
Mixclave Networks: Building Mixnets with Hardware

Enclaves

Mark Theis

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-67

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-67.html

May 5, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I foremost would like to thank the NetSys Lab faculty advisors, Scott and
Professors R, for their guidance, support, and the opportunity for research
within the lab. I would also like to thank my collaborators and co-authors,
without whom this project would have not been possible, Chris Douglas
and Vikranth Srivatsa. I would also like to recognize additional colleagues
who provided essential insights based on their experience, which informed
the design, implementation, and motivation for Mixclaves. Alphabetically:
Emmanuel Amaro, Tiemo Bang, Natacha Crooks, Vivian Fang, John
Kubiatowicz, Zhuohan Li, Mae Milano, Micah Murray, and Aurojit Panda.

Mixclave Networks: Building Mixnets with Hardware Enclaves

by Mark Theis

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Scott Shenker
Research Advisor

(Date)

* * * * * * *

Professor Sylvia Ratnasamy
Second Reader

(Date)

Scott Shenker
April 22, 2023

Sylvia Ratnasamy
May 4, 2023

1

Abstract

Mixclave Networks: Building Mixnets with Hardware Enclaves

by

Mark Theis

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Scott Shenker, Research Advisor

All secure messaging systems protect the content and integrity of users’ messages, but the
oblivious routing of messages concealing who communicates with whom (metadata-private
messaging) is increasingly crucial for privacy. Existing techniques conceal routing metadata
using mix networks (mixnets) made up of multiple nodes that batch and forward tra�c to
confound tra�c analysis. State-of-the-art mix networks remain resilient to a passive global
adversary even as attackers compromise up to 20% of the mix nodes.

As infrastructure moves to the cloud, threat models for metadata-private messaging must
assume an adversary that is both active and even present on machines routing user data.
This paper proposes Mixclaves, a scalable, metadata-private messaging architecture that
builds on hardware enclaves to provide a cost-e�cient, low-latency mixnet implementation
deployable in public clouds. Building on stronger guarantees provided by enclaves not only
simplifies the implementation of mixnets, it also admits novel features and lower operating
costs. Compared to Loopix and Groove, two popular mixnet implementations, mixclaves are
54% cheaper on cost to achieve the same message throughput.

i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1

2 Background 3
2.1 Mixnets . 3
2.2 Deployment Model . 5
2.3 Threat Model . 5
2.4 Hardware Enclaves . 7

3 Architecture 10
3.1 System Overview . 10
3.2 Deployment . 11
3.3 Reconfiguration . 11

4 Implementation 14
4.1 System Overview: Loopix . 14
4.2 Deployment . 15
4.3 Reconfiguration . 16

5 Evaluation 17
5.1 Microbenchmarks . 18
5.2 Scalability . 19
5.3 Elasticity . 19
5.4 Cost . 20
5.5 Reconfiguration . 21

6 Related Work 22

ii

7 Discussion 24

8 Conclusion 26

Bibliography 27

iii

List of Figures

2.1 Mixnet Topology. To preserve privacy, clients must route packets through at
least one honest node or privacy may be compromised. Within a domain, it is
su�cient to route packets through a single Mixclave node. 6

2.2 Intel SGX enclaves versus AMD SEV-SNP [28]. 7
2.3 Message Bu↵er Access Patterns. Message bu↵ering access patterns in Loopix

(left) vs Mixclaves (right). Loopix has a a correlation coe�cient of 0.738 from
input to output address accesses, whereas Mixclaves is 0.03. 8

3.1 Mixclave Mix Node. 10
3.2 Reconfiguration. Messaging client C and provider A are at an epoch Y ,

provider B is at epoch X, X ⇢ Y . C changes providers from A to B, but
since B sends no cover tra�c to the new node, tra�c to N must be from C. . . 12

5.1 Breakdown of salient platform and framework provisioning costs. . . . 17
5.2 Single Node Microbenchmark. Throughput vs latency for a single node.

Running in enclaves reduces peak throughput by around 200 messages per second. 18
5.3 Network Throughput. A network of six Loopix nodes saturates below 2400

messages per second (3 hops), but Mixclave cluster of three nodes saturates above
3000 messages per second at 54% of the cost. 19

5.4 Elasticity Experiment. Adding nodes as throughput increases. A node is
added to the mixnet at every dashed line, preserving latency. 20

iv

List of Tables

5.1 Cost and throughput comparison of Loopix to two di↵erent Mixclave
topologies. 20

v

Acknowledgments

I foremost would like to thank the NetSys Lab faculty advisors, Scott and Professors Rat-
nasamy, for their guidance, support, and the opportunity for research within the lab. I
would also like to thank my collaborators and co-authors, without whom this project would
have not been possible, Chris Douglas and Vikranth Srivatsa. I would also like to recog-
nize additional colleagues who provided essential insights based on their experience, which
informed the design, implementation, and motivation for Mixclaves. Alphabetically: Em-
manuel Amaro, Tiemo Bang, Natacha Crooks, Vivian Fang, John Kubiatowicz, Zhuohan Li,
Mae Milano, Micah Murray, and Aurojit Panda.

1

Chapter 1

Introduction

We kill people based on metadata.

Gen. Michael Hayden, former NSA Director, 2014 [26, 53]

The scope of state-sponsored and corporate surveillance is so widespread, it is no longer
covert; it is assumed. While this awareness spurred broad adoption of authenticated encryp-
tion, metadata remains a key vector to track and target individuals through their networks.
By analyzing how data are routed and accessed over time, an adversary can not only in-
fer confidential information, but also implicate individuals by association. Metadata leak
confidential and identifying information on journalists, whistleblowers, activists, business
executives, and government o�cials. Leading consumer communication services Signal [45],
WhatsApp [57], and iMessage [30] support end-to-end encryption to guard the content of
users’ communication, even from the providers of those services. However, the provider
has su�cient data to reveal users’ contacts if coerced or inclined. Since metadata are col-
lected and sold openly, regulations restricting access are easily sidestepped or completely
ignored [13].

To address this gap, metadata-private messaging systems from the research community
conceal not only message content, but also routing from adversaries and curious providers.
State-of-the-art designs such as Groove [9] and Loopix [46] refine the mixing networks
(mixnets) introduced by David Chaum (Section 2.1). These messaging systems o↵er sta-
tistical proofs of privacy by confounding network analysis that could correlate the routes
and timing of messages through the mixnet. Both require large networks of machines to
o↵er statistical privacy guarantees for users, since an adversary may control a substantial
fraction of the network. Revealing and uprooting an adversary in the mixnet improves
privacy of the network [39], but it cannot retract leaked metadata.

Privacy-conscious users may route tra�c through multiple independent providers to de-
crease the probability of a correlated compromise [31]. However, this not only increases
latency and harms e�ciency, it also burdens the user with a molten set of providers to
manage. Long paths also create a complex capacity planning problem for providers. Billing

CHAPTER 1. INTRODUCTION 2

is a uniquely awkward proposition for networks designed to conceal identity, and volunteer
anonymizing networks can draw unwanted attention even in unregulated jurisdictions [27, 6].
Mixclave networks propose federated administrative domains that can operate commercially.
Mixclaves do not seek to conceal the existence of the network, only the tra�c it forwards.

The continuing expansion of edge computing is a testament to the predominance of
centralized and commercially backed services. The Cloudlet model, introduced by M. Satya-
narayanan in 2008 [59], was composed of a vision for decentralized VM based Cloudlets to
enable nearby computation o✏oad for mobile devices. Modern edge computing has mate-
rialized in a di↵erent light, where companies centrally manage a large majority of the edge
in the forms of colocation and CDNs [32] rather than in the original decentralized Cloudlet
vision. But the importance of moving compute to many nodes has shown virtue. There is
a need for an architecture that o↵ers completely anonymous, user verifiable, communication
that may be managed by a central provider.

