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Abstract
Deformation in Robotics: Applications in Tactile Sensing and Grasp Planning
by
Isabella Huang
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley

Ruzena Bajcsy, Chair

If robots are to function in unconstrained, dynamic, and real-world environments, it is critical
that are able to interact with deformable materials. Deformable materials have historically
been overlooked in traditional robotics due to prevailing assumption of robot and object
rigidty. These assumptions, though perfectly appropriate for constrained environments such
as factory settings, are often broken in the real-world. At the same time, deformable in-
teractions are uniquely challenging due to the infinite-dimensional, non-linear nature of the
deformable materials involved. To address the challenges of introducing and implementing
deformation in robotics, we present this thesis work in two parts. First, we study defor-
mation on the robot side, where we design a soft tactile sensor and demonstrate its use in
human-robot interaction and automation. Second, we also explore deformation on the object
side, where in particular we focus on optimizing grasp strategies over 3D field quantities.

In our first group of work, we propose and fabricate a novel soft tactile device that utilizes
an embedded 3D depth-sensing camera to produce interpretable signals for geometry and
force sensing. We demonstrate that this sensor is inherently safe and functional for appli-
cations including physical upper limb assistance for humans, contour following for domestic
wiping tasks, as well as geometry-dependent learning from demonstration tasks for general
contact-rich manipulation tasks. In the second part of the thesis, we develop grasp plan-
ners for 3D deformable objects (e.g., fruits, internal organs, containers) for applications in
food processing, robotic surgery, and household automation. In particular, we optimize for
field quantities that are not only inaccessible in the real world, but have also been, until re-
cent years, computationally intractable to model. We create DefGraspSim, a finite element
method-based physics simulator of arbitrary grasps on arbitrary 3D meshes over a wide
range of material parameters. We also create DefGraspNets, a graph neural network-based
forward dynamics model that is not only up to 1500x faster than DefGraspSim, but also
enables gradient-based grasp optimization. For both methods, we demonstrate generalized
performance across multiple test sets, including on real-world experiments.
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Chapter 1

Introduction

There has been a long-standing assumption in robotics that robots themselves, as well as
the objects with which they interact, are rigid. This is a convenient assumption that ignores
any shape change of these materials under applied forces, thereby drastically simplifying all
associated modeling, perception, and control applications into 6 dimensions comprising 3D
position and 3D orientation. For example, the absence of shape change simplifies the problem
of rigid object perception into a 6D pose estimation. The control of rigid manipulators is also
relatively simple, as each link maximally has only 6 degrees of freedom, wherein all elements
of the link’s body undergoes the same 6D transformation during control regardless of what
joint forces are applied. Within situations where the assumption of rigidity holds, we have
been able to see remarkable successes in applications such as industrial manufacturing, space
exploration, and self-driving.

In the real-world and especially in the home, however, this assumption of rigidity is often
violated. For example, in the home setting, we may want robots to be soft, as the inherent
compliance of soft materials enables safe interactions with delicate environments and humans.
In contrast, rigid robots are materially stiff and are prone to applying immense forces upon
physical contact. As another example, many in-home objects such as food, textiles, and
bodies are materially deformable and require specialized physical models that either extend
or replace those for rigid bodies.

In this thesis, we aim to develop solutions and applications for which rigidity no longer
holds true. We explore two classes of problems towards incorporating deformability in
robotics— first, where deformation is introduced on the robot side (Part I), and sec-
ond, where deformation is introduced on the object side (Part II). In both parts, we also
discuss relevant applications towards real-world, in-home automation.

Part I introduces the design and applications of a soft tactile sensor for use in the home
and with humans. We seek to answer the following question:

What applications towards in-home assistance can we achieve using soft tactile
sensing on the robot?

Chapter 2 discusses its design and capabilities, wherein the use of an embedded depth
camera enables a simple design that simultaneously outputs rich contact signals that can be
interpreted as physically salient geometry and force readings. The subsequent chapters study
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several applications of this sensor in real-world tasks— physical human-robot interaction for
upper-limb assistance (Chapter 3), contour following for wiping (Chapter 4), and generalized
learning from demonstration with tactile signals (Chapter 5).

Part IT focuses on handling deformation on the object side rather than on the robot
side. Here, the question we are trying to answer is the following:

How can we create grasp planners for deformable objects, for which rigid models
and rigid grasp planners fail?

Unlike rigid objects, deformable objects are notorious hard to model and control. When
grasped, deformable objects undergo shape change, which in turn elicits physical responses
in the form of fields such as deformation and stress fields. These fields are important metrics
for optimal grasp planning (e.g., we may want to minimize the stress fields when grasping
a deformable fruit in order to avoid bruising), yet are simultaneously extremely difficult
to model since they have infinite degrees of freedom. To plan grasps over these fields as
optimization metrics, we first introduce a finite element method-based solver named Def-
GraspSim. In Chapter 6, we explore its use as a forward pass dynamics simulator to be used
in offline grasp planning of deformable objects, and verify its real-world reliability with real
experiments. In Chapter 7, we introduce a graph neural network-based simulator named
DefGraspNets, which is a differentiable surrogate model for DefGraspSim. DefGraspNets is
not only around 1500x faster than DefGraspSim in its forward pass, thereby enabling online
grasp planning, but also differentiable so that candidate grasps can be refined and optimized
in its backwards pass. While there exists a speed-accuracy tradeoff between DefGraspSim
and DefGraspNets, we demonstrate that DefGraspNets can still be used to plan optimal
grasps for real objects.

As both computational capabilities and our understanding of complex contact interac-
tions continue to improve, it is the hope that working with deformable materials in robotics
will eventually no longer be treated as a clunky, intractable problem for which simplifying
assumptions are desperately needed. I believe that a robot that is truly capable and intel-
ligent should find itself very comfortable in the world of deformables, and I hope this work
can be a stepping stone towards that reality.



Part 1

Soft Tactile Sensing for In-Home
Applications



Chapter 2

Depth Camera-Based Soft Sensing

This chapter is adapted in part from “A Depth Camera-Based Soft Fingertip Device for Con-
tact Region Estimation and Perception-Action Coupling” [61], written in collaboration with
Jingjun Liu and Ruzena Bajcsy.

2.1 Introduction

It is widely believed that traditional rigid robots are functionally incompatible within un-
structured, cluttered settings [107][66]. At the same time, many soft-bodied biological or-
ganisms equipped with rich, complex tactile feedback are adept at performing adaptive and
compliant maneuvers in these environments [166]. Researchers are therefore striving to en-
able similar perception-actuation capabilities in engineered robots [75] to meet safety and
flexibility criteria in settings such as exploration [119], surgery [20], and physical human-
robot interaction [135].

Our work in particular is inspired by the human fingertip, a critical and sensitive body
part endowed with around 241 mechanoreceptors per square centimeter area [24]. The dense
sensory information received from the fingertip, coupled with general movement of the finger,
allows humans to perform not only “perception for action” (eg. dexterous manipulation),
but also “action for perception” (eg. object geometry recognition) [24]. This capability
of coupled perception-action, as exemplified in the human fingertip, is the driving design
principle behind our robotic device. Although the actuation of soft mechanisms is an area
of active research, the contributions of our work here are more pertinent to the development
of soft tactile sensing.

The objective of tactile sensing is to physically interact with the external environment
and extract knowledge about it by interpreting salient signals. To this end, many existing
soft tactile sensing designs in the past have relied on embedding photoreflective, piezoelectric
[26], strain-sensitive [32], electromagnetic [161], and other electronic modules [97] within a
compliant material. Such designs are easily arranged into a flat skin-like configuration that
then covers a robot body to enable tactile sensing capabilities for interaction with humans
or the environment. One main advantage of such skins is that the spatial resolution can
be made to be as fine as around the millimeter scale, depending on the engineered density



CHAPTER 2. DEPTH CAMERA-BASED SOFT SENSING 5

of sensing elements [3]. However, these constituent sensors limit the material strain and
compliance that make soft sensors desirable [35]. Moreover, even if the skin itself is soft,
overlaying it on top of a hard robot chassis severely limits the achievable compliance during
interaction, which poses a safety threat when humans are involved.

Since high-compliance interaction is of the utmost importance for safety, in this work we
do not improve traditional tactile skins further, but rather develop a new design for a soft
robot end effector interface. An example of existing work based on a similar design goal is the
development of a pair of pneumatically pressurized fingers that can carefully pick up fragile
objects by sensing an overall pressure change in the fingers upon contact [74]. However, this
sensory information is low in resolution, and can neither sense the objects’ shapes nor even
localize the point of contact. Recently, the leading technique in tactile sensing that does not
require embedded sensing elements is optical tactile sensing, in which devices image visual
cues from a deformed compliant membrane to reconstruct the interaction effects between
the environment and the sensor. These techniques involve reconstructing the 3D tactile
membrane using images from a 2D camera by use of tracking dots [54][38][18][179], and/or
by taking advantage of optical properties in different media [88][68][145]. Some well-known
examples of soft optical tactile sensing devices are the TacTip sensors, which image the
distortion of internal papillae of a soft gel-filled membrane, as well as the extremely high-
resolution MIT GelSight sensor, which makes use of the superposition of different colored
light waves in a gel medium to infer contact information [89].

Existing tactile sensor designs tend to bear a trade-off between accuracy and ease of
manufacturing. However, in the advent of modern miniature depth-sensing cameras, which
can directly and accurately image membrane geometries as plug-and-play solutions, the
extremities of this trade-off are mitigated. Thus, we believe it is worth investigating the
function of these small depth cameras as a perception tool for soft sensing devices. Moreover,
since such a device requires only an embedded camera, we can explore the modulation
of internal stiffness using pneumatics, which can modulate interaction impedances [165].
Furthermore, its few embedded elements implies that the design is easy to manufacture and
also extremely scalable. While the lower bound on its geometry is restricted by the range
of state-of-the-art depth camera technology and thus renders our design ineffective for very
fine manipulation tasks, its larger geometry actually makes it well suited for human-level
interaction. In this chapter, we discuss the design of such a soft sensor in Section 2.2, and
demonstrate its capabilities for geometry and force sensing in Sections 2.3 and 2.4.

2.2 Sensor Design

Fig. 2.1 is a sketch of the components and dimensions of the first version of the proposed
soft design. It is comprised of a COs-pressurized capsule mounted on a linear actuator.
The capsule is composed of a 2 mm thick elastic hemispherical shell, which equips the with
sensing capabilities, sealed onto the rim of a rigid cylindrical housing unit 3D printed from
polylactic acid filament. The elastic membrane was molded with Ecoflex™ 50 silicone, with
a slightly elongated skirt extending from the hemispherical base to allow fixture onto the
housing unit rim with cable ties. The unit also houses a PMDTec CamBoard pico flexx,
presently the smallest commercially available depth-sensing camera with a quoted minimum



CHAPTER 2. DEPTH CAMERA-BASED SOFT SENSING 6

Figure 2.1: Sketch of the components and dimensions [mm)] of the first version of the soft
tactile sensor. (€)2019 IEEE.

Silicone

membrane| »
Airtight
cylinder . /

Embedded
depth camera

Figure 2.2: Labeled photograph of the sensor mounted as the end effector of a KUKA iiwa
14 manipulator. (©)2022 IEEE.
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range of 10 cm, and fixes it to be axially centered with the pole of the . The distance from
the camera to the membrane was experimentally selected to optimize for visibility and field
of view. Furthermore, the depth camera operates at 500 fps at an exposure time of 50 us, as
optimized for performance at small ranges. Connected to the capsule is a series of pneumatic
components to manually control and monitor the pressurization of the capsule using a 16
g COy cartridge. This pneumatic system enables the modulation of stiffness by altering
the internal gaseous state of the capsule. Modelling clay and epoxy sealant was also used
where necessary to eliminate air leakage. Originally, this design was actuated via non-soft
techniques using a linear rail powered by a high-torque NEMA 23 stepper motor attached
to a lead screw.

The second and final version of this sensor is designed to be mounted onto the end of
a LBR iiwa 14 R820 robot arm from KUKA AG with its constituent components labeled
in Fig. 2.2. It is larger in size than the initial version, with a membrane outer and inner
diameter of 100 and 94 mm respectively with a uniform thickness of 3 mm. A 30 mm-
long skirt extending from the hemisphere’s base allows the silicone membrane to be securely
fastened to the cylinder, with three external cable ties tightly enforcing a hermetic seal. The
cylinder surface is fully covered with a coat of XTC-3D®)resin to prevent air leakage, and
the interior of the cylinder is painted with a matte black acrylic paint to absorb any stray
reflected rays from the camera laser that lead to distorted camera readings. Ports on the
cylinder that allow for the connection of the pico flexx USB cable as well as the pneunatic
tubing are also sealed with the resin and additional modeling clay where necessary. An
external electric air compressor enables the modulation of pressure state inside the sensor.
Since the tactile membrane is designed to be thin so that it would be sensitive enough to
contact-induced deformations, it inflates slightly upon internal pressurization. Thus, each
internal pressure state is linked to a certain amount of inflation. In later applications of
physical human-robot interaction for upper limb support, contour following, and learning
from demonstration, all development utilized the sensor at one fixed pressure state, at which
the membrane’s inner radius was inflated to 50 mm, compared to its neutral 47 mm radius
when free air exchange between the capsule and the atmosphere is permitted. All sensing
and actuation is connected to Robot Operating System (ROS) nodes. Since the KUKA robot
does not have native ROS support, an open source ROS stack is used to control the KUKA’s
joint positions [51] and the TRAC-IK library is used for computing inverse kinematics [12].
As used in later experiments for accessing ground truth force-torque readings at the wrist,
an ATI Axia 6-dof transducer is mounted between the end of the robot arm and the tactile
sensing module.

2.3 Geometry Sensing

We now explain how the sensor’s sensory data, an organized point cloud representation of
the elastic membrane’s physical shape, allows for both the geometric reconstruction of its
contact region with an obstacle as well as a recovery of the forces applied to the sensor.
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Theory

Upon contact of the membrane with an external obstacle, the goal of contact region recon-
struction is to estimate the geometry of the obstacle from the sensory data, which in this
case is the point cloud stream from the camera. Since the imaged elastic membrane deforms
to the shape of the obstacle it touches, the problem of reconstructing the contacted obstacle
boils down to the identification of surface elements on the cloud at which contact with the
obstacle is made. It is important to note that not all surface elements that are deformed
post-contact are themselves in contact with the obstacle. This is because tensional forces
can be induced in non-contact elements whilst the membrane settles at an equilibrium state
of minimal elastic energy [38].

Therefore, each surface element on the membrane during physical interaction with an
obstacle can be classified in exactly one of three categories:

e Undeformed (Type A): Surface element maintains its geometry and location pre-
and post-contact.

e Deformed and Non-Contacted (Type B): Surface element is not in contact with
the obstacle, but undergoes a non-rigid transformation post-contact.

e Deformed and Contacted (Type C): Surface element is both in contact with the
obstacle and undergoes a non-rigid transformation post-contact.

Fig. 2.3 illustrates an example of these surface types. In our configuration, it is straight-
forward to distinguish deformed surface area elements, since the known geometry of the
hemispherical shell allows for a pose comparison between any surface area element pre- and
post-contact. To further discern a Type B from a Type C surface element, we adopt the
contact region estimation method presented by Ito et al. [68], who developed a fluid-filled
hemispherical shape-sensing tactile shell similar in geometry to ours. They showed that for
a soft membrane that is comprised entirely of convex surface elements when not in contact
with an object, like in the case of our sensor’s hemispherical shell, a change in the sign of
surface convexity signifies that the region is subject to external forces from an obstacle. We
thereby follow the computationally efficient method presented in [128] to estimate the local
curvature signal x of a curve between points at  and ¢ with normal vectors n(Z) and n(¥)
as the following:

K(Z,7) = (T = g, 2(T) — 2(7)) (2.1)
In order to calculate the normal vectors at each point in the cloud, we apply normal
estimation for organized point clouds using integral images as implemented in the Point
Cloud Library (PCL) [144]. Then, to reason about the curvature of the entire surface area
element, we select two surface curves passing through its center along the two principal
planar axes, and calculate the curvature from their endpoints using Eq. 2.1. This technique
is illustrated in Fig. 2.4, and the pseudocode for classifying any point in software is presented
in Algorithm 1. In this formulation, p defines the dimensions of the surface element. This
parameter p should be chosen to be big enough to reduce false classifications on a pre-contact
membrane, but small enough to be accurate during post-contact estimation.
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(a) Pre-contact (b) Post-contact

Figure 2.3: Upon contact with a spherical obstacle, an elastic membrane can be partitioned
into regions of Type A (black), Type B (blue), and Type C (red). ©)2019 IEEE.

Figure 2.4: Two surface curves are sampled from each surface area element to characterize
the concavity of the element. (©)2019 IEEE.

