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Abstract

Preliminary Studies on Defending Image Adversarial Attacks with Domain
Adaptation Algorithms

by

Zheng Zhang

Master’s of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

Deep Neural Networks (DNNs) have demonstrated high performance in various tasks using
image datasets. Despite the rapid expansion of innovation and research in DNNs, they are
also vulnerable to image-based adversarial attacks, which can compromise the reliability
of DNNs and impose challenges on the applications of artificial intelligence (AI) in safety-
critical tasks. In this report, we propose a new defense method that takes advantage of the
domain loss function of Domain Adaptation Algorithms, and we have named the method
Domain Adaptation Defense (DAD). DAD can generate distributional-based defense with-
out prior knowledge of attack functions, making it more applicable in real-life applications.
Our results also indicate that DAD can perform similarly to many current defense methods.
Through our study of distributional discrepancies, we verify that the domain loss function
is an essential defense mechanism that captures the domain differences between clean and
adversarial images. From the comparison results, we identify that existing Domain Adapta-
tion Algorithms with domain-classifier-based loss functions, such as Proxy A-Distance, are
more effective than the others. Furthermore, we have designed a new experimental procedure
for studying the joint research area between distributional shifts of adversarial attacks and
Domain Adaptation Algorithms. The promising results and well-formatted procedure will
inspire improvements and inventions of new domain loss functions and Domain Adaptation
Algorithms focusing on defending against adversarial attacks.

Keywords: Domain Adaptation, Defend Adversarial Attacks, Adversarial Training, Do-
main Distributional Shift, Domain Loss Functions
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Chapter 1

Introduction

1.1 Background

The evolution of Deep Neural Networks (DNNs) has demonstrated considerable success by
mastering tasks such as image classification, segmentation, and object localization and de-
tection in the past decade. For example, the state-of-the-art image classification DNNs on
ImageNet have evolved from AlexNet with 63% accuracy in 2012 [16], to ResNet-152 with
78% accuracy in 2015 [12], and to Finetuned-CoCa with 91% accuracy in 2022 [25]. These
unparalleled breakthroughs also lead to extensive applications of DNNs in advanced tasks
such as video recognition and autonomous driving. However, a significant concern in extend-
ing DNNs to safety-critical tasks is their vulnerability to image-based adversarial attacks.
Simple adversarial attack methods, such as the Black-box One Pixel Attack, can compromise
the stability and accuracy of various DNNs.

While most of the current defense methods against adversarial attacks focus on data
augmentation, adversarial training, and identifying the attack functions, we propose a new
and creative approach to convert an adversarial defense task into a cross-domain classification
task using Domain Adaptation Algorithms [18]. In other words, we set up our hypothesis
that an image adversarial attack is a form of domain distributional shift of the clean dataset,
and we will validate our hypothesis with experiments. As far as we know, this is one of
the first research studies to approach defense methods focusing on the distributional shift of
image-based adversarial attacks.

1.2 Motivation

Reflections on Existing Defense Methods
Many works have been conducted to defend against adversarial attacks and improve the
stability and robustness of DNNs. The current adversarial defense methods can be roughly
summarized into the following categories [18]:
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• Adversarial Training: Improves the accuracy and robustness of DNNs against ad-
versarial attacks by adding adversarial examples to the training set. If the model
has seen the adversarial examples during training, it is more likely to make correct
classifications when facing a test set mixed with adversarial examples [23].

• Data Augmentation: Applies a mix of randomization and image augmentation
methods, such as rotation, random cut, and normalization, to reduce the effect of
noise added to clean images by adversarial attacks [26].

• Attack Function Based Defense: Most of the attacks are generated from well-
defined attack functions or procedures. Some defense methods take attack functions
as given and incorporate them into the model’s loss calculation so that the subjected
models optimize against the attack functions in the training process [18].

We propose a new defense method, Domain Adaptation Defense (DAD), that provides the
same level of defense performance without knowing the actual attack functions. This makes
DAD an effective and attack-function-agnostic method applicable to defend against any at-
tacks that shift domain distributions. An attack-function-agnostic method is more practical
in real-life applications because the attackers will not reveal the attack functions. The key
difference in our approach is to focus on the distributional shift aspect of adversarial attacks
and quantify such shift with an appropriate method to incorporate it into the loss function.

Figure 1.1: An example of a famous image adversarial attack method is the Fast Gradient
Signed Method (FGSM) attack. A noise generated from the sign attack function is added
to the original panda image, which confuses the model to make the wrong prediction [8].
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Connecting Distributional Shifts and Adversarial Attacks
Figure 1.1 demonstrates an example of FGSM adversarial attack. For a clean image, a reg-
ular DNN model can make the correct prediction with an 84% probability (ResNet-50 in
our case). However, when we add a perturbation generated by the FGSM attack function to
the clean image, the DNN model becomes extremely confident about the wrong prediction.
In other works, FGSM attack completely ”fooled” the targeted DNN model. In addition to
the impact on accuracy, we focused on the noise generated from the attack. In particular,
the perturbation noise represents a shift from the original image pixel distribution. This
realization makes us wonder if there could be a connection between adversarial attacks and
image distributional shifts.

Classification on Domains with Different Distributions
The benefit of connecting distributional shifts and adversarial attacks is that it allows us
to use existing tools that specialize in cross-domain classification. Domain Adaptation Al-
gorithms are well-studied methods that specialize in making supervised and unsupervised
predictions on datasets with shifted domains [3]. Then, under the setup of a Domain Adap-
tation task, we can think of a clean image dataset as the Source Domain, and the adversarial
image dataset as the Target Domain.

1.3 Related Works

Generate Adversarial Examples
In this report, we generate a large number of adversarial examples for experimentation. We
obtain a general idea of the current state-of-the-art image adversarial attacks from Han’s
work for an overview of the methods [24]. Han’s work provides a great introduction to classic
attack methods and their effectiveness in reducing the classification accuracy of DNNs. To
understand how each type of adversarial attack is generated, we uncover the mathematical
intuitions by referring to the original papers [8][11][17][21][21][11]. In addition to theoretical
understandings of adversarial attacks, we utilized a great open-source tool for generating the
adversarial datasets in PyTorch environment [15].