Hardware enclaves o↵er a confidential and attested compute environment ideal for mixnet
nodes, but simply running a mixnet within enclaves is insu�cient for confidential routing.
Surprisingly, by addressing gaps in enclave confidentiality using oblivious data structures,
we find mixnet invariants are satisfiable by a single node. Anchored in enclaves, Mixclave
networks can operate confidentially, elastically, and cost-e↵ectively compared to traditional
mixing networks.

With the mixnet shrinking to as small as one node, we included functionality in Mixclaves
that enables the network to auto-scale and respond to load. This is possible because we may
trust the nodes in the network, so we may have assurance about the metrics they report and
may assign a leader node in a domain to handle scaling.

We claim the following contributions. To the best of our knowledge, this is the first
implementation of a mixnet that employs hardware enclaves not only to facilitate metadata-
private routing under di↵erential privacy, but also to enable dynamic scaling via a covert
control channel.

Cost. Enclaves allow us to collapse the mix network to a single node, saving up to 82%
in cost in cloud settings.

Elasticity. Metrics from enclave mix nodes are securely sampled and used to scale
mixnet capacity within an administrative domain by adding nodes to the mixnet.

Practical deployment. Mixclaves can be deployed in a federation of administrative
domains with attestation guarantees provided by hardware enclaves.

The paper is structured as follows. Section 2 provides context and assumptions for
Mixclaves. Section 3 describes the Mixclaves architecture, particularly how its design satisfies
our goals from Section 2. Section 4 describes our prototype instantiation of the architecture,
including caveats and practical details. Section 5 measures our prototype against our goals
from Section 2. Section 6 contrasts the Mixclaves architecture with existing work before
discussing implications and future work in Section 7. Section 8 concludes.

3

Chapter 2

Background

2.1 Mixnets

David Chaum proposed mixing networks (mixnets) in 1981 [16]. This paper established the
following two criteria for anonymizing network tra�c in a mixnet. First, an adversary cannot
infer a path between the source and destination on either side of the mixnet by comparing
payloads. In a Chaum mixnet, layered encryption provides bitwise unlinkability, as removing
each layer yields a new, uncorrelated payload. Subsequent work on mixnet packet encod-
ing [20] ensures that other attributes like packet size leak no signal to an adversary. Nodes
also deduplicate tra�c to prevent an active attacker from replaying and linking datagrams;
a single node is guaranteed to receive replay tra�c, since the packet is encrypted with that
node’s public key.

Second, mixnets must obscure correlations in time between packet flows. In a Chaum
mixnet, messages are batched at each node until a threshold, then released to a successor.
Deduplication and batching create anonymity sets of packets; given a packet entering the
mixnode, packets exiting the mixnode with a non-zero probability of being derived from that
packet are in its anonymity set. While in Chaum mixnets that set is an explicitly signed
batch, in modern mixnets the probability of a packet being in an anonymity set may be a
non-symmetric distribution1

Modern mixnets add two additional criteria to the original model. The mixing network
must be resilient to compromised nodes. In traditional mixnets, threat models assume that
an attacker may observe or even control some fraction of nodes in the mixing network. To
compensate, packets are routed through multiple nodes to increase the probability of encoun-
tering at least one honest node to confound tra�c analysis. Finally, modern mixnets generate
synthetic cover tra�c to ensure that user datagrams flowing through the mix network can-
not be distinguished from noise or overwhelmed by an active adversary. For example, an

1
For example, if packet A arrives at tA and B arrives at tB , tA < tB , packets emitted between tA and

tB are in A’s anonymity set but not in B’s. As tA ⌧ tB , the probability of B being in A’s anonymity set

diminishes.

CHAPTER 2. BACKGROUND 4

attacker could fill batches in a classic Chaum mixnet with its own synthetic tra�c, e↵ec-
tively shrinking the batch size. Mixclaves produce some cover tra�c, but metadata-private
applications must be responsible for concealing their own workload (Section 2.1).

In summary, we preserve four properties of a modern mixnet: bitwise unlinkability,
protection from correlations in time, resilience to compromised nodes, and cover
tra�c.

Di↵erential Privacy

Di↵erential privacy describes the promise from a data holder to a user that “You will not be
a↵ected, adversely or otherwise, by allowing your data to be used in any study or analysis,
no matter what other studies, data sets, or information sources, are available” [25]. Applied
to a mixnet, this means that the network guarantees that for any pair of users A, B, the
probabilities that the two are communicating or not communicating are close, as defined
by the parameters ✏, � [37] (e✏ is a multiplicative factor, and � is additive). Statistically,
an adversary cannot prove within those bounds that A and B exchanged authentic (i.e.,
non-cover) tra�c.

Given this framing, we show in Section 2.4 that a single Mixclave node is su�cient to
provide privacy guarantees to the client as strong as those provided by a mixing network.

Application Architecture

Alone, a mixnet cannot prevent an application from leaking information that compromises
user privacy. For example, consider a user B orders of magnitude more active than any
other user in a messaging platform. A metadata-private messaging system may not know
the source IP, but the destination IP at the other side of the mixnet can be observed and
distinguished by a passive adversary with a full view of the network (Section 2.3). Since
it lacks all knowledge of the workload, the mixnet can only passively forward datagrams it
receives and generate generic cover tra�c.

Systems like Loopix [46] and Groove [9] generate cover tra�c not only from clients,
but also from interstitial provider nodes. These application-specific nodes not only run a
cover protocol with clients, they also generate synthetic cover tra�c into the mixnet. In
the metadata-private messaging example, these nodes would be responsible for concealing
the prenominate, popular user B by throttling delivery rates and/or sharding its mailbox
across provider nodes. Providers may be trusted (e.g., Loopix) or untrusted (e.g., Groove),
depending on the application threat model.

Mixclaves focus exclusively on the cost and operability of the mixnet component of
metadata-private applications. Consequently, we are most concerned with the performance
of a Mixclave network at saturation.

CHAPTER 2. BACKGROUND 5

2.2 Deployment Model

Relay networks like Tor [22] are deployed by volunteers, placing few or no restrictions on who
may join the network. This distributed deployment model resists analysis by requiring an
attacker to add malicious nodes until its targets route su�cient tra�c through its network.
The probability of clients choosing paths through not only corrupt nodes, but corrupt nodes
controlled by a particular attacker is unknowable, but assumed to be su�ciently low that
every path through the mixnet encounters at least one “honest” node, as in Figure 2.1.

Egalitarian architecture deployed on volunteer infrastructure succeeded spectacularly in
the early evolution of the public internet. Today, the resources and expert knowledge neces-
sary to operate a secure service— particularly one that draws the attention of state-sponsored
surveillance— exceed the grasp of most enthusiasts. Mixnets in particular are challenging
to deploy, since a provider either joins an existing, volunteer mixnet or bootstraps one with
new users. In the former case, capacity planning is not a function of its paying users, but
of the broader network. In the latter, user tra�c is anonymized by a smaller population,
providing weaker guarantees.

Fortunately, we have recent examples of privacy-preserving infrastructure deployed at
scale. Aversion to tracking motivated development and widespread adoption of technology
to confound data collection, rather than controlling its dissemination by fiat [49, 35]. iCloud
Private Relay [31, 52] is an oblivious DNS over HTTP (ODoH) implementation that obscures
clients’ identities by encrypting and routing requests through multiple proxies. Notably,
this implementation also involves multiple vendors by design. The first proxy is owned
and operated by Apple, but a second proxy tier is operated by third party CDN providers
(e.g., Akamai, Fastly, Cloudflare [36]). A federated deployment allows each vendor to collect
su�cient data for capacity planning and cross-billing without identifying individual users.
Exposing any user’s DNS requests requires collusion among multiple vendors.

