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Abstract

In the era of noisy, non-fault tolerant, quantum hardware, reducing the num-
ber of operations in quantum programs is essential to ensure computations pro-
duce meaningful results. Unitary synthesis is a particularly promising technique
which uses non-linear numerical optimization tools paired with heuristic-guided
tree search algorithms to produce resource efficient implementations of quantum
algorithms. This report illustrates how unitary synthesis can be used to opti-
mize quantum circuits with many qubits. The TopAS algorithm demonstrates
how minimizing both operation count and interaction complexity before map-
ping can produce better circuit implementations than the state of the art. This
report also presents several discoveries that enable the use of machine learning
in accelerating unitary synthesis. Namely, a canonical representation of unitary
matrices, and an argument for the learnability of mappings between a specific
class of unitary matrices and parameterized quantum circuits are presented. The
QSeed algorithm shows how machine learning can be leveraged to accelerate the
optimization of wide quantum circuits without sacrificing solution quality.
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1 Introduction

The idea to employ the seemingly unnatural powers of quantum mechanics
for computation originated in Richard Feynman’s 1981 lecture titled “Simulat-
ing Physics with Computers” [11]. Sixteen years later, in 1997, Simon’s prob-
lem demonstrated the first oracle separation between quantum computers and
probabilistic classical computers [25]. In that same year, Peter Shor showed
that quantum computers can achieve super-polynomial speedups over classical
computers for the prime number factoring problem [23]. Yet, the execution
of these algorithms remains out of reach for modern quantum machines. The
current Noisy Intermediate Scale Quantum (NISQ) era is defined by limited
hardware that is extremely susceptible to environmental noise and decoherence
[21]. Quantum error correction promises to elevate the field into an era of fault
tolerance, but questions relating to the scaling of hardware capable of carry-
ing out these complex error correction schemes remain unanswered [1]. Error
mitigation, an ever widening suite of techniques used to reduce the effects of
environment interference, serve as a NISQ era aid to these problems. Google’s
quantum supremacy experiments have confirmed the accuracy of a simple dig-
ital noise model, meaning just reducing the number of operations in quantum
programs can dramatically improve the likelihood that computations are correct
[3].

In this report, I will discuss common techniques used to optimize the oper-
ation count and depth of quantum circuits. I will focus on the use of unitary
synthesis, a promising optimization technique. I will also present research ef-
forts I have made in applying and improving unitary synthesis algorithms with
machine learning.

This report is divided as follows: Section 2 surveys common techniques used
for quantum circuit optimization and introduces unitary synthesis. Section 3
details the efforts I have made in applying machine learning to circuit optimiza-
tion. Finally, Section 4 discusses promising future directions for the field of
machine learning in circuit optimization.
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2 Quantum Circuit Optimization

In this section, I will introduce preliminary concepts in quantum computing
and the circuit optimization problem. I will also detail several widely used
optimization techniques, and algorithms used for a specific style of optimization
called unitary synthesis.

2.1 Preliminaries

Definition 2.1 (Qubits). A qubit is the base unit of quantum information.
The qubit model assumes that a quantum system can be in any arbitrary su-
perposition of two orthogonal states |0⟩ and |1⟩, so long as it satisfies

|ψ⟩ = α|0⟩+ β|1⟩ |α|2 + |β|2 = 1

where α, β ∈ C. Given a system of n qubits and defining N = 2n, the quantum
state lies in a Hilbert space of size CN×N . The composite state |ϕ⟩ of this n
qubit system can be found by taking the n-fold tensor product

|ϕ⟩ =
n⊗

i=1

|ψi⟩.

Definition 2.2 (Quantum Gates). Operations on qubits must preserve the unit
L2 norm of the quantum state. For this reason, operations on qubits must be
unitary. Gates may act on one or multiple qubits, and they can be functions of
real parameters. Two noteworthy quantum gates are the single qubit U3 gate

U3(a, b, c) =

[
cos(a2 ) −eic sin(a2 )
eib sin(a2 ) ei(b+c) cos(a2 )

]
and the two qubit CNOT or CX gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The gate set of {CNOT,U3} is both universal for quantum computation and
capable of creating any unitary matrix [19].

Quantum gates can be composed in parallel or sequentially. Parallel compo-
sition corresponds to a tensor product while sequential composition corresponds
to a matrix multiplication.

Definition 2.3 (Quantum Circuits). A quantum circuit is a data structure
that describes a quantum program. Qubits are represented as horizontal wires.
Quantum gates are composed in sequences where time is assumed to flow from
left to right. The single-qubit U3 gate appears as a squares, the multi-qubit
CNOT gate spans the qubits on which it is applied. The width of a circuit
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Figure 1: An example of a quantum circuit with U3 and CNOT gates.

(a) Mesh (b) Linear (c) Falcon

Figure 2: Examples of three common qubit topologies. The heavy hexagonal
“falcon” style of topology is used in IBM’s superconducting machines. Meshes
and lines are also common topologies.

refers to the number of qubits in the circuit, the depth refers to the number of
time steps along the circuit’s critical path. Circuits that contain one or more
parameterized gates (such as the U3 gate) are called Parameterized Quantum
Circuits (PQCs). The unitary operation implemented by quantum circuit C
is UC . If C is a PQC parameterized by a vector θ ∈ Rm, then the unitary
associated with C is denoted UC(θ).

Although quantum circuits allow interactions between any pair of qubits,
hardware is typically more limited. To account for this, a qubit topology can be
used to describe more restrictive connectivities.

Definition 2.4 (Qubit Topology). A qubit topology is a graph G = (V,E)
where V is a set of vertices and E is a set of edges. Vertices v ∈ V represent
qubits, while edges (u, v) ∈ E represent (hardware) allowed interactions between
qubits.

The goal of quantum circuit optimization is to reduce the operation count
and depth of quantum programs. This is necessary as NISQ era qubits are
extremely sensitive to noise and are not error corrected. Certain quantum gates
are more likely to introduce error than others. Multi-qubit gates, such as the
CNOT, take far more time to execute and are far more error prone than single-
qubit gates. Depending on the specific machine, some single-qubit gates may
be more error prone and more difficult to calibrate than others [7]. Critically,
the optimized version of a circuit must implement the same functionality as the
original circuit.
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2.2 Rule Based Circuit Optimization

Rule based circuit optimizations are a class of optimization techniques that
make local gate transformations based on a pre-compiled series of transforma-
tion rules. Often, these sorts of algorithms are implemented with pattern recog-
nition and replacement schemes [6]. Peephole optimization techniques (which
are heavily used in classical compilation), where a window scans across the
quantum circuit seeking opportunities for pattern replacement, are commonly
used in practice [26, 2, 13].