Measurement of Distributional Shift of Adversarial Examples
We experiment with two common methods for measuring distributional shift: Maximum
Mean Discrepancy (MMD) and Proxy A-Distance (PAD). We studied the theoretical intu-
itions behind them and conducted experiments with adversarial datasets. For MMD, we refer
the original paper and other related papers for algorithms and explanations [27][6][9][10]. For
PAD, we also refer to the first paper that proposed the measurement by Ben-David and the
following works for approximations [1][7]. Furthermore, our literature review indicates a nat-
ural disadvantage of MMD compared to PAD in terms of their ability to detect adversarial
attacks, and we refer to Nicholas’ work to generate experiment ideas [2].
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Domain Adaptation Algorithms Selection
The critical part of the paper is to defend against adversarial attacks with Domain Adap-
tation Algorithms. Thus, we acquire knowledge of the definitions, domain setup, experi-
mentation, and benchmark performance from Yao’s work on a general summary of Domain
Adaptation methods [18]. With the correct benchmark, we carefully selected three algo-
rithms: DANN, JAN, and CDAN, for experiments. For benchmark information, we refer to
the original papers that were evaluated under the OfficeHome dataset [4][20][19][13][14]. To
understand why Domain Adaptation Algorithms can defend against adversarial attacks, we
looked at the mathematical definitions of the loss functions [5][19][20][13]. Furthermore, we
also refer to a great open-source codebase to train DNNs with selected Domain Adaptation
Algorithms [14][13].

1.4 Organization

The following chapters of this report are organized as the followings:

• Chapter 2: Methodology This chapter provides insights on how to conduct ad-
versarial attacks, measure distribution shift, and explanations of domain adaptation
algorithms

• Chapter 3: Experiment This chapter lists out the experimental design and ap-
proaches, and we defines metrics for comparisons.

• Chapter 4: Results This chapter reports the experiment results and the main find-
ings.

• Chapter 5: Analysis and Discussions This chapter analyzes experiment results
and provides explanations.

• Chapter 6: Extensions We extend the same approach to DNNs with less complexity
in this section to ensure that our method is the application to other DNNs.

• Chapter 7: Conclusion We conclude the main findings, outline the contributions,
and provide future research directions.
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Chapter 2

Methodology

2.1 Overview

To explain how we approach the study, we list the data, algorithms, measurement methods,
and models used during the experiment. In addition, this section provides the theoretical
insights behind the algorithms used to generate different kinds of adversarial attacks and
Domain Adaptations from the original papers.

2.2 Data

Figure 2.1: A sample of the Real-World class images from the Office-Home dataset [22].

As we are using Domain Adaptation (DA) as a defense method, we aim to employ a
well-known dataset for benchmarking DA algorithms. This will allow for fair comparisons
and enable us to select the best set of DA models. We have chosen to use the Office-Home
dataset, which is widely used in DA research and benchmarking [22]. Specifically, we are
focusing on using the Real-World portion of the dataset since most adversarial research
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utilizes images from the real world, such as the ImageNet dataset. The assumption here is
that Real-World portion of the dataset have similar sample distribution as the ImageNet
dataset.

2.3 Methods for Generating Adversarial Examples

Adversarial attack methods are algorithms that compromise the reliability and accuracy of
DNNs by adding perturbations to testing or out-of-sample data. Generally, there are two
major categories of attacks depending on the adversary’s knowledge: White-Box and Black-
Box attacks. White-Box attacks have access to all information, including the targeted model
parameters, architecture, optimization functions, and gradients. On the other hand, Black-
Box attacks have no information or access to model information, often resulting in weaker
attacks that are more computationally easy to execute [24]. Additionally, it is easier to adjust
attack strengths for White-Box attacks compared to Black-Box attacks. Given that White-
Box attacks are well-researched and more effective than Black-Box models, our research
focuses on attacking the Office-Home dataset with well-known gradient-based White-Box
attacks. The gradient-based White-Box attack methods that we use are the Fast Gradient
Sign Method (FGSM), Projected Gradient Descent (PGD), and Basic Iterative Method
(BIM).

Fast Gradient Sign Method (FGSM)

Fast Gradient Sign Method (FGSM) is a simple and effective attack method that lever-
ages the knowledge of the targeted model’s loss function to generate gradient attack [8].
Mathematically, FGSM’s attack function is defined as:

Xadv image = Xclean image + ϵ · sign (∇XL(Xclean image, y)) (2.1)

where Xclean image is the original clean image and Xadv image is the adversarial image. y is
the true label of the clean image. Specifically, FGSM attacks clean images by computing the
sign of the gradient of the loss value and adding a cosntant strength, ϵ ∈ [0, 1], to the clean
image. The larger the ϵ, the stronger the attack. As simple as the attack function, FGSM is
one of the most effective and computationally easy ways to generate adversarial examples,
which makes it an ideal benchmark for measuring the robustness of DNNs [11].

Basic Iterative Method (BIM)

BIM method is the iterative version of the FGSM attack. BIM takes smaller steps in each it-
eration to generate adversarial attacks. Mathematically, the BIM’s attack function is defined
as [17]:

Xadv image
0 = Xclean image
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Xadv image
N+1 = ClipX,ϵ

{
Xadv image

N + α sign
(
∇XL

(
Xadv image

N , y
))}

(2.2)

where BIM starts with clean image Xclean image in time step 0, then changing the adver-
sarial image by evolving the results from the Clip function at each time step. α is the value
change on each pixel on each time step. The Clip function restricts inputs into a constraint
of ∥X −X ′

N∥∞ ≤ ϵ [11]. The larger the constraint, the stronger the attack strength.