Algorithm 1 Classify element centered at indices (¢, ) of organized point cloud

x_neighbors < (¢ —p,r), (c+p,7r)

y_neighbors < (c¢,r — p), (¢,r +p)

if ISUNDEFORMED(c, ) then
return A

else if CONVEXITY (z_neighbors) > 0 or CONVEXITY (y_neighbors) > 0 then
return C

else
return B

end if
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Furthermore, the success of this procedure hinges on the following reasonable assump-
tions:

1. Contact surfaces of an obstacle are themselves flat or convex. Otherwise, the membrane
cannot be guaranteed to deform upon contact, which is a necessary condition for the
sensor’s optical perception mechanism.

2. The inner pressure of the membrane is larger than the outer pressure so that changes
in the sign of concavity are undoubtedly from external obstacle normal forces rather
then a balance of internal pressure and deformed tensional forces in the membrane.

3. The thickness of this particular membrane material is low enough such that the bending
moment is negligible. This criteria is fulfilled by design, as the thickness is only around
5% of the shell radius.

4. The contact area of an obstacle is larger than a single surface element in the membrane.
Otherwise, deflections in the membrane will not be adequately captured in the normal
vector calculations.

Results

The goal of this experiment is to analyze the performance of the contact region reconstruction
methods in the actual sensor device. In the experiment, the sensor contacts three different
rigid obstacles mounted on the force sensor starting from a pre-contact state at PV = 70 Nm
at a pole indendation depth of 10 mm. Two of these obstacles, the rectangular prism and
the ring, has flat surfaces. The sphere, however, is a convex but non-flat obstacle. Following
the method outlined above, each surface element as defined by the points in the organized
point cloud are classified as one of Type A, B, or C. The results of the 2D projection of
the surface classification is shown in Fig. 2.5. The surface area element size is chosen
to minimize false positive classification as a contact area in the pre-contact case. Using
the pico flexx camera, this corresponds to a p = 10 value as referred to in Algorithm 1.
We see that there is good correspondence between the geometry of the estimated contact
region with that of the real obstacle, especially for the flat rectangle and ring obstacles.
However, the sensor underestimates the area of the convex spherical object as a result of
our use of an internal compressible gas. Since volume is not preserved upon contact, the
membrane is unable to fully hug the boundary of the contact sphere. Thus, though the flat
obstacles yields a maximum boundary detection error of approximately 1 mm, this error
is around 3 mm for the sphere. The results suggest that although the specific shape of
an obstacle may constrain the amount of geometric information that can be gleaned from
any singular contact state, the region of the membrane that actually is in contact with an
obstacle can be measured very well. Thus, approaching an obstacle from only one angle
is generally insufficient in characterizing its geometry. This is no different from our own
biological fingertips, in that objects of interest usually have to be probed from many different
directions before we can infer their structures. When the sensor probes an object in 3D, it
is also possible to concatenate sequential readings to build up a fully 3D representation of
the object (see Fig. 2.6 for example readings on everyday objects).
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Figure 2.5: Classification of point cloud surface elements projected onto the xy-plane. Here,
the surface element center, rather than the full surface element, is plotted as either Type A
(gray), Type B (blue), or Type C (yellow) in order to depict the spacing between adjacent
points in the cloud. The borders of the real obstacle are shown in red. The projections
shown here are limited to a radius of 3 c¢m, since that was large enough to entirely contain
the contact regions. (©)2019 IEEE.

(a) Glass bottle (b) Face (front and side view)

Figure 2.6: Examples of geometry reconstruction of two real-world 3D objects. (C©)2022
IEEE.

Sensitivity to Pressure

Though contact area estimation yields good results compared to the real geometry of the
obstacle, the data was only collected for a fixed deformation and initial gas state. Since
real world applications are seldom so constrained, we aim to quantify how sensor action
(i.e., how it interacts with the environment by modulating PV states and actuating linearly)
impacts perception (i.e., what sensory information can be obtained from the membrane via
the camera). In this experiment, the 3D estimated contact surface area is plotted as a
function of the indentation depth for the three spherical obstacles at different PV values,
as shown in Fig. 2.7. From this data alone, there are no clear differences in estimated
surface area for different initial gas states, as long as no free air exchange is allowed with
the external environment. This is a useful result, as it implies that contact estimation can
be performed with the same parameters regardless of the sensor’s initial gas state. We also
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see that the estimated surface area generally tends to increase with the indentation depth.
This is expected due to the increasing cross-sectional area of each sphere encountered by
the membrane as it sinks into the sensor. At the same time, we previously observed the
membrane’s inability to completely wrap itself around spherical obstacles. Thus, the fact
that the estimated contact area never attains a value as high as half of the contact sphere’s
full surface area is justified. Though not explored in detail within this work, these trends
are not directly applicable to obstacles with sharper boundaries (e.g., if the sensor were to
contact the face of a rectangular prism).

The relationship between indentation depth and the estimated surface area of all de-
formed points (i.e., those of either Type B or C) is also analyzed. In Fig. 2.8, this estimated
deformation surface area is plotted for the same indentation depths as in Fig. 2.7. We see
that with lower initial pressure and expansion of the sensor, the bending moment of the
membrane is not counterbalanced as strongly by the internal pressure, and therefore the
deformation is greater upon contact with an obstacle. This implies that a lower density of
the internal gas allows for the sensor to be more sensitive (i.e., undergo larger deformations)
upon obstacle contact.

Figure 2.7: 3D contact surface area estimates upon contact with spheres of diameters a) 10,
b) 20, and ¢) 30 mm at different indentation depths and pre-deformation PV states. The
black dotted line denotes half of the total surface area of the actual sphere. (€)2019 IEEE.

2.4 Force-Deformation Characteristics

Theory

In physics theory, the constitutive equations of continuum elastic materials relates the stress
and strain tensors over the membrane body. In the case of the soft sensor, this intrinsic
relationship between stress and strain means that the membrane configuration at any contact
state encodes precise information about the applied and internal forces being applied to it.
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Figure 2.8: 3D deformation surface area estimates upon contact with spheres of diameters
a) 10, b) 20, and ¢) 30 mm at different indentation depths and pre-deformation PV states.
Results when the capsule is allowed free air exchange with the atmosphere are plotted in

black. (©)2019 IEEE.

In this section, we discuss which methods work best in practice for finding the applied forces
on the membrane given its deformed configuration.

This is not a simple task, as recovering the membrane loads that transformed it from
its initial body shape to a subsequent deformed one requires complex procedures [171] such
as finite element modelling and other numerical optimization techniques [151]. Although
elastic shell theory can be leveraged in solving this inverse elastostatic problem given our
compatible sensor configuration [182], it is still too computationally demanding to be applied
in robotic applications that require real-time feedback and control. For this reason, we
follow the approach of similar devices and utilize approximate but much simpler models to
characterize the force-deformation characteristics of our sensor. As shown by Vella et al [169],
the indentation of pressurized elastic shells exhibit two near-linear force-deformation regimes
at small and large indentation depths relative to the shell thickness respectively. Their setup
was similar to ours in that upon contact, the module preserves neither volume nor internal
pressure. In addition, a previous iteration of the sensor in our group similarly verified near-
linear characteristics that matched up very well with the analytical Hertz contact model
[5]. Therefore, we maintain an approximation of the tactile sensor at each internal gas state
as an equivalent linear isotropic elastic sphere. We also restrict indentation geometries in
characterization experiments to simple spherical geometries, such that the following Hertz
contact relationship between the load force F' and the indentation depth ¢ holds:

-1 -1/2
4(1—v? 1— 12 1 1
F=- 1 2 — = §3/2 2.2
3 ( Ey + Ey ) <R1 + R2> ( )

where F;, and R;, and v; are the elastic modulus, radius, and Poisson’s ratio of each
equivalent elastic sphere. We note that these equivalent mechanical properties depend on the
internal gaseous thermodynamic attributes as well as the induced strain in the membrane due
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to expansion. In our setup, since pumping air into the capsule changes not only the internal
pressure but also the volume of the capsule due to the expansion of the elastic membrane,
we characterize each pre-contact internal gas state by the product of the pressure and the
volume, denoted as PV'.

At small indentation depths relative to the size of the sphere, we expect the Hertz rela-
tionship to be roughly linear, as was also demonstrated by [5]. The validity of this hypothesis
will be verified in characterization experiments next.

Results

In order to bypass the need for solving complex elastic shell analysis problems in real time, we
characterize the relationship between force and indentation depth of our device empirically.
For contact obstacle spheres of different sizes (diameters of 10, 20, and 30 mm), the applied
force vs. indentation depth is measured for different initial internal gas states. During data
collection, the indentation depth is varied using the linear actuator at a quasistatic rate
of change of 10 mm/s. At each time step, the indentation depth is measured directly by
the depth camera, and the axial force by the load cell. These results are plotted in Fig.
2.9. As expected, the force-displacement curves are nearly linear. Moreover, for all three
obstacles, the axial force F, increases with PV at a fixed depth §. Then, for each plotted
curve given a fixed initial gas state characterized by PV, linear regression is performed and
the fitted slopes are recorded. The relationship between this fitted slope vs. the initial
gas state is plotted in Fig. 2.10. It is clear that as the diameter of the contact sphere
increases, the slope of the force-indentation curve increases given a fixed initial PV. Though
the slope increases monotonically with PV, the relationship is non-linear. We then fit a
polynomial curve of order four to each of the plots in Fig. 2.10. As a result, for each of
the three spherical geometries, a deterministic relationship between PV and its resulting
force-indentation model is found.

Force-Matching Experiments

It is shown that the sensor’s readings are impacted by its interaction with the environment.
Similarly, its physical interactions can be informed by its sensory feedback. We demonstrate
this notion of perception for action by utilizing the camera data to accurately apply a desired
force on the environment. In this experiment, we leverage our experimental model built in
Section 2.4 to map indentation depths to applied forces, with the size of the contact sphere
as well as the initial PV state as parameters. Thus, given a desired axial force to be applied,
the corresponding indentation depth that would result in this desired force can be estimated.
Then, using the membrane point cloud as a control input (perception), the sensor can move
to any desired indentation depth in order to apply a certain desired axial force on the contact
obstacle (action).

We test the sensor’s ability to perform this force matching on the 10 mm diameter contact
sphere at three different pre-deformation gas states that are representative of the range of
gas states characterized. Then, for each (PV, Fyesireq) pair, the sensor autonomously moves
to a position such that the indentation depth is equal to its estimate of d4esireq based on the
experimental model. Note that the set of desired forces is chosen to lie within the range of
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Figure 2.9: Force-indentation results upon contact with spheres of diameter a) 10, b) 20,
and c¢) 30 mm at different pre-deformation PV states. Results when the capsule is allowed
free air exchange with the atmosphere are plotted in black. (©)2019 IEEE.

Figure 2.10: The slope of the force-indentation curve as calculated via linear regression
plotted against the pre-deformation PV state. Results when the capsule is allowed free air
exchange with the atmosphere are plotted in black. (©)2019 IEEE.

possible applied forces at each of the three PV states. The sensor is actuated using a simple
position-based proportional controller using the indentation depth as feedback. Three trials,
each of which lasts less than 3 seconds, are performed for each (PV, Fyesireq) pair, and the
results are shown in Fig. 2.11.

The average errors, defined as Fj.iya — Fyesired, are tabulated for each PV state in Table
2.1. We remark that the error decreases for higher PV states. One possible explanation



CHAPTER 2. DEPTH CAMERA-BASED SOFT SENSING 16

Figure 2.11: Force matching results for three different pre-deformation PV states a) 32.5, b)
61.2, and c) 103.4 Nm using the model for the 10 mm diameter contact sphere. The mean
and standard error of the three trials are plotted along with Fesirea. (©2019 IEEE.

Table 2.1: Average force error on a 10 mm diameter sphere.

PV [Nm] 325 61.2 103.4
Average Error [N] | 0.30 £0.08 | 0.25 £0.08 | 0.02 £0.07

for this observation is that perturbations about small PV values yield high variances in the
resultant estimated slope of the force-indentation curve. This is evident in Fig. 2.10, where
the rate of change of the curve is much higher at lower PV. For this reason, the model is
extremely sensitive at low PV values, and the resulting force errors in practice are expected
to be higher. All in all, the sensor’s ability to autonomously apply desired external forces
using only sensory information in real time supports the validity of the experimental model
characterized in Section 2.4.
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Chapter 3

Physical Human-Robot Interaction
for Upper Limb Support

This chapter is adapted in part from “High Resolution Soft Tactile Interface for Physical
Human-Robot Interaction” [58], written in collaboration with Ruzena Bajcsy.

3.1 Introduction

Physical interaction among humans is a natural and essential method by which we communi-
cate with and assist each other. As a communication tool, physical interaction can be more
clear and intuitive than providing auditory or visual cues. For example, one can swiftly grab
a friend’s arm to stop them from walking into incoming traffic, or manually adjust their form
when teaching them a new task, such as how to swing a golf club properly. As a means of
assistance for those who have limited mobility, physical interaction is even more vital. This
is especially clear for caretakers who aid clinical patients or the elderly in everyday tasks
such as helping them walk, sit up in bed, or change their clothes.

If robots are to coexist with and be useful to humans, endowing them with similar
capabilities of physical interaction would be hugely advantageous and would facilitate a
myriad of exciting applications with considerable societal impact. A necessary component
of such a robot capable of physical interaction is a tactile interface, which should not only
ensure a human’s safety during interaction, but also enable the correct sensing of interaction
forces. In this work, we propose a tactile interface that strives to address these two concerns
of safety and accurate sensing.

Our tactile interface consists of a pneumatically pressurized domed contact membrane
molded from silicone. The compliant properties of this soft device make it inherently safe for
physical interaction with humans. Moreover, our design belongs to an up-and-coming class
of optical tactile sensors that utilizes embedded depth-sensing cameras to extract interaction
information from a soft contact region. This type of camera offers a richness in visual data
that is unmatched by traditional 2D cameras and ultimately enables high sensing accuracy.
Specifically, there are two main goals that are desired in tactile sensing. Firstly, it is useful
to infer the physical geometry of the object in contact, and it has been shown in our previous
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Figure 3.1: The proposed soft interface enables safe and precise tactile interaction between
a human and a robot. (©)2020 IEEE.

work that our design does so extremely efficiently [65]. Secondly, a more difficult goal is to
infer the force that is being applied on the sensor. It is not possible to directly read force from
vision, so some sort of mapping is required. This is challenging even for a sensor like ours
that outputs a high-fidelity 3D membrane representation, as non-linear constituent elastic
stress-strain equations require finite element methods that are computationally intensive and
highly sensitive to manufacturing parameters. In this work, following the recent successes in
the field, data-driven techniques will be employed in the modeling of the soft contact region.

The space of all contact interactions and resultant forces for which to build this mapping
is extremely vast, but will be constrained in this work based on two proposed physical human-
robot interaction (pHRI) applications that both involve interaction with the human upper
limb. These applications are inspired by our motivating examples for physical interaction to
be used in communication as well as in assistance. To demonstrate tactile communication,
we show that a human can successfully alter a robot’s end effector pose by indenting the
tactile interface in the appropriate location with their fingertip. To exemplify an assistive
task, we demonstrate that our soft interface can act as a soft forearm support that adapts
to and follows the human’s dynamic forearm motions by interpreting the shear and torque
forces applied by the human forearm to the tactile interface.

3.2 Related Work

Methods for Inferring Interaction Forces Visually

It is challenging to interpret forces from visual data provided by optical tactile sensing
methods. To this end, finite element modeling techniques have been applied to generate
a mapping between visual data and contact forces, but this approach is computationally
heavy and not suitable for real time control [156]. In the recent years, data-driven methods
have proven themselves to be fast and accurate for use with modeling optical tactile sensors.
Within the TacTip family, deep learning enabled the fast development of edge detection
and contour following capabilities. For even more fine tasks, for example, the GelSight
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has been a successful platform for learning physical models to detect object hardness [181],
or to perform complicated manipulation tasks via reinforcement learning [47|, or even to
detect differences in fabric texture [90]. As a result of these successes, convolutional neural
networks for processing visual data in tactile sensing has become a promising method in the
community. In this work, we adopt a similar architecture when creating our own model.

Existing Applications in pHRI

The space of existing pHRI applications in general is limited with respect to purpose and pre-
cision. In rigid robots, force-torque sensors are the primary transducers for pHRI, enabling
interactions for example with robot arms [6] and full-bodied partner ballroom dancing robots
[78]. The sensory capabilities of these robots are very powerful, but their pHRI applications
are limited due to risk of unsafe interactions with the hard chassis. The scope of existing soft
pHRI robots is unsurprisingly even more narrow due to challenging constraints in mechan-
ical design and sensing. Some noteworthy examples of existing soft pHRI systems include
RI-MAN, a humanoid robot designed to help lift and carry humans [122], and Huggable, a
soft robot pet surrogate [158] that responds to affective touch-based interactions. There is
an apparent need in the field to develop robots that can perform useful and precise pHRI
task while remaining compliant enough to assure human safety. Thus, this work presents two
useful applications of the proposed robotic system that involve completely soft interactions
and do not require bulky transducers apart from a small internally embedded camera.

