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Introduction

Artificial intelligence (AI) systems are developing rapidly and gaining widespread adoption,
which furthers the acute need to understand the capabilities and risks associated with AI.
To better address this broad issue, we focus on AI Safety through two lenses: (1) model
trojaning and (2) model benchmarking. Concretely, we provide three valuable contributions
that push the forefront of AI safety: evasive trojan injection in AI systems that are harder
to detect and reverse-engineer, the MATH dataset for evaluating the intellectual capabilities
of models to perform mathematical problem solving, and APPS for benchmarking models’
ability to generate code. By exploring these domains, we aim to provide a comprehensive
understanding of current AI capabilities and the challenges that lie ahead in ensuring the
resilience, security, and utility of AI systems.

In the first paper, “How Hard is Trojan Detection in DNNs? Fooling Detectors With
Evasive Trojans,” we investigate the potential vulnerabilities of AI systems to trojan at-
tacks. Trojans involve an adversary influencing an AI during the training process to create
hidden behaviors. Neural trojaning research is of great practical interest as malicious agents
may seek to inject hidden behavior into real-world systems that may cause a car to crash
or a power grid to shut o↵. In this paper, we develop a general method for making tro-
jans more evasive, which makes them harder to detect and reverse-engineer. Our findings
help to advance research into more robust mechanisms for improving trojan detection and
monitoring.

In addition to examining AI safety from the lens of keeping models secure, we also explore
safety by understanding model capabilities. The second paper, “Measuring Mathematical
Problem Solving With the MATH Dataset,” evaluates machine learning models’ mathemat-
ical problem-solving abilities. We introduce two new datasets, AMPS for pre-training large
language models (LLMs) to learn the fundamentals of mathematics, and MATH for assess-
ing models’ problem-solving ability, with problems ranging in complexity. Our findings on
the performance of state-of-the-art models on MATH are of great interest, highlighting the
limitations of current model architectures in producing logical step-by-step solutions and in
scaling model size to improve performance.

To further examine models’ capabilities and limitations, we also assess models’ abilities
in endeavors of great practical interest. In “Measuring Coding Challenge Competence With
APPS,” we evaluate the code generation capabilities of machine learning models. The APPS
benchmark, which contains over 10,000 programming problems, assesses models by generat-
ing Python code based on natural language specifications, similar to how a human computer
programmer would perform. Our findings indicate that models like GPT-Neo are beginning
to achieve nonzero accuracy and learn how to code, but there still remains significant room
for improvement.

Together, these three papers contribute to a more comprehensive understanding of the
current state of risks and capabilities associated with AI and the challenges ahead, providing
valuable insights for future research and development in the field of AI Safety.
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Abstract
As AI systems become more capable and widely
used, a growing concern is the possibility for tro-
jan attacks that inject deep neural networks with
hidden functionality. Recent methods for detect-
ing trojans appear highly successful. However,
there is comparatively little work on whether tro-
jans themselves could be made harder to detect.
To fill this gap, we develop a general method for
making trojans more evasive based on several
novel techniques and observations. Our method
combines distribution-matching, specificity, and
randomization to eliminate distinguishing features
of trojaned networks. In experiments, we find that
our evasive trojans reduce the efficacy of a wide
range of detectors across numerous evaluation set-
tings while maintaining high attack success rates.
Surprisingly, we also find that our evasive tro-
jans are substantially harder to reverse-engineer.
These findings underscore the importance of de-
veloping more robust monitoring mechanisms
for neural networks and clarifying the offense-
defense balance of trojan detection.

1. Introduction
A neural trojan attack occurs when adversaries corrupt the
training data or model pipeline to implant hidden function-
ality in neural networks. The resulting networks exhibit a
targeted behavior in response to trigger patterns known only
to the adversary. For example, a trojaned traffic sign classi-
fier might behave normally until the trigger pattern appears
on a sign, leading to a car crash. This presents the threat
that a user might suffer catastrophic losses by adopting a
trojaned network that later does something bad.

A promising line of defense against trojan attacks is model-
level trojan detection, which seeks to distinguish trojaned
networks from clean networks. Successfully detecting tro-
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jans enables analyzing attacks and removing hidden func-
tionality from networks (Wang et al., 2019). Further, the
problem of trojan detection is interesting in its own right.
Being good at detecting trojans implies that one must be
able to distinguish subtle properties of networks by inspect-
ing their weights and outputs, and thus is relevant to inter-
pretability research. More broadly, trojan detection could
be viewed as a microcosm for identifying deception and hid-
den intentions in future AI systems (Hendrycks & Mazeika,
2022), highlighting the importance of developing robust
trojan detectors.

Recent work suggests that trojan detection is fairly easy. For
example, Liu et al. (2019) and Zheng et al. (2021) both pro-
pose model-level detectors that obtain over 90% AUROC on
existing trojan attacks. However, Goldwasser et al. (2022)
show that at least for single-layer networks one can build
trojans that are practically impossible to detect. This is a
worrying result for the offense-defense balance of trojan de-
tection, especially if such trojans could be designed for deep
neural networks. To date there has been no demonstration
of trojan attacks in deep neural networks that evade a wide
range of detectors.

In this paper, we propose a method for making deep neural
network trojans harder to detect. The core of our method
is a distribution matching loss inspired by the Wasserstein
distance along with specificity and randomization losses.
Crucially, we consider a white-box threat model that al-
lows defenders full access to training sets of evasive tro-
jans, which enables gauging whether our evasive trojans are
truly harder to detect. In experiments, we train over 6, 000
trojaned neural networks and find that our evasive trojans
considerably reduce the performance of a wide range of
detection methods, in some cases reducing detection perfor-
mance to chance levels.

Surprisingly, we find that in addition to being harder to de-
tect, our evasive trojans are also harder to reverse-engineer.
Namely, the tasks of target label prediction and trigger syn-
thesis become considerably harder (see Figure 1 for an il-
lustrative example). This is an unexpected and concern-
ing result, because our method was not designed to make
these tasks harder. In light of these results, we hope our
work shifts trojan detection research towards a paradigm of
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Figure 1. Compared to standard trojans, our evasive trojans are significantly harder to detect and reverse-engineer. In this illustrative
example, the standard and evasive trojans contain dangerous hidden functionality. A meta-network is able to detect the standard trojan and
reverse-engineer its target label and trigger, whereas the evasive trojan bypasses detection and disrupts reverse-engineering.

constructive adversarial development, where more evasive
trojans are developed in order to identify the limits of and
improve detectors. By studying the offense-defense balance
of trojan detection in this way, the community could make
steady progress towards the ultimate goal of building ro-
bust trojan detectors and monitoring mechanisms for neural
networks. Experiment code and models are available at
[anonymized].

2. Related Work
Trojan Attacks on Neural Networks. Trojan attacks, or
backdoor attacks, refer to the process of implanting hidden
functionalities into a system that affect its safety (Hendrycks
et al., 2021). Geigel (2013) devise a method to insert ma-
licious triggers into a neural network. Since then, a wide
variety of neural trojan attacks have been proposed (Li et al.,
2022). Gu et al. (2017) show how data poisoning can insert
trojans into victim models. They introduce the BadNets at-
tack, which causes targeted misclassification when a trigger
pattern appears in test inputs. Chen et al. (2017) introduce
a blended attack strategy, which uses triggers that are less
conspicuous in the poisoned training set. More recent work
develops attacks that are barely visible using adversarial per-
turbations (Liao et al., 2020), learnable triggers (Doan et al.,
2021b), and subtle warping of the input image (Nguyen &
Tran, 2021). Others have considered making trojan attacks
under fine-tuning threat models (Yao et al., 2019), for textual
domains (Zhang et al., 2021), and encompassing a diverse
range of attack vectors and goals (Bagdasaryan et al., 2020;
Carlini & Terzis, 2021).

Trojan Detection. An important part of defending against
trojan attacks is detecting whether a given network is tro-
janed. Wang et al. (2019) propose Neural Cleanse, which

reverse-engineers candidate triggers for each classification
label. If a small trigger pattern is found, this indicates the
presence of a deliberately inserted trojan. Several more
recent methods build on this approach, including K-Arm
(Shen et al., 2021) and PixelBackdoor (Tao et al., 2022). Liu
et al. (2019) analyze inner neurons for suspicious behavior,
then reverse-engineer candidate triggers to confirm whether
a neuron is compromised. Kolouri et al. (2020) and Xu
et al. (2021) propose training a set of queries to classify a
training set of trojaned and clean networks. Remarkably,
this generalizes well to unseen trojaned networks. Other
work uses conditional GANs to model trigger generation
(Chen et al., 2019b), adversarial perturbations (Wang et al.,
2020), and persistent homology feature extraction (Zheng
et al., 2021).

In this work, we consider model-level detectors such as those
described above, which only require a model as input. If a
poisoned dataset or examples with trojan triggers are avail-
able, one can also use dataset-level and input-level detectors
such as activation clustering (Chen et al., 2019a), spectral
signatures (Tran et al., 2018), or online trojan detection
(Gao et al., 2019; Chou et al., 2020; Kiourti et al., 2021).

Evasive Trojans. While there has been substantial work
on making trojan triggers evade dataset-level and input-level
detection (Liao et al., 2020; Nguyen & Tran, 2021; Doan
et al., 2021b;a), there has been comparatively little work on
making trojaned models themselves hard to detect. Early
work on neural trojans considered evasiveness to consist
of maintaining high accuracy on clean inputs (Gu et al.,
2017; Chen et al., 2017). However, examining the clean
accuracy is a very simple detection mechanism. Recently,
several works have explored making trojans more evasive
for sophisticated detectors. Xu et al. (2021) train trojans to

%5Banonymized%5D
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Figure 2. Our method for making trojans more evasive substantially reduces AUROC across various datasets and underlying trojan attacks.
All values are averaged across eight detectors, and lower is better for the attacker. Detectors have access to a training set containing our
evasive trojans, so reductions in AUROC are not caused by optimizing against fixed detectors, but rather indicate that we can insert trojans
in deep neural networks that are truly harder to detect for existing methods.

fool a meta-network detector in a black-box setting, where
the detector is not given full knowledge of the attack. Bag-
dasaryan & Shmatikov (2021); Hong et al. (2021) train a
trojaned network to fool the Neural Cleanse detector (Wang
et al., 2019), but their approach is not applicable to other
detection methods. Goldwasser et al. (2022) examine the
problem from a cryptographic perspective and find that for
one-layer networks it is possible to construct trojans that
are computationally infeasible to detect. Sahabandu et al.
(2022) train trojans and a meta-network detector in a min-
max alternating fashion to be hard to distinguish from clean
networks, but only evaluate against one detector. Tang et al.
(2021) propose a simple yet effective technique called TaCT
that increases evasiveness against two model-level detectors
but is only applicable for source-specific trojans.

We depart from prior work by developing a method for mak-
ing trojans more evasive against a much larger and more
diverse array of detectors than was previously explored. Ad-
ditionally, we are the first to systematically evaluate reverse-
engineering on a large scale, which allows us to make the
surprising discovery that trojans designed to evade detec-
tion are also harder for existing methods to reverse-engineer.
While most prior works are not directly comparable to our
own, we provide comparisons in Appendix B for complete-
ness, finding that our evasive trojans outperform and in some
cases are complimentary with existing work.

3. Background
Neural Trojans. A neural trojan is described by a trigger
that can be applied to the inputs of a victim network and
a hidden behavior that the trigger should activate in the
victim network. For simplicity, we focus on classification
networks and all-to-one attacks, where inserting a trigger
reliably causes the victim network to output a fixed class.
Let C be the number of classes, and let f : X ! RC be a
victim network that maps inputs x 2 X to their posterior
prediction. An attack specification is a tuple (q, h, c), where
q 2 Q is a trojan trigger, h : X ⇥ Q ! X is a function
that inserts triggers into inputs, and c 2 {1, . . . , C} is the
target label of the attack. We also define distributions PX

and PQ over X and Q to model the data distribution and the
distribution of triggers being considered by the adversary.
The associated random variables are X and Q.

A trojan is successfully inserted if the attack suc-
cess rate (ASR) is high, where ASR is defined as
(argmaxc0f(h(X, q))c0 = c), the probability of a trig-

gered input being classified as the target label. Other desir-
able properties of an attack include not affecting accuracy on
clean inputs and having high specificity, where specificity
refers to the ability of alternate triggers q0 2 Q \ {q} to
activate the hidden behavior. If a trojan has low specificity
and the defender has some knowledge of Q, then the trojan
can be readily detected by sampling triggers and analyzing
their effect on f . Prior works consider a weaker notion of
specificity (Pang et al., 2022; Zhang et al., 2021; Ren Pang,



Hard-to-Detect Trojans in Deep Neural Networks

Table 1. Attack success rate (ASR) and task accuracy averaged
across datasets and trained models. All values are percentages.
Our method for making trojans more evasive does not impact ASR
or task accuracy.

ASR Accuracy
Clean Networks 88.1
Standard Trojans 98.9 88.0
Evasive Trojans 98.3 87.9

2019), where a trojan has high specificity if it does not im-
pact accuracy on clean examples. We extend this to include
examples with unintended triggers.

Threat Model. We model trojan detection as an interac-
tion between an attacker and defender. The goal of the
attacker is to insert a trojan into a victim network without
being detected, and the goal of the defender is to detect
whether the network contains a trojan. The attacker ran-
domly samples their trigger and target label, and they may
use any method for inserting the trojan.

Importantly, we assume that the defender has access to a
dataset of clean and trojaned networks, where the trojans
are inserted using the same method as the attacker but with
random triggers q ⇠ Q and target labels c 2 {1, . . . , C}.
In other words, the defender knows what the attacker’s
distribution of trojans looks like, but they do not know the
specific trigger or target label used by the attacker. We
make this assumption because we are interested in studying
trojans that are fundamentally hard to detect.

4. Evasive Trojans
We develop a general method for inserting evasive trojans
that can be applied to a variety of underlying trojan attacks,
referred to as “standard trojans”. Starting with a standard
trojan attack defined by an attack specification (q, h, c), the
form of our loss for training evasive trojans is Ltask+Ltrojan+
Levasion, where Ltask is the task loss that increases accuracy
on clean examples, Ltrojan is the trojan loss that increases
ASR, and Levasion is the evasion loss, which is designed to
make trojans hard to detect. As with standard trojans, the
task loss and trojan loss are implemented via cross-entropy
on clean examples and examples with triggers inserted. The
main modification for evasive trojans is the evasion loss,
which we describe below.

4.1. Evasion Loss

We identify three high-level components for an evasion
loss: distribution matching, specificity, and randomization.
The core of our approach is our distribution-matching loss,
which enforces similarity between the distribution of clean
networks and trojaned networks. The specificity and ran-
domization losses augment this central loss by addressing

Figure 3. Top: Our distribution matching loss successfully main-
tains a tight coupling between evasive trojans ✓f and clean ini-
tializations ✓g and can thus be interpreted as minimizing the 1-
Wasserstein distance. Bottom: Omitting the randomization loss
leads to emergent coordination in the differences between sum-
mary statistics ✓0f � ✓0g , which cluster in one direction. With the
randomization loss, the coordination disappears.

two practical challenges with designing hard-to-detect tro-
jans for deep neural networks.

Distribution Matching. A natural approach to making
trojans hard to detect is to ensure that across triggers, target
labels, and other sources of randomness, the distribution of
the resulting trojaned networks is similar to the distribution
of clean networks. One way of accomplishing this would
be to use an adversarial loss. However, for this to be effec-
tive one would need to train a generator of networks or a
diverse population of trojaned networks in parallel, which
is computationally prohibitive for the attacker.

Rather than using an expensive adversarial loss, we propose
a loss inspired by the primal form of the 1-Wasserstein dis-
tance. Let F and G be random variables corresponding to
distributions of trojaned and clean networks, respectively.
The 1-Wasserstein distance is defined as W1(F,G) =
inf� E(F,G)⇠� [d(F,G)], where � is a coupling between
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Figure 4. ROC curves for standard trojans and our evasive trojans across a variety of detectors and datasets. In some cases, evasive trojans
reduce detection performance to near-chance levels.

F and G—a joint distribution with marginals equal to PF

and PG—and d is a distance metric. In general, finding the
infimum over all couplings is challenging. However, we can
approximate the infimum by arbitrarily fixing a coupling
and maintaining it throughout training. If the distances re-
main small throughout training, it will remain a faithful
approximation.

In practice, this corresponds to first training a clean network
g ⇠ G, then initializing the trojan network f from the pa-
rameters of g and maintaining a small distance between the
two networks according to a distance metric d. The selection
of d is an important hyperparameter. In preliminary exper-
iments, we found that a simple combination of `2 distance
in parameter space and `1 distance in the final unnormal-
ized logits on clean examples was sufficient to see a notable
increase in evasiveness, so this is what we use throughout
the paper. In Appendix B, we explore alternative distance
metrics. Concretely, our distribution matching loss is

Ldist = �1k✓f � ✓gk2 + �2EX [kf 0(X)� g0(X)k1] ,

where ✓f , ✓g are the parameters of f and g, the functions
f 0, g0 output unnormalized logits, and �1,�2 are weights
for adjusting the strength of the two distances.

Specificity. Under our threat model, the defender has ac-
cess to a training dataset of clean and trojaned models. In
some cases, they may also have knowledge of the trigger
distribution. If the attacker’s trojans have low specificity
and respond to many unintended triggers, they can become
trivial to detect by simply inserting random triggers into
clean inputs and analyzing their effect on a given network f .

In experiments, we find that low specificity is a significant
problem for trojan attacks on deep neural networks. Thus,
we add a loss encouraging high specificity. Let q 2 Q be

the trigger used for a trojan. The general approach for a
specificity loss involves inserting incorrect triggers q0 2 Q\
{q} into training examples and enforcing normal behavior
on those “negative examples”. Prior works with specificity
losses have used cross-entropy to the clean label on negative
examples (Nguyen & Tran, 2021). However, we find that
a more effective loss is to match posteriors between the
trojaned network f and its clean initialization g on negative
examples. Concretely, our specificity loss is

Lspecificity = EX,Q [cross-entropy(f(h(X,Q)), g(h(X,Q)))] ,

where h is the trigger insertion function.

Randomization. Empirically, we find that the distribution
matching loss greatly increases evasiveness against existing
detectors. However, we identify a set of summary features
of the network parameters for which a simple logistic re-
gression performs surprisingly well at detecting our evasive
trojans—even better than state-of-the-art detectors. We com-
pare against this method, which we call Param, in the main
experiments. This suggests that the distribution matching
loss induces emergent coordination in the parameter space,
such that independently trained evasive trojans acquire sim-
ilarities. To mitigate this problem, we propose a random-
ization loss Lrand = 1 � cosine(✓0f � ✓0g, r), where ✓0f , ✓

0
g

are the summary statistics for f and g, and r is a random
direction fixed at the start of training. This loss encourages
the difference between ✓f and ✓g to not only be small, but
to also point in a random direction. Note that enforcing this
loss directly in the parameter space is too strict, so we use a
feature space instead. For more details on our randomization
loss, see Appendix A. In Figure 3, we visualize the effect
of the distribution matching and randomization losses.
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Table 2. Detection results. Our evasive trojans are harder to detect across a wide range of detectors, datasets, and attack specifications.
From left to right, the detectors include two simple baselines (AB, SB), four established backdoor scanning methods (NC, ABS, K-Arm,
Pixel), and two meta-network methods (Param, MNTD). Max and Avg denote the maximum and average across all detectors. All values
are percent AUROC, and lower is better for the attacker. For each detector, we bold the better value in the “Average” row.

AB SB NC ABS K-Arm Pixel Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s

MNIST 53.0 82.4 90.1 67.5 60.3 74.2 64.0 80.5 97.3 71.5
CIFAR-10 59.7 100.0 90.0 86.0 71.0 99.0 70.3 99.7 100.0 84.5
CIFAR-100 59.6 99.9 92.5 71.4 61.0 97.6 73.5 98.1 99.9 81.7
GTSRB 50.8 74.8 82.0 58.6 73.9 64.3 74.2 80.0 85.5 69.8

Average 55.8 89.3 88.6 70.8 66.5 83.8 70.5 89.6 95.7 76.9

Ev
as

iv
e

Tr
oj

an
s MNIST 57.9 61.0 82.8 53.0 71.9 71.3 77.7 60.1 89.6 67.0

CIFAR-10 57.4 67.3 79.1 72.0 60.3 88.5 65.9 77.8 88.5 71.0
CIFAR-100 54.7 57.7 80.5 57.6 60.4 88.1 76.6 65.5 88.8 67.7
GTSRB 52.9 73.0 78.3 68.0 67.4 64.0 81.3 55.4 88.6 67.5

Average 55.7 64.8 80.2 62.7 65.0 78.0 75.4 64.7 88.8 68.3

5. Experiments
To evaluate our approach for creating evasive trojans, we
ask whether trojans with a fixed trigger distribution can be
made harder to detect for a variety of detectors, ranging
from simple baselines to state-of-the-art methods. We gen-
erate collections of clean networks, networks with standard
trojans, and networks with evasive trojans. We train these
networks on MNIST, CIFAR-10, CIFAR-100, and GTSRB
(downsampled to 32x32). For each dataset, we generate
250 clean networks and 250 networks for each trojan attack,
split evenly into training and test sets. The training sets of
networks are used for developing trojan detectors. These
detectors are then evaluated on the test networks. In total,
we train over 6, 000 neural networks to evaluate our method.