Projected Gradient Descent (PGD)

PGD is also an iterative gradient-based attack method. It is similar to BIM except that
PGD initializes the adversarial examples from a randomly generated position. The effect of
a random start point is similar to adding a random noise at time step 0 to the clean image.
Mathematically, PGD’s attack function is defined as[21]:

Xadv image
0 = Xclean image + S

Xadv image
N+1 = ClipX,ϵ

{
Xadv image

N + α sign
(
∇XL

(
Xadv image

N , y
))}

(2.3)

where every parameters are the same as BIM, except for S, which is a randomly gener-
ated start point with ∥S∥∞ ≤ ϵ [21][11].

2.4 Image Data Distribution Shift Measurement

Methods

While it is easy to observe that adversarial attacks cause shifts in image distribution by
adding noise to the original pixels, we aim to find methods to quantify the distribution
shift caused by adversarial attacks. Understanding the degree of distributional shift enables
correlation analysis between adversarial attacks and model performance. Through literature
review, we have identified two existing methods for measuring distributional discrepancy
between two datasets: Maximum Mean Discrepancy (MMD) and Proxy A-Distance (PAD).
In this section, we will formally define the two measurement methods and compare their
applications on adversarial examples.

Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy (MMD) is a widely used method for measuring distributional
discrepancy between two data sources [27]. Formally, let P and Q be the two data sources,
and let µP and µQ be the kernal means embeddings of the two dataset. In the case of image
data, kernel means embeddings can be generated from activation functions in DNNs. MMD
between two datasets is defined as [6]:

MMD(P,Q;F) = sup
∥f∥≤1

|E[f(X)]− E[f(Y )]| (2.4)
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in which f is a continuous function from some kernel space such as multi-scale and rbf. One
famous example of such kernel, proposed by Gretton’s work, belonging to a unit ball in the
reproducing kernel Hilbert space (RKHS) [9]. Therefore, under Gretton’s suggestion, we can
future write the definition of MMD as:

MMD(P,Q;F) = ∥µP − µQ∥Hk
(2.5)

in which k is restricted by the RKHS kernel [10].

Proxy A-Distance (PAD)

PAD provides measurements of discrepancy between two probability distributions. In the
context of image dataset, we can think of probability distribution as the distribution of pixels
in each color channel across all images in a dataset. While there is a formal probability
definition of A-Distance introduced in Ben-David’s work [1], a more intuitive way to obtain
a proxy of the A-Distance was introduced by Xavier [7]:

1. Suppose we have two distribution domains: P and Q

2. Randomly shuffle and mix P and Q into M , and label each image as P or Q (so that
M only has two classes)

3. Perform train-test split on M

4. Train a simple binary classifier, such as SVM, on train set to predict the domain of
each image (e.g. to predict if an image is from domain P or domain Q)

5. Compute error (ϵ) on the hold-out test set

6. Calculate PAD = 2(1− 2ϵ)

The main idea is that if the distributional difference between the probability (or feature)
distributions of P and Q is significant enough, any simple binary classifier will be able to
accurately classify images into the two domains. This will result in high test accuracy and
low error. On the other hand, if the difference between P and Q is too small, a simple binary
classifier will not be able to classify the two domains. This will result in low test accuracy
(around 50%) and high error because the classifier is randomly guessing the domain of each
test image.

Application of MMD and PAD on Adversarial Examples

In theory, both MMD and PAD can measure distributional discrepancy between the original
images and adversarial images, but our literature review and experiment results indicate that
MMD is susceptible to adversarial attacks like DNNs, and thus not an ideal method in our
context. Carlini Wagner empirically showed that MMD failed to recognize distributional



CHAPTER 2. METHODOLOGY 9

Figure 2.2: These two plots show how PAD and MMD measurements change as the attack
strength of FGSM increases from left to right on the x-axis. For PAD (left), the y-axis shows
the domain classifier accuracy on the test data. Higher accuracy indicates a larger shift in
domain distributions. For MMD (right), the measurement barely changes across all levels of
attack, indicating that MMD is incapable of detecting the domain shift caused by adversarial
attacks.

Figure 2.3: Use an image from the Alarm Clock class as an example. These plots visually
show how image distribute changes as the strength of FGSM attack increases. It is easy to
see that image starts to show noticeable changes from epsilon = 0.4, yet the measurements
of MMD stay relatively the same across all attack strengths.

discrepancy between the original images and adversarial images [2].

Our experiment result in Figure 2.2 provides a direct comparison between PAD and
MMD measurements under the same type of adversarial attack (FGSM) and across the
same levels of attack strengths. For PAD (left), the y-axis displays the test accuracy of the
domain binary classifier. Thus, the higher the test accuracy, the larger the shift in domain
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distribution. For MMD (right), the y-axis shows the actual MMD value computed with the
rbf kernel. It is easy to see a strong and positive correlation between PAD measurement and
the degree of distribution shift in dataset. However, for MMD, the measurement is about
the same across all attack strengths, which indicates that MMD is incapable of detecting
distribution shift under image adversarial attack. To further show the image distribution
shift, Figure 2.3 provides a visualization on image distribution shift using an example from
the Alarm Clock class. It is easy to see the effect of FGSM attack starting from epsilon =
0.4 and afterward. Therefore, we decided to use PAD for measuring domain distribution
shift between the clean and adversarial images for experiments.

2.5 Domain Adaptation Algorithms and DNN

Algorithm Selection

Domain Adaptation algorithms aim to provide accurate prediction on a target domain by
addressing the domain distributional differences between the source and target domains.
In our study, as show in Figure 2.4, we define clean images as the Source Domain, and
adversarial images as the Target Domain. The goal is to defend adversarial attack by applying
Domain Adaptation algorithms to make correct predictions on adversarial images.

We carefully select some of the most well-studied Domain Adaptation algorithms so that
we get a fair compassion between models on benchmark performance. Based on algorithms
performance on the Office benchmark from the original papers, we finalize a set of models
of DANN, JAN, and CDAN. These models are preferred because:

1. Their benchmark performances are different from each other. From table 2.1, we can
see that their performance are ranked as CDAN > JAN > DANN. This could help
provide further insights on the relationship between Domain Adaptation’s performance
and the effectiveness of our defense method [4][20][19].