3.3 Data Collection

Admissible Interactions

The space of admissible interactions studied in this work was limited by design based on
the two different pHRI applications we wished to achieve. Both applications involve specific
interactions with the human upper limb, and illustrate the usage of physical interaction as
a means of human-robot communication and assistance respectively.

Robot End Effector Pose Correction

The first application utilizes the tactile interface as a communication tool from the human
to the robot. In this regime, the human physically corrects the end effector pose of the robot
by prodding the robot towards the desired configuration through interaction with the tactile
interface. Here, interactions for this application are limited to single finger poking so that
the contact geometry can be kept simple. Thus, we avoid more complicated interactions
such as those from multiple fingers and/or the palm.

Dynamic Support of the Human Forearm.

The second application enables the robot to act as an assistive device for the human. Specifi-
cally, it assists with upper limb motion, a common feature in ergonomic design and exoskele-
tons that helps minimize the effort required to support the weight of one’s arm [138]. In this
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application, the human’s forearm rests on top of and is fully supported by the soft tactile
interface. However, such a support system is only useful if the human has autonomy over
their own movements. Thus, the device follows and dynamically supports the forearm as it
translates in space, as well as rotates with it when a torque about the sensor axis is applied.

Datasets

Both applications can only be implemented if the robot is aware of the forces and torques
being applied to it during interaction. In its most useful form, the robot should only have
access to the depth camera readings, since being outfitted with a force-torque sensor renders
the overall system less compliant. Thus, mappings that predict the force-torque responsible
for a measured membrane point cloud need to be available to the robot. To this end, we
systematically collect a dataset of admissible interactions and their resulting induced force,
torque, and point clouds in order to train a data-driven model that provides this mapping.
There are two datasets, one for each application, that are collected. Note that the coordinate
system is defined to be fixed to the ATI force-torque sensor. The principal camera axes also
share the same orientation as the force-torque coordinate frame.

Finger Poking Dataset

Fingertip apparatus. A rigid sphere 1 cm in diameter printed from PLA is used in the
data collecting experiments as an approximate duplicate of an average human fingertip. Since
minimal slip and shear is expected for the poking interactions, it is reasonable to neglect the
frictional effects of skin versus PLA.

Pre-indentation contact points. The sphere is then used to indent the membrane at
a variety of locations at different angles and depths, and the resultant membrane point
cloud and force-torque measurements at each state are recorded. The interaction states are
discretized systematically. First, a set of initial contact points on the membrane surface
are selected. As illustrated in Fig. 3.2, this is achieved by designating 40 equally spaced
quarter-circle arcs that run from the pole to the base of the hemisphere (parameterized by
¢ = g—é, J € [0..39]). Along each quarter-circle arc, five points are selected with projections
on the xy-plane that are equally spaced with radii 0 to 4 cm from the pole, leaving enough
of a distance from the base of the hemisphere so that boundary contact conditions can be
avoided. These initial contact points indicate the location at which the spherical obstacle
first makes contact with the membrane to begin indentation.

Indentation locations Then, the sphere indents the membrane at varying depths and
angles from the z-axis. As illustrated in Fig. 3.3, each pre-indentation contact point is
the starting point for 10 different indentation directions (f = Z£, k € [0..9]). Along each
indentation direction, five different indentation depths ¢ equally spaced from 0.5 to 2.5 cm
are visited. All indentation locations that stemmed from any one pre-indentation contact
point are constrained to one plane, and interactions are actuated by the KUKA arm pushing
into the fixed sphere at the appropriate angles and depths. In total, there are 10,000 unique
states for which data is collected.

Visualization of example data. Figs. 3.4a, 3.4d, and 3.4g are radial plots of ground
truth 7, at a particular indentation state parameterized by # and ¢ starting from every pre-
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indentation contact state, where the size of each marker is scaled according to the magnitude
of 7,. Between Figs. 3.4a and 3.4d, the magnitude of the measured 7, is greater in 3.4d,
due to its indentation depth being 1 cm deeper. Fig. 3.4g depicts the torque value when
the 0 is large enough that torque applied is in the opposite direction compared to a smaller
f such as in Fig. 3.4d. The magnitude is also larger because the moment arm to the z-axis
attached to the force-torque sensor becomes longer.

Figure 3.2: Polar view of the pre- Figure 3.3: Side view of the pre-

indentation fingertip contact points that indentation contact points and the in-
lie on 40 evenly-spaced quarter-circle arcs. dentation locations associated with each.
(©)2020 IEEE. (©)2020 IEEE.

Forearm Shearing and Torquing Dataset

Forearm apparatus. An attempt to replicate a generic forearm geometry using a simple
3D-printed ellipsoid is unsuccessful due to the different material properties between PLA
and human skin yielding different frictional forces during interaction. Thus, data is collected
using the researcher’s real forearm. The forearm is placed directly underneath the sensor
during data collection such that its axis is centered on the membrane. A fixed brace is used
to keep the forearm consistently in the same place between data collection sessions.
Shearing. The device pushes into the forearm until an indentation depth ¢ is achieved,
as measured from the z-displacement of the pole. Fig. 3.5 illustrates the indentation loca-
tions visited by the forearm contact point. Then, the device moves in a specific direction
parameterized by ¢ in the zy-plane, defined in the same way as in Fig. 3.2 of the fingertip
experiment, and stops at 5 different distances from 0.3 to 1.5 cm away. This shearing dis-
tance was limited to avoid material slip. This process is then repeated for ¢ = %1—73, l €[0..40]
rad and also for 6 = Zt,m € [0..8] cm.

Torquing. In the same manner as the shearing experiments, the device pushes into the
forearm until an indentation depth ¢ is achieved. Then, the device rotates about its z-axis
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(a) 0 = {g rad, 6 = 1.5 cm (b) 0 = {5 rad, § = 1.5 cm (c) 0= {5 rad, § = 1.5 cm

(d) 0 = {5 rad, 0 = 2.5 cm (e) = {g rad, § = 2.5 cm (f) 0 = {5 rad, 6 = 2.5 cm

(g)Gz%rad,ézQ.E)cm (h)ﬂz%rad,5:2.5cm (i)@z%rad,ézz’écm

Figure 3.4: Polar plot of 7, in the fingertip dataset starting at all pre-indentation contact
points for selected values of 6 and . Columns separate ground truth readings (left), pre-
diction learned from poking data (middle), and prediction learned from both poking and
forearm data (right). (©)2020 IEEE.
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Figure 3.5: Side view of the forearm indentation states. Arm is not drawn to scale. (©)2020
IEEE.

in one direction, stopping at angles ) = T%,n € [0..8]. for data recording. The maximum
rotation angle achieved, %, is limited to avoid material slip from excessive torquing. This is
repeated for rotation in the opposite direction, and then also for § = £, p € [0..8] cm. For
both the shearing and torquing motions, data is collected for 1726 interaction states. In
order to achieve a better distribution of samples, the forearm experiments are repeated 4

more times so that a total of 8640 datapoints are collected.

3.4 Wrench Prediction Model

Architecture

The neural network architecture used to map the input of a 171 x 224 organized point cloud
into a 6-dimensional force-torque vector is illustrated in Fig. 3.6. Each point cloud input, an
array of depth measurements, is passed through a series of two convolutional and max-pooling
layers, and then through a fully-connected regression network to yield the predicted resultant
force-torque measurement. We train three different models with the same architecture. The
first model combines the data from the two datasets, and the other two are trained on
either only the poking or only the forearm dataset. Since the two interaction regimes are
quite different, we want to explore whether the combined dataset network would be able to
generalize and perform as well as each of the individial dataset models. The networks are
trained with the SGD optimizer and a learning rate of 0.01 with no decay, and a dropout of
0.2 is implemented in the fully-connected layers to prevent overfitting. An 80:20 train/test
split is selected for hyperparameter tuning and validation. The finger poking dataset, with
10,000 total datapoints, leveled out to a validation MSE of 0.03 after training with a batch
size of 500. The forearm dataset, with a total of 8640 datapoints, yielded a final validation
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Figure 3.6: Architecture of the force-torque-deformation model. (€)2020 IEEE.

MSE of 0.057 after training with a batch size of 400. The combined dataset yielded a final
validation MSE of 0.1 with a training batch size of 500. All force-torque values are recorded
in ST units.

Prediction Results

We find that in general, the two models trained on the individual datasets perform very well
in validation. For example, in Fig. 3.4 we can compare the performance of the poking dataset
model (middle columm) with the ground truth (left column) and note that the prediction
is qualitatively accurate. However, it is apparent that the combined model (right column)
yields less accurate predictions, which can be vastly different from the ground truth. For
example, in Fig. 3.4f, the sign on the 7, reading in the third quadrant is evidently wrong. The
performance of the forearm model is also very good in predicting forearm shear and torquing
forces. Fig. 3.7 visualizes example validation data for both the forearm and the combined
models on a set of ground truth forearm shearing readings at ¢ = ?jf at a depth of 6 = 0.75
cm. Qualitatively, both models perform well. However, when predicting forearm torques,
with example prediction on validation data in Fig. 3.8, the combined model fails to output
good prediction. One explanation is that while shearing and poking interactions involve
pushing, the twisting involved in torquing yields more complicated membrane structures,
and there is not enough training data for the combined model to generalize well.

3.5 Real-World Applications

We perform a proof-of-concept demonstration of the two applications in which the robot uses
its learned force-deformation models. For each application, we utilize the individually trained
models rather than the combined one due to their higher accuracy. Example snapshots are
depicted in Figs. 3.9 and 3.10. For the two cases, we implement the same simple control loop
at a slow 1 Hz rate for safety purposes, at which the robot changes its configuration based
on its the predicted force and torque from the point cloud stream. At each update step,
where values are measured in SI units, the robot position in the world frame p = [p, p, p.]*
is updated according to p; < p; + 0.1F;,i € {x,y,z}. Additionally, a rotation about each
of the principal axes in the body frame attached to the base of the cylinder (i.e. at the
force sensor), is applied according to R;(27;) where R; i,s the rotation operator about the it
principal axis. These constants are chosen empirically such that they yield a large enough
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(a) Predicted F (b) Predicted F, (c) Predicted F,

Figure 3.7: Forearm shearing example validation data at ¢ = 374 and 6 = 0.75 cm comparing
the predictions of the forearm and combined models with the ground truth. (©)2020 IEEE.

(a) Ground truth data. (b) Forearm model predic- (¢) Combined model predic-
tion. tion.

Figure 3.8: Predicted 7, on example forearm torquing validation data as a function of the
yaw angle for different indentation depths §. (©)2020 IEEE.
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(a) User uses their (b) Robot changes (c) User pokes at
propor- the interface at an
and opposite to the tional to its sensed angle to the z-axis.
contact force.

finger to poke along position

z-axis of the robot.
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(d) Robot changes
position and ori-
entation according

to the user’s force-
torque input.

Figure 3.9: Real-world validation of the robot end effector pose correction application.

(©)2020 IEEE.

(a) User begins (b) User applies
by resting their a combined shear

forearm on the and torsional
soft interface. force to the
robot.

(c) Robot reacts
by changing both
its position and
orientation.

(d) User attempts
to exert a pure
torque on the in-
terface.

(e) Robot reacts
by twisting in the

same direction
as the applied
torque.

Figure 3.10: Real world validation of the dynamic forearm support. (©)2020 IEEE.

change in robot joint configuration at each step without being too sensitive to sensor noise.
In the forearm application, the force is initially zeroed at the resting position (i.e., when
the forearm’s weight is fully supported by the robot). As expected from the good validation
results in the models, the system is reliable and consistently responded as expected. However,
an in-depth user study is not performed, so the usability and comfort of the system is not

confirmed here.
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3.6 Discussion

We present a method to infer contact forces and torques during interaction with our soft
tactile interface. Rather than implement complicated, intractable analytical solutions, we
turn to numerical solutions. We train a neural network to resolve contact wrenches for a
limited set of upper limb interactions, and show that inference can be performed in-the-loop.
We finally leverage these predictions on several pilot experiments with a real human.

However, our results are limited compared to a general physics solver, either analytically
or using 3D FEM. Our network only predicts net wrench signals, rather than entire force
distributions over the interface body. While this may be enough for many applications,
it could be useful to expand inference to the entire contact distribution itself, which may
enable more complicated interactions such as multi fingered pinching. As evidenced from the
combined model’s performing unreliably compared to the individually trained models, we
are far from having achieved generalization with our technique. In the future, using networks
that leverage known physical relationships in elastic shell theory, such as those with strong
relational inductive biases such as graph networks, would likely outperform the CNN-based
technique in our work. Finally, running the system at a higher control rate would be more
compelling for real world applications, and it would be way to test and develop real-time
HRI algorithms for human-robot teaming and teaching.
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Chapter 4

Contour Following

This chapter is adapted in part from “Soft Tactile Contour Following for Robot-Assisted
Wiping and Bathing” [60], written in collaboration with Dylan Chow and Ruzena Bajcsy.

4.1 Introduction

Robots have the potential to greatly reduce the time and effort humans spend daily on
domestic and personal care. One such major task is cleaning the home, for which the average
American spends almost 24 hours per month. Over the past couple of decades, floor cleaning
robots have become a popular consumer product [160], in which the home environment is
simplified into essentially a two-dimensional problem due to the planar nature of the floor.
However, robotic cleaning in the three-dimensional domain is more complicated, and has yet
to see mainstream adoption in the consumer market. For example, such tasks include the
cleaning of furniture like windows, kitchen counters, railings, and sinks. In a similar vein,
the bathing of humans is also a three-dimensional problem. For bathing, the development
of assistive robots is not only a matter of convenience, but also of necessity. In fact, the
inability to bathe independently is the leading cause for moving into full-time care facilities
[40]. Meanwhile, the current shortage of nurses [48] continues to be stressed by the rapidly
growing elderly population [117].

We group the cleaning of household furniture and bathing of bodies as one unified prob-
lem. Both involve the process of contour following, in which a robot performs wiping motions
along the edges and surfaces of what is being cleaned. In addition, a certain level of contact
between the robot and the object or body is maintained in order to apply the required forces
to scrub off grime or dirt. Based on how humans themselves would perform these cleaning
tasks, we follow three major design principles when building our system.

First, tactile sensing is the dominant and most informative sense in humans for perform-
ing contact-rich tasks such as wiping for cleaning [84]. Therefore, our system also utilizes
tactile sensing, though external vision-based sensing can add complementary scene compre-
hension in future work. Similarly to a human hand, our tactile sensing relays signals that are
informative of the target’s geometry as well as the contact forces being exerted. Second, hu-
mans are able to safely perform wiping for cleaning without damaging the target, due to the
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Figure 4.1: We use a soft tactile sensor to perform cleaning tasks on objects and body parts
via contour following and force regulation. This general controller is successful on all unseen
tasks and requires no learned models. (€)2022 IEEE.

softness of their palms as well as the compliance in their arm joints. Introducing compliance
into the robotic system is crucial for safety, so we propose the use of an soft tactile interface
that is inherently soft due to material compliance. Third, humans can easily adapt to wiping
unseen geometries. Thus, we also design our system to function for general contours, rather
than impose strict constraints on object geometry like most previous works have done. We
also employ a physically-interpretable control scheme that requires no data-driven learning.
Finally, we demonstrate our system on wiping tasks for a variety of objects such as pipes,
shelves, and parts of the human body. To our knowledge, this is the widest set of general
contour-following experiments for objects on a human-sized scale.

Existing work in the field utilizes diverse techniques and designs to perform robotic
wiping. Saito et al. applied deep learning and kinesthetic demonstration to teach a robot
holding a rigidly-connected mop to wipe the exterior surface of lampshades [147], and found
that the tactile signal corresponding to four pressure sensors attached to the mop handle
were more important features for successful wiping than were the raw camera images of the
scene. Gao et al. represented objects using task-oriented keypoints for force control tasks
such as wiping a whiteboard with soft erasers [41]. However, the whiteboard surface was
known to be flat with fixed and predetermined edges. In another work, when the geometry
of the object of interest was perfectly known in an industrial setting, wiping occurred by
performing force control while tracking a predefined position trajectory [124].

Bathing also involves a very similar method of wiping that is instead performed on the
surface of a body. King et al. used a robot end effector wrapped in a washcloth to perform
back and force wiping motions on a user-specified region of a human arm. The wiping
trajectory was purely horizontal as enforced by a constraint that the arm was laid flat on a
bed, and was initiated upon contact detected by a force-torque sensor at the wrist [76]. To



CHAPTER 4. CONTOUR FOLLOWING 30

adapt to a wider set of limb poses, Erickson et al. used a six-electrode capacitive sensor at
the end effector to systematically probe the surrounding areas of human arms and legs bent
at different angles, and trained a neural network to predict the relative pose between the
end effector and the limb at test time. With real-time pose estimation, the sensor was able
to successfully traverse the length of human legs and arms, even when bent at the knees or
elbows. However, only position targets were used, and applied forces during wiping were not
controlled. A vision-based system washing system used cameras to dynamically detect the
surface of a human back and fit a back-and-forth wiping dynamic motion primitive to the
relevant region [28], but for safety did not actually perform the action on a human due to
a lack of tactile sensing. While vision and tactile sensing are complementary, in this work
we develop a tactile-only system due to its dominance in contact-rich tasks such as contour
following [84].