Trojan Attacks. We consider two foundational trojan at-
tacks from the literature: the Patch attack (Gu et al., 2017)
and Blended attack (Chen et al., 2017). The patch attack
uses small patches with binary patterns as triggers, and the
trigger insertion function stamps them onto the input im-
age. Each patch trigger consists of a pattern and a mask
indicating where the pattern should go in an input image.
We sample patch triggers with masks of varying shapes and
locations, but the mask for each trojan is static once the loca-
tion is initially decided. The blended attack is a more subtle
attack, using image-wide random noise as the trigger, which
is blended into the input image at a low magnitude. Both
attacks are implemented by poisoning a small percentage of
the training data. We poison 1% of the training set and refer
to these attacks as Standard Trojans.

We train networks with Evasive Trojans using the procedure
described in Section 4. First, we train a new dataset of
clean networks for initializing the evasive trojans. These are
independent from the clean networks used for training and

Figure 5. By using different weights for our evasion loss, we can
control the distance between trojaned networks and paired clean
networks. This distance correlates with the detection performance
of MNTD, indicating that our evasion loss works as intended.

evaluating detectors and are only used for initializing and
training evasive trojans. Next, we train the evasive trojans
using the same patch and blended triggers that the standard
trojans use. The trigger distribution is fixed, so the method
for inserting trojans is the main independent variable. In
Table 1, we show that the attack success rate is similar for
standard trojans and our evasive trojans.

Network Architectures and Hyperparameters. For
CIFAR-10 and CIFAR-100, we use 40-2 Wide ResNets
(Zagoruyko & Komodakis, 2016) with a dropout rate of 0.3
(Srivastava et al., 2014). For GTSRB, we use the SimpleViT
Vision Transformer (Beyer et al., 2022) as implemented by
lucidrains. For MNIST, we use a simple 5-layer convnet
with batch norm. For additional details, see Appendix B.
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Table 3. Target label prediction results. Although we do not specifically design our evasive trojans to be hard to reverse-engineer, we find
that predicting their target labels is much harder. All values are percent accuracy, and lower is better for the attacker. These are unexpected
and concerning results that highlight the need for more robust trojan detection and reverse-engineering methods.

NC ABS K-Arm Pixel Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s

MNIST 80.4 29.2 10.0 63.2 8.4 69.2 90.8 43.4
CIFAR-10 75.2 89.6 13.2 98.8 11.2 99.6 99.6 64.6
CIFAR-100 69.2 59.2 2.4 91.6 0.0 21.6 98.0 40.7
GTSRB 67.6 25.6 55.6 29.2 3.2 28.0 67.6 34.9

Average 73.1 50.9 20.3 70.7 5.7 54.6 89.0 45.9

Ev
as

iv
e

Tr
oj

an
s MNIST 60.4 20.8 1.6 65.6 8.8 43.2 77.2 39.7

CIFAR-10 8.0 60.4 3.2 77.2 11.2 50.0 77.2 41.0
CIFAR-100 2.0 18.4 0.0 82.0 0.8 4.8 82.0 27.1
GTSRB 2.4 48.0 34 32.0 1.6 11.2 48.0 25.3

Average 18.2 36.9 9.7 64.2 5.6 27.3 71.1 33.3

Detectors. We evaluate our trojans against eight detec-
tion methods. We use an accuracy-based detector (AB) and
specificity-based detector (SB) as baselines along with a
number of established backdoor scanning methods, includ-
ing Neural Cleanse (NC) (Wang et al., 2019), ABS (Liu
et al., 2019), K-Arm (Shen et al., 2021), and PixelBack-
door Pixel (Tao et al., 2022). We also evaluate against two
meta-network methods: MNTD (Xu et al., 2021) and the
Param detector. For more details on these methods, see
Appendix B. The Max and Avg summary statistics are the
maximum and average AUROC obtained by the eight detec-
tors on a given set of trojaned networks.

5.1. Detection

To measure the effectiveness of detectors, we use area under
the ROC curve (AUROC) on test sets of clean and trojaned
networks. AUROC is a threshold-independent metric that
can be interpreted as the probability that a positive exam-
ple has a higher detection score than a negative example
(Fawcett, 2006), so 50% corresponds to random detection
performance. For hand-crafted detectors that do not lever-
age the training set, the AUROC can sometimes be below
50%. We find that this happens to a small degree in some
experiments. In these cases, we negate the detection score
before computing AUROC on the test set.

Main Results. Detection results are in Table 2, and sample
ROC curves are in Figure 4. We train standard and evasive
trojans in eight settings and evaluate them on eight detec-
tors. We average results for each dataset across patch and
blended attacks for brevity, and we show expanded results
in Appendix B. Average AUROC across all eight settings is
lower for evasive trojans in seven out of the eight detectors.
In some cases, evasiveness substantially improves. For ex-
ample, average AUROC for the MNTD detector drops by
25%. When looking at the most effective detector in each

setting, evasiveness also improves on average, with a 6.9
percent drop in AUROC. This shows that our evasive trojans
are harder to detect not just for a specific detector, but for a
diverse range of detectors that use different mechanisms.

To analyze the impact of our evasion loss on the results,
we retrain MNIST evasive trojans with different weights
on the evasion loss. In Figure 5, we show the value of
the parameter-space component of Ldist induced by these
increasing loss weight and the corresponding AUROC of
MNTD. We find that detectability smoothly decreases as the
evasion loss increases, indicating that our evasion loss works
as intended. Additional results, ablations, and experiment
details are in Appendix B.

5.2. Reverse-Engineering

Once a trojan has been detected, one might want to know
what the intended functionality of the trojan is or what
causes it to activate. Reverse-engineering trojans is a
nascent field with few quantitative evaluations. How-
ever, since evasive trojans make detection more challeng-
ing, a natural question to ask is whether they also make
reverse-engineering harder. We operationalize these reverse-
engineering tasks as predicting the target label of a trojan
attack and predicting the segmentation mask of patch attacks.
Since recovering trigger patterns is nontrivial (Guo et al.,
2019), we focus on reverse-engineering the trigger mask.

Target Label Prediction. We use accuracy as a metric for
predicting target labels. Neural Cleanse, ABS, K-Arm, and
Pixel predict target labels as part of their detection pipeline,
so no modification is needed. For MNTD and Param, we
replace the output layer and train them as classifiers with
a standard cross-entropy loss. Results are in Table 3. We
average results for each dataset across patch and blended
attacks for brevity, and we show expanded results in Ap-
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Table 4. Trigger synthesis results. All values are percent IoU, and lower is better for the attacker. We show the performance of a random
chance predictor (Rand) in gray in the leftmost column, which is not factored into the Max and Average summary statistics. This
corresponds to always predicting the whole-image mask. Although IoU is low across the board, evasive trojans further reduce IoU. This
demonstrates the need to develop stronger and more robust trigger synthesis methods.

Rand NC Param MNTD Max Avg
St

an
da

rd
Tr

oj
an

s
MNIST 4.6 4.9 4.6 3.8 4.9 4.4
CIFAR-10 5.3 6.0 5.5 7.6 7.6 6.4
CIFAR-100 5.8 6.4 7.6 7.1 7.6 7.1
GTSRB 5.6 5.5 7.2 5.6 7.2 6.1

Average 5.3 5.7 6.2 6.0 6.8 6.0

Ev
as

iv
e

Tr
oj

an
s MNIST 5.3 5.7 5.9 5.2 5.9 5.6

CIFAR-10 5.6 5.7 4.1 4.8 5.7 4.9
CIFAR-100 5.4 5.9 4.8 5.2 5.9 5.3
GTSRB 5.6 5.6 7.2 4.0 7.2 5.6

Average 5.5 5.7 5.5 4.8 6.2 5.3

pendix B. Surprisingly, we find that evasive trojans are not
only harder to detect, but they also make predicting the tar-
get label considerably harder. For each of the six classifiers,
accuracy on evasive trojans is lower. Notably, the average
accuracies for Neural Cleanse and MNTD drop by 54.9 and
27.3 percentage points, respectively. The accuracy of the
best classifier in each setting drops by 17.9% on average.

Accuracy on evasive trojans drops to chance levels in sev-
eral settings. For example, on CIFAR-10 standard trojans,
MNTD reaches 99.2% accuracy, but for evasive trojans it
drops to 11.2% accuracy (random chance would be 10%).
In some cases with the K-Arm classifier, accuracy is even
reduced to below chance levels, which could be used to
create a separate classifier with performance slightly above
chance levels. Our evasion loss was only intended to make
trojans harder to detect, and there is no a priori reason for it
to make target labels hard to predict. Consequently, this is a
very unexpected and concerning result for defense methods.

Trigger Synthesis. We use mean intersection over union
(IoU) across trojaned networks as a metric for predicting
trigger masks. Neural Cleanse generates candidate trigger
masks as part of its detection pipeline, so no modification is
needed. For MNTD and Param, we replace the output layer
with a 4-dimensional output that regresses to the top-left and
bottom-right coordinates of trigger masks in the training set.
If a predicted bounding box is invalid, the predicted mask
defaults to the entire image. We also show the performance
of a random chance predictor (Rand), which corresponds
to predicting the whole image as a segmentation mask. For
a more informative evaluation, we omit scanning methods
that do not beat the random baseline, including K-Arm and
Pixel, which were tuned on a different trigger distribution
than ours. In all trigger synthesis experiments, only patch
attacks are used. The trigger masks have varying shapes and

locations, but they are fixed upon sampling for a given trojan.
Thus, the task is a well-defined binary segmentation task.

Results are in Table 7. In general, performance is quite
poor across the trigger synthesis methods, with IoU never
exceeding 8%. Additionally, average IoU is very close
for standard trojans and evasive trojans on Neural Cleanse.
However, average IoU for Param and MNTD is decreased
by evasive trojans. For MNTD, IoU drops from 6% to 4.8%,
which is a 20% relative reduction. The IoU of the most
effective trigger synthesis method drops from 6.8% to 6.2%
on average. These results indicate that trigger synthesis is
somewhat more difficult on evasive trojans. However, IoU
values are close to the floor in all cases, which demonstrates
a need for more research on this important aspect of reverse-
engineering trojans.

6. Conclusion
We introduced a method for inserting evasive trojans in deep
neural networks. Unlike standard trojan attacks, our evasive
trojans are specifically designed to be hard to detect. To
evaluate our method, we trained standard and evasive trojans
on a large scale, creating training and test sets containing
over 6, 000 neural networks. These networks were evalu-
ated against a wide variety of trojan detectors, including
state-of-the-art detection algorithms and simple yet effec-
tive baselines. We found that our evasive trojans are much
harder to detect across a wide range of evaluation settings,
in some cases reducing detection performance to chance
levels. Surprisingly, we also found that our evasive trojans
make reverse-engineering the target label and trigger of a
trojan attack substantially harder. We hope these results
demonstrate the need for further research into robust mech-
anisms for monitoring and detecting hidden functionality in
deep neural networks.
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Table 5. Expanded detection results. P and B stand for Patch and Blended. Our evasive trojans are harder to detect across a wide range of
detectors, datasets, and attack specifications. All values are percent AUROC, and lower is better for the attacker. For each detector, we
bold the better value in the “Average” row.

AB SB NC ABS K-Arm Pixel Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s MNIST P 53.0 64.8 80.2 51.8 68.3 94.6 55.4 69.3 94.6 67.2

B 53.0 100.0 100.0 83.1 52.2 53.9 72.6 91.7 100.0 75.8

CIFAR-10 P 55.8 100.0 80.0 90.0 52.9 98.0 57.6 99.4 100.0 79.2
B 63.6 100.0 100.0 82.0 89.0 100.0 83.0 100.0 100.0 89.7

CIFAR-100 P 57.9 99.9 84.9 70.8 58.0 97.8 61.8 96.5 99.9 78.4
B 61.3 100.0 100.0 72.0 63.9 97.3 85.2 99.8 100.0 84.9

GTSRB P 50.3 71.0 64.0 56.2 59.9 57.3 48.5 63.3 71.0 58.8
B 51.4 78.5 100.0 60.9 88.0 71.3 99.9 96.8 100.0 80.9

Average 55.8 89.3 88.6 70.8 66.5 83.8 70.5 89.6 95.7 76.9

Ev
as

iv
e

Tr
oj

an
s MNIST P 55.6 54.3 66.5 51.1 59.8 80.0 70.6 53.0 80.0 61.4

B 60.2 67.8 99.2 54.9 84.0 62.6 84.8 67.2 99.2 72.6

CIFAR-10 P 61.3 67.4 58.1 60.0 51.1 76.9 52.2 62.3 76.9 61.2
B 53.5 67.2 100.0 84.0 69.5 100.0 79.7 93.3 100.0 80.9

CIFAR-100 P 54.9 50.4 61.1 50.7 50.5 77.5 61.6 55.0 77.5 57.7
B 54.4 65.1 100.0 64.6 70.3 98.7 91.7 76.1 100.0 77.6

GTSRB P 50.8 73.7 56.6 54.8 57.0 52.5 77.1 48.7 77.1 58.9
B 55.0 72.3 100.0 81.3 77.9 75.4 85.5 62.0 100.0 76.2

Average 55.7 64.8 80.2 62.7 65.0 78.0 75.4 64.7 88.8 68.3

A. Evasive Trojans Details
Randomization Loss. The randomization loss minimizes the cosine distance between the network parameters and a
random direction. However, using the randomization loss in the raw parameter space is far too restrictive and effectively
amounts to adding noise to the parameters. Thus, we use a space of differentiable summary features of the parameters
instead. We concatenate the mean and standard deviation of each parameter vector obtained via the PyTorch parameters
enumerator, which forms a single vector summarizing the network parameters.

For MNIST networks, we found that even this loss was too restrictive and hard to satisfy, perhaps due to the smaller size
of the networks. Thus, we use an alternate randomization loss for MNIST networks. Let ✓0f be summary statistics of the
trojaned model parameters, let ✓0g be summary statistics of the clean initialization, and let r be a binary random vector. The
alternate randomization loss is

Lrand = kmin(✓0f � ✓0g,0)� rk1 + kmin(✓0g � ✓0f ,0)� (1� r)k1,

where the min function outputs the elementwise minimum. This loss allows each summary statistic in the trojaned network
to either be greater or smaller than the corresponding summary statistic in the clean initialization, where the direction of
allowed change is selected by the binary random vector. This can be considered a softer, axis-aligned version of the original
randomization loss.

Method Hyperparameters. Our evasive trojans have several hyperparameters. The two components of the distribution
matching loss and the randomization loss each receive a separate weight. Let these weights be denoted by �1, �2, and �3,
respectively. We use different loss weights for different experiments, and the weights are coarsely tuned primarily to ensure
that ASR is high enough. Empirically, we find that increasing the weights for these losses smoothly decreases ASR and
eventually the task accuracy. This is because the evasion loss is in direct conflict with the trojan loss, so there is a balancing
act between satisfying the evasion loss and maintaining high ASR. Concretely, we use the following settings of the loss
weights:

• For blended attacks on CIFAR-10, �1 = 0.02, �2 = 0.02, �3 = 0.00005
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Table 6. Expanded target label prediction results. Although we do not specifically design our evasive trojans to be hard to reverse-engineer,
we find that predicting their target labels is much harder. All values are percent accuracy, and lower is better for the attacker. These are
unexpected and concerning results that highlight the need for more robust trojan detection and reverse-engineering methods.

NC ABS K-Arm Pixel Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s MNIST Patch 60.8 16.8 10.4 81.6 8.0 40.0 81.6 36.3

Blended 100.0 41.6 9.6 44.8 8.8 98.4 100.0 50.5

CIFAR-10 Patch 52.0 94.4 9.6 97.6 11.2 99.2 99.2 60.7
Blended 98.4 84.8 16.8 100 11.2 100.0 100.0 68.5

CIFAR-100 Patch 38.4 70.4 1.6 96.0 0.0 28.8 96.0 39.2
Blended 100.0 48.0 3.2 87.2 0.0 14.4 100.0 42.1

GTSRB Patch 35.2 19.2 11.2 8.8 3.2 9.6 35.2 14.5
Blended 100.0 32.0 100 49.6 3.2 46.4 100.0 55.2

Average 73.1 50.9 20.3 70.7 5.7 54.6 89.0 45.9

Ev
as

iv
e

Tr
oj

an
s MNIST Patch 28.8 13.6 0 62.4 8.0 17.6 62.4 27.5

Blended 92.0 28.0 3.2 68.8 9.6 68.8 92.0 51.8

CIFAR-10 Patch 8.8 40.0 1.6 54.4 12.8 11.2 54.4 26.2
Blended 7.2 80.8 4.8 100 9.6 88.8 100.0 55.9

CIFAR-100 Patch 1.6 2.4 0.0 66.4 0.0 0.8 66.4 19.7
Blended 2.4 34.4 0 97.6 1.6 8.8 97.6 34.6

GTSRB Patch 1.6 20.0 6.4 4 1.6 3.2 20.0 8.1
Blended 3.2 76.0 61.6 60 1.6 19.2 76.0 42.5

Average 18.2 36.9 9.7 64.2 5.6 27.3 71.1 33.3

• For blended attacks on CIFAR-100, �1 = 0.01, �2 = 0.02, �3 = 0.0001

• For blended attacks on GTSRB, �1 = 0.005, �2 = 0.01, �3 = 0.00001

• For patch attacks on GTSRB, �1 = 0.02, �2 = 0.02, �3 = 0.0001

• For patch attacks on CIFAR-10, �1 = 0.02, �2 = 0.02, �3 = 0.00005

• For all other experimental settings, �1 = 0.1, �2 = 0.05, �3 = 0.0001

We tune these weights by training small numbers of individual networks and monitoring the evasion loss components and
ASR. Importantly, we do not tune them specifically to obtain better results in the main experiments except in preliminary
experiments meant to identify appropriate ranges for the losses, which we performed in a small number of settings. In a few
experimental settings, we observed that there was a long tail of networks with low ASR. We hypothesized that this was due
to the randomization loss picking a challenging direction. Thus, we retrained all networks below a cutoff ASR using new
random directions, which solved the problem. In general, we find that our evasion loss is fairly robust to selections of loss
weights and easy to use once the appropriate ranges for the weights are identified. The specificity loss is implemented by
inserting incorrect triggers into 16 examples for blended attacks and 10 examples for patch attacks. These numbers were
selected early during preliminary experiments.

Other Details. In preliminary experiments, we found that several implementation details were important for increasing
the evasiveness of our trojans. Namely, we train all evasive trojans without dropout. Clean initializations are trained with
dropout, but during the second stage of training we turn dropout off. This is because dropout introduces uncorrelated
randomness in the activations of the trojaned network and its clean initialization, which makes satisfying the logit matching
component of Ldist challenging. For similar reasons, we also switch batch norm layers in clean initialization networks to
eval mode throughout the second stage of training evasive trojans.

To improve performance on blended attacks, we found that it was important to process the inputs for the clean, trojan, and
specificity losses together in a single forward pass. This is because networks that use batch norm are able to “cheat” by
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Table 7. Trigger synthesis results. All values are percent IoU, and lower is better for the attacker. We show the performance of a random
chance predictor (Rand) in gray in the leftmost column. This corresponds to always predicting the whole-image mask. Several methods
obtain lower IoU than this baseline and are thus omitted from the table in the main paper. Although IoU is low across the board, evasive
trojans further reduce IoU for the most effective methods. This demonstrates the need to develop stronger and more robust trigger
synthesis methods.

Rand NC ABS Pixel Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s

MNIST 4.6 4.9 4.5 1.25 4.6 3.8 4.9 3.8
CIFAR-10 5.3 6.0 4.6 1.09 5.5 7.6 7.6 5.0
CIFAR-100 5.8 6.4 5.0 1.4 7.6 7.1 7.6 5.5
GTSRB 5.6 5.5 6.5 0.28 7.2 5.6 7.2 5.0

Average 5.3 5.7 5.2 1.0 6.2 6.0 6.8 4.8

Ev
as

iv
e

Tr
oj

an
s MNIST 5.3 5.7 5.3 2.14 5.9 5.2 5.9 4.8

CIFAR-10 5.6 5.7 4.3 1.44 4.1 4.8 5.7 4.1
CIFAR-100 5.4 5.9 5.6 1.8 4.8 5.2 5.9 4.7
GTSRB 5.6 5.6 6.0 0.19 7.2 4.0 7.2 4.6

Average 5.5 5.7 5.3 1.4 5.5 4.8 6.2 4.5

aggregating information across the batch. Empirically, this issue arose most prominently with blended attacks. Concatenating
the inputs together fixes the problem.

B. Additional Results
Description of Detectors.

• The accuracy-based detector (AB) simply uses the clean accuracy of a network as a score for detection. If a trojan insertion
method consistently decreases clean accuracy, it can become trivial to detect, so this is an important baseline detector.