2. They use different domain loss functions to detect domain differences, which can help us
understand why Domain Adaptation algorithms can be used for defending adversarial
attacks [4][20][19]. If one type of loss function is less effective than the other, we can
conduct root-cause analysis based on the differences.

In terms of DNN, we select ResNet-50, the most popular model in Domain Adaptation
research, performance benchmark, and experiments [4][20][19]. To account for model size
bias, we also study the performance of ResNet-18 in Chapter 6 as an extension.
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Figure 2.4: This figure provides a side-by-side comparison between the objectives of a gen-
eral Domain Adaptation classification task and adversarial defense task in our study. The
difference is that we think of adversarial examples as a shifted source domain, so we can
treat them as the target domain defined by the conventional Domain Adaptation classifica-
tion task.

Domain Adaptation
Algorithm

Average Accuracy
(across all domains)

Rw → Ar Rw → CI Rw → Pr

DANN 57.6% 71.1% 60.7% 81.1%
JAN 58.3% 72.5% 55.9% 80.5%

CDAN 65.8% 75.5% 61.5% 83.8%

Table 2.1: Benchmark results of the selected Domain Adaptation Algorithms [4][20][19].
These benchmark performances are evaluated on the OfficeHome dataset using the ResNet-
50 DNN model. Domain Adaptation tasks are denoted as: Source → Target, following the
convention of the OfficeHome dataset. The Average Accuracy is calculated on all possible
Domain Adaptation pairs performed on the domains of the OfficeHome dataset [13][14].
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Chapter 3

Experiment

3.1 Overview

This chapter covers the experimental design and setup in our study. Therefore, we define
the setup, goals, and procedure of the experiment as follow:

Goal: Discover if Domain Adaptation Algorithm is an effective way to defend against image
adversarial attacks. If so, find out the explanation behind the advantage of Domain Adap-
tation Algorithm.

Experiment Setup:

1. We use ResNet-50 as our baseline model.

2. We use three kinds of attack algorithms: Fast Gradient Sign Method (FGSM), Basic
Iterative Method (BIM), Projected Gradient Descent (PGD).

3. For each attack algorithm, generate 5 different levels of attack strength to create more
treatment and control groups for comparisons.

4. By the end of the experiment setup, we will have 15 adversarial datasets for experi-
mentation.

Experiment Procedure:

1. Compute and record Proxy A-Distance domain shift measurements for each adversarial
dataset.

2. Train a baseline model on the clean images with ResNet-50.

3. Record baseline model’s accuracy on each adversarial dataset, and we define this set
as Baseline accuracy.
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4. Train ResNet-50 with Domain Adaptation Algorithms: DANN, JAN, and CDAN. We
setup the training process with Clean Images as the Source Domain and Adversarial
Images as the Target Domain. We will end up with 45 models trained with Domain
Adaptation algorithms. Then, generate Domain Adaptation models’ accuracy on ad-
versarial dataset.

5. Compare Domain Adaptation accuracy with the Baseline accuracy, and discover the
differences.

6. Analyze the relationship between the Proxy A-Distance domain shift and the accuracy
differences.

The following subsections provide details of each step of the experiment.

3.2 Generate Adversarial Datasets

Fast Gradient Sign Method (FGSM)

Figure 3.1: (Left) A sample of adversarial images created with FGSM attack. The x-axis
indicates increasing attack strengths and y-axis provides the class labels. For FGSM attack,
the larger the ϵ, the stronger the attack. (Right) FGSM attack on the ResNet-50 DNN
model. As attack strength increases, the validation accuracy of ResNet-50 model decreases.

We generate adversarial examples with FGSM on 5 attack levels with ϵ = [0.005, 0.1, 0.4,
0.8, 1.6]. We target a baseline model ResNet-50 for generating adversarial examples. Figure
3.1 provide a sample of visualizations from the datasets we created. The attack noise might
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be different across images because FGSM method creates a unique noise for each batch of
data. Figure 3.1 also provides a visualization on how ResNet-50 accuracy decreases as the
attack strength increases with FGSM.

Basic Iterative Method (BIM)

Figure 3.2: (Left) A sample of adversarial images created with BIM attack. The x-axis
indicates increasing attack strengths and y-axis provides the class labels. For BIM attack,
the larger the ϵ, the stronger the attack. (Right) BIM attack on the ResNet-50 DNN model.
As attack strength increases, the validation accuracy of ResNet-50 model decreases.

Similar to the case of FGSM, we generate adversarial examples with BIM on 5 attack
levels with ϵ = [0.05, 0.5, 2, 3, 4]. Since BIM is slightly different than FGSM, the same
epsilon value does not produce the same drop in accuracy. Therefore, we picked different
set of epsilon to differentiate attack strengths. Figure 3.2 provide a sample of visualizations
from the datasets we created. The attack noise might be different across images because BIM
method creates a unique noise for each batch of data. Figure 3.2 also provides a visualization
on how ResNet-50 accuracy decreases as the attack strength increases with BIM.

Projected Gradient Descent (PGD)

We generate adversarial examples with PGD on 5 attack levels with ϵ = [0.05, 0.5, 2, 3, 4].
We target a baseline model ResNet-50 for generating the examples. Figure 3.3 provide a
sample of visualizations from the datasets we created. The attack noise might be different
across images because PGD method creates a unique noise for each batch of data. Figure
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Figure 3.3: (Left) A sample of adversarial images created with PGD attack. The x-axis
indicates increasing attack strengths and y-axis provides the class labels. For PGD attack,
the larger the ϵ, the stronger the attack. (Right) PGD attack on the ResNet-50 DNN model.
As attack strength increases, the validation accuracy of ResNet-50 model decreases.

3.3 also provides a visualization on how ResNet-50 accuracy decreases as the attack strength
increases with PGD.

