  single  core  [6],  to  training  machine  learning  benchmark 
 MLPerf  on  a  "TPU  Pod"  of  4096  chips  [7].  With  its  high  speed  interconnect,  dedicated  matrix 
 and  vector  compute  units,  high  bandwidth  memory,  and  distributed  computing  infrastructure, 
 Google's  Tensor  Processing  Unit  (TPU)  has  an  ideal  architecture  for  scaling  up  parallelized 
 sampling on the RBMs. 

 Specification  TPUv2 Core  TPUv3 Core 

 Inter-chip Connect  500 GB/s (4 links)  656 GB/s (4 links) 

 High Bandwidth Memory  8GB  16GB 

 Total System Memory  8GB * 8 Cores = 64GB  16GB * 8 Cores = 128GB 

 Peak TFLOPs/Chip (2 cores)  46  123 

 Table 1: Compute, memory, and bandwidth increase from TPUv2 to TPUv3  [9]. 
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 Figure 2: The TPUv2 "Chip" consists of 2 cores, each with their own compute units, HBM, and 
 interconnect bus [10]. 

 All  experiments  done  in  this  report  are  performed  on  8  TPUv2  cores,  with  larger  Ising 
 problem  instances  distributed  across  cores.  After  problem  instances  are  generated  on  the  TPU 
 host  machine,  the  RBM  data  structures  are  transferred  to  the  TPU  cores,  and  all  computations 
 remain on device to minimize host-device communication latency. 

 2.2 Investigation of Compute Precision 
 The  Matrix  Multiply  Unit  (MXU)  of  each  TPUv2  core  is  a  systolic  array  that  performs 

 128x128  multiply-accumulate  operations  on  inputs  rounded  down  to  bfloat16  precision.  There 
 have  been  studies  on  the  capability  of  low  precision  data  to  train  machine  learning  algorithms, 
 and  with  bfloat16  able  to  represent  the  same  range  as  32-bit  floating  point  (FP32),  researchers 
 were  able  to  show  that  deep  learning  training  in  bfloat16  can  achieve  the  same  results  as  FP32 
 [11]. 

 The  benefits  of  implementing  the  RBM  in  bfloat16  precision  include  the  ability  to  fit  larger 
 problem  sizes  on  the  TPU,  as  well  as  the  reduction  of  data  volume  passed  during  inter-core 
 communication.  M100000,  the  100000-node  Ising  problem  in  particular,  had  to  be  placed  on  the 
 TPU  devices  in  bfloat16,  as  the  reduced  precision  data  already  required  approximately  61GB  of 
 memory  on  the  64GB  capacity  of  the  8  core  system.  While  the  binary  states  of  the  hidden  and 
 visible  nodes  of  the  RBM  are  represented  precisely  in  bfloat16,  we  ran  experiments  to  check  that 
 reduced  precision  random  number  generation  and  acceptance  probability  calculations  for  flipping 
 states  did  not  affect  the  convergence  of  the  RBM  to  the  ground  state  solution.  While  Gibbs 
 sampling  on  reduced  precision  weights  and  biases  resulted  in  more  strongly  quantized  cut  values, 
 the  bfloat16  RBM  showed  comparable  results  to  its  FP32  version  when  benchmarked  on  the 
 K2000 Max-Cut problem. 
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 Figure 3: bfloat16 vs FP32 RBM sampling results on K2000, a dense, 2000-node Max-Cut 
 problem. 

 2.3 Mesh Partitioning and GPU Comparison 
 When  partitioning  a  large  RBM  across  multiple  TPU  cores,  it  is  possible  to  specify  various 