A major shortcoming in almost all of these works is that the controllers were designed
only for one or two specific objects. However, we believe a useful controller for executing
wiping actions on any surface, be it on objects or on humans, should be general. For example,
a robot that is able to wipe down a railing should also be able to wipe down a person’s back.
Thus, we cannot make assumptions about object geometry (e.g., that it is flat [41]) a priori.
However, inference of local object geometry information is difficult to achieve from low-
dimensional implicit sensor signals, which requires the use of neural networks and adequate
training data. Yet, these models are non-interpretable and functional only on seen objects
(e.g. lampshades [147] or limbs [34]). In this work, we propose the use of an optical tactile
sensor that provides explicit geometric signals of contact surface geometry via imaging the
deformation of a soft membrane. As a result, we can apply the same general controller to
wipe any unseen object surface without the use of deep learning.

4.2 Contour-Following Controller

Intuitively, successful contour following needs to fulfill several specifications. First, the shape
of the object should determine how the robot moves in space so that contact is maintained.
Second, the amount of force applied on the object should be regulated. Third, contact should
be constrained to the soft part of the robot only. To achieve these specifications, we propose
the following three-term discrete-time linear controller to govern the end effector pose with
translational and rotation components p and R. Please refer to Fig. 4.2 to visualize the
controller’s state variables.

plt+1) = K,u,(t) —f(f(Fdes — F(t))ii,(t) + p(t) (4.1)
tracking term force term
R(t+1) = R(@(t), K0) R(t) (4.2)
———

axis alignment term

We now explain the effect of each term, while the next subsection details how these state
quantities (e.g. v,, @) are computed from sensor point clouds. The tracking and force terms
govern position change of the end effector, while the axis alignment term governs orientation
change.
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Figure 4.2: Visualization of the object tangent v,, object normal 7i,, and the sensor central
axis vector 7. (©)2022 IEEE.

Tracking term. The tangent vector to the object v, determines the local change in geometry
of the object. By moving the end effector in exactly this direction, we are able to traverse
along the target’s contour. K, > 0 acts as the step size and should be small to ensure that
the sensor will not lose contact with the object between each timestep.

Force term. This term controls for the total applied force exerted onto the object. For
example, wiping tasks often require high enough forces to scrub away grime or dirt, but not
high enough to cause abrasion on human skin. Fj., and F'(t) are the desired and current force
measures on the object respectively. This force term of the controller drives the end effector
toward exerting a desired Fj.s on the object by moving along 7, which is perpendicular to
the object tangent ,. The force value F'(t) can be measured with a force sensor, e.g. with
a force-torque sensor placed at the based of the tactile sensing module [59]. However, in the
absence of this additional force sensor, we extract a force-correlated measure F(t) purely
from the point cloud data that can replace the true force F'(¢) in the control term.

Axis alignment term. Finally, the axis alignment term ensures that contact stays on the
soft membrane and does not move into the rigid cylinder. Contact with the rigid part of the
sensor is not only unsafe, but is also unable to be registered by the camera. Thus, we ensure
that the central axis vector of the sensor, 77, remains perpendicular to the surface tangent vj,.
The change in orientation between each step is quantified by a rotation of # about a vector &,
and a scaling factor Ky € (0, 1] limits the amount of correctional rotation applied. Fig. 4.3
shows the difference in movement when the controller omits the axis alignment term. In the
absence of the axis alignment term, the object eventually makes contact with the rigid part
of the sensor, and the cleaning cloth subsequently gets caught.

Computation of state quantities

Object tangent v,. The computation of ¥, depends on whether the sensor is in contact
with an object edge or with an object surface. When an edge is contacted (Fig. 4.5a), we
want the robot to follow the edge itself (e.g., along the curved pipe with a distinct edge
in Fig. 4.3). Thus, 9, is the direction of the contacted edge, which we calculate as the
normalized principal component of the deformed point cloud. However, when the sensor
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Figure 4.3: Following the contour of a curved pipe when the axis alignment controller term
is omitted (top), compared to when all three terms are present (bottom). The absence of
the axis alignment term can lead to undesirable contact between the rigid part of the sensor
and the object itself. (©)2022 IEEE.

contacts a surface rather than an edge (Fig. 4.5), there is no longer a dominant direction
of variance. In this case, we assume that the position trajectory of the end effector should
be constrained along a user-defined plane with normal 7,. We define a plane that passes
through the centroid of the deformed point cloud with normal 77, and select all points on
the deformed cloud that are within 0.1 ¢m away from the plane. We then calculate v, as the
normalized first principal component of these selected points. Note that both v, and —d,
are valid object tangent vectors, so the sign should be selected based on the convention of
the practitioner.
Object normal 7i,. The object normal vector 7, is the normalized projection of the unit
sensor axis vector 77, onto a plane with normal v,. Thus, 7, is perpendicular to vj,.
fly = oo (4.3)
|72 — 7 - V|
Rotation parameters &, 0. Finally, J and 6 are the axis and angle of rotation that
transform 7, into 7,.
W =", X1, (4.4)

0 = cos (i, - 71,) (4.5)

Force-correlated F. This quantity is extracted solely from point cloud data, and is cor-
related with the true applied force onto the sensor. Note that in order to compute the real
applied force on the membrane from the deformation field of the point cloud, the most ac-
curate method is via the finite element method, which has not been implemented for this
system. We thus estimate the applied force by modeling each point in the cloud p as an
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Figure 4.4: F compared to the actual applied force as measured by an external force sensor.
The correlation is extremely strong even when in contact with different objects. (©)2022
IEEE.

independent linear elastic element, such that the total £ is the sum of the total deformation
over the N, points in the cloud,

F(t) = pi(0) = () (4.6)

where p;(t) is the depth of point ¢ at time ¢, and p;(0) is the depth of point i when
the membrane is undeformed. Fig. 4.4 shows that there is an extremely strong correlation
between I’ and the actual force.

4.3 Applications

We demonstrate the generalizability of our system by using the same controller to perform
a set of various contour-following tasks on different objects and body parts. We publish
position commands at 1 Hz with K, = 1 ¢m such that the robot’s end effector translational
velocity is approximately 1 ¢m/s. This speed can be increased in future work, where the
objects and body parts may be more dynamic and thus require faster control rates. We
classify each task as either an edge or surface following task based on prior knowledge of
the object geometry. In all tasks, before initial contact is made, the robot is commanded to
move in a fixed direction based on prior knowledge of the task (e.g., the robot will initially
move downwards when it starts above a table). Once initial contact is made, it should be
maintained for the rest of the trajectory. Various cloths are placed in front of the tactile
interface to clean the object, and the cleaning target is stationary in all tasks.
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(a) An object edge is con- (b) An object surface is con-
tacted. tacted.

Figure 4.5

Figure 4.6: The object tangent ¥, is calculated either differently for edge contacts (left) and
surface contacts (right) using the geometry of the deformed point cloud shown in orange.
(©2022 IEEE.

Figure 4.7: The robot wipes the inside edges of a bookcase shelf, while successfully detecting
the change in edge direction. (©)2022 IEEE.

Edge following

We demonstrate the robot’s ability to follow and wipe an object when there is a prominent
edge in the contact geometry. In Fig. 4.7, the robot is able to clean the inner edges of a shelf
on a bookcase with a thin napkin. It lowers onto the shelf then senses contact and moves
horizontally along the shelf edge. Once it reaches the corner of the shelf, it senses a new
vertical edge of the bookcase and follows it upward. Next, we use a damp microfiber cloth
to clean a trail of black pepper off a human arm and leg (figs/CF. 4.8, 4.9). Though human
arms and legs do not feature geometric edges as sharp as those on the bookcase, there is still
a principal direction of geometric variance along the length of the limb that the controller
utilizes successfully for contour following. The robot is able to maintain contact throughout
the dip in the elbow bend of the arm as well as over the bump of the knee on the leg. In
both cases, the robot is able to clean off all of the pepper (Fig. 4.10).
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Figure 4.8: The robot wipes along the length of an arm with a damp washcloth, cleaning
away a trail of black pepper. (©)2022 IEEE.

B

Figure 4.9: The robot cleans the the length of a leg with a damp washcloth and maintains
constant contact even over the knee. (€)2022 IEEE.

Figure 4.10: Before and after the wiping of a human arm (top) and leg (bottom) covered in
black pepper. (©)2022 IEEE.
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Figure 4.11: The robot cleans the side of a mannequin’s head and neck. (©)2022 IEEE.

" ;'va

Figure 4.12: The robot cleans down the length of a mannequin’s back. (©)2022 IEEE.

Surface following

Next, we demonstrate wiping on the neck and back regions of a mannequin with a dry
wipe cloth, where there is no longer a prominent edge to follow. In our current system,
the practitioner must first set a plane of motion to define the end effector trajectory. In
Fig. 4.11, the robot cleans the side of the mannequin’s head and neck with the coronal plane
as the motion constraint. In Fig. 4.12, the robot wipes down the mannequin’s back with the
motion constrained to the sagittal plane. Constant contact is maintained and localized to
the soft membrane, and the dry erase markings are cleanly removed as a result (Fig. 4.13).

4.4 Discussion

We demonstrate the utility of a general robotic system that successfully performs contour-
following tasks on a set of unseen objects and body parts. Throughout all trajectories,
the robot is able to maintain contact under high enough forces to scrub off impurities such
as black pepper and dry erase markings. These interactions are inherently safe due to all
contact being restricted to the compliant silicone membrane of the sensor.

There are several significant avenues for future work. In this iteration, all interactions
have been quasi-static with stationary objects and bodies. However, we want to incorporate
human motion and use faster control rates to better adapt to the true nature of bathing
tasks. Furthermore, the addition of an external camera system would provide beneficial
global scene information to remove all need for a priori specifications. For example, cameras
can determine in which direction and with what orientation the robot should move in order
to make initial contact with the target. The camera can also segment an object or body into
regions and automatically determine the plane normals 7, that would allow the robot to
cover the most area when performing surface following. Currently, the robot is commanded
to stop the wiping trajectory when the practitioner detects that it has reached the end of
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Figure 4.13: Before and after the wiping of dry erase marker off the back (top) and the head
and neck (bottom) of a mannequin. (©)2022 IEEE.

the object or body. An external vision system can not only automate this detection, but
also aid in path planning to cover larger regions (e.g., the entire back rather than a single
strip down one side).
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Chapter 5

Learning from Demonstration

This chapter is adapted in part from “Robot Learning from Demonstration with Tactile Sig-
nals for Geometry-Dependent Tasks” [59], written in collaboration with Ruzena Bajcsy.

5.1 Introduction

For robots to be useful in the real world, such as in the unconstrained environments of our
homes, they should reliably meet the vast needs of users. Because these needs are ever-
changing and cannot be fully anticipated, these robots should be able to adapt to different
requirements. Furthermore, there should be an intuitive and simple interface through which
robots can learn these desired behaviors. Robot learning from demonstration (LfD), also
known as programming by demonstration and imitation learning, allows users avoid directly
programming these behaviors onto the robot [2]. Rather, robots by means of LfD can
observe human-provided demonstrations, learn to generalize the task to new situations, and
then execute the proper behavior itself.

LfD has historically been successful in the encoding and reproduction of robot motion.
However, accounting purely for propioception is not sufficient for many tasks, which often
require physical interaction with objects and/or other agents. Thus, end effector wrench
data has also been used in an LfD framework to capture salient interaction signals and
enable task reproduction [1]. However, tasks cannot be fully represented with just one time-
dependent wrench reading without a priori assumptions. One such assumption is that the
geometry of the object with which the robot interacts is known and unchanging. In general,
simple wrench signals cannot encode the rich tactile profiles that arise during robotic contact.
Humans are equipped for dextrous manipulation through sensitive shape and force-sensing
in our fingertips— for robots to perform similarly, their own tactile sensing must contribute
to their learning. In this work, we explore how to perform LfD with manipulation tasks that
are dependent on the geometries of the objects being manipulated. We employ the use of
a custom tactile sensor and discuss how to effectively featurize its readings to best enable
successful LfD with a low number of demonstrations. In addition, we validate the framework
applied to two exemplary geometry-dependent tasks. The first is an edge-following task, and
the second is a mixed manipulation task with objects of different shapes.
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Figure 5.1: Geometric tactile features for interaction-based tasks, eg. edge-following, cannot
be encoded by wrench signals. (©)2020 IEEE.

Robot learning from demonstration is comprised of three building blocks— observation,
encoding, and execution [7]. Though LfD is useful on a higher level of abstraction, such as
in decomposing a complicated task into a sequence of subtasks [45], much work including
ours performs learning on the lower sensory and motor levels. Over time, LfD works have
advanced from motion replication to robust frameworks that use vision and force-torque
sensing for interaction with the environment. Learning force-control tasks in particular has
been successful for tasks such as ironing a shirt or pushing open a door [1]. While force
sensing is imperative for the proper learning and execution of any interactive task, all prior
LfD works have only recorded end effector wrenches, either via an attached force torque
sensor or by reconstruction using joint torques. However, wrench readings yield no insight
about contact geometry, which is a crucial element for interaction in general.

There are various interfaces through which human teachers can provide demonstrations
to the robot. A natural method is for the teacher to perform the task themselves and have
their actions recorded by a motion-capture system [79]. When additional sensing is re-
quired of the task, force and pose sensing have been combined through a force-sensing glove
worn by the demonstrator [31]. However, there is a correspondence problem in mapping
the sensing-action spaces between the teacher and robot [118]. This correspondence prob-
lem is removed when demonstrations are performed on the robot itself via teleoperation or
kinesthetic teaching. Haptic devices have been used to successfully teach force-based tasks
through teleoperation while allowing the demonstrator to feel the forces sensed by the robot
[142]. On the other hand, while the demonstrator physically guides the robot in kinesthetic
teaching, the contact forces acting on the robot are physically relayed to the teacher as well.
However, when end effector wrenches are inferred using joint torques, torques applied dur-
ing kinesthetic teaching can confound this inference. This is not an issue for our particular
setup, and thus all our demonstrations were performed kinesthetically.

Compared to deep learning techniques, where high-dimensional data is fed as input at
the cost of requiring much of it, simpler LfD models achieve generalization with less data
with low dimensionality. The dimensionality of the demonstration data can be reduced by
either dropping sensor readings that contain the least mutual information with the action
outputs [142], or by projecting them into a latent space [14]. Dynamic motion primitives
(DMP) is an LfD approach first proposed in [67] that, after having broken down a complex
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task into a sequence of motion primitives, models them as a set of mass-spring-damper
systems. It is a general framework for all motor and sensor trajectories, time-invariant, and
guaranteed to converge. Meanwhile, the hidden Markov model (HMM) provides a unified
approach that can encode multiple motion alternatives in one model and can be updated
with partial demonstrations [15]. Though HMM does not have a convergence guarantee, it
is advantageous in that it does not require the a priori representation of the task structure
as with DMP. Thus, we chose to adopt the HMM approach for its flexibility.

5.2 Hidden Markov Model Framework

Our LfD framework closely follows the proposed approach by Calinon et al [15], which models
the task as an HMM and predicts best actions during execution with a modified version of
Gaussian mixture regression (GMR) [159] that accounts for hidden state transitions.