From the samples of images above, we see that the noise generated from all three methods
are different. The adversarial datasets we have provide a good variance of attack on the
baseline ResNet-50 models.

3.3 Proxy A-Distance Domain Shift Measurement

As discussed in Chapter 2.4, PAD is an effective method for detecting and measuring domain
distributional shifts. Computing measurements on distribution shift is important because
it allows us to analyze the relationship between the effectiveness of Domain Adaptation
algorithms and the degree of shift in distribution. Furthermore, as far as we know, we
are the first research in the area that provides PAD measurement on different adversarial
attack methods. Therefore, this experiment is also a good introduction to the methodology
of studying the distributional shift of image adversarial attacks. We compute the PAD
in terms of the test accuracy of the domain classifier for all adversarial datasets from the
previous section.
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Figure 3.4: This plot indicates a positive relationship between attack strength and PAD
measurement (a negative relationship between baseline model accuracy and PAD measure-
ment). The change of PAD domain distributional shift measurements at each attack level
validates that FGSM adversarial attack causes distributional shift from the original images.

Fast Gradient Sign Method (FGSM)

We summarized our calculation in Figure 3.4, in which we see a positive relationship between
FGSM attack strength and PAD domain distributional shift measurement. That is, when
the attack strength increases, PAD domain distributional difference measurement becomes
more significant. These results verify that FGSM attack can be viewed as a form of change
in dataset distribution, which is what Domain Adaptation Algorithms are specialized in
solving.
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Basic Iterative Method (BIM)

Figure 3.5: This plot indicates a positive relationship between attack strength and PAD
measurement (a negative relationship between baseline model accuracy and PAD measure-
ment). The change of PAD domain distributional shift measurements at each attack level
validates that BIM adversarial attack causes distributional shift from the original images.

We summarized our calculation for BIM in Figure 3.5; Similar to the case of FGSM,
we see a positive relationship between BIM attack strength and PAD domain distributional
shift measurement.
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Projected Gradient Descent (PGD)

Figure 3.6: This plot indicates a positive relationship between attack strength and PAD
measurement (a negative relationship between baseline model accuracy and PAD measure-
ment). The change of PAD domain distributional shift measurements at each attack level
validates that PGD adversarial attack causes distributional shift from the original images.

We summarized our calculation for PGD in Figure 3.6; The conclusion is similar to that
of FGSM and BIM.
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3.4 Summary of PAD Measurements for All

Adversarial Attack Methods

Figure 3.7: Putting all three attacks together, we can see that PAD Domain Classifier
Accuracy can be used as a proxy for measuring the strength of adversarial attacks. In other
words, FGSM, PGD, and BIM attack image datasets by shifting their pixel distributions, and
PAD can be used for quantifying the degree of the shift. The best-fitted line also indicates
the same story.
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Putting all three attacks, FGSM, BIM, and PGD, together, we can see that PAD do-
main classifier accuracy can be used as a proxy for measuring attack strength. Specifically,
as PAD Domain Classifier accuracy increases, the baseline ResNet-50 model’s accuracy de-
creases, which indicates a stronger attack strength. The best fitted line result (at the bottom
of Figure 3.7) also indicates a negative relationship between baseline model accuracy and
PAD Domain Classifier accuracy. From this study, we also notice that PAD measurement
can be used as a standardized and universal measurements for all adversarial attacks. A
standardized measurement allows side-by-side and universal comparisons between adversar-
ial attack methods.

3.5 Training with Domain Adaptation Algorithms

Figure 3.8: Training flow with Domain Adaptation algorithms. The procedure is: data
preparation, model training, and model validation.

With adversarial data generated from FGSM, BIM, and PGD, we finished the data
preparation step in the training flow chart (Figure 3.8). Then, we define clean images as
the Source Domain, and adversarial images as Target Domain. For the Model Training sept,
we train ResNet-50 model with DANN, JAN, CDAN as Domain Adaptation algorithms to
create a model for each dataset. In the next chapter, we will analyze and summarized the
results obtained from the last step of the training flow - model validation.
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Chapter 4

Results

4.1 Overview

This chapter provides results generated from the experiment steps described in Chapter 3.
As with the previous sections, we organize our results by attack methods to enable a side-
by-side comparison between the accuracy of the Baseline ResNet-50 model and the Domain
Adaptation models.

4.2 Domain Adaptation Algorithm Performance on

FGSM Attacked Dataset

Table 4.1: Domain Adaptation Algorithms Accuracy on FGSM Attacked Dataset

Clean FGSM Attack Strength Average Accuracy

ϵ = 0.005 ϵ = 0.1 ϵ = 0.4 ϵ = 0.8 ϵ = 1.6

Baseline

ResNet-50 96.57% 67.18% 57.56% 37.76% 23.30% 7.64% 38.69%

DANN 96.95% 91.39% 87.68% 81.96% 78.27% 49.16% 77.69%

JAN 96.98% 85.27% 78.31% 68.51% 60.27% 24.19% 63.31%

CDAN 97.01% 91.46% 87.01% 80.68% 72.69% 42.53% 74.87%

Note: Average Accuracy is the average of accuracy across 5 levels of attack strengths.
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Figure 4.1: This plot provides a visualization of the models’ accuracy across different levels of
attack. While the baseline model suffers from FGSM attack, domain adaptation algorithms
consistently perform better than the baseline. Within the domain adaptation models, DANN
and CDAN consistently perform better than JAN.

