
Similarity-Based Representation Learning

Yi Liu
Andreea Bobu
Anca Dragan

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-78

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-78.html

May 9, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to first give my profound gratitude to Andreea Bobu, who has
been an exceptional research mentor and a guiding force throughout my
journey in the field of human-robot interaction. Her guidance and insight
has been invaluable in shaping my understanding of research
methodologies. I am truly grateful for her dedication and expertise. I would
also like to extend my sincere gratitude to Professor Anca Dragan for
accepting me into the lab and giving me the opportunity to experiment in
the field. It has been truly incredible to be able to work with a titan in this
branch of research. In addition I would like to thank Professor Ken
Goldberg for accepting into his lab as an undergrad. It was a blessing to
learn about motion planning and robots through working on projects at his
lab.

Similarity Based Representation

Learning

Yi Liu

Research Project

Submitted to the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, in partial satisfaction of
the requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee

Professor Anca Dragan

Research Advisor

(Date)

? ? ? ? ? ? ?

Professor Sergey Levine

Second Reader

(Date)

5/9/23

5/9/23

Abstract

Similarity-Based Representation Learning

by

Yi Liu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Anca Dragan, Chair

When robots optimize their behavior in an environment, they need to both learn a repre-
sentation for what matters in the task – the task “features” – as well as how to combine
these features into a single objective. The ability to learn meaningful representations from
raw observations is crucial for e�cient and e↵ective reward and policy learning. This paper
introduces a novel approach to representation learning, termed Similarity-Based Repre-
sentation Learning (SIRL), motivated by the need to incorporate human feedback that
generalizes to multiple tasks and multiple users. SIRL operates by querying the human on
which two of three shown trajectories are more similar. By obtaining human feedback in
this manner, we train a model using contrastive learning with triplet loss. This approach
allows for the learning of robust representations that encode meaningful aspects of the
environment, while discarding irrelevant information. We showcase the e�cacy of our
proposed SIRL framework through experiments on various benchmark tasks. Our results
indicate that SIRL e↵ectively learns representations that lead to improved performance in
both preference-based reward learning and policy learning from human demonstrations.
Moreover, we demonstrate the scalability and transferability of the learned representa-
tions, highlighting the potential of SIRL as a versatile and e�cient tool for reinforcement
learning in complex environments.

Acknowledgements

I would like to first give my profound gratitude to Andreea Bobu, who has been an
exceptional research mentor and a guiding force throughout my journey in the field of
human-robot interaction. Her guidance and insight has been invaluable in shaping my
understanding of research methodologies and in determining new avenues to experiment
with whenever I was stuck on an issue. I am truly grateful for her dedication and expertise.
I would also like to extend my sincere gratitude to Professor Anca Dragan for accepting
me into the lab and giving me the opportunity to experiment in the field. It has been
truly incredible to be able to work with a titan in this branch of research. In addition I
would like to thank Professor Ken Goldberg for accepting into his lab as an undergrad.
It was a blessing to learn about motion planning and robots through working on projects
at his lab. Lastly, it would have been impossible to reach where I currently am without
the help of my family and it is their support that I am indebted to.

1

Contents

1 Introduction 6

2 Background 8

2.1 Reinforcement Learning . 8
2.2 Reward Learning . 9
2.3 Representation Learning . 10

3 Similarity-Based Representation Learning 13

3.1 Preliminaries . 13
3.2 SIRL Framework . 14

3.2.1 Policy Learning . 15
3.2.2 Reward Learning . 16

4 Experiments in Simulation 17

4.1 Experimental Setup for Reward Learning 17
4.1.1 Environments . 17
4.1.2 Experimental Setup . 18

4.2 Experimental Setup for Policy Learning . 19
4.2.1 Environments . 20
4.2.2 Experimental Setup . 21

5 Simulated Results 23

5.1 SIRL for Reward Learning . 23
5.1.1 Qualitative Results . 23
5.1.2 Quantitative Results . 24

5.2 SIRL for Policy Learning . 26
5.2.1 Qualitative Results . 26
5.2.2 Quantitative Results . 26

6 User Study 29

6.1 Experiment Design . 29
6.2 Analysis . 30

2

7 Conclusion 32

7.1 Discussion . 32
7.2 Limitations . 32

A Appendix 38

A.1 Trajectory generation . 38
A.2 Training details . 38

A.2.1 Feature networks . 38
A.2.2 Preference networks . 39

A.3 Ablations . 39

3

List of Figures

2.1 Given the state information from the environment, the agent applies an
action, receiving the next state of the environment and a reward value. . . 8

2.2 Imitation learning for performing a backflip. Defining a reward function for
a policy to follow in this environment is di�cult and require a tremendous
amount of engineering. 9

2.3 Contrastive Predictive Coding learns an encoding using contrastive learning 11
2.4 An overview of PLATO for e�cient compression 12

3.1 For a triplet of trajectories, the human selects the two most similar trajec-
tories based on distance to the laptop and distance to the table. During
training, the representation model pushes together the embedding for those
two similar trajectories while pushing apart the embedding for the dissim-
ilar trajectory. 14

4.1 GridRobot. 17
4.2 Jacorobot. 18
4.3 Gridworld. 20
4.4 Robosuite. 20

5.1 For a given trajectory, SIRL selects the two most and least similar trajec-
tories. 23

5.2 FPE for the GridRobot (left) and JacoRobot (right) environments with
simulated human data. With enough data, SIRL learns representations
more predictive of the true features �⇤. 24

5.3 TPA for GridRobot (left) and JacoRobot (right) with simulated human
data. With enough data, SIRL recovers more generalizable rewards than
unsupervised, preference-trained, or random representations. 25

5.4 For a given state, SIRL selects the two most and least similar states based
on the direction of optimal movement. 26

5.5 ARR for the Gridworld (left) and Robosuite (right) environments 27
5.6 APE for the Gridworld (left) and Robosuite (right) environments 27
5.7 FPE for the Gridworld (left) and Robosuite (right) environments 28

6.1 Study values for FPE, and TPA with real and simulated preferences. Even
with novice similarity queries, SIRL outperforms the baseline. 30

4

A.1 Ablation Results for GridRobot (left) and JacoRobot (right). Overall,
SIRL does better when the learned representation is frozen, while all the
other method do better when the representations is unfrozen. SinglePref
and the MultiPref baselines perform better without VAE pre-training, while
SIRL sometimes benefits from pre-training in simple environments like
GridRobot. 41

5

Chapter 1

Introduction

Imagine waking up in the morning and your home robot assistant wants to place a steam-
ing mug of fresh co↵ee on the table exactly where it knows you will sit. Depending on the
context, you will have a di↵erent preference for how the robot should be doing its task.
Some days it carries your favorite mug close to the table to prevent it from breaking in
the case of a slip (so that it will remain your favorite mug); some other days the steam
from your delicious meal is di�cult to handle for the robot’s perception, so you’d want it
to keep a large clearance from the table to avoid collisions. Similarly, some days you want
the robot to keep your mug away from your laptop to avoid spilling on it; some other
days the mug only has a small quantity of an espresso shot and so you’d rather the robot
keep the mug close to the laptop to prevent clutter and leave the rest of the table open
for you.

The reward function or policy that the robot learns changes due to variances in the
tasks, having di↵erent users, or encountering di↵erent contexts that are not always part
of the state the robot is using (e.g. holding the user’s favorite mug and not just a regular
mug). However, the representation on top of which the reward or policy is built, i.e the
features that are important (like the distance from the table, being above the laptop,
etc.), are shared. If the robot learns this representation correctly, it can use it to obtain
the right behavior as the task, user, and context change.

Humans have the innate ability to compress information into more manageable rep-
resentations and discard information that is irrelevant. Analogously, machine learning
models develop a certain level of representation and comprehension of the input data
provided to them. However, there is no guarantee that these models have accurately
captured a representation that matches our internal interpretation of the scene. Repre-
sentation learning approaches such as unsupervised learning that strives to learn features
without human input may capture spurious correlations in the data and optimize features
that are not generalizable to di↵erent tasks or users.