This sort of optimization is fast, and is often very effective at reducing both
circuit depth and gate counts, but, it has two inherent limitations. First, pat-
terns for replacement must be identified beforehand, a process which is typi-
cally carried out by human observation. The space of possible circuit pattern-
replacement pairs is vast, and the greatest opportunities for optimization have
almost certainly not been fully explored. These replacement rules are human
constructed and guided by heuristic and intuition. This restriction of peephole
optimization has also been pointed out in classical compilers [4]. In response,
tools such has CompilerGym [8] have been developed to use Reinforcement
Learning (RL) to automate compiler optimization flows in classical compilers.
The use of RL in peephole optimization for quantum computers has also been
proposed.

Second, many of these rule based optimization techniques only consider very
small width windows for optimization. Although fast, much opportunity for
optimization is passed by because a more global perspective is not taken. Ulti-
mately, the greatest issue with this particular aspect of rule based optimization
is that typically small tweaks to imperfectly programmed algorithms are made.
It is often the case that human written algorithm implementations are writ-
ten in a way that is more understandable to humans, but this often results in
non-optimal code. In these cases, it may instead be advantageous to rewrite
instructions completely rather than make small changes to the existing code.

Both of these concerns are addressed in unitary synthesis optimization.

2.3 Unitary Synthesis

Unitary synthesis is a bottom-up method of implementing unitaries as quantum
circuits. More formally,

Definition 2.5 (Unitary Synthesis). Given a unitary matrix U ∈ CN×N , a
unitary synthesis algorithm constructs a quantum circuit C that implements a
unitary UC satisfying

∥U − UC∥HS ≤ ϵ (1)

where ∥ · ∥HS is the Hilbert-Schmidt norm defined as

∥A∥HS = Tr(A†A). (2)

Unitary synthesis describes the process of implementing a unitary as a quan-
tum circuit in a way that allows for approximation. In the NISQ era, this is
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a particularly interesting feature. Increasing the amount of approximation (or
increasing the constant ϵ) typically reduces the number of gates in a circuit. So
one can find a balance between error introduced by approximation, and error
“saved” by gate reduction.

The Hilbert-Schmidt norm is one of the many metrics that can be used
for this task, the most natural of which is the diamond norm [5]. However,
the diamond norm is typically not used because of its extreme computational
demands.

Synthesis can be performed with both parameterized and non-parameterized
gate sets. This fact is known due to the Solovay-Kitaev theorem, which proves
that discrete non-parameterized gate sets are capable of implementing any uni-
tary to within some approximation factor [18]. For practicality, we typically
assume a parameterized gate set such as {CNOT,U3}. Circuits expressed in
this gate set are typically far less deep. Given a PQC, the process of solv-
ing for parameters to approximate a unitary is called instantiation. Expressed
concretely,

Definition 2.6 (Instantiation). Given a target unitary U and a unitary U(θ)
parameterized by θ ∈ Rm, instantiation solves the problem

argmin
θ
∥U − U(θ)∥HS . (3)

The instantiation problem becomes exponentially more difficult as qubits are
added to the circuit. This is because the size of the unitaries grow with O(2n).
The parameterized unitary U(θ) is typically implemented with a PQC. Adding
more gates to this circuit increases the number of parameters θ, which also adds
difficulty.

2.3.1 QSearch

QSearch was among the first unitary synthesis algorithms [10]. QSearch ap-
proaches unitary synthesis by decomposing the problem into two operations:
synthesis tree search and instantiation.

As input, QSearch accepts a qubit topology G = (V,E) and a target unitary
U . The edges (u, v) ∈ E describe allowed operations in the synthesized circuit.
Synthesis begins with a base circuit containing only U3 gates applied to each
qubit. The circuit is instantiated to determine if it is a suitable approximation
of the target unitary. At this point, the synthesis tree search process begins.
A unit of gates is appended to the base circuit, one along each edge in the
qubit topology. Circuits derived this way can be arranged in a tree, called the
synthesis circuit tree. A node in the tree acts as a circuit prefix to its children;
its children will only differ by gates appended to the end of the circuit. The
process of synthesis can then be considered a search through the synthesis circuit
tree. An example of synthesis circuit tree is depicted in Figure 3.

QSearch uses an A∗ heuristic that considers the Hilbert-Schmidt distance
to the target unitary as well as the current circuit’s gate count to guide the
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synthesis tree search. Given a node in the tree, QSearch calls instantiation on
each of the node’s children, and ranks them according to the heuristic.

Synthesis begins at the root node, then traverses through the synthesis cir-
cuit tree until a target circuit is reached. The number of instantiation calls made
is at least as large as the number of circuits visited in this traversal. Other than
wall-clock time, one can also measure the time needed to synthesize a circuit by
measuring this path distance in the synthesis tree search.

Figure 3: The synthesis circuit tree for a three qubit circuit with linear connec-
tivity.

The details of QSearch’s CNOT gate count reduction compared to other rule-
based methods can be found in [10]. QSearch’s bottom-up approach and allowed
tunable approximation threshold result in unmatched gate reductions. This
degree of optimization is possible because QSearch is capable of taking a broader
view of the unitary being implemented. Redundancies and inefficiencies present
in human written circuits are eschewed, and a globally efficient path to the
target unitary is found. This can lead to rather non-intuitive results: Transverse
Field Ising Model (TFIM) circuits, which simulate a material’s magnetization,
can be compiled into constant depth circuits. These circuits iteratively append
gates that compute the magnetization for new time steps in the simulation, but
synthesis reliably finds a circuit with the same structure that summarizes the
entire simulation.

Because it only applies gates along allowed edges in some qubit topology,
circuits synthesized by QSearch can also be mapped to restrictive hardware.
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Figure 4: Three equivalent implementations of a quantum SWAP gate, which
can be decomposed into three CNOT gates.