Hidden Markov Model Setup

The crux of the HMM approach in a LfD setting is to estimate the joint distributions of the
sensor input and action outputs observed in a demonstration. Each teacher demonstration
is comprised of of a sequence of physically observable sensor input-action output pairs O =
(O1 = 01,...,070 = or) of length T. Under a hidden Markov model, we assume that the
system at each step t is in one of N unobservable, or hidden states Q; € {1...N}. We assume
that the probability of an observation o; at time ¢ given that the hidden state is j, denoted
as b;(o;), is normally distributed according to parameters associated to j:

bj(Ot)p(Ot = Ot‘Qt = j) = N(Ot‘ﬂja Ej) (5-1)

We denote the entire set of observation distribution parameters by B = {y;, £;}. Further-
more, the chain of hidden states is assumed to be both time-homogeneous and Markovian,
so that the state transitions can be modeled by a time-independent stochastic transition
matrix A = {a;;}p(Q: = j|Qi—1 = 7). At the initial state of ¢ = 1, the hidden state distribu-
tion is described by m = p(Q1 = i). Thus, every hidden Markov model is defined by a set
of parameters A = (A, B, 7). These parameters are found by employing the Baum-Welch
algorithm to find the maximum likelihood estimate A* given the observation sequence O:

A" = argmax p(O|A) (5.2)
A

Baum-Welch Algorithm

The HMM forward variable a;(t) is the probability at time ¢ of having observed the partial
starting sequence {O1 = 0y,...,0; = 0;} and being in state ¢, and is defined recursively as
such:

a;(t) =p(O1 = 01,...,0p = 04, Q; = i|A\) (5.3)
a;(1) = m;b;(01) (5.4)
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N

aj(t+1) =bj(041) Y _ cu(t)ay (5.5)

i=1
The backward variable f3;(¢) is the probability of observing the partial ending sequence
{011 = 0441, ...,O7 = o} having been in state i at time ¢, and is defined recursively:

ﬁl(t) = p(OHl = Oty e OT = 0T|Qt = i, A) (56)
Bi(T) =1 (5.7)
t) = Z a;;bj(0r11)B;(t + 1) (5.8)

We further define ~;(t) as the probability of being in state 7 at time ¢ given observation

sequence O:
Z 10‘J( )/BJ( )

Also, &;;(t) is defined as p(Q; = i, Qi1 = j]O, A), the probability of being in state i at
time ¢ and then j at ¢ + 1:

Yi(O)p(Qr = 1|0, A) =

Yi(t)aijb;(0i41) 5 ( + 1) (5.10)
Bi(t)
Similarly to typical expectation-maximization algorithm for Gaussian mixtures, the HMM
parameter update equations are as follows, where m indexes the M demonstrations {O, ...Oy }:

&ij(t) =

> et (L)
L (5.11)
Zm 1Zt 17@ ( ) (512>
Zm 1 Zt Lt )
Zm 1 Zt 17 ( )
M Tm—1 ¢m
D >/ w10
i M Tm—1 _m
21 21 1%’ (t)
In our work, we initialize 7 to be uniform and y; to be the i** mean of N-means clustering
on the demonstration data. Covariances ¥; are initialized randomly.

T, =

Mi =

(5.14)

Action Prediction during Task Replication

Each observation from demonstration m at elapsed time ¢ is comprised of a sensor input-
action output pair. That is, 0™ (t) = [S™(t) Am(t)}T. Thus, parameters in B can be broken
into components corresponding to the input and output spaces of the observations, such that:

o= [pf ] (5.15)
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x5S ys4
5 = {E%As Z;m} (5.16)

One method by which to predict the most likely action output A from a sensor input S is
to treat the hidden states as constituents of a Gaussian mixture model and apply Gaussian
mixture regression [159]. However, this regression does not leverage the sequential encoding
of the learned HMM. Calinon et al [15] proposed an extension to GMR, called GMRa, which
instead considers not only the state vector itself, but also the sequential information captured
through the forward variable in the HMM. Under this formulation, the mixing weight for
each state becomes the relative likelihood of the corresponding forward variable component
in the sensor input space. That is,

N(Sulps, 28%) S8 hy(Si1)ay;

hi(Si) = — s (5.17)
S V(S 259 S hy(Sien)an]
. S 799
hz(Sl) o WZN(SIH"LZ ’Zz ) (518)

Y [mN S 5]

5.3 Experimental Setup

System Design

Our robotic platform comprises a soft tactile sensor mounted as the end effector of a KUKA
LBR iiwa 14 R820 (Fig. 2.2). This sensor contacts the environment with a hemispherical
palm-like 3 mm thick membrane molded from Ecoflex™ 50 silicone. It is sealed onto an air-
pressurized cylindrical capsule, and inflates slightly upon internal pressurization. The sensor
is fixed at one pressure state, at which the membrane’s inner radius is inflated to 50 mm
compared to its neutral 47 mm radius when free air exchange is permitted. Contact states
are measured by imaging the inside of the membrane using an embedded miniature time-of-
flight Camboard pico-flexx depth-sensing camera from PMD Technologies. Demonstrations
are performed kinesthetically by the researcher and collected at 5 Hz.

Input and Output Featurization

The inputs of the learning model are derived from the high-dimensional 224 x 171 sized point
cloud readings of the tactile sensor. As shown in the example point cloud reading in Fig.
5.2, we can isolate the portion of the point cloud that is deformed upon contact through
comparison with the undeformed reading. From this deformed point cloud, signals correlated
with the physical contact state related to forces and geometry can be obtained. We extract
a a set of signals including the 3D centroid ¢, the three variance values X along its three
principal component vectors, as well as the three principal component vectors €1, €3, and
e3. The subset of these signals to be used as features in the HMM are handpicked based on
domain knowledge, rather than through quantitative methods such as mutual information
analysis. Consistency in the direction of the component vectors is maintained by setting
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Figure 5.2: Example point cloud reading of the tactile sensor, with black deformed portion
and red principal component vectors. (©)2020 IEEE.

their signs so their largest element is positive. All sensor input quantities are expressed in
the world frame rather than in the camera frame. When the deformed point cloud is empty,
as is the case when nothing contacts the sensor, by default the centroid is the origin of the
camera frame, and the principal component vectors are the camera frame coordinate axes.
When transformed to the world frame, these default quantities during non-contact contain
propioceptive information regarding the pose of the end effector. By not including explicit
robot position and orientation signals in the input, we ensure that during contact, the robot
responds solely to tactile signals rather than overfits to the demonstrated trajectories. The
action output of the model is a 6-dimensional instantaneous velocity of the end effector with
respect to the world frame with both linear ¢ and angular & components approximated by
the rate of change of time-adjacent readings. After collecting demonstrations, all datapoints
for both inputs and outputs are first linearly normalized from 0 to 1 before learning the
HMM. During task execution, outputs are predicted for normalized inputs, then sent to the
robot as velocity commands at 5 Hz.

5.4 Application: Edge-Following

Task Demonstrations

The first task taught to the robot is to follow an edge. During the demonstration phase, we
lower the robot end effector until the palm sensor contacts an edge positioned directly below
the starting point, and then we slide the sensor along that edge. The physical edge used in
the demonstration is the length of a straight copper pipe with a 0.5” diameter. We perform 6
different demonstrations with the pipe fixed at different orientations and positions in space.
By convention, the traversal direction is such that the y component in the world frame is
positive. We consider the edge-following task successful as long as the sensor consistently
makes contact with the edge, meaning that the end effector orientation is not critical to the
task. The six demonstration end effector position trajectories are plotted in Fig. 5.4, with
arrows along the trajectory showing the €7 reading at that position. The demonstration
consists of two intuitive phases. The first is the lowering phase, during which no contact
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7% S

(a) Robot begins its policy rollout above the (b) Robot lowers itself onto the pipe and fol-
obstacle. lows the edge.

o

(c) Contact is maintained during a dip in the (d) Robot continues to contact the pipe
—z direction along a lateral bend.

Figure 5.3: Policy rollout of edge following HMM on a curved pipe. (©)2020 IEEE.

with the edge is made. The next is the phase during which the sensor contacts the edge and
traverses along it.

Learned HMM

For both tasks in this work, sensor input features are handpicked to minimize dimensionality
but maximize relevance to the action outputs. In edge-following, it is important to detect
only whether the sensor is in contact with something, and if so, along which direction the
longest edge is “pointing.” Thus, we choose the inputs to be the principal variances and the
first principal component vector, such that S(t) = [A1(t) Aa(t) As(t) ew(t) exy(t) elz(t)]T‘
The centroid is excluded from the feature vector because the location of contact is not im-
portant to the task. Although the demonstrations are performed on a straight pipe, we want
the robot to be able to follow an edge with arbitrary curvature. To this end, we learn an
HMM with N = 2 states— one that corresponds to the robot lowering onto the edge, and
one to perform edge following. We try to avoid overfitting to the demonstration by limiting
the number of hidden states to be learned. We plot the same demonstrations in X space in
Fig. 5.5 with each reading colored according to the most likely hidden state it is in accord-
ing to Eq. 5.17. Matching up to our intuition, the two HMM states do correspond to the
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physical pre-contact (()2) and edge traversal conditions (), where the yellow star marks
the reading in the absence of contact, i.e., X = 0.

Figure 5.4: Demonstration trajectories
for the edge-following experiment along
a straight pipe. Round markers are end
effector positions, and are é1. (C)2020
IEEE.

Figure 5.5: Demonstration data alongside
HMM states in normalized X space. Ellip-
soids depict the 95% confidence region of
the corresponding ¥;. (©)2020 IEEE.

Figure 5.6: Principal component €7 observed in demonstration and execution phases, mapped

onto spherical coordinates. (©)2020 IEEE.

Task Execution

To verify generalizability of the edge-following HMM, we perform the task execution on a
flexible gas connector also with a 0.5” diameter that is bent to be curved in 3D space. As
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pictured in the rollout in Fig. 5.3, the robot is successful in initiating and maintaining contact
throughout the length of the pipe. We can visualize how the HMM is able to generalize to
new observations in Fig. 5.6, where the spherical coordinates of €7 observed in both the
demonstration and rollout phases have little overlap. Note that in the teaching phase, each
demonstration performs edge traversal in only one direction. Thus, during the execution
phase, the robot is unable to follow an edge that goes back in an opposite direction it has
experienced before, such as along a closed path. Furthermore, since no stopping condition is
observed in the demonstrations, as long as the robot senses an edge, it will move. If contact
is broken, it believes it is again in ()5 and lowers itself until a new edge is found.

5.5 Application: Mixed Object Manipulation

Task Demonstrations

The robot is also taught to manipulate objects with different geometries with the following
desired behavior:

e Starting from a point above a predefined quadrant of the table, lower the robot palm
and make contact with the object directly underneath.

e If the object is capsule-shaped, push it through a predefined corridor and off the table
into a bin.

e If the object is a rectangular prism, rotate it in place until it its length is parallel to
the table edge closest to the robot.

Example demonstrations for both subtasks are in Fig. 5.8 and 5.7 for the capsule and
prism subtasks respectively. Nine different objects pictured in Fig. 5.9 are used in demon-
strating this task. Of the nine, eight are capsules (with diameters and heights ranging from
[1...5] and [1.5...1.7] cm), and one is a rectangular prism of dimensions 7.5 x 1 x 2 cm. Ten
demonstrations of each type (pushing and rotating) are performed on the robot, and a 4-
state HMM is learned from the data. The sensor input used here is the 9-dimensional feature
vector containing ¢, X and €7.

(a) Palm begins above prism. (b) Palm lowers and contacts (c) Palm rotates until desired
prism. orientation is achieved.

Figure 5.7: Kinesthetic demonstration showing how to rotate a prism to its desired orienta-
tion. (©)2020 IEEE.
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(c) Palm pushes the capsule through a corri- (d) Palm pushes capsule off of table.
dor.

Figure 5.8: Kinesthetic demonstration showing how to push a capsule through a corridor

and off the table. (©)2020 IEEE.
@) @

Figure 5.10: 4-state HMM with the most
Figure 5.9: Set of objects used in the likely exit transitions depicted as as edges.
mixed manipulation task. (©)2020 IEEE. (©2020 IEEE.

Learned HMM

A 4-state HMM is learned from the collected demonstrations, and the most likely exit tran-
sitions are depicted in the finite state machine in Fig. 5.10. Figs. 5.11 and 5.12 plot the
centroids observed in the demonstrated manipulations with the capsules and prism respec-
tively, colored according to the most likely hidden state. Both subtasks start off in the same
state, (03, which corresponds to the pre-contact lowering phase. Upon contact, the system
moves into either the pushing phase (); or the rotating phase ()5 depending on the shape
of the object. Fig. 5.13 depicts the demonstrations in normalized X space and shows that
there is a clear distinction between s when contacting the capsules versus the prism that
the HMM was able to differentiate. Once the robot pushes the object off the table so that
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Figure 5.11: Capsule demonstrations Figure 5.12: Prism demonstrations along-
alongside HMM states in normalized ¢  side HMM states in normalized ¢ space.
space. Ellipsoids depict 95% confidence Ellipsoids depict 95% confidence region.
region. (©)2020 IEEE. (©2020 IEEE.

Figure 5.13: Demonstrations alongside HMM states in normalized X space, with ellipsoids
at the 95% confidence region. The two most significant visible states () and Qs clearly
separate the two object types. (©)2020 IEEE.

it is no longer sensed by the palm, it immediately transitions from ); to the post-pushing
phase Q4.

Task Execution

In the task execution phase, we give the robot 10 unseen scenes (5 for each subtask type)
from randomly sampled starting poses in the predefined table quadrant, and find that it
is successful in completing its task in all 10 trials. For the capsule subtasks, the executed
trajectory successfully eases the capsule through the corridor and off the table just like in the
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demonstrations (Fig. 5.14). During the prism subtask executions, the rectangle’s orientation
also converges correctly (Fig. 5.15), where the final orientations from the execution matches
up well with that which is observed in demonstration. Granted, the starting states in the
execution phase are not vastly different from what is observed in the demonstration phase.
For example, if the task is initialized at the opposite side of the table, around which the robot
never recorded any demonstration, we find that it either does not manage to squeeze through
the corridor properly, or even veers off in a wrong direction. Because the ¢ centroid readings
are highly correlated with the actual position of the end effector, we would have to ensure a
higher variance in positions during the demonstration phase to encourage generalization.

Figure 5.14: Centroid trajectories Figure 5.15: Principal components €3

recorded in demonstration and execution
phases during contact with the capsule

mapped onto the normalized xy space.
(©2020 IEEE.

recorded in demonstration and execu-
tion phases during contact with the

prism, mapped onto spherical coordi-
nates. (©)2020 IEEE.

5.6 Discussion

In this work, we successfully incorporate geometry-based tactile sensing to learn the demon-
strated tasks of mixed object manipulation and edge following. Rather than program these
behaviors explicitly, practitioners can kinesthetically teach these behaviors to the robot.
This is a very promising proof of concept for teaching general tactile-related tasks to robots,
but both tasks in this work are very simple by design. The sensed geometries are either
static, as with the capsules and prism, or slow-evolving, as with the curved tube. It would
be compelling to investigate dynamic tasks where the contacts evolve rapidly. In addition,
our method of featurizing tactile signals using PCA of the deformed membrane works well
for simple shapes, but likely is not sufficient for more complicated shapes or for distributed
contacts. Finally, we use just one tactile sensing palm that can only push and twist. A robot
hand with multiple tactile sensing fingers would pose a more interesting learning problem
that requires higher dimensional coordination that is not explored here.
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Chapter 6

DefGraspSim: Physics-based
Simulation of Grasp Outcomes

This chapter is adapted in part from “DefGraspSim: Physics-based Simulation of Grasp
Outcomes” [63], written in collaboration with Yashraj Narang, Clemens Eppner, Balakumar
Sundaralingam, Miles Macklin, Ruzena Bajcsy, Tucker Hermans, and Dieter Foz.

6.1 Introduction

From clothing, to plastic bottles, to humans, deformable objects are omnipresent in our
world. A large subset of these are 3D deformable objects (e.g., fruits, internal organs, and
flexible containers), for which dimensions along all 3 spatial axes are of similar magnitude,
and significant deformations can occur along any of them. Robotic grasping of 3D de-
formables is underexplored relative to rope and cloth, but remains critical for applications
like food handling [43], robotic surgery [153], and domestic tasks [148]. Compared to rigid
objects, grasping 3D deformable objects faces 4 major challenges to which we respond with
4 key contributions.

First, classical analytical metrics for grasping rigid objects (e.g., force/form closure) do
not typically consider deformation of the object during the grasp [148]. Yet, deformations
significantly impact the contact surface and object dynamics. For example, one can grasp
a soft toy haphazardly; however, if the toy were rigid, it would no longer conform to one’s
hands, and many grasps would become unstable. Conversely, one can grasp a rigid container
haphazardly; however, if the container were flexible, grasps along its faces would crush
its contents. Unlike for rigid objects, the success of a 3D deformable grasp depends on
properties such as compliance. We thus propose a set of diverse performance metrics that
quantify deformable grasp outcomes (Sec. 6.5), such as stability, deformation, and stress.
Performance metrics may also compete (e.g., a stable grasp may induce high deformation).

Second, performance metrics may be partially or fully unobservable (e.g., volumetric
stress fields), requiring estimators in the real world. Previous works have addressed this by
formulating quality metrics, which we refer to as grasp features: simple quantities a robot can
measure before pickup that can predict performance metrics. Whereas grasp features have
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Figure 6.1: (A) For a broad set of candidate grasps on a deformable object, (B) we simulate
the object’s response with FEM, (C) measure performance metrics (e.g., stress, deformation,
controllability, instability), and (D) identify pre-pickup grasp features that are correlated
with the metrics. Our simulated dataset contains 34 objects, 6800 grasp experiments, and
1.1M unique measurements. (©)2022 IEEE.

predominantly been designed for rigid objects, we propose a set of grasp features compatible
with deformables (Sec. 6.6).