• The specificity-based detector (SB) assumes that the defender has access to a small set of k triggers sampled from the
same distribution of triggers that are used by the trojaned networks in question. This detector inserts each of the k triggers
into images from the validation set and computes the entropy of the average posterior. The k entropy values are then
averaged, the negative of which is used as the detection score. For trojans with low specificity, the entropy of the average
posterior for triggered inputs will be lower than for clean networks, which enables detection.

• Neural Cleanse (NC) iterates over possible target labels for an attack and directly searches for candidate triggers using
gradient-based optimization (Wang et al., 2019). We use a simplified version of Neural Cleanse that we found obtains
stronger detection performance. Namely, in preliminary experiments we found that early stopping did not improve results,
so we optimize for a fixed number of gradient steps. Additionally, the original Neural Cleanse method uses an anomaly
index based off of the `1 norms of the optimized trigger masks for detection, which enables selecting a principled threshold.
However, we find that simply using the raw `1 norms results in significantly better detection, so we switch to this simpler
score for Neural Cleanse. This is enabled by our large-scale evaluations on datasets of clean and trojaned networks,
which allows using threshold-independent metrics and any real-valued detection score. For trigger synthesis, we predict
segmentation masks by thresholding the optimized masks with a threshold of 0.01, tuned manually to maximize average
IoU for both standard and evasive trojans.

• ABS monitors the behavior of neurons while perturbing the input to identify candidate compromised neurons. These
candidate neurons are used to generate a trojan trigger similarly to Neural Cleanse, and the maximum attack success rate
across candidates is used as a detection score (Liu et al., 2019). We use the original PyTorch implementation provided by
the authors for TrojAI Round 1. For trigger synthesis, we predict segmentation masks with the threshold of 0.01 used in
the original code.

• K-Arm recasts trigger optimization as a multi-armed bandit problem, spending optimization steps on the most promising
potential target labels found so far while maintaining exploration of other potential target labels. This identifies the most
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Table 8. Attack success rate (ASR) and task accuracy in all experimental settings. Each value is averaged across 125 neural networks in
the validation set for the indicated experimental setting. All values are percentages.

ASR Accuracy
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ks MNIST 99.3

CIFAR-10 94.0
CIFAR-100 74.6
GTSRB 84.7

Average 88.1
St
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s MNIST Patch 100.0 99.3
Blended 100.0 99.3

CIFAR-10 Patch 100.0 93.9
Blended 99.5 93.9

CIFAR-100 Patch 99.8 74.5
Blended 97.5 74.5

GTSRB Patch 99.8 85.5
Blended 94.6 83.5

Average 98.9 88.0

Ev
as

iv
e

Tr
oj

an
s MNIST Patch 99.5 99.3

Blended 99.2 99.2

CIFAR-10 Patch 100.0 93.9
Blended 95.8 94.0

CIFAR-100 Patch 99.9 74.6
Blended 97.4 74.7

GTSRB Patch 96.4 84.4
Blended 97.8 83.5

Average 98.3 87.9

promising target labels in a more efficient manner than the original Neural Cleanse scanning method (Shen et al., 2021).
We use the original PyTorch implementation provided by the authors.

• PixelBackdoor (Pixel) is a trigger optimization method like Neural Cleanse and K-Arm. It uses a loss that is easier to
optimize than the original Neural Cleanse loss (Tao et al., 2022). We use the original PyTorch implementation provided by
the authors. For trigger synthesis, we predict segmentation masks by thresholding the optimized patterns with a threshold
of 0.01, tuned manually to maximize average IoU for both standard and evasive trojans.

• MNTD consists of a set of query inputs, which are passed through the network in question. The outputs on these queries
are then concatenated and passed to a shallow classifier, which outputs a detection score. The queries and shallow classifier
are optimized on the training set of clean and trojaned networks (Xu et al., 2021). MNTD is an example of a broad class
of techniques called meta-networks: neural networks trained to interpret or monitor other neural networks.

• The Param detector is a logistic regressor with a single linear layer that takes summary statistic features of the raw network
parameters as its input. For summary statistics, we concatenate the min, max, mean, median, and standard deviation
of each parameter vector into a single feature vector summarizing the raw parameters of the network. We develop this
detector to highlight the emergent coordination issue described in Section 4, which motivates our randomization loss.

Training Hyperparamters. We train all CIFAR-10, CIFAR-100, and GTSRB networks for 50 epochs with a batch size
of 128. We train all MNIST networks for 10 epochs with a batch size of 256 except for evasive trojans, which we found
benefited from 20 epochs of training after initializing from clean networks.

We train all CIFAR-10 and CIFAR-100 networks using SGD with learning rate 0.1, weight decay of 5⇥ 10�4, and Nesterov
momentum of 0.9. We train all MNIST and GTSRB networks using Adam with a weight decay of 1 ⇥ 10�5 and other
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Table 9. Randomization loss ablation. Without the randomization loss, the Param detector is especially strong, leading to a high maximum
AUROC across all detectors. Adding the randomization loss greatly reduces AUROC for MNTD and Param detectors. For the other
detectors, average AUROC remains similar. All values are percent AUROC, and lower is better for the attacker.

AB SB NC ABS Param MNTD Max Avg

W
ith

ou
tL

ra
nd

MNIST Patch 56.5 53.4 63.1 53.6 67.7 60.9 67.7 59.2
Blended 58.4 54.1 97.3 61.4 93.6 74.4 97.3 73.2

CIFAR-10 Patch 72.8 71.1 54.7 61.3 85.7 88.6 88.6 72.4
Blended 57.4 66.7 100.0 90.8 100.0 91.3 100.0 84.4

CIFAR-100 Patch 74.1 98.8 55.7 54.1 100.0 74.9 100.0 76.3
Blended 50.0 72.2 100.0 74.1 100.0 94.5 100.0 81.8

GTSRB Patch 51.4 62.6 54.5 53.0 78.2 49.5 78.2 58.2
Blended 52.2 55.4 100.0 84.5 93.5 74.8 100.0 76.7

Average 59.1 66.8 78.2 66.6 89.8 76.1 91.5 72.8

W
ith

L
ra

nd

MNIST Patch 55.6 54.3 66.5 51.1 70.6 53.0 70.6 58.5
Blended 60.2 67.8 99.2 54.9 84.8 67.2 99.2 72.4

CIFAR-10 Patch 61.3 67.4 58.1 60.0 52.2 62.3 67.4 60.2
Blended 53.5 67.2 100.0 84.0 79.7 93.3 100.0 79.6

CIFAR-100 Patch 54.9 50.4 61.1 50.7 61.6 55.0 61.6 55.6
Blended 54.4 65.1 100.0 64.6 91.7 76.1 100.0 75.3

GTSRB Patch 50.8 73.7 56.6 54.8 77.1 48.7 77.1 60.3
Blended 55.0 72.3 100.0 81.3 85.5 62.0 100.0 76.0

Average 55.7 64.8 80.2 62.7 75.4 64.7 84.5 67.2

hyperparameters at default settings. All training hyperparameters were chosen early in preliminary experiments and received
minimal tuning.

Expanded Results Tables. In Table 5, we show the full detection results. When looking at the patch and blended attacks
separately, we observe that blended attacks are detected very easily by Neural Cleanse, and our evasion loss is unable to
reduce the efficacy of Neural Cleanse in these settings. This is surprising, because Neural Cleanse is designed specifically to
detect patch attacks. However, our evasion loss does make blended attacks harder to detect for other methods, including
MNTD and in some settings ABS. As shown in Figure 2, although blended attacks tend to be easier to detect than patch
attacks, evasive trojans reduce the efficacy of the average detector across all four datasets.

In Table 6, we show the full target label prediction results. For this task, Neural Cleanse also performs unexpectedly well on
blended attacks for standard trojans. However, in this case our evasive trojans greatly reduce the efficacy of Neural Cleanse.

B.1. Ablations and Analysis

Our evasive trojan training procedure has several distinct components. Here, we examine what happens when certain
components are removed or modified.

Randomization Loss. We include the randomization loss to mitigate emergent coordination across independently trained
evasive trojans. This coordination occurs when only using the distribution-matching and specificity losses, and it enables
strong detection performance with a simple detector that performs a logistic regression on summary statistics of the
parameters (Param).

In Table 9, we compare evasive trojans with and without the randomization loss. When the randomization loss is removed,
the Param and MNTD detectors become much stronger, while average AUROC for the other detectors remains relatively
unchanged. In several cases for trojans without the randomization loss, the Param detector obtains 100% AUROC.
Consequently, including the randomization loss substantially reduces the AUROC of the best detector from an average
of 91.5% to 84.5%. These results demonstrate that the randomization loss is an important component of our method for
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Table 10. Evaluation of using an `1 distance on the penultimate features as an additional component of the distance metric. Compared to
the original distance metric, this improves evasiveness against Neural Cleanse (lower AUROC) but reduces evasiveness against MNTD
and Param (higher AUROC). All values are percent AUROC, and lower is better for the attacker.

NC Param MNTD

With Lpenultimate
Patch 58.8 100 60.5
Blended 91.6 100 70.9

Without Lpenultimate
Patch 66.5 70.6 53.0
Blended 99.2 84.8 67.2

training evasive trojans.

Specificity Loss. We include the specificity loss to prevent the issue of low specificity, where unintended triggers can
activate the trojan. If a trojan has low specificity, then a defender with knowledge of the distribution of triggers can easily
detect the trojan by checking whether the known triggers cause unusual behavior. Our specificity-based detector (Spec) is
based on this intuition. To validate the importance of the specificity loss, we retrain the CIFAR-10 blended evasive trojans
without the specificity loss. The specificity detector obtains 100% AUROC on these networks compared to 67.2% AUROC
when the specificity loss is used. This indicates that the specificity loss has the desired effect and is an important component
of our method for training evasive trojans.

Logit Matching Loss. The logit matching loss is one of the two components of our distribution matching loss. To isolate
the impact of this loss, we train retrain the CIFAR-10 patch evasive trojans without the logit matching loss. The MNTD
detector obtains 70.8% AUROC on these networks compared to 62.3% with the logit matching loss and 99.4% for standard
trojans. This shows that the logit matching loss is an important component of our evasive trojans, but it only accounts for
part of the increased evasiveness.

Different Distance Metrics. Since the distance metric is an important component of our distribution-matching loss, an
interesting question is what happens when the metric is changed. Here, we explore adding an `1 distance on the penultimate
features to the distance metric. Concretely, we add Lpenultimate = �pEX [kfp(X)� gp(X)k1], where gp and fp are functions
that output the penultimate features of the respective networks and �p is a scalar loss weight. We set �p to equal 0.1 and
retrain the MNIST evasive trojans using the modified distance metric. As before, we train 500 models, split evenly into patch
and blended triggers and divided into training and test sets. We evaluate these trojaned models against baseline detectors
and show the results in Table 10. We find that that evasiveness against Neural Cleanse increases, but evasiveness against
MNTD and Param decreases. This demonstrates that the distance metric has a large effect on evasiveness, and designing
good distance metrics that improve evasiveness across many diverse detectors is nontrivial.

Impact of Evasion Loss on Detector Performance. Here, we provide an expanded discussion of Figure 5. Two natural
questions following our main results are (1) whether our evasion loss actually reduces the distance in parameter and logit
space as intended and (2) whether this correlates with improved evasiveness. To more precisely evaluate the impact of our
evasion loss, we retrain our evasive trojans with patch triggers on MNIST using different weights on the evasion loss. For
each training run, we multiply all components of the evasion loss by a fixed scalar ranging from 1 (original evasion loss) to
0 (no evasion loss, but still initializing from a clean network). In particular, the loss weights are 1, 0.01, 0.001, and 0. The
corresponding distance values in parameter space are 0.7, 2.0, 6.5, and 8.8. In logit space, the distance values are 2.2, 2.5,
5.9, and 33.9, respectively. This shows that our evasion loss is optimized successfully. To see whether this translates into
changes in detectability, we compute the percent AUROC for MNTD at each of these loss weights. In Figure 5, we show the
results of this experiment by plotting distance in parameter-space on the x-axis and MNTD AUROC on the y-axis. There is
a clear correlation: larger parameter distances result in higher detection performance. This suggests that evasiveness could
be further improved by developing approaches that allow one to reduce our current distance metric even further.

B.2. Additional Attack Comparisons

Here, we compare to other trojan attacks that are designed with evasiveness in mind. In each section, we clarify how these
prior attacks differ from our own.
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Blind Backdoors Neural Cleanse Evasion Method. Bagdasaryan & Shmatikov (2021) train trojans specifically to evade
Neural Cleanse. Namely, a Neural Cleanse search process is carried out simultaneously with model training in a two-phase
update approach. We implement this method and train a dataset of 500 MNIST models to evaluate its evasiveness. As with
the standard and evasive trojans, we evenly split these models into patch and blended triggers and divide them into training
and test sets.

With MNTD, the AUROC for patch and blended trojans is 72.8% and 98.7%, respectively. With Neural Cleanse, the
AUROC for patch and blended trojans is 77.3% and 98.9%, respectively. With the Param detector, the AUROC for patch
and blended trojans is 100.0% in both cases. Compared to the performance of Neural Cleanse on standard trojans, this is
slightly better in both cases. This shows that their evasion method does work. However, MNTD and Param still have high
performances on their trojans (in the case of Param, this reaches perfect detection performance). This shows that training
trojans to be evasive for a specific detector may not generalize to all detectors. By contrast, our evasive trojans do generalize
to reducing the detection performance of a broad range of detectors without specifically training against them.

WaNet Warping Attack. As we note in the related work, there have been numerous prior works exploring how to make
trojan triggers more stealthy, which we distinguish from making trojans themselves more evasive. These methods are
specifically designed to evade dataset-level and input-level detectors like Activation Clustering (Chen et al., 2019a), Spectral
Signatures (Tran et al., 2018), STRIP (Gao et al., 2019), and SentiNet (Chou et al., 2020). They do so by making inputs
with triggers appear more similar to inputs without triggers (either in the input-space or intermediate features). However,
these methods are not designed to evade model-level detectors like MNTD or ABS and are almost never evaluated on these
detectors. An interesting question is whether the strong evasiveness of this class of trojans on dataset-level and input-level
detectors transfers to evasiveness on model-level detectors. To investigate this, we train 500 trojaned CIFAR-10 models
using the WaNet attack (Nguyen & Tran, 2021). This attack uses subtle spatial warping of the input as a trigger, which
improves evasiveness against input-level detectors like STRIP.

We evaluate model-level detectors against the trained WaNet models. The Neural Cleanse, MNTD, and Param detectors
obtain AUROC scores of 99.5%, 100.0%, and 99.98%, respectively. Thus, they are very easy to detect. The result on
Neural Cleanse runs counter to Neural Cleanse experiments in the WaNet paper. We are not certain what the cause for this
discrepancy is. However, one possible explanation is that we use a custom PyTorch implementation of Neural Cleanse
that uses a different detection score due to our evaluations being threshold-independent. Our implementation of Neural
Cleanse obtains very high AUROC on blended triggers, which is unexpected, since Neural Cleanse was not designed to
work on whole-image blended triggers. This could partially explain why our Neural Cleanse implementation also works
for whole-image warping triggers. We tried out different hyperparameters for the warping field to see if this would affect
evasiveness, but this did not help. These results indicate that methods designed for evasiveness against input-level detectors
do not generalize to being evasive for model-level detectors. Thus, separate approaches are needed for evasiveness against
model-level detectors.

Table 11. Results on source-specific trojans. TaCT obtains highly general evasion, although our evasive trojans are slightly better on
average. Combining the two methods yields even greater evasion, demonstrating that TaCT is complimentary with our approach. All
values are percent AUROC, and lower is better for the attacker.

Acc Spec NC ABS Param MNTD

Standard Patch 53.6 63.1 65.5 52.3 46.3 59.2
Blended 54.5 99.8 90.3 69.8 66.3 82.3

TaCT Patch 50.8 58.3 50.9 51.6 52.7 54.4
Blended 50.6 78.8 68.4 61.7 64.6 94.5

Evasive Patch 52.8 55.4 57.2 51.7 58.2 50.9
Blended 55.6 71.2 72.8 53.8 65.3 74.4

Evasive+TaCT Patch 51.7 51.9 50.1 51.5 57.7 47.1
Blended 55.7 69.3 66.0 51.0 64.5 69.6

Targeted Contamination Attack (TaCT). In our main experiments, we focus on one-to-all attacks. However, one-to-one
attacks, also known as source-specific attacks, are an important setting as well. In these attacks, the hidden behavior is only
trained to activate on one specific source class. The target class is selected from among the other classes. Tang et al. (2021)
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find that in this source-specific setting, one can greatly improve evasiveness against Neural Cleanse and ABS with a simple
modification to the standard data-poisoning attack. Instead of just inserting poisoned examples in the source class, they also
insert “cover examples”, which contain the trigger but are labeled with their original clean label. These cover examples are
inserted for all classes besides the source class, which can be considered a form of specificity loss for the source-specific
setting. They name this method the Targeted Contamination Attack (TaCT). Note that TaCT is not applicable in our main
experiments, which focus on all-to-one attacks.

TaCT is a method for training evasive trojans in the source-specific setting, and there is some evidence in the original
paper that it generalizes across various model-level detectors, as they evaluate it on Neural Cleanse and ABS. To compare
our evasive trojans to TaCT, we adapt our standard and evasive trojans for the source-specific setting. This involves only
inserting triggers for examples from the source class. We reimplement TaCT, and we combine TaCT with our evasive trojans
by adding cover examples to each training batch. Due to time constraints, we omit the K-Arm and Pixel detectors from the
evaluation. We train 500 trojaned MNIST models for each setting and show results in Table 11.

Interestingly, we find that standard trojans are far harder to detect in the source-specific setting than in the all-to-one setting.
On top of this naturally more difficult detection setting, TaCT greatly improves evasiveness compared to the standard trojans.
In fact, it is comparable to our evasive trojans. However, when we combine TaCT with our evasion loss, we obtain the best
results. Averaging across all detectors and across patch and blended attacks, the percent AUROC values for standard trojans,
TaCT, evasive trojans, and evasive trojans with TaCT are 66.9, 61.4, 59.9, and 57.2. This shows that TaCT and our evasion
loss are complimentary, and in settings where TaCT is applicable we strongly recommend evaluating detectors against it.
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Abstract

Many intellectual endeavors require mathematical problem solving, but this skill
remains beyond the capabilities of computers. To measure this ability in machine
learning models, we introduce MATH, a new dataset of 12,500 challenging
competition mathematics problems. Each problem in MATH has a full step-by-step
solution which can be used to teach models to generate answer derivations and
explanations. To facilitate future research and increase accuracy on MATH, we
also contribute a large auxiliary pretraining dataset which helps teach models the
fundamentals of mathematics. Even though we are able to increase accuracy on
MATH, our results show that accuracy remains relatively low, even with enormous
Transformer models. Moreover, we find that simply increasing budgets and model
parameter counts will be impractical for achieving strong mathematical reasoning
if scaling trends continue. While scaling Transformers is automatically solving
most other text-based tasks, scaling is not currently solving MATH. To have more
traction on mathematical problem solving we will likely need new algorithmic
advancements from the broader research community.

1 Introduction

Mathematics is a highly effective tool in many intellectual endeavors. It enables us to count and
quantify objects, and it can be relied upon because it is consistent and based on logic. Mathematics
pervades the sciences and can be used to model planetary orbits, atomic motion, signal frequencies,
and much more. These phenomena can be encoded with mathematics precisely and concisely. This
has even led some to describe mathematics as being “unreasonably effective” (Wigner, 1960). These
observations speak to the broad reach and domain-generality of mathematics.

In machine learning, mathematics is a valuable testbed for problem-solving ability: the ability to
analyze a problem, pick out good heuristics from a large set of possibilities, and chain them together
to produce an answer. This contrasts with plug-and-chug calculations, a skill which ML models
can already exhibit (Henighan et al., 2020). Visual or linguistic reasoning may involve limited
problem-solving ability for tasks such as image classification, but unlike math this is not the focus of
these domains.

To measure the problem-solving ability of machine learning models, we introduce the MATH dataset,
which consists of 12, 500 problems from high school math competitions. Given a problem from
MATH, machine learning models generate a sequence, such as $\frac{2}{3}$, that encodes
the final answer. These answers are unique after normalization, allowing MATH to be scored with
exact match rather than with heuristic metrics such as BLEU. In addition, MATH problems are
tagged by difficulty from 1 to 5, and span seven subjects including geometry, where diagrams
can be specified in text with the Asymptote language. This enables a fine-grained assessment of
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Metamath Theorem Proving
n 2 N ^

n+1
2 2 N =) 9m 2 N : n = 2m+ 1.

GPT-f ’s generated proof:
|- ((N e. NN0 /\ ((N + 1)/2) e.

NN0) -> ((N - 1) / 2) e. NN0)
|- (N e. NN0 -> N e. CC)
|- 1 e. CC
|- ((N e. CC /\ 1 e. CC) ->

(N - 1) e. CC )
...