By assuming providers are stable in a federation, Mixclave networks are feasible to deploy
at scale. Peering relationships could meter, manage, and price tra�c through the federated
mixnet. Endpoints could verify their right to access the mixnet in that domain without
associating their identity [24, 41, 5], while tra�c between domains could be shaped to do
credible capacity planning. Aligning incentives for honest operation of administrative do-
mains is outside our scope, but we note that an operator has more flexibility for its subset
of endpoints than in the distributed deployment model.

2.3 Threat Model

We assume our adversary can passively observe the entire network and memory traces on
mixnet nodes. We further assume that an attacker can inject tra�c into the network, also
dropping, replaying, and delaying tra�c arbitrarily. All information shared with clients is
also known by the adversary, particularly public keys and membership information. Mix-
claves use the Sphinx packet format [20, 19] to provide bitwise unlinkability. All Sphinx

CHAPTER 2. BACKGROUND 6

Figure 2.1: Mixnet Topology. To preserve privacy, clients must route packets through at
least one honest node or privacy may be compromised. Within a domain, it is su�cient to
route packets through a single Mixclave node.

messages are padded to the same length and allow for detection of tagging and replay at-
tacks.

Mixclaves assume that an adversary may control a majority of devices, including mixnet
nodes. Adversaries can control the hardware of the machine to monitor the systems’s network
and hardware. Any mixclave node can also become unvailable, due to tampering or denial
of service (DoS) attacks, but provide the adversary no new information.

We assume a computationally restricted adversary, so the cryptography is sound and
decrypting packets (particularly chosen by the adversary) inside the enclave cannot leak
information about either decrypted packets or any other tra�c. This includes the secure
cryptographic assumptions of secure hashing, key encryption, and key exchange. As we
discuss in section 2.4, delays chosen by an attacker must be obscured by Mixclaves when the
message is queued.

As discussed in Section 2.1, we assume that any application over the mixnet generates
su�cient cover tra�c to conceal its workload between the mixnet and its endpoints. As in
Groove [9] and Loopix [46], an application can deploy provider nodes that generate con-
tinuous, synthetic cover tra�c if endpoints are only intermittently online. Similarly, any
property of or over the data such as forward secrecy is maintained by the application. Mix-
clave nodes also generate cover tra�c, following an exponential distribution chosen by the
operator [46].

Finally, we assume that clients can learn the public keys not only for other clients, but also
to at least one node in the active mixnet. Bootstrapping metadata-private communication
is not necessarily out of band [38]. Section 3 describes how endpoints learn about the keys
for previously unknown nodes in the mixnet.

CHAPTER 2. BACKGROUND 7

Figure 2.2: Intel SGX enclaves versus AMD SEV-SNP [28].

2.4 Hardware Enclaves

Enclave Overview

An ideal secure enclave enforces a hardware isolation boundary such that even privileged
processes cannot tamper with or inspect the execution of a binary executing within the
enclave. Enclaves support binary attestation, which enables external systems to verify the
identity and code running in the enclave [4, 3].

Both AMD and Intel support enclaves in their modern server processors. Intel’s SGX
implementation runs individual binaries in enclaves, encouraging hybrid application archi-
tectures that avoid overheads for code that runs outside the enclave. Data are exchanged
across this boundary as in Figure 2.2. In contrast, AMD’s SEV approach runs an entire VM
inside the enclave. Mixclaves are designed to operate almost entirely within the enclave; its
architecture could apply in either setting.

We assume two properties of hardware enclaves. First, we assume the code executed
inside the enclave is attested and both operators and clients can verify its integrity. Con-
sequently, any code inside the enclave that should execute, will run; we assume a fail-stop
model and exclude Byzantine mixnet nodes within an administrative domain (Section 2.2).
Second, we assume code removing a layer of encryption from the packet and examining its
metadata inside the enclave leaks no information to an adversary, conceding that in cur-
rent enclave implementations this comes with caveats [44, 56, 40]; attested code executes
confidentially, excluding side-channels discussed in Section 2.4.

Mixclave nodes bu↵er messages with a random delay. Removing a layer of encryption
within the enclave requires no additional mitigation, but an adversary could infer timing
information from the message bu↵er that could reduce the cardinality of its anonymity set.

CHAPTER 2. BACKGROUND 8

Figure 2.3: Message Bu↵er Access Patterns. Message bu↵ering access patterns in
Loopix (left) vs Mixclaves (right). Loopix has a a correlation coe�cient of 0.738 from input
to output address accesses, whereas Mixclaves is 0.03.

Oblivious Data Structures

Oblivious data structures conceal not only their referents, but also access patterns that could
leak confidential information. For example, an oncologist checking health records could not
only reveal that a patient has cancer, but access frequency may also reveal information about
its type and severity. While metadata-private applications must conceal access frequency and
timings of persisted data, Mixclaves have a comparably straightforward workload to obscure.
Abstractly, each packet is inserted into a queue ordered by a deadline and dequeued some
time after its deadline expires. Packets present in the queue, including packets inserted later,
are in its anonymity set.

With access to the machine, an adversary could correlate packets entering the mix node
with memory access patterns. The contents of enclave memory are encrypted, but the
addresses are not and may be tracked. Incoming packets are bu↵ered by Twisted, an event-
driven network engine that powers Mixclaves and our reference mixnet, Loopix [46]. We
examined the messages stored between processing and sending. Twisted appends new mes-
sages generated by a task to the end of an array. When the task completes, the array is
sorted by its target execution time and the next task is dequeued from the front. Loopix and
Mixclaves messages are delayed by a random value chosen from an exponential distribution
(see Section 4.1). This process rearranges some of the messages in the bu↵er as it is period-
ically sorted, but there remains a strong, positive correlation between the input and output
addresses. In Figure 2.3, we examine memory accesses to a message bu↵er with storage
algorithms from Loopix and Mixclaves. We see the messages in Loopix are highly correlated
(R=0.738) from the address they are stored at upon receipt and where they are accessed
at for sending. This is especially problematic if two users exchange significant tra�c; then
it becomes possible to correlate that the two are communicating, revealing metadata about
the communication.

We altered Twisted’s packet bu↵er to obliviously store messages to prevent leaking mem-

CHAPTER 2. BACKGROUND 9

ory access correlations. When inserting a new message, we randomly select an index from a
uniform distribution across the length of the array and insert at that location. In the case
of a conflict, the random index is preserved and all entries below the index are shifted to
the right. The sort of the bu↵er is performed on batches of messages to meet these random
deadlines.

By adding the oblivious bu↵er inside an ideal enclave, we can safely assume that memory
access patterns and compute is hidden. The sort operation is hidden due to taking place
inside the enclave, which provide a confidential compute environment. The oblivious bu↵er
obscures the original memory address of a particular message so that once it is accessed for
sending, the packets leaving the enclave cannot be correlated to the original storage address.
The correlation coe�cient of store vs read memory addresses became R=0.03, as illustrated
in Figure 2.3.

This straightforward oblivious data structure is su�cient to evaluate the prototype’s
viability. One could improve its e�ciency and scalability by adopting more sophisticated
approaches from the literature [42, 51, 18, 21]. Message dispatch requires only oblivious
sending of messages that reached their deadline, not sorting. We leave refinement of these
oblivious data structures to future work, particularly for managing larger queues for messages
with high delays [28].