4.3 Domain Adaptation Algorithm Performance on

BIM Attacked Dataset

Table 4.2: Domain Adaptation Algorithms Accuracy on BIM Attacked Dataset

Clean BIM Attack Strength Average Accuracy

ϵ = 0.05 ϵ = 0.5 ϵ = 2 ϵ = 3 ϵ = 4

Baseline

ResNet-50 96.57% 56.37% 43.72% 29.63% 25.82% 23.23% 35.75%

DANN 96.95% 88.04% 84.58% 77.37% 74.04% 73.03% 79.41%

JAN 96.98% 77.81% 68.74% 53.78% 50.20% 47.30% 59.56%

CDAN 97.01% 87.42% 83.06% 74.52% 70.23% 67.66% 76.58%

Note: Average Accuracy is the average of accuracy across 5 levels of attack strengths.
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Figure 4.2: This plot provides a visualization on models’ accuracy across different levels of
attack. While the baseline model suffers from BIM attack, domain adaptation algorithms
consistently perform better than the baseline. Within domain adaptation models, DANN
and CDAN consistently perform better than JAN.

4.4 Domain Adaptation Algorithm Performance on

PGD Attacked Dataset

Table 4.3: Domain Adaptation Algorithms Accuracy on PGD Attacked Dataset

Clean PGD Attack Strength Average Accuracy

ϵ = 0.05 ϵ = 0.5 ϵ = 1.5 ϵ = 2 ϵ = 2.5

Baseline

ResNet-50 96.57% 56.41% 47.07% 23.57% 13.04% 8.10% 29.64%

DANN 96.95% 89.08% 88.57% 85.68% 77.69% 69.57% 82.12%

JAN 96.98% 78.77% 75.63% 67.78% 54.72% 42.09% 63.80%

CDAN 97.01% 88.69% 88.50% 83.43% 74.52% 66.15% 80.26%

Note: Average Accuracy is the average of accuracy across 5 levels of attack strengths.
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Figure 4.3: This plot provides a visualization on models’ accuracy across different levels of
attack. While the baseline model suffers from PGD attack, domain adaptation algorithms
consistently perform better than the baseline. Within domain adaptation models, DANN
and CDAN consistently perform better than JAN.

4.5 Summary and Observations

Table 4.1, 4.2, and 4.3 provide experimental results on defending adversarial attacks with
Domain Adaptation (DA) algorithms. The first column of all three tables indicates that
ResNet-50 trained with DA algorithms achieves the same accuracy as the regularly trained
ResNet-50 baseline model on clean images. The same accuracy on clean images indicates
that we are making a fair comparison across attacks because all models are equally good
to start with. In terms of the overall pattern, we discover that DA algorithms consistently
produce higher accuracy compared to the baseline ResNet-50 models across all attacks and
all attack strengths. These results indicate that DA algorithms are relatively more robust
to image adversarial attacks compared to the baseline model. We observe that while DA
algorithms also have drops in accuracy as attack strength increases, the rate of decrease in
accuracy is much lower than that of the baseline ResNet-50 model. In other words, DA
algorithms are effective tools for defending adversarial attacks.

If we look closer into the accuracy trend within the DA algorithms (Figure 4.1, 4.2, 4.3),
DANN performs the best compared to CDAN and JAN across all attacks. CDAN performs
slightly worse than DANN but is still able to defend adversarial attacks effectively. Lastly,
while JAN shows some ability in defending adversarial attacks, its performance is worse
than those of DANN and CDAN. This observation inspires us to discover the theoretical
explanation of how DA algorithms defend adversarial attacks. We provide detailed discussion
and explanations of the results in Chapter 5.
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Chapter 5

Analysis and Discussions

5.1 Overview

Results from chapter 4 indicate that simple DNN model trained with Domain Adaptation
(DA) algorithms is effective in defending against image adversarial attacks. In this chapter,
we will uncover the reason behind the advantages of DA algorithms through in-depth analysis
and intuition discussions.

5.2 Domain Shift and Model Improvement

Figure 5.1: Proxy A-Distance is an effective method for detecting distributional shift.

As a reminder, the motivation behind using DA algorithms for defending against image
adversarial attacks is that we consider such attacks to be a form of domain shift. In Chapter
3 and Figure 5.1, we discovered that Proxy A-Distance is an effective way to detect dis-
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tributional shift of classical gradient-based image adversarial attacks (FGSM, PGD, BIM).
Therefore, a natural next step in the analysis is to discover the relationship between the
degree of domain shift and the improvements DA models have compared to the baseline
model.

Define Model Improvements

We define model improvements as:

Improvement = Domain Adaptation Accuracy− Baseline Model Accuracy (5.1)

Taking a result table as an example (Table 5.1), we compute the improvement of DANN
model compare to the baseline ResNet-50 model on in the last row. The larger the value,
the better performance of a model under adversarial attacks. From the example in Table
5.1, we can see that DANN improves the baseline model acccuracy across all attack levels.

Table 5.1: Domain Adaptation Algorithms Accuracy and Improvement on PGD Attacked
Dataset

Clean PGD Attack Strength Average Accuracy

ϵ = 0.05 ϵ = 0.5 ϵ = 1.5 ϵ = 2 ϵ = 2.5

Baseline

ResNet-50 96.57% 56.41% 47.07% 23.57% 13.04% 8.10% 29.64%

DANN 96.95% 89.08% 88.57% 85.68% 77.69% 69.57% 82.12%

Improvement 0.38% 32.67% 41.50% 62.11% 64.65% 61.47% 52.48%

Note: Average Accuracy is the average of accuracy across 5 levels of attack strengths.

Domain Adaptation Model Improvements V.S. PAD Domain Shift

Following the definition of model improvements, we computed improvements for all models
across all attacks and plotted them on Figure 5.2. In general, we model improvement in-
creases as the distributional shift from the clean image domain becomes more significant. In
other words, although DA models can be impacted by image adversarial attacks (Figure 4.1,
4.2, 4.3), they are more robust than the baseline model. The defending effect of DA models
becomes stronger as the distributional shift increases.
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Figure 5.2: DA Model Improvements v.s. PAD Domain Accuracy for all attacks.
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We also noticed that after the distributional shift becomes too strong, the improvement
starts to drop. This can be inspected in the FGSM attack - the improvement begins to
drop after a PAD measurement of 99.70%. We also found a similar pattern for BIM and
PGD attacks. We think the reason behind the drop is that images become too noisy for any
classifier to classify after a certain attack strength. For example, in Figures 3.1, 3.2, and
3.3, we can visually inspect that images can become so noisy that even humans cannot make
confident predictions. Nevertheless, DA models are still extremely robust under adversarial
attacks, even with high attack strength compared to the baseline model.