 partitioning  layouts  of  the  TPU  "mesh".  For  example,  for  placing  a  (100000)  2  -node  weight 
 matrix  on  8  TPU  cores  configured  in  a  4x2  mesh,  each  core  receives  a  25000  by  50000  sized 
 slice  of  the  matrix.  Mesh  scaling  on  the  TPUv2  devices  can  increase  up  to  32,  128,  256,  and  512 
 cores  total.  Interconnect  speeds  between  HBM  can  be  a  bottleneck  of  high  performance 
 computing  on  distributed  devices,  and  partitioning  data  on  a  mesh  with  low  perimeter  to  surface 
 area  ratio  may  minimize  intercore  communication.  We  measure  Gibbs  sampling  iteration  speeds 
 for  the  M100000  Ising  problem  across  1x8,  2x4,  4x2,  and  8x1  TPU  mesh  layouts,  but  differences 
 in  timing  results  are  negligible,  leading  us  to  believe  that  the  JAX  software  framework  for 
 distributing  matrix-multiplies  and  other  reduction  operations  hid  intercore  latency  at  this  small 
 scale  TPU  mesh.  As  a  result,  the  rest  of  the  experiments  in  this  report  are  conducted  on  a 
 1x8-core  TPU  mesh,  for  flexibility  in  the  data's  batch  dimension  being  evenly  divisible  across 
 the first axis. 

 Figure 4: Various TPUv2 8-core mesh partition layouts. 
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 We  are  also  interested  in  benchmarking  the  RBM  on  NVIDIA's  A100  80GB  GPU  for 
 comparison.  Our  JAX  implementation  is  ported  from  the  TPUs  to  the  GPU  with  minimal 
 modification,  the  main  difference  being  that  all  Ising  problem  instances  were  able  to  fit  on  the 
 single  GPU's  80GB  of  HBM  (still  in  bfloat16  precision),  removing  the  need  for  data  partitioning 
 and  intercore  communication.  For  running  10,000  Gibbs  sampling  steps  on  the  K2000  Max-Cut 
 problem,  the  GPU  finishes  computation  of  the  Parallel  Tempering  algorithm  in  8.5  seconds 
 (green), while the TPUs finishes approximately 1.3x times slower in 14.8 seconds (blue). 

 Figure 4: TPU vs GPU RBM sampling results on K2000. 

 2.4 Searching for Bottlenecks 
 The  first  implementation  of  the  RBM  on  TPU  was  written  in  TensorFlow,  and  using  Google 

 Cloud  TPU's  TensorBoard  profiling  tool,  we  took  a  look  at  the  performance  breakdown  of  the 
 RBM's  Gibbs  sampling  algorithm.  For  operations  computed  on  the  TPU  devices,  the  three 
 matrix-multiplies  steps  evenly  subdivided  the  bulk  of  the  runtime  into  thirds,  with  the  Backwards 
 Gibbs  pass  taking  slightly  more  due  to  an  extra  transpose  on  the  weight  matrix.  However,  since 
 the  construction  of  the  weight  matrix  is  symmetric,  we  can  eliminate  the  transpose.  The  profiling 
 tool  also  provides  the  MXU's  percentage  utilization  of  the  TPU's  peak  FLOPs,  with  higher 
 percent utilization indicating faster operations. 

 Experiments  run  in  TensorFlow  on  RBMs  with  varying  batch  sizes  of  visible  and  hidden 
 layers  showed  runtimes  bounded  by  the  data  transfer  from  the  CPU  host  to  TPU  devices  on  the 
 PCIe  bus.  Linear  scaling  between  input  data  size  and  runtime  required  batch  sizes  of  at  least  512, 
 so  to  avoid  bottlenecks  from  PCIe  bandwidth  limitation,  we  want  to  ensure  that  all  input  data  is 
 fed to the TPU devices before sampling. 
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 Algorithmic Step  XLA Operation  Percent of Device 
 Computation Time 

 FLOPs % 
 Utilization 

 Backwards Gibbs  matrix-matrix multiply  35  68 

 Forwards Gibbs  matrix-matrix multiply  30  79 

 Ising Energy Calculation  matrix-matrix multiply  28  83 

 Max-Cut Calculation  vector-scalar multiply-add  7.4  82 

 Table 2: Top 4 TPU Operations during Gibbs sampling on the RBMs. 