Di↵erential Privacy in Mixclaves

With di↵erential privacy as described in Section 2.1, we can prove that we require only 1
mixclave node to provide strong privacy guarantees to the client. Based on previous work
in mixnets, a message must route through at least one honest node in the network to be
di↵erentially private [9, 37]. Consider a message sent between two clients, A and B. The
probability that this condition fails to hold is the probability of meeting 0 honest nodes on
a path of length L in the mixnet, i.e. BinomialCDF (0, L, p). And therefore the probability
that the condition does hold is 1�BinomialCDF (0, L, p). In previous work, the likelihood
p of meeting an honest node has always been less than 1. But with Mixclaves, a client will
always select an honest node, so p = 1. Therefore, Mixclaves always achieves di↵erential
privacy, even with a network as small as 1 node.

10

Chapter 3

Architecture

In this section we describe the Mixclave architecture in detail. Section 4 describes how our
prototype implements this architecture to evaluate its practicality.

3.1 System Overview

A Mixclave node is composed of service modules, as shown in Figure 3.1. Nodes expose two
public APIs, accept(packet) and config(). Sphinx packets routed to accept are inserted
into an oblivious bu↵er inside the hardware enclave (Section 2.4). Once decrypted inside
the enclave, drop messages are discarded. Unsurprisingly, route messages are reinserted
into the oblivious bu↵er to be forwarded after the user-configured delay. Cover tra�c in
Mixclaves are generated following an exponential distribution across all known mix nodes,

membership

metricsadmin

oblivious buffer

decrypt cover

accept(packet)

config()

CTRL

DROP ROUTE

grp(nodes,epoch)

metrics()

epoch
digest

Figure 3.1: Mixclave Mix Node.

CHAPTER 3. ARCHITECTURE 11

as in Loopix [46].
What distinguishes a Mixclave node from a traditional mix node are the control packets

(ctrl). These packets are signed by an administrator key recorded in the enclave. Control
packets can coordinate updates to the domain membership, gather statistics, and change
internal configuration state, like parameters for cover tra�c. We discuss these in greater
detail in the following sections. Once committed, the epoch digest is published through the
config API.

3.2 Deployment

Mixclaves accept control packets signed by an operator within the enclave. Control packets
can collect metrics, change settings, or add and remove nodes from the domain (reconfigura-
tion, see Section 3.3). Control packets appear as normal mixnet tra�c outside the enclave,
but are distinguished in three ways.

First, control packets are signed by an operator whose public key is associated with
permissions to the mixnet node. Our prototype does not partition operator capabilities,
but one could separate monitoring, scaling, and reconfiguration across keys, or even include
a “poison pill” that destroys the mixnode. Second, control packets may contain a return
address. The mix node has the public key for the operator to verify the control packet, but
it needs to know where to route the response. Not all control tra�c generates a response.
For example, one could implement a “warrant canary” packet that a�rms the operator has
not been forced to disclose information by means that are illegal for it to acknowledge [58].
Third, control packets may read metrics from nodes. Normal packets can push updates,
but cannot read metric data. Control packets querying metrics are written and routed
through the broader mixnet back to the return address. In the following section, we use this
channel to e↵ect an automatic scaling policy from within the mixnet.

Control packets may be sent either by an operator or by other Mixclave nodes in the
domain. Tra�c loops could gather not only the round-trip time from a node, but also
reliable observations from other nodes in the domain. Most importantly, all the operational
tra�c is concealed by the cover and real tra�c to the enclave. Building a control plane in
traditional mixnets would require one to adopt Byzantine protocols and the overheads of
running at least 3f + 1 control nodes, as in systems like OceanStore [50, 34]. By adopting
hardware enclaves and adopting a federated trust model, we can operate a system with
similar or stronger guarantees at a fraction of the cost (see Table 5.1).

3.3 Reconfiguration

To meet our goals for elasticity, an operator node must be able to add and remove other mix
nodes. Since mixnets o↵er only best-e↵ort delivery and persist no state, applications written
for mixnets tolerate data loss; we are principally concerned with preserving anonymity during

CHAPTER 3. ARCHITECTURE 12

Figure 3.2: Reconfiguration. Messaging client C and provider A are at an epoch Y ,
provider B is at epoch X, X ⇢ Y . C changes providers from A to B, but since B sends no
cover tra�c to the new node, tra�c to N must be from C.

and after a reconfiguration. When nodes are added to a mixnet, cover tra�c must include
the new nodes before user tra�c can be routed to it. In our architecture, an application
is responsible for ensuring its own cover tra�c was added to the mix before informing its
clients, if necessary.

To see why this may be necessary, recall the provider nodes in the Loopix messaging
service generate cover tra�c in the mixnet. Before informing users, a Loopix service could
first require consensus among its providers on the new nodes to ensure cover tra�c includes
them uniformly; mix nodes also generate noise, but they cannot cover asymmetric tra�c
from application services. Consider the scenario in Figure 3.2 with no cover tra�c. Assume
the epoch changes from X to Y and Y adds a new node N . If a client changes providers
from A at epoch Y to B at the earlier epoch X, then all tra�c addressed to N from B will
be client tra�c1. Whether the cover tra�c generated by the client and mixnet is su�cient
is a choice for the application and domain operator and outside the purview of the mixnet.

Reconfiguration can be subtle [2], particularly when an operator supports concurrent
reconfigurations from multiple operators or avoids pauses during reconfiguration (online re-
configuration). For example, virtual synchrony [11] maintains both group membership within
a view and o↵ers a reliable broadcast service, but typically pauses to install a new view. With
an administrative domain composed of widely distributed, small clusters of machines [59]
may make di↵erent tradeo↵s than one running in well-connected datacenters [8].

While we ruled out Byzantine behavior in the threat model from Section 2.3, attacks on
hardware enclaves continue to evolve and could include a full architectural break. Even if

1
There are many fixes the application could apply, such as B dropping routes to unknown mix nodes or

forcing refresh at B, but both of these policies are a↵ected by the implementation of mixnet reconfiguration

in the domain.

CHAPTER 3. ARCHITECTURE 13

an operator excluded the node, if a node can be prevented from shutting down, even when
the node is isolated from other nodes in its domain, a client with an outdated view of the
network could validate a compromised, Byzantine mix node. One solution could include a
signed, timestamped lease recording the last contact with the operator. The client could use
the lease to detect parts of the network abandoned by the operator or unreachable during
reconfiguration2, though rendering the domain unusable when an operator misses a check-in
or asking a client to set a threshold for staleness both harm usability.

Selecting a particular reconfiguration algorithm entails material tradeo↵s for a mixnet
operator. In a federated model, the operator of a domain can select an algorithm for recon-
figuration independently without a↵ecting or informing the rest of the federation.

We do constrain reconfiguration by requiring that each mix node provide an API exposing
the list of nodes, public keys, and optional node metadata with which it is configured.
This epoch digest must be timestamped, versioned, and signed by the operator or by an
infrastructure key that committed the reconfiguration. The epoch digest should also be
signed by the mix node, including a nonce chosen by the client. Versions do not need to be
totally ordered, but they must form a join semilattice such that concurrent reconfigurations
have a deterministic merge function [2]. As a consequence, reconfigurations can never be
retracted once committed; if an operator wants mix nodes to rejoin the mixnet after a crash
(rather than as a new node with a new identity), the mix node must persist the digest before
installing a new configuration. Epoch digests are public and can be used both by clients and
also by other domains.

2
This could also serve as a “canary” for a compromised network.

14

Chapter 4

Implementation

In this section we describe the prototype implementation of the architecture in Section 3 to
inform the evaluation in Section 5.

4.1 System Overview: Loopix

Our prototype for Mixclaves extends Loopix [46]. Loopix is a message-based mixnet that
adds a random delay to every layer of encryption to confound tra�c analysis. The random
delay is drawn from an exponential distribution. Loopix uses a stratified topology for its
tra�c. The mixnet is separated into layers such that each node is connected only to the mix
nodes in adjacent layers; tra�c flows in one direction.