Meta-learning and multi-task learning methods [18, 30, 41] learn the representation
from user input meant to teach the full reward, like preference queries or demonstrations.
By contrast, we propose that if learning generalizable representations is the goal, then we
should ask the user for input that is specifically meant to teach the representation itself,
rather than asking for input meant to teach the full reward and hoping to extract a good

6

representation along the way.
Recent work in contrastive and unsupervised learning explicitly focus on learning good

visual representations by training from (anchor, positive, negative) triplets generated via
data augmentation techniques. Here, the contrastive loss induces a representation that
makes visually similar anchors and positives map closer in the latent space and further
from negatives. However, the notion of similarity is purely visual and driven by the
data augmentation heuristics used. In contrast, we want our feature representations
to align with people: because humans have adapted their environments to capture the
full idiosyncrasies of completing tasks that they desire, these feature representations are
implicit in their minds and so they are best equipped to help distill knowledge about them
into the robot. As such, we introduce a novel type of human input to help the robot extract
the person’s feature representation of the tasks they might care about in the environment:
trajectory similarity queries. A trajectory similarity query is a triplet of trajectories that
the person answers by picking the two more similar trajectories. This results in an (anchor,
positive, negative) triplet that can be used for training a feature representation. The
intuition is that if two behaviors are similar, then their feature representation as seen by
the person should also be similar. We call this process Similarity-Implicit Representation
Learning (SIRL).

In this thesis, we show SIRL can learn a generalizable representation that allows for
downstream policy and reward learning that outperforms baselines in multiple environ-
ments. Furthermore, we demonstrate SIRL can learn a representation that captures the
ground truth features in the environment.

The thesis is organized as follows: In Chapter 2, we provide the context and topics
surrounding representation learning and its uses. In Chapter 3, we introduced similarity-
based representation learning, the loss function for training, and the evaluation measures.
In Chapter 4, we present the experimental setup in simulated environments, including
the baselines and training process. In Chapter 5, we investigate the simulated results of
similarity-based representation learning and the baselines and show the benefits of using
similarity as a method of representation learning. In Chapter 6, we provide results for a
user study and show our method to work better even with real human data. In Chapter
7, we summarize our results and findings and look at future directions of our work.

7

Chapter 2

Background

In this section, we present a detailed overview of the background and relevant materials
related to our method.

2.1 Reinforcement Learning

The development of sophisticated artificial intelligence systems that are capable of learning
and making decisions autonomously has been a long-standing goal in the field of AI
research. Reinforcement learning (RL) has emerged as a promising structure for achieving
this objective due to its ability to adapt and optimize an agent’s behavior in complex and
dynamic environments. RL is a computational approach where the agent learns to perform
tasks based only on a reward signal that is defined by the human. Environments are
assumed to follow a Markov Decision Process (MDP), a discrete-time stochastic process
where outcomes are based on randomness within the environment and the decisions of
an agent. A MDP is defined as a tuple (S,A, P,R), where S represents the set of states,
A denotes the set of actions, P defines the transition probabilities, and R is the reward
function (Fig 2.1). An example is Pac-man where the agent has to avoid ghosts while
eating all of the pellets. The reward is defined by the score that the agent receives, which
is based on the number of pellets consumed and the capture of ghosts when they are
vulnerable.

Figure 2.1: Given the state information from the environment, the agent applies an action,

receiving the next state of the environment and a reward value.

8

One approach to reinforcement learning is q-learning [28]. Q-learning is a model-free,
value-based reinforcement learning algorithm that aims to optimize an agent’s decision-
making process in a given environment by estimating the expected cumulative reward
for each state-action pair. The core of Q-learning lies in a neural network that predicts
Q-values for each combination of state and action. During test time, the agent calculates
the q-value for each action at the current state, selecting the action that maximizes this
q-value. After executing the action, the agent receives a reward and transitions to a new
state, and the Q-value for the taken action is updated using the Bellman equation.

Q(s, a) = R(s, a) + �

X

s0

P (s0|s, a)max
a0

Q(s0, a0) (2.1)

where R(s, a) is the reward at the current state-action pair and � is the discount factor
for discounting future rewards.

For many environments, Q-learning is enough to find the optimal policy; however, for
tasks such as performing a back flip (Fig 2.2) or assisting a human, it is di�cult to define
a reward function and a tremendous amount of e↵ort is necessary to prevent the agent
from ”reward hacking”, finding policies that maximize the cumulative reward but is not
actually what the human wants.

Imitation learning presents an alternative solution to reinforcement learning by en-
abling an agent to acquire skills through observing expert demonstrations, thus side step-
ping the necessity of manually defining reward functions. In this context, the agent learns
a policy that maps states to actions by emulating the expert’s exhibited behavior. This
approach proves beneficial in situations where learning from scratch is di�cult, or where
exploration entails significant costs or risks. By harnessing the expert’s knowledge, imi-
tation learning mitigates the agent’s reliance on exploration. However, imitation learning
has considerable faults, one of which is the inability to generalize to states that were not
in the expert’s demonstrations.

Figure 2.2: Imitation learning for performing a backflip. Defining a reward function for a policy

to follow in this environment is di�cult and require a tremendous amount of engineering.

2.2 Reward Learning

Instead of learning a policy directly from human demonstrations, we can alternatively
first learn a human’s reward function and then optimize a policy for the learned reward
function. One method is through human preferences where humans answer queries about
which trajectory or state-action pair is more preferred. Machine learning models can then
leverage preference data to derive a reward function. However, a limitation of reward
learning through preferences is its applicability to single-task learning. Environments

9

involving robot arms can have multiple tasks such as picking up blocks, moving blocks,
or stacking blocks, necessitating a di↵erent human reward model for each task.

To learn multiple models of human reward functions, prior work has proposed cluster-
ing unlabeled demonstrations and learning a di↵erent reward function for each cluster [3,
10, 15]; however, these methods require a large number of demonstrations and do not
adapt to new reward functions. Meta-learning approaches [17] seek to learn a reward
function initialization that enables fast fine-tuning at test time [21, 35, 40, 42]. Multi-
task reward learning approaches pretrain a reward function on multiple human intents and
then fine-tune the reward function at test time [18, 30]. This has been shown to be more
stable and scalable than meta-learning approaches [26], but still needs curating a large set
of training environments. By contrast, we do not assume any knowledge of the test-time
task distribution a priori and do not require access to a population of di↵erent reward
functions during training. Rather, we focus on learning a method of task-agnostic repre-
sentation learning model that can be utilized for multiple down-stream reward learning
tasks and introduce representation learning in the next section.

2.3 Representation Learning

In supervised learning, machine learning models are designed to learn some mapping
between input data and corresponding labels, such as classifying an image as containing
a cat or a dog or discerning an email as spam or legitimate. Representation learning aims
to uncover e�cient and meaningful ways to represent raw data, capturing the underlying
structure and patterns within. This approach entails generating a feature vector for each
data point, which can subsequently be used as input for other downstream tasks. A well-
trained representation model should be capable of excluding irrelevant information while
learning high-level features of the data.

Examples of representation models encompass techniques such as variational autoen-
coders [24] (VAEs) and contrastive learning. In VAEs, an encoder generates a lower-
dimensional feature vector, while a decoder attempts to reconstruct the original input
from this representation. Contrastive learning, on the other hand, encourages the model
to di↵erentiate feature vectors from distinct classes, while simultaneously drawing together
feature vectors from the same class. An example of contrastive learning is Contrastive
Predictive Coding [31] (CPC) (fig 2.3), which learns to encode sequential data in a way
that facilitates the prediction of future observations, relying on a contrastive loss func-
tion to distinguish between positive and negative samples. The framework comprises an
encoder network, which generates latent representations of input data, and an autore-
gressive model that leverages the encoded context to predict future observations. The
training process involves providing the model with a set of positive and negative samples:
positive samples consist of actual future observations within the sequence, while negative
samples are randomly sampled from other parts of the dataset. The model’s objective is
to maximize the similarity between the encoded context and the positive sample while
minimizing the similarity with the negative samples.

In another instance of contrastive learning, Contrastive Unsupervised Representations

10

Figure 2.3: Contrastive Predictive Coding learns an encoding using contrastive learning

for Reinforcement Learning [36] (CURL) employs an encoder network to transform high-
dimensional observations into a more manageable, lower-dimensional latent space. The
technique incorporates a contrastive loss, similar to CPC, albeit with a distinct objective.
Rather than converging representations of temporally proximate observations, as is the
case with CPC, CURL seeks to bring together the representation of the image and the
respective image with di↵erent image augmentations. As such, CURL learns a robust
representation that is invariant to di↵erences in the observations that, while visually
dissimilar, to a human, doesn’t change the inherent content.