Third, there exists neither a general framework to evaluate arbitrary deformable grasps
(i.e., via performance metrics and grasp features), nor an exhaustive dataset of deformable
grasp experiments. We thus release DefGraspSim, a codebase that allows users to automat-
ically perform an exhaustive set of FEM-based grasp evaluations on arbitrary 3D objects.!
Simulation offers multiple advantages: it extends classical analytical methods through ac-
curate modeling of object deformation, enables safe execution of experiments, and provides
full observability of performance metrics. We also conduct a large-scale simulation-based
study of 3D deformable object grasping on 3D deformables varying in geometry and elas-
ticity (Fig. 6.1), and provide this live dataset of 34 objects, 6800 grasp evaluations, and
1.1M corresponding measurements. This is the largest deformable object grasping dataset
in existence.

Fourth, simulation studies do not necessarily correspond to real-world behavior. To ad-
dress this gap, we perform a pilot sim-to-real study on results generated by DefGraspSim,
and demonstrate that simulated results show reliable correspondence with real-world exper-
iments (Sec. 6.8).

We believe these 4 main contributions are an important milestone towards developing a
complete learning and planning framework for grasping 3D deformables.

6.2 Related Work

Modeling techniques. With over three decades of development, methods in rigid-object
grasp planning range from model-based approaches using exact geometries [93, 37, 115] to
data-driven approaches without full models [85, 25, 104, 77, 120, 98]. Rigid-body grasping

'https://sites.google.com/nvidia.com/defgraspsim
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Table 6.1: Comparisons between Isaac Gym and other robotics simulators that support both
3D deformable bodies and actuator interactions.

Simulator Interactions 3D ge- Materials Underlying Observable states Processor
ometries model
MuJoCo [164] soft-rigid, Boxes, Homogeneous Mass-spring Nodal positions CPU
rigid-rigid cylinders, isotropic elastic with surface
ellipsoids nodes
PyBullet soft-rigid, Arbitrary Homogeneous Mass-spring or Nodal positions, con- CPU
3 23] soft-soft, geometries isotropic elas- Neo-Hookean tact points & forces
rigid-rigid tic/hyperelastic volumetric
FEM
IPC- soft-soft Arbitrary Homogeneous Incremental Nodal positions, veloc- CPU
GraspSim [73] geometries isotropic elastic potential con- ities, and accelerations
tact model
Isaac soft-rigid, Arbitrary Homogeneous Co-rotational Nodal positions & ve- GPU
Gym [111] rigid-rigid geometries isotropic elastic linear volumet- locities, contact points

ric FEM

& forces, element stress

tensors

simulators such as Grasplt! [114] and OpenGRASP [87] have been used to develop many
of these algorithms. For 3D deformable objects, rigid-body approximations can lead to
efficient simulations [136]; however, continuum models are preferred, as they can represent
large deformations and allow consistent material parameters without an explicit model-
fitting stage [30]. 3D continuum models include Kelvin-Voigt elements governed by nonlinear
PDEs [53], mass-spring models [82], 2D FEM for planar and ring-like objects [71], and gold-
standard 3D FEM [95]. However, many powerful FEM simulators used in engineering and
graphics (e.g., Vega [9]) do not feature infrastructure for robotic control, such as built-in
joint control. For comprehensive reviews of 3D deformable modeling techniques, please refer
to [4, 180]. In this work, we use the GPU-accelerated Isaac Gym simulator to analyze grasp
interactions with deformable objects. In Table 6.1, we compare Isaac Gym to other robotics
simulators, including MuJoCo [164] and PyBullet [23], which have successfully modeled
deformable ropes and cloths using rigid-body networks with compliant constraints [172, 106,
91, 22}, but have recently started to support 3D deformable objects as well.

Performance metrics. Prior works have evaluated 3D deformable-object grasps using
performance metrics based on pickup success, strain energy, deformation, and stress. Success-
based metrics include the minimum force required by a particular grasp, which is calculated
via real-world iterative search [53] and FEM [82, 95]. Success depends on both object
geometry and stiffness (e.g., a cone can be picked up only when it can deform to the gripper)
[95]. Metrics based on strain energy (i.e., elastic potential energy in the object) have served
as proxies for an object’s stability against external wrenches. In 2D the deform closure
metric generalizes rigid form closure [13] and quantifies the positive work required to release
an object from a grasp [44]. Tt is optimized by maximizing strain energy without inducing
plastic deformation. Similarly, for thin and planar 2.5D objects, grasps have been selected
to maximize strain energy under a fixed squeezing distance [71]. Deformation-based metrics
have also been proposed for cups and bottles to detect whether contents are dislodged during
lifting and rotation [176]. Finally, stress-based metrics have been proposed to avoid material
fracture, but were evaluated only on rigid objects [132].
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Figure 6.2: The 34 evaluated objects grouped by geometry and dimension (shown to scale).
Objects in blue are self-designed primitives; those in gray are scaled models from open
datasets [16, 175, 109, 69]. (©)2022 IEEE.
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Figure 6.3: Young’s modulus E for various materials (adapted from [108]). (Top): real-world
objects and their typical E. (Bottom): Stress distributions of an ellipsoid under 1 N of grasp
force. Soft ellipsoids undergo large deformations; rigid ones have high-stress regions. (€)2022
IEEE.

Grasp features. Many grasp features to predict grasp performance have been previously
investigated on rigid objects. Features include force and form closure [37] and grasp polygon
area [116], and their predictive accuracy has been tested under different classification models
[143]. A thorough survey on rigid grasping features can be found in [141]. However, grasp
features for deformables have only been explored in one study, which measured the work

performed on containers during grasping to predict whether its liquid contents would be
displaced [176].

6.3 Grasp Simulator

We use the FEM-based simulator Isaac Gym [111] to simulate grasps on 3D deformable
objects. FEM is a variational numerical technique that divides complex geometrical do-
mains into simple subregions and solves the weak form of the governing partial differential
equations over each region. In FEM simulation, a deformable object is represented by a
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volumetric mesh of elements; the object’s configuration is described by the element vertices,
known as nodes. We use Isaac Gym’s [111] co-rotational linear constitutive model of the
object’s internal dynamics coupled to a rigid-body representation of the robotic gripper via
an isotropic Coulomb contact model [157]. A GPU-based Newton method performs implicit
integration by solving a nonlinear complementarity problem [102]. At each timestep, the
simulator returns element stress tensors and nodal positions, which are used to calculate
grasp metrics. With sufficiently small timesteps and high mesh density, FEM predictions
for deformable solids can be extremely accurate [140, 125]. We simulate at a frequency of
1500H z. The simulator executes at 5-10 fps, and each grasp experiment (Sec. 6.4) requires
around 2 to 7 minutes to run.

We evaluate a set of 34 3D deformable objects comprising both simple object primitives
and complex real-world models, categorized by geometry and dimension (Fig. 6.2). We pro-
cess object surface meshes in Blender to smooth sharp edges to avoid stress singularities, and
reduce node count where possible to optimize speed. We then convert these into tetrahedral
meshes using fTetWild [55].

For all experiments our objects have density p = 1000%, Poisson’s ratio v = 0.3, coeffi-
cient of friction p = 0.7, and Young’s modulus E € £ = {2e4, 2e5,2¢6,2e9} Pa. £ covers a
wide range of real materials, from human skin (~10*Pa) to ABS plastic (~10°Pa) (Fig. 6.3).
The target squeezing force on an object is F), = 1.3 X % (where m is mass and g is gravity),
which is the force required to support the object’s weight with a factor of safety. For a fixed
E, increasing ;v decreases F), as well as the induced deformation. This effect is essentially the
same as if p is fixed while F is increased, since an elastically stiffer object will also deform
less for the same F), applied. Thus, we fix y and vary E.

6.4 Grasp Experiments

We perform simulated grasping experiments within Isaac Gym on 34 objects using the widely
used Franka parallel-jaw gripper. To generalize to other parallel-jaw grippers we remove all
specialized gripper features. For each object, we generate a diverse set of 50 candidate
grasps with an antipodal sampler [33]. Each object initially rests atop a horizontal plane;
we disable gripper collisions with the plane to test the full spatial distribution of grasps by
allowing grasps to come from underneath. Prior to grasping, the pre-contact nodal positions
and element stresses of the object are recorded. The gripper is initialized at a candidate
grasp pose, then squeezes using a force-based torque controller to achieve the target grasp
force, F,. Once F), converges, the grasp features are measured. Then, one of the following
experiments (Fig. 6.4) is executed: pickup, reorientation, linear acceleration, and angular
acceleration.

1) Pickup. The platform lowers to apply incremental gravitational loading to the object.
Pickup is a success if the gripper maintains contact with the object for 5 seconds. If so, stress
and deformation fields are recorded, and stress, deformation, and strain energy performance
metrics are computed.

2) Reorientation. The grasp force is increased from F}, to Fy;,, the minimum force required
to counteract rotational slip. The platform is lowered until the object is picked up. The
gripper rotates the object to 64 unique reorientation states. We record stress and deformation
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fields at each state, and compute deformation controllability as the maximum deformation
over all states. Fjg;, is estimated by approximating each gripper contact patch as 2 point-
contacts that oppose the gravitational moment. The gripper rotates the object about each
of 16 vectors regularly spaced in a unit 2-sphere at angles kr /4, k € [1..4] for a total of 64
unique reorientation states.

3) Linear acceleration. The gripper linearly accelerates along each of 16 unique direc-
tion vectors as in the reorientation experiment. Each vector has a complement pointing in
the opposite direction; thus, this method generalizes the cyclic shaking tests from previous
works [33]. The acceleration is recorded at which at least one finger loses contact with the
object. Linear instability is computed as the average loss-of-contact acceleration over all
directions. The robot moves at 1000%3 jerk in a gravity-free environment, corresponding
to a linearly increasing acceleration. We impose a realistic upper acceleration limit of 50%2
(~ 59).

4) Angular acceleration. The gripper rotationally accelerates about 16 unique axes.
Angular instability is computed as the average loss-of-contact acceleration over all axes. The
robot accelerates at 2500%3 jerk; to mitigate undesired linear acceleration, the midpoint
between the fingers is the center of rotation. The angular loss-of-contact threshold is limited
to 1000%l2 (i.e., the linear acceleration limit, scaled by the 0.04m max. finger displacement,
a reference moment arm).

Controller Details. A contact force-based torque controller is used to achieve the desired
grasp forces. A low-pass filter is first applied to the contact force signals due to high frequency
noise that prevails from small numerical fluctuations in position, especially at higher moduli.
For the three experiments involving post-pickup manipulation, the finger joints are frozen
immediately after pickup to maintain the gripper separation.

Codebase. We release the code to replicate our experiments on arbitrary objects,? and a full
software flow diagram is shown in Fig. 6.5. Candidate grasps can either be user-defined or
generated using our grasp sampling module. We also encourage the use of external software
such as Blender to preprocess object models (e.g., mesh simplification and edge filleting) to
improve simulation speed and convergence.

6.5 Grasp Performance Metrics

During the preceding experiments, we measure the following 7 performance metrics to com-
prehensively evaluate grasp outcomes. These metrics include high-dimensional field quanti-
ties (e.g., stress fields), which are unexplored in rigid object modeling. Note that linear and
angular instability are separate metrics. During each grasp experiment, we also measure a
set of grasp features (Sec. 6.6), which capture low-dimensional state information about the
grasp and have potential to be used as predictors of the final performance metrics.

Pickup success: A binary metric measuring whether an object is lifted from a support
plane.

Stress: The element-wise stress field of an object when picked up. FExceeding material
thresholds (e.g., yield stress, ultimate stress) leads to permanent deformation, damage, or

’https://github.com/NVlabs/DefGraspSim



CHAPTER 6. DEFGRASPSIM: PHYSICS-BASED SIMULATION OF GRASP
OUTCOMES o7

Figure 6.4: Example frames from the execution of four different experiments per grasp on
a banana: pickup, reorient, twist (angular acceleration), and shake (linear acceleration).
(©)2022 IEEE.

fracture; examples include creasing of boxes, bruising of fruit, and perforation of organs. We
convert each element’s stress tensor into von Mises stress, a scalar quantity that quantifies
whether an element has exceeded its yield threshold. We then measure the maximum stress
over all elements, since real-world applications typically aim to avoid damage at any point.
Deformation: The node-wise displacement field of the object from pre- to post-pickup,
neglecting rigid-body transformations. Deformation must often be minimized (e.g., on flex-
ible containers with contents that can be damaged or dislodged). To compute this field, the
difference between the pre- and post-pickup nodal positions is calculated, the closest rigid
transform is determined [155], and the transform is subtracted. We compute the £2 norm of
each node’s displacement and measure the maximum value over all nodes.

Strain energy: The elastic potential energy stored in the object (analogous to a Hookean
spring). Conveniently, this metric penalizes both stress and deformation. The strain energy
is given by U, = fv oTedV, where o, ¢, and V are the stress tensor, strain tensor, and
volume, respectively.

Linear and angular instability: We define instability as the minimum acceleration applied
to the gripper (along or about a vector for linear and angular instability, respectively) at
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Figure 6.5: Software flow diagram of the DefGraspSim codebase. (€©)2022 IEEE.

which the object loses contact (i.e., separates along the gripper normal, or slides out of the
gripper). This measures how easily an object is displaced from the grasp under external
forces.

Deformation controllability: We define deformation controllability as the maximum de-
formation when the object is reoriented under gravity. (An example of shape change induced
during reorientation is shown in Fig. 6.6.) Depending on the task, it may be useful to ei-
ther minimize or maximize deformation controllability. For example, to reduce the effects of
post-grasp reorientation on deformation, minimizing this metric allows the object to behave
rigidly after pickup. Alternatively, to augment the effects of post-grasp reorientation (e.g.,
during insertion of endoscopes), we may maximize it instead. Our notion of deformation
controllability is different from the classical notion (i.e., the ability to achieve any robot
state in finite time). Here, we are not modifying robot controllability by changing actuation,
but modifying object controllability by changing the number of possible deformation states.

6.6 Grasp Features

The 7 grasp features are recorded after applying the grasping force F,, but before loading
(Fig. 6.5). All can be measured by common real-world sensors (e.g., encoders, cameras,
and tactile arrays) and are summarized in Table 6.2 and Fig. 6.7, along with references to
existing works from which they are derived. See [141] for a full review of grasp features on
rigid objects.
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Figure 6.6: Illustration of deformation controllability. A soft banana-shaped object under

pickup (left); the union of all shape configurations achieved under reorientation, superim-
posed in light blue (right). (©)2022 IEEE.

Table 6.2: Grasp features, their descriptions, and existing works from which they are derived.

Feature Abbr. Definition and Relevance Usage in
Litera-
ture

Contact patch distance to cen-  pure_dist Distance from the center of each finger’s contact patch ~ [143, 27]

troid to the object’s center of mass (COM) (Fig. 6.7a), av-

eraged over the two fingers.

Contact patch perpendicular  perp_dist Perpendicular distance from the center of each finger’s  [8]

distance to centroid contact patch to the object’s COM (Fig. 6.7a), aver-

aged over the two fingers; quantifies distance from lines
of action of squeezing force.

Number of contact points num-contacts Number of contact points on each finger, averaged over  [143, 27]

the fingers; quantifies amount of contact made.
Contact patch distance to fin-  edge_dist Distance from each finger’s distal edge to the center  [36]
ger edge of its contact patch (Fig. 6.7b), averaged over the two
fingers.

Gripper squeezing distance squeeze_dist  Change in finger separation from initial contact to the  [176]
point at which F}, is achieved; quantifies local defor-
mation applied to the object.

Gripper separation gripper_sep  Finger separation upon achieving Fj; quantifies the  [143]

thickness of material between the fingers at grasp.

Alignment with gravity grav_align Angle between the finger normal and the global ver-  [170]

tical; grounds the grasp pose to a fixed frame (Fig.
6.7b).

(a)

(b)

Figure 6.7: Four grasp features illustrated on a Franka gripper. (©)2022 IEEE.
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6.7 Example Simulation Results

To demonstrate the utility of DefGraspSim, we simulate grasps on 5 real object models
with realistic material parameters (Fig. 6.3, top) and visualize the resulting performance
metrics of stress, deformation, and linear stability (Fig. 6.8). The results are well-aligned
with established mechanics principles. On the heart and wine glass (Fig. 6.8a), regions of
high stress arise with reduced contact areas (e.g., at heart nodules and the stem of the glass)
and curvature discontinuities (e.g., at the lip of the glass). On a mustard bottle and plastic
cup (Fig. 6.8b), high deformations occur when contacting regions of low geometric stiffness
(e.g., at the main face of the bottle and lip of the cup) and vice versa (e.g. at the base of
the bottle and cup). On a banana (Fig. 6.8c), stability increases with friction p under the
same grasp pose and force. When p is fixed, grasps closest to the ends of the fruit are least
stable.

6.8 Sim-to-Real Accuracy

Although simulation is the primary focus of this work, we also investigate whether grasp
outcomes predicted by DefGraspSim are faithful to the real world.