Internally, Loopix uses the Twisted network engine [17] not only to schedule delivery
of UDP packets, but also to schedule periodic system functions. As discussed earlier in
Section 2.3, Loopix includes a provider node responsible for generating cover tra�c and
hosting mailboxes for intermittently connected users of its messaging service. Clients poll
the provider at regular intervals for messages, retrieving authentic messages for the user,
drop packets generated by other clients, and synthetic messages generated by the provider.
When clients exchange messages, the path includes their respective providers on either side
of the mixnet.

Mixclaves are intended as a general-purpose mixnet, so we focus our evaluation on its
peak throughput, overheads on latency, and operating cost. To measure these across appli-
cations, we modify the Loopix implementation by merging its client and provider into a load
generator that measures round-trip latency of self-addressed paths through a mixnet. Mea-
suring Mixclave packet latency rather than Loopix message latency eliminates the client’s
polling loop its mailbox at the provider. We also eliminate application-specific noise gener-
ated by the provider so we can measure the aggregate throughput of the network using only
benchmark packets and intra-mixnet noise.

Our prototype does not enforce a topology among mix nodes, so clients may choose
any path. A malicious client could encode up to 20 hops before the Sphinx format cannot

CHAPTER 4. IMPLEMENTATION 15

encode it given the target message size, but this is a mild optimization of a denial-of-service
attack when the Sphinx library can generate 360M three-hop messages per second on a
GCP n2d-standard-2 machine. Since clients will choose short routes uniformly distributed
among nodes in a domain, a fully connected topology allows Mixclaves to expand elastically
and uniformly receive load as clients learn of new resources.

We modify the message bu↵er for the Twisted network engine as described in Section 2.4
so messages in the send bu↵er cannot be correlated. We did not implement a signature
scheme for control packets, as the overhead of validation is negligible in our evaluation.

To demonstrate both anonymous administration and scaling, we implement an updater
by creating a variant of the Loopix client. The updater samples metrics using the covert
control plane described in Section 3. The updater is also responsible for informing the mixnet
of a new epoch when nodes are added to the domain. Benchmark clients are informed by
the mixnet via a polling loop. Anonymously gathering statistics, resizing the mixnet, and
informing clients that refresh their topology to include new nodes is su�cient as a proof of
concept of the scalable Mixclave architecture.

An epoch is a monotonically increasing counter used to identify the set of mix nodes in
the domain. Nodes are added to the cluster in a particular epoch. The set of public keys
for generating synthetic tra�c and authenticating messages is stored locally in a database,
versioned by epoch. In our prototype, the node starts with a database populated for its
epoch. If the update fails to converge, the updater will refresh and retry adding its nodes at
the next-highest epoch. Since the updater for our cluster is outside the mixnet, if it crashes
during reconfiguration then it may leak resources. If the updater receives acknowledgements
from all nodes, then it updater can commit the result by sending a message to the mixnet
nodes. Once committed, any mixnet can publish the new set of nodes in that epoch. Any
mix nodes that do not learn the epoch from the updater can learn that it is active when
client tra�c in that epoch is routed to it.

4.2 Deployment

Our prototype uses Docker [23] and Terraform [29] to automate deployment and the initial
setup. Terraform not only provisions VMs for each entity, but it also configures a private
overlay network (VPC) among the nodes in the mixnet. We also use Terraform to allocate
new nodes and include them in the mixnet VPC. Docker adds some overhead that adversely
impacts overall performance [14], but relative comparisons of mix nodes operating in and
out of enclaves should be comparable. As shown in Figure 5.1, while these tools greatly
simplified our packaging and deployment, they also added significant provisioning overhead
and consequently, hysteresis to scaling decisions. We will explore strategies for reducing
allocation overheads in future work.

CHAPTER 4. IMPLEMENTATION 16

4.3 Reconfiguration

Our prototype uses control packets to update mixnode membership. Rather than imple-
menting reliable broadcast or distributed consensus, we demonstrate the control path using
a simple gossip protocol. We implement the updater client described in Section 3.1 by polling
the mixnet node(s) with a control packet querying metrics, including a return address for the
updater. The node generates a reply packet with its current throughput using the updater’s
public key. We use the throughput measured in Section 5 to populate a table for scaling
thresholds. If the throughput exceeds a threshold, the updater will allocate a new node
to the mix net. Once configured, the updater generates a new database for the epoch and
copies it to the mix nodes.

The updater then repeatedly sends control packets to mix nodes, instructing them to
install the database assigned to that epoch. If the mix node is at an epoch below the
threshold, it will attempt to load the database for that epoch. If successful, it generates a
response packet to the updater. Clients query the epoch digest, which in our prototype is
implemented using the same, straightforward notification protocol for the current epoch.

While straightforward, this reconfiguration procedure demonstrates that Mixclaves can
pass information in and out of the enclave, use those data to make scaling decisions, and
conceal its reconfiguration tra�c with cover and benchmark tra�c. Populating updates to
the database with control packets, implementing signing and certificates, and fault-tolerant
protocols we leave to future work.

17

Chapter 5

Evaluation

In this section, we measure the performance of Mixclaves and compare against our reference
implementation. We investigated the performance of Mixclaves running in Google Cloud
Platform (GCP). Each mixnode and load generator ran in its own VM. Except where ex-
plicitly noted, we use N2D instances in the n2d-standard-2 profile with 2 vCPUs, 8 GB
of RAM, and 10 Gbps of bandwidth. These machines are configured with AMD SEV-SNP
enclaves, so the entire VM runs within the enclave. The OS was Ubuntu 22.04, and the
provisioning was automated with Terraform and Docker.

Provisioning time not only from the provider but for our packaging is significant, even
after tuning. Since these overheads are not critical for our evaluation, and general techniques
for reducing these overheads are well-known [47], we pre-allocate a pool of VMs where
elasticity applies. Our measurements varied significantly, but we show the rough breakdown
of allocation cost in Figure 5.1.

Recall from Section 4.1 our benchmark client that creates self-addressed loops through
the mixnet. Benchmark packets include an experiment identifier, timestamp, and sequence

Figure 5.1: Breakdown of salient platform and framework provisioning costs.

CHAPTER 5. EVALUATION 18

Figure 5.2: Single Node Microbenchmark. Throughput vs latency for a single node.
Running in enclaves reduces peak throughput by around 200 messages per second.

number. We draw the delay per layer of encryption from an exponential distribution around
1ms in all experiments unless noted. The client records the round-trip time (RTT) of these
loops as the latency of the mix net, which should match applications’ experience. Since
latency is recorded by the same process, we avoid any issues with clock drift across machines.
If the latency exceeds a configurable threshold then the packet is recorded as dropped. Late-
arriving packets also report latency using the embedded timestamp.

5.1 Microbenchmarks

Enclave overhead

To demonstrate that the enclave would not become a bottleneck, we ran a network benchmark
to saturation in and outside of enclaves using iperf3. We omit the graph for space, but
the latency at lower throughput was indistinguishable and peak throughput saturated above
9.73Gbps outside the enclave and 9.55Gbps within it. This tranquilized any anxiety around
the enclave implementation creating a network bottleneck for the Mixclave prototype. Docker
did add a significant overhead for network tra�c running in an enclave, reducing measured
throughput to 4.98Gpbs.

Single Node

Figure 5.2 shows the throughput/latency for a single mix node running outside the enclave
and within the enclave, with and without oblivious mitigation enabled (Section 2.4). The

CHAPTER 5. EVALUATION 19

Figure 5.3: Network Throughput. A network of six Loopix nodes saturates below 2400
messages per second (3 hops), but Mixclave cluster of three nodes saturates above 3000
messages per second at 54% of the cost.

oblivious bu↵er adds overhead that lowers peak throughput per node. The enclave adds only
a slight overhead for the low-latency workload, as expected.