However, assessing the quality of learned representations in these approaches can be
challenging, as it is di�cult to determine whether they have e↵ectively captured the
underlying structure of the data and not irrelevant signal within the data. To address this
concern, human involvement can be integrated into the representation learning process,
enabling the alignment of these models with attributes that are important to the human.

Two recent methods look at incorporating human input directly when learning rep-
resentations. Reddy et al. [32] (Fig. 2.4) introduces Pragmatic Image Compression for
Human-in-the-Loop Decision-Making (PLATO), a method that emphasizes representa-
tion learning for e�cient compression. In PLATO, the compression model, consisting of
an encoder and decoder, learns to extract and retain the most pertinent visual features
that influence user behavior, while discarding extraneous details. This is achieved by
training the encoder with an adversarial discriminator that attempts to distinguish be-
tween user actions taken in the original image state and those taken in the compressed
image state. The learned representations capture essential elements of the image that
align with the user’s decision-making process, leading to more e�cient and task-specific
image compression. This novel representation learning approach allows the compression
model to ensure that the compressed images maintain the critical information needed for
e↵ective decision-making while minimizing the required bit rate. By considering human
input, PLATO refines its representation of the state space to focus on features that is
important to humans.

Bobu et al. [6] presents a method for robots to learn missing features in their state
representation by utilizing a new type of human input called feature traces. In this ap-

11

Figure 2.4: An overview of PLATO for e�cient compression

proach, the person guides the robot between states where the missing feature is highly
expressed and states where it is not, enabling the robot to learn the feature from the
raw state space data. By explicitly focusing human input on the missing feature, the
method improves the robot’s understanding of the task, leading to better generalization
and reduced sample complexity. In contrast, we learn a lower-dimensional feature rep-
resentation all-at-once, rather than one at a time. Furthermore, rather than relying on
the human to provide physical demonstrations for learning a good feature space [6, 7],
we instead propose a more accessible and general form of human feedback: showing the
user triplets of trajectories and simply asking them to label which two trajectories are the
most similar, in a method similar to unsupervised contrastive learning. Triplet losses have
been widely used to learn similarity models that capture how humans perceive objects [1,
2, 14, 27, 39]; however, to the best of our knowledge, we are the first to use a triplet loss
to learn a general, task-agnostic similarity model of how humans perceive trajectories.
We next introduce our method, similarity-based representation learning.

12

Chapter 3

Similarity-Based Representation

Learning

3.1 Preliminaries

In this thesis, we consider a robot R operating in an environment with access to a human
H. The goal of the robot is to maximize its performance on tasks by querying the human
and learning from the human’s responses. For each state s 2 S in the environment,
the robot executes some action a 2 A, inducing a next state s

0 following an unknown
probabilistic transition function P (s0|s, a) and receiving a reward R. The human knows
the reward function r

⇤ for each task in the environment and the optimal policy ⇡
⇤(aH |s)

that maximizes the cumulative reward from the reward function for that task. The robot
does not know this reward function and must learn from the human’s responses.

We introduce policy learning (imitation learning) and reward learning as two ap-
proaches to this scenario. Policy learning explicitly learns the actions that the human
would choose for the states in the environment by learning a policy ⇡ : S ! A purely
from human demonstrations that maximizes the probability of taking the human’s actions
at the respective states. The robot can then use its learned policy at test time with the
assumption that the human provided near optimal demonstrations that maximized the
total reward possible from the starting state.

Reward learning, on the other hand, learns a scalar reward value for behaviors. The
robot’s goal is to learn the human’s preference over trajectories given by r

⇤ that is un-
observed by the robot and must be learned from human interaction. The robot reasons
over a parameterized approximation of the reward function R✓, where ✓ represents the
parameters of a neural network. To learn ✓, the robot collects human preference labels
over trajectories and seeks to find parameters ✓ that maximize the likelihood of the hu-
man input. The robot can then use the learned reward function to score behaviors during
motion planning.

We focus on explicitly using human input to first learn a good representation and then
use that representation for either downstream policy or reward learning. We introduce the
similarity-based representation learning framework (SIRL) that can be used in multiple

13

Figure 3.1: For a triplet of trajectories, the human selects the two most similar trajectories

based on distance to the laptop and distance to the table. During training, the representation

model pushes together the embedding for those two similar trajectories while pushing apart the

embedding for the dissimilar trajectory.

tasks to improve model generalization and performance.

3.2 SIRL Framework

In order to learn a generalizable representation for both states and trajectories, we treat
states as length 1 trajectories and operate on learning representations for trajectories of
arbitary length.

SIRL learns a latent space that is useful for multiple downstream tasks such that sim-
ilar trajectories have representations that are close in Euclidean space. One way to learn
a model of similarity would be to ask users to judge whether two trajectories are similar
or not; however, humans are better at giving relative rather than binary or quantitative
assessments of similarity [23, 38]. Another idea for learning this representation is treating
it as a regression problem and asking the human for feature values directly. Unfortunately,
to learn anything useful, the robot would need a very large set of labels from the person
and furthermore, it is di�cult for humans to directly provide feature values by simply
looking at the state or trajectory. Thus, we instead focus on qualitative similarity queries.

For learning representations, we present the user with a visualization of three trajec-
tories and ask them to pick the two most similar ones (equivalently the most dissimilar
one). In Fig 3.1, human’s queries form a data set Dsim = {⇠P1 , ⇠P2 , ⇠N}, where ⇠P1 and
⇠P2 are the trajectories that are most similar and ⇠N is the trajectory most dissimilar to
the other two.

Given a dataset of similarity queries, Dsim, we make use of the triplet loss [5]:

Ltrip(⇠A, ⇠P , ⇠N) = max
�
k�(⇠A)� �(⇠P)k22 � k�(⇠A)� �(⇠N)k22 + ↵, 0

�
, (3.1)

14

a form of contrastive learning where ⇠A is the anchor, ⇠P is the positive example, ⇠N is the
negative example, and ↵ � 0 is a margin between positive and negative pairs. However,
because our queries do not contain an explicit anchor, our final loss is as follows:

Lsim(�) =
X

{⇠P1 ,⇠P2 ,⇠N}2Dsim

Ltrip(⇠P1 , ⇠P2 , ⇠N) + Ltrip(⇠P2 , ⇠P1 , ⇠N) . (3.2)

We train a similarity embedding function � : ⇠ 7! Rd, where d is the dimensionality of the
representation, that minimizes the above similarity loss. The intuition is that optimizing
this loss should push together the latent embeddings of similar trajectories and push apart
the latent embeddings of dissimilar trajectories. Before training the representation with
the loss in Eq. (3.2), we may also pre-train it using unsupervised learning [24].

Lastly, in order to evaluate the e�cacy of the learned representation, we introduce the
policy learning (imitation learning) task for state representations and preference learning
for trajectory representations.

Algorithm 1 SIRL: Similarity-based Representation Learning

Require: N : number of similarity queries, f : human similarity query function
1: Initialize pretrained representation learning model �
2: Initialize dataset of triplets D ;
3: Collect a large set of trajectories T
4: for i 2 {1, . . . , N} do

5: Sample 3 trajectories randomly: ⌧1, ⌧2, ⌧3 ⇠ T
6: Query human for similarity: k f(⌧1, ⌧2, ⌧3)
7: Obtain the most similar pair of trajectories: (⌧k1 , ⌧k2)
8: Add triplet to dataset: D D [{(⌧k1 , ⌧k2 , ⌧k3)}, where k3 6= k1, k2

9: end for

10: while not converged do

11: (⌧a1 , ⌧a2 , ⌧a3) ⇠ D
12: ei �(⌧ai) for i 2 {1, 2, 3}
13: L = max(kea1�ea2k2�kea1�ea3k2+↵, 0)+max(kea1�ea2k2�kea2�ea3k2+↵, 0)
14: � �� ⌘r�L
15: end while

Ensure: �: learned representation

3.2.1 Policy Learning

Given a learned embedding �, we can use it to mimic human demonstrations. We collect a
dataset of human demonstrations Ddemo by concatenating human rollouts in the environ-
ment. We then train an imitation learning policy ⇡BC : S ! A on each state-action pair
in Ddemo. We learn a policy by incorporating the cross entropy loss if the environment
actions are discrete.

15

LBC(✓) = �
X

(s,a)2Ddemo

log ⇡(�(s); ✓) . (3.3)

We similarly incorporate the mean squared error loss if the environment actions are
continuous.