Figure 5: A quantum circuit that has been mapped to a restrictive qubit topol-
ogy

Definition 2.7 (Mapped Quantum Circuits). A quantum circuit C is said to
be mapped to a qubit topology G = (V,E) if multi-qubit gates in C only occur
along edges in E. A quantum circuit can be mapped to a qubit topology by
the use of SWAP operations, which exchange the quantum state held by two
qubits. The process of injecting SWAP gates into a circuit is called routing.

2.3.2 Synthesis Time Scaling

The run time of unitary synthesis algorithms such as QSearch grows exponen-
tially as the number of qubits increases. Both stages, instantiation and synthe-
sis tree search, contribute to this scaling. The time complexity of instantiation
grows as O(2n) because the width of the target and parameterized unitaries
grows exponentially. The run time of the tree search component also scales
exponentially, as the minimum number of CNOT gates needed to implement an
arbitrary unitary is 1

4⌈4
n−3n−1⌉ [22]. Both components of QSearch’s approach

to synthesis result in synthesis times quickly becoming untenable.

2.3.3 Circuit Partitioning

In order to handle the run time scaling issues of bottom-up synthesis, wide quan-
tum circuits must be broken into smaller subcircuits. This process is referred
to as circuit partitioning.

Definition 2.8 (Circuit Partitioning). A partitioned quantum circuit is a quan-
tum circuit C along with a sequence of sets S. Each set B ∈ S is a set of gates
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Figure 6: A five qubit quantum circuit that has been partitioned into three
qubit subcircuits.

which appear in C. B is called a block, partition, or subcircuit. Blocks satisfy
the properties

∀B ∈ S
⋂
B = 0 and

⋃
B = C (4)

meaning each gate is a member of only one block, and all gates are a member
of a block. To be a valid circuit partitioning, gates in block B must precede
or succeed other gates in B. Valid partitionings only contain gates that act on
interacting qubits. This means that the subgraph induced by some set of gates
in B is connected. Typically, the width of partitions are limited to a value k ∈ Z
called the partition or block width.

There are several strategies for partitioning quantum circuits. Their run
times vary from growing with

(
n
k

)
, to linear in the number of gates. Should par-

titioning algorithms form blocks containing a similar number of gates? Should
blocks greedily be formed so there are a few blocks with many gates? It remains
unclear what the goal of a partitioning algorithm should be. The criteria for
circuit partitioning is likely dependent on what optimization will be run, but
this requires further investigation. Typically, it is the case that synthesis per-
forms better when there are more CNOT gates in the circuit being synthesized.
However, the time required to partition circuits is in practice far more important
than this, so simple partitioning strategies are preferred.

To apply synthesis optimization to circuits wider than four (possibly five)
qubits, circuit partitioning must be used. In a quantum compilation flow, the
end goal is typically a series of instructions that can be run on real hardware.
Optimized circuits must therefore be mapped to hardware. But, should opti-
mization, such as synthesis, be applied before or after mapping?

2.3.4 QGo

QGo was the first wide quantum circuit synthesis algorithm [28]. QGo op-
timizes quantum circuits that have already been mapped to restrictive qubit
topologies. This style of optimization is called post-mapping optimization, and
the programmatic flow of QGo is illustrated in Figure 8. The guiding philosophy
behind QGo is: use synthesis to combine redundant operations introduced by
mapping with operations necessary for computation.

8



Figure 7: Synthesis performance vs. partition CNOT count. Also pictured is
the distribution or frequency of blocks with that number of CNOTs in a set
of partitioned benchmark circuits. A partition size of less than one indicates
optimization occurred, lower is better.
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Figure 8: The program flow of a post-mapping synthesis algorithm such as QGo.

2.3.5 TopAS

The program flow of QGo begs the question, can further reductions in depth
and gate count be achieved by applying synthesis before mapping? This “pre-
mapping” style of optimization is illustrated in Figure 9. TopAS, a Topology
Aware Synthesis algorithm for wide circuit optimization, is a pre-mapping syn-
thesis algorithm [27].

The TopAS algorithm has one guiding principle: use synthesis to make the
circuit mapping problem easier. Synthesis can be used to achieve this in two
ways. First, reducing the number of operations in a circuit before mapping
means fewer gates must be mapped, which typically results in better mapping
algorithm performance. Second, restricting the complexity of operations in a
circuit before mapping helps mapping performance, as simpler communication
patterns require fewer mapping operations.

The first observation, that mapping algorithms do better when there are
fewer gates, came by observing the performance of Qiskit’s implementation of
the SABRE Swap algorithm on TFIM circuits mapped to mesh style topologies.
The interactions in TFIM circuits are linear, meaning the circuit can be mapped
to a linear qubit topology without the use of any SWAP operations. Because
linear graphs are embedded within meshes, this implies that TFIM circuits
can also be mapped to mesh topologies without the use of SWAP operations.
However, our experiments showed that the SABRE mapping algorithm was
unable to find a zero SWAP mapping of TFIM circuits, unless synthesis was
performed beforehand.

The second observation, that mapping prefers simpler interactions, was
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Figure 9: The program flow of a pre-mapping synthesis algorithm such as
TopAS.

guided by a shift in perspective regarding mapping algorithms. Once parti-
tions are formed, SWAPs can be divided into two categories: intra-partition
SWAPs that exchange state within a partition, and inter-partition SWAPs that
exchange qubits between partitions. Inter-partitions SWAPs are unavoidable.
They describe movements of quantum information that are necessary for the
correct sequence of interactions to take place. Intra-partitions SWAPs, how-
ever, describe a partition’s suitability for execution on that region of the qubit
topology. If that partition were instead mapped to the region of the topology
(called a subtopology) on which is it being executed, then no intra-partition
SWAPs would be needed.

As mentioned in Section 2.3.1, QSearch accepts as input both a target uni-
tary and a graph G = (V,E) which describes the allowed interactions between
qubits. This graph G is often denoted GS and is called a synthesis subtopol-
ogy. Subcircuits synthesized given a synthesis subtopology GS are also mapped
to that synthesis subtopology. Synthesis subtopologies differ from physical
subtopologies in that physical subtopologies describe connected subgraphs in
a qubit topology, whereas synthesis subtopologies need not have any connection
to a real machine. Superconducting qubit machines are rarely fully connected,
but synthesis subtopologies can be complete graphs. All order four synthesis
subtopologies are illustrated in Figure 10.