5.2 Scalability

To evaluate the scalability of Mixclaves, we measure throughput of the mix network to satura-
tion in multiple, fixed configurations, illustrated in Figure 5.3. The six-node mixnet (labeled
“Loopix”) records the round-trip latency through a three-hop network of non-enclave ma-
chines. We increase the load on one through four Mixclaves nodes until saturation, recording
the round-trip latency and with drop logic disabled. The oblivious bu↵er is disabled for the
“Loopix” experiments, which run with the Mixclaves topology rather than the stratified
topology of the original system.

Despite slightly lower performance per node, a Mixclave network supports higher through-
put at lower cost than a multi-hop network. Decreasing packet path length more than over-
comes the enclave overhead.

5.3 Elasticity

To demonstrate support for reconfiguration (Sections 3.3 and 4.3), we gradually increase
client tra�c and show that Mixclaves throughput increases beyond saturation points mea-

CHAPTER 5. EVALUATION 20

Figure 5.4: Elasticity Experiment. Adding nodes as throughput increases. A node is
added to the mixnet at every dashed line, preserving latency.

Mixnet # Nodes Peak Throughput (msg/s) Monthly Cost ($)
Loopix 6 < 2400 / s $296.04

Mixclaves 1 < 800 / s $53.34
Mixclaves 2 < 2000 / s $106.68
Mixclaves 3 < 3600 / s $160.02
Mixclaves 4 < 4800 / s $213.36

Table 5.1: Cost and throughput comparison of Loopix to two di↵erent Mixclave
topologies.

sured in Section 5.2. As shown in Figure 5.4, during reconfiguration throughput sometimes
fluctuates for reasons as yet unexplained, but it recovers quickly.

5.4 Cost
As of this writing, running a cloud VM in an enclave adds an 8% cost premium per node.
Table 5.1 records the costs of operating a mix network on a fixed set of nodes, per month
in GCP [48]. As shown in Figure 5.3, at or above the peak throughput the mix network
saturates and drops tra�c to avoid collapse. The figure also suggests savings available to an
elastic network that can adapt to load, rather than provision for peak tra�c.

Enclaves set a higher minimum price for compute resources. Public clouds o↵er less
expensive VMs, particularly if an operator is willing to accept preemption of those resources
in spot instances and preemptable VMs [48]. This is attractive as mix nodes persist no
state, but an “honest” mix node cannot be fully stateless without accepting caveats for mix

CHAPTER 5. EVALUATION 21

network availability. If the node changes its identity on restart due to preemption, this is
akin to failure and/or reconfiguration of the mix network (Section 3.3) with all its attendant
complexity and impact on mix network throughput. The costs recorded in Table 5.1 reflect
monthly costs for comparable service.

5.5 Reconfiguration

At our scale, reconfiguration of the mixnet is near-instantaneous after provisioning is com-
pleted. Dissemination of the updated epoch digest to clients will vary depending on the
application, as discussed in Section 3.3. Our handful of benchmark clients usually noted and
applied the new node configuration in less than a second, though recall from Section 4.3 that
the updated epoch digest is already copied locally; the update packet only records which
epoch the client should load for generating benchmark tra�c.

Our experiments did reveal a challenge to concealing administrative tra�c to overloaded
nodes. Services often expose a high-priority channel reserved for administrative tra�c— even
running on a dedicated port— to ensure admin commands are processed promptly and in a
coherent order. These strategies are unavailable in our setting, as admin tra�c is designed
to look identical to real tra�c. Our updater resends the update message to all nodes until
it receives an acknowledgment, but in heavily overloaded Mixnet networks with dropping
enabled, some reconfiguration attempts still failed.

22

Chapter 6

Related Work

Circuit mixnets like Real-Time Mixes [33], Vuvuzela [55], and Groove [9] route tra�c along
a consistent path, rather than routing every message independently. Circuits can also be
used to build continuous, low-latency channels through a mixnet [33] for telecommunications.
Similar to Tor [22], these metadata-private messaging systems connect endpoints using bidi-
rectional circuits through the mixnet. Pairs of endpoints rotate circuits periodically based
on a shared secret. In Groove, messages are not delivered directly between endpoints but
rather to an intermediate provider node. Provider nodes solve the problem of intermittently-
connected clients. Any application using a mixnet for anonymity must ensure that signal
is buried in noise; little is accomplished if an attacker can observe multiple rounds where
Alice sends exactly k messages into the mixnet and Bob subsequently fetches k messages.
Providers not only generate synthetic tra�c into the mixnet that simulates the application
workload when clients are disconnected, they also ensure tra�c between clients confounds
tra�c analysis.

Metadata-private messaging services like Groove group messages in rounds, ensuring that
every circuit in the network has at least one message in each round. The 30 second message
latency in Groove and other systems in its pedigree is not inherent to circuit mixnets, but an
application decision. To ensure at least one honest node even in highly corrupt networks (20%
adversarial), Groove routes can exceed 11 hops. Trust in enclaves simplifies our architecture
and significantly reduces costs.

The Tor [22] network consists of a network of relay nodes and a directory service. At
regular intervals on the order of minutes, users select a sequence of nodes from the directory
based on configurable weights for desired bandwidth, accepted ports, and other criteria. The
user creates a circuit through which their tra�c is routed, with consistent entry and exit
nodes. Tor has been vulnerable to analysis based on non-uniform packet sizes and timing
attacks [15, 7]. Mixnets are designed to resist exactly this tra�c analysis.

ConsenSGX is a technique for the Tor network to leverage secure enclaves and oblivious
RAM to hide which parts of the Tor network a particular client knows about. It addresses
epistemic attacks, where an adversary observes a directory server that distributes the global
view of Tor nodes and then learns which parts of the network a client does not know about.

CHAPTER 6. RELATED WORK 23

This would allow the adversary to rule out those servers from carrying that client’s tra�c
(and conversely know more about which nodes are routing it). If the directory servers use
secure enclaves and oblivious RAM, they can provide the the network view to clients without
leaking what the client has learned. In Mixclaves, we also prevent epistemic attacks with
the signed epoch digest, which enables clients to see the current network configuration and
to not send messages to nodes that are insu�ciently covered in noise, are not longer part of
the network, etc.

Loopix [46] is a low-latency mixnet that provides time independence using a per-layer
delay chosen by the client. The delay is chosen from an exponential distribution such that
any packet entering the node since it was last empty is a potential member of its anonymity
set. In practice this is vanishingly unlikely and the client chooses delays that satisfy low-
latency service-level objectives (SLO) from the mixnet. Binary unlinkability is ensured by
the Sphinx [20] packet format, also used by Mixclaves.

All of these systems [33, 9, 55, 46, 16, 15, 22] rely on at least one honest node in the
mixnet.

One work in particular, “Towards User Privacy for Subscription Based Services” [10]
builds an implementation named “Mixnet” that runs in trusted execution environments
(Intel SGX), but this name is something of a misnomer. The system is a proxy service that
scrambles user identities before connecting to a third party subscription service. While an
interesting use case of enclaves, this work is unrelated to mixnets.

24

Chapter 7

Discussion

Mixnet Reconfiguration. Our heuristics demonstrate that Mixclave networks can scale
out based on confidential, intra-domain metrics, but these cover only a small corner of the
workload and cost space. While a mixnet can safely add new nodes, we have not proven that
shrinking the cluster is safe; an honest mixnet should generate plausible, diminishing cover
tra�c to ensure that not all packets arriving at the old address are real tra�c. Given an
algorithm to remove nodes, the workload could also scale vertically to di↵erent VM instances.
We did not explore “scale up” regions of the cost space since Twisted makes limited use of
multi-core processors.