LBC(✓) = �
X

(s,a)2Ddemo

(⇡(�(s); ✓)� a)2 . (3.4)

3.2.2 Reward Learning

Given a learned embedding �, we use it for learning models of specific user preferences.
While we focus on learning from pairwise preferences, we note that � can in principle be
used in downstream tasks that learn from many types of human feedback [22]. When
learning a reward function from human preferences, we show the human two trajectories,
⇠A and ⇠B, and then ask which of these two the human prefers. We collect a data set of
such preferences Dpref = {⇠A, ⇠B, `} where ` = 1 if ⇠A � ⇠B and ` = 0 otherwise and use
the Bradley-Terry preference model [8]:

P (⇠A � ⇠B; ✓) =
e
R✓(�(⇠A))

eR✓(�(⇠A)) + eR✓(�(⇠B))
. (3.5)

We learn the reward function by incorporating Eq. (3.5) in a simple cross-entropy loss:

Lpref (✓) = �
X

(⇠A,⇠B ,`)2Dpref

` · logP (⇠A � ⇠B; ✓) + (1� `) · logP (⇠B � ⇠A; ✓) . (3.6)

16

Chapter 4

Experiments in Simulation

Initially, we conduct experiments within simulated environments to compare the perfor-
mance of SIRL against established baselines in two separate tasks: reward learning and
imitation learning. We then validate our method with a user study.

4.1 Experimental Setup for Reward Learning

We first investigate the quality of SIRL-trained representations and their benefits for
preference learning using simulated human input in two environments with ground truth
rewards and features.

4.1.1 Environments

Figure 4.1: GridRobot.

GridRobot (Fig. 4.1) is a 5-by-5 gridworld
with two obstacles and a laptop (denoted by
the blue, green, and black boxes). Trajecto-
ries are sequences of 9 states with the start
and end in opposite corners. The 19-dimensional
input space consists of the x and y coordi-
nates of each state and a discretized angle in
{�90�,�60�,�30�, 0�, 30�, 60�, 90�} at the end state.
The simulated human answers queries based on 4 fea-
tures �

⇤ in this world: Euclidean distances to each
object, and the absolute value of the angle orienta-
tion.

17

Figure 4.2: Jacorobot.

JacoRobot (Fig. 4.2) is a pybullet [13] simulated en-
vironment with a 7-DoF Jaco robot arm on a tabletop,
with a human and laptop in the environment. Tra-
jectories are length 21, and each state consists of 97
dimensions: the xyz positions of all robot joints and
objects, and their rotation matrices. This results in
a 2037-dimensional input space, much larger than for
GridRobot. The 4 features of interest �⇤ for the sim-
ulated human are: a) table — distance of the robot’s
End-E↵ector (EE) to the table; b) upright — EE ori-
entation relative to upright, to consider whether ob-
jects are carried upright; c) laptop — xy-plane distance of the EE to a laptop, to consider
whether the EE passes over the laptop at any height; d) proxemics [29] — proxemic xy-
plane distance of the EE to the human, where the EE is considered closer to the human
when moving in front of the human that to their side.

In GridRobot the state space is discretized, so the trajectory space ⌅ can be enumer-
ated; however, the JacoRobot state space is continuous, so we construct ⌅ by smoothly
perturbing the shortest path trajectories from 10,000 randomly sampled start-goal pairs
(see App. A.1). We generate similarity and preference queries by randomly sampling
from ⌅. The simulated human answers similarity queries by computing the 4 feature
values for each of the three trajectories and choosing the two that were closest in the
feature space. For preference queries, the simulated human computes the ground truth
reward and samples the trajectory with the higher reward. The space of true reward
functions (used to simulate preference labels) is defined as linear combinations of the 4
features described above. The robot is not given access to the ground-truth features nor
the ground-truth reward function but must learn them from similarity and preference
labels over raw trajectory observations.

4.1.2 Experimental Setup

Manipulated Variables. We test the importance of user input that is designed to teach
the representation by comparing SIRL with multi-task learning techniques from generic
preference queries, and unsupervised representation learning. We have 4 baselines: a)
VAE , which learns a representation with a variational reconstruction loss [24]; b) Mul-
tiPref , a multi-task baseline [18, 26, 30], where we learn the representation � implicitly
by training multiple reward functions (each with shared initial layers) via preference learn-
ing; c) SinglePref , a hypothetical method that learns from an ideal user who weighs all
features equally; d) Random , a randomly initialized embedding, which does not benefit
from human data but is also immune from any spurious correlations that might be learned
from biased data. For MultiPref, we trained versions with 10 and 50 simulated human
preference rewards for good coverage of the reward space. All embeddings have the same
network size: for GridRobot we used MLPs with 2 layers, 128 units each, mapping to 6
output neurons, while for JacoRobot we used 1024 units to handle the larger input space
(see App. A.2). For a fair comparison, we gave SIRL, SinglePref, and MultiPref equal

18

amounts of human data for pre-training: N similarity queries for SIRL, and N preference
queries (used for a single human for SinglePref or equally distributed amongst humans for
MultiPref). We also performed ablations with and without VAE pre-training and found
that SinglePref and MultiPref are better without the VAE objective (see App. A.3).

Dependent Measures. To test the quality of the learned representations, we use two
metrics: Feature Prediction Error (FPE) and Test Preference Accuracy (TPA). The FPE
metric is inspired by prior work that argues that good representations are linearly sepa-
rable [12, 25, 33]. Our goal is to measure whether the embeddings contain the necessary
information to recover the 4 ground-truth features in each environment. We generate
data sets of sampled trajectories labeled with their ground truth (normalized) feature
vector DFPE = {⇠,�⇤}. We freeze each embedding and add a linear regression layer on
top to predict the feature vector for a given trajectory. We split DFPE into 80% training
and 20% test pairs, and FPE is the mean squared error (MSE) on the test set between
the predicted feature vector and the ground truth feature vector. For the human query
methods, we report FPE with increasing number of representation training queries N .

For TPA, we test whether good representations necessarily lead to good learning of
general preferences. We use the trained embeddings as the base for 20 randomly selected
test preference rewards. For each R✓i , we generate a set of labeled preference queries
D✓i

pref
= {⇠A, ⇠B, l}, which we split into 80% for training and 20% for test. We train each

reward model with M preference queries per test reward, and we vary M . All prefer-
ence networks have the same architecture: we take the embedding � pre-trained with the
respective method, and add new fully connected layers to learn a reward function from
trajectory preference labels. For GridRobot we used MLPs with 2 layers of 128 units, and
for JacoRobot we used 1024 units. We found that all methods apart from SIRL worked
better with unfrozen embeddings (App. A.3). We report TPA as the preference accuracy
for the learned reward models on the test preference set, averaged across the test human
preferences.

Hypotheses: H1. Using similarity queries specifically designed to teach the represen-
tation (SIRL) leads to better learned representations than unsupervised (VAE), implicit
(MultiPref, SinglePref), or random representations. H2. The SIRL representations result
in more generalizable imitation learning.

4.2 Experimental Setup for Policy Learning

We then investigate the quality of SIRL-trained representations for behavioral cloning
using simulated human demonstrations and similarity queries.

19

4.2.1 Environments

Figure 4.3: Gridworld.

Gridworld (Fig. 4.3) is a larger 39-by-39 gridworld
with four 5-by-5 obstacles placed equidistant from the
center. The agent is placed at a random position, de-
noted with a black circle, within the gridworld, and
a goal is placed with a minimum distance of 15 units
away, denoted with a black x. The 4-dimensional in-
put consists of the x and y coordinates of the current
position of the agent and the coordinates of the goal.
The discrete action space comprises of the four car-
dinal directions in which the agent could move next.
The simulated human answers queries based on the
direction of movement that would navigate the agent
around the obstacles towards the goal state with min-
imal distance, selecting the two trajectories with the least Euclidean distance between
vectors of optimal movement. We accomplish this using the A* search algorithm [20]
and average the vectors from the start location to the next three states in the path to
determine the optimal direction of movement. For determining the optimal action for
imitation learning, the agent utilizes the A* search algorithm to generate an optimal path
and selects the cardinal direction corresponding to the next state within the identified
path.

Figure 4.4: Robosuite.