 3 RBM Implementation 

 3.1 JAX Framework 
 While  profiling  in  the  TensorFlow  framework  helps  to  identify  sampling  bottlenecks,  JAX's 

 documentation  and  API  afford  more  flexibility  for  explicit  data  placement  on  TPU  devices  as  we 
 begin  to  scale  larger  models  across  distributed  devices.  At  the  time  we  first  started  working  with 
 TensorFlow,  the  interface  architecture  was  with  a  Google  Compute  Engine  VM  that 
 communicates  over  gRPC  to  the  TPU's  host  machine.  We  started  to  face  memory  limitations  on 
 the  Google  Compute  Engine  VM  when  generating  100,000-node  Ising  problems,  so  we  turned  to 
 JAX,  a  NumPy-style  API  optimized  for  hardware  accelerators  that  ran  directly  on  the  TPU  host 
 machine,  eliminating  the  need  for  a  user-side  VM.  Furthermore,  when  scaling  to  a  mesh  of  TPU 
 devices,  TensorFlow  partitions  compiled  code  from  a  single  global  process  to  each  TPU  host  via 
 RPCs,  in  comparison  to  JAX,  where  each  TPU  host  will  compile  and  run  its  own  copy  of  the  full 
 code, communicating only during collective operations [7]. 

 Figure 5: TPU VM System Architecture [12]. 

 JAX,  like  TensorFlow,  is  built  on  top  of  an  XLA  compiler  that  optimizes  functions  for  the 
 hardware  accelerator  it  is  running  on.  It  has  a  few  different  single-program,  multiple-data 
 (SPMD)  parallelization  methods  that  we  explore.  PMAP  is  one  such  method  that  replicates  a 
 program  across  its  devices  and  performs  collective  operations  through  the  interconnect.  Manual 
 sharding  of  data  allows  for  finer  grain  control  of  exactly  which  data  is  placed  on  which  device. 
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 The  other  method,  PJIT  (now  just  merged  with  JIT),  consists  of  an  autosharder  that  automatically 
 partitions  the  data  across  specified  mesh  axes  and  abstracts  all  resources  as  a  single  global 
 device.  The  functions  are  just-in-time  compiled  and  cached  on  each  device,  so  arguments  sizes 
 are fixed and known at compile time. 

 For  smaller  Ising  problem  sizes,  it  is  possible  to  replicate  the  entire  RBM  onto  each  TPU 
 core  and  parallelize  sampling  across  the  batch  dimension,  treating  each  core  as  an  independent 
 sampler.  This  implementation  (using  PMAP)  is  faster  than  distributing  portions  of  the  RBM 
 across  cores  with  PJIT,  as  computations  can  be  self-contained  on  each  core  (Figure  6).  However, 
 memory  limitations  per  core  necessitate  distributing  sub-matrices  across  TPU  cores  for  larger 
 problems. 

 Figure 6: PMAP vs PJIT comparison for RBM sampling on K2000. 

 3.2 Large Ising Problem Scaling 
 To  benchmark  the  performance  of  the  RBM  on  large  Ising  problems,  we  generate  the 

 M100000,  an  all-to-all  connected  100,000-spin  Ising  problem  with  random,  continuous  weights 
 between  -1  and  1,  as  specified  by  Goto,  Tatsumura,  and  Dixon  in  Ref  [2].  With  approximately  5 
 billion  weights,  the  RBM  construction  of  the  M100000  problem  is  around  61GB  of  data  in 
 bfloat16 precision, which is too large to fit on a single TPU core with 8GM of HBM. 

 We  first  construct  the  RBM's  weights,  biases,  and  adjacency  matrix  on  the  TPU  Host  VM,  a 
 process  that  takes  approximately  100  minutes.  After  setting  up  the  mesh  of  TPU  devices,  we  then 
 use JAX to partition the RBM across the mesh according to the autosharder. 

 Sampling  code  is  written  PJIT,  and  operations  such  as  matrix-multiplies  and  Ising  state 
 updates  are  abstracted  across  the  discrete  TPU  cores  as  computations  on  one  large  device.  By 
 specifying  the  data  axes  along  which  we  distribute  the  inputs  (RBM  layers  and  weights), 
 operations can be run in parallel across the devices. 
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 Figure 7: Performance of the RBM distributed across TPU cores compared to other hardware 
 accelerated algorithms in Ref [2]. 