Oblivious scaling. We did not explore scaling strategies that resist analysis. One
would expect diurnal expansions and contractions of the mixnet, but expanding the size of
the cluster out of phase could leak information about tra�c if the scaling decision were not
based solely on externally-visible data.

Health checks. Using intra-domain loops measuring round-trip time, nodes in a domain
could gather information about the health of the broader mix network. This could not only
inform clients of failed or slow nodes in the network, but also direct clients away from
malicious or failed nodes while maintaining cover tra�c [39]. Packet delivery through the
mixnet is only best-e↵ort, but the operator of a domain can improve reliability for its users
with these metrics. Our analysis was limited to scaling based on tra�c in a domain, but
peering relationships between domains could even define SLAs for loop tra�c that cannot
be separated from real and cover tra�c.

Multipath mixnets. All mixnet formats restrict packets to a single path through
the network, as o↵ering mixnodes a choice only helps corrupted nodes direct tra�c to an
adversary’s advantage. Instead, if a symmetric key were encrypted with the public keys
of multiple nodes, a trusted Mixclave node could filter out nodes it suspects have failed.
The list of nodes (even in other federations) is not confidential, but requiring the client to
discover and resynchronize with the network state may be more brittle than granting the
forwarding nodes the option. Within a domain, this technique could also load balance among
mix nodes based on queue lengths [43]. However, one would need to ensure that packets are
only forwarded once, to avoid duplicate packets violating bitwise unlinkability.

CHAPTER 7. DISCUSSION 25

Node labels. Vulnerabilities in hardware enclaves such as Plundervolt [44], Fore-
shadow [54], and ÆPIC Leak [12] undermine a core assumption of the Mixclave architecture.
Since the Mixnode will faithfully and accurately report its configuration from the enclave,
users may elect to route their tra�c through a diverse set of architectures to avoid relying
on a single vendor. We assume an attacker already has this information in our threat model,
so node labels should grant an adversary no new advantages.

Utility noise. The cover tra�c generated by modern mixnets [46, 9] is randomly gen-
erated. While Mixclaves only pass control tra�c among trusted nodes amid synthetic and
user tra�c, the ability to examine metadata safely within the enclave also admits the pos-
sibility of self-addressed loops of data tra�c, similar to Broadcast Disks [1]. Data loops
could pass through non-enclave nodes and nodes in other domains, with random delays in
minutes or hours. Re-purposing packets with high delays as the payload for cover tra�c is
also admissible; replicate a packet in the mixnet such that fragments arrive approximately
when it should be forwarded. Given a time-to-live (TTL) and a forgiving retrieval SLO, one
could provide an archive storage service to subsidize the cost and legitimize the purpose of
an anonymizing mixnet.

Improved oblivious data structures. Metrics retained for mixnet monitoring could
leak information about tra�c patterns, if flushed to memory. Metadata derived from mes-
sage flows within the enclave must resist analysis, though these techniques are beyond the
scope of this paper. While our oblivious algorithm worked well for a low-latency workload
with shallow queues, an adversary could fill the queue with high-delay packets. Since mes-
sage dispatch does not require sorting but only oblivious sending of messages that reached
their deadline, one could integrate more scalable oblivious data structures for the message
queue [51].

26

Chapter 8

Conclusion

This paper proposes Mixclaves, an enclave-backed mixnet for metadataprivate communi-
cation. Mixclaves makes it easier to operate mixnets, requiring fewer nodes and enabling
automatic scalability to be pushed into the network. It employs oblivious message bu↵er-
ing to mask memory access patterns at a node, enabling a mixnet to operate in a single
enclave node while still maintaining di↵erential privacy. This enables Mixclaves to support
a centrally managed deployment model. Mixclaves also enables elasticity by allowing the
trusted enclave nodes to measure performance characteristics of the network and send control
packets to signal a network expansion.

We implemented Mixclaves as an extension of Loopix, which serves as our reference
benchmark. We compared the performance of both in VMs running in Google Cloud Plat-
form, demonstrating Mixclaves does see an overhead of the enclave, but that the cost is
lower and and overall bandwidth is higher in Mixclaves due to messages routing through
fewer nodes with our architecture. Mixclaves also proactively scaled the network at runtime
to accommodate higher throughput as needed.

27

Bibliography

[1] Swarup Acharya et al. “Broadcast disks: Data management for asymmetric communi-
cation environments”. In: Mobile Computing. Springer, 1995, pp. 331–361.

[2] Marcos K Aguilera et al. “Dynamic atomic storage without consensus”. In: Journal of
the ACM (JACM) 58.2 (2011), pp. 1–32.

[3] AMD. https: // developer. amd. com/ sev/ . Accessed 2023-01-07. 2022.

[4] Ittai Anati et al. “Innovative technology for CPU based attestation and sealing”. In:
Proceedings of the 2nd international workshop on hardware and architectural support
for security and privacy. ACM. 2013.

[5] Elli Androulaki et al. “PAR: Payment for anonymous routing”. In: International Sym-
posium on Privacy Enhancing Technologies Symposium. Springer. 2008, pp. 219–236.

[6] Jacob Appelbaum et al. NSA targets the privacy-conscious. https://daserste.ndr.
de/panorama/aktuell/nsa230_page-1.html. 2014.

[7] Michael Backes et al. “(Nothing else) MATor (s) Monitoring the Anonymity of Tor’s
Path Selection”. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. 2014, pp. 513–524.

[8] Hari Balakrishnan et al. “Revitalizing the Public Internet by Making It Extensible”. In:
SIGCOMM Comput. Commun. Rev. 51.2 (May 2021), pp. 18–24. issn: 0146-4833. doi:
10.1145/3464994.3464998. url: https://doi.org/10.1145/3464994.3464998.

[9] Ludovic Barman et al. “Groove: Flexible Metadata-Private Messaging”. In: 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22). 2022, pp. 735–
750.

[10] Allan Benelli. “Towards User Privacy for Subscription Based Services”. MA thesis.
ETH Zurich, 2022.

[11] Ken Birman and Thomas Joseph. “Exploiting virtual synchrony in distributed sys-
tems”. In: Proceedings of the eleventh ACM Symposium on Operating systems princi-
ples. 1987, pp. 123–138.

[12] Pietro Borrello et al. “ÆPIC Leak: Architecturally Leaking Uninitialized Data from
the Microarchitecture”. In: 31st USENIX Security Symposium (USENIX Security 22).
2022, pp. 3917–3934.

BIBLIOGRAPHY 28

[13] Albert Fox Cahn and Jake Laperruque. Putting a price on privacy: Ending police
data purchases. https://www.protocol.com/government-buying-location-data.
Accessed 2023-01-08. 2020.

[14] Emiliano Casalicchio and Vanessa Perciballi. “Measuring Docker Performance: What a
Mess!!!” In: Proceedings of the 8th ACM/SPEC on International Conference on Perfor-
mance Engineering Companion. ICPE ’17 Companion. L’Aquila, Italy: Association for
Computing Machinery, 2017, pp. 11–16. isbn: 9781450348997. doi: 10.1145/3053600.
3053605. url: https://doi.org/10.1145/3053600.3053605.

[15] David Chaum et al. “cMix: Anonymization by high-performance scalable mixing”. In:
USENIX Security. 2016.

[16] David L Chaum. “Untraceable electronic mail, return addresses, and digital pseudonyms”.
In: Communications of the ACM 24.2 (1981), pp. 84–90.

[17] Twisted Community. Twisted. https://www.twisted.org/. 2022.

[18] Natacha Crooks et al. “Obladi: Oblivious serializable transactions in the cloud”. In:
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). 2018, pp. 727–743.

[19] George Danezis. The Sphinxmix python package. https://github.com/UCL-InfoSec/sphinx.
2022.