Tofu blocks. First, we test 3 grasps on real blocks of tofu under 1 and 2 N of applied
force (Fig. 6.9). Simulated and real-world deformations exhibit strong similarities, and grasps
achieve anticipated performance (e.g., grasps A and C, respectively, minimize and maximize
sagging under the 2 force conditions). Also, permanent damage on the real-world tofu occurs
under 2 N of applied force, with fracture occurring in grasps B and C. Although standard
FEM cannot simulate fracture, simulated stresses for these grasps lie within the literature-
reported range of breaking stress for tofu, around 3 kPa [163]. Moreover, fracture lines on
the real tofu coincide with regions of stress higher than this threshold (i.e., along gripper
edge under Grasp B; at tofu ends under Grasp C).

Latex tubes. Next, we perform 3 grasps on latex tubes of different geometry (Fig. 6.10).
Again, simulated and real-world deformations are highly similar, including indentations and
bulges localized to regions of contact; moreover, the vertical distance between the highest
and lowest points of the tubes closely match. We also test the deformation controllability
between grasp D (a middle grasp) and grasp F (an end grasp) on the thin tube (Fig. 6.11) by
rotating the gripper by 90 degrees under each grasp. Deformation controllability is higher
in grasp F, as the resulting angle swept out by the tube tip is only 47° (compared to 83°
under grasp D), which indicates that more shape change is induced. These angle values also
closely match those predicted by simulation.

Bleach bottle. We also evaluate five grasps on a real bleach bottle (Fig. 6.12), which are
ordered from G to K in ascending order of deformation imparted on the simulated version of
the bleach bottle. Since deformation fields on the bottle are not readily accessible in the real
world, we instead measure the volume of the bottle. After applying a fixed grasp force, the
bottle is filled with rice, and the weight is recorded and divided by density. The resulting
volume change of the real-world grasps is similar to simulated results, except that simulation
incorrectly predicts that grasp H would impart more deformation than grasp G (Fig. 6.13).
Cutting open the bottle reveals that material at the neck of the bottle is thicker (1 mm)
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(a) Simulated stress fields after pickup
for various grasps on a (top) heart and
(bottom) wine glass. Objects are colored by
the von Mises stress field.
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(b) Simulated deformation fields after pickup

for various grasps on a (top) mustard bottle
and (bottom) plastic cup. Objects are col-

ored by the [>-norm of the deformation field.
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(c) Linear stability of grasps on a banana
at 4 N of grasp force under (top) the same
grasp but variable friction u, and (bottom)
the same p but variable grasps. Arrows are
colored by the maximum acceleration in that
direction before loss of contact. Number
indicates the average acceleration at failure
over all 16 directions.

Figure 6.8: Examples of simulated grasp outcomes on 5 objects, with visualizations of (a)
stress, (b) deformation, and (c¢) linear stability. (€)2022 IEEE.
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Grasp A
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Figure 6.9: Three grasps tested on blocks of tofu (1 and 2 N of squeezing force) show similar
outcomes in simulation and the real world. Real areas of fracture correspond to simulated
stress greater than 3 kPa, the estimated breaking stress (denoted on color bar by black

arrow). (©)2022 IEEE.
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Figure 6.10: Three grasps tested on 2 real and simulated latex tubes under 15 N of gripper
force. The vertical distance between the highest and lowest points of the tube is annotated.
Localized deformation due to compression at the grippers is replicated in simulation. (€)2022
IEEE.

Figure 6.11: A middle grasp (grasp D) and end grasp (grasp F) under a counterclockwise
90° rotation of the gripper in the real world and in simulation. The angles swept out by the
tube tip are marked in red. (©)2022 IEEE.



CHAPTER 6. DEFGRASPSIM: PHYSICS-BASED SIMULATION OF GRASP
OUTCOMES 64

Figure 6.12: Five tested grasps on a real bleach bottle. Grasps are also repeated in simula-
tion. (©)2022 IEEE.

than at the bottom (0.85 mm), whereas a uniform wall thickness is assumed in simulation.
Thus, local stiffness higher on the bottle (including the contact region under grasp H) may be
underestimated. This discrepancy in wall thickness also explains why the simulated grasps
J and K predicted significantly more change in volume than in real life, as the geometric
stiffness was underestimated within simulation.

Figure 6.13: Percent volume change pre- and post-grasp for the real and simulated bleach
bottles under grasps G to K. (©)2022 IEEE.

Plastic cup. We test 4 grasps on a plastic cup for stability. In simulation, we run the linear
acceleration experiment in the upward direction; in the real world, the cup is gradually filled
with metal balls until contact is lost. Since the real Franka has no precise force controller,
the actual gripper forces on the cup are unknown (unlike the prismatic tofu, the cup has
complex geometry that makes force hard to analytically estimate from position inputs).
Thus, while the ordering of grasps with respect to stability is consistent between real world
and simulation, the weight values at failure are not (Fig. 6.14).
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Figure 6.14: Under four grasps on a plastic cup, the maximum weight withstood before loss
of contact is annotated for both the real world (black) and in simulation (blue). (€)2022
IEEE.

6.9 Discussion

We propose and motivate performance metrics to describe deformable grasping outcomes as
well as grasp features to serve as potential predictors of metrics. We then measure these
quantities by conducting a battery of grasp simulations on 3D deformable objects and release
our dataset of 6800 grasps and 1.1M measurements for further study, along with software
that executes our experiments on arbitrary objects and material parameters. Finally, our
simulated results are also shown to have good correspondence with real-world grasp out-
comes. We envision DefGraspSim to be a useful research tool for the community working
towards grasping deformable objects, with direct applications to a variety of compelling
problems. For example, DefGraspSim can act as a data generator for learning representa-
tions of new high-dimensional features and metrics (e.g., for object and contact geometry,
field quantities, etc.) for memory-efficient grasp planning. It can also be used as a testbed
for customizing grasp experiments to create task-oriented planners (e.g., to minimize food
deformation). To extend our sim-to-real pilot studies, we can use DefGraspSim to further
perform rigorous, direct comparisons between simulation and reality on custom deformables
of interest (e.g., on organs for robotic surgery). A wider variety of grasp conditions than
presented here can also be simulated to improve grasp planning robustness to uncertainty
in object material properties (e.g., via domain randomization). Finally, it can be used to
generate training data for real-world system identification (e.g., tactile probing on unknown
materials) and neural network-based grasp simulation for real-time grasp planning.
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Chapter 7

DetGraspNets: Grasp Planning with
Graph Neural Networks

This chapter is adapted in part from “DefGraspNets: Grasp Planning on 3D Fields with
Graph Neural Nets” [62], written in collaboration with Yashraj Narang, Ruzena Bajcsy,
Fabio Ramos, Tucker Hermans, and Dieter Foz.

7.1 Introduction

Deformable objects are omnipresent in our world, and grasping them is critical for food
handling [43], robotic surgery [153], and domestic tasks [148, 183]. However, their physical
complexities pose challenges for key aspects of grasp planning, including modeling, simula-
tion, learning, and optimization. Deformable objects have infinite degrees of freedom and
require continuum mechanics models to accurately predict their responses to body forces
(e.g., gravity) and surface tractions (e.g., contacts). For deformable solids, continuum mod-
els can predict two field quantities critical for robot grasping, stress tensors and deformation
vectors defined at every point in the object [162]. In general, low-stress grasps are desirable
to reduce material fatigue from repeated grasping, or to avoid exceeding the yield stress of
the object, at which point permanent deformation or failure occurs. Predicting deformation
is also critical, especially when grasping containers. One may want to minimize the defor-
mation on a box of crackers to avoid crushing the contents, or maximize the deformation on
a bottle of ketchup to efficiently squeeze out the contents.

Although knowledge of stress and deformation fields is useful, deriving closed-form solu-
tions is intractable for general cases. Moreover, direct real-world measurement is extremely
difficult without cumbersome instrumentation. Consequently, robotic grasping has histori-
cally leveraged rigid-body models, for which deformation is ignored and object state can be
simply described by 6D pose and velocity [123, 113].

On the other hand, we can use deformable-object simulators to access these quantities
and plan grasps accordingly. However, such simulators rely on complex numerical models like
the gold-standard 3D finite element method (FEM) [180, 4]. Although FEM can simulate
the result of any grasp on a deformable object [63], each evaluation can take minutes on a



CHAPTER 7. DEFGRASPNETS: GRASP PLANNING WITH GRAPH NEURAL
NETWORKS 67

Figure 7.1: (A) DefGraspNets predicts the stress and deformation fields from grasping an
unseen object 1500x faster than FEM, and (B) enables gradient-based grasp refinement to
optimize these fields. (©)2023 IEEE.

CPU-based industry-standard simulator [127] and seconds on a GPU-based robotics simula-
tor [126], which is prohibitively slow for online grasp planning. Moreover, while differentiable
simulators enable gradient-based optimization for parameter estimation [49] and control op-
timization [177, 49], few studies have explored their application to robotic grasping, and
they are typically slower than standard FEM.

We propose DefGraspNets, a graph neural network that can enable grasp planning by
predicting the stress and deformation fields resulting from grasps and allowing efficient op-
timization (Fig. 7.1). We demonstrate that this network is 1) fast, with a ~1500x speed-up
compared to a GPU-based FEM simulator, 2) accurate, with stress and deformation fields
consistent with ground-truth FEM, 3) generalizable, with reliable rankings of grasp candi-
dates over unseen poses, elastic moduli, in-category objects, and out-of-category objects, and
4) differentiable, enabling gradient-based optimization for grasp refinement. Finally, we
conduct pilot studies that verify agreement of DefGraspNets, trained purely in simulation,
with real-world outcomes. Data and code can be found on our website!.

7.2 Related Work

Grasp planning has received significant attention in robotics [46, 123, 146, 21, 129]. Recent
works leverage learning-based approaches to enable fast planning and generalization to novel
objects [86, 121, 105, 99, 100]. We focus on grasp planning for 3D deformable objects. Unlike
rope or cloth, 3D deformables have dimensions of a similar magnitude along all 3 spatial axes
and can undergo significant deformations along any of them [63]. We review grasp planning
for 3D deformables, as well as methods for predicting stress and deformation fields via graph
neural networks and differentiable simulation.

https://sites.google.com/view/defgraspnets
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Grasp planning for deformable objects

Early works in grasp planning for deformable objects focused on finding stable grasps of
planar objects, under which the object’s strain energy would be maximized without inducing
plastic deformation [44, 71]. This has since been extended to the 3D case, where novel time-
dependent grasp quality metrics have been proposed to capture the evolution of contact
states under deformation [154, 83].

Grasp planning for deformation of thin-walled containers (e.g., boxes, bottles) has also
been explored. Given a 3D geometric stiffness map of the object, a minimal deformation
grasp can be planned by localizing contact at high-stiffness regions. This map can be gen-
erated in simulation, via real-world probing [176], or from 2D images of the object via
generative adversarial networks [110]. Grasp planning for stress has also been demonstrated
via simulation on quasi-rigid objects using the boundary element method [132]. Finally, grasp
planning for additional metrics can be performed with DefGraspSim, a 3D FEM-based grasp
simulation framework [63]. For every grasp, it evaluates success, stability, stress, deforma-
tion, strain energy, and controllability.

These methods vary not only in the planning metric, but also in the type of computation
required. Some require FEM simulation of the beginning of the interaction (e.g., just past
initial contact) [71, 154, 83, 176] or the full interaction [132, 63], whereas others use neural
networks [110]. Yet, all of these planners can only evaluate or predict the outcome of a
candidate grasp, and cannot optimize grasps through gradient-based methods.

Graph neural networks for deformable-object interaction

Graph neural networks (GNNs) have been used to efficiently learn dynamics models for
granular solids, deformable solids, and fluids [92, 149, 168, 133, 152]. Inspiring our work,
MeshGraphNets [133] used GNNs to learn accurate dynamics for deformable solids using
mesh-based representations, training from an industry-standard FEM solver. It predicted
deformation and stress on a 3D deformable plate with kinematically-actuated colliding
shapes and achieved evaluation speeds up to two orders of magnitude faster than the solver.
RoboCraft [152] used GNNs to learn how plasticine-like objects with particle representa-
tions deform under interaction with a robotic gripper, training from visual input. Whereas
MeshGraphNets used forward passes through the networks to predict dynamics, RoboCraft
also used backwards passes to perform gradient-based trajectory optimization, molding the
plasticine into a desired shape.

Our work also utilizes a GNN as a surrogate simulator for dynamics predictions. Unlike
MeshGraphNets, which uses N-step rollouts to predict a final state via intermediate steps,
DefGraspNets performs direct, one-step predictions of the final state. One-step prediction
ensures that gradients are only propagated once through the network rather than over tens or
hundreds of steps, mitigating vanishing or exploding gradients [94]. Furthermore, we focus
on quasistatic rather than dynamic grasping; the ability of multi-step rollouts to predict
object and controller dynamics offers limited advantage. Our ablation study verifies that
using single-step predictions in our setting performs better than multi-step predictions (c.f.

Sec. 7.8).
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Like RoboCraft, we design our network to include gripper actions in order to perform
gradient-based optimization for grasp planning. Unlike RoboCraft and MeshGraphNets,
we use force rather than position commands for our actuators, as force commands are im-
plemented in notable industrial grippers [81, 131, 150] and are preferable for grasping (as
opposed to applications like shape control). Gripper force determines whether the grasp will
overcome the object’s gravity, and gripper position cannot indicate force without additional
knowledge (e.g., contact area, object stiffness). In addition, when grasping stiffer objects,
position commands can induce high torques that can damage both the object and gripper.
We also generalize our network to different elastic moduli, which was not explored in prior
works.

Differentiable simulators

Differentiable simulators for rigid and deformable bodies allow gradients of output variables
(e.g., poses, velocities, or deformation fields of objects) to be computed with respect to input
variables (e.g., control inputs or material parameters) [101, 39, 57, 50, 174, 70, 56]. Such
simulators enable gradient-based optimization for control optimization [177, 70, 64, 56, 42],
parameter estimation [49, 42, 56|, and inverse design [178, 56].

There are 4 main strategies to realize a differentiable simulator or equivalent model:
1) finite-differencing a non-differentiable simulator, which has unfavorable O(n) scaling to
an n-dimensional input space [11, 112], 2) analytically or automatically differentiating a
simulator that smoothly approximates spatial or kinetic discontinuities (e.g., penalty-based
contact forces and smooth friction models [49, 42], which may introduce inaccuracies or
require tuning), 3) training a deep network with physically-based loss functions [139, 72],
which has seen limited use for contact dynamics [134], and 4) training a deep network on
datasets from a non-differentiable simulator, primarily with graph-based inductive biases
(10, 92, 149, 133].

For our application, we aim to simulate robotic grasping of 3D deformable objects. Thus,
we focus on gold-standard 3D FEM simulation of deformable objects with contact. For
this application, strategy 2 has been explored in a handful of recent works [49], including
differentiable projective dynamics [29, 137]. However, such simulators typically execute
substantially slower than real-time (especially including a backward pass), and only one
has realized differentiable FEM and contact modeled via the full nonlinear complementarity
problem (NCP) [52] with both static and dynamic friction [137].

In this work, we explore strategy 4, training for the first time on a GPU-accelerated
robotics FEM simulator [111] that addresses the full NCP [103] and has been experimentally
validated across multiple studies [63, 127, 126]. To our knowledge, this effort also comprises
the first application of such methods to robotic grasping of 3D deformable objects.

Strategy 2 has often been favored over strategy 4 due to the former’s potential for gener-
alizing to arbitrary physics [29, 137]. Nevertheless, we show for the first time that strategy
4, through judicious selection and scaling of training data, can indeed generalize to novel
grasps, elastic moduli, in-category objects, and out-of-category objects. Furthermore, the
trained networks can execute 2 to 3 orders of magnitude faster than the reference simulator
(i.e., faster than real-time).
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Figure 7.2: Given a candidate grasp state X consisting of an object mesh M,, gripper mesh
M,, and grasp force F,, DefGraspNets generates contact edges F¢ and predicts output Y
consisting of a stress field ¢ and deformation field d defined at each node of the object mesh.
(©2023 IEEE

7.3 The DefGraspNets Model

Here, we explain the GNN structure of DefGraspNets, including the input and output rep-
resentations. We detail training data generation in Sec. 7.4 and explain how we use Def-
GraspNets within a grasp planning algorithm in Sec. 7.5.

Summary of inputs and outputs

DefGraspNets takes as input a candidate grasp state X = (M,, M,, F,) comprising a mesh
M, of a deformable object in its pre-contact state, a mesh M, of the gripper fingers upon
initial contact?, and a total normal grasp force scalar F,. A mesh is a collection of vertices
and undirected edges that connect them. For M,, these vertices and edges form tetrahedral
elements that define the volumetric geometry of the object. For M, the vertices and edges
form triangular elements that define the surface geometries of the fingers.