Robosuite (Fig. 4.4) is a simulated robosuite [43]
environment featuring a 6-DoF UR5e arm on a table-
top, along with a laptop placed centrally on the table-
top. The robot arm has an initial configuration that
situates the end e↵ector to the left of the laptop. The
objective for the robot is to reach a target position to
the right of the laptop. The 9-dimensional state space
encompasses the xyz coordinates of the end e↵ector,
the target xyz position, and the end e↵ector’s veloc-
ity vector. The robot arm moves using an operational
space controller, with the 3-dimensional action space
interpreted as the delta values from the current state.
At each time step, the agent obtains a reward propor-
tional to the negative distance to the goal position, and receives a penalty if it enters a
specific proximity to the laptop, with the penalty magnitude increasing as a linear func-
tion of the distance to the laptop. For answering similarity queries, the simulated human
featurizes the state based on 2 features: the 2-dimensional direction to the laptop and
the 3-dimensional direction to the goal coordinates. For determining the optimal action
for imitation learning, the human calculates the optimal direction using TrajOpt [34], a
path planning algorithm that optimizes a path that accounts for the penalty of being too
close to the laptop. In order to avoid degenerate trajectories, TrajOpt is initialized with

20

a spline that avoids the laptop.
In the Gridworld environment, we collect 50,000 states by randomly sampling start-

goal pairs. To collect diverse data for learning a similarity-based representation in the
Robosuite environment, we leverage random network distillation (RND) [9], a powerful
approach for exploration in deep reinforcement learning that provides reward bonuses
based on the error of a neural network predicting the output of a randomly-initialized
network. We gather a dataset of state-action transitions observed while training a Soft
Actor Critic [19] policy using the RND bonus as the sole reward signal. We collect
1,000 trajectories for a total of 50,000 states. We generate similarity queries by randomly
sampling triplets of states from this set of collected states.

4.2.2 Experimental Setup

Manipulated Variables. In order to assess the performance of similarity-based rep-
resentation learning in the context of imitation learning, we designed an experimental
comparison with three baseline methods: a) Random, a randomly initialized embedding
that operates similar to the random baseline for SIRL in trajectory input scenarios but
with state input instead of trajectory input, b) BC, a neural network trained with im-
itation learning data, and c) VAE, a Variational Autoencoder which learns to generate
latent representations from the state input. Each of the embedding networks are of the
same size with 2 hidden layers of 512 units each, mapping to 6 output neurons. Since the
magnitude of the input space is similar between robosuite and gridworld, we keep these
hyperparameters the same across the two environments.

Dependent Measures. To compare the e↵ectiveness of the representations, we use
three metrics: Average Rollout Reward (ARR), Action Prediction Error (APE), Feature
Prediction Error (FPE). Behavioral cloning has poor generalizability and minor inaccu-
racies in predicting human actions can lead to the agent encountering unfamiliar states
within the state space, causing trajectories to deviate from the intended target location.
An e↵ective representation should enable an imitation learning agent to establish a map-
ping from states to human actions and reach good performance on the task. As such, we
utilize Average Rollout Reward (ARR) as a metric to assess the agent’s ability to mimic the
human e↵ectively to reach the goal state. We generate rollouts in the environment with
the simulated human to create a dataset of human demonstrations, DDemos = {S,A}, to
train the behavioral cloning policy. At test time, we rollout the imitation learning policy
100 times in the environment and calculate the average reward to determine the model’s
ARR.

The APE metric instead tests whether representations can generalize across the entire
state space instead of only the states seen from human demonstrations. The goal of APE
is to measure the generalization of feature learning to unseen states and whether the
learned embedding captures information to recover the optimal action. We gather a set
of states DAPE = {S} and split the dataset into 80% training and 20% test states. We
freeze each embedding and add a linear regression layer to predict the optimal action for
that state. For Gridworld, APE is the cross entropy loss between the predicted action and

21

ground truth action whereas for Robosuite, we use the mean squared error instead. To
fairly compare the embeddings learned by BC and SIRL, we train both with an equivalent
amount of human data: BC receives an equal amount of human imitation data of state
and action pairs as SIRL receives in similarity queries.

We reuse the FPE metric from SIRL with reward learning to measure the e↵ectiveness
of the learned representations to capture the ground-truth features within each environ-
ment. We once again freeze each embedding and add a linear regression layer, generate
a set of states DFPE = {⇠,�⇤}, split into 80 � 20 training and test set, and measure the
MSE between the predicted feature vector and ground truth feature vector. To fairly
compare the embeddings learned by BC and SIRL, similar to APE metric, BC receives
an equal amount of human imitation data of state and action pairs as SIRL receives in
similarity queries.

Hypothesis. H3. Using similarity queries for teaching the representation (SIRL) leads
to better learned representations than unsupervised (VAE), implicit (BC), or random rep-
resentations. H4. The SIRL representations result in more generalizable reward learning
without compromising the loss of necessary information about the state space.

22

Chapter 5

Simulated Results

5.1 SIRL for Reward Learning

We first show in the qualitative results which trajectories SIRL learned to be similar and
which it learned was least similar. In the quantitative results, we analyze the performance
of SIRL on the metrics defined in chapter 4.

5.1.1 Qualitative Results

In Fig. 5.1 we show similar and dissimilar trajectories learned by SIRL in a simplified
GridRobot environment with only the laptop and the joint angle. Top: the given trajec-
tory stays far from the laptop and holds the cup on its side; SIRL learns that trajectories
that share those features are similar, despite being dissimilar in the state-space. Bottom:
the trajectory stays close to the laptop and holds the cup at an angle; SIRL learns that
trajectories that hold the cup on its side and stay far from the laptop are dissimilar,
despite being similar in the state-space (going through the top left corner).

Figure 5.1: For a given trajectory, SIRL selects the two most and least similar trajectories.

23

5.1.2 Quantitative Results

In Fig. 5.7 we show the FPE score for both environments with varying representation
queries N from 100 to 1000. For GridRobot, both versions of SIRL (with or without
VAE pre-training) perform similarly and outperform all baselines. When pre-training
with preference queries, MultiPref with 10 humans performs better than SinglePref or
MultiPref with 50 humans: SinglePref may be overfitting to the one human preference
it has seen, while when MultiPref has to split its data budget among 50 humans it ends
up learning a worse representation than Random. There is a balance to be struck be-
tween the diversity in human preferences covered and the amount of data each preference
gets, a problem which SIRL avoids by being preference-agnostic. For the more complex
JacoRobot, both versions of SIRL outperform all baselines, although SIRL without VAE
scores better than with it.

100 200 300 400 500 600 700 800 900 1000
Number of Representation Queries

0.0

0.1

0.2

0.3

0.4

FP
E

GridRobot Feature Prediction Error (FPE)
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

100 200 300 400 500 600 700 800 900 1000
Number of Representation Queries

0.0

0.1

0.2

0.3

0.4

FP
E

JacoRobot Feature Prediction Error (FPE)
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

Figure 5.2: FPE for the GridRobot (left) and JacoRobot (right) environments with simulated

human data. With enough data, SIRL learns representations more predictive of the true features

�⇤
.

In Fig. 5.3 we present the TPA score for both environments with a varying amount of
test preference queries M from 10 to 190, and N = 100, 500, and 1000. For GridRobot,
each respective method performs comparably with di↵erent Ns, suggesting that this is a
simple enough environment that low amounts of representation data are su�cient. For
JacoRobot, this is not the case: with just 100 queries, SIRL with VAE pre-training
performs like VAE, SIRL without pre-training has random performance (since it’s frozen),
and the preference baselines all perform close to Random, as if they weren’t trained with
queries at all. For larger N , both versions of SIRL start performing better than the
baselines, suggesting that with enough data a good representation can be learned.

Focusing on N = 1000, for GridRobot both SIRLs outperform all baselines, while for
JacoRobot SIRL without VAE is the best, and SIRL with VAE performs only marginally
better. Also note that while VAE performs comparably to other baselines in GridRobot, it
severely underperforms in JacoRobot. This suggests that the reconstruction loss struggles
to recover a helpful starting representation when the input space is more high-dimensional
and correlated. As a result, using the VAE pre-training to warmstart SIRL hinders
performance when compared to starting from a blank slate. Meanwhile, in the GridRobot
environment, VAE pre-training helps. When comparing the preference-based methods,
in GridRobot they all perform similarly apart from MultiPref with 50 humans, while

24

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0
TP

A
GridRobot Test Preference Accuracy (TPA) with N = 100

SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot Test Preference Accuracy (TPA) with N = 100
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot Test Preference Accuracy (TPA) with N = 500
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot Test Preference Accuracy (TPA) with N = 500
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot Test Preference Accuracy (TPA) with N = 1000
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot Test Preference Accuracy (TPA) with N = 1000
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

Figure 5.3: TPA for GridRobot (left) and JacoRobot (right) with simulated human data. With

enough data, SIRL recovers more generalizable rewards than unsupervised, preference-trained,

or random representations.

in JacoRobot we see a trend that more preference humans does not necessarily result
in better performance. This confirms our observation from Fig. 5.7 that deciding on a
number of preference humans that works across environments is challenging, a problem
that SIRL bypasses.
Summary. With enough representation data SIRL can outperform baselines by at least
10%, learning more generalizable rewards (H1 and H2). When VAE pre-training is suit-
able, it can further reduce the human queries SIRL needs; however, when the reconstruc-
tion loss fails to recover sensible representations, it can hurt performance. Surprisingly,
Random is often better than pre-training with preference queries: more correlated infor-
mation can be more harmful than starting from scratch.