 For  M100000,  the  TPUs  take  30  ms  per  Gibbs  sampling  step  on  a  visible-state  batch  size  of 
 1.  The  scaling  strength  of  the  TPU  is  apparent  when  increasing  the  batch  dimension  of  the 
 sampled  visible  states  by  a  factor  of  100  results  in  a  much  lower  order  of  magnitude  increase  in 
 sampling time (~100 ms/sampling step). 

 In  comparison,  researchers  of  a  different  Ising  Model  approximation  algorithm  called 
 Simulated  Bifurcation  (which  also  utilizes  parallel  state  updates)  run  sampling  on  8  Nvidia  Tesla 
 V100  GPUs,  achieving  a  speed  of  about  8ms  per  sampling  step  [2].  The  table  below  provides 
 more  details  on  the  hardware  and  performance  differences  of  the  two  algorithms  compared  to  an 
 Ising  energy  benchmark  solved  by  the  Hopfield  Neural  Network  (HNN),  a  naive  local  minimum 
 search.  The  Simulated  Bifurcation  researchers  also  provide  data  point  comparisons  to  their 
 implementation of simulated annealing on a PC Cluster. 

 Algorithm  Hardware  Interconnect  Total 
 Memory 

 Total Peak 
 TFLOPs 

 Time to HNN 

 Simulated 
 Bifurcation 

 8 GPU Nvidia Tesla 
 V100-SXM2-16GB 

 300 GB/s  128 GB  126  8ms/step * 35 steps to 
 HNN solution =  0.28s 

 Simulated 
 Annealing 

 25-node PC Cluster 
 Each Node: 2 Intel 
 Xeon E5-2697-v3 

 InfiniBand 
 (Datalink speed 
 not specified) 

 128 GB 
 per node 

 40  1s  to HNN solution 

 RBM  8 TPUv2 Cores  500 GB/s  64 GB  180  30ms/step * 250 steps to 
 90%  of HNN solution =  7.5s 

 Table 3: Hardware and performance differences on the 100,000-node Ising Problem. 
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 3.3 Coupling Parameter Investigation 
 When  transforming  from  the  Ising  to  RBM  formulation,  each  visible  node  is  mapped  to  its 

 hidden  counterpart.  The  coupling  parameter  is  the  RBM's  “edge  weight"  between  𝐶 ( 𝑊 
 𝑖 , 𝑖    

)
 corresponding  visible/hidden  pairs.  To  disincentive  the  degenerate  cut  (simply  bisecting  the 
 graph  across  the  hidden  and  visible  nodes  for  a  Max-Cut  value  of  zero),  we  want  to  effectively 
 set  the  coupling  parameter  while  keeping  the  RBM's  sampling  distribution  close  to  the  original 
 model distribution. 

 Various coupling assignment methods we explore for the +-1 Ising Problem include: 
 ●  , a fixed constant, determined empirically  𝐶 

 𝑖 , 𝑖    
=  𝑐    

 ●  , proportional  to the absolute value of row sum of weights.  𝐶 
 𝑖 , 𝑖    

   =    − α   
    𝑗 = 1 

 𝑛 

∑  𝑊 
 𝑖 , 𝑗    

||||

||||

 ●  ,  replacing absolute value above with relu().  𝐶 
 𝑖 , 𝑖    

   =    − α   
    𝑗 = 1 

 𝑛 

∑  𝑊 
 𝑖 , 𝑗    

    𝑖𝑓    <     0 ,     𝑒𝑙𝑠𝑒     0    

 ●  , a linear combination  of weight row sums.  𝐶 
 𝑖 , 𝑖    

   =    − α   
    𝑗 = 1 

 𝑛 

∑  𝑊 
 𝑖 , 𝑗    

+    β

 The  relationship  between  the  RBM's  coupling  parameter  and  sampling  convergence  is  not 
 fully  understood,  but  embedding  information  about  the  incoming  edges  to  each  node  empirically 
 improves sampling. 