The multi-qubit gates in a circuit also define a graph, called the logical
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connectivity. Each edge in the logical connectivity corresponds to a multi-qubit
gate between two qubits in a circuit. The weight of an edge in the logical
connectivity corresponds to the number of times that interaction occurs. Logical
connectivity graphs are often given the notation GL = (V,E), where E consists
of weighted edges (w, u, v) for w ∈ Z and u, v ∈ V .

Embedded Subgraphs a) Line b) Star c) Ring

Unembedded Subgraphs d) Kite e) Theta f) Complete

Figure 10: Possible order 4 synthesis subtopologies. The graphs a, b, and c are
embedded within the mesh physical topology. Graphs d, e, and f are not. Only
a and b are embedded in the falcon topology, while a is the only embedded
subgraph of the linear topology.

When optimization is carried out before mapping, there is no a priori way
of determining what synthesis subtopology each partition should be mapped
to. Instead, TopAS uses a heuristic approach to select subtopologies for each
partition. We observed that partitions synthesized to subtopologies that were
similar to their unoptimized logical connectivity graphs typically saw greater
reductions in gate counts. In order to quantify the similarity between a partition
and a subtopology, we devised a graph similarity function inspired by machine
learning kernel functions [15].

Definition 2.9 (Similarity Score). The similarity score function examines each
edge in a synthesis subtopology GS a logical connectivity GL. From the edges,
two vectors vL, vS ∈ Rk(k−1)/2 are computed. The vector vS has a 1 at each
location that corresponds to a present edge in GS . Element i of vL contains the
weight w associated with edge i in GL. The normalized inner product

similarity(vS , vL) =
vTP vL∑
i

vL(i)
(5)

quantifies the similarity between graphs GS and GL.

We also observed that using more restrictive synthesis subtopologies typ-
ically resulted in fewer routing operations in the final mapped and optimized
circuits. Furthermore, selecting subtopologies embedded in the underlying qubit
topologies also resulted in fewer total routing operations. These results are il-
lustrated in Figure 11.
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Figure 11: Simpler synthesis subtopologies result in fewer routing operations.
Synthesis subtopologies embedded in the underlying qubit topology also result
in fewer average routing operations. Internal SWAPs are intra-partition SWAPs.

So, the process of synthesis favors more densely connected synthesis subtopolo-
gies, as they are more similar to the logical connectivities of the circuits being
synthesized, but the mapping algorithm performs better when more restric-
tive subtopologies are used. We devised a subtopology selection algorithm that
combines and balances these two opposing demands. First, the set of allowed
synthesis subtopologies is limited to those that are embedded in the underly-
ing qubit topology. Then, the most restrictive of these subtopologies with the
highest similarity score is used.

This subtopology selection policy allowed for TopAS to reach gate count
reductions similar too, or just below those of QGo. This policy was able to
reduce the number of intra-partition SWAPs, but something had to be done
to reduce the number of inter-partition SWAP operations. The development
of a neighbor-aware subtopology selection scheme was devised for this reason.
Although partitioned subcircuits are synthesized independently, they are not
executed in isolation. If a given partition can peek into a neighboring block to
see what edges it uses, then the likelihood that a SWAP is inserted between
blocks can be decreased by using edges that appear in both blocks. To accom-
modate this change, the weighted logical connectivity graph for each partition
was modified to included shared edges in neighboring partitions. The inclusion
of neighbor-awareness was the last piece of TopAS’ pre-mapping synthesis flow
(see Figure 12). The subtopology selection algorithm is detailed in Algorithm
1.

Figures 13 and 14 show the CNOT gate count reduction and depth reduction
of TopAS optimized circuits compared to Qiskit, Pytket, and QGo. Benchmarks
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Figure 12: A high level view of the TopAS style implementation of pre-mapping
synthesis optimization.
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Algorithm 1 Subtopology Selection

Input: graph GL, set of graphs Gneighbors, bias function
Output: graph GS

for all graphs Gn in Gneighbors do
if shared edge in Gn and in GL then
Goverlap ← shared edge

end if
end for
vL ← edge weight vector for Goverlap ∪GL

candidates← order ≤ 4 subgraphs in physical topology
for all graphs GP in candidates do
vP ← indicator vector for GP

score =similarity(vP , vL)
if bias(GP )× score > high score then
high score← bias(GP )× score
GS ← GP

end if
end for
return GS

are labeled so that the number following the benchmark name indicates the num-
ber of qubits in the circuit. The CNOT gate count and depth results reported
are normalized by the values obtained for circuits optimized then mapped with
Qiskit’s SABRE SWAP mapping algorithm.

TopAS is able to, on average, reduce CNOT count compared to Qiskit by
35.9% and Pytket by 24.3% when targeting a mesh qubit topology. For the
falcon/heavy hexagonal qubit topology, TopAS outperforms Qiskit by 33.4%
and Pytket by 19.1% on average. TopAS shows even greater reductions in
circuit depth, averaging 38.6% and 37.6% shallower circuit compared to Qiskit
and Pytket across all benchmarks.

TopAS is able to produce circuits with lower CNOT counts and depth than
QGo. On average, TopAS outperforms QGo by 11.5% in CNOT count and
34.3% in depth when compiling to a mesh qubit topology. For the heavy hexag-
onal topology, TopAS does as well as QGo (only an average of 0.8% better) in
CNOT count, but maintains an advantage of 37.3% in average depth reduction.

The TopAS project highlights an interesting fact: unitary synthesis is still
able to outperform rule based optimization flows such as Qiskit and Pytket,
even when a global view of the unitary being optimized is too large to do direct
synthesis on. Synthesizing partitioned circuits may not produce the same results
as direct, complete, synthesis, but by operating in a bottom-up manner, results
are still impressive.
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Figure 13: Comparison of relative CNOT count (top) and depth (bottom) for
circuits mapped to the mesh qubit topology. CNOT count and depth is shown
relative to optimized circuits mapped using Qiskit’s SABRE Swap algorithm.
Both lower depth and CNOT count correspond to improved output fidelity on
noisy machines.
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Figure 14: Comparison of relative CNOT count (top) and depth (bottom)
for circuits mapped to the IBM style falcon/heavy hexagonal qubit topology.
CNOT count and depth is shown relative to optimized circuits mapped using
Qiskit’s SABRE Swap algorithm. Both lower depth and CNOT count corre-
spond to improved output fidelity on noisy machines.
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3 Using Machine Learning for Circuit Optimiza-
tion

In this section, I will justify the use of machine learning in circuit optimization
and present recent work in this field. I will discuss my findings relating to the
dimensionality of unitary datasets of interest. Finally, I will discuss QSeed, a
seeded synthesis algorithm that leverages machine learning to accelerate unitary
synthesis optimization.