25

Figure 5.4: For a given state, SIRL selects the two most and least similar states based on the

direction of optimal movement.

5.2 SIRL for Policy Learning

Similar to SIRL for reward learning, We first show in the qualitative results which states
SIRL learned to be similar and dissimilar. In the quantitative results, we analyze the
performance of SIRL on the metrics.

5.2.1 Qualitative Results

In Fig 5.4, we present an example of the most and least similar states for the Gridworld
environment learned by SIRL. The orange arrow denotes the direction of optimal move-
ment. Top: in this state, the optimal direction is to the left towards the goal state. SIRL
learns that other states where the direction of movement to the left are similar. Notice
for the second of the most similar states, while the goal is to the top middle, the optimal
direction is to the left to avoid the obstacle. SIRL learns/ a featurization more complex
than a simple featurization that only considers direction to the goal. Bottom: in this case,
the optimal direction is towards the top of the gridworld. SIRL learns that other starting
locations and goal locations are similar to the state despite being visually di↵erent due
to the same direction of optimal movement.

5.2.2 Quantitative Results

In Figure 5.5, we present the ARR score as a function of varying quantities of demon-
strated state-action pairs, while maintaining a constant number of SIRL similarity queries
at 1000. In the case of Gridworld, we observe that SIRL combined with BC surpasses the
performance of BC alone when provided with a limited number of demonstrations. This
implies that the SIRL representation possesses a degree of generalizability that benefits
imitation learning when integrated with BC, particularly when faced with fewer human
demonstrations. However, the advantage of the SIRL representation appears to diminish

26

as the number of demonstrations increases. When 800 demonstrated state-action pairs
are provided, BC outperforms SIRL with BC. This could be attributed to the fixed na-
ture of the SIRL representation, which may limit its adaptability when presented with an
abundance of human demonstrations covering a significant portion of the state space. In
the Robosuite environment, SIRL with BC outperforms the baselines, proving to be more
consistent than BC and VAE in rollout rewards.

Figure 5.5: ARR for the Gridworld (left) and Robosuite (right) environments

In Fig. 5.6, we show the scores of SIRL and the baselines on the APE metric. In
both environments, for a fair comparison, SIRL receives an equivalent number of simi-
larity queries as BC does for imitation learning data. For Gridworld, VAE and random
featurizations perform much better than BC and SIRL with SIRL performing the worst.
This is likely due to there being multiple optimal actions in the environment since if the
goal state was diagonally top-right of the current state, going up and going to the right
are both optimal. In the Robosuite environment where such an issue doesn’t exist, SIRL
has the lowest action prediction error amongst the baselines.

Figure 5.6: APE for the Gridworld (left) and Robosuite (right) environments

In Fig. 5.7, we evaluate SIRL and the baselines on the FPE metric. In both environ-
ments, for a fair comparison, SIRL receives an equivalent number of similarity queries as
BC does for imitation learning data. In Gridworld, with enough similarity queries, SIRL
outperforms the baselines and reaches a much longer FPE score. In Robosuite, SIRL is
able to learn a representation that matches better with the ground truth features than
the baselines even with a low number of similarity queries.
Summary. With enough representation data SIRL can outperform baselines in the
FPE metric, proving to learn representations that are more aligned with the human’s

27

Figure 5.7: FPE for the Gridworld (left) and Robosuite (right) environments

featurization of states than the baselines (H3 and H4). Furthermore, when learning a
policy using the learned representation, SIRL performs better in imitating the human and
is more generalizable in Robosuite for states that are out of distribution of the imitation
learning data (H4).

28

Chapter 6

User Study

6.1 Experiment Design

We ran a user study in the JacoRobot environment, modified for only two features: table
and laptop (we removed the humanoid in the environment). We designed an interface
where people can click and drag to change the view, and press buttons to replay trajec-
tories and record their query answer (Fig ??). We chose to display the Euclidean path of
each trajectory in the query traces, as we found that to help users more easily compare
trajectories to one another.

The study is split into two phases: collecting similarity queries and collecting prefer-
ence queries. In the first phase, we introduce the user to the interface and we describe
the two features of interest. Because similarity queries are preference-agnostic, we de-
scribe examples of possible preferences akin to the ones in Sec. ??, but we do not bias
the participant towards any specific preference yet. We have each participant practice

29

All Humans0.00

0.02

0.04

0.06

0.08

0.10

FP
E

SIRL (Ours)
Random

All Humans 6 Humans All Humans 6 Humans All Humans 6 Humans0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TP
A

Real Held-out Simulated

Figure 6.1: Study values for FPE, and TPA with real and simulated preferences. Even with

novice similarity queries, SIRL outperforms the baseline.

answering a set of pre-selected, unrecorded similarity queries, and then ask them to an-
swer 100 recorded similarity queries. In the second phase, we describe a scenario in the
environment that has a specific preference associated with it (e.g. “There’s smoke in the
kitchen, so the robot should stay high from the table” or “There is smoke in the kitchen
and the robot’s mug is empty, so you want to stay far from the table and close to the
laptop.”) and assign di↵erent preference scenarios to each participant. Each participant
practices giving unrecorded preference queries, then answers 100 preference queries.
Participants. We recruited 10 users (3 female, 6 male, 1 non-binary, aged 20-28) from
the campus community to provide queries. Most users had technical background, so we
caution that our results will speak to SIRL’s usability with this population rather than
the general population.
Manipulated Variables. Guided by the results in Fig. 5.3, we compare our best per-
forming method, SIRL without VAE, to Random, the best performing realistic baseline.
For SIRL we collect 100 similarity queries from each participant and train a shared rep-
resentation using all of their data.
Dependent Measures. We present the same two metrics from Sec. ??, FPE and TPA.
For TPA, we collect 100 preference queries for each user’s unique preference, we use 70%
for training individual reward networks which we evaluate on the remaining 30% queries
(Real). We compute TPA with cross-validation on 50 splits. To demonstrate how well
SIRL works for new people who don’t contribute to learning the similarity embedding,
we also train SIRL on the similarity queries of 9 of the users and compute TPA on the
held-out user’s preference data (Held-out), for each user, respectively. Lastly, because
real data tends to be noisy, we also compute TPA with 70 simulated preference queries
for 10 di↵erent rewards, which we also evaluate on a simulated test set (Simulated).
Hypotheses: H5. Using similarity queries (SIRL) recovers more salient features than a
random representation, even with novice user data. H6. The SIRL representation results
in more generalizable reward learning, even with novice similarity queries.

6.2 Analysis

Fig. 6.1 summarizes the results. On the left, SIRL recovers a representation twice as
predictive of the true features, supporting H3. A 2-sided t-test (p < .0001) confirms this.

30

This suggests SIRL can recover aspects of people’s feature representation even with noisy
similarity queries from novice users. On the right (Real), SIRL recovers more generalizable
rewards on average than Random, providing evidence for H4. Furthermore, using the SIRL
representation on a novel user (Held-out) also performs better than Random, and the
result appears almost indistinguishable from Real. This suggests that similarity queries
can be e↵ectively crowd-sourced and the resulting representation works well for novel
user preferences. Lastly, training with simulated preference queries slightly improves
performance for both methods, suggesting that noise in the human preference data can
be substantial. Three ANOVAs with method as a factor find a significant main e↵ect (F(1,
18) = 6.0175, p = .0246, F(1, 18) = 4.7547, p = .0427, and F(1, 18) = 16.1068, p < .001,
respectively). For each of the 3 cases, we also separated the 6 humans that were assigned
preferences pertaining to both features (e.g. “There is smoke in the kitchen and the robot’s
mug is empty, so stay far from the table and close to the laptop.”). SIRL performance
is slightly better than in Real, hinting that perhaps the learned representation entangled
the two features.