 Figure 8: Abs, relu, and lin_com refer to the coupling assignment methods detailed above, while 
 nominal refers to sampling with a fixed coupling coefficient. All other parameters are held the 

 same. SA refers to the Simulated Annealing solution state, which we use as our target. 
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 To  understand  how  various  coupling  assignment  methods  affect  the  sampling  distribution,  we 
 use  a  ratio  of  unnormalized  visible  state  probabilities  [13]  to  characterize  how  likely  the  current 
 state  is  sampled  from  a  distribution  close  to  the  model  distribution.  Using  the  ratio  of  marginal 
 probabilities  of  visible  sample  states  eliminates  the  need  to  calculate  the  partition  function  ,  𝑍 
 which  is  exponential  with  the  number  of  nodes  (Eq.  6).  If  the  probability  ratio  is  close  to  1,  then 
 the  solution  state  is  ideally  sampled  from  the  model  distribution,  as  both  probabilities  are 
 calculated  from  the  nominal  RBM.  For  investigating  sampling  distributions  of  various  coupling 
 assignment  methods,  P_nominal  means  all  couplings  are  fixed  at  a  constant  2,  determined 
 empirically. 

 (6)  𝑍 =    
 𝑣 ,    ℎ 
∑  𝑒 

− 𝐸 
 𝑅𝐵𝑀    

( 𝑣 , ℎ )
   

 (7)  𝑝 ( 𝑣 ) =     1 
 𝑍    

 ℎ 
∑  𝑝 ( 𝑣 ,  ℎ ) =  1 

 𝑍    
    ℎ 
∑  𝑒 

− 𝐸 
 𝑅𝐵𝑀    

( 𝑣 , ℎ )
   

 (8)  𝑝 ( 𝑣 ) =  1 
 𝑍 

    𝑗 = 1 

 𝑚 

∏  𝑒 
 𝑏 

 𝑗    
 𝑣 

 𝑗 

    𝑖 = 1 

 𝑛 

∏  1 +  𝑒 
 𝑐 

 𝑖 
+   

    𝑗 = 1 

 𝑚 

∑  𝑊 
 𝑖 , 𝑗    

 𝑣 
 𝑗 

⎛

⎝

⎞

⎠

   

 We see below that as the Ising problem size increases from 1000 to 10,000 nodes, the nominal 
 coupling assignment method settles to a local minimum, while the other coupling assignments 
 methods are able to track and surpass the simulated annealing solution. For smaller problem 
 sizes, the probability ratios stay closer to 1, though the likelihood of sampling the solution state 
 from the nominal RBM begins to diverge as the problem size increases. 

 Figure 9: Probability ratios of coupling assignments across Ising problem sizes (Left); Best Ising 
 energy states found by the sampler (Right). 
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 4 Exploration of Sampling Algorithms 

 4.1 Block Gibbs Sampling 
 After  we  set  the  RBM's  coupling  terms  to  be  proportional  to  the  absolute  value  of  row  sum  of 

 weights,  basic  Gibbs  sampling  is  able  to  find  the  solution  state  with  an  Ising  energy  lower  than 
 the Simulated Annealing solver for problem sizes M1000 to M10000 (Figure 9, Right). 

 However,  as  the  number  of  nodes  in  the  RBM  scales  up,  more  Gibbs  sampling  steps  are 
 necessary  in  order  for  the  Markov  chain  to  converge  on  the  highest  probability/lowest  energy 
 state.  To  improve  the  sampling  efficiency  of  the  RBM,  we  look  at  other  Markov  chain  Monte 
 Carlo-based algorithms compatible with the TPU's architecture that enhance Gibbs sampling. 

 4.2 Adaptive Markov Chain Monte Carlo 
 When  sampling  with  a  Markov  chain  on  high  dimensional  data,  the  energy  landscape  of  its 

 distribution  may  have  many  local  minima.  Sampling  at  different  temperatures  can  help  the 
 Markov  chain  reach  the  ground  state,  with  higher  temperatures  improving  mixing  by  lowering 
 the barrier for nodes to flip states. 

 In  the  Adaptive  Markov  chain  Monte  Carlo  (MCMC)  algorithm,  the  goal  is  to  have  two 
 sampling  chains  running  in  parallel  [14].  The  "slow  chain"  is  sampled  at  T1  =  1  (or  inverse 
 temperature  =  1)  and  stays  close  to  the  model  distribution.  The  "fast  chain"  is  sampled  at  a β
 range  of  higher  temperatures  T2  =  1  to  10  (or  =  0.1  to  1),  where  the  distribution  is  hopefully β
 smoother and easier to sample from. 