3.1 Related Work in Reinforcement Learning

Reinforcement Learning (RL), is a machine learning paradigm where agents
learn policies based off rewards received from interacting with an environment.
In classical compiling, RL is becoming a popular technique for discovering opti-
mal policies for applying peephole optimizations. The CompilerGym and Com-
pilerZoo tools both provide methods of training RL agents to guide compilation
flows in order to minimize the number of machine instructions in programs [8].
RL gyms for quantum compilation do not exist, but they almost certainly will
in the future, as this style of optimization has proven to be very powerful in the
classical compilation space.

The work of [12] demonstrated how RL can be used to learn good peephole
style replacement rules for randomly generated circuits. To my knowledge, this
is the first project to have applied machine learning to quantum circuit opti-
mization. I believe that RL policies trained to perform peephole optimization
may ultimately become the de facto method of performing circuit optimization.
However, I believe a weakness of this particular project is that these agents were
trained to discover optimizations in random circuits. As I will show, random
circuits, especially random unitaries, do not necessarily correspond to cases that
we can or desire to optimize.

3.2 Dimensionality of Unitary Datasets

The manifold hypothesis is a conjecture of deep learning that posits that neural
networks operate by learning low dimensional manifolds in high dimensional
spaces. Although far from the first to propose the manifold hypothesis, the
authors of [24] showed how a digit that is rotated, translated, or stretched still
lies along the same manifold. Actually learning the shape of these manifolds is
hard, but we can begin to identify some of their properties by looking at high
level linear approximations of data. The Principle Component Analysis (PCA)
specifically is a widely used technique for doing this [17]. PCA changes the basis
of a set of data so that the new directions, or Principle Components (PCs), point
in the directions of maximum variance in the dataset. When the dataset can
be largely explained by a few PCs, neural networks typically perform well, as
patterns of interest in the data are easier to learn in these cases [14].

For a fixed number of qubits, the space of unitaries is large. To present sup-
port for this claim, we can conduct an experiment to measure the dimensionality
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of two sets of unitaries. First we prepare a set of random unitaries generated by
PQCs. These unitaries are generated by taking one of twelve candidate PQCs
with parameters θ ∈ Rm, and uniformly sampling parameters θi ∼ U [−π, π].
Each of the twelve PQCs generate 10,000 unitaries. Next, we prepare a dataset
that consists of about 203,000 unitaries taken from partitioned subcircuits. For
each unitary, random and partitioned, we extract a Pauli coefficient vector.

Definition 3.1 (Pauli Coefficient Vector). Given a unitary U ∈ C2n×2n , there
exists a Hermitian matrix H ∈ C2n×2n such that

U = eiH . (6)

This matrix H can be decomposed into the linear combinations of all 4n Pauli
matrices. Concretely, we can construct a vector of Pauli matrices

σ1 =

[
1 0
0 1

]
, σ2 =

[
0 1
1 0

]
, σ3 =

[
0 −i
i 0

]
, σ4 =

[
1 0
0 −1

]
σ⃗ =

[
σ1 ⊗ σ1 · · · ⊗ σ1 σ2 ⊗ σ1 · · · ⊗ σ1 . . . σ4 ⊗ σ4 · · · ⊗ σ4

]
such that,

H = α · σ⃗ (7)

where α ∈ R4n and αi ∈ (−π, π]. The vector α is called the Pauli coefficient
vector. The Pauli coefficient vector is a convenient way to represent matrices
as representing a unitary matrix requires 4n complex values, while the Pauli
coefficient vector requires only 4n real values.

After the Pauli coefficient vectors have been collected for each unitary, we
can do two PCAs; one for the random and one for the partitioned unitaries.
Figure 15 shows the cumulative variance explained as a function of the number
of principle components considered. Because a small number of PCs describe the
majority of the variance in the partitioned dataset (the first 16 explain 72.2%,
the first 32 explain 90.7%), we expect patterns of interest to be learnable by a
neural network. The random dataset’s variance is spread even across its PCs.
We would not expect that learning patterns of interest in this dataset is easy to
do.

A natural way to think of what a PCA shows is how compressible a dataset
is. For the partitioned unitary case, we could project our dataset into the space
spanned by the first 32 principle components, then reconstruct the original
dataset with 90.7% accuracy. To achieve this same level of accuracy on the
random unitary dataset, the first 57 principle component directions must be
kept. In this sense, the random unitary data is much higher dimensional than
the partitioned unitary case.

This analysis shines a light on an important insight, random unitaries are
very different from unitaries that come from circuits that do real computation.
Random circuits (that implement random unitaries) are not representative of
what we expect to see in real benchmarks.
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Figure 15: Cumulative variance explained by Principle Components of two
datasets of three qubit unitaries. One is randomly generated, the other is made
of partitioned unitaries from circuits in Table 1. The PCA of the partitioned
unitaries implies these unitaries lie on a low dimensional manifold; there are
patterns that can be identified in this dataset. The random unitaries do not
exhibit identifiable low dimensional patterns. Learning on random unitaries is
difficult, learning on partitioned unitaries is easier.

3.3 Learning a Mapping from Unitaries to Quantum Cir-
cuits

Now that I have established that we expect to be able to learn patterns of
interest in partitioned unitaries, what can we do with this information?

Imagine that we have a series of n qubits, and a set of unitaries that these
n qubits can implement U(2n). We can also imagine a set PQC(n,K), which
represents all PQCs with n qubits and K or fewer CNOT gates. We want to
find a mapping

ϕ : U(2n) −→ PQC(n,K) (8)

such that all U ∈ U(2n) are mapped to the PQC ∈ PQC(n,K) that implements
U with the fewest CNOTs. We assume that the set PQC(n,K) is large enough
so that some PQC implements U with error at most ϵ.

Why might learning this mapping be useful? Because if we can, then we can
replace the expensive synthesis tree search process described in Section 2.3.1
with much less expensive ML inference! Before this is possible, there are several
things that must be addressed.
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3.3.1 Expressivity of Parameterized Quantum Circuits

Much work has been done to quantify the expressivity of parameterized quantum
circuits [16]. Many unitaries can be implemented by any given PQC, and many
PQCs can implement any given unitary. It is important to note this because
it makes the problem of finding the mapping ϕ : U(2n)→ PQC(n,K) difficult.
This explains why the PCA of random unitaries (Figure 15) shows that the
variance is spread evenly across the principle components.