Figure 5.3: Overall DA Model Improvements v.s. PAD Domain Accuracy.

We constructed a scatter plot with best-fitted lines on the model level in Figure 5.3. In
general, we see a positive relationship between domain distributional shift and DA model
improvements on both the model level and overall level. Therefore, we think DA models are
advantageous in defending against adversarial attacks that cause distributional shifts.
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5.3 Reasoning Behind The Improvements

Domain Adaptation (DA) Algorithms show promising defenses against image adversarial
attacks in our experiment results. Now, the question is, what makes DA models better than
the baseline model?

The answer of the question is inspired by the performance discrepancies between DA
models. Specifically, one can see in Figure 2.3 that JAN consistently performs worse than
DANN and CDAN. While not too different from each other, DANN also tend to perform
slightly better than CDAN in most of the attack cases. This is a counter-intuitive result
because, based on the benchmark results (Table 2.1), CDAN should be the best model on
classification tasks and JAN goes right after it with DANN being the worst [13][14]. This
discrepancy in expectation made us wonder about the differences among the DA algorithms
and how they impact the effectiveness in defending against adversarial attacks.

The Loss Functions

From the original papers, we realize that the biggest difference between the three DA algo-
rithms is their loss functions [4][20][19]. To classify across domains, DA algorithms incorpo-
rate a domain loss component in addition to the regular classification loss. There are many
ways to calculate domain loss from distribution differences, and we discover that DANN and
CDAN use the same type of domain loss function (with different restrictions), while JAN
used another type [5][19][20]. We provide mathematical definitions and reasoning of each
Domain Adaptation methods in the following subsections.

DANN Loss Function

Ldomain (Gd (xi) , di) = di log
1

Gd (xi)
+ (1− di) log

1

1−Gd (xi)
(5.2)

Where Gd (xi) is a domain classifier (just like the Proxy A-Distance Domain Classifier)
that takes in an image xi and outputs di = 1 for Target Domain and di = 0 for Source
Domain images. If the domain classifier makes the wrong prediction, the domain loss function
will increase, which is how this function capture the distributional differences between two
domains [5]. When the domain classifier can perfectly classify the domains of all images, the
value of domain loss function will become zero.

CDAN Loss Function

Ldomain (Gd (xi) , Gf (xi) , di) = di log
1

Gd (T(xi, Gf (xi)))

+ (1− di) log
1

1−Gd (T(xi, Gf (xi)))

(5.3)

We define T as a multi-linear map or a randomized multi-linear map that convert two tensors
to a single tensor. Gf (xi) is an image classifier that predict the class label of image xi. Just
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like before, Gd (xi) is a domain classifier (just like the Proxy A-Distance Domain Classifier)
that takes in a tensor T(xi, Gf (xi)) and outputs di = 1 for Target Domain and di = 0
for Source Domain images. This domain loss function is different from DANN as it adds a
condition of image classifier into the loss function, which is a constraint in addition to the
domain classifier [19].

JAN Loss Function

JAN loss function calculates domain loss via image Maximum Mean Discrepancy (MMD) as
we discussed in chapter 2.4. Specifically, in the context of the original paper, the calculation
is set up as follow [20]. We define Source Domain set as Ds with ns labeled points. Target
Domain set as Dt with nt unlabeled points (because JAN is an unsupervised model). They
are analogous to distribution P and Q from the definition of MMD in chapter 2.4. Then, in
the JAN algorithm, the domain loss function uses activation generated in the Source Domain
{(zs1i , ..., z

s|L|
i )}ns

i=1 and in the Target Domain {(zt1i , ..., z
t|L|
i )}nt

i=1. Lastly, we define a kernal
function as k. Then, the domain loss function is defined as [13]:

Ldomain (Ds,Dt) =
1

n2
s

ns∑
i=1

ns∑
j=1

∏
l∈L

kl(zsli , z
sl
j )

+
1

n2
t

nt∑
i=1

nt∑
j=1

∏
l∈L

kl(ztli , z
tl
j )

− 2

nsnt

ns∑
i=1

nt∑
j=1

∏
l∈L

kl(zsli , z
tl
j )

(5.4)

which computes an estimate of the squared distance between the empirical kernal mean em-
beddings generated from source and target domain DNN.

From the definitions of domain loss functions above, we can see that DANN and CDAN
use domain classifiers, while JAN uses an MMD-based method. Based on observations in
Chapter 2.4 and Figure 5.4, we confirm that the MMD-based method is unable to detect
distributional shift caused by image adversarial attacks. Therefore, the discrepancies in
performance among DANN, CDAN, and JAN are due to their differences in the type of
domain loss function. Domain-classifier-based loss functions are able to detect adversarial
attacks, which make DANN and CDAN more aware of the distributional shift caused by the
attacks. On the other hand, the MMD-based method of JAN is unaware of the distributional
shift and, therefore, unable to formulate a good loss objective against adversarial attacks.

In addition, CDAN seems to perform slightly worse than DANN across all kinds of
attacks. If we look at Equations 5.2 and 5.3, they are pretty much the same, besides CDAN
incorporating the output of an image classifier in the calculation. Based on the original
paper, CDAN uses a conditional domain classifier to address the tradeoff between domain
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Figure 5.4: MMD cannot detect adversarial attacks like PAD

risk and classification risk. In the case of DANN, the domain loss function only considers the
domain risk, which is exposed to less constraint. While CDAN can potentially achieve better
performance in regular cross-domain classification tasks, the simplicity of DANN makes it a
better model for defending against adversarial attacks. As we showed in Chapter 2.4, image
adversarial attacks can be viewed as a form of domain distributional shift, which is the exact
objective that the domain loss function of DANN is optimizing against. The additional
conditions in CDAN increase the complexity of the optimization and, thus, undermines the
direct benefit of the domain loss calculation.
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Chapter 6

Extensions

6.1 Overview

We demonstrated the advantages and effectiveness of using Domain Adaptation (DA) Al-
gorithms to defend against image adversarial attacks. All of our previous experiments were
conducted using ResNet-50 as the baseline model and for domain adaptation training. There-
fore, we extend the same study to ResNet-18 to avoid biases introduced by model size and
to confirm that our method is able to achieve the same effect regardless of model complexity.