 In  the  results  shown  below,  we  probabilistically  swap  the  visible  states  of  the  slow  and  fast 
 chains  every  50  Gibbs  sampling  steps  according  to  the  Metropolis-Hastings  update  rule  (Eq.  14), 
 where  is  the  joint  probability  of  the  fast  chain  sampled  from  the  slow  chain's  𝑃 

 𝑇  1 
 𝑥 

 𝑇  2 ( )
 distribution.  Simplifying  the  acceptance  ratio  to  its  form  in  Eq.  13,  we  can  reuse  the  Ising  𝑟 
 energy  values  already  computed  for  the  Max-Cut  calculation  at  that  sampling  step.  Swapping  the 
 two  chains  is  advantageous  (more  probable)  if  the  fast  chain  has  found  a  lower  energy  state, 
 allowing the slow Markov chain to mix while sampling close to the model distribution. 

 (9)  𝑃 
 𝑘 

 𝑥 ( ) =  1 
 𝑍 

 𝑘 
 𝑒𝑥𝑝 −  1 

 𝑇 
 𝑘 

    𝐸 
 𝐼𝑠𝑖𝑛𝑔    

 𝑥 ( )( )   

 (10)  𝑟 =
 𝑃 

 𝑇  1 
 𝑥 

 𝑇  2 ( )    𝑃 
 𝑇  2 

 𝑥 
 𝑇  1 ( )

 𝑃 
 𝑇  1 

 𝑥 
 𝑇  1 ( )    𝑃 

 𝑇  2 
 𝑥 

 𝑇  2 ( )    

 (11)  𝑟 =    
 𝑒𝑥𝑝 − 𝐸 

 𝐼𝑠𝑖𝑛𝑔    
 𝑥 

 𝑇  2 ( ) /     𝑇  1 ( )    𝑒𝑥𝑝 − 𝐸 
 𝐼𝑠𝑖𝑛𝑔    

 𝑥 
 𝑇  1 ( )    /     𝑇  2 ( )

 𝑒𝑥𝑝 − 𝐸 
 𝐼𝑠𝑖𝑛𝑔    

 𝑥 
 𝑇  1 ( ))    /     𝑇  1 ( )    𝑒𝑥𝑝 − 𝐸 

 𝐼𝑠𝑖𝑛𝑔    
 𝑥 

 𝑇  2 ( )    /     𝑇  2 ( )    

 (12)  𝑟 =  𝑒 
− 𝐸 

 𝐼𝑠𝑖𝑛𝑔    
 𝑥 

 𝑇  2 ( )   + 𝐸 
 𝐼𝑠𝑖𝑛𝑔    

 𝑥 
 𝑇  1 ( )( ) /     𝑇  1 [ ]

    𝑒 
− 𝐸 

 𝐼𝑠𝑖𝑛𝑔    
 𝑥 

 𝑇  1 ( )   +    𝐸 
 𝐼𝑠𝑖𝑛𝑔    

 𝑥 
 𝑇  2 ( )( ) /     𝑇  2 [ ]
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 (13)  𝑟 =  𝑒𝑥𝑝 β 1 − β 2 ( )  𝐸 
 𝐼𝑠𝑖𝑛𝑔    

 𝑥 
 𝑇  1 ( )   −  𝐸 

 𝐼𝑠𝑖𝑛𝑔    
 𝑥 

 𝑇  2 ( )( )[ ]

 (14)  𝑃 
 𝑠𝑤𝑎𝑝    

 𝑥 
 𝑇  1 

   ,  𝑥 
 𝑇  2 ( ) =     𝑚𝑖𝑛  1    ,     𝑟 ( )   

 In  Figure  10,  we  compare  Gibbs  sampling  to  Adaptive  MCMC  on  a  10,000-node  Ising 
 problem.  Successful  swaps  are  marked  with  green  vertical  lines.  We  can  see  in  the  Adaptive 
 MCMC  plot  that  the  fast  chain  (orange)  samples  from  a  range  of  tempered  RBM  distributions  (T 
 =  1  up  10  for  25  steps,  then  back  down  from  10  to  1  for  another  25  steps),  and  helps  reduce  the 
 number  of  sampling  steps  the  slow  chain  (blue)  needs  to  take  to  minimize  the  Ising  energy,  while 
 ultimately finding a lower energy state compared to Gibbs sampling from a single chain. 