Another added difficulty of working with such expressive circuits is that is
makes the problem of instantiation (Equation (3)) more difficult. To explain
how we know this, we can again return to the example of the random unitary
dataset. Here, we directly generate unitaries from a given PQC by randomly
sampling parameters. But, if we have the unitary and the PQC, asking the
instantiation function to solve for the parameters of that circuit that yield that
unitary often fails. This means that even when we know the correct mapping of
random unitaries to the PQCs that generated them, it is difficult to verify that
this mapping is correct.

3.3.2 Canonical Representation of Unitaries

If two unitaries differ only by a global phase, states transformed by the two
unitaries will always yield the same distribution of measurement results [19].
This means that for all intents and purposes, unitaries that differ only by a
global phase are the same. However, if we want to apply numerical methods to
unitaries, it is important that there is a common, canonical way of representing
unitaries. Formally, we need a function f such that for unitaries U,U∗,

∀θ ∈ R U = eiθU∗ =⇒ f(U) = U∗.

If f(U) = U∗ then the matrix U∗ is the canonical representation of U . The
algorithm for computing U∗ is given by Algorithm 2. Performing these steps

Algorithm 2 Canonical Unitary Transformation

Input: unitary U ∈ CN×N ,
Output: unitary U∗ ∈ CN×N

Find eiθ = |U |
Compute V = eiθU = ei2πk/NU∗ ∈ SU(N)
ei2πk/N is the complex phase of first non-zero element in V
U∗ = e−i2πk/NV
return U∗

ensures that each unitary is mapped to a canonical special unitary. To my
knowledge, this is the first algorithm that finds a canonical form for unitaries.

Previous works stop at the special unitary conversion step. Just doing this
part is not enough to build global phase resilience into methods that do numeri-
cal computation on unitaries. I noticed by looking at many random examples of
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Figure 16: An illustration of the two steps in the canonical unitary transforma-
tion process.

this process, that for an N ×N unitary, there were N different special unitaries
that appeared. This lead me to notice that converting to a special unitary only
removes the small phase differences between the different roots of unity (the
blue arrow in Figure 16). In order to find a real canonical form, we need to
always go to the same root of unity. A unitary will always have at least one
non-zero element in each row and column. If we ensure that the first non-zero
element of the first row has zero complex phase, we will always arrive at the
same root of unity, no matter which root the special unitary conversion step
took us to (orange arrow in Figure 16).

Even though this process is simple, I believe that it is a pretty significant tool
to have. Unitary synthesis algorithms, and other numerical methods that work
on unitary matrices, must choose cost functions that are resilient to global phase,
otherwise intricacies of the numerical optimization process may skip over valid
solutions to problems. Having a canonical representation is therefore significant
because it broadens the scope of what can be done with unitary matrices. Cost
functions need not be phase resilient anymore.

3.4 QSeed

Equipped with a canonical representation of unitary matrices and the knowledge
that patterns of interest could be learned for partitioned unitary matrices, I
began work on using machine learning to learn a mapping between unitaries and
the PQCs that implement them. This work culminated in an algorithm called
QSeed, a seeded synthesis algorithm that uses ML to predict seed circuits from
which to begin synthesis. QSeed is able to achieve dramatic speedups compared
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to QSearch because it decreases the time spent searching the synthesis circuit
tree.

3.4.1 Why use ML for this task?

Before detailing the development behind QSeed, first I want to address why
using ML might be advantageous for this task. If we want to learn a mapping
from unitaries to PQCs, could we instead just observe many instances of uni-
taries that can implement PQCs and memorize those results? This approach
would construct a database of previously seen unitary-PQC pairs that we could
quickly interrogate. The problem with this approach is that it only allows us to
do this mapping for unitary-PQC pairs that have already been observed.

Why might ML work any better than this database? A learned mapping
is more robust than this database approach because the point of the learned
mapping is that it can generalize to cases that have not yet been seen. This is
useful because the number of possible unitaries we can see is vast (even when
limiting ourselves to unitaries from partitioned circuits), and surely we cannot
capture everything we might expect to see in a training dataset.

Why might we expect that learning this mapping is possible? We expect this
is possible because there are common patterns that appear in similar quantum
circuits. When synthesizing generated circuits from the same “family” but of
different widths, the distribution of PQC templates that appear has similarities.
This is illustrated in Figure 17. This figure shows how synthesized TFIM circuits
of various widths all have similar looking distributions of used PQC templates,
which are also illustrated.

Furthermore, circuits not from the same family, but that are still in some
sense related, share common structure as well. Figure 18 shows how both QFT
and Shor style modular exponentiation circuits have distributions of selected
PQCs that look similar. The modular exponentiation (Shor) distribution look
like the QFT distribution, with a extra mode around the template labeled “P”.
The existence of these commonalities means that there is in fact some underlying
structure or pattern to the mapping of unitary to PQCs. Now we can rest
assured that there are in fact patterns of interest in our data that we can train
a model to recognize.

3.4.2 Seeded Synthesis

If this mapping between unitaries and PQCs is learned, then the synthesis circuit
tree search process could be almost entirely replaced. In actuality, it is unlikely
that this mapping will be learned perfectly, so instead of immediately using the
first PQC proposed, we simply begin synthesis from that circuit.

Definition 3.2 (Seeded Synthesis). Seeded synthesis accepts three inputs, a
target unitary U , a qubit topology G = (V,E), and a seed circuit Cseed. Instead
of beginning the synthesis tree search process at the root node of the tree (which
contains only single-qubit gates), synthesis begins at the circuit Cseed. CNOT
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(a) PQC templates that appear in synthesized TFIM circuits of var-
ious widths. Circuits of different widths share characteristic modes
around PQCs B and C.

(b) Template B (c) Template C

Figure 17: Histograms and examples of commonly repeated PQC templates that
appear in optimized TFIM circuits.
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(a) PQC templates that appear in synthesized QFT and Shor mod-
ular exponentiation circuits.

(b) Template I

(c) Template P

Figure 18: Histograms and examples of commonly repeated PQC templates that
appear in optimized QFT and modular exponentiation circuits.
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Figure 19: Seeded synthesis allows for the synthesis tree search process to begin
at circuits closer to the target circuit node.

gates can now be both added and removed, which means that the tree search
progresses both towards leaf nodes and the root node.