DeepMind Mathematics Dataset
Divide 1136975704 by -142121963.
A: -8
Let k(u) = u**2+u-4. Find k(0).
A: -4
Sort 2, 4, 0, 6.
A: 0, 2, 4, 6
Solve 4 - 4 - 4 = 188*m for m.
A: -1/47

MATH Dataset (Ours)
Problem: Tom has a red marble, a green marble,
a blue marble, and three identical yellow marbles.
How many different groups of two marbles can
Tom choose?
Solution: There are two cases here: either Tom
chooses two yellow marbles (1 result), or he
chooses two marbles of different colors (

�4
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results). The total number of distinct pairs of
marbles Tom can choose is 1 + 6 = 7 .
Problem: The equation x2 + 2x = i has two
complex solutions. Determine the product of their
real parts.
Solution: Complete the square by adding 1 to
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Figure 1: Previous work is based on formal theorem provers or straightforward plug-and-chug
problems. Our dataset, MATH, has competition mathematics problems with step-by-step solutions
written in LATEX and natural language. Models are tasked with generating tokens to construct the final
(boxed) answer.

mathematical problem-solving ability across difficulties and subjects. Finally, problems come with
full step-by-step solutions. By training on these, models can learn to generate their own step-by-step
solutions, which can facilitate learning and make model outputs more interpretable.

The MATH dataset is challenging: large language models achieved accuracies ranging from 3.0%
to 6.9%. Despite these low accuracies, models clearly possess some mathematical knowledge: they
achieve up to 15% accuracy on the easiest difficulty level, and they are able to generate step-by-step
solutions that are coherent and on-topic even when incorrect. We also evaluated humans on MATH,
and found that a computer science PhD student who does not especially like mathematics attained
approximately 40% on MATH, while a three-time IMO gold medalist attained 90%, indicating that
MATH can be challenging for humans as well.

The presence of step-by-step solutions allows models to utilize “scratch space”: rather than having to
generate a final answer immediately, models can first generate solutions that may contain intermediate
computations. Interestingly, we found that having models generate step-by-step solutions before
producing an answer actually decreased accuracy relative to immediately outputting a final answer
without generating solutions, indicating the solutions are currently not useful for models at test time.
In contrast, having models train on solutions increases relative accuracy by 10% compared to training
on the questions and answers directly. We also find that models do better with hints in the form of
partial solutions. Our results show that models can make use of actual step-by-step solutions provided
to them in various ways, but that they are still unable to effectively use their own generated solutions.
Bridging this gap poses an interesting direction for further research.

While MATH covers advanced problem-solving techniques, models may first need to be trained
thoroughly on the fundamentals of mathematics. To address this, we create the first large-scale
mathematics pretraining dataset with hundreds of thousands of step-by-step solutions in natural
language and LATEX. We call this dataset the Auxiliary Mathematics Problems and Solutions (AMPS)
pretraining corpus, which consists of Khan Academy and Mathematica data. AMPS has over 100, 000
Khan Academy problems with step-by-step solutions in LATEX; these exercises are used to teach
human students concepts ranging from basic addition to Stokes’ Theorem. It also contains over
5 million problems generated using Mathematica scripts, based on 100 hand-designed modules
covering topics such as conic sections, div grad and curl, KL divergence, eigenvalues, polyhedra, and
Diophantine equations. In total AMPS contains 23GB of problems and solutions. Pretraining on
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AMPS enables a 0.1 billion parameter model to perform comparably to a fine-tuned model that is
130⇥ larger.

Altogether, while large Transformer models (Vaswani et al., 2017) make some progress on the MATH
dataset, such as by AMPS pretraining or by training with step-by-step solutions, accuracy nonetheless
remains relatively low. While enormous Transformers pretrained on massive datasets can now solve
most existing text-based tasks, this low accuracy indicates that our MATH dataset is distinctly harder.
Accuracy also increases only modestly with model size: assuming a log-linear scaling trend, models
would need around 1035 parameters to achieve 40% accuracy on MATH, which is impractical. Instead,
to make large strides on the MATH dataset with a practical amount of resources, we will need new
algorithmic advancements from the broader research community.

2 Related Work

Neural Theorem Provers. Much of the existing work on machine learning models for mathemati-
cal reasoning relies on automated theorem proving benchmarks. Huang et al. (2019) use the Coq
theorem proving environment to create a machine learning benchmark with 1, 602 theorems and
lemmas. Bansal et al. (2019) introduce the HOList benchmark for automated theorem proving, which
uses a formal language to enable automatic evaluation. Rather than use HOList, Polu and Sutskever
(2020) use the Metamath formalization language for automated theorem proving with promising
results. We show an example of Metamath in Figure 1. These benchmarks can be approached
with seq2seq (Sutskever et al., 2014) Transformers which have traction on the problem (Polu and
Sutskever, 2020; Rabe et al., 2020; Li et al., 2020).
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Figure 2: Compared to existing proof and plug-
and-chug tasks, our mathematical problem solving
task is considerably more challenging. HOList re-
sults are from Wu et al. (2021). HOLStep results
are from Crouse et al. (2019). DeepMind Math ac-
curacy is the median IID accuracy from Henighan
et al. (2020). Symbolic Integration accuracy is
from Lample and Charton (2020).

Rather than prove theorems with standard
pretrained Transformers, McAllester (2020)
proposes that the community create theorem
provers that bootstrap their mathematical capa-
bilities through open-ended self-improvement.
For bootstrapping to be feasible, models will
also need to understand mathematics as humans
write it, as manually converting advanced math-
ematics to a proof generation language is ex-
tremely time-consuming. This is why Szegedy
(2020) argues that working on formal theorem
provers alone will be an impractical path to-
wards world-class mathematical reasoning. We
address Szegedy (2020)’s concern by creating
a dataset to test understanding of mathematics
written in natural language and commonplace
mathematical notation. This also means that the
answers in our dataset can be assessed without
the need for a cumbersome theorem proving en-
vironment, which is another advantage of our
evaluation framework.

Neural Calculators. Recent work shows that
Transformers can sometimes perform laborious
calculations around as well as calculators and
computer algebra systems. Lample and Charton (2020) use Transformers to solve algorithmically
generated symbolic integration problems and achieve greater than 95% accuracy. Amini et al. (2019);
Ling et al. (2017) introduce plug-and-chug multiple choice mathematics problems and focus on
sequence-to-program generation. Saxton et al. (2019) introduce the DeepMind Mathematics dataset,
which consists of algorithmically generated plug-and-chug problems such as addition, list sorting,
and function evaluation, as shown in Figure 1. Recently, Henighan et al. (2020) show that, excluding
problems with astronomically large numbers, the vast majority of the problems in the DeepMind
Mathematics dataset can be straightforwardly solved with large Transformers.

Benchmarks for Enormous Transformers. There are few existing natural language benchmarks
left to solve, as tasks that aggregate multiple subtasks such as SuperGLUE (Wang et al., 2019) are
solved by simply training enormous Transformers (He et al., 2020). Kaplan et al. (2020); Henighan
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Algebra Conic sections, polynomial GCD, De Moivre’s theorem, function inverses, ...
Calculus Arclength, Jacobian, Laplacian, divergence, curl, gradients, integrals, ...
Statistics Expectation, geometric mean, harmonic mean, KL divergence, variance, ...
Geometry Triangle area, triangle inradius, polygon angles, polyhedron diameter, ...
Linear Algebra Characteristic polynomials, eigenvalues, reduced row echelon form, ...
Number Theory Modular inverse, Euler’s totient function, Chinese remainder theorem, ...

Table 1: A subset of the topics covered by our 100 hand-designed Mathematica scripts, which is
part of our Auxiliary Mathematics Problems and Solutions (AMPS) pretraining dataset. Of these
scripts, 37 also generate step-by-step solutions. We generated around 50,000 exercises with each
Mathematica script, or around 5 million problems.

et al. (2020) show that the performance of Transformers predictably increases with an increase in
model size and dataset size, raising the question of whether natural language processing can be solved
by simply increasing compute and funding. Additionally, Chen et al. (2021); Austin et al. (2021) show
that code generation models scale reliably across several orders of magnitude, and, should scaling
continue, Chen et al. (2021)’s HumanEval code generation dataset should be solved in a few orders
of magnitude. In the Supplementary Materials, we even find that large GPT-3 models can perform
remarkably well on a sequence completion test similar to an IQ test, the C-Test (Hernández-Orallo,
1998; Legg and Hutter, 2007). Even difficult logical understanding tasks such as LogiQA (Liu et al.,
2020) will soon be straightforwardly solved by enormous Transformers should trends continue, which
we also show in the Supplementary Materials. Hendrycks et al. (2021) create a multiple-choice
benchmark covering 57 subjects. However, unlike our benchmark, which is a text generation task with
12, 500 mathematical reasoning questions, their benchmark is a multiple choice task that includes
only a few hundred questions about mathematics. In contrast to these benchmarks, we find that our
MATH benchmark is unusually challenging for current models and, if trends continue, simply using
bigger versions of today’s Transformers will not solve our task in the foreseeable future.

3 Datasets

In this section, we introduce two new datasets, one for benchmarking mathematical problem-solving
ability (MATH) and one for pretraining (AMPS).

3.1 The MATH Dataset

The MATH dataset consists of problems from mathematics competitions including the
AMC 10, AMC 12, AIME, and more. Many of these problems can be collected from
aops.com/community/c3158_usa_contests. These competitions span decades and assess the mathe-
matical problem-solving ability of the best young mathematical talent in the United States. Unlike
most prior work, most problems in MATH cannot be solved with a straightforward application of
standard K-12 mathematics tools. Instead, humans often solve such problem by applying problem
solving techniques and “heuristics” (Pólya, 1945).

The Mathematics Aptitude Test of Heuristics dataset, abbreviated MATH, has 12,500 problems
(7,500 training and 5,000 test). With this many training problems, models can learn many useful
heuristics for problem solving. Each problem has a step-by-step solution and a final boxed answer.
Example problems with step-by-step solutions are shown in Figure 1.

Categorizing Problems. Problems span various subjects and difficulties. The seven subjects are
Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry, Intermediate Algebra,
and Precalculus. While subjects like Prealgebra are generally easier than Precalculus, within a subject
problems can take on different difficulty levels. We encode a problem’s difficulty level from ‘1’ to ‘5,’
following AoPS. A subject’s easiest problems for humans are assigned a difficulty level of ‘1,’ and a
subject’s hardest problems are assigned a difficulty level of ‘5.’ Concretely, the first few problems
of an AMC 8 exam are often level 1, while AIME problems are level 5. This allows us to assess
performance across both different subjects and different levels of difficulty.

Formatting. Problems and solutions are consistently formatted using LATEX and the Asymptote
vector graphics language. Our usage of LATEX allows us to flexibly encode mathematical problems
while avoiding unusual symbols or cumbersome formal languages. Meanwhile, mathematical figures
are encoded in the Asymptote language rather than as raster images. This enables pure language
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Model Prealgebra Algebra Number
Theory

Counting &
Probability

Geometry Intermediate
Algebra

Precalculus Average

GPT-2 0.1B 5.2 5.1 5.0 2.8 5.7 6.5 7.3 5.4 +0%

GPT-2 0.3B 6.7 6.6 5.5 3.8 6.9 6.0 7.1 6.2 +15%

GPT-2 0.7B 6.9 6.1 5.5 5.1 8.2 5.8 7.7 6.4 +19%

GPT-2 1.5B 8.3 6.2 4.8 5.4 8.7 6.1 8.8 6.9 +28%

GPT-3 13B* 4.1 2.4 3.3 4.5 1.0 3.2 2.0 3.0 �44%

GPT-3 13B 6.8 5.3 5.5 4.1 7.1 4.7 5.8 5.6 +4%

GPT-3 175B* 7.7 6.0 4.4 4.7 3.1 4.4 4.0 5.2 �4%

Table 2: MATH accuracies across subjects. ‘*’ indicates that the model is a few-shot model. The
character ‘B’ denotes the number of parameters in billions. The gray text indicates the relative

improvement over the 0.1B baseline. All GPT-2 models pretrain on AMPS, and all values are
percentages. GPT-3 models do not pretrain on AMPS due to API limits. Model accuracy is increasing
very slowly, so much future research is needed.

models to process figures, diagrams, and graphics, making it possible to assess these models on
subjects such as geometry for the first time.

To assess models using exact match, we force the final boxed answers to follow consistent formatting
rules. Specifically, probabilities are expressed as simplified fractions. Moreover, matrix entry fractions
are encoded with x/y, while all other fractions are consistently encoded with the \frac{x}{y}
command. Coefficients are encoded without a multiplication symbol (e.g. 5x not 5*x). Expressions
with multiple variables are entered in alphabetical order; polynomials are expressed in decreasing
degree order. Different fraction encodings equivalent, such as \frac{x}{y} and \dfrac{x}{y}
and x/y. Different parenthesis encodings, such as \left( and (, are treated as equivalent.

We also allow units to be included or omitted from an answer, we ignore spaces, and we treat
common equivalent ways of expressing the same number (e.g., 0.5 and 1/2, or 0.1 and .1) as the
same. When the answer is a factorized polynomial, we permit different orderings of the factors, so
that 4(x+ 1)(x� 1) is equivalent to 4(x� 1)(x+ 1), and so on. These rules cover nearly all ways
that different generated or actual solutions can be equivalent in practice.

Automatically Assessing Generated Answers. Due to design choices in MATH, we can assess
the answers generated by a model automatically, even though the space of model outputs is combi-
natorially large. Automatic assessment starts by determining the beginning and end of the answer.
This is possible to do even if a model generates step-by-step solutions because the final answers in
MATH are wrapped and delimited with the \boxed{} command. We can consequently evaluate
a model’s output by parsing what is inside the \boxed{} command and comparing that with the
ground truth answer, while accounting for the equivalent ways of formatting a string described above.
Together, the box delimiter and formatting rules provide a unique answer in a well-defined location,
which allows us to test for equivalence and use accuracy as our primary metric.

Human-Level Performance. To provide a rough but informative comparison to human-level
performance, we randomly sampled 20 problems from the MATH test set and gave them to humans.
We artificially require that the participants have 1 hour to work on the problems and must perform
calculations by hand. All participants are university students. One participant who does not like
mathematics got 8/20 = 40% correct. A participant ambivalent toward mathematics got 13/20. Two
participants who like mathematics got 14/20 and 15/20. A participant who got a perfect score on
the AMC 10 exam and attended USAMO several times got 18/20. A three-time IMO gold medalist
got 18/20 = 90%, though missed questions were exclusively due to small errors of arithmetic.
Expert-level performance is theoretically 100% given enough time. Even 40% would accuracy for a
machine learning model would be impressive but have ramifications for cheating on homework.

3.2 AMPS (Khan + Mathematica) Dataset

Since pretraining data can greatly influence performance (Hernandez et al., 2021; Gururangan et al.,
2020) and since mathematics is a small fraction of online text, we introduce a large and diverse
mathematics pretraining corpus. Our pretraining dataset, the Auxiliary Mathematics Problems and
Solutions (AMPS) dataset, has problems and step-by-step solutions typeset in LATEX. AMPS contains
over 100,000 problems pulled from Khan Academy and approximately 5 million problems generated
from manually designed Mathematica scripts.
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Khan Academy. The Khan Academy subset of AMPS has 693 exercise types with over 100,000
problems and full solutions. Problem types range from elementary mathematics (e.g. addition)
to multivariable calculus (e.g. Stokes’ theorem), and are used to teach actual K-12 students. The
exercises can be regenerated using code from github.com/Khan/khan-exercises/. We show the full list
of problem types in the Supplementary Materials.

Mathematica. To make AMPS larger, we also contribute our own Mathematica scripts to generate
approximately 50⇥ more problems than our Khan Academy dataset. With Mathematica, we designed
100 scripts that test distinct mathematics concepts, 37 of which include full step-by-step LATEX
solutions in addition to final answers. We generated around 50,000 exercises from each of our scripts,
or around 5 million problems in total. This results in over 23 GB of mathematics problems, making it
larger than the 16 GB of natural language used to train BERT (Devlin et al., 2019).

Problems include various aspects of algebra, calculus, counting and statistics, geometry, linear algebra,
and number theory (see Table 1 for a sampling of topics). Unlike prior approaches to algorithmically
generating mathematics problems, we use Mathematica’s computer algebra system so that we can
manipulate fractions, transcendental numbers, and analytic functions.

4 Experiments

In this section, we perform experiments to investigate performance on the MATH dataset. We find
that accuracy remains low even for the best models. Furthermore, unlike for most other text-based
datasets, we find that accuracy is increasing very slowly with model size. If trends continue, then we
will need algorithmic improvements, rather than just scale, to make substantial progress on MATH.
Nevertheless, we show that making progress is also possible today. We find that pretraining on AMPS
enables a small 0.1B parameter model to perform similarly to a large fine-tuned 13B parameter
model.

We also experiment with using step-by-step solutions. We find that having models generate their
own step-by-step solutions before producing an answer actually degrades accuracy. We qualitatively
assess these generated solutions and find that while many steps remain illogical, they are often related
to the question. Finally, we show that step-by-step solutions can still provide benefits today. We
find that providing partial ground truth step-by-step solutions can improve performance, and that
providing models with step-by-step solutions at training time also increases accuracy.

4.1 Experimental Setup

Models and Hyperparameters. Because MATH answers must be generated, we use autoregressive
language models, namely GPT-2 (Radford et al., 2016) and GPT-3 (Brown et al., 2020), which are
decoder models pretrained on natural language text. Our GPT-2 models tokenizes numbers so that
one digit is processed at a time (Henighan et al., 2020). T5’s (Raffel et al., 2020) tokenizer removes
many LATEX symbols, so after a broad hyperparameter sweep lasting two weeks, its performance was
not competitive. We show results with the BART architecture in the Appendix.

Before fine-tuning on MATH, models pretrain on AMPS. We pretrain for one epoch, using AdamW
(Loshchilov and Hutter, 2019), using a batch size of 128, and using a weight decay of 0.05. We use
the standard autoregressive language modeling objective. During pretraining, we upsample Khan
Academy data by a factor of 5 and we downsample Mathematica by a factor of 2 to account for the
large difference in dataset sizes.

During fine-tuning, models predict final answers and solutions. Concretely, if hP i is the problem
statement, we train with an equal mix of “hP i Final Answer: <Answer>” and “hP i Full
Solution: <Step-by-Step Solution>” sequences. This makes it possible for the model
to both generate full solutions and also to output just the final answer. For fine-tuning we use the
same batch size and weight decay as in pretraining. Models are trained with 8 A100 GPUs, each
requiring less than a day.

Unless otherwise specified, for GPT-2 we use the default HuggingFace (Wolf et al., 2020) generation
parameters, except that we use beam search. Our beam search has a beam size of 20 when only
generating the final answer, and a beam size of 10 when generating full step-by-step solutions. By
default, we evaluate models by prompting them with “hP i Final Answer:” so that they directly
generate the final answer to each problem, not the step-by-step solution.
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Problem: Suppose a and b are positive real numbers with a > b and ab = 8. Find the minimum
value of a2+b2

a�b .

Generated solution: Let s = a + b. By QM-AM,
q

a2+b2

a�b �
a+b
2 = s

2 . Then a2+b2

a�b �
s2

4 , so

a2 + b2 �
s2

2 . Hence, a2+b2

a�b �
s2

2 + 2s2

a�b = s2

2 + 2s2 = 8 .

Ground truth solution: We can write a2+b2

a�b = a2+b2�2ab+16
a�b = (a�b)2+16

a�b = a � b + 16
a�b . By

AM-GM, a� b+ 16
a�b � 2

q
(a� b) · 16

a�b = 8. Equality occurs when a� b = 4 and ab = 8. We

can solve these equations to find a = 2
p
3 + 2 and b = 2

p
3� 2. Thus, the minimum value is 8 .

Problem: Right �ABC has legs measuring 8 cm and 15 cm. The triangle is rotated about one of
its legs. What is the number of cubic centimeters in the maximum possible volume of the resulting
solid? Express your answer in terms of ⇡.
Generated solution: Rotating the triangle about one leg gives us the following triangle:

8

15
(8)(15)

(8)(�1) + (15)(�1)
=

120

7
= 120⇡ .

Ground truth solution: If the triangle is rotated about the shorter leg, then the radius is the longer
leg and the height is the shorter leg, and the volume is 1

3 · (15
2⇡)(8) = 600⇡ cubic centimeters. If the

triangle is rotated about the longer leg, then the radius is the shorter leg and the height is the longer
leg, and the volume is 1

3 (8
2⇡)(15), which is 8

15 of the volume we found earlier. So, the maximum
possible volume is 600⇡ cubic centimeters.

Figure 3: Problems, step-by-step solutions generated by our GPT-2 1.5B model, and ground truth
solutions. Observe that models can provide the right answer yet generate a misleading and wrong
explanation. The second generated solution demonstrates that models are capable of generating
Asymptote commands to create figures and graphics.

We also evaluate GPT-3 with fine-tuning and also in a few-shot setting using the OpenAI API. We use
the ‘Curie’ GPT-3 model which has approximately 13 billion parameters, and the ‘Davinci’ model
which has approximately 175 billion parameters. When performing few-shot evaluation, we construct
our prompt by prepending 8 problems with correct answers (but not step-by-step solutions due to
space). Using temperature 0, models output up to 20 tokens for the final answer. The OpenAI API
also allows users to fine-tune models up to 13B parameters at the time of writing, but their API does
not have the option to pretrain on datasets as large as AMPS.