DefGraspNets converts the candidate grasp state X into a multigraph G (Sec. 7.3),
mapping the gripper-object contact interactions onto a graph structure. The multigraph is
fed into an Encode-Process-Decode sequence [133, 149, 10](Sec. 7.3). DefGraspNets predicts

=

the stress and deformation Y = (&, d) at steady state, at all vertices of M, (Fig. 7.2). Please
refer to Sec. 7.4 for the formal definitions of these fields.

2 Although My, comprises two unconnected parts, we refer to it collectively as the “gripper mesh.”
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Multigraph representation

The multigraph representation G = (V, E™, EY) has nodes V and undirected edge sets EM
and EY; each edge stores the indices of its two connected nodes. We list their features, and
mark those that differ from [133] with a * bullet.

Nodes. The nodes V' correspond to the vertices of M, and M,. Each node v; has a feature
vector consisting of

e A 3-element one-hot vector for node type (i.e., part of M, M, surface, or M, interior)
e The 3D Cartesian position of the node

* A 3D unit vector in the gripper closing direction. This is nonzero only for gripper
nodes and informs the network which direction the grippers are closing.

Mesh edges. The mesh edges EM correspond to the edges of M, and M,. Each mesh edge

ef‘f connects nodes v; and v; of the same type. Its feature vector consists of

e The 3D Cartesian displacement vector from v; to v;
e The scalar Euclidean distance between v; and v;

* The scalar elastic modulus E' of the deformable object. This is nonzero only for edges
belonging to the object.

Contact edges. The contact edges E¢ connect object and gripper nodes and are computed
based on proximity at initial contact. Each edge e% is formed between a pair of nodes v; and
v; that have different node types and are closer than hyperparameter e. The edge’s feature
vector comprises

e The 3D Cartesian displacement vector from v; to v;
e The scalar Euclidean distance between v; and v,

* The normalized grasp force F gc , which is the total grasp force F, divided by the number
of contact edges |E°|.

Encoder, processor, & decoder architectures

First, all feature vectors associated with the nodes V', mesh edges EM, and contact edges E¢
are encoded into a common latent space with 3 respective multilayer perceptrons (MLPs).
Then, L message-passing blocks with 3 separate MLPs per block sequentially aggregate
and process information from adjacent nodes and edges. Finally, a decoder MLP takes the
processed nodal features in the latent space and jointly outputs the predicted stress and
Cartesian displacement per node in real units (Pa and m). Full details of the Encode-
Process-Decode sequence can be found in [133].
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7.4 Data Generation and Model Training

We now describe our simulation-based approach to training DefGraspNets. We design a set
of 60 object primitive models as a high-level abstraction of real-world geometries grouped
into geometric categories (e.g., cuboids, cylinders, ellipsoids, annuli), and instances within
each category have different dimensions and aspect ratios. Our dataset also includes a set
of 11 of fruits and vegetables (e.g., apples, eggplants, potatoes) based on 3D scans [69].
Tetrahedral volume meshes are generated for each deformable object using fTetWild [55].
Triangular surface meshes are generated for the gripper fingers using Onshape.

For each pre-contacted object mesh M,, 100 grasps are generated using an antipodal
sampler [33] wherein randomly-sampled surface points define gripper contact points, sur-
face normals define grasp axes, and 4 rotations are regularly drawn about each grasp axis.
These 100 grasps correspond to 100 gripper meshes M,. Each grasp is evaluated using
the DefGraspSim[63] simulation framework (built upon Isaac Gym[111] and the FleX FEM
solver[103]) with the Franka parallel-jaw gripper. DefGraspSim evaluates the stress and
deformation fields of the deformable object during grasping.

Given an object-grasp pair (M,, M,) in DefGraspSim, the gripper applies a linearly in-
creasing amount of force on the object until F;"** = 15N is reached in a zero-gravity en-
vironment.® This force was achieved by directly commanding DOF torque applied at the
gripper joints. The values of the stress (&) and deformation fields (d) at all object vertices
are saved over 50 evenly-spaced substeps throughout the entire grasping trajectory. For-
mally, our dataset D is composed of input-output pairs, each consisting of a candidate grasp
pose X; and corresponding set of fields Y;, that is, D = {X; = (M,, M,, F}),Y; = (7, af)}i]il,
where 0 < F; < 15. Dataset D has N = # objects x 100 x 50 = 3.55e5 unique points. Be-
cause our network performs one-step predictions of the final state and is ideal for quasistatic
interactions, all unstable grasps involving chaotic dynamics are not included in D.

The values of the stress field & at all object vertices are computed as follows: first, the
second-order stress tensor at each tetrahedral element of M, is acquired from DefGraspSim.
The stress tensors at each vertex are calculated by averaging the stress tensors at all adjacent
elements. Each stress tensor is then converted to the scalar von Mises stress (i.e., the second
invariant of the deviatoric stress), which is widely used to quantify whether a material has
yielded [162]. The values of the deformation field d are defined simply as the distance between
the positions of the pre-contacted vertices of M, and their positions under gripper force Fj.

Contact edges E¢ are formed based on the threshold € = 5mm. Our networks are trained
with a decaying learning rate from 5e~° to 1le=® over 25 epochs and a batch size of 1. A
latent size of 128 and L = 15 message passing steps are used, where all MLPs have 2 hidden
layers. Loss is defined as the sum of the MSE of stress and deformation over all nodes. On
a single RTX 3090 GPU, the network trains at approximately 1600 steps per minute.

3For the elastic moduli examined (164 < E < le” Pa), 15N was observed to induce substantial stress
and deformation; gravity was ignored due to having negligible effect on stress and deformation compared to
contact forces.
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7.5 Grasp Planning

We demonstrate DefGraspNets as a grasp planner, where both gradient-free (i.e., evaluation
of sampled grasps) and gradient-based refinement methods can be used to find an optimal
grasp. We define () as the optimization objective, which is any backwards pass-differentiable
measure of the predicted deformation and/or stress fields (e.g., mean deformation, smooth
differentiable approximation of maximum stress implemented in modern deep learning li-
braries).

Evaluation of sampled grasps

First, DefGraspNets supports online sampling-based grasp planning. For an unseen object,
forward passes of DefGraspNets can be used to evaluate () for 100 random antipodal grasps
with parallel batches of size 5 in 7.3 seconds. In comparison, DefGraspSim requires approx-
imately 3 hours to evaluate 100 grasps, which is ~1500x slower.

The best grasp pose is identified as T* = arg minyer, Q(T'; M,), where T' is a 6D rigid
transformation applied to a constant initial state of the gripper M;’ wherein both fingers
are maximally open. Any valid M, can be fully defined by 7" and joint states p, € R?
that determine how much each finger closes in order to contact M,. These joint states p, are
calculated analytically by projecting the vertices of M, onto the gripper faces, backprojecting
the vertices within each face, and computing the minimum perpendicular distance over these
vertices (i.e., the minimum contact distance) per finger.

Grasp refinement

Unlike existing deformable object planners, DefGraspNets’ differentiability enables gradient-
based refinement of a grasp pose to optimize (). Starting from an initial grasp pose T}, we
perform gradient updates in the direction of Q0T to achieve a refined T' using backtracking
line search [130] and simulated annealing [80]. With 12 refinement steps per grasp, refining
100 initial grasps requires approximately 8 minutes. A comparable time does not exist for
DefGraspSim, as it is not differentiable.

7.6 Prediction Results

We test DefGraspNets’ predictions of the ranking of grasps with respect to their mean stress
and deformation values by quantifying the respective Kendall’s 7 rank correlation coefficients
(75 and 74).* We answer the following questions for 4 levels of generalization:

1. Can DefGraspNets rank unseen grasps when trained on other grasps on the same
object? (Ans: Yes. For an 80-20 train-test split over grasps on the same object, we
get an average 7, = 0.78 and 7; = 0.66 over 15000 unseen Xj.)

4Kendall’s 7 was chosen over Spearman’s p for its comparative robustness (i.e., smaller gross error
sensitivity).
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2. Can DefGraspNets generalize to unseen elastic moduli £ on the same object? (Ans:
Yes. For a 7-3 train-test split over unique E for grasps on the same object, we get an
average 7, = 0.81 and 74, = 0.72 over 15000 unseen Xj.)

3. Can DefGraspNets generalize to unseen primitive objects within the same geometric
category? (Ans: Yes. For a 5-1 train-test split over unique objects, we get an average
7s = 0.48 and 74 = 0.54 over 15000 unseen Xj;.)

4. Can DefGraspNets generalize to unseen real-world objects? (Ans: Yes. Moreover, we
generate useful predictions even when training on a small number of objects, as long as
the train geometries are relevant to the test geometry as quantified by a low Chamfer
distance. See Table 7.1, which also reports the mean absolute error (MAE)).

Full visualizations of predicted field quantities for the 4th (i.e., most challenging) gener-
alization level is shown in Fig. 7.3 on an unseen mustard bottle and unseen strawberry, as
well as for the 2nd generalization level on a sphere.

Table 7.1: Generalization to unseen real-world objects. Gray cells denote the best values
per column. Train sets each contain only 5 objects; the “All” group contains all 15. The
de column measures the best Chamfer distance between the test geometry and the train
geometries. Lower do implies geometric similarity between the train and test objects, and
corresponds to more favorable MAE and 7 during prediction.

Mustard bottle Lemon half Strawberry
Train set  do [mm] | Deformation [mm] Stress [kPa] do | Deformation Stress do | Deformation Stress
MAE | a1 MAE] 71 MAE| 741 MAE] 71 MAE| 71 MAE] 71
Group 1 5.57 0.71 0.62 292 056 3.57 4.82  0.20 215 031 3.27 0.42  0.09 6.41 0.58
Group 2 6.77 0.74 0.20 4.72 045 3.30 3.98 0.50 1.30 0.43 2.61 0.30  0.29 2.85 0.54
Group 3 6.07 0.73 -0.31 4.57 045  4.50 4.28 -0.03 2.63 0.19 2.46 0.31  -0.05 2.79 0.64
All 5.57 0.73 0.60 3.66 0.56 3.30 398 043 1.36  0.43 2.46 0.30  0.39 2.68 0.66

7.7 Grasp Planning Results

We demonstrate DefGraspNets as a grasp planner on 3 unseen objects (a mustard bottle,
a lemon, and a strawberry) from existing datasets [17, 167] with real-world elastic moduli.
First, we perform evaluation of sampled grasps. On each unseen object, 100 random grasps
T, are generated, and the optimization metric Q(7T') is evaluated for each T" € T, via the
forward pass of DefGraspNets. Of the 100 grasps, we select the 10 grasps that are predicted
to yield the lowest @ (“threshold low” grasps), as well as 10 grasps that are predicted to
yield the highest @) (“threshold high” grasps). We also randomly select 10 other grasps from
the remaining 80 grasp candidates as a baseline. These 30 grasps are then evaluated within
the ground-truth simulator DefGraspSim.

DefGraspNets is a reliable predictor of minimal- and maximal-¢) grasps on the unseen
objects, with 88% of these threshold-low and high grasps belonging to the set of 30 lowest
and highest ground-truth-Q) grasps, respectively.
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Subsequently, we perform gradient-based grasp refinement on the threshold-low and
threshold-high grasps to further reduce and increase (), respectively. For each object, box
plots in Fig. 7.4 visualize the distribution of ground-truth ) values for 5 groups of grasps: all
sampled grasps, threshold-low grasps, threshold-low grasps after refinement, threshold-high
grasps, and threshold-high grasps after refinement. In all cases, not only do threshold-high
and low grasps from DefGraspNets yield substantially different ground-truth ) values, but
refinement increases their polarity as desired.

The highest- and lowest-() grasps generated by the sample-and-refine grasp planning
procedure are shown in Fig. 7.5. These grasps align with physical reasoning (e.g., the highest-
deformation grasps on the bottle and lemon compress the directions of lowest geometric
stiffness; the highest-stress grasp on a strawberry concentrates force on minimal area). These
grasps are also validated in the real world in Fig. 7.6.

7.8 Ablation Studies

We run several ablation studies on our network architecture design. Table 7.2 lists key
design variables in DefGraspNets, with our selected conditions in bold. We compare our
baseline model with 5 other trained models, each of which differ from baseline by exactly
one condition. We compare performance on a fixed test set and report the Kendall’s 7 metric
for mean d and & We address the following questions:

e Does jointly predicting stress and deformation outperform using two separate networks
to predict these quantities? (Ans: The 7 metric is comparable in both cases, likely
because stress and deformation are coupled through the equations of elasticity. Thus,
training two networks would be strictly disadvantageous computationally, c.f. V1.)

e Does one-step prediction outperform multi-step prediction? (Ans: Yes, when predict-
ing deformation. Otherwise, both are comparable when predicting stress, c.f. V2.
In MeshGraphNets, multi-step prediction does not accumulate significant deformation
errors because the trajectory of the actuators is exactly controlled. In DefGraspNets,
gripper force is commanded; the positions of both M, and M, are predicted and subject
to accumulating errors.)

e Should F, be normalized by the number of contact edges? (Ans: Yes. This aligns with
simulation, in which the total force is the sum of forces at all contact points, c.f. V3.)

e Should force features FgC be assigned to contact edges or to gripper nodes? (Ans: The
network is able to incorporate this information equally well, c.f. V4.)

7.9 Discussion

We present DefGraspNets, a differentiable GNN-based model for FEM simulation of 3D
stress and deformation fields. We demonstrate that training DefGraspNets on a diverse set
of grasps on primitive geometries enables effective prediction and grasp planning on unseen,
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Table 7.2: Ablation study variables and conditions. Our DefGraspNets network conditions
are in bold. Best conditions are in gray.

Variable Condition TaT 7T
Def. and stress 0.61 0.82

V1. Num. outputs Def. only 0.57
Stress only 0.84

One-step predictions 0.61 0.82

V2. Prediction type Multi-step  0.37  0.70

Distributed, Fg[EW| 0.61 0.82
Non-distributed Fy;  0.33  0.51

On world edges EY  0.61 0.82
On all nodes V. 0.58 0.74

V3. Value of F;V

V4. Assignment of Fy

real-world geometries. DefGraspNets enables not only fast evaluation of sampled candidate
grasps (1500x faster than GPU-accelerated FEM), but also gradient-based refinement of these
grasps to optimize field quantities (e.g., max stress and mean deformation). We verify the
effectiveness of optimized grasps on novel objects both in the ground-truth FEM simulator
and in the real world.

To expand DefGraspNets for use in downstream manipulation tasks such as food prepa-
ration or robotic surgery, prediction of additional quantities should be explored. These may
include stability during transport and deformation and flow under reorientation and gravity.
Furthermore, as FEM simulators evolve, DefGraspNets can be retrained to predict soft-soft
contact or heterogeneous material responses.

Developing data augmentation techniques for meshes may enable vast dataset scaling
from a minimal set of object models, further strengthening our ability to generalize to un-
seen objects. In addition, as our network is differentiable, techniques such as Stein varia-
tional gradient descent [96] and stochastic gradient Langevin dynamics [173] may allow us
to provide probabilistic, multi-modal distributions of optimal grasps. Finally, architecture
optimization (e.g., sparsity acceleration [19]) may lead to even faster performance.

DefGraspNets contributes the first differentiable approach to deformable grasp planning
capable of predicting and optimizing stress and deformation fields on novel objects. We
believe this coupling of fast prediction of field quantities with a differentiable model will
enable a wide range of users to apply deformable grasp planning to their target domains.
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(a) Mustard bottle, F, =
12N, E = 1e7

(b) Strawberry, F, = 6N,
E = 5e4

(c) Sphere, F;, = 5N, E €
[5e5, 1e6, 5eb]

Figure 7.3: A) Predicted and ground-truth deformation fields for a mustard bottle subject
to grasps inducing increasing mean deformation, B) Predicted and ground-truth stress fields
for a strawberry subject to grasps inducing increasing maximum stress, and C) Predicted
and ground-truth stress fields for a sphere of increasing elastic moduli subject to identical
grasps (deformation can be seen in resulting shape). (©)2023 IEEE.
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Figure 7.4: Box plots for 5 groups of grasps for each unseen object: 1) all grasps, 2) threshold
low grasps from sampling only, 3) threshold low grasps after refinement, 4) threshold high
grasps from sampling only, and 5) threshold high grasps after refinement. The y-axis is the
ground-truth @ value of these grasps as computed in DefGraspSim. (€)2023 IEEE.

Figure 7.5: Highest- and lowest-() grasps for the mustard bottle, lemon, and strawberry
generated by the sample-and-refine procedure. (©)2023 IEEE.
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Figure 7.6: Validation of grasps from Fig. 7.5 using a Franka-based gripper gravitationally
loaded under 15N. For the bottle and lemon, deformation is measured by proxy (change in
volume and weight). For the strawberry, only the highest-@) grasp imparts damage. (€)2023
IEEE.
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