The purpose of the learned mapping between unitaries and PQCs is now
simply to propose seed circuits from which the synthesis process can begin.
Figure 19 shows why seeded synthesis can provide speedups compared to normal
synthesis. QSearch always begins synthesis at the node marked “Root Start.”
In this case, the path between the root and the “Target” has distance five. This
means if the shortest path is taken, then at least six instantiation calls must be
made. If we instead begin synthesis at the node marked “Seed Start,” because
the path to the target has distance one, only two instantiation calls must be
made. This example illustrates why we might expect to see large speedups in a
seeded synthesis algorithm compared to QSearch.

3.4.3 Dataset Preparation

I took a supervised learning approached to learn the mapping in Equation (8).
After collecting unitaries, computing their canonical forms (Section 3.3.2), and
extracting their Pauli coefficient vectors (Definition 3.1), these datapoints still
lacked labels. I approached this problem by enumerating all PQC templates
with three qubits and up to eight CNOTs, then synthesizing each unitary. Each
unitary was then paired with the integer label that corresponded to the PQC
that implemented it. Because some unitaries appeared multiple times and some
PQCs were more frequent than others, I normalized this dataset by removing
repeated unitaries and randomly discarding examples from over represented
PQCs. This ensured that whatever model I trained would not simply learn
that some PQCs were more prevalent than others, but actually learn to propose
PQCs based off the unitaries themselves.

The process of producing these labels is synthesis, and therefore labeling
these unitaries is expensive.
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3.4.4 The Recommender Model

A recommender is any function (learned or not) that proposes seed circuits for
seeded synthesis. I chose to implement a recommender model with a neural
network. More specifically, I chose an autoencoder style architecture. The
results of the PCA of partitioned unitaries in Figure 15 motivated this choice.
A purely linear projection of only half the total dimensionality of the original
space captured the vast majority of the variance in the partitioned unitary
dataset. I therefore believed that the underlying structure of these unitaries
was simple, and that compressing their representation could add a degree of
robustness to noise [14]. As the process of labeling the data for this task was
expensive, I also wanted to ensure I could use unsupervised techniques to pre-
train the model. Autoencoders can easily be pre-trained on the task of input
reconstruction, so the recommender model was pre-trained to reconstruct input
unitaries.

The output of the recommender model is a large vector where element i
corresponds to how likely the model believes the PQC with label i is able to
implement the input unitary. There were a total of 1199 possible output PQCs
to select. To state this concretely, the output of the model is a vector y ∈ R1199,
where

softmax(yi) ∈ [0, 1] (9)

represents the model’s confidence that PQC i can implement the input.
As this was meant primarily as a proof of concept, I elected to limit the width

of unitaries and circuits to three qubits. I began by training a model which
took as input the Pauli coefficient vector associated with each unitary, which is
a vector in R64. Later on, I discovered that the process of converting unitaries
into Pauli coefficient vectors was extremely expensive, and so the architecture
was changed to instead operate directly on the canonical form of unitaries. As
elements of the unitaries are complex, each element of the input unitary was
split into real and imaginary parts. These new vectors x ∈ R128 were used as
the new input.

The training and test datasets consisted of circuits from twelve different
families of generated circuits. Each family contained multiple instances of that
algorithm implemented at various circuit widths. The training and test data
splits are shown in Table 1. Note that no Grover’s algorithm circuits of any
size appear in the training dataset. The whole flow of the QSeed algorithm is
depicted in Figure 20.

3.4.5 Comparing QSeed to QSearch

Recall that the goal of the QSeed algorithm is to accelerate unitary synthesis
by avoiding spending too much time traversing the synthesis circuit tree. We
can measure this by directly measuring the time it takes to synthesize circuits
with both QSearch and QSeed. Importantly, we do not want to degrade the
quality of our results for the sake of speed. Therefore, we must also ensure that
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Figure 20: A high level depiction of the QSeed algorithm.
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Circuit Name Training Widths Test Widths
add 17, 65 41

grover - 10
heisenberg 4, 6, 7, 8, 16, 32, 64 5

hhl 8 6
hubbard 4, 18, 50 8
mult 8, 32, 64 16
qae 11, 33, 101 65
qft 3, 4, 8, 16, 32 64
qml 4, 25, 60, 108 128
qpe 6, 10, 14 18
shor 16, 32 64
tfim 3, 4, 5, 6, 7, 8, 16, 32, 64
vqe 12, 14 18

Table 1: Split of circuits withheld from recommender training for testing.

the number of CNOTs in the QSeed synthesized circuits is close to the number
of CNOTs in the QSearch synthesized circuits.

Figure 21 summarizes the results of experiments run to compare the time
to- and quality of- solutions for circuits optimized with QSearch and QSeed.
Each of these circuits is first mapped with Qiskit’s SABRE SWAP mapping
algorithm, then optimized with QGo style post-mapping synthesis (Figure 8).
QSeed achieves an average speedup of 2.4× compared to QSearch, while only
suffering an average of 1.2% increase in CNOT count. Note that these test cir-
cuits contain unitaries not included in the training of the recommender model.
The 64 qubit modular exponentiation circuit, a core component of Shor’s algo-
rithm, has a speedup of 3.7× (nearly 8000 seconds). The 18 qubit VQE circuit
achieves a speedup of 2.3×. This particular benchmark is worth noting as
classical-quantum hybrid algorithms have strict compilation time demands [20].
It is also worth noting that QSeed’s synthesis times include the time required
to do inference/make seed recommendations.

Most impressive are the results for the compilation of the 10 qubit Grover’s
algorithm circuit. No unitaries for the family of Grover’s algorithm circuits
were included in training, so this benchmark is entirely alien to the recommender
model. Still, a speedup of 3.2× is achieved, and there are actually fewer CNOTs
than in the QSearch optimized version.

3.4.6 Evaluating the Recommender Model

The results presented in Figure 21 demonstrate that using the recommender
model and seeded synthesis provides substantial speedups over QSearch. How-
ever, one can imagine other recommender schemes. To ensure that our recom-
mender model is performing as expected, we can do a deeper analysis of what is
happening each time a partition is synthesized. To do this, we can observe the
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Figure 21: Comparing QSeed and QSearch. The top graph wall-clock synthesis
time speedups. Larger speedups are better. The bottom graph shows relative
changes in CNOT gate count relative to Qiskit level 3 optimized circuits. Lower
relative change in CNOT counts are better.

number of instantiation calls made and the number of CNOTs in the optimized
version of each block.