4.2 Analyzing Model Performance

AMPS Pretraining. As an ablation, we test how models with AMPS pretraining compare with
models that were not pretrained on AMPS. Without pretraining on AMPS, a GPT-3 (13B) model
fine-tuned on MATH attains 5.2% accuracy. In contrast, a GPT-2 (0.1B) model both pretrained on
AMPS and fine-tuned on MATH attains 5.4%. Consequently AMPS increases accuracy about as
much as a 130⇥ increase in parameters, demonstrating its value as a pretraining dataset.

We additionally tried pretraining on StackExchange, a real-world but less curated source of mathe-
matics text. A GPT-2 (0.3B) model pretrained on both AMPS and questions and answers from Math
StackExchange (⇠3 GB) had 6.0% accuracy. This is actually less than the 6.2% accuracy attained
by pretraining on AMPS alone. Thus our dataset is more useful for pretraining even than diverse
real-world mathematics data.

Model Size. While increasing model parameters often automatically solves many tasks (Brown
et al., 2020), we find that MATH is unusually challenging for enormous Transformers. Table 2 shows
that the average accuracy across subjects for the smallest model, GPT-2 with 0.1 billion parameters, is
5.4%. Meanwhile, a GPT-2 model with 15⇥ the number of parameters attains 6.9% accuracy, a 28%
relative improvement. This indicates that while having more parameters helps, absolute accuracy
remains far from the ceiling and is only increasing slowly, quite unlike most other text-based tasks.
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Problem: The three-digit number "ab5” is divisible by 3. How many different three-digit numbers
can "ab5” represent?
Generated solution: A number is divisible by 3 if and only if the sum of its digits is divisible by 3.
So ab500 is divisible by 3 if and only if the two-digit number ab leaves a remainder of 1 when divided
by 3. There are 90 two-digit numbers, of which 90/3 = 30 leave a remainder of 1 when divided by
3.
Ground truth solution: If the number is divisible by 3, the sum of the digits must be divisible by 3.
So a + b must be one more than a multiple of 3, since 5 is one less than a multiple of 3. We have
several options: If a+ b = 1, it must be (1, 0), one possibility. For a+ b = 4, a can be 1 to 4, for four
possibilities. For a+ b = 7, a can be 1 to 7, so seven possibilities. For a+ b = 10, anything from
(1, 9) to (9, 1) works, so nine possibilities. For a+ b = 13, the pairs range from (4, 9) to (9, 4), for
six possibilities. If a+ b = 16, we can have (7, 9), (8, 8), or (9, 7), so three possibilities. a+ b = 19

and up is not possible. So the total number is 1 + 4 + 7 + 9 + 6 + 3 = 30

Problem: Beginning at point A in the diagram, Dora selects one of the four possible
directions with equal probability. Each time she comes to an intersection, she again
randomly selects one of the possible directions. What is the probability that, in her first
four steps, she will walk completely around the gray square? Express your answer as a
common fraction.

A

Generated solution: The total probability that Dora chooses a direction completely around the gray

square is 5
10 =

1

2
.

Ground truth solution: The only way for the Dora to end up at her starting point in four steps
is for her to traverse the four sides of the gray square. She can do this in two ways: clockwise
and counterclockwise. The probability of each of these two paths is

�
1
4

�4
= 1

256 . Therefore, the

probability that she ends up where she started is
1

256
+

1

256
=

1

128
.

Figure 4: Additional example problems, generated solutions, and ground truth solutions from our
MATH dataset. The first problem’s generated solution has the right answer with a correct and simple
explanation. The second problem is a combinatorics problem specified with a figure, which the
model gets wrong.

Problem Difficulty. We also analyze model accuracy while controlling for problem difficulty.
Higher levels of difficulty correspond to lower accuracy, as expected. These results are visualized in
the Supplementary Materials. The accuracy of GPT-2 (1.5B) is around 15% for level 1 (easy) and
around 4% for level 5 (hard). Even our benchmark’s easiest problems are more challenging than
previous benchmarks that focused on straightforward plug-and-chug problems.

Error Detection. To determine whether we can trust the answers from a model, we analyze model
confidence to see whether confidence tends to be higher for correct answers. We define confidence as
the average prediction probability of the tokens that make up a generated answer. GPT-2 (1.5B) is
highly overconfident, with confidences that are often around 100%. Moreover, there is substantial
overlap between correct and incorrect answers. Following Hendrycks and Gimpel (2017), we
computed the probability that a correct answer has higher confidence than an incorrect answer. To
do this, we compute the Area Under the Receiver Operating Characteristic curve (AUROC). An
AUROC of 100% corresponds to being able to perfectly detect correct and incorrect answers, while
50% corresponds to random chance. We find that with GPT-2 (1.5B), the AUROC is quite low at
68.8%. This suggests there is substantial room for improvement in detecting model errors.

4.3 Analyzing Step-by-Step Solutions

Scratch Space. Our MATH dataset and AMPS pretraining dataset provide full step-by-step solu-
tions, an important and rare type of side information (Murty et al., 2020) that can in principle teach
models how to derive answers and use scratch space. By training a language model on these solutions,
we can have models generate full step-by-step solutions. This may be especially useful for difficult
problems, for which outputting the correct answer after just a few forward passes may be insufficient.
By allowing the model to use several steps of processing before outputting a final answer, the model
could adaptively use computation and have higher performance, in addition to making its reasoning
more interpretable.
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Figure 5: Models conditioned on most of a problem’s
step-by-step solution can often understand the solution to
predict the final answer. Not all solutions have an answer
that is immediate from the preceding solution text, though
many are. ‘99%’ of a solution is all the solution text be-
fore the final answer. This demonstrates that, even with
substantial help, models are still struggling.

We test this by prompting models with
“hP i Full Solution:” to gener-
ate a full solution along with a final
boxed answer, rather than the boxed an-
swer alone. We evaluated this for GPT-
2 (1.5B) and found that this actually
makes performance worse, dropping ac-
curacy to 5.3%. We hypothesize that
the drop in accuracy from using scratch
space arises from a snowballing effect,
in which partially generated “solutions”
with mistakes can derail subsequent gen-
erated text. Nevertheless, when genera-
tion becomes more reliable and models
no longer confuse themselves by their
own generations, our dataset’s solutions
could in principle teach models to use
scratch space and attain higher accuracy.

Examples. We can also qualitatively
assess the step-by-step solutions that the
model generates. We show examples of
generated solutions in Figures 3 and 4.
We find that the model can consistently
generate correct LATEX and often per-
forms steps that appear related to the
question at hand, but still makes many
logical mistakes, both in terms of what
the question seems to be asking and in individual steps that are part of a larger derivation.

The Benefits of MATH Solutions. We find that giving models partial step-by-step MATH solutions
during inference can improve accuracy. We test performance when we allow models to predict the
final answer given a “hint” in the form of a portion of the ground truth step-by-step solution. To do
so, for this experiment we prompt models with “hP i <Partial Step-by-Step Solution
without Final Answer> Final Answer:” during both fine-tuning and evaluation for
different partial fractions of the step-by-step solution. This is the same as the default setting when
we let models see 0% of the step-by-step solution. When models see “99%” of the solution, they
are given the whole step-by-step solution except for the final answer. We show results with GPT-2
(0.7B) for different fractions of the solution in Figure 5. Observe that the model still only attains
approximately 40% when given 99% of the solution, indicating room for improvement.

Finally, we also find that providing models with step-by-step during training can further improve
performance. We run an ablation by fine-tuning models on MATH with the same setup as before,
except that we only show examples with the final answer and no step-by-step solution. If we fine-tune
with only the final answer, the GPT-2 (1.5B) accuracy decreases by 0.6% to 6.3%.

5 Conclusion

In this paper, we laid groundwork for future research in machine learning for mathematical problem
solving. We introduced the MATH benchmark, which enables the community to measure mathe-
matical problem-solving ability. In addition to having answers, all MATH problems also include
answer explanations, which models can learn from to generate their own step-by-step solutions. We
also introduce AMPS, a diverse pretraining corpus that can enable future models to learn virtually
all of K-12 mathematics. While most other text-based tasks are already nearly solved by enormous
Transformers, MATH is notably different. We showed that accuracy is slowly increasing and, if trends
continue, the community will need to discover conceptual and algorithmic breakthroughs to attain
strong performance on MATH. Given the broad reach and applicability of mathematics, solving the
MATH dataset with machine learning would be of profound practical and intellectual significance.
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A Appendix

In this appendix, we have more comparisons with previous datasets, a discussion of logic and
intelligence tests, further AMPS and MATH details, an analysis of model performance as difficulty
level changes, and results with the BART architecture.

A.1 Expanded Dataset Comparisons

We compared to ten datasets in the main paper, and now we will further describe plug-and-chug
datasets. Dolphin18K (Huang et al., 2016) is one of the first modern datasets in this space and is based
on Yahoo! Answers and includes questions such as “help!!!!!!!(please) i cant figure this out!? what
is the sum of 4 2/5 and 17 3/7 ?”. MathQA (Amini et al., 2019) builds on AQuA-RAT (Ling et al.,
2017) and claims AQuA-RATs “rationales are noisy, incomplete and sometimes incorrect.” MathQA
then cleans AQuA-RAT, though cleaning led the dataset size to be reduced by half of an order of
magnitude. Miao et al. (2020) analyze MathQA and observe “the annotated formulas of 27% of the
problems do not match their labeled answers,” and they obtain 86% accuracy on a cleaned version
of MATH-QA. In contrast AMPS is large and clean as questions are algorithmically generated, and
our MATH dataset is carefully curated by the competition mathematics community and contains
competition-level problems that are difficult.

A.2 Logic and Intelligence Tests

Figure 6: Difficult natural language tasks such as LogiQA will soon be solved just by making models
larger, assuming trends continue. The Transformers in this figure are UnifiedQA (Khashabi et al.,
2020) models of various sizes.

While enormous Transformers perform poorly on MATH, they do well on other logic and intelligence
tests.

We analyze Transformers on LogiQA (Liu et al., 2020), a task with logical reasoning questions such
as “David knows Mr. Zhang’s friend Jack, and Jack knows David’s friend Ms. Lin. Everyone of
them who knows Jack has a master’s degree, and everyone of them who knows Ms. Lin is from
Shanghai. Who is from Shanghai and has a master’s degree?” As shown in Figure 6, Transformers
are improving on LogiQA, so much so that they will attain human-level performance relatively soon,
should trends continue.

We also find that Transformers also do well on the C-Test, a pattern completion test that has a 77%
correlation with human IQ (Hernández-Orallo, 2000). An example of a problem from C-Test is
the sequence “a, a, z, c, y, e, x, _” which has the answer “g.” We regenerated hundreds of C-Test
examples to test GPT-3 (175B) in a 5-shot setting. While GPT-3 had abysmal performance when the
sequences were letters, converting letters to numbers helped. After changing ‘a’ to 0, ‘b’ to 1, . . .,
and ‘z’ to 25, accuracy became approximately 40% on the hardest examples (C-Test questions with
complexity “13”). For comparison, on these same examples, average humans attained around 20%
accuracy (Hernández-Orallo, 2000).
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Figure 7: Example of asymptote code and the figure it produces.

A.3 Further Dataset Information

Rendering Graphics. For the first time, our dataset makes it possible for text-based models to
process graphical mathematical figures by expressing figures in asymptote code. For example,
Figure 7 shows asymptote code and the figure it produces. In short, it is possible to concisely specify
many visual mathematics problems with code, sidestepping the complexity of multi-modal models.

AMPS Examples. We show concrete examples from AMPS in Figure 8. AMPS is a mixture of
examples from Khan Academy and our 100 Mathematica modules.

Contrasting AMPS and DeepMind Mathematics. AMPS has several hundred exercise types or
modules (Khan Academy has 693 modules and Mathematica has 100), while DeepMind mathematics
(DM) has only a few dozen. We show all Khan Academy modules in Figures 12 to 15. Most
DM exercises increase the diversity of problems by simply having a wide range of coefficients
and constants. For example, its derivatives module exclusively covers polynomial derivatives with
wide-ranging coefficients, while ours covers mixtures of dozens of major analytic functions. DM
opts not to cover concepts and subjects such as logarithms and geometry, unlike AMPS. While DM is
formatted in plaintext, AMPS is formatted in LATEX. Finally, while DM solely has final answers, all
693 Khan Academy modules and 37 of our Mathematica modules have full step-by-step solutions.

A.4 Difficulty Analysis

We break down MATH accuracy by difficulty levels. In Figure 9, we observe that human difficulty
and machine difficulty track each other. In Figure 10, we find that accuracy can vary by level and
subject substantially. Finally, in Figure 11a and Figure 11b, we analyze the relation between accuracy
and problem and solution length, and find that problems with long questions or ground truth solutions
indeed tend to be more difficult than problems with short questions or solutions.

A.5 Results with the BART Architecture

We use BART (Lewis et al., 2020) to determine whether other existing architectures can improve
performance. In the main paper we analyzed the performance of various GPT models, which are
unidirectional decoder models. Lewis et al. (2020) introduce BART, which has a bidirectional encoder
and unidirectional decoder. While T5 has a similar architecture to BART, its tokenizer removes LATEX
symbols, while BART’s tokenizer does not. Hence we use BART in this paper. After pretraining
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Example from a Khan Academy module:
Problem: In history class, the girl to boy ratio is 9 to 6. If there are a total of 60 students, how many
boys are there?

Solution: A ratio of 9 girls to 6 boys means that a set of 15 students will have 9 girls and
6 boys. A class of 60 students has 4 sets of 15 students. Because we know that there are 6 boys in
each set of 15 students, the class must have 4 groups of 6 boys each. There is a total of 24 boys in
history class.

Example Mathematica code that generates practice problems:
In[1]:= For[i=0,i<50000,i++,

roundbasis = RandomChoice[{0.8,0.1,0.05,0.05}->{1,1/2,1/3,1/5}];
d1 = RandomInteger[{1,6}];
d2 = RandomInteger[{1,3}];
q=0;
p=0;
While[q==0,
For[j=0,j<d1,j++,
q += Round[RandomReal[{-5,5}], roundbasis]*x^j;
];
];
While[p==0,
For[j=0,j<d2,j++,
p += Round[RandomReal[{-5,5}], roundbasis]*x^j;
];
];
p = RandomChoice[{p,Expand[q*p]}];
Export["/amps/mathematica/algebra/polynomial_gcd/"<>ToString[i]<>".txt",

{"Problem:\nFind the greatest common divisor of $"
<>ToString[TeXForm[p//TraditionalForm]]<> "$ and $"
<>ToString[TeXForm[q//TraditionalForm]]<>"$.",
"Answer:\n$"<>ToString[TeXForm[PolynomialGCD[p,q]//TraditionalForm]]<>"$"}]

]

Figure 8: A Khan Academy problem and solution, followed by the code for a simple Mathematica
module used to generate polynomials GCD problems. These problems are available in AMPS.

BART-Large (0.4B) on AMPS and fine-tuning BART on MATH, we find that it obtains 4.9% on
MATH’s test set, which is slightly worse than our smallest GPT-2 model. Consequently models with
a bidirectional encoder and unidirectional decoder do not yield marked changes in MATH accuracy.

A.6 Further Human Evaluation Details

Because MATH requires a strong mathematical background to perform well on, and a long amount
of time to solve problems, we were restricted to assessing six human participants and could not
rely on crowdsourcing sites such as Amazon Mechanical Turk. All participants are university
students studying computer science. Four of the participants are authors on the paper. The other
two participants are friends or acquaintances of the authors, as this survey was only to give a rough
sense of human-level performance. All participants gave consent to use their name, though we opt
not to include it. Participants had one hour to complete the questions, all without using a calculator.
Participants were offered remuneration, though they all offered to volunteer to work on the problems.
The instructions and questions used are as follows.

“This research study is being conducted by the Steinhardt Group at UC Berkeley. For questions about
this study, please contact Dan Hendrycks at hendrycks@berkeley.edu. In this study, you will have
sixty minutes to complete twenty mathematics problems, all without using a calculator. We would
like to remind you that participation in our study is voluntary and that you can withdraw from the
study at any time.”
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Figure 9: Problems that are more difficult for humans are also more difficult for GPT-2.
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Figure 10: Accuracy per subject per difficulty level.

1. A 6-sided die is weighted so that the probability of any number being rolled is proportional
to the value of the roll. (So, for example, the probability of a 2 being rolled is twice that of
a 1 being rolled.) What is the expected value of a roll of this weighted die? Express your
answer as a common fraction.

2. The square of 15 is 225. The square of what other number is 225?
3. Find the sum of all values of x such that |x� 1| = 7.
4. The parabolas defined by the equations y = �x2

� x + 1 and y = 2x2
� 1 intersect at

points (a, b) and (c, d), where c � a. What is c � a? Express your answer as a common
fraction.

5. If a = 8, what is the value of
⇣
16 3

p

a2
⌘ 1

3
?

6. Let p(x) be a cubic polynomial such that p(2) = 0, p(�1) = 0, p(4) = 6, and p(5) = 8.
Find p(7).

7. Let S be the set of complex numbers of the form a+ bi, where a and b are integers. We say
that z 2 S is a unit if there exists a w 2 S such that zw = 1. Find the number of units in S.

8. Find the remainder when 1 + 2 + 22 + 23 + · · ·+ 2100 is divided by 7.
9. The length of a rectangle is 3x+ 10 feet and its width is x+ 12 feet. If the perimeter of the

rectangle is 76 feet, how many square feet are in the area of the rectangle?
10. A European train compartment has six seats. Four of the seats are broken. Wilhelm needs to

fill out a form to indicate that there are broken seats. If he randomly checks off four of the
seats in the diagram, what is the probability that he marked the correct seats? Express your
answer as a common fraction.

11. We have a triangle 4ABC where AC = 17, BC = 15, and AB = 8. Let M be the
midpoint of AB. What is the length of CM?

12. If n gives a remainder of 3 when divided by 7, then what remainder does 2n+ 1 give when
divided by 7?
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13. Our club has 25 members, and wishes to pick a president, secretary, and treasurer. In how
many ways can we choose the officers, if individual members are allowed to hold 2, but not
all 3, offices?

14. Find the minimum possible value of

p
58� 42x+

q
149� 140

p
1� x2

where �1  x  1?
15. Let a, b, and c be the roots of x3 + 7x2

� 11x� 2 = 0. Find a+ b+ c.
16. Let H be the hyperbola with foci at (±5, 0) and vertices at (±3, 0), and let C be the circle

with center (0, 0) and radius 4. Given that H and C intersect at four points, what is the area
of the quadrilateral formed by the four points?

17. If f(x) = x2
� 2x+ 1 and g(x) =

p
2x+ 1 what is the value of f(g(4))� g(f(3))?

18. Find the value of r such that 6r2�19r�7
2r�7 = 4r � 3.

19. For x > 0, the area of the triangle with vertices (0, 0), (x, 0) and (x, 5) is 30 square units.
What is the value of x?

20. Find the units digit of the following within the indicated number base: 4136 � 2156.

B Checklist Information

Legal Compliance. We create and collect various mathematics problems to create MATH and
AMPS.

AMPS consists of problems generated with Mathematica and Khan Academy code. Mathematica
serves as a calculator and does not copyright its numerical answer outputs, in much the same way
that other calculators do not copyright computations such as 52 (mod 2). Khan Academy’s exercise
framework follows an MIT License. Since we provide attribution, reuse is not restrictive save for
attribution requirements.