[20] George Danezis and Ian Goldberg. “Sphinx: A compact and provably secure mix for-
mat”. In: 2009 30th IEEE Symposium on Security and Privacy. IEEE. 2009, pp. 269–
282.

[21] Emma Dauterman et al. “Snoopy: Surpassing the scalability bottleneck of oblivious
storage”. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 2021, pp. 655–671.

[22] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. Tech. rep. Naval Research Lab Washington DC, 2004.

[23] Inc Docker. Docker. https://docker.com. 2022.

[24] Cynthia Dwork, Moni Naor, and Amit Sahai. “Concurrent zero-knowledge”. In: Journal
of the ACM (JACM) 51.6 (2004), pp. 851–898.

[25] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Di↵erential Pri-
vacy”. In: Found. Trends Theor. Comput. Sci. 9.3–4 (Aug. 2014), pp. 211–407. issn:
1551-305X. doi: 10.1561/0400000042. url: https://doi.org/10.1561/0400000042.

[26] Lee Ferran. Ex-NSA Chief: ’We Kill People Based on Metadata’. https://abcnews.
go.com/blogs/headlines/2014/05/ex-nsa-chief-we-kill-people-based-on-
metadata. 2014.

[27] Eva Galperin, Kurt Opsahl, and Dia Kayyali. Dear NSA, Privacy is a Fundamental
Right, Not Reasonable Suspicion. https://www.eff.org/deeplinks/2014/07/dear-
nsa-privacy-fundamental-right-not-reasonable-suspicion. 2014.

BIBLIOGRAPHY 29

[28] Christian Gottel et al. “Security, Performance and Energy Trade-O↵s of Hardware-
Assisted Memory Protection Mechanisms”. In: 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS). IEEE. 2018.

[29] HashiCorp. Terraform. https://www.terraform.io/. 2022.

[30] Apple Inc. https://help.apple.com/pdf/security/en_US/apple-platform-
security-guide.pdf. (Accessed 2022-12-13). 2022.

[31] Apple Inc. iCloud Private Relay Overview. https://www.apple.com/privacy/docs/
iCloud_Private_Relay_Overview_Dec2021.PDF. Accessed 2023-01-08. 2021.

[32] Cloudflare Inc. Edge computing. https://www.cloudflare.com/learning/serverless/
glossary/what-is-edge-computing/. Accessed 2023-01-11. 2023.

[33] Anja Jerichow et al. “Real-time mixes: A bandwidth-e�cient anonymity protocol”. In:
IEEE Journal on Selected Areas in Communications 16.4 (1998), pp. 495–509.

[34] John Kubiatowicz et al. “Oceanstore: An architecture for global-scale persistent stor-
age”. In: ACM SIGOPS Operating Systems Review 34.5 (2000), pp. 190–201.

[35] United States. Department of Labor. Employee Benefits Security Administration. Health
Coverage Portability: Health Insurance Portability and Accountability Act of 1996 (HIPAA).
US Department of Labor, Employee Benefits Security Administration, 2004.

[36] Will Law. Performance-under-Privacy: Delivering Commercial Streaming Content in
a Privacy-First World. https://youtu.be/MLBvQ9MJawE?t=3892. 2022.

[37] David Lazar, Yossi Gilad, and Nickolai Zeldovich. “Karaoke: Distributed private mes-
saging immune to passive tra�c analysis”. In: 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 2018, pp. 711–725.

[38] David Lazar and Nickolai Zeldovich. “Alpenhorn: Bootstrapping secure communication
without leaking metadata”. In: 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). 2016, pp. 571–586.

[39] Hemi Leibowitz et al. “No right to remain silent: isolating malicious mixes”. In: 28th
USENIX security symposium (USENIX security 19). 2019, pp. 1841–1858.

[40] Mengyuan Li et al. “CIPHERLEAKS: Breaking Constant-time Cryptography on AMD
SEV via the Ciphertext Side Channel”. In: 30th USENIX Security Symposium (USENIX
Security 21). 2021, pp. 717–732.

[41] Li Lu et al. “Pseudo trust: Zero-knowledge authentication in anonymous P2Ps”. In:
IEEE Transactions on Parallel and Distributed Systems 19.10 (2008), pp. 1325–1337.

[42] Pratyush Mishra et al. “Oblix: An e�cient oblivious search index”. In: 2018 IEEE
Symposium on Security and Privacy (SP). IEEE. 2018, pp. 279–296.

[43] Michael Mitzenmacher. “The power of two choices in randomized load balancing”. In:
IEEE Transactions on Parallel and Distributed Systems 12.10 (2001), pp. 1094–1104.

BIBLIOGRAPHY 30

[44] Kit Murdock et al. “Plundervolt: Software-based fault injection attacks against Intel
SGX”. In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE. 2020, pp. 1466–
1482.

[45] Trevor Perrin and Moxie Marlinspike. “The double ratchet algorithm”. In: GitHub wiki
(2016).

[46] Ania M Piotrowska et al. “The loopix anonymity system”. In: 26th USENIX Security
Symposium (USENIX Security 17). 2017, pp. 1199–1216.

[47] Google Cloud Platform. Guides: Create custom images. https://cloud.google.com/
compute/docs/images/create-custom. 2022.

[48] Google Cloud Platform. VM Instance Pricing. https://cloud.google.com/compute/
vm-instance-pricing. Accessed 2022-12-09. 2022.

[49] Protection Regulation. “Regulation (EU) 2016/679 of the European Parliament and
of the Council”. In: Regulation (eu) 679 (2016), p. 2016.

[50] Sean C Rhea et al. “Pond: The OceanStore Prototype.” In: FAST. Vol. 3. 2003, pp. 1–
14.

[51] Sajin Sasy, Aaron Johnson, and Ian Goldberg. “Fast Fully Oblivious Compaction and
Shu✏ing”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. 2022, pp. 2565–2579.

[52] Sudheesh Singanamalla et al. “Oblivious dns over https (odoh): A practical privacy
enhancement to dns”. In: arXiv preprint arXiv:2011.10121 (2020).

[53] Johns Hopkins Foreign A↵airs Symposium. The Price of Privacy: Re-Evaluating the
NSA. https://youtu.be/kV2HDM86XgI?t=1073. 2014.

[54] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel {SGX} King-
dom with Transient {Out-of-Order} Execution”. In: 27th USENIX Security Symposium
(USENIX Security 18). 2018, pp. 991–1008.

[55] Jelle Van Den Hoo↵ et al. “Vuvuzela: Scalable private messaging resistant to tra�c
analysis”. In: Proceedings of the 25th Symposium on Operating Systems Principles.
2015, pp. 137–152.

[56] Yingchen Wang et al. “Hertzbleed: Turning Power {Side-Channel} Attacks Into Re-
mote Timing Attacks on x86”. In: 31st USENIX Security Symposium (USENIX Secu-
rity 22). 2022, pp. 679–697.

[57] WhatsApp.WhatsApp Encryption Overview. https://www.whatsapp.com/security/
WhatsApp-SecurityWhitepaper.pdf. 2016.

[58] Wikipedia. Warrant Canary. https://en.wikipedia.org/wiki/Warrant_canary.
2022.

BIBLIOGRAPHY 31

[59] Adam Wolbach et al. “Transient Customization of Mobile Computing Infrastructure”.
In: Proceedings of the First Workshop on Virtualization in Mobile Computing. Mo-
biVirt ’08. Breckenridge, Colorado: Association for Computing Machinery, 2008, pp. 37–
41. isbn: 9781605583280. doi: 10.1145/1622103.1622108. url: https://doi.org/
10.1145/1622103.1622108.

	mark_theis_ms_titlepage
	mark_theis_MS_thesis_01