Recall that the number of instantiation calls is a proxy of how long syn-
thesis will take, because each circuit along a path through the synthesis circuit
tree must be instantiated. Figure 22 shows the distribution of the number of
instantiation calls for the QSeed, randomly seeded, and QSearch approaches.
The randomly seeded scheme simply randomly selects one of the 1199 possible
seeds. QSearch acts like a seeded synthesis algorithm that always proposes the
root as a seed. QSeed’s recommender scheme is able to propose seeds that re-
quire only a single instantiation call almost 90% of the time. The randomly
seed case also typically requires very few instantiation calls. By measuring the
expected number of instantiation calls, we can see that on average, QSeed and
the randomly seeded scheme require almost 6× fewer instantiations on average.
This is why QSeed is able to synthesize unitaries faster than QSearch.

Figure 23 shows the number of CNOTs in the optimized blocks divided by
the number of CNOTs in the original blocks. A value of 1 here indicates that
no reduction in CNOTs has occurred, whereas a value less than 1 indicates
the optimized subcircuit has fewer CNOTs. Lower values are better. Values
higher than 1 indicate growth, which is undesirable. The expected reduction
for QSeed closely matches that of QSearch. This is why we can expect that
QSeed produces circuits with a similar number of CNOTs as QSearch. The
randomly seeded scheme may offer speedups, but it averages an increase of 19%
in CNOTs.

The randomly seeded results for these two experiments indicate that a ran-
domly proposed PQC is likely to be capable of implementing a unitary, but
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Figure 22: Distribution of instantiation calls made for various recommender
schemes. QSeed uses the autoencoder style recommender model while the Ran-
domly Seeded strategy randomly picks a seed circuit. Both are faster than
QSearch as seen by the lower expected number of instantiation calls. The X-
axis only shows up to 20 instantiation calls, but QSearch requires as many as
1704.

it is likely to be far deeper than is necessary. These experiments also show
why QSeed is able to achieve speedups over QSearch while maintaining solution
quality.
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Figure 23: Distribution of relative CNOT gate counts for various recommender
schemes. A value less than one corresponds to there being fewer gates in op-
timized block compared to the original block. Lower is better. The relative
CNOT counts of QSeed closely match those of QSearch. The Randomly Seeded
scheme results in circuit growth, as seen by the expected value being larger than
1.
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4 Discussion and Future Directions

In this section, I will offer further discussion and describe future research di-
rections that could further leverage machine learning for quantum circuit opti-
mization.

4.1 Increasing Unitary Widths

Although promising, the results presented in Section 3 are limited to three
qubit unitaries. A PCA of partitioned unitaries with four and five qubit widths
show similar structure; therefore we expect that learning is still possible in these
cases. Increasing the width of the unitaries operated on by the QSeed algorithm
is limited by the lack of a labeled dataset of larger unitaries. Compiling such
a dataset for the three qubit case was possible, but synthesis is much slower in
these wider cases, so labeling becomes much more difficult.

When the width of the unitaries in the QSeed algorithm increase, so does
the number of possible output PQCs. This is a problem because it means
the enumeration process used to exhaustively label PQCs is no longer viable.
Luckily, it appears that not all PQCs are equally important. In the dataset of
203,000 partitioned unitaries. Only 415 appear more than 10 times. Of these,
only 220 appear 100 or more times. I therefore expect that the number of PQCs
that are widely used in the larger width cases to be similarly small.

The results presented in Figure 22 show that proposing any seed in the
three qubit case often works, though not optimally. This is because the number
of circuits capable of implementing a given unitary is high; there are many
possible solution circuits. It seems that as widths increase, the complexity
of both unitaries and circuits also increases substantially. This means that
solution circuits become more sparse, and this random seed strategy is expected
to perform far worse. This also means that a good recommender model is likely
capable of demonstrating even larger speedups in these wider unitary cases.

4.2 Network Architectures for Learning on Unitaries

The selection of an autoencoder style neural network for the recommender model
was motivated by the PCA results of Figure 15. There are likely architectures
that are better suited to this task. This is especially true for cases where wider
unitaries are considered, as the number of input parameters grows by 4 with
the addition of each new qubit.

Convolutional Neural Networks (CNNs) are popular in computer vision tasks
as they are translationally equivarient and particularly adept at working with
data which exhibits spatial locality. CNNs are likely not well suited to the task
of learning on unitaries, as the placement of a gate on the first of last qubit is
in some sense very similar, but results in very differently structured unitaries.

Graph Neural Networks (GNNs) are a generalization of CNNs that have
gained much popularity recently. It could be possible that using a GNN to
learn a dense representation of a quantum circuit expressed as a Directed Acyclic
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Graph could address the issues associated with the number of input parameters
scaling with O(4n). Because unitaries of interest (non-random unitaries) are
lower dimensional than their general counterparts (which use all 4n parameters),
it is worth investigating if one can learn a dense representation directly from a
quantum circuit, without explicitly computing the full unitary.

4.3 Further Exploring the use of Reinforcement Learning

The work presented in [12] show that reinforcement learning can be used to learn
good peephole style optimization techniques. I am interested to see whether
these results can be further improved by exposing the agent exclusively to non-
randomly generated circuits. I expect that this was not done originally be-
cause the number of non-random quantum circuits that do useful computation
is rather limited.

I also wonder if a reinforcement learning agent can be trained to learn good
synthesis tree search strategies. Paired with seeded synthesis, this could provide
additional benefits over QSearch’s static A∗ heuristic approach.

4.4 Learning to Incorporate Noise Resilience

How machine learning can be used to incorporate noise resilience is a research
direction that also requires more attention. In [9], ML is used to learn a noise
model for a machine. By executing a circuit consisting of only Clifford gates,
and simulating this same circuit (which can be done efficiently as all gates are
Cliffords), deviations in the expected and actual outcomes offer the necessary
signals to train a neural network. I believe it is worth exploring other methods
of predicting the amount of noise in or output fidelity of circuits executed on
hardware.

I believe the role of machine learning in quantum circuit optimization, and
quantum compilation as a whole, will surely grow over time.
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