 Figure 10: Adaptive MCMC (Right) takes around 75 steps to approach SA solution, while 
 standard Gibbs sampling (Left) takes around 150 steps. 

 4.3 Parallel Tempering 
 Parallel  tempering  is  another  algorithm  that  utilizes  multiple  Markov  chains  to  sample  from 

 different  probability  distributions  in  order  to  facilitate  better  mixing.  However,  unlike  Adaptive 
 MCMC,  where  one  fast  chain  cycles  through  various  temperature  distributions  and 
 probabilistically  swaps  the  sample  state  with  one  slow  chain,  parallel  tempering  uses  many  more 
 chains sampling at stationary intermediate distributions [15]. 

 While  running  more  than  two  chains  costs  more  memory  resources,  the  TPU's  ability  to 
 scale  along  the  batch  dimension  for  parallel  operations  creates  an  advantage  in  allowing  even 
 broader exploration of the energy landscape at minimal runtime increase. 

 For  our  implementation  of  the  parallel  tempering  algorithm,  we  use  number  of  parallel  𝑚 
 sampling  chains,  each  running  on  a  temperature  constant  geometrically  spaced  between 

 .  Every  10  sampling  steps,  the  visible  states  of  neighboring  chains  1 =     𝑇 
 1 

<    ···    <  𝑇 
 𝑚 

=  80 
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 are  swapped  according  to  the  same  criterion  as  Adaptive  MCMC  (the  Metropolis-Hastings 
 update rule). 

 The  algorithm's  swapping  portion  checks  adjacent  pairs  of  chains,  alternating  between  odd 
 and even numbers as the starting index of the pair. More concretely, the algorithm: 

 1.  Performs  10  Gibbs  sampling  steps  in  parallel  across  chains  with  distribution  for  𝑚     𝑃 
 𝑘 

 .  𝑘 =  1    ···  𝑚 
 2.  Calculates  swap  probabilities  for  even-leading-index  swaps  (i.e.  {0,  1},  {2,  3},  {4,  5},  ...) 

 in parallel. 
 a.  Serially  reassigns  the  rows  of  the  visible-state  matrix  (dimension  -chains  by  𝑚 

 -visible nodes), due to JAX's requirement for functional  array updates [16].  𝑛 
 3.  Performs another 10 Gibbs sampling steps in parallel across  chains.  𝑚 
 4.  Calculates  swap  probabilities  for  odd-leading-index  swaps  (i.e.  {1,  2},  {3,  4},  …)  in 

 parallel. 
 a.  Serially reassigns the rows of the visible-state matrix. 

 5.  Takes the visible state from the  RBM as the  sample from the model distribution.  𝑘 =  1 

 The  method  of  deterministically  alternating  between  even  and  odd  pairs  during  the  swapping 
 segment  of  the  algorithm  has  been  compared  to  alternatives  such  as  random  selection  of  the 
 exchange  pairs  and  swapping  all  potential  pairs  (not  just  adjacent  neighbors)  [17].  Through 
 experiment,  the  researchers  showed  that  the  deterministic  even  odd  (DEO)  exchange  method 
 yielded  the  highest  "round  trip  rate"  of  a  sample  state  traversing  the  full  temperature  ladder,  so 
 we decided to use this method. 

 In  Figure  11  below,  we  plot  the  progression  of  various  sampling  algorithms  on  the  5000-node 
 Ising  problem.  We  began  with  a  nominal  RBM  with  standard  Gibbs  sampling  and  a  constant 
 coupling  parameter  (green).  Then,  coupling  adjustments  to  the  RBM  (orange)  combined  with 
 parallel  sampling  from  a  range  of  distributions  (blue,  red)  sped  up  convergence  to  the  ground 
 state solution. 