MATH problems are created by the Mathematical Association of America (MAA). Although we
do not commercialize MATH, we should like to demonstrate that we are far from the boundary for
action or infringement. For decades, the MAA has not protected its problem IP even from separate
organizations which sell MAA problems, such as AoPS. Courts have ruled that this implies the IP
rights are permanently forfeited. We raise this point only to demonstrate the extent to which our reuse
for research is within the law, because even commercial reuse of MAA problems is within the law
and commonplace. Even so, the MATH dataset is not sold and is likely to have no effect on the value
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Khan Academy Modules (1/4): 2 step equations; 2-step addition word problems within 100; 2-
step subtraction word problems within 100; 2-step word problems; absolute minima and maxima
(closed intervals); absolute minima and maxima (entire domain); absolute value equations; absolute
value of complex numbers; add and subtract complex numbers; add and subtract matrices; add and
subtract polynomials; add and subtract rational expressions; add and subtract rational expressions:
factored denominators; add and subtract rational expressions: like denominators; add and subtract
rational expressions: unlike denominators; add and subtract vectors; add 1 or 10; add 1s or 10s (no
regrouping); add 3 numbers; add and subtract fractions; add and subtract fractions word problems;
add and subtract within 20 word problems; add fractions with unlike denominators; add within 10;
add within 1000; add within 20; add within 5; adding and subtracting decimals word problems;
adding and subtracting in scientific notation; adding and subtracting negative fractions; adding and
subtracting negative numbers; adding and subtracting rational numbers; adding and subtracting
decimals word problems; adding and subtracting fractions; adding and subtracting mixed numbers
0.5; adding and subtracting mixed numbers 1; adding and subtracting polynomials; adding and
subtracting radicals; adding and subtracting rational expressions 0.5; adding and subtracting rational
expressions 1; adding and subtracting rational expressions 1.5; adding and subtracting rational
expressions 2; adding and subtracting rational expressions 3; adding and subtracting rational numbers;
adding and subtracting with unlike denominators 5; adding and subtracting with unlike denominators
6; adding decimals (hundredths); adding decimals (tenths); adding decimals and whole numbers
(hundredths); adding decimals and whole numbers (tenths); adding decimals: thousandths; adding
fractions; adding fractions 0.5; adding up to four 2-digit numbers; adding vectors; addition and
subtraction word problems; addition and subtraction word problems 2; addition word problems within
100; age word problems; amplitude of sinusoidal functions from equation; analyze concavity; angle
addition postulate; angle of complex numbers; approximation with local linearity; arc length; area and
perimeter of rectangles word problems; area between two curves; area between two curves given end
points; area between two polar curves; area bounded by polar curves; area bounded by polar curves
intro; area of a circle; area of parallelograms; area problems; areas of circles and sectors; arithmetic
sequences 1; arithmetic sequences 2; arithmetic series; average value of a function; average word
problems; basic division; basic multiplication; basic partial derivatives; basic set notation; binomial
probability formula; calculating binomial probability; center and radii of ellipses from equation;
chain rule capstone; chain rule intro; change of variables: bound; change of variables: factor; circles
and arcs; circulation form of green’s theorem; classifying critical points; combinations; combined
vector operations; combining like terms; combining like terms with distribution; combining like
terms with negative coefficients; combining like terms with rational coefficients; complementary and
supplementary angles; complete solutions to 2-variable equations; completing the square; completing
the square (intermediate); completing the square (intro); complex numbers from absolute value and
angle; complex plane operations; composite exponential function differentiation; composite numbers;
conditional statements and truth value; construct exponential models; construct sinusoidal functions;
continuity at a point (algebraic); converting between point slope and slope intercept form; converting
between slope intercept and standard form; converting decimals to fractions 1; converting decimals
to fractions 2; converting decimals to percents; converting fractions to decimals; converting mixed
numbers and improper fractions; converting multi digit repeating decimals to fractions; converting
multi-digit repeating decimals to fractions; converting percents to decimals; converting recursive
and explicit forms of arithmetic sequences; converting recursive and explicit forms of geometric
sequences; counting 1; counting 2; cube roots; cube roots 2; cumulative geometric probability; defined
and undefined matrix operations; definite integral as the limit of a riemann sum; definite integrals
of piecewise functions; definite integrals: common functions; definite integrals: reverse power
rule; degrees to radians; density word problems; dependent probability; derivatives 1; derivatives
of ax and loga x; derivatives of sin(x) and cos(x); derivatives of tan(x), cot(x), sec(x), and csc(x);
derivatives of ex and ln(x); determinant of a 2x2 matrix; determinant of a 3x3 matrix; difference of
squares; differentiability at a point: algebraic; differential equations: exponential model equations;
differentiate integer powers (mixed positive and negative); differentiate polynomials; differentiate
products; differentiate quotients; differentiate rational functions; differentiate related functions;
differentiating using multiple rules; direct comparison test; direct substitution with limits that don’t
exist; direction of vectors; disc method: revolving around other axes; disc method: revolving around
x- or y-axis; discount, markup, and commission word problems; discount, tax, and tip word problems;
disguised derivatives; distance between point and line; distance formula; distributive property with
variables; divide by 1; divide by 10; divide by 2; divide by 3; divide by 4; divide by 5; divide by 6;
divide by 7; divide by 8; divide by 9; divide complex numbers; divide decimals by whole numbers; ...

Figure 12: Khan Academy modules in our AMPS pretraining dataset (Part 1).
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Khan Academy Modules (2/4): divide fractions by whole numbers; divide mixed numbers; divide
polynomials by linear expressions; divide polynomials by monomials (with remainders); divide poly-
nomials by x (no remainders); divide polynomials by x (with remainders); divide polynomials with
remainders; divide powers; divide quadratics by linear expressions (no remainders); divide quadratics
by linear expressions (with remainders); divide whole numbers by 0.1 or 0.01; divide whole numbers
by decimals; divide whole numbers by fractions; divide whole numbers to get a decimal (1-digit
divisors); divide whole numbers to get a decimal (2-digit divisors); divide with remainders (2-digit
by 1-digit); dividing complex numbers; dividing decimals 1; dividing decimals 2; dividing decimals:
hundredths; dividing decimals: thousandths; dividing fractions; dividing fractions word problems; di-
viding fractions word problems 2; dividing mixed numbers with negatives; dividing negative numbers;
dividing polynomials by binomials 1; dividing polynomials by binomials 2; dividing polynomials
by binomials 3; dividing positive and negative fractions; dividing positive fractions; dividing rational
numbers; dividing whole numbers by fractions; dividing whole numbers by unit fractions; dividing
whole numbers like 56/35 to get a decimal; divisibility 0.5; divisibility tests; domain of a function;
double integrals with variable bounds; empirical rule; equation of a circle in factored form; equation of
a circle in non factored form; equation of a hyperbola; equation of a parabola from focus and directrix;
equation of an ellipse; equation of an ellipse from features; equations and inequalities word problems;
equations of parallel and perpendicular lines; equations with parentheses; equations with parentheses:
decimals and fractions; equations with variables on both sides; equations with variables on both
sides: decimals and fractions; equivalent fractions; estimating square roots; evaluate composite
functions; evaluate function expressions; evaluate functions; evaluate logarithms; evaluate logarithms
(advanced); evaluate logarithms: change of base rule; evaluate piecewise functions; evaluate radical
expressions challenge; evaluate sequences in recursive form; evaluating composite functions; eval-
uating expressions in 2 variables; evaluating expressions in one variable; evaluating expressions with
multiple variables; evaluating expressions with multiple variables: fractions and decimals; evaluating
expressions with one variable; evaluating expressions with variables word problems; evaluating log-
arithms; evaluating logarithms 2; expected value; explicit formulas for arithmetic sequences; explicit
formulas for geometric sequences; exponent rules; exponential expressions word problems (alge-
braic); exponential model word problems; exponential vs. linear growth over time; exponents with
integer bases; exponents with negative fractional bases; expressing ratios as fractions; expressions
with unknown variables; expressions with unknown variables 2; extend arithmetic sequences; extend
geometric sequences; extend geometric sequences: negatives and fractions; extraneous solutions
to rational equations; factor higher degree polynomials; factor polynomials using structure; factor
quadratics by grouping; factor using polynomial division; factor with distributive property (variables);
factoring difference of squares 1; factoring difference of squares 2; factoring difference of squares
3; factoring linear binomials; factoring polynomials by grouping; factoring polynomials with two
variables; factoring quadratics 1; factoring quadratics with a common factor; features of a circle from
its expanded equation; features of a circle from its standard equation; features of quadratic functions;
find area elements; find composite functions; find critical points; find critical points of multivariable
functions; find inflection points; find inverses of rational functions; find missing divisors and dividends
(1-digit division); find missing factors (1-digit multiplication); find missing number (add and subtract
within 20); find the inverse of a 2x2 matrix; find the missing number (add and subtract within 1000);
find trig values using angle addition identities; finding absolute values; finding curl in 2d; finding curl
in 3d; finding derivative with fundamental theorem of calculus; finding derivative with fundamental
theorem of calculus: chain rule; finding directional derivatives; finding divergence; finding gradients;
finding inverses of linear functions; finding partial derivatives; finding percents; finding perimeter;
finding tangent planes; finding the laplacian; finite geometric series; finite geometric series word
problems; foci of an ellipse from equation; fraction word problems 1; fractional exponents; fractional
exponents 2; fractions as division by a multiple of 10; function as a geometric series; function inputs
and outputs: equation; function rules from equations; gcf and lcm word problems; general triangle
word problems; geometric probability; geometric sequences 1; geometric sequences 2; geometric se-
ries formula; graphing points and naming quadrants; graphing systems of equations; greatest common
factor; greatest common factor of monomials; higher order partial derivatives; identify composite
functions; identify separable equations; identifying numerators and denominators; identifying slope of
a line; imaginary unit powers; implicit differentiation; improper integrals; increasing and decreasing
intervals; indefinite integrals: ex and 1/x; indefinite integrals: sin and cos; independent probabil-
ity; inequalities word problems; infinite geometric series; integer sums; integral test; integrals and
derivatives of functions with known power series; integrals in spherical and cylindrical coordinates; ...

Figure 13: Khan Academy modules in AMPS (Part 2).
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Khan Academy Modules (3/4): integrate and differentiate power series; integrating trig functions;
integration by parts; integration by parts: definite integrals; integration using completing the square;
integration using long division; integration using trigonometric identities; integration with partial
fractions; intercepts from an equation; interpret quadratic models; interval of convergence; inverse
of a 3x3 matrix; inverses of functions; iterated integrals; jacobian determinant; l’hopital’s rule (com-
posite exponential functions); l’hopital’s rule: 0/0; l’hopital’s rule: 1/1; lagrange error bound; least
common multiple; limits at infinity of quotients; limits at infinity of quotients with square roots; limits
at infinity of quotients with trig; limits by direct substitution; limits by factoring; limits of piecewise
functions; limits of trigonometric functions; limits using conjugates; limits using trig identities; line
integrals in vector fields; linear equation and inequality word problems; linear equations with un-
known coefficients; linear equations word problems; linear models word problems; logical arguments
and deductive reasoning; maclaurin series of sin(x), cos(x), and ex; make 10; manipulate formulas;
markup and commission word problems; matrix addition and subtraction; matrix dimensions; matrix
elements; matrix equations: addition and subtraction; matrix equations: scalar multiplication; matrix
row operations; matrix transpose; mean, median, and mode; midline of sinusoidal functions from
equation; midpoint of a segment; miscellaneous; model with one-step equations and solve; modeling
with multiple variables; modeling with sinusoidal functions; modeling with sinusoidal functions:
phase shift; motion along a curve (differential calc); motion problems (differential calc); motion prob-
lems (with integrals); multi-digit addition; multi-digit division; multi-digit multiplication; multi-digit
subtraction; multi-step linear inequalities; multi-step word problems with whole numbers; multipli-
cation and division word problems; multiplication and division word problems (within 100); multiply
and divide complex numbers in polar form; multiply and divide powers (integer exponents); multiply
and divide rational expressions (advanced); multiply binomials; multiply binomials by polynomials;
multiply binomials intro; multiply by 0 or 1; multiply by 2 and 4; multiply by 5 and 10; multiply by
tens word problems; multiply complex numbers; multiply decimals (1 and 2-digit factors); multiply
decimals (up to 4-digit factors); multiply difference of squares; multiply matrices; multiply matrices
by scalars; multiply mixed numbers; multiply monomials; multiply monomials by polynomials;
multiply powers; multiply unit fractions and whole numbers; multiply whole numbers and decimals;
multiplying and dividing in scientific notation; multiplying a matrix by a matrix; multiplying a matrix
by a vector; multiplying and dividing complex numbers in polar form; multiplying and dividing
negative numbers; multiplying and dividing rational expressions 1; multiplying and dividing rational
expressions 2; multiplying and dividing rational expressions 3; multiplying and dividing rational
expressions 4; multiplying and dividing rational expressions 5; multiplying and dividing scientific
notation; multiplying by multiples of 10; multiplying complex numbers; multiplying decimals like
0.847x3.54 (standard algorithm); multiplying decimals like 2.45x3.6 (standard algorithm); multi-
plying decimals like 4x0.6 (standard algorithm); multiplying expressions 1; multiplying fractions;
multiplying fractions by integers; multiplying mixed numbers 1; multiplying negative numbers;
multiplying polynomials; multiplying polynomials 0.5; multiplying positive and negative fractions;
multiplying rational numbers; multivariable chain rule; multivariable chain rule intro; negative ex-
ponents; new operator definitions 1; new operator definitions 2; normal form of green’s theorem;
number of solutions of quadratic equations; one step equations; one step equations with multiplication;
one-step addition and subtraction equations; one-step addition and subtraction equations: fractions
and decimals; one-step equations with negatives (add and subtract); one-step equations with negatives
(multiply and divide); one-step inequalities; one-step multiplication and division equations; one-step
multiplication and division equations: fractions and decimals; operations with logarithms; order of
operations; order of operations (no exponents); order of operations 2; order of operations challenge;
order of operations with negative numbers; ordered pair solutions to linear equations; p-series;
parametric curve arc length; parametric equations differentiation; parametric velocity and speed;
partial derivatives of vector valued functions; partial fraction expansion; partial sums intro; particular
solutions to differential equations; particular solutions to separable differential equations; parts of
complex numbers; percent problems; perfect squares; period of sinusoidal functions from equation;
permutations; permutations and combinations; planar motion (differential calc); planar motion (with
integrals); polar and rectangular forms of complex numbers; polynomial special products: differ-
ence of squares; polynomial special products: perfect square; positive and zero exponents; positive
exponents with positive and negative bases; potential functions; power rule (negative and fractional
powers); power rule (positive integer powers); power rule (with rewriting the expression); powers of
complex numbers; powers of fractions; powers of powers; prime numbers; probabilities of compound
events; probability 1; probability in normal density curves; probability of “at least one” success;
probability with permutations and combinations; problems involving definite integrals (algebraic); ...

Figure 14: Khan Academy modules in AMPS (Part 3).
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Khan Academy Modules (4/4): properties of exponents (rational exponents); proportion word
problems; pythagorean identities; pythagorean theorem; quadratic word problems (factored form);
quadratic word problems (standard form); quadratic word problems (vertex form); quadratics by
factoring; quadratics by taking square roots; radians and degrees; radians to degrees; radical equa-
tions; radius, diameter, and circumference; range of a function; rate conversion; rate problems; rate
problems 2; rates of change in other applied contexts (non-motion problems); rates with fractions;
ratio test; ratio word problems; reciprocal trig functions; recursive formulas for arithmetic sequences;
recursive formulas for geometric sequences; regroup when adding 1-digit numbers; relate addition
and subtraction; related rates (advanced); related rates (multiple rates); related rates (pythagorean
theorem); related rates intro; relationship between exponentials and logarithms; relative minima and
maxima; remainder theorem; remainder theorem and factors; removable discontinuities; represent lin-
ear systems with matrices; represent linear systems with matrix equations; reverse power rule; reverse
power rule: negative and fractional powers; reverse power rule: rewriting before integrating; reverse
power rule: sums and multiples; rewriting decimals as fractions challenge; right triangle trigonometry
word problems; roots of decimals and fractions; sample and population standard deviation; scalar
matrix multiplication; scalar multiplication; scientific notation; secant lines and average rate of
change; secant lines and average rate of change with arbitrary points; secant lines and average rate of
change with arbitrary points (with simplification); second derivative test; second derivatives (implicit
equations); second derivatives (parametric functions); second derivatives (vector-valued functions);
segment addition; separable differential equations; significant figures; simplify roots of negative
numbers; simplify square roots (variables); simplify square-root expressions; simplifying expressions
with exponents; simplifying fractions; simplifying radicals; simplifying radicals 2; simplifying ra-
tional expression with exponent properties; simplifying rational expressions 2; simplifying rational
expressions 3; simplifying rational expressions 4; sinusoidal models word problems; slope-intercept
from two points; solid geometry; solutions to quadratic equations; solutions to systems of equations;
solve equations using structure; solve exponential equations using exponent properties; solve expo-
nential equations using exponent properties (advanced); solve exponential equations using logarithms:
base-10 and base-e; solving equations in terms of a variable; solving for the x intercept; solving for the
y intercept; solving proportions; solving quadratics by completing the square 1; solving quadratics by
completing the square 2; solving quadratics by factoring; solving quadratics by factoring 2; solving
quadratics by taking the square root; solving rational equations 1; solving rational equations 2;
special right triangles; square and cube challenge; square roots of perfect squares; standard deviation;
standard deviation of a population; stokes’ theorem; substitution with negative numbers; subtract dec-
imals (hundredths); subtract decimals and whole numbers (hundredths); subtract within 10; subtract
within 1000; subtract within 20; subtract within 5; subtracting decimals (tenths); subtracting decimals
and whole numbers (tenths); subtracting decimals: thousandths; subtracting fractions; subtracting
fractions with common denominators; subtracting fractions with unlike denominators; subtraction
word problems within 100; summation notation intro; sums of consecutive integers; surface integrals
to find surface area; switching bounds on double integrals; symbols practice: the gradient; systems
of equations; systems of equations with elimination; systems of equations with simple elimination;
systems of equations with substitution; systems of equations word problems; tangents to polar curves;
taylor and maclaurin polynomials; the derivative and tangent line equations; the divergence theorem;
the fundamental theorem of calculus and definite integrals; the hessian matrix; translate one-step
equations and solve; trigonometry 0.5; trigonometry 1; trigonometry 1.5; trigonometry 2; triple
integrals; two-step equations; two-step equations with decimals and fractions; two-step equations
word problems; u-substitution: definite integrals; u-substitution: indefinite integrals; unit circle; unit
vectors; use arithmetic sequence formulas; use geometric sequence formulas; use the properties of
logarithms; use the pythagorean identity; using the mean value theorem; using the quadratic formula;
using units to solve problems; variance; vector word problems; vector-valued functions differentia-
tion; verify solutions to differential equations; vertex of a parabola; volume word problems; volumes
with cross sections: squares and rectangles; volumes with cross sections: triangles and semicircles;
washer method: revolving around other axes; washer method: revolving around x- or y-axis; word
problems with “more” and “fewer” 2; write common decimals as fractions; write common fractions
as decimals; write decimals as fractions; write differential equations; write equations of parallel
and perpendicular lines; writing basic expressions with variables; writing basic expressions word
problems; writing expressions; writing expressions 2; writing expressions with variables; writing
expressions word problems; writing functions with exponential decay; writing linear functions word
problems; writing proportional equations; writing proportions; wrong statements in triangle proofs;
z scores 1; z scores 2; z scores 3; zero product property.

Figure 15: Khan Academy modules in AMPS (Part 4).
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of the original problems. This analysis would be pertinent in the hypothetical situation where Fair
Use doctrine did not exist, but MATH and AMPS are covered by Fair Use.

For MATH and AMPS, we abide by Fair Use §107: “the fair use of a copyrighted work, including
such use by ... scholarship, or research, is not an infringement of copyright”, where fair use is
determined by “the purpose and character of the use, including whether such use is of a commercial
nature or is for nonprofit educational purposes” and “the effect of the use upon the potential market
for or value of the copyrighted work.”

Dataset Intended Uses. We document the dataset within the paper and note that the dataset and
code for reproducing results is available at https://github.com/hendrycks/apps. We do not intend for
this dataset to train models that help students cheat on mathematics exams. We intend for others to
use this dataset in order to better forecast reasoning capabilities.

Author Statement and License. We bear all responsibility in case of violation of rights. The
MATH data, AMPS data, and our open source code are under an MIT license.
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Abstract

While programming is one of the most broadly applicable skills in modern society,
it is unclear how well state-of-the-art machine learning models can write code. De-
spite its importance, there has been surprisingly little work on evaluating code gen-
eration, and it can be difficult to assess code generation performance in an accurate
and rigorous manner. To meet this challenge, we introduce APPS, a benchmark for
code generation. Unlike prior work in more restricted settings, our benchmark mea-
sures the ability of models to take an arbitrary natural language specification and
generate satisfactory Python code. Similar to how companies assess candidate soft-
ware developers, we evaluate models by checking their generated code on test cases.
Our benchmark includes 10,000 problems, which range from having simple one-
line solutions to being substantial algorithmic challenges. We fine-tune large lan-
guage models on both GitHub and our training set, and we find that the prevalence
of syntax errors is decreasing exponentially as models improve. Recent models such
as GPT-Neo can pass approximately 20% of the test cases of introductory problems,
so we find that machine learning models are now beginning to learn how to code.
As the social significance of automatic code generation increases over the coming
years, our benchmark can provide an objective measure for tracking advancements.

“Everybody should learn to program a computer, because it teaches you how to think.” – Steve Jobs

1 Introduction

Computer programming can be found in nearly all parts of society. Spanning entertainment, health-
care, education, and more, programming is an extraordinarily general tool with applications that are
vast in scope. As computers are becoming more ubiquitous in modern life, rising demand for high-
quality code draws an ever-greater number of aspiring programmers to the profession. After years of
study to become proficient coders, human experts are are able to convert abstract specifications of
diverse cognitive tasks into concrete programs.

In the past few years, large-scale language models have shown promise in generalizing to various
cognitive tasks, including linguistic inference (Wang et al., 2019a), commonsense reasoning (Zellers
et al., 2019; Huang et al., 2019; Bisk et al., 2019), logical deduction (Liu et al., 2020b), mathematics
(Polu and Sutskever, 2020; Hendrycks et al., 2021c), and general understanding of multiple domains
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Problem Generated Code Test Cases
H-Index

Given a list of citations counts,
where each citation is a
nonnegative integer, write a
function h_index that outputs
the h-index. The h-index is the
largest number h such that h
papers have each least h citations.

Example:
Input: [3,0,6,1,4]
Output: 3

Input:
[1,4,1,4,2,1,3,5,6]

Generated Code Output:
4                      °

Input:
[1000,500,500,250,100,
100,100,100,100,75,50,
30,20,15,15,10,5,2,1]

Generated Code Output:
15                     °
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Figure 1: An example problem from APPS (left) along with possible generated code (middle) and
two example test cases we use to evaluate the generated code (right). Our evaluation framework has
test cases and 10,000 code generation problems of varying difficulty levels.

of human knowledge (Hendrycks et al., 2021b). However, whether large-scale language models can
reliably write code remains an open question.

Motivated by the potential of language models and the need for thorough code generation evaluation,
we introduce APPS, a benchmark for code generation from natural language specifications. Unlike
prior work on code generation with Transformer language models (Vaswani et al., 2017), which
mostly focuses on code translation (Lachaux et al., 2020) and pseudocode-to-code (Kulal et al., 2019),
we evaluate models on their ability to take specifications given in natural language and write code
that meets these specifications. This setting mirrors how human coders are evaluated and is a more
realistic and informative setting in which to benchmark models.

APPS provides a precise and comprehensive view of code generation. APPS evaluates models not
only on their ability to code syntactically correct programs, but also on their ability to understand task
descriptions and devise algorithms to solve these tasks. It contains 10,000 programming problems at
various levels of difficulty, covering simple introductory problems, interview-level problems, and
coding competition challenges. If a model were to perform well on APPS, this would indicate an
ability to flexibly use data structures and programming techniques, as well as an ability to correctly
interpret diverse task specifications, follow instructions, and understand human intent (Hendrycks
et al., 2021a).

For most text generation tasks, high-quality evaluation requires human feedback, which can be
time-consuming or carry pecuniary costs. As a result, automatic metrics such as BLEU (Papineni
et al., 2002) are often used to compare methods, but these metrics do not necessarily track program
correctness. Since the objective for code generation is to produce correct programs, we assess
programs not with BLEU but with test cases and error catching. Evaluating code generation on APPS
is facilitated by a large bank of over 130,000 test cases. The test cases are specifically chosen to
probe correct functionality across the input space. By using test cases, we provide a gold-standard
metric for code generation quality.

In our experiments, we find that models are now starting to exhibit nonzero accuracy and solve some
coding problems. Additionally, as models improve, we observe that syntax errors are exponentially
decreasing. We also find further evidence that BLEU is a problematic metric for code generation,
sometimes being anticorrelated with gold-standard accuracy. We find that accuracy decreases with
difficulty level and improves through fine-tuning and model size increases. The strongest model that
we evaluate on introductory problems passes almost 20% of test cases given five attempts. These
results position code generation as a challenging but now tractable testbed for large-scale language
models.

Writing code to meet specifications in natural language is an economically valuable task with
widespread social implications should it be solved, as it could eventually facilitate malicious code
generation and one day result in job automation. As large-scale language models have the potential

2



PY150 CONCODE SPoC APPS
Programming Language Python Java C++ Python
Test Cases 5 5
Number of Programs N/A 104,000 18,356 232,421
Lines per Program (Avg.) 1 26.3 14.7 18.0
Number of Exercises 3,000 104,000 677 10,000
Text Input Python Docstrings Pseudocode Problem Descriptions

Table 1: A comparison of the APPS dataset to existing datasets for converting between text and code.
APPS has over an order of magnitude more ground-truth solutions than these datasets, test cases, and
natural language problem descriptions.

to make significant progress on code generation, it is essential that we begin to track advancements
on this task. Our new benchmark facilitates measuring performance in an accurate and rigorous
manner. Using APPS, we find that programming is very difficult for modern language models, though
performance is improving. Thus, the APPS benchmark can provide foresight about the performance
of future large-scale language models at the critical task of program synthesis from natural language.
The dataset is available at https://github.com/hendrycks/apps.

2 Related Work

Program Synthesis. Program synthesis is the task of generating a computer program that satisfies
given specifications. Deductive program synthesis uses formal logic specifications to define a
search problem. Complex optimization techniques are used to generate programs satisfying these
specifications (Alur et al., 2018). Because specifications must be converted into a formal language,
these approaches can be rigid. Inductive synthesis from example input-output behavior can provide
an alternative to formal specification (Cai et al., 2017; Gulwani et al., 2017), but it is often hard to
full specify behavior with examples, as any machine learning practitioner is well-aware.

An alternative to formal or inductive specification is to specify program behavior in natural language,
which prior work has considered in constrained settings. Raza et al. (2015) and Desai et al. (2016)
generate short programs using ad-hoc programming languages to solve specifications such as “Any
2 letters followed by any combination of 6 whole numbers.” Yu et al. (2018) introduce the Spider
dataset for converting natural language queries into short SQL database commands. In contrast, we
consider long natural language specifications and general-purpose programming languages.

Code Understanding Datasets. Language modeling is a compelling tool for code generation,
and several works have achieved success generating code with language models in limited settings.
Lachaux et al. (2020) use unsupervised machine translation techniques to translate functions across
programming languages, attaining identical behavior after translation in many cases. Kulal et al.
(2019) introduce SPoC, a method for converting pseudocode to code utilizing seq2seq machine
translation with an additional search step. To train SPoC, they collect line-by-line descriptions of C++
programs using Amazon Mechanical Turk. Recently, Lu et al. (2021) introduce the CodeXGLUE
benchmark which aggregates various previous benchmarks and use CodeBLEU (Ren et al., 2020)
and CONCODE. Iyer et al. (2018) investigate generating Java code from docstrings and evaluate
performance with BLEU. The docstrings are often incomplete specifications of what should be coded
and only 14.7 words long on average, e.g. “Convert mixed case to underscores.” By comparison,
problem specifications in our new APPS benchmark are self-contained and have a much larger
average length of 293.2 words. Unlike Iyer et al. (2018), APPS contains test cases for every exercise,
enabling a high-quality evaluation of code correctness. Further comparisons are in the Appendix.

Evaluating Large-Scale Language Models. Modern large-scale language models have demon-
strated impressive capabilities across a variety of text-based tasks. On the SuperGLUE benchmark
(Wang et al., 2019b), some models now exceed human performance. On many commonsense reason-
ing benchmarks, performance is rising quickly (Zellers et al., 2019; Huang et al., 2019; Bisk et al.,
2019). Even when language models are evaluated across diverse technical areas such as law and
medicine, performance is surprisingly high and poised to improve as models are scaled up further
(Hendrycks et al., 2021b). With rapid improvements across numerous datasets, finding resilient
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benchmarks on which models significantly underperform humans is challenging. APPS represents an
attempt to fill this gap and cleanly separate model performance from that of expert humans.

3 The APPS Dataset

The APPS dataset consists of problems collected from different open-access coding websites such as
Codeforces, Kattis, and more. The APPS benchmark attempts to mirror how humans programmers are
evaluated by posing coding problems in unrestricted natural language and using test cases to evaluate
solution correctness. The problems range in difficulty from introductory to collegiate competition
level and measure coding and problem-solving ability.

The Automated Programming Progress Standard, abbreviated APPS, consists of 10,000 coding
problems in total, with 131,777 test cases for checking solutions and 232,421 ground-truth solutions
written by humans. Problems can be complicated, as the average length of a problem is 293.2 words.
The data are split evenly into training and test sets, with 5,000 problems each. In the test set, every
problem has multiple test cases, and the average number of test cases is 21.2. Each test case is
specifically designed for the corresponding problem, enabling us to rigorously evaluate program
functionality.

Dataset Construction. To create the APPS dataset, we manually curate problems from open-access
sites where programmers share problems with each other, including Codewars, AtCoder, Kattis, and
Codeforces. Problems are posed as natural language specifications of what should be coded, and they
come in various formats. To improve quality and consistency, we wrote custom HTML parsers for
each source of problems, which allows us to properly format LaTeX expressions, lists, and sections in
the question text. Where necessary, we convert equation images to LaTeX using the MathPix API, and
we remove problems that rely on image figures. We also perform deduplication using tf-idf features
with SVD dimensionality reduction and cosine similarity. Several graduate and undergraduate student
authors polished and refined this dataset over the course of six months, ensuring a high-quality set of
problems.

Executing and evaluating arbitrary Python code is challenging. On the websites we source data from,
human solutions are allowed to run arbitrary code, including import statements for common modules
and libraries. To handle this, each website implements a custom judging system for solutions. We
design a testing framework with this in mind, which merges the judging functionality of several
websites. We also standardize the format of test cases. The end result is that solutions are allowed to
execute arbitrary Python code, and the results are compared against test cases for a given problem.

Dataset Difficulty. Each of our problem sources uses a separate scale for measuring difficulty. We
place problems from these different sources into three categories. For example, problems from Kattis
with difficulty less than 3 are categorized as “introductory,” problems with difficulty between 3 and 5
as “interview,” and problems with difficulty greater than 5 as “competition.”

1. Introductory Level. These are problems that most programmers with 1-2 years of expe-
rience can answer without requiring complicated algorithms. Examples of such problems
include counting the number of vowels in a string, or returning the running sum of a list of
integers. There are 3,639 problems classified as introductory level and 1,000 in the test set.

2. Interview Level. These are problems that are more algorithmic and difficult in nature and
would be at the level of questions asked in programming technical interviews. Examples
of such problems might include those involving data structures such as trees or graphs,
or problems that requiring nontrivial algorithms. There are 5,000 problems classified as
interview level and 3,000 in the test set.

3. Competition Level. These are problems are the most challenging and are at the level of the
most advanced high school and collegiate programming competitions, including USACO,
IOI, and ACM. There are 1,361 competition level problems and 1,000 in the test set.

Problem Formats. To accommodate a broad range of problem sources, problems in APPS come
in two formats.

• Call-Based Format problems generally provide initial starter code, usually in the form of a
function header, and ask for the solution to be provided as the function’s return value.
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Problem
You are given a string s = s1s2 . . . sn of length n, which only contains digits 1, 2,..., 9. A substring
s[l . . . r] of s is a string slsl+1sl+2 . . . sr. A substring s[l . . . r] of s is called even if the number
represented by it is even. Find the number of even substrings of s. Note, that even if some substrings
are equal as strings, but have different l and r, they are counted as different substrings. The first line
contains an integer n (1  n  65000) — the length of the string s. The second line contains a string
s of length n. The string s consists only of digits 1, 2,..., 9. Print the number of even substrings of s.
Model Output
n = int(input())

s = input()

ans = 0

for i in range(n):

for j in range(i, n):

if int(s[i:j+1]) % 2 == 0:

ans += 1

print(ans)

Figure 2: Model-generated code from GPT-2 1.5B. 18/18 test cases pass for the problem. Note that
models were given in problems exactly as they they are formatted here, which even meant parsing
LATEX. For brevity, we exclude formatting instructions from this depicted problem.

• Standard Input Format problems generally lack starter code. Instead, the model is only
provided with the problem and must output its answers to the STDOUT stream, such as by
using print statements.

For the call-based format problems, we prompt models using the following inputs:

"\nQUESTION:\n" + q_str + "\n" + starter_code_str + "\n" + "\nUse

Call-Based Format\n\nANSWER:\n"

For the above prompt, the variable q_str represents the raw text of the problem statement. The
variable starter_code_str represents the starter code given in the problem definition, or the
empty string if no starter code was provided. For the standard input format problems, we prompt
the model with the input string as before, but we replace “Call-Based Format” with “Standard Input
Format.” Note that if starter code is given, it is only part of the input. This means that to use the
starter code, a model must learn to copy the starter code at the beginning of its outputted answer in
order to get the question correct. We find that fine-tuned models are able to do this without difficulty.

Test Case Quality. In the APPS test split, the average number of test cases is 21.2, but some
problems only have two test cases. These problems mainly come from Kattis and were chosen for
the test split due to limited numbers of competition problems. A potential concern is that these
problems could result in false positives if models happen to guess both test cases correctly. This is
very unlikely in problems with large output spaces, but some problems have small output spaces,
such as {“YES”, “NO”}. Although the model must narrow down these two options from the space of
all possible strings, we find that this is not difficult for current models to accomplish, and this may
cause false positives in our evaluation.

To quantify the impact of these problems, we took all 2- and 3-test-case problems that GPT-Neo 2.7B
passed and manually checked for false positives. Out of 12 problems that the model got correct with
2 test cases, 8 were false positives. Out of 6 problems with 3 test cases, only 1 was a false positive.
Since the test cases are from coding challenge websites with many users, we can assume that false
negatives are absent. Thus, the false positive rate with 2 test cases is 8/(890� 4) = 0.009 < 1% and
1/(765�5) = 0.001 < 1% with 3 test cases. The upshot is that the potential for noise is significantly
less than that of most naturally annotated datasets.
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Problem
You are given two integers n and m. Calculate the number of pairs of arrays (a, b) such that: the
length of both arrays is equal to m; each element of each array is an integer between 1 and n
(inclusive); ai  bi for any index i from 1 to m; array a is sorted in non-descending order; array b is
sorted in non-ascending order. As the result can be very large, you should print it modulo 109 + 7.
Input: The only line contains two integers n and m (1  n  1000, 1  m  10). Output: Print one
integer – the number of arrays a and b satisfying the conditions described above modulo 109 + 7.

Model Output
n, m = map(int, input().split())

mod = 10**9+7

fact = [1, 1]

factinv = [1, 1]

inv = [0, 1]

for i in range(2, n+1):

fact.append((fact[-1] * i) % mod)

inv.append((-inv[mod % i] * (mod//i)) % mod)

factinv.append((factinv[-1] * inv[-1]) % mod)

def cmb(n, r, mod):

if (r < 0) or (n < r):

return 0

r = min(r, n - r)

return fact[n] * factinv[r] * factinv[n-r] % mod

print((cmb(n, m, mod) * cmb(m-1, n-1, mod)) % mod)

Figure 3: An example from GPT-2 1.5B. Although the code generated passes 0 test cases, it looks
plausible at first glance.

4 Experiments

4.1 Experimental Setup

Models. We use GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), and GPT-Neo (Black
et al., 2021) models. The GPT architecture is especially appropriate for text generation because it is
autoregressive. However, GPT-2 was not pretrained on code, so we pretrain it on GitHub as described
in the next paragraph. Anecdotal evidence indicates that GPT-3 can generate code. To determine the
extent of its code generation ability, we use the ‘davinci’ (Instruct series) model, the largest publicly
available model speculated to have 175 billion parameters. Finally, GPT-Neo has an architecture
similar to GPT-3, and it was pretrained on the Pile (Gao et al., 2020) which includes GitHub. Unlike
GPT-3, GPT-Neo’s weights are publicly available, hence we are able to fine-tune it with APPS.

GPT-2 Pretraining. Since GPT-2 was trained on natural language and not code, we collected
GitHub code to further pretrain GPT-2. GitHub repositories with fewer than one star were filtered
out. While Neo’s GitHub pretraining data did not undergo an APPS data decontamination process,
our GPT-2 models are trained on decontaminated data. Specifically, all repositories matching certain
keywords that would suggest overlap with common programming exercises were removed. We
provide the list of keywords in the Supplementary Materials. We also discard any GitHub code that
contains functions with the same signatures as functions in the starter code in many of our APPS
problems. This leaves us with 30 GB of Python code. To improve the efficiency of pretraining, we
process all Python code in the pretraining dataset by converting from spaces to tabs, which saves the
character conversion when running model tokenizers.

Fine-tuning. During fine-tuning with APPS, the objective is to predict the entire code solution,
given both the English text problem statement and the problem format (call-based format or standard
input format). For problems with starter code, we exclude the starter code from the training loss.
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Test Case Average Strict Accuracy
Model Introductory Interview Competitive Average Introductory Interview Competition Average
GPT-2 0.1B 5.64 6.93 4.37 6.16 1.00 0.33 0.00 0.40
GPT-2 1.5B 7.40 9.11 5.05 7.96 1.30 0.70 0.00 0.68
GPT-Neo 2.7B 14.68 9.85 6.54 10.15 3.90 0.57 0.00 1.12
GPT-3 175B 0.57 0.65 0.21 0.55 0.20 0.03 0.00 0.06

Table 2: Average percentage of test cases passed and strict accuracy for each model and difficulty
level. All values are percentages. Note ‘0.1B’ indicates the number of model parameters in billions.
GPT-3 is a few-shot model and not fine-tuned, unlike the other models. GPT-Neo does best and
attains approximately 4% strict accuracy on Introductory problems, and for these problems it passes
approximately 15% of the test cases.

Across pretraining and fine-tuning, we use the AdamW optimizer (Loshchilov and Hutter, 2019),
a batch size of 256, and a weight decay of 0.05. We fine-tune for 10 epochs. We use DeepSpeed
and its implementation of the ZeRO optimizer to reduce memory consumption while training large
models (Rasley et al., 2020; Rajbhandari et al., 2020). Unless otherwise specified, we use the default
HuggingFace generation parameters, except that we use beam search with a beam size of 5. Models
are fine-tuned on 8 A100 GPUs.

4.2 Metrics

To obtain a comprehensive evaluation of code generation ability, we use the large bank of test cases
and ground-truth solutions provided with APPS. Test cases allow for automatic evaluation, even
though the the space of possible programs can be combinatorially large. Therefore, unlike many
other text generation tasks, manual analysis is not necessary. We aggregate the generated code’s
performance on test cases with two metrics, “test case average” and “strict accuracy.”

Test Case Average. We compute the average fraction of test cases passed. Concretely, let the
number of problems in the test set be P . For a given problem p, let the code generated to solve
problem p be denoted hcodepi, and set of test cases for problem p be {(xp,c, yp,c)}

Cp

c=1. Then the
test case average is

1

P

PX

p=1

1

Cp

CpX

c=1

1{eval(hcodepi, xp,c) = yp,c}.

Oftentimes, solutions can successfully pass a subset of the test cases but not cover every corner
case. This allows for less stringent model evaluation, as strict accuracy may currently obscure model
improvements.

Strict Accuracy. Eventually, generated solutions should pass all test cases including corner cases.
To compute the strict accuracy which requires programs pass every test case, we run the code generated
by the model on every test case of every problem. Strict accuracy is then computed by taking the
number of solutions passing every test case divided by the total number of exercises. Using the
notation from before, we can write the strict accuracy as 1

P

PP
p=1

QCp

c=1 1{eval(hcodepi, xp,c) =
yp,c}. Future research may only use strict accuracy when models become sufficiently capable.

4.3 Model Performance Analysis

Qualitative Output Analysis. Models can sometimes generate correct or superficially plausible
code. Figure 2 shows code generated by GPT-2 1.5B that passes all test cases. When models do
not pass the test cases, sometimes their generated code still appears plausible at first glance. For
example, in Figure 3, we see that the 1.5B parameter model generates code that is related to the
problem statement and makes a plausible attempt to solve it.

Test Case Evaluation. We show the main results in Table 2. We observe that models are able to
generate code that passed some test cases, implying many generated programs are free of syntax errors
and can successfully process inputs test cases to produce correct answers. Note that for Introductory
questions, GPT-Neo passes approximately 15% of the test cases. We visualize Test Case Average
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Figure 4: The average percentage of test cases
passed increases with larger fine-tuned models.

Figure 5: Syntax errors decrease exponentially
with fine-tuning and increased model sizes. GPT-
Neo 2.7B has very few syntax errors.

results in Figure 4. This demonstrates models are showing marked improvements on code generation
and now starting to have traction on code generation.

Top-1 Top-5

Test Case Average 14.7% 19.9%
Strict Accuracy 3.9% 5.5%

Table 3: GPT-Neo 2.7B performance on in-
troductory problems using one generated
program (Top-1) and the best of five gener-
ated programs (Top-5). Full results are in
the Supplementary Materials.

Performance can be further improved by sampling mul-
tiple solutions and selecting the best. Here, we per-
form beam search with beam width 5 and evaluate its
5 beams, so that each model has five attempts to get
a problem correct rather than one. With this setup,
GPT-Neo’s strict accuracy on Introductory problem
then exceeds 5%, as shown in Table 3. Our results in
the Supplementary Materials show that the top-5 test
case average GPT-2 0.1B is 10.75 while the top-1 test
case average of GPT-2 1.5B is 7.96. This highlights
that simply sampling multiple candidate solutions is a
powerful way to markedly improve performance.

Our results also provide us with information about the
importance of model choice. Evidently existing few-shot GPT-3 models are not necessarily better at
code generation than fine-tuned models that are smaller by two orders of magnitude. Additionally,
performance improvement from GPT-2 1.5B to GPT-Neo 2.7B is larger than that from GPT-2 0.1B
to GPT-2 1.5B. Potential causes of GPT-Neo’s better performance are that GPT-Neo is trained on
more code from GitHub, it has more parameters, or its architecture hyperparameters were chosen
better. Memorization explaining all performance is an implausible explanation as performance tracks
problem difficulty; were models just memorizing, we would expect uniform performance across
difficulties. Since models still have large room for improvement, solving the APPS benchmark
without unreasonable amounts of computational resources may require architectural or algorithmic
improvements.

Syntax Errors. We now assess the frequency of syntax errors, errors that prevent the program from
being interpreted including inconsistent spacing, unbalanced brackets, missing colons, and so on.
Syntax errors are identified in our testing framework based on the heuristic of whether pyext is able
to load the generated code as a Python module. For our purposes, this almost exclusively occurs for
syntax errors. We visualize the prevalence of syntax errors in Figure 5. While approximately 59% of
GPT-3’s generated solutions for introductory problems have syntax errors, GPT-Neo syntax error
frequency is approximately 3%. Note that recent work such as Yasunaga and Liang (2020) create a
separate model to repair source code to fix compilation issues, but our results suggest that such efforts
may be unnecessary in the future as syntax error frequency is sharply decreasing automatically.
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BLEU. We find that assessing model performance with BLEU is a poor substitute for evaluating
with test cases. To evaluate BLEU, we take the generated solution and compute its BLEU with each
human-written solution for a given problem; we then record the highest BLEU score. Observe in
Figure 6 that BLEU increases as problem sources become more difficult, even though models actually
perform worse on harder problems. Moreover, worse models can have similar or higher BLEU scores.
For example, GPT-2 0.1B has 26.8, 29.7, and 30.2 as BLEU scores for introductory, interview, and
competition problems, respectively. Meanwhile GPT-Neo 2.7B has 27.1, 29.1, and 29.3 as its BLEU
scores, respectively. Hence BLEU wrongly suggests GPT-Neo is a worse model.

Figure 6: BLEU scores for GPT-Neo 2.7B increase
with difficulty level and are anticorrelated with a
gold-standard accuracy metric.

Evaluating GPT-3. We evaluate GPT-3 175B
on APPS in a few-shot setting. A separate
prompt is used for standard input and call-based
questions, and each prompt includes instruction
text along with two example questions and solu-
tions from the corresponding question type. We
find that GPT-3 only solves 3 problems out of
5,000: two introductory problems and one inter-
view problem. The two introductory problems
are simple interpretation tasks, such as imple-
menting a specified algebraic expression. The
interview problem requires higher-level thinking
that suggests nontrivial reasoning. However, it
is possible that GPT-3 memorized the solution
during pretraining, or that it took a lucky guess
based on heuristics in the question. One poten-
tial factor in GPT-3’s poor performance is that
it handles syntax poorly. Namely, we observed
cases where improper formatting of otherwise
functioning code causes a syntax error. For spe-
cific examples and more details, see the Supplementary Materials.

Evaluations on Larger Models. Since the public release of APPS, several others have trained
even larger models on APPS than we evaluate here. OpenAI Codex is a 12B parameter Transformer
language model pre-trained on large quantities of public code and comments. Chen et al. (2021)
evaluate Codex on APPS under various configurations and achieve top-1 and top-5 accuracy on
introductory problems of 4.14% and 9.65% respectively, close to double the top-5 accuracy of
GPT-Neo 2.7B. Furthermore, by scaling up to a top-1000 evaluation they obtain 25% accuracy.
This demonstrates that larger models trained specifically for code generation can improve APPS
performance even further, but are still far from solving the task.

5 Conclusion

We introduced APPS, a benchmark of 10,000 Python programming problems. Unlike prior work
that focused on pseudocode to code generation or translation between programming languages, our
benchmark measures how well language models can generate python code given natural language
specifications. By performing extensive quality assurance and including hundreds of thousands of
test cases and ground-truth solutions across different difficulty levels, we created a comprehensive
and rigorous testbed for evaluating models. We assessed state-of-the-art generative models on our
benchmark and found that overall performance was low. However, the prevalence of syntax errors
decreased exponentially as models improved, and recent models such as GPT-Neo solved over 5% of
our introductory problems. As models become more competent at code generation, it is important to
have a proxy for tracking this capability which could one day result in automation or malicious code
generation. The APPS benchmark can provide an important measure for tracking upstream program
synthesis advancements.
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Hearthstone Django NAPS APPS
Programming Language Python Python UAST Python
Test Cases 5 5
Number of Programs 665 18,805 17,477 232,421
Lines per Program (Avg.) 7.7 1 21.7 18.0
Number of Exercises 665 18,805 2,231 10,000
Text Input Card Text Comment Pseudocode Problem Descriptions

Table 4: Further comparisons of APPS with previous datasets.

Top-5 Test Case Average Top-5 Strict Accuracy
Model Introductory Interview Competitive Average Introductory Interview Competition Average
GPT-2 0.1B 13.81 10.97 7.03 10.75 2.70 0.73 0.00 1.02
GPT-2 1.5B 16.86 13.84 9.01 13.48 3.60 1.03 0.00 1.34
GPT-Neo 2.7B 19.89 13.19 9.90 13.87 5.50 0.80 0.00 1.58

Table 5: Top-5 performance of GPT-2 models and GPT-Neo. Taking the best of five candidate
solutions markedly improves performance.

A Auxiliary Dataset Information

Legal Compliance. In APPS, we scrape question text, ground-truth solutions, and test cases from
various coding challenge websites. These websites are AtCoder, CodeChef, Codeforces, Codewars,
HackerRank, Kattis, and LeetCode. In all cases, we only scrape public-facing data. For instance, we
avoid scraping data from paywalled portions of sites. In the case of Kattis, all problems we scrape
are under the CC BY-SA 3.0 license (https://creativecommons.org/licenses/by-sa/3.0/). For other
websites, some content may be copyrighted. In these cases, we abide by Fair Use §107: “the fair
use of a copyrighted work, including such use by ... scholarship, or research, is not an infringement
of copyright”, where fair use is determined by “the purpose and character of the use, including
whether such use is of a commercial nature or is for nonprofit educational purposes”, “the amount
and substantiality of the portion used in relation to the copyrighted work as a whole”, and “the effect
of the use upon the potential market for or value of the copyrighted work.” The APPS dataset is
noncommercial and is likely to have no effect on the value of the original problems. Moreover, for all
problem sources, we only scrape a fraction of the available problems and ground-truth solutions.

Regarding international copyright laws, the websites that we scrape from are based in the United
States, Japan, India, and Russia, all of which are contracting parties to the WIPO Copyright Treaty.
In the United States, the WIPO Copyright Treaty is implemented by the Digital Millenium Copyright
Act (DMCA). Since APPS was made in the United States, the DMCA is the relevant legislation that
we must comply with. Notably, DMCA §1201 states, “No person shall circumvent a technological
measure that effectively controls access to a work protected under this title.” We do not circumvent
access controls when creating APPS and hence abide by §1201. Fair Use extends to content protected
by the DMCA, for which we refer readers to the previous paragraph.

Although GDPR only applies in the European Union, some of the ground-truth solutions in APPS
may have been written by EU citizens. GDPR is chiefly concerned with the protection of personal
data gathered by entities engaging in economic activity. The only personally linked information in
APPS is the problem solutions written by individuals and published under aliases to public websites.
In some cases, these solutions contain identifying information in comments, which we remove to
preserve privacy. We comply with GDPR, because our processed solutions remove identifiers, and
we are compliant because we collect the data for academic research purposes.

Author Statement and License. We bear all responsibility in case of violation of rights. The
APPS data is licensed under CC BY-SA 3.0 in accordance with the Kattis problem licenses and the
ShareAlike terms. Our code is open sourced under the MIT license.

13

https://creativecommons.org/licenses/by-sa/3.0/


B Datasheets

We follow the recommendations of Gebru et al. (2018) and provide a datasheet for the ETHICS
dataset in this section.

B.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description. The APPS dataset was
created to track the progress of code generation models on the task of generating arbitrary Python code
from complex natural language specifications, a challenging setting that had no rigorous benchmark
before our work.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? Refer to the main document.

Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number. There is no associated grant.

Any other comments? No.

B.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description. The instances
are coding challenge problems posed in natural language, each of which consists of question text,
ground-truth solutions, and test cases. Please refer to the main document for more detail.

How many instances are there in total (of each type, if appropriate)? APPS contains 10,000
problems, 232,421 ground-truth solutions, and 131,777 test cases.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were
withheld or unavailable). APPS contains a subset of all possible test cases for its problems. These
test cases are written by problem designers to cover important functionality.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or fea-
tures? In either case, please provide a description. Each instance consists of text and numerical
data.

Is there a label or target associated with each instance? If so, please provide a description.
Each instance is associated with test cases, which provide a ground-truth signal for functional
correctness.

Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text. No.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit. We remove
duplicate or near-duplicate problems from APPS.
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Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them. We pro-
vide a training and test split. The splits were optimized for increasing the number of test cases in the
test split while maintaining a fixed number of problems from each difficulty.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description. See Section 3 in the main paper for a discussion of test case quality.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confidentiality, data that includes the content of individ-
uals’ non-public communications)? If so, please provide a description. No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why. Unknown.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.
Yes.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions
within the dataset. No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or in-
directly (i.e., in combination with other data) from the dataset? If so, please describe how
No.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that re-
veals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of govern-
ment identification, such as social security numbers; criminal history)? If so, please provide a
description. No.

Any other comments? No.

B.3 Collection Process

How was the data associated with each instance acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly in-
ferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or lan-
guage)? If data was reported by subjects or indirectly inferred/derived from other data, was
the data validated/verified? If so, please describe how. All data was collected by scraping
problems from coding challenge websites, such as Codewars, AtCoder and Kattis.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mecha-
nisms or procedures validated? We used off-the-shelf and custom-built scrapers. We manually
checked whether scraped data matched text on the websites.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? Some problems we scraped were left out of
APPS for various reasons, e.g. they required images to solve, they lacked ground-truth solutions and
test cases, or they were duplicate problems.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? All data was
collected by undergraduate and graduate student authors on the paper.
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Over what timeframe was the data collected? Does this timeframe match the creation time-
frame of the data associated with the instances (e.g., recent crawl of old news articles)? If
not, please describe the timeframe in which the data associated with the instances was created.
Data was collected from late 2020 to early 2021 and refined for six months.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link
or other access point to any supporting documentation No.

Does the dataset relate to people? If not, you may skip the remainder of the questions in this
section. Yes.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? We scraped data via websites where individuals had publicly
posted problem solutions.

Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how notice was provided, and provide a link
or other access point to, or otherwise reproduce, the exact language of the notification itself.
Users who posted on the Internet were not notified of our collection, because their examples were
posted publicly.

Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and pro-
vided, and provide a link or other access point to, or otherwise reproduce, the exact language
to which the individuals consented. N/A

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a
link or other access point to the mechanism (if appropriate). N/A

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.
No.

Any other comments? No.

B.4 Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remainder of
the questions in this section. Yes, as described in Section 3 of the main paper.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.
No.

Is the software used to preprocess/clean/label the instances available? If so, please provide a
link or other access point. Not at this time.

Any other comments? No.

B.5 Uses

Has the dataset been used for any tasks already? If so, please provide a description. Yes, see
the main paper.
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Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point. No.

What (other) tasks could the dataset be used for? N/A

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? For example, is there anything that a
future user might need to know to avoid uses that could result in unfair treatment of individ-
uals or groups (e.g., stereotyping, quality of service issues) or other undesirable harms (e.g.,
financial harms, legal risks) If so, please provide a description. Is there anything a future user
could do to mitigate these undesirable harms? We describe how our data collection is legally
compliant in Appendix A.

Are there tasks for which the dataset should not be used? If so, please provide a description.
N/A

Any other comments? No.

B.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.
Yes, the dataset will be publicly distributed.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
Does the dataset have a digital object identifier (DOI)? The dataset is available at
https://github.com/hendrycks/apps.

When will the dataset be distributed? The dataset is currently available.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms
or ToU, as well as any fees associated with these restrictions. The code for our experimental
framework is distributed under an MIT license. Where applicable,

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions. In cases where websites that we scrape data from have copyright policies, we abide
by Fair Use according to §107, and we comply with GDPR even though all our problem sources with
ground-truth solutions are based in the US. See Appendix A for details.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any supporting documentation. No.

Any other comments? No.

B.7 Maintenance

Who is supporting/hosting/maintaining the dataset? Refer to the main document.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Refer
to the main document.

Is there an erratum? If so, please provide a link or other access point. Not at this time.
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Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by whom, and how updates will be communicated
to users (e.g., mailing list, GitHub)? We plan to update the dataset with an additional JSON of
test cases present in the question text for each problem. This will be available through GitHub.

If the dataset relates to people, are there applicable limits on the retention of the data associ-
ated with the instances (e.g., were individuals in question told that their data would be retained
for a fixed period of time and then deleted)? If so, please describe these limits and explain how
they will be enforced No.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users. N/A

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/ver-
ified? If so, please describe how. If not, why not? Is there a process for communicating/dis-
tributing these contributions to other users? If so, please provide a description. Our dataset
could be extended with additional problems that follow the formatting of existing problems.

Any other comments? No.

C Additional Dataset Information

Expanded Dataset Comparisons. We compared to several datasets in the (Kulal et al., 2019;
Yu et al., 2018; Raychev et al., 2016; Iyer et al., 2018; Lu et al., 2021) main paper. We continue
the comparisons below. Ling et al. (2016) introduce datasets based on Hearthstone and Magic the
Gathering card games for code generation. Oda et al. (2015) provide a language-to-code dataset
using simple code comments. Zavershynskyi et al. (2018) introduce the NAPS dataset for converting
pseudocode to code, obtained by crowdsourcing low-level descriptions of programming exercises,
and apply machine translation techniques to the problem. Recent anecdotal posts on social media have
demonstrated that modern Transformers can in some instances generate JSX code adhering to user
requests, but our work provides precision to the discussion through quantitative evaluation. Allamanis
and Sutton (2013) introduce the GitHub Java Corpus used for performing language modeling on
Java code. Liu et al. (2020a) do a smaller-scale analysis of code generation but with their limited
language-specific training data models “fail to pass even a single predefined test case” on their 300
test problems, while with our large training set and test set, trained models can pass tens of thousands
of test cases. Zelle and Mooney (1996) and Tang and Mooney (2001) precedes Yu et al. (2018) by
also facilitating the synthesis of database queries, though more recent program synthesis works such
as Wang et al. (2019c) use Spider from Yu et al. (2018).

Table 4 compares APPS to Hearthstone (Ling et al., 2016), Django (Oda et al., 2015), and Zaver-
shynskyi et al. (2018). ‘Number of Programs’ refers to the number of human-written programs or
functions in the dataset, and ‘Number of Exercises’ refers to the number of tasks that the network
must solve. These numbers can differ in datasets such as APPS with multiple human-written solutions
per exercise.

Excluded Keywords. In creating the GitHub pretraining dataset, we exclude the following key-
words to prevent overlap with coding challenge questions similar to those in APPS: ‘atcoder’,
‘coderbyte’, ‘leetcode’, ‘codeforces’, ‘codewars’, ‘hackerrank’, ‘topcoder’, ‘codechef’, ‘checkio’,
‘HackerEarth’, ‘Programmr’, ‘Exercism’, ‘Codier’, ‘PyBites’, ‘Tynker’, ‘CodinGame’, ‘CodeCom-
bat’, ‘usaco’, ‘IOI’, ‘UVA’, ‘ICFP’, ‘EPIJudge’, ‘SPOJ’, ‘UVaOJ’, ‘judge’, ‘interview’, ‘solution’,
‘coding’, ‘code’, ‘problem’, ‘exercise’, ‘challenge’, ‘algo’, ‘practice’, ‘competitive’, ‘program’.

D Additional Results

Top-5 Performance. Rather than allowing models to generate just one potential solution, we let
models generate five and we choose the best performing solution. Full top-5 performance results are
in Table 5.
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Problem
Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer n and
then they take turns, starting from Mahmoud. In each player’s turn, he has to choose an integer a and
subtract it from n such that: 1  a  n. If it’s Mahmoud’s turn, a has to be even, but if it’s Ehab’s
turn, a has to be odd.
If the current player can’t choose any number satisfying the conditions, he loses. Can you determine
the winner if they both play optimally?

—–Input—–
The only line contains an integer n (1  n  109), the number at the beginning of the game.

—–Output—–
Output “Mahmoud” (without quotes) if Mahmoud wins and “Ehab” (without quotes) otherwise.

Model Output
n = int(input())

if n % 2 == 0:

print('Mahmoud')

else:

print('Ehab')

Figure 7: The sole interview problem solved by GPT-3. Legitimately solving this problem requires
nontrivial reasoning about the proposed game’s branching possibilities.

a, b = int(input()), int(input())

if a == b:

print(''.join(map(str, [a, b])))

else:

print(''.join(map(str, [a, b])))

Figure 8: Oftentimes, GPT-3 generates outputs with incorrect syntax, such as the above code. Even
though the code is reasonable, bad formatting of the if-else block causes a syntax error.

GPT-3. We evaluate GPT-3 175B on APPS in a few-shot setting. A separate prompt is used for
standard input and call-based questions, and each prompt includes instruction text along with two
example questions and solutions from the corresponding question type. The solutions we select
for each prompt are the shortest solutions passing all test cases for the corresponding problems.
In preliminary experiments, we found that the original GPT-3 175B did not perform well, and the
instruct series was necessary for reasonable generations. Inference on the 5,000 problems in the
APPS test set is possible for approximately $500.

We find that GPT-3 only solves 3 problems out of 5,000: two introductory problems and one interview
problem. The two introductory problems are simple interpretation tasks, such as implementing a
specified algebraic expression. The interview problem requires higher-level thinking and is show
in Figure 7. Legitimately solving this problem would suggest nontrivial reasoning. However, it is
possible that GPT-3 memorized the solution during pretraining, or that it took a lucky guess based on
heuristics in the question.

We also find that GPT-3 tends to handle syntax poorly. In Figure 8, we see a generation with improper
formatting of an if-else block, which causes a syntax error. By contrast, GPT-2 0.1B has fewer syntax
errors with three orders of magnitude fewer parameters, and GPT-Neo 2.7B has almost no syntax
errors. These two models are fine-tuned on GitHub and the APPS training set.

More Generated Code Examples. Additional examples of generated code can be found in Fig-
ure 9, Figure 10, and Figure 11.
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Problem
Given is a directed graph G with N vertices and M edges. The vertices are numbered 1 to N, and
the i-th edge is directed from Vertex A_i to Vertex B_i. It is guaranteed that the graph contains no
self-loops or multiple edges. Determine whether there exists an induced subgraph (see Notes) of G
such that the in-degree and out-degree of every vertex are both 1. If the answer is yes, show one such
subgraph. Here the null graph is not considered as a subgraph.

Model Output
import sys

sys.setrecursionlimit(10 ** 7)

input = sys.stdin.readline

f_inf = float('inf')

mod = 10 ** 9 + 7

def resolve():

n, m = map(int, input().split())

edge = [[] for _ in range(n)]

for _ in range(m):

a, b = map(int, input().split())

edge[a - 1].append(b - 1)

edge[b - 1].append(a - 1)

def dfs(u):

stack = [u]

seen = [False] * n

while stack:

u = stack.pop()

if seen[u]:

continue

seen[u] = True

for v in edge[u]:

if seen[v]:

continue

seen[v] = True

stack.append(v)

res = None

for i in range(n):

if not seen[i]:

seen[i] = True

res = dfs(i)

if not res:

print(-1)

else:

print(res)

if __name__ == '__main__':

resolve()

Figure 9: An example generated by GPT-2 1.5B. The model can sometimes compose function calls.
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Problem
Given is a tree G with N vertices. The vertices are numbered 1 through N, and the i-th edge connects
Vertex a_i and Vertex b_i. Consider painting the edges in G with some number of colors. We want to
paint them so that, for each vertex, the colors of the edges incident to that vertex are all different.
Among the colorings satisfying the condition above, construct one that uses the minimum number of
colors.

Model Output
import sys
from collections import deque, defaultdict, Counter

from itertools import accumulate, product, permutations, combinations

from operator import itemgetter

from bisect import bisect_left, bisect_right

from heapq import heappop, heappush

from math import ceil, floor, sqrt, gcd, inf

from copy import deepcopy

import numpy as np
import scipy as sp

INF = inf

MOD = 1000000007

n = int(input())

ab = [list(map(int, input().split())) for i in range(n - 1)]

graph = [[] for i in range(n + 1)]

for a, b in ab:

graph[a].append(b)

graph[b].append(a)

visited = [False] * (n + 1)

color = [0] * (n + 1)

color[0] = 1

stack = [1]

while stack:

x = stack.pop()

for y in graph[x]:

if visited[y]:

continue

visited[y] = True

color[y] = color[x] + 1

stack.append(y)

ans = min(color)

print(*ans, sep="\n")

Figure 10: An additional generated example. Here, the model output has many import statements.
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Problem
There is a special square room with mirrors on each of the four walls. Except for the southwest corner,
there are receptors on each of the remaining corners, numbered 0, 1, and 2. The square room has
walls of length p, and a laser ray from the southwest corner first meets the east wall at a distance
q from the 0th receptor. Return the number of the receptor that the ray meets first. (It is guaranteed
that the ray will meet a receptor eventually.)

Example 1:
Input: p = 2, q = 1
Output: 2
Explanation: The ray meets receptor 2 the first time it gets reflected back to the left wall.

Starter Code
class Solution:

def mirrorReflection(self, p: int, q: int) -> int:

Model Output
class Solution:

def mirrorReflection(self, p: int, q: int) -> int:

self.p = p

self.q = q

self.mirrors = [(0, 1), (0, -1), (1, 0), (-1, 0)]

return self.mirrors[self.p - 1][self.q - 1]

Figure 11: An example using the call-based format with some starter code.
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