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Abstract

Computational methods for regulating transcription and translation

by

Sanjit Singh Batra

Doctor of Philosophy in Computer Science

and the Designated Emphasis in

Computational and Genomic Biology

University of California, Berkeley

Professor Yun S. Song, Chair

The central dogma describes the transformation of DNA into mRNA and consequently into
a protein. Any of these three stages could be dysregulated in a disease. In this work, we
develop three computational tools aimed at better understanding how diseases such as cancer
might affect these different stages. The first method describes an approach to detect and
track changes in DNA caused by cancer, such as large-scale structural variants. The second
method investigates whether the latest advancements in CRISPR can be leveraged to restore
balance to gene regulation that might have been disturbed by disease. Finally, the third
method provides a way to detect if mutations affect the abundance of a protein thereby
causing disease. Together, these methods span the impact of diseases such as cancer on
the central dogma of biology and pave the way for a better understanding of underlying
mechanisms and future therapies.
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Chapter 1

Introduction

Modulating phenotypes has been the holy grail of computational biology for decades. Such
modulation can be achieved via multiple avenues, such as optimizing DNA sequence and its
topology within the nucleus of a cell; by regulating gene expression, which is the amount of
available mRNA, or by moderating protein production directly.

Advances in techniques to probe DNA folding in the nucleus have greatly improved our
ability to understand and determine the factors responsible for changes in DNA conformation
under various cell states, such as disease. Methods complementing these experimental
advances are being developed at a staggering pace and continue to reveal hidden structures
in these novel data types, such as Hi-C. However, there are vast scopes for improvement in
these computational methods, both, in the detection of DNA conformation changes and in
describing the causal mechanisms that lead to such changes due to disease.

Alternatively, the Nobel-prize winning discovery, CRISPR, which has revolutionized the
field of genome editing, offers new avenues to regulate the amount of mRNA product within
a cell and thereby modulate downstream phenotypes. Computational methods guiding
experimentalists on where to perform CRISPR experiments in the genome are crucial to
reducing the otherwise exponential search space. Furthermore, CRISPR technologies have
been adapted to directly allow modulation of gene expression, such as CRISPRa and CRISPRi,
instead of indirectly, by modifying the DNA sequence of cis-regulatory elements.

While this approach of modifying gene expression to modulate a downstream phenotype
is quite promising, there is room for improvement by regulating protein expression directly.
This is because gene expression is not perfectly correlated with protein expression (Spearman
correlation of ⇠ 0.5 in human tissues). Consequently, a better understanding of the translation
process which converts mRNA into protein products could lead to more robust control of
downstream phenotypes.

The latest developments in the field of deep learning have facilitated huge leaps in our
understanding of biology and have enabled novel methodological advances in computational
biology. Deep learning has a vast potential to impact the field of biology and it remains to
be seen how these advances would dovetail with the latest experimental breakthroughs.

This thesis focuses on developing novel methods across all three stages of the central



CHAPTER 1. INTRODUCTION 2

dogma of biology, to facilitate a better understanding and design control over phenotypes of
interest. As an equally important contribution, it also draws connections between the latest
advancements in experimental techniques such as CRISPR and Ribosome Profiling, and deep
learning and evaluates whether they can complement each other for improving our ability to
modulate phenotypes.

1.1 Overview of the Thesis

This dissertation attempts to develop computational tools to answer three key questions
related to the central dogma:

1. Can we detect changes in DNA such as chro-
mosomal aberrations like large-scale structural
variants using chromatin conformation capture
data generated from cancer samples?

2. Can we leverage the latest developments in
CRISPR/dCas9-based epigenome editing to
regulate gene expression in cancer via post-
transcriptional modifications?

3. For any cancer gene, can we predict if a muta-
tion in the 5’UTR of a gene will have an impact
on its protein expression?

Chapter 2 focuses on the first question. We have developed a novel computational method
which allows us to detect, quantify and track large-scale structural variants using Hi-C data
which can be generated from solid cancer samples.

Chapter 3 leverages the advances in CRISPR/dCas9-based epigenome editing to develop
a computational method to guide where to edit the epigenome in order to achieve desired
gene expression levels.

Chapter 4 develops a novel method to assess the impact of upstream ORFs on protein
expression. Such a computational method could facilitate computational prediction of
mutations in the 5’UTR of genes that might significantly alter protein expression and thereby
cause disease such as cancer.

Chapter 5 concludes the dissertation, raises new questions, and discusses future work.
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Chapter 2

Tracing cancer evolution using Hi-C

This is joint work with Dan Daniel Erdmann-Pham, Timothy Turkalo, James Durbin, Marco
Blanchette, Iwei Yeh, Hunter Shain, Boris Bastian, Yun S. Song, Daniel Rokhsar and Dirk
Hockemeyer and the manuscript is currently under preparation.

2.1 Introduction

Cancer progression is driven by ongoing selection for mutations that endow the evolving
cancer cell with a proliferative advantage compared to its direct precursor and the surrounding
normal tissue. In addition to positive selection for proliferation, neutral mutations can persist
as bystanders over time, whereas mutations that reduce the fitness of cells are selected
against. Recent cancer genome studies have significantly increased our understanding of how
individual mutations drive cancer progression [1], [2], [3]. Since most cancer sequencing efforts
rely on short-read sequencing approaches, we currently have a much better catalog of point
mutations and small, regional genome alterations on cancer progression compared to LSSVs
such as large-scale deletions, inversions, duplications and inter-chromosomal translocations
[4], [5], [6], [7], [8].

The realization that the “Philadelphia chromosome” is a driver of cancer progression in
chronic myelogenous leukemia resulted from the ability to visualize this recurrent translocation
in metaphase spreads [9], [10]. The role of translocations during the initiation and early
evolution of solid cancers, however, has been more difficult to study [11] since at early and
premalignant stages of cancer development, the incipient cancer lesions are generally small and
intermixed with normal cells from the surrounding tissue. To study structural rearrangements
in the progression of solid cancer we focus on melanomas, as early-stage tumors and their
precursor lesions (melanocytic nevi) are routinely excised from the skin of patients and are
therefore available for study [12]. These precursors are typically initiated by activating point
mutations in the MAP-kinase pathway [13], [14], [15]. As the melanoma progresses and
invades deeper into the skin, genomic alterations are more often driven by LSSVs and copy
number changes rather than UV exposure [16].
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While LSSVs can be detected and quantified by spectral karyotyping [17], [18], karyotyping
requires cell culture and generally can only detect LSSVs larger than 1-10 Mbp. Array CGH
is a powerful tool to detect CNV but restricted in detecting copy number neutral changes
such as inversions and reciprocal translocations [19], [20] and thus have limited applicability
to solid cancer samples [21], [22]. To overcome this limitation, new methods that leverage
short-read whole-genome sequencing have been developed to detect and map the breakpoints
of chromosomal rearrangements down to a resolution of 100 bp [23], [24], [25] and can infer
tumor purity, the percent of cancer cells present in a sample of tumor tissue, by combining
detection of copy number alterations with loss of heterozygosity [26], [27], [28]. However,
these methods rely on sequencing mate-pairs that span the newly generated fusion points
of LSSVs and therefore require relatively high sequencing depth (at least 40x of the cancer
genome) to avoid false positives [29]. This approach generally fails to detect break and
fusion points in repetitive regions [30] such as centromeres or telomeres, which frequently are
involved in LSSVs.

An alternative approach to detecting chromosomal rearrangements takes advantage of
high-throughput chromatin conformation capture sequencing, also known as Hi-C [31]. In
Hi-C, genomic loci making three-dimensional contact with each other are converted into linked
read-pairs by proximity ligation of restriction-digested fixed chromatin [32]. These three-
dimensional contacts are readily displayed as a “chromatin contact map” (or matrix) in which
the intensity at a point (x, y) is proportional to the number of read-pairs linking two positions
x and y on the genome. Hi-C was initially developed to elucidate the three-dimensional
folding principles of the human genome, demonstrating that the genome is organized into
alternating open “A” and closed “B” chromatin compartments [31]. Compartments and other
signatures of organized folding, however, are superimposed on a background of contacts
that arise from the polymeric nature of chromatin which leads to an excess of contacts
between loci on the same chromosome even if they are distant along the linear sequence.
Such local intra-chromosomal contacts appear as a diagonal band in the contact map with a
characteristic pattern of decay with increasing separation of the genomic loci that extend out
to megabases. These stereotyped patterns of contacts along chromosomes have been used
to provide chromosome-scale linkage information for genome assembly [33]. Similarly, Hi-C
can be leveraged to detect rearrangements that bring chromosomal segments that are distant
on the reference genome together onto the same chromosome in a non-reference sample,
since such rearrangements appear as “off-diagonal” signals in the Hi-C contact map. Several
computational methods have been developed to analyze Hi-C data to infer copy number
variation [34], [35], [36], [37], [38], [39]. Some of these methods developed foundational
techniques for identifying and annotating interchromosomal translocations as well [40], [41],
[42]. One of these methods, HiNT [42], outperforms the others and can provide translocation
breakpoints at single base-pair resolution given sufficiently high Hi-C coverage, and is the
current gold-standard for cancer Hi-C data analysis. However, these methods have been
developed and tested on pure cancer samples or cancer cell lines while the analysis of clinical
cancer samples will often require the analysis of samples comprising genetically heterogeneous
cancer cells intermixed with normal cells. This requires inference of tumor purity in order to
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estimate absolute copy numbers in cancer cells, which the existing methods, including HiNT,
don’t.

Here, we describe HiDENSEC (Hi-C based Direct Estimation of Copy Number and
Structural rEarrangements in Cancer cells) (Figure 2.1). We use Fix-C, an adaptation of
Hi-C optimized for formalin-fixed, paraffin-embedded (FFPE) tumor samples; henceforth the
terms Fix-C and Hi-C will be used interchangeably [43]. Our computational framework allows
us to (1) infer the fraction of cancer cells in mixtures of cancer and normal cells (also termed
as tumor purity), (2) estimate absolute copy number across the genome in the cancer cells,
and (3) detect and ascribe absolute copy number to large-scale structural variants using Hi-C.
We validated our methods by analyzing samples mixed from different genotypes in silico
and in vitro. With HiDENSEC analysis of Hi-C data, we track the emergence and evolution
of structural variants during melanoma progression in three patients, demonstrating the
utility of HiDENSEC to precisely characterize LSSVs and copy number changes in melanoma
progression.