 Figure 11: A comparison of various sampling algorithms on the RBM. 
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 Runtime  differences  on  the  TPU  for  the  3,000  Gibbs  sampling  steps  on  various  algorithms 
 for  a  10,000-node  Ising  problem  are  shown  below.  Standard  Gibbs  sampling  (green)  has  the 
 quickest  time  per  sampling  step,  as  the  entire  algorithm  is  parallelized.  Parallel  tempering 
 (orange)  has  a  longer  runtime  that  is  proportional  to  the  number  of  serial  exchanges  between 
 parallel  chains,  though  it  surpasses  the  simulated  annealing  solution  more  quickly  and  finds  the 
 most  optimal  solution  state.  Lastly,  Adaptive  MCMC  samples  the  slowest,  due  to  our 
 implementation  that  serializes  each  iteration  of  Gibbs  sampling  on  the  fast,  then  slow  chain.  With 
 a  better  Adaptive  MCMC  implementation  that  parallelizes  the  two  chains,  its  runtime  should  be 
 closer to that of parallel tempering. 

 Figure 12: Runtime comparisons of RBM sampling algorithms on the TPU. 

 After  applying  parallel  tempering  to  the  M100000  problem,  we  are  able  to  improve  our 
 lowest  energy  found  from  95%  to  98%  of  the  HNN  benchmark.  However,  we  are  still  a  ways  off 
 from  the  Simulated  Bifurcation  and  Simulated  Annealing  results,  suggesting  that  optimizations 
 can be made through parameter tuning on the RBM as well as the parallel tempering algorithm. 
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 Figure 13: In these plots, 'nominal' refers to standard Gibbs sampling on the RBM optimized 
 with absolute couplings. GPU runs finish ahead of TPU runs for reasons discussed in section 2.3. 

 Algorithm  Hardware  Interconnect  Total 
 Memory 

 Total Peak 
 TFLOPs 

 Time to HNN 

 Simulated 
 Bifurcation 

 8 GPU Nvidia Tesla 
 V100-SXM2-16GB 

 300 GB/s  128 GB  126  8ms/step * 35 steps to 
 HNN solution =  0.28s 

 Simulated 
 Annealing 

 25-node PC Cluster 
 Each Node: 2 Intel 
 Xeon E5-2697-v3 

 InfiniBand 
 (Datalink speed 
 not specified) 

 128 GB 
 per node 

 40  1s  to HNN solution 

 RBM 
 (standard 
 Gibbs) 

 8 TPUv2 Cores  500 GB/s  64 GB  180  30ms/step * 250 steps to  90% 
 of HNN solution =  7.5s 

 RBM 
 (Parallel 
 Tempering) 

 8 TPUv2 Cores  500 GB/s  64 GB  180  325ms/step * 500 steps to 
 98%  of HNN solution =  162s 

 RBM 
 (Parallel 
 Tempering) 

 1 GPU Nvidia 
 A100-80GB 

 N/A 
 (All computation 
 on one GPU) 

 80 GB  312  273ms/step * 500 steps to 
 98%  of HNN solution =  134s 

 Table 4: A comparison summary of the RBM's performance on the 100,000-node Ising problem. 
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 5 Conclusion 

 5.1 Future Work 
 In  this  work,  we  demonstrate  that  RBMs  distributed  on  multiple  TPUs  can  be  used  to  solve 

 the  K2000  Max-Cut  problem  and  approach  optimal  solutions  for  graphs  of  up  to  100,000  nodes. 
 The  TPU's  architecture  and  distributed  network  allow  us  to  scale  to  even  larger  Ising  problem 
 sizes as memory resources afford. 

 More  work  can  be  pursued  in  understanding  how  the  RBM's  parameters  can  influence  the 
 sampling  distribution  and  speed  of  convergence  to  the  ground  state,  and  automated  parameter 
 tuning  on  the  device  can  speed  up  optimizations  of  the  RBM  for  other  graph  types.  Furthermore, 
 the  efficiency  of  the  parallel  tempering  algorithm  can  be  improved  by  removing  the  bottleneck  of 
 serially applying neighboring swaps. 

 With  further  scaling  and  improvements,  RBMs  on  traditional  hardware  accelerators  provide  a 
 potential  method  for  solving  combinatorial  optimization  problems  through  hardware 
 accelerators. 
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