31

Chapter 7

Conclusion

7.1 Discussion

In this paper, we introduced a new type of human input useful for learning feature repre-
sentations more aligned with humans, which can be used e�ciently for learning generaliz-
able downstream reward functions and policies. The qualitative and quantitative results
obtained from our experiments clearly demonstrate the robustness and generalizability of
SIRL. However, we also identified several areas for future research and improvement. We
are particularly interested in exploring the applicability of SIRL to reinforcement learning
tasks or tasks with high-dimensional image state spaces. These more complex environ-
ments present unique challenges and opportunities for refining our approach and further
pushing the boundaries of what SIRL can achieve. High-dimensional image state spaces,
for instance, require significantly more data to train, which may require more e�cient
training techniques or the incorporation of image-based unsupervised learning methods.
Reinforcement learning, on the other hand, need to be adaptable during the training pro-
cess, potentially requiring the integration of online learning or continual learning strategies
for tuning the learned representation.

7.2 Limitations

Our method only analyzed environments with a maximum of two features and it becomes
increasingly di�cult to answer similarity queries while trading o↵ many features. In such
cases, the task of learning representations aligned with human understanding becomes
more intricate, as it necessitates capturing intricate relationships between various features
while maintaining their interpretability.

While the user study results do show a significant e↵ect, the e↵ect size is much lower
than in simulation. This is attributable in part to the interface di�culty of analyzing
the robot trajectories, which means more work on the best interfaces that enable users to
accurately answer similarity queries is needed. Moreover, some users reported struggling
to trade o↵ the di↵erent features that are important, which means that similarity queries
might not be entirely preference-agnostic. Nonetheless, our results underscore that there

32

are gains by explicitly aligning robot and human representations, rather than hoping it
will happen as a byproduct of learning rewards from standard queries.

33

Bibliography

[1] S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. Kriegman, and S. Belongie, “Gen-
eralized non-metric multidimensional scaling,” in Artificial Intelligence and Statis-
tics, PMLR, 2007, pp. 11–18.

[2] E. Amid, A. Gionis, and A. Ukkonen, “A kernel-learning approach to semi-supervised
clustering with relative distance comparisons,” vol. 9284, Sep. 2015.

[3] M. Babes, V. N. Marivate, K. Subramanian, and M. L. Littman, “Apprenticeship
learning about multiple intentions,” in ICML, 2011.

[4] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan, “Learning robot objec-
tives from physical human interaction,” in Proceedings of the 1st Annual Conference
on Robot Learning, S. Levine, V. Vanhoucke, and K. Goldberg, Eds., ser. Proceed-
ings of Machine Learning Research, vol. 78, PMLR, 2017, pp. 217–226.

[5] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk, “Learning local feature descrip-
tors with triplets and shallow convolutional neural networks,” Jan. 2016, pp. 119.1–
119.11.

[6] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan, “Inducing structure in re-
ward learning by learning features,” The International Journal of Robotics Research,
vol. 0, no. 0, p. 02 783 649 221 078 031, 0. eprint: https://doi.org/10.1177/
02783649221078031.

[7] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan, “Feature expansive reward
learning: Rethinking human input,” in Proceedings of the 2021 ACM/IEEE Inter-
national Conference on Human-Robot Interaction, ser. HRI ’21, Boulder, CO, USA:
Association for Computing Machinery, 2021, 216–224.

[8] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete block designs: I. the
method of paired comparisons,” Biometrika, vol. 39, no. 3/4, pp. 324–345, 1952.

[9] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by random net-
work distillation,” in Seventh International Conference on Learning Representa-
tions, 2019, pp. 1–17.

[10] J. Choi and K.-E. Kim, “Nonparametric bayesian inverse reinforcement learning for
multiple reward functions,” Advances in Neural Information Processing Systems,
vol. 25, 2012.

34

https://doi.org/10.1177/02783649221078031
https://doi.org/10.1177/02783649221078031

[11] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei, “Deep
reinforcement learning from human preferences,” in Advances in Neural Information
Processing Systems, I. Guyon et al., Eds., vol. 30, Curran Associates, Inc., 2017.

[12] A. Coates and A. Ng, “Learning feature representations with k-means,” in Neural
Networks: Tricks of the Trade, 2012.

[13] E. Coumans and Y. Bai, Pybullet, a python module for physics simulation for games,
robotics and machine learning, http://pybullet.org, 2016–2019.

[14] C. Demiralp, M. Bernstein, and J. Heer, “Learning perceptual kernels for visualiza-
tion design,” vol. 20, Nov. 2014.

[15] C. Dimitrakakis and C. A. Rothkopf, “Bayesian multitask inverse reinforcement
learning,” in European workshop on reinforcement learning, Springer, 2011, pp. 273–
284.

[16] A. D. Dragan, K. Muelling, J. A. Bagnell, and S. S. Srinivasa, “Movement prim-
itives via optimization,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 2339–2346.

[17] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation
of deep networks,” in Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ser. ICML’17, Sydney, NSW, Australia: JMLR.org, 2017,
1126–1135.

[18] A. Gleave and O. Habryka, “Multi-task maximum entropy inverse reinforcement
learning,” arXiv preprint arXiv:1805.08882, 2018.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: O↵-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor,” in International
conference on machine learning, PMLR, 2018, pp. 1861–1870.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-
termination of minimum cost paths,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[21] C. Huang, W. Luo, and R. Liu, “Meta preference learning for fast user adaptation
in human-supervisory multi-robot deployments,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, 2021, pp. 5851–5856.

[22] H. J. Jeon, S. Milli, and A. Dragan, “Reward-rational (implicit) choice: A unifying
formalism for reward learning,” Advances in Neural Information Processing Systems,
vol. 33, pp. 4415–4426, 2020.

[23] M. G. Kendall, “Rank correlation methods.,” 1948.

[24] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd Interna-
tional Conference on Learning Representations, ICLR 2014, Ban↵, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2014.

35

http://pybullet.org

[25] C.-I. Lai, “Contrastive predictive coding based feature for automatic speaker veri-
fication,” arXiv preprint arXiv:1904.01575, 2019.

[26] Z. Mandi, P. Abbeel, and S. James, “On the e↵ectiveness of fine-tuning versus
meta-reinforcement learning,” arXiv preprint arXiv:2206.03271, 2022.

[27] B. McFee, G. Lanckriet, and T. Jebara, “Learning multi-modal similarity.,” Journal
of machine learning research, vol. 12, no. 2, 2011.

[28] V. Mnih et al., Playing atari with deep reinforcement learning, 2013.

[29] J. Mumm and B. Mutlu, “Human-robot proxemics: Physical and psychological dis-
tancing in human-robot interaction,” in Proceedings of the 6th international confer-
ence on Human-robot interaction, 2011, pp. 331–338.

[30] K. Nishi and M. Shimosaka, “Fine-grained driving behavior prediction via context-
aware multi-task inverse reinforcement learning,” in 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), IEEE, 2020, pp. 2281–2287.

[31] A. van den Oord, Y. Li, and O. Vinyals, Representation learning with contrastive
predictive coding, 2018.

[32] S. Reddy, A. D. Dragan, and S. Levine, Pragmatic image compression for human-
in-the-loop decision-making, 2021.

[33] C. J. Reed et al., “Self-supervised pretraining improves self-supervised pretrain-
ing,” in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), Los Alamitos, CA, USA: IEEE Computer Society, 2022, pp. 1050–1060.

[34] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding
locally optimal, collision-free trajectories with sequential convex optimization.,” in
Robotics: science and systems, Citeseer, vol. 9, 2013, pp. 1–10.

[35] S. K. Seyed Ghasemipour, S. S. Gu, and R. Zemel, “Smile: Scalable meta inverse
reinforcement learning through context-conditional policies,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[36] A. Srinivas, M. Laskin, and P. Abbeel, Curl: Contrastive unsupervised representa-
tions for reinforcement learning, 2018.

[37] A. Sripathy, A. Bobu, Z. Li, K. Sreenath, D. S. Brown, and A. D. Dragan, Teaching
robots to span the space of functional expressive motion, 2022.

[38] N. Stewart, G. D. Brown, and N. Chater, “Absolute identification by relative judg-
ment.,” Psychological review, vol. 112, no. 4, p. 881, 2005.

[39] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai, “Adaptively learning
the crowd kernel,” arXiv preprint arXiv:1105.1033, 2011.

[40] K. Xu, E. Ratner, A. Dragan, S. Levine, and C. Finn, “Learning a prior over intent
via meta-inverse reinforcement learning,” in International Conference on Machine
Learning, PMLR, 2019, pp. 6952–6962.

36

[41] K. Xu, E. Ratner, A. Dragan, S. Levine, and C. Finn, “Learning a prior over in-
tent via meta-inverse reinforcement learning,” in Proceedings of the 36th Interna-
tional Conference on Machine Learning, K. Chaudhuri and R. Salakhutdinov, Eds.,
ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 6952–
6962.

[42] L. Yu, T. Yu, C. Finn, and S. Ermon, “Meta-inverse reinforcement learning with
probabilistic context variables,” Advances in Neural Information Processing Sys-
tems, vol. 32, 2019.

[43] Y. Zhu et al., Robosuite: A modular simulation framework and benchmark for robot
learning, 2020.

37

Appendix A

Appendix

A.1 Trajectory generation

In GridRobot the state space is discretized, so the trajectory space ⌅ can be enumerated;
however, the JacoRobot state space is continuous, so we need to construct ⌅ by sampling
the infinite-dimensional trajectory space. We randomly sample 10,000 start-goal pairs and
compute the shortest path in the robot’s configuration space for each of them, ⇠SG. Each
trajectory has a horizon length H and consists of n-dimensional states. We then apply
random torque deformations u to each trajectory to obtain a deformed trajectory ⇠

SG

D
. In

particular, we randomly select up to 3 states along the trajectory, and then deform each
of the selected states with a di↵erent random torque u. To deform a trajectory in the
direction of u we follow:

⇠
SG

D
= ⇠

SG + µA
�1
ũ , (A.1)

where µ > 0 scales the magnitude of the deformation, A 2 Rn(H+1)⇥n(H+1) defines a
norm on the Hilbert space of trajectories and dictates the deformation shape [16], and
ũ 2 Rn(H+1) is u at indices nt through n(t + 1) and 0 otherwise (ũ is 0 outside of the
chosen deformation state index). For each deformation, we randomly generated µ and
the index of the state the deformation is applied to. For smooth deformations, we used a
norm A based on acceleration, but other norm choices are possible as well (see Dragan et
al. [16] for more details). We took inspiration for this deformation strategy from Bajcsy
et al. [4].

A.2 Training details

We present architecture and optimization details that can assist in reproducing our train-
ing setup.

A.2.1 Feature networks

All embeddings have the same network size: for GridRobot we used MLPs with 2 hidden
layers, 128 units each, mapping to 6 output neurons, while for JacoRobot we used 1024

38

units to handle the larger input space. For both environments, we used ReLU non-
linearities after every linear layer.

We trained the VAE network with a standard variational reconstruction loss [24] also
including a KL-divergence-based regularization term (to make the latent space regular).
The regularization part of the loss had a weight of � = 0.01. For both environments, we
optimized the loss function using Adam for 2000 epochs with an exponentially decaying
learning rate of 0.01 (decay rate 0.99999) and a batch-size of 32.

SinglePref and MultiPref with 10 and 50 humans are trained using the standard pref-
erence loss in Eq. (3.6). Christiano et al. [11] ensured that the rewards predicted by the
preference network remain small by normalizing them on the fly. We instead add an l2

regulatization term on the predicted reward to the preference loss, with a weight of 10
for GridRobot and 1 for JacoRobot. All three methods optimize this final loss in the
same way: for GridRobot, we use Adam for 5000 epochs with a learning rate of 0.01 and
batch-size 32, while for JacoRobot we found a lower learning rate of 0.001 to result in
more stable training.

Lastly, for SIRL we had the option to first pre-train with the above VAE loss. Training
with the similarity objective in Eq. (3.2) happens disjointly, after pre-training. For both
GridRobot and JacoRobot, we optimized this loss function using Adam for 3000 epochs
with an exponentially decaying learning rate of 0.004 (decay rate 0.99999) and batch-size
64.

We note that our current architectures assume fixed-length trajectories but one could
adopt an LSTM-based architecture for trajectories of varying length [37].

A.2.2 Preference networks

For evaluating TPA, we used preference networks on top of the embeddings for the re-
spective methods we evaluate. For GridRobot we used MLPs with 2 hidden layers of 128
units, and for JacoRobot we used 1024 units for larger capacity. For both environments,
we used ReLU non-linearities after every linear layer. We added the same l2 regularization
to the loss in Eq. (3.6) as before, with weight 10 for GridRobot and 1 for JacoRobot.
For GridRobot, we optimized our final loss function using Adam for 500 epochs with a
learning rate of 0.001 and a batch-size of 64. For JacoRobot, we increased the number of
epochs to 1000.

A.3 Ablations

Fig. 5.3 illustrates results with frozen SIRL, and unfrozen baselines without VAE pre-
training, as these were the best configurations we found for each method. In this section,
we show the complete ablation we performed to decide which methods benefit from frozen
or unfrozen embeddings, or VAE pre-training. Fig. A.1 showcases the result of this
ablation on both GridRobot and JacoRobot. Overall, we see that SIRL does better
when the learned representation is frozen, while all the other methods do better when
the representations is unfrozen. SinglePref and the MultiPref baselines perform better

39

without VAE pre-training, while SIRL sometimes benefits from pre-training in simple
environments like GridRobot.

40

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0
TP

A
GridRobot Test Preference Accuracy (TPA) with N = 1000

SIRL (frozen)
SIRL (unfrozen)

SIRL+VAE (frozen)
SIRL+VAE (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot Test Preference Accuracy (TPA) with N = 1000
SIRL (frozen)
SIRL (unfrozen)

SIRL+VAE (frozen)
SIRL+VAE (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot Test Preference Accuracy (TPA) with N = 1000
SinglePref (frozen)
SinglePref (unfrozen)

SinglePref+VAE (frozen)
SinglePref+VAE (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot Test Preference Accuracy (TPA) with N = 1000
SinglePref (frozen)
SinglePref (unfrozen)

SinglePref+VAE (frozen)
SinglePref+VAE (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot Test Preference Accuracy (TPA) with N = 1000
MultiPref 10H (frozen)
MultiPref 10H (unfrozen)

MultiPref+VAE 10H (frozen)
MultiPref+VAE 10H (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot Test Preference Accuracy (TPA) with N = 1000
MultiPref 10H (frozen)
MultiPref 10H (unfrozen)

MultiPref+VAE 10H (frozen)
MultiPref+VAE 10H (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot Test Preference Accuracy (TPA) with N = 1000
MultiPref 50H (frozen)
MultiPref 50H (unfrozen)

MultiPref+VAE 50H (frozen)
MultiPref+VAE 50H (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot Test Preference Accuracy (TPA) with N = 1000
MultiPref 50H (frozen)
MultiPref 50H (unfrozen)

MultiPref+VAE 50H (frozen)
MultiPref+VAE 50H (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot Test Preference Accuracy (TPA) with N = 1000
Random (frozen)
Random (unfrozen)

VAE (frozen)
VAE (unfrozen)

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot Test Preference Accuracy (TPA) with N = 1000
Random (frozen)
Random (unfrozen)

VAE (frozen)
VAE (unfrozen)

Figure A.1: Ablation Results for GridRobot (left) and JacoRobot (right). Overall, SIRL does

better when the learned representation is frozen, while all the other method do better when

the representations is unfrozen. SinglePref and the MultiPref baselines perform better without

VAE pre-training, while SIRL sometimes benefits from pre-training in simple environments like

GridRobot.

41

	Introduction
	Background
	Reinforcement Learning
	Reward Learning
	Representation Learning

	Similarity-Based Representation Learning
	Preliminaries
	SIRL Framework
	Policy Learning
	Reward Learning

	Experiments in Simulation
	Experimental Setup for Reward Learning
	Environments
	Experimental Setup

	Experimental Setup for Policy Learning
	Environments
	Experimental Setup

	Simulated Results
	SIRL for Reward Learning
	Qualitative Results
	Quantitative Results

	SIRL for Policy Learning
	Qualitative Results
	Quantitative Results

	User Study
	Experiment Design
	Analysis

	Conclusion
	Discussion
	Limitations

	Appendix
	Trajectory generation
	Training details
	Feature networks
	Preference networks

	Ablations