6.2 Domain Adaptation Algorithm Performance with

ResNet-18

Tables 6.1 and Figure 6.1 indicate that DA models perform better than the baseline ResNet-
18 model across all attack types and attack strengths. Similar to the case of ResNet-50,
DA algorithms display the same effectiveness in defending against adversarial attacks with
ResNet-18 DNN model. Furthermore, DANN algorithm remains to be the best performing
algorithm among CDAN and JAN.

Compare to the performance with ResNet-50, Tables 6.1 and Figure 6.1 show a natural
drop in accuracy due to the decrease in model size, which is expected for most of the DNN
models. This extension study indicates that the defending effect of DA models is consistent
across model complexities, which also shad lights on extending the same method to other
types of state-of-the-art DNN models.
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Table 6.1: Domain Adaptation Algorithms Accuracy on FGSM, BIM, and PGD Attacks
with ResNet-18

Clean FGSM Attack Strength Average Accuracy

ϵ = 0.005 ϵ = 0.8 ϵ = 1.6

Baseline

ResNet-18 94.64% 61.79% 20.59% 7.32% 29.90%

DANN 94.75% 87.54% 70.51% 37.96% 65.34%

JAN 93.98% 78.56% 53.09% 17.51% 49.72%

CDAN 94.01% 87.31% 68.56% 36.45% 64.10%

Clean BIM Attack Strength Average Accuracy

ϵ = 0.5 ϵ = 2 ϵ = 4

Baseline

ResNet-18 94.64% 52.93% 45.81% 40.28% 46.34%

DANN 94.75% 82.92% 76.82% 74.66% 78.13%

JAN 93.98% 68.92% 60.41% 55.61% 61.65%

CDAN 94.01% 81.75% 76.18% 72.34% 76.76%

Clean PGD Attack Strength Average Accuracy

ϵ = 0.5 ϵ = 1.5 ϵ = 2.5

Baseline

ResNet-18 94.64% 47.67% 25.80% 10.24% 27.90%

DANN 94.75% 84.65% 80.86% 65.53% 77.01%

JAN 93.98% 69.08% 56.60% 25.66% 50.45%

CDAN 94.01% 84.28% 79.21% 62.20% 75.23%

Note: Average Accuracy is the average of accuracy across 3 levels of attack strengths (ResNet-18).
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Figure 6.1: Performance summary of Domain Adaptations with ResNet-18 on all attacks
and strengths
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Chapter 7

Conclusion

7.1 Summary of Findings and Contributions

Domain Adaptation Defense (DAD) In this preliminary study, we formatted the image
adversarial defense task into a cross-domain classification task with Domain Adaptation Al-
gorithms. From the experiment results, we discovered that DA algorithms, such as DANN
and CDAN, are effective methods to defend against classical gradient-based image adversar-
ial attacks. We name this approach Domain Adaptation Defense (DAD). The key inspiration
is to connect the distributional shifts caused by adversarial attacks with the advantages of
the domain loss functions of DA algorithms. Specifically, by comparing the training pro-
cesses across DA algorithms, we discovered that domain-classification-based loss functions
can detect and quantify distributional shifts of adversarial attacks and thus enable DA al-
gorithms to defend against attacks. DAD provides efficient and attack-function-agnostic
defense, which is more practical in real-life applications. Lastly, we extended the same study
on smaller DNN models and obtained the same conclusion. This indicates that DAD is
applicable to DNN models with various complexities.

Distributional Shifts of Adversarial AttacksWe designed procedures and conducted ex-
periments to measure the distributional shifts of well-known and effective adversarial attacks.
As a result, we confirmed that an adversarial attack is also a form of image distributional
shift through Proxy A-Distance domain accuracy measurements. Besides demonstrating the
effectiveness of Proxy A-Distance measurement, we verified that Maximum Mean Discrep-
ancy (MMD) is unaware of distributional differences caused by adversarial attacks.

Proposed New Ideas to Apply Domain Adaptation In this report, we carefully out-
lined the experiment setup and the logic behind each measurement. As far as we know, we
are the first experimental design to test the defense effect of DA algorithms against image
adversarial attacks. With the promising results, we believe that our experiment set a new
direction in the joint research area between adversarial attacks and DA algorithms, which
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will inspire new model architectures and distributional studies on adversarial attacks.

7.2 Future Directions

New Domain Adaptation Architectures Our study sheds light on potential directions
in defending adversarial attacks and studying the distributional discrepancies in adversarial
examples. Preliminary results indicate that existing DA algorithms can achieve promising
accuracy under adversarial attacks, inspiring new DA algorithms designed specifically for
adversarial attacks.

Study of Domain Loss Functions The key inspiration for this study is to identify the role
of domain loss functions in measuring the domain distributional differences of adversarial
examples. One direction for creating new domain adaptation (DA) algorithms is to revise
the loss functions, focusing on measuring the domain shifts caused by adversarial attacks.
Future researchers can experiment with various domain loss functions to test their awareness
of adversarial attacks, which will help the community to further understand the limitations
of these functions. Our experimental process provides the necessary tools to conduct exper-
iments for better domain loss functions.

Better Understanding of the Defense Effects An obvious extension of our study is
to simply conduct more experiments with more attack methods and DA algorithms. Since
this is one of the first studies on this topic, we select the most well-studied methods for robust
experiments. Obtaining more results will enable better understandings of the mechanisms
and limitations of DAD.
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