Hi-C on formalin-fixed 
paraffin-embedded samples
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Figure 2.1: HiDENSEC pipeline

2.2 Results

Chromatin contacts in cell mixtures are linear superpositions

The application of high-throughput chromatin conformation capture methods to FFPE
samples (Fix-C) opens new possibilities for studying chromosome rearrangements in solid
cancers [43]. To analyze samples that are mixtures of genetically distinct cells, we assume that
the chromatin contact map derived from heterogeneous samples is the weighted superposition
of the intracellular contact maps of individual cell genomes, without spurious signals caused
by intercellular DNA ligation (Online Methods). We tested this assumption in a synthetic
FFPE sample composed of a 1:1 mixture of human and mouse cells and fixing the cell pellet
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with formalin, and subsequently embedding it in paraffin before processing it with the Fix-C
protocol (Online Methods). We found that the number of Fix-C read pairs connecting human
and mouse is less than 0.3%, which confirms that intercellular proximity ligation is negligible.
We can therefore interpret Fix-C contact maps as superpositions of the contact maps of the
cell populations within the sample.

Estimating absolute copy number and tumor purity

We estimate the relative copy number along the genome from Hi-C data, specifically, the
on-diagonal intensities of the chromatin contact matrix computed in 50 kb windows. Each
on-diagonal entry measures the total contact frequency of a genomic window with itself,
which is nominally expected to be proportional to the copy number of that genomic window.
Raw on-diagonal intensities of Hi-C data derived from cancer cell lines, however, empirically
show broad distributions that may not be easily translated to absolute copy numbers, which
for each cell type must be simple integers. Since we are specifically interested in describing
cancer samples comprising populations with distinct cancer genomes it is important to obtain
quantitative measures of copy numbers. We reasoned that the on-diagonal intensities may
also be influenced by factors such as the density of restriction enzyme cut sites, short-read
mappability, sequencing bias due to GC content, and possible effects of variable chromatin
compaction along the genome, such as A/B (open/closed) chromatin compartments [31], [44],
[42]. We therefore assessed the impact of these factors on on-diagonal intensities in wild-type
cells (without copy number variation), and we found that all of them contributed significantly
to overall variation in raw on-diagonal intensity. Introducing covariate corrections for (1)
chromatin compartments, (2) restriction enzyme site density, (3) short-read mappability and
(4) GC content is able to explain around 80-90% of overall on-diagonal intensity variation
in validation Hi-C matrices. We applied this covariate correction to improve copy number
inference from Hi-C data.

Absolute copy number profiles facilitate the estimation of tumor purity in cancer samples
that include mixtures of cancer and normal cells. Since (1) the contact map of a cell mixture
is the weighted superposition of the contact maps of each subpopulation of cells (as shown
above), and (2) the copy number of each region of the genome must be an integer, we can
jointly infer the cancer cell fraction f and copy number profile of a mixed sample. While
the remainder of the sample is generally assumed to be wild type cells with frequency 1–f,
in general, there could be multiple cancer cell populations, with tumor purities f1, f2 and
so on. In order to infer absolute copy numbers and tumor purities from covariate corrected
relative copy number profiles, some prior knowledge about absolute copy numbers is necessary.
By default, HiDENSEC assumes knowledge of the most common copy number in a given
sample (typically, wild type ploidy 2), though alternative specifications can be incorporated
as optional inputs to HiDENSEC. We validated our absolute copy number and tumor purity
estimation method using (1) in silico mixtures of Hi-C data from karyotypically normal
GM12878 cells and HCC1187 cancer cells, and (2) Fix-C data derived from in vitro (FFPE)
pelleted mixtures of karyotypically normal GM12878 cells and HCC1187 cancer cells. The
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karyotypes of both cell lines are well-characterized, providing a reliable ground truth [45].
These Hi-C data from in silico and in vitro mixture samples confirmed the accuracy of the
absolute copy number estimates of the cancer cell type, and the accuracy of tumor purity
estimates (Figure 2.2 a-d).
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Figure 2.2: Validation of HiDENSEC using mixtures of samples

We initially considered also exploiting the precise magnitudes of off-diagonal contacts
(arising from inter-chromosomal fusion events) to quantify tumor purity. Since such contacts
are absent in normal cells, these signals should arise only from the cancer cells. As expected,
we found that these signals are proportional to the tumor purity in our in silico Hi-C mixtures,
following the superposition principle for cell mixtures (Figure 2.2e, f). The absolute read
counts arising from such inter-chromosomal contacts, however, vary substantially between
translocations. This is likely due to both differences in the chromatin packing of different inter-
chromosomal contacts and variance in precise fusion locations within the binning windows
that define the resolution of our analyses (by default, 50 kb windows). Given this lack of
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meaningful quantitative information beyond presence and absence of off-diagonal contacts,
HiDENSEC relies on them solely for detection of large structural variants, with inference
of absolute copy numbers and tumor purity primarily based on the on-diagonal intensity
analysis described above.

Detecting reciprocal and copy-number-altering translocations

As part of HIDENSEC we developed automated methods for detecting inter-chromosomal
(and long-range intra-chromosomal) rearrangements, which appear as “off-diagonal” features
of the Hi-C matrix. These include (1) rearrangements associated with copy number changes
of both of the involved chromosomes, whose breakpoints coincide with boundaries of copy
number changes, and (2) reciprocal translocations, which show a characteristic “bow-tie”
pattern in the Hi-C contact map. For copy-number-associated (type-1) events, we integrated
the previously inferred copy number profile and its associated change points with a set of
intuitive summary statistics (Online Methods) to identify the most likely translocations
and breakpoints. For reciprocal translocations (type-2 events) we exploited the distinctive
“bowtie” pattern of the Hi-C contact map in regions around the breakpoints to design
summary statistics sensitive to such structured matrices. In both scenarios, each candidate
rearrangement is associated with a well-calibrated p-value, allowing assessment of significance
through standard multiple testing procedures. Finally, we also found some events that are
neither type-1 nor type-2. We found these to be more difficult to detect in an automated
fashion, since biological covariates such as compartment structure and chromosome size may
produce apparent off-diagonal signals, and identified these by manual curation of off-diagonal
Hi-C signals.

We validated HiDENSEC’s performance on the six in vitro mixtures described above
(Figure 2.3a, b), as well as a manually annotated melanoma Fix-C sample (Figure 2.3c).
Performance of HiDENSEC relative to HiNT was assessed systematically by recording top-k
recall curves for k up to 60 and each validation mixture, with recall measured relative
both to all LSSVs present, as well as only those belonging to classes (a) and (b) described
above. As indicated in Figure 2.3a), HiDENSEC consistently performs favorably, returning
fewer total off-diagonal calls at higher recall, without exception. The recall metric here is
defined on the level of chromosome pairs; that is, an off-diagonal call is classified as positive
if its participating chromosome pair shares a ground-truth rearrangement. To illustrate
HiDENSEC’s performance in localizing such fusions, Figure 2.3b) shows an example event
detected by HiNT at mixture proportions 50%, but not below.
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Figure 2.3: Benchmarking HiDENSEC’s LSSV identification

Using HIDENSEC to reveal the the evolution of chromosomal

aberrations during melanoma progression

We characterized chromosome evolution during cancer progression using Fix-C data from
three patients using HiDENSEC. In all, we generated Fix-C data from nine samples at various
stages of melanoma development:
Patient 1. A primary cutaneous melanoma (Sample 1 - II) with an adjacent precursor nevus
(Sample 1 - I) microdissected from the same FFPE sample.
Patient 2. A primary melanoma (Sample 2 - I) and its asynchronous metastasis (sample
2-II).
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Patient 3. Two histologically distinct regions (1 and 2, Samples 3 - I and 3 - II) of a large
primary cutaneous acral melanoma and its asynchronous metastasis (Sample 3 - III).

For each patient, we sequenced and analyzed Fix-C libraries prepared from FFPE sections
that were adjacent sections used for either targeted short-read sequencing of a panel of cancer-
associated genes called UCSF500 [46] or exome sequencing. These data allowed absolute
copy number profiles inferred by HiDENSEC to be compared to phylogenetic relationships
between progression stages derived from somatic mutations to develop a comprehensive view
of the cancer genome.

Patient 1

HiDENSEC analysis of Fix-C data from the microdissected nevus (Sample 1 - I) and adjacent
melanoma (Sample 1 - II) revealed balanced translocations between chromosome 4 and 8
and chromosome 1q and 3q that were only present in the melanoma (Figure 2.4a, b).
Chromosome breakpoints for these translocation events did not overlap genes that could
be directly linked to melanoma progression. Chromosome arms 1p and 3p showed reduced
copy number, with copy number transitions corresponding to the translocation breakpoints,
indicating that the reciprocal derivative chromosome was lost in the melanoma. In addition,
there were copy number losses of chromosomes 5, 9, and 10 (Figure 2.4c) estimated by
HiDENSEC to represent monosomies, with a cancer cell fraction f = 57%. This estimate
is consistent with the allele frequencies determined from the UCSF500 cancer gene panel.
Somatic variant calling using exome sequencing of the nevus (Sample 1 - I) and the adjacent
melanoma (Sample 1 - II) along with a matched normal sample, identified the BRAF
V600E mutation as a driver mutation present in both the nevus and melanoma (Figure
2.4d). Together, these combined analyses show that our method can detect chromosomal
rearrangements and copy number changes in tumor samples with a considerable contribution
of normal cells (Figure 2.4e).
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Figure 2.4: HiDENSEC analysis of Patient 1

Patient 2

For patient 2 we compared a primary melanoma (Sample 2 - I) with a metastasis that was
collected from the same patient at a later time (Sample 2 - II). While some translocations
and copy number changes were shared by both samples, others were unique to the metastasis
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(Figure 2.5a, b, e). The existence of shared structural variants between the two samples
implies that the metastasis arose from a common ancestor with the primary melanoma
(Figure 2.5e). Our HiDENSEC analyses are consistent with a model in which each sample
has a single dominant (but karyotypically distinct) cancer cell population mixed with normal
cells. In the melanoma, this dominant population comprised f = 71% of the cells, while
the metastasis comprised 59% cancer cells (Figure 2.5c). The tumor purity estimate for
the primary melanoma sample is consistent with tumor purity estimated using the mutant
allele frequency for BRAF V600E, the presumed initiating oncogene (Figure 2.5d). Copy
number profiles estimated using HiDENSEC are highly concordant with profiles derived from
the UCSF500 capture panel from an adjacent tissue section. Differences in tumor purity
are expected due to variation across microdissected samples from the same tumor. As with
Patient 1, HiDENSEC analysis applied to Fix-C data detected translocations whose genomic
breakpoints would be undetectable by standard array CGH and also provides the details
of the underlying rearrangements. We used off-diagonal chromatin contact map signals to
annotate the associated breakpoints. For example, both the primary melanoma and its
metastasis carry a complex translocation event involving chromosome 2, 5 and 10, which is
concurrent with loss of 5q, a part of 2p and a part of 10p suggesting that the underlying
structural rearrangement occurred early in the primary melanoma, since this is an LSSV
shared by both the primary melanoma as well as the metastasis. Moreover, HiDENSEC
detects a metastasis-specific translocation between chromosome 11 and 17 that explains the
copy number loss of 11q and a gain in copy number of 17q in the metastasis. Similarly, we
detected a chromosome translocation between chromosome 1 and 15 that is present in the
melanoma and continued to evolve by fusion with chromosome 13. This analysis highlights
that HIDENSEC can deconvolve chromosome scale events during cancer evolution (Figure
2.5e).
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Patient 3

The acral melanoma of Patient 3 has been extensively characterized using conventional
approaches [47]. Acral melanomas are known to be enriched for structural rearrangements
[48]. We analyzed two histopathologically distinct subregions of the primary melanoma of
Patient 3 (without prior knowledge of any genetic differences) and one from the metastasis,
which arose years later (Figure 2.6). HiDENSEC analysis using Fix-C data generated
from these three samples revealed genetic heterogeneity within the primary tumor and the
progression of chromosomal alterations during evolution of the melanoma into metastasis.
Since the Fix-C samples from Patient 3 were sequenced more deeply we were also able to
characterize allele frequencies of inherited variants and trace haplotype copy number (Online
Methods, Figure 2.6e). In conjunction with copy number estimates, analysis of these
germline variants allowed us to identify (1) homozygous copy number neutral changes arising
from the loss of one chromosome and the duplication of its homolog, and (2) infer in triploid
cases which haplotype was duplicated (Figure 2.7a). The allele frequency spectra therefore
provide independent corroboration of copy number and allow precise inference of lost and/or
duplicated haplotypes.
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Figure 2.6: HiDENSEC analysis of Patient 3

The two regions of the primary melanoma share copy number changes and structural
rearrangements (Sample 3 - I and Sample 3 - II), indicating that they are clonally related.
HiDENSEC CNV profiles show that, in some samples, several genetically distinct populations
of cancer cells are present. In such mixtures, the observed copy number profile is a super-
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position of the CNV profiles of each genotype, weighted by cell fraction. Specifically, the
absolute copy number increases of chromosomes 1q and 6p, and the copy number decreases
of chromosome 6q, 9, 10, 11p, and 21, in Sample 3 - I and Sample 3 - II are inconsistent with
a single cancer cell population (Figure 2.6d). However, we find that two distinct cancer cell
populations can explain both samples I and II of Patient 3. Using HiDENSEC, we estimate
that Sample 3 - II comprises fA = 56% cancer cells with genome A and 44% normal cells.
While Sample 3 - II could not be described as a mixture of normal cells with a single cancer
cell population; knowledge of cancer genome A from Sample 3 - I allowed us to interpret
Sample 3 - II as a mixture of normal and cancer cell population with genome A cells with
a second cancer cell population with genome B. We inferred that Sample 3 - II comprises
fA = 60% cancer cell genotype A, fB = 12% cancer cell B genotype, and 1-(fA+fB) 28%
normal cells. Finally, the metastatic sample can be described as a mixture of normal cells
and a third cancer cell population with genotype C, that is most closely related to cancer cell
population A of the melanoma, with cancer cell fraction fC = 63%.

The karyotypes of cancer cell genotypes A, B, and C as inferred by HiDENSEC are
shown schematically in Figure 2.7a, b. These genomes exhibit shared and/or unique copy
number gain/loss and large-scale rearrangements to varying degrees that can be mapped
onto a phylogeny of the three cancer genomes. Based on a parsimony analysis of multiple
shared chromosome-scale features of cancer cells with genotypes A and C, we infer that
they share a more recent common ancestor, with melanoma genome B diverging earlier, and
parsimonious reconstructions of the AC and ABC ancestors are also shown in (Figure 2.7b).
This phylogeny of the three cancer cell genomes provides a framework for understanding
changes in karyotype through cancer progression.
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Figure 2.7: Evolution of the melanoma genome in Patient 3

Allele frequency spectra derived from the tumor Fix-C data (Online Methods) are consis-
tent with copy number changes inferred by HIDENSEC and provide additional information
about genomic change during cancer progression (Figure 2.6e). While most diploid chromo-
somes have the expected 1:1 ratio of reference:alternate alleles, in some cancer cells we infer a
copy number neutral loss of homozygosity, indicated by the presence of two copies of the same
haplotype (depicted as chromosomes with the same color in Figure 2.7a). Chromosomes
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or chromosome arms predicted to be haploid or triploid by HiDENSEC show corresponding
deviations from 1:1 allele ratios, with consequences for cancer progression.

For example, trisomic chromosomes such as chromosome 7 (Figure 2.6e, f) show allele
frequency spectra consistent with a 1:2 allelic ratio in genotypes A and C (with observed
signal diluted by the fraction of wild type cells in the sample; chromosome 7 is diploid in
genotype B). The chromosome 7 haplotype that duplicated in the AC ancestor carries an
oncogenic BRAF N581I mutation (Figure 2.7a, c). This mutation must have arisen early
in cancer progression, because it is found in all three cancer cell genotypes, consistent with
its appearance in targeted sequencing [47]. Our HiDENSEC analysis shows that the copy
number increase in this mutation in the AC progenitor was associated with duplication of
the entire mutant chromosome (Figure 2.7a). Our analysis also establishes the genetic
background on which the mutation occurred, since alleles occurring at higher frequency along
chromosome 7 must all lie on the mutant haplotype. Lastly, we find that genotype B carries
a unique 5-7 translocation – heterozygously disrupting the LMBR1 gene in chromosome 7 –
that is not found in the AC lineage (Figure 2.7c).

Chromosome 10, which encodes the tumor suppressor PTEN on its q arm, provides a
more complex case. The PTEN Y176X mutation and loss of the wild type 10q arm was an
early event found in both cell types A and B (Figure 2.7c) [47]. In contrast, chromosome
10 is diploid in genotype C (Figure 2.7a). Surprisingly, in genotype C the 10q arm carrying
the PTEN Y176X mutation is homozygous but the 10p arm is heterozygous (i.e., wild type)
(Figure 2.7c). We therefore infer that the two copies of chromosome 10 in genotype C did
not arise by simple chromosome duplication in the C lineage (which would have produced
a homozygous chromosome), but must have involved chromosome arm exchange either in
an ABC ancestor (with parallel loss of the recombinant chromosome in A and B), or in an
AC ancestor (with parallel loss of the original brown chromosome 10 in B and loss of the
recombinant chromosome 10 in A). Regardless of the timing of the recombination event, we
infer the presence of a previously unrecognized chromosome arm exchange during progression
(Figure 2.7a).

The coordinated evolution of chromosomes 9 and 21 provides another example in which
chromosomal rearrangements observed in Fix-C can be used to explain complex karyotypic
changes. All three cancer cell genotypes have compound heterozygous deletions of the
CDKN2A locus encoding the tumor suppressors p14 and p16. In genotypes A and C one copy
of chromosome 9 is completely lost, while genotype B retained 9q. All three genotypes carry
a small deletion of CDKN2A on the other (blue) copy of 9p (Figure 2.7a, c). Genotypes
A and C are missing one copy of chromosome 21 while genome B contains a duplicated
homozygous 9q-21 fusion chromosome (making B triploid for 9q overall) but is missing the
alternate copy of chromosome 21 relative to A and C (Figure 2.7a).

The most parsimonious explanation of these changes is that the 9q-21 translocation
occurred in the ABC ancestor, with concomitant loss of a copy of 9p (and a copy of CDKN2A)
early in cancer evolution, likely because the 9p fragment liberated by the 9q-21 translocation
lacked a centromere (Figure 2.7c). The 9q-21 fusion chromosome doubled in the B lineage
with loss of the other copy of 21 (Figure 2.7a). Conversely, in the AC lineage the 9q-21
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fusion was lost, explaining mechanistically (1) the coordinated loss of the same 9q and 21
haplotypes in both A and C and (2) the loss of 9p in A, B, and C. Finally, in the metastatic
lineage C a duplicated copy of the remaining intact chromosome 9 experienced a 9p-13
translocation (with loss of 9q) (Figure 2.7b, c).

Chromosomes 1, 6, and 11 are the nexus of a complex series of copy number changes
and rearrangements in the three cancer cell genotypes, notably involving an early NRAS
G12D mutation on 1p (Figure 2.7c). Strikingly, as found for chromosomes 9-21-13, the
observed sub-chromosomal copy number changes can be explained by translocations followed
by consecutive mis-segregation of the resulting chromosome fusions, rather than by direct
deletion of an arm (or part of an arm) (Figure 2.6b). An initial reciprocal translocation
between chromosomes 6 and 11 occurred in a cell ancestral to cancer cell resulting in a
6p-11p fusion chromosome, whose copy number subsequently doubled and a 6q-11q fusion
chromosome with a 20 Mbase deletion of the 11p chromosome at the fusion point (Figure
2.5b). Subsequently, cancer genome B gained one copy while cancer genome A lost one
copy of chromosome 6. We infer that chromosome 6 loss occurred after the establishment
of the metastasis genome, since the metastasis – which is also haploid for 6q – retains the
alternate homolog of 6q. In the metastasis genome 6q was likely lost when the 6q-11q fusion
chromosome passed the 11q chromosome arm to chromosome 20q by reciprocal translocation,
followed by the loss of 6q and 20p. Imbalances between the p and q arms of chromosome 6 are
very common in melanoma. Gain of 6p and loss of 6q occurs 50% of cases and can be used
to diagnostically distinguish melanoma from nevi [16] using fluorescent in situ hybridization.
We used this approach as an independent validation for the CNVs changes detected by
HiDENSEC (Figure 2.7e).

Cancer genotypes A and C both share the loss of 1p and the fusion of the centromere
of 1q with the p-telomere of chromosome 11. This coupled loss/fusion must have occurred
before the most recent common ancestor of A and C (AC), and can be explained by a single
event (as above, the loss of the 1p arm is presumably due to its lack of a centromere, which
remained with 1q). C also retains an intact copy of the same haplotype of chromosome
1, but this is lost in A, which carries a duplicated copy of the homologous chromosome 1.
The presence of an intact chromosome 1 in C implies its presence in the AC ancestor and
both chromosome 1 homologous must have to have duplicated independently throughout the
cancer evolution (Figure 2.7a, b, c).

Finally, cancer genotype B harbors lineage-specific balanced reciprocal translocations
of (1) the distal portions of 17q and 19q, and (2) the 5q and 7q arms, resulting in a (24
Mb) deletion in the proximal 5q arm (Figure 2.7a). These changes are not present in
cancer genomes A and C. Notably, the breakpoint of the translocation on chromosome 17p
occurs within the NF1 locus, producing a loss of function mutation in the neurofibromin 1
tumor suppressor gene. While we did not detect a mutation on the second allele of NF1,
immuno-staining for NF1 in an FFPE sample adjacent to Sample 3 - I showed a discrete
NF1-negative region suggesting loss of NF1 function in this region (Figure 2.7d). Thus
despite cells of genotype B not having progressed to a (detected) metastasis, it appears to
have continued to evolve under selective pressure to eliminate the NF1 tumor suppressor and
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thereby further upregulating MAP-kinase signaling.

2.3 Discussion

A new method

Here we present, HiDENSEC, a new analytical method for investigating cancer genome
evolution in patient samples. We determined the chromatin contacts in formalin fixed,
paraffin embedded (FFPE) samples from three melanoma patients, using the Fix-C chromatin
conformation capture protocol [43]. We show that these data can be used to identify both
copy-number altering and copy-number neutral, and track the evolution of chromosome-arm-
scale changes in cancer genomes. Patient samples are mixtures of normal and cancer cells
and we show using in silico and in vitro generated controls that observed Fix-C signals are
linear superpositions of the signals from normal and cancer cells weighted by cell frequency.
This observation allows us to jointly estimate tumor purity as well as genome-wide absolute
copy numbers. Hi-C data also provides information about allele frequencies, which can be
used to identify copy-number neutral losses of heterozygosity or to identify the more common
haplotype in triploid situations.

Since chromatin contacts probed by Hi-C extend over hundreds to thousands of kilobases,
the method allows us to capture large-scale ( >10Mb) rearrangements. Other short-read
sequencing approaches rely on mapping read pairs across rearrangement breakpoints, and
have lower sensitivity due to the difficulty in accurately mapping reads to repetitive sequences
that often flank breakpoints. Benchmarking experiments for the detection of LSSVs in Hi-C
data sets showed that HIDENSEC was more sensitive and accurate in identifying LSSVs
than the current gold standard. Since our method can be used with formalin-fixed sections
or micro-dissected fixed tissue, it can be applied retrospectively to samples collected over the
course of a patient’s disease progression. Finally, we show that the sensitivity of our method
allows us to detect rearrangements that occur in melanoma development and to define the
genetic changes that occurred specifically in minor subpopulations of melanoma cells.

Biology of cancer progression

Although cancer sequencing approaches based on capture panels (e.g., UCSF500) can reliably
estimate copy number profiles across the genome, and even estimate tumor purity, they cannot
explain karyotype change in detail, because such methods have low-sensitivity for discovering
rearrangements. Even deeper short-read sequencing is not able to reveal breakpoints in
repetitive sequences. Thus, the centromeric breakpoints or telomere fusions repeatedly
found in our melanoma analyses would be impossible to detect by conventional sequencing.
Specifically, in the three patients’ samples analyzed, HIDENSEC was able to annotate a total
of two reciprocal translocations, three fusions involving telomeres (one of which is present
in all three samples of Patient - 3), and five chromosome arm exchanges with breakpoint
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in centromeric regions. Our approach therefore provides an integrated picture of cancer
heterogeneity and karyotype evolution. A common process in our melanoma progression
cases is whole chromosome arm rearrangement followed by loss and/or copy number change
by mis-segregation of recombinant chromosomes. The most complex changes were found in
the primary acral melanoma and metastasis from patient 3. For example, a chromosome 6 to
11 translocation was followed by a subsequent translocation, so that the 11q of the derivative
chromosome becomes fused to 20q with the concurrent loss of 20p.

By sampling several stages of cancer progression, or even different regions within the same
melanoma, we show that HiDENSEC can be used to infer the genome organization of multiple
subpopulations of cancer cells. Comparing these subpopulations and applying the principle
of maximum parsimony along with the known temporal relationships among the samples, we
can infer unsampled intermediates and possibly transient states in cancer progression (Figure
2.7a). Thus in patient 3, we show that of the three subpopulations detected, melanoma
genotype A is more closely related to the metastatic genotype C subpopulation, and that
melanoma genotype B diverged prior to the A-C divergence. This, in turn, allows us to
characterize the changes that occurred on this cellular phylogeny. We find that the most
recent common ancestor of genotype A and genotype C is linked to large structural events
that resulted in a gene conversion event of large parts of the q arm of chromosome 10 (Figure
2.7b).

Our analysis of two regions of the melanoma from patient 3 highlights the karyotypic het-
erogeneity in this tumor. In Sample 3 - I, an area of primary melanoma, two genetic subclones
were identified. Previous analysis of this patient identified several consecutive mutations that
lead to upregulated MAPK signaling by different mutations including, including copy number
gain of BRAF in the AC precursor and loss of heterozygosity for the NRASG12D mutation
in melanoma genotype A (Figure 2.7c) [47]. The identification of structural rearrangement
that disrupts the NF1 locus in subpopulation B illustrates that HiDENSEC can uncover
novel LSSVs that drive cancer cell evolution, even when only present in small cancer cell
populations. While NRAS mutant cancers typically do not have NF1 or BRAF mutations,
the G12D mutation likely still has some residual GTPase activity, explaining why NF1 loss
and BRAF mutation provides a selective advantage for this branch of the melanoma evolution
in patient 3.

Together our analyses of samples from three cancer patients demonstrates that HIDNESEC
analysis of FIX-C data can characterize cancer cell genome evolution from the earliest stages
of cancer development using microdissected tissue. Notably, this approach allows us to
deconvolve heterogeneous mixtures of cancer cells with distinct genotypes, and follow the
genomic changes through time by analyzing samples through cancer progressions. Applying
this approach at a larger scale to investigate will significantly enhance our understanding of
cancer cell genome evolution by revealing common patterns of chromosomal change that can
be used both for diagnostic purposes and to further decipher the underlying causal genetic
changes during cancer progression.
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2.4 Online Methods

Source and characterization of melanoma samples

Formalin-fixed paraffin-embedded tissues were retrieved from the archives of the Der-
matopathology Section of the Departments of Dermatology and Pathology. Tumor bearing
areas were microdissected from 10 µm thick unstained sections, using HE-stained sections
as guidance. Archival formalin-fixed, paraffin-embedded (FFPE) melanoma samples were
retrieved from the archives of the UCSF Dermatopathology service, under an IRB approved
protocol (11-07951). Routinely stained sections were evaluated and tumor areas were marked
by a dermatopathologist. FISH was performed with locus-specific probes for chromosomes 6p
(RREB1), 6q (MYB), 11q13 (CCND1, and 6 centromere as previously described [49]

Fix-C methodology and sequencing

FFPE samples were processed using Fix-C® kits from Dovetail Genomics. The sample
preparation and Fix-C protocol have been described in Troll et al. 2019. Briefly, paraffin
embedded tissue was dissolved in xylene followed by centrifugation. The tissue sample
was hydrated with a series of ethanol washes (100%, 70%, 20%) and water followed by
centrifugation. The tissue sample was digested with proteinase K at 37C for 1h. The digested
sample was centrifuged and the supernatant was saved to capture chromatin on beads. The
chromatin was digested with a restriction enzyme at 37C for 1h followed by wash. The
digested ends were repaired and subjected to proximity ligation at 16C for 1h. Post ligation
sample was crosslink reversed and DNA was purified on AMPure XP beads. The purified
DNA was sheared and end-repaired for Illumina adaptor ligation. The proximity-ligated DNA
is enriched with capture on streptavidin beads. The captured DNA is then PCR amplified
on beads for 13 cycles, purified using AMPure XP beads, quantified, and sequenced.

Cell culture and formalin fixation of cell line mixtures embedded

into paraffin blocks

Suspension human normal cells (GM12878) were cultured in RPMI-1640 medium [ATCC]
supplemented with 15% FB Essence [Seradigm] and 100 U/mL Penicillin-Streptomycin
[Gibco]. Mouse embryo fibroblasts (MEFs) were cultured in DMEM [Gibco] supplemented
with 15% FB Essence and 100 U/mL Penicillin-Streptomycin. The human and mouse cell
lines were dissociated by Trypsin-EDTA (0.25%) [Gibco] for single cell suspension, then
quantified by Trypan blue staining with a Countess cell counter [Invitrogen]. 200 µL of 2%
agarose in PBS solution was pipetted into a 1.7 mL microfuge tube and allowed to solidify.
Equal numbers human and mouse cells (15 million total) were mixed and pelleted in a 15
mL conical tube, then resuspended in a small volume of neutral-buffered 10% formalin,
then finally re-pelleted in the microfuge tube with agarose plug. Supernatant was then
aspirated and fresh neutral-buffered 10% formalin was gently pipetted onto the cell pellet.
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The microcentrifuge tube was then placed in buffered formalin at room temperature for 24
hours. The bottom of the microcentrifuge tube was then cut off with a razor blade and
the plug gently extruded into a tissue cassette immersed in PBS using a pipette tip. The
tissue cassette with mixed cell line plug was then embedded in paraffin and sectioned using
standard protocols [50].

Creation of in vitro normal-cancer mixtures

Adherent human cancer cells (HCC1187) were cultured in RPMI-1640 medium supplemented
with 10% FB Essence and 100 U/mL Penicillin-Streptomycin. Human wildtype (GM12878)
and HCC1187 cancer cells were dissociated by Trypsin-EDTA and mixed in ratios of 1:1,
2:1, and 4:1 WT:cancer cells before pelleting, fixation, paraffin-embedding, and sectioning as
described above.

Allele Frequency Spectrum

To infer haplotype copy number, we computed the regional frequency of nominally inherited
variants in 500 kb windows. A single copy of each haplotype would then have a peak at 50%
frequency; two copies of one haplotype and one copy of the other would appear as peaks at
33% and 67%; loss of heterozygosity would appear a a peak at 0/100%. Since we did not
have matched patient normal samples, we considered variants as nominally inherited if they
occurred with alternate allele frequency between 40% and 60% in the 1000 Genomes Project.
Note that this allele frequency spectrum (as shown, e.g., in Figure 2.6e) does not include
somatic mutations, which are considered separately.

In order to arrive at the copy number profiles, mixture proportions and off-diagonal
events, HiDENSEC proceeds in broadly three steps: (i) Covariate correction, (ii) joint
inference of absolute copy number profile and mixture proportion, (iii) detection of large-scale
chromosomal rearrangement events. (ii) and (iii) occur partially in tandem in order to
facilitate sharing of information that may improve statistical inference. Despite the large
number of cells contributing to any single Hi-C experiment, read counts in general do not
tend to follow parametric distributions typically associated with increasing sample sizes, and
so HiDENSEC remains fully nonparametric throughout all these steps.

Running HiNT and hicbreakfinder

HiNT was run with version: 2.2.7. hicbreakfinder was built from the master branch
source downloaded from github, https://github.com/dixonlab/hicbreakfinder, using commit
30a0dcc6d01859797d7c263df7335fd2f52df7b8 (last updated in 2018). For hicbreakfinder the
inter and intra chromosomal break files were provided by the Dixon lab as detailed on the
github site. NextFlow pipelines to run both HiNT and hicbreakfinder can be found on the
HiDENSEC github.
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HiDENSEC pipeline

Hi-C paired-end (PE150) sequencing reads were aligned to the hg38 reference genome using
bwa [51] and then converted to Hi-C maps using Juicer [52] and visualized in Juicebox
[53]. These were then processed with the HiDENSEC pipeline which comprises custom pre-
processing scripts as well as a Mathematica Notebook reproducing all presented results. The
HiDENSEC code is available at https://github.com/sanjitsbatra/HiDENSEC. HiDENSEC
aims to interpret the Hi-C contact map of a cancer sample as a mixture of cells with distinct
genomic types. Each genome has a discrete set of copy number changes and rearrangements
relative to the diploid genome, and occurs in a fraction of the cells in the sample. Both
the copy numbers, rearrangements, and cell fractions will be inferred from the Hi-C dataset,
typically including one normal or wild-type genome and one or two aberrant cancer genomes.
In order to arrive at the copy number profiles, rearrangements, and the tumor purity of
each genome, HiDENSEC proceeds in broadly three steps: (i) Covariate correction, (ii) joint
inference of absolute copy number profile and tumor purity, (iii) detection of large-scale
structural variants. (ii) and (iii) occur partially in tandem in order to facilitate sharing
of information that may improve statistical inference. Despite the large number of cells
contributing to any single Hi-C experiment, read counts in general do not tend to follow
parametric distributions typically associated with increasing sample sizes, and so HiDENSEC
remains fully non-parametric throughout all these steps. The HiDENSEC pipeline is described
in detail in A.

Covariate Correction

We first account for a variety of biological and experimental factors that are known to affect
relative Hi-C read counts. This correction is required for unbiased and stable inference. The
most prominent factors affecting Hi-C contact maps include GC (guanine plus cytostine)
content, read mappability, cut-site density, and compartment structure. The first three of
these covariates were also modeled by HiNT. We also considered compartment structure for
the diploid GM12878 cell line. Concretely, covariate correction models observed read counts
falling into a bin of length w around a site i as

readsi / (absolute copy number)i · correction (GCi,mappabilityi, cut-sitesi, compartmenti) ,
(2.1)

where the corrector function is a simple compartment-specific linear model:

correction (GCi,mappabilityi, cut-sitesi, compartmenti) =X

c2compartments

c=compartmenti
⇥ (�c,1 · GCi + �c,2 · mappabilityi + �c,3 · cut-sitesi) (2.2)

The linear models are chosen to match observed trends in diploid reference genomes, and
reliably account for ⇡ 80% of their variability. The coefficients �c,· generally depend on
the precise experimental details (e.g., whether Hi-C or Fix-C protocols were used), and we
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recommended estimating the covariate corrections using reference maps obtained through
the same experimental protocol as the map of interest. In the absence of a reference map,
HiDENSEC defaults to performing the correction (2.1)-(2.2) within the map of interest,
restricting attention to those genomic sites that are likely to be diploid (see section below).
For the samples presented in the main section, we used protocol-matching reference Hi-C
maps. We note that the correction procedure in the form given by (2.1)-(2.2) only applies
to the diagonal entries of the binned Hi-C matrix, which contains almost all information
about copy number profiles. The off-diagonal components, which represent HiC contacts
between (binned) site i and j are primarily used for detecting fusions and other large-scale
strucural variations (LSSVs). Since we are primarily interested in the presence or absence
of inter-chromosomal fusions, their precise magnitude beyond a broad distinction of large
and small is substantially less informative. Thus, even though it would be straightforward to
extend (2.1)-(2.2) to correct off-diagonal read counts by regressing against paired covariates,
we do not attempt this in HiDENSEC .

Inference of copy numbers & mixture proportions

Our goal is to estimate both the absolute copy number profiles (i.e., local integer ploidy)
and mixture proportion for each of the constituent genomic types. This is, however, an
ill-defined problem without additional constraints. First, the HiC contact map cannot
distinguish between uniformly diploid and uniformly triploid genomes (although this can be
done by measuring allele frequencies which will differ in these two cases). Second, we cannot
distinguish between a 50-50 mixture of a wild-type genome with a cancer genome bearing
a triploid chromosome 1, vs, a 75-25 mixture of a wild-type with a cancer genome bearing
a tetraploid chromosome 1. Both of these kinds of ambiguities arise even in the absence of
noise and make the problem under-determined without additional assumptions.

To remove these ambiguities HiDENSEC makes two corresponding assumptions:

1. The most common absolute copy number (of the mixture) is known. Knowledge of this
copy number mode allows for appropriate rescaling of the Hi-C matrix correcting for
the overall unknown constant C0. While other statistics of the absolute copy number
profile may be used (e.g., mean, median), the mode is particularly appealing since it
most often will equal 2, and as it is particularly reliable for estimating C0.

2. Absolute copy number are as close to diploid as consistent with the data. That is,
HiDENSEC returns the biologically most parsimonious estimate.

Given these assumptions, HiDENSEC appropriately centers the (covariate corrected)
read counts by their largest mode, and infers absolute copy number profiles and mixture
proportions jointly. For each cell population at a time, HiDENSEC scans along the genome
in overlapping windows of length w, and identifies for each such window and a fixed choice of
mixture proportion the copy number value that minimizes a suitably designed metric between
predicted copy number and observed Hi-C intensities. A corresponding global discrepancy
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metric is then minimized over all choices of mixture proportions, yielding both an overall
mixture proportion estimate as well as local absolute copy number inferences. This estimated
copy number profile is then subtracted from the read count data, and the entire procedure
repeated in order to detect any potential further sub-populations contributing to the Hi-C
matrix.

It can be proven that the inference scheme described above recovers the correct mixture
proportions and absolute copy number profiles in the limit of noiseless data and comparatively
few distinct cell populations, or in the case cell populations, whose mixture proportions and
copy number profiles satisfy certain monotonicity properties. The latter constraint is not
surprising, since the general inference task tackled by HiDENSEC is NP-complete in the
number of cell populations, while the algorithm described above scales linearly in them. In
order to relax the former constraint and accommodate noisy data, HiDENSEC performs a
number of additional refinement, model selection and hypothesis testing steps that correct
for any copy number changes that may be called purely as a result of random fluctuations or
whose precise location may be shifted as a result thereof. In the process, each change point is
assigned an interpretable confidence score that indicates to what extent it is likely to reflect
actual biological signal, as opposed to being the outcome of noise. After undergoing another
round of refinement using detected off-diagonal events (see section below), these estimates
are then returned to the user for interpretation.

Likewise, HiDENSEC refines the initial mixture proportion estimate based on similar
principles, and additionally equips them with 95% confidence intervals that reflect their
associated uncertainty. There are two primary sources that contribute to this estimation
uncertainty: Stochastic fluctuations in read counts and uncaptured biological or experimental
covariates. While the former is typically well-addressed by classical non-parametric tools
like the bootstrap, the latter is more delicate and possibly instance-specific, prompting
HiDENSEC to employ bootstrap ideas combined with structured sub-sampling that integrate
information within and across individual stretches of copy-number changes. The resulting
confidence intervals are conservative, yet not overly so.

Inference of large-scale structural variants

Large-scale structural variants typically result in off-diagonal sub-matrices structured in
either of the six patterns , , , , , , where darker fillings corresponds to
larger intensities. The latter two structures are evidence of reciprocal exchanges and, due
to their lack of rotational and translational symmetry compared to non-reciprocal events,
generally easier to identify. On the other hand, , , , and may indicate not only
large scale rearrangements, but can also result from DNA geometry, compartment structure,
or simply stochastic fluctuations, and are thus found abundantly throughout Hi-C maps.
Distinguishing fusion events from these biological and experimental confounding can thus
be difficult, especially when faced with particularly noisy data. Moreover, once stochastic
fluctuations become sufficiently strong, the intensity gradients within each sub-matrix may
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wash out, effectively rendering all of them rotationally and translationally equivalent. To
address these sources of uncertainty, HiDENSEC resorts to two corrections:

1. HiDENSEC only aims to detect non-reciprocal fusion events of class (a) as described
in the main text. Due to their effect on local copy numbers, , , , in class
(a) allow HiDENSEC to rely on its previously inferred copy number profile to aid in
their detection. More concretely, by default HiDENSEC will only consider off-diagonal
sub-matrices anchored at coordinates associated with copy number changes deemed
significant by the previously outlined analysis. Switching to non-default behavior
and scanning points along the whole genome is possible, but care should be taken
in interpretation, as confounding by above-mentioned biological and experimental
covariates may be present. Additionally, restricting HiDENSEC ’s search to copy
number change points drastically reduces its run-time, with a typical analysis completed
in less than twenty minutes on a typical laptop.

2. Experimental and biological confounders tend to affect rows and columns more globally.
Biological confounders like compartment structure generally elevate read counts of
interactions between the region of interest and all other sites in the genome, leading to
entire rows and columns in the Hi-C matrix that are enriched. All summary statistics
computed by HiDENSEC are thus calibrated by comparing their value at the site-pair
of interest against their empirical distribution across the associated row and column.

With these two corrections in hand, HiDENSEC considers two summary statistics that
measure the extent to which (a) intensities tend to accumulate in only one of the four
quadrants of each sub-matrix, and (b) large- and small-intensity regions are separated by
clear boundaries or edges. Under suitable null hypotheses on the Hi-C read count distribution.
Since these two summary statistics are normalized against their row- and column-histograms,
the corresponding p-values are readily combined, yielding properly controlled aggregate
p-values based on which HiDENSEC calls significance.

Since sub-matrix patterns and are typically not tied to changes in copy number
profiles, detecting potential candidates requires a more global search. Because such potential
candidates are generally distinguished by dense patches of large intensities in the contact map,
HiDENSEC enumerates the largest connected components of a suitably obtained graph that
respects the geometric structure of the Hi-C matrix, and inspects its point of largest intensity,
or focal point. Once these candidates are determined, a number of summary statistics aimed
at capturing (a) concentration and sharpness properties as with , , , , (b) enrichment
near a central focal point, and (c) the presence of a gradual intensity decrease away from the
focal point, are computed, and their calibration under suitable null hypotheses again verified
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Chapter 3

Predicting gene expression from histone

modifications using deep learning

This is joint work with Alan Cabrera and Professor Isaac Hilton in the Hilton Lab at
Rice University, along with Jeffrey Spence and my advisor, Professor Yun S. Song and the
manuscript is currently under preparation.

3.1 Introduction

All cells within a multicellular organism have the same genetic sequence up to a minuscule
number of somatic mutations. Yet, a menagerie of cell types exist with diverse morphologies
and functions. Epigenetics is an important regulator and driver of these differences. The
field of Epigenetics was borne from the phenomena of differential yet specific phenotypic
expression within a single genotypic system, (eg., differential phenotypes between Myocytes,
Cardiomyocytes, T cells among many others). Waddington’s “landscape” describes how
regulation above the genetic level could explain cell lineages and differential phenotypes within
a single genetically identical system [54]. Epigenetic modifications such as post-transcriptional
modifications of core histones are involved in a variety of essential regulatory processes in the
cell, including transcription control [55], [56], [57]. Consequently, the Histone Code Hypothesis
suggests that combinations of different histone modifications specify distinct chromatin states
thereby regulating gene expression [58]. Advancement in sequencing technology has allowed
us to quantify gene expression and also profile different histone modifications in and around
genes. Two large consortia have either performed an extensive number of assays in a small
number of cell types (ENCODE [59]) or a small number of assays across many cell types
(NIH Roadmap Epigenomics consortium [59, 60]). These include measurements of histone
modifications, transcription factor binding, and chromatin accessibility, and are measured in
a select set of cellular contexts. This data has enhanced our understanding of transcriptional
regulation within these samples and has served to explore general questions in chromatin
biology [61], [62], [63].
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Studying the function of these epigenetic marks, however, has been largely limited to
statistical associations with gene expression [64], [65], [66]. Technologies for targeted direct
manipulation of these epigenetic properties are necessary to transform such association-
based findings into mechanistic principles of gene regulation. Epigenetic editing allows us
to probe the mechanism by which epigenetics affects expression, and promises to be useful
for therapeutics by offering more precise targeting of expression levels. Such advances have
the potential to benefit human health, as they could lead to gene therapies that modify
the epigenetic code at targeted regions of the genome [67]. However, small molecule-based
methods globally alter the epigenome and transcriptome, and are not suitable for targeting
individual loci [68]. Recently, an epigenome editing strategy for targeted histone acetylation,
which is strongly associated with active gene regulatory elements and enhancers, has been
described. It leverages the recent emergence of the CRISPR/dCas9 system as a versatile
genome engineering platform and presents an easily programmable approach that facilitates
robust control of the epigenome and downstream gene expression [69].

In the past decade, deep learning has achieved considerable success in predicting gene
expression from epigenetic marks, such as transcription factor binding [70], chromatin
accessibility [71], histone marks [66], [72], [73] and DNA methylation [74]. However, whether
such computational models gain an implicit understanding of mechanistic, causal relationships
between various epigenetic marks and gene expression is an important yet underexplored
question. Motivated by this understanding, we developed a model of how chromatin state
affects gene expression, by leveraging the data available through ENCODE. We then used
the model to predict the effect of epigenetic edits to investigate whether such models do
indeed learn a causal understanding of gene regulation and the Histone Code hypothesis. Our
model learns a sensible understanding of chromatin structure which is consistent with known
patterns of various histone modifications [75].

3.2 Results

Building a gene expression model

We obtained ChIP-seq data from the ENCODE Imputation Challenge [76]. The corresponding
histone modifications and cell types used in this study are outlined in Table 3.1. Metagene
plots describing the various epigenetic marks in different cell types revealed clear batch effects,
partly due to inconsistent sequencing depth (Figure 3.1). In order to correct for these
batch effects, we devised a heuristic technique adapted from S3norm [77], described in detail
in the Methods section 3.4. After correction, the batch effects were considerably reduced
(Figure 3.2) and these post-processed tracks are what were used for the remainder of the
analyses. We also obtained polyA-plus RNA-seq data for each of the 13 cell types from the
ENCODE data portal and processed them as described in the Methods section to obtain the
gene expression values for each gene 3.4.
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Cell Type polyA Plus RNA-seq H3K36me3 H3K27me3 H3K27ac H3K4me1 H3K4me3 H3K9me3

IMR-90 T T T T T T T
H1-hESC T T T T T T T
trophoblast cell T T T T T T T
neural stem progenitor cell T T T T T T T
K562 T T T T T T T
heart left ventricle T T T T T T T
adrenal gland T T T T T T T
endocrine pancreas T T T T T T T
peripheral blood mononuclear cell T T T T T T T
amnion T T T T T T T
myoepithelial cell of mammary gland T T T A T T T
chorion T T T T T T A
HEK293T T⇤ T⇤ A T⇤ T⇤ T⇤ T⇤

Table 3.1: ChIP-seq � log10(p-values) were obtained from the ENCODE Imputation Challenge
where the ground truth data were available (corresponding to entries labeled T in the table).
Avocado imputations were downloaded from the ENCODE data portal , where ground truth
data were not available (corresponding to entries labeled A in the table). Entries labeled
with an ⇤ are obtained from the HEK293 cell line because data for the HEK293T cell line
was not available

Figure 3.1: Metagene plots for different cell types for unnormalized H3K27ac
ChIP-seq data across gene expression quantiles (blue is the highest and red is
the lowest gene expression quantile). ⇤ represents data from HEK293 instead
and (A) represents Avocado imputed data.
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Figure 3.2: Metagene plots for the six different histone marks in HEK293T, after
S3norm-based normalization, across gene expression quantiles (blue is the highest
and red is the lowest gene expression quantile). ⇤ represents data from HEK293
instead and (A) represents Avocado imputed data for HEK293T.

We trained a convolutional neural network model, described in detail in the Methods
section, to predict the gene expression of each gene in each of the 13 cell types using histone
modification data centered at the TSS 3.4. We observe that the Spearman correlation between
the true gene expression and the model’s predicted gene expression improves as the input
context size increases and at all input context sizes, the convolutional neural network models
outperform a ridge regression model trained on the same data (Figure 3.3).
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Figure 3.3: Spearman correlation on genes in the test dataset for different input
context lengths. Blue curve is the mean across 10 computational replicates of
CNNs and the red is the mean across 10 computational replicates of ridge regres-
sion. Shaded aread represents standard deviation in the spearman correlation
across the 10 computational replicates.

In order to assess the models’ ability to generalize to unseen cell types, we trained a set
of models for each cell type, while holding it out during training and testing the model’s
predictive capabilities on genes in this held-out cell type. We observe that the CNNs are
able to outperform a ridge regression model on this cross-cell type generalization task and
perform quite well across a wide range of cell types; although the Spearman correlation does
vary across the different cell types (Figure 3.4).
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Figure 3.4: Spearman correlation on genes of cell types held out during training.
The barplots represent the mean across 10 computational replicates and the error
bars represent their standard deviation.

We also assessed the models’ predictive capabilities in an orthogonal manner by computing
how well the models rank gene expression across cell types within each gene. We did so
by computing Spearman correlations between the true gene expression and the predicted
gene expression for each gene in the test data. The distribution of the resulting Spearman
correlations suggests that the CNNs are able to better rank cell types by gene expression
than ridge regression (Figure 3.5). In particular, the median gene (corresponding to y =
0.5 in the empirical cumulative density function), achieves a cross-cell type correlation of
⇠ 0.53 with the CNNs; while only achieving a cross-cell type correlation of ⇠ 0.39 with ridge
regression.
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Figure 3.5: Distribution of spearman correlation across cell types, computed for
each gene in the test data. The different curves represent 10 computational
replicates for each model type.

in silico perturbations of the gene expression model

In order to understand what the models trained to predict gene expression have learnt, we
perform in silico perturbation of the histone modifications, as described in the Methods
section, one-by-one at each position in the input context and measured the predicted fold-
change in the gene expression (Figure 3.6, 3.4). We observed that the patterns in these
perturbation plots closely resemble known patterns of the various epigenetic marks (Figure
3.2) [75].
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Figure 3.6: Each point on the X-axis corresponds to in silico perturbation of that
assay at that position and the Y-axis measures the predicted fold-change. The
five different lines correspond to five different genes in the HEK293T cell type.

3.3 Discussion

We have trained models to predict gene expression using histone modification data which
are highly predictive of gene expression of genes on held-out chromosomes. These models
are also able to generalize to genes in unseen cell types. We developed a novel metric to
assess the models’ ability to rank various cell types by gene expression, within each gene, and
demonstrate that the trained models perform quite well at this task as well. These models
have good predictive power because they seemed to have learnt known patterns of histone
modifications that are correlated with gene expression.

These models are different from existing models such as Enformer [78] that predict gene



CHAPTER 3. PREDICTING GENE EXPRESSION 36

expression using DNA sequence as the input. The benefit of models such as Enformer is being
able to assess the impact of mutations in DNA sequence. In contrast, our trained models
could be used to assess the impact of perturbations in the histone modifications which can
now be achieved using CRISPR-dCas9 based epigenome editing [69]. In the future, these
models can be useful for designing sgRNAs for epigenome editing to achieve desired gene
expression fold-changes.

3.4 Methods

Data preparation

We obtained � log10(p-value) ChIP-seq tracks created by running the MACS2 peak-caller [79]
on read count data, from the ENCODE Imputation Challenge [76]. For three tracks where
data were not available, we downloaded Avocado [80] imputations from the ENCODE data
portal [59]. We binned each epigenetic track at 25 base pair resolution and pre-processed
them with an additional log operation before inputting them into the network.

We downloaded polyA-plus RNA-seq gene expression TPM values for each of the 12 cell
types in Table 3.1, from the ENCODE data portal [59] and preprocessed them with a log
operation.

Normalizing p-values by adapting S3norm

We assigned IMR-90 to be a reference cell type, for each of the six epigenetic assays and
kept its p-values unchanged. We then performed a transformation for each of the remaining
cell types adapted from the core technique developed by S3norm [77], in order to normalize
each epigenetic assay in each of these remaining cell types, with respect to the corresponding
epigenetic assay in IMR-90.

First, we computed peaks in both, the reference as well as the target cell type. Peaks
were defined as the 25 base pair bins corresponding to FDR-adjusted p-values less than 0.05
[81]. For assays that were obtained from Avocado imputations (due to lack of availability of
experimental data), peaks were defined to be the 1000 bins containing the smallest Avocado
imputed p-values, based on suggestions from the authors of Avocado [80]. All the remaining
bins were defined to be background, for both, the reference as well as the target cell types.

We then computed the list of peaks that were common to both the reference and the target
cell types. These were termed, common peaks. Similarly, we defined common background
as the list of bins that were assigned to be background in both, the reference as well as the
target cell types.

The S3norm method was designed to work with count data, which is always � 1. However,
the epigenetic tracks, which are represented as �log10(p-values), are not guaranteed to always
be � 1, hence, we transformed all epigenetic tracks by adding 1 to the �log10(p-values), in
both the reference as well as the target cell types.
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Additionally, since the epigenetic tracks obtained from imputations performed by Avocado
were not guaranteed to be distributed similar to experimental �log10(p-values), we scaled all
the epigenetic tracks (both experimental as well as Avocado imputations) by dividing them
by the minimum observed value in common peaks and common background, in order to bring
experimental data and Avocado imputations onto a similar footing. In particular, before
applying the S3norm normalization, we transformed �log10(p-values) in common peaks and
common background for both the reference as well as the target cell type as following:

TransformedCommonPeaksi,reference =
1+CommonPeaksi,reference

mini(CommonPeaksi,reference)
(3.1)

TransformedCommonPeaksi,target =
1+CommonPeaksi,target

mini(CommonPeaksi,target)
(3.2)

TransformedCommonBackgroundi,reference
= max( 1+CommonBackgroundi,reference

mini(CommonBackgroundi,reference)
, 0) (3.3)

TransformedCommonBackgroundi,target
= max( 1+CommonBackgroundi,target

mini(CommonBackgroundi,target)
, 0) (3.4)

The normalization procedure of S3norm then wishes to find two positive parameters,
↵ and � that are to be learned from the data such that both the following equations are
satisfied:

mean(TransformedCommonPeaksreference) = mean(↵⇥ TransformedCommonPeaks�target) (3.5)

mean(TransformedCommonBackground
reference

) = mean(↵⇥ TransformedCommonBackground�
target) (3.6)

Specifically, ↵ is a scale factor that shifts the transformed �log10(p-values) of the target
data set in log scale, and � is a power transformation parameter that rotates the transformed
�log10(p-values) of the target data set in log scale. There is one and only one set of values
for ↵ and � that can simultaneously satisfy both the above equations for common peaks and
the common background.

The values of ↵ and � are estimated by the Powell minimization method implemented
in scipy [82], [83]. The resulting normalized �log10(p-values) are used for all downstream
analyses in this work (Figure 3.2).
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Training a model

We implemented a convolutional neural network to predict gene expression using epigenetic
feautures centered at the Transcription Start Site (TSS) of each gene. The epigenetic
features, obtained from the ENCODE Imputation Challenge (as described above), correspond
to �log10(p-values) for each 25 base pair bin in the genome, are first transformed with a
loge(x+ 1) transformation. We then use an input context size of 10, 000 base pairs centered
at the TSS of each gene (Figure 3.3). This corresponds to 200 25 base pair bins on either
side of the TSS of each gene (including the bin containing the TSS).

The transformed epigenetic features for each gene, are processed with successive convolu-
tional blocks. Each convolutional block consisted of a batch-normalization layer, rectified
linear units (ReLU), a convolutional layer consisting of 32 convolutional kernels, each of width
5, followed by a dropout with 0.1 probability and finally a pooling layer to gradually reduce the
dimension of the features. After being processed with 5 such convolutional blocks, the output
is flattened and passed through a fully connected layer consisting of 16 neurons and a ReLU
activation. This is finally processed with a fully connected layer with a single output and a lin-
ear activation, since this is a regression task. The model is trained with a mean squared error
loss and and the Adam optimizer with learning rate of 0.001 for the first 50 epochs and 0.0005
for the remaining 50 epochs. Training took about 0.5 hours on 1 NVIDIA A100 Tensor Core
GPU. All associated code is available at https://github.com/sanjitsbatra/deepENCODE.

in silico perturbation of epigenetic data

The epigenetic features of gene g are represented by,

ECT,g
i = ln (1� log10 p)

where, CT stands for cell type CT , g stands for the gene, i corresponds to one position
within the epigenetic features ECT,g

2 RW and p corresponds to the p-value corresponding
to the ChIP-seq track at that position. W is chosen to be 10, 000 base pairs divided by the
resolution of the epigenetic features, which is 25 base pairs, which gives us W = 400.

We define a perturbation function F : RW+3
! RW , which is defined as:

F (ECT,g, j,�, d) =

(
ECT,g

i +� if |i� j|  d

ECT,g
i if |i� j| > d

We then denote a trained model, as T : RW
! R, which converts the epigenetic features

ECT,g to gene expression log10 (TPM + 1). The predicted fold-change after perturbing
position j is then computed as:

10T (F (ECT,g ,j,�,6))
� 1

10T (ECT,g) � 1
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Chapter 4

Predicting translation initiation from

DNA sequence

This is the product of a multi-year collaboration with Kishore Jaganathan and Kyle Kai-How
Farh at the Illumina AI Lab, along with Dan Daniel Erdmann-Pham and my advisor Professor
Yun S. Song and the manuscript is currently under preparation.

4.1 Introduction

Translation is the generation of proteins from messenger RNA (mRNA). The control of
protein expression through translation is a fundamental process of living cells. The nucleotide
sequence of mRNA not only determines the protein’s sequence but also has an impact on the
efficiency of the translation process [84]. There are various regulatory elements embedded
within mRNA sequences, such as 5'-untranslated regions (5'UTRs), that impact a protein’s
expression [85]. 5'UTR sequences encode a variety of cis-regulatory elements, including
a 5'-cap structure [86], a translation initiation motif, referred to as the Kozak sequence
[87], upstream AUGs (uAUGs) and upstream ORFs [88], internal ribosome entry sites [89],
G-quadruplexes [90] and secondary structures [91].

Translation initiation plays an important role in mRNA translation, in which the methionyl-
tRNA unique for initiation (Met-tRNAi) identifies the AUG start codon and triggers the
downstream translation process [92]. In addition to the GENCODE annotated translation
initiation sites (mAUGs), the translation process may also start at alternative codons, most
often these are upstream AUGs (uAUGs), which have been increasingly detected with the
advent of several high-throughput sequencing techniques for profiling initiating ribosomes
[93]. Translation initiation at uAUGs leads to upstream open reading frames (uORFs) that
can be translated into short peptides or affect the protein expression levels of the main ORFs
(mORFs) and cause diseases such as cancer [94].

Consequently, computational methods have been developed to predict where translation
initiates [91]. Some of the more recent methods can predict where translation initiation
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occurs using mRNA sequence using deep learning [95][96]. However, whether such methods
are able to predict the impact of mutations in 5'UTRs remains to be shown.

In this work, we train a deep neural network to predict where translation initiation occurs
using mature mRNA sequence alone and demonstrate that such a model is able to predict
whether translation initiates at held-out uAUGs. Furthermore, we demonstrate that the
trained models are able to accurately capture the effects of mutations in the 5'UTR, thereby
paving the way for optimizing protein expression by perturbation of the 5'UTR sequence.

4.2 Results

Building a model to predict translation initiation from sequence

We train a neural network to predict whether a scanning ribosome would initiate translation
at a particular position using the surrounding sequence context (Figure 4.1). To train the
model on the human genome, we considered all AUGs of ORFs annotated by GENCODE
v39 as the positive dataset. In addition to known mORFs in the human genome, we obtained
a list of upstream AUGs (uAUGs) from [97] where ribosomes were observed to initiate via
ribosome profiling, and added them to the positive dataset.

Figure 4.1: Schematic for predicting translation iniatiation from mature mRNA
sequence

There are a variety of choices that can be made to construct the negative dataset for
training the model, in addition to considering all non-AUG positions in the 5'UTR sequences.
In particular, we explore two different strategies by looking at the distribution of distance
of each uAUG to either the TSS or the length of the upstream ORF induced by the uAUG
(Figure 4.2). Since there are no observed Ribo-seq certified uAUGs at the tails of the
these distributions, we define the negative set to be all those uncertified uAUGs (uAUGs
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that were not observed to be initiated at by ribosomes in ribosome profiling experiments)
that lie in their right tails.

Figure 4.2: Empirical cumulative distribution of uAUG properties can be used to
define negative dataset for training the model

We train a convolutional neural network, described in detail in the Methods section, using
mature mRNA sequence and binary labels to predict where translation initiation occurs 4.4.
We observe that by using uORF length to determine the negative dataset, the predictive
performance of the model increases and reaches a sweet spot around a cut-off of ⇠ 700 base
pairs. With this choice of uORF length cut-off to determine the negative dataset for training,
the corresponding model trained with mAUGs from GENCODE v39 and ribosome profiling
certified uAUGs as the positive dataset, achieves high predictive accuracy in being able to
distinguish ribosome profiling certified uAUGs from other AUGs (Figure 4.3).
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Figure 4.3: Accuracy metrics as uORF length cut-off varies (for determining the
negative dataset)

Interpreting the trained model

To understand the features that the neural network learns, we scan an AUG motif through
the input sequence context and measure the model’s prediction. We observe that the mean
prediction of the model across many genes (Figure 4.4) mirrors the observed probability of
uAUGs in different frames w.r.t to the mAUG (Figure 4.5). This suggests that the model
has learnt various statistical properties about uAUGs that might allow it to distinguish
certified uAUGs from uncertified uAUGs.
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Figure 4.4: Model predictions as an AUG is scanned across the input context,
aggregated across 1000 genes

Figure 4.5: Probability of observing an uAUG in 5’UTRs of the human genome.
X-axis at x = 0 denotes the mAUG of each gene.

To probe whether the model has built an understanding of Kozak sequences [87], we
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scanned a strong Kozak sequence across the input context of a gene with a weak endogenous
Kozak sequence at its mAUG, and observed that the model predictions were lowered over
a long range of positions (Figure 4.6). Moreover, when the strong Kozak sequence was
inserted at the mAUG, the model prediction increased. This suggests that the model has
learnt an implicit ranking of Kozak sequences.

Figure 4.6: Model predictions as a strong Kozak sequence, corresponding to
ACCATGGCG is scanned across the input context, whose mAUG exists in a
weak Kozak context of TTAATGATT

Variants scored highly by the model tend to be under negative

selection in gnomAD

We scored all variants observed in gnomAD [98][99], within 100bp of the mAUG on 5'UTRs
of transcripts in the human genome with the trained model. We did so by computing the
difference between the prediction of the model with the reference allele inserted vs with the
alternate allele inserted. We computed the maximum across all such differences centering the
input sequence at every possible uAUG and the mAUG.

We assess the model’s ability to discern whether a variant is under negative selection
and therefore deleterious by performing a Fisher’s exact test using the variants observed in
gnomAD, as described in detail in the Methods section 4.4. Figure 4.7 shows the resulting
odds ratios from Fisher’s exact tests performed on the single nucleotide variants in the
gnomAD dataset. The X-axis describes the pathogenicity threshold chosen for the model
scores and the Y-axis represents the corresponding odds ratio. If we assume that all uAUG
variants are pathogenic, the corresponding odds ratio obtained in gnomAD is reflected by the
dashed line. We observe that the trained neural network vastly outperforms this baseline and
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therefore demonstrates that the model has the ability to pick out pathogenic variants among
the uAUG variant class.

Figure 4.7: Variants with high model scores tend to be more rare in gnomAD.
Stars represent significant odds ratios. If we assume that all uAUG variants are
pathogenic, the corresponding odds ratio obtained in gnomAD is reflected by the
dashed line.

4.3 Discussion

In this study, we develop a method to predict where a scanning ribosome initiates translation
using surround sequence context. We investigate the role of different choices for choosing the
negative dataset on model performance and demonstrate that the trained neural network is
able to predict held out uORFs with high accuracy. We further show that the model is able
to achieve high predictive accuracy by learning the statistical patterns of uAUG incidence in
endogenous 5’UTRs of the human genome.

In order to assess the model’s ability to capture effect of mutations, we show that mutations
scored highly by the trained neural network are under stronger negative selection (i.e. they
tend to be more rare in healthy individuals) than those having a low model score, in a large
cohort of healthy individuals, namely gnomAD.

This model paves way to a better understanding of translation initiation and could be
utilized to optimize protein expression by modifying the sequence of the 5’UTR.
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4.4 Methods

Data preparation

To obtain the mAUGs, we downloaded the latest GENCODE v39 annotation and subsetted
to lines with the annotation of start codon. We then processed ribosome profiling certified
uAUGs from [97]. The authors present a list of ⇠ 4,000 uAUGs and we obtained their
coordinates in the hg38 reference genome and added them to the positive dataset.

To obtain the negative dataset, we computed various properties of uAUGs such as their
distance from the TSS and the length of the induced uORF and trained models for various
choices of cut-offs for these properties. We then chose the model which performed best in its
ability to disinguish certified uAUGs from uncertified uAUGs.

Training the model

We trained a neural network with L = 200 base pairs on each side of a position corresponding
to each data point (Figure 4.7). More precisely, the input to the models is a sequence of
one-hot encoded nucleotides, where A, C, G, and T (or equivalently U) are encoded as [1,
0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1] respectively and the output of the model
corresponds to the probability of a scanning initiating translation at that position.

The architecture of the neural network is inspired by SpliceAI [100]. The basic unit of
the SpliceAI architecture is a residual block, which consists of batch-normalization layers,
rectified linear units (ReLU), and convolutional units. Residual blocks are commonly used
when designing deep neural networks. The architecture consists of 12 stacked residual blocks
connecting the input layer to the penultimate layer, and a convolutional unit with a sigmoid
activation connecting the penultimate layer to the output layer.

Each residual block has three hyper-parameters N, W, and D, where N denotes the
number of convolutional kernels, W denotes the window size, and D denotes the dilation
rate of each convolutional kernel. Since a convolutional kernel of window size W and
dilation rate D extracts features spanning (W � 1) ⇥ D neighboring positions, a residual
block with hyper-parameters N, W, and D extracts features spanning 2 ⇥ (W � 1) ⇥ D
neighboring positions. Hence, the total neighbor span of the SpliceAI architectures is given
by S =

P12
i=1 2⇥ (Wi � 1)⇥Di, where Ni, Wi and Di are the hyperparameters corresponding

to the ith residual block, which were chosen so that S = 400.
The model is trained with a binary cross entropy loss and and the Adam optimizer with

learning rate of 0.001 for the first 50 epochs and 0.0005 for the remaining 50 epochs. Training
took about 2 hours on 1 NVIDIA A100 Tensor Core GPU. All associated code used to train
the model is available at https://github.com/sanjitsbatra/5UTR.
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gnomAD analysis

We obtained gnomAD variant data from gnomAD v3 [98] and processed the variants using
the ENSEMBL variant effect predictor [101]. We subsetted to variants that were within
100bp of the mAUG on each transcript and used the UTRannotator [102] to predict whether
the mutation was an uAUG mutation or not. To score each variant, we performed a forward
pass through the trained model with the input context centered at the variant’s position,
with the reference and alternate alleles and obtaining the difference in the corresponding
model scores.

We then defined rare variants as those with allele count equal to 1, and common variants
as those with allele count 1000 or more. Model scores were defined as pathogenic or benign
based on a threshold that determined how many variants were classified as pathogenic. We
then constructed a 2⇥ 2 table whose columns were rare and common. The rows of the table
were defined as pathogenic and benign. A variant was deemed pathogenic if the model
score for that variant was higher than the chosen threshold and the variant was a uAUG
variant. We then calculated the odds ratio and p-value of a Fisher’s exact test performed on
this contingency table. We carried out this procedure for various choices of the model score
threshold and report the corresponding odds ratios in Figure 4.7.
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Chapter 5

Conclusions

The computational methods developed in this work can pave the way for a better understand-
ing of how the central dogma of biology is affected by diseases such as cancer. These tools
can prioritize disease therapies based on their impact on DNA, in the form of large-scale
structural variants, gene regulation and protein abundance. This would open the doors for a
more efficient search for disease therapies accelerated by computational engines.

5.1 Future Work

Advancements in experimental techniques such as Hi-C, CRISPR/dCas9 and ribosome
profiling could lead to improvements in the computational methods developed in this work.
There will undoubtedly be vast synergistic potential to leverage the latest breakthroughs
in machine learning along with these experimental advancements to improve the presented
computational tools.
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Appendix A

HiDENSEC Supplementary Information

HiDENSEC broadly proceeds by (i) correcting Hi-C counts for confounding covariates, (ii)
using these corrected counts to infer mixture proportion and copy number, and (iii) identifying
large structural variants based on the resulting profiles. Before describing each of these steps
in detail, and in order to make equations easier to understand, we begin by fixing the notation
and introducing general conventions that will be used throughout.

A.1 Notation & Setup

Our starting point is a raw nucleotide-level Hi-C matrix Hraw obtained by mapping Hi-C
or Fix-C reads to a reference genome (Online Methods). This matrix is symmetric, i.e.,
Hraw

ij = Hraw

ji .
In order to balance signal-to-noise ratios and computational burden with interpretability

and localization of changes in copy number and/or rearrangement breakpoints/junctions,
we first coarse grain this nucleotide-level Hi-C matrix Hraw to genomic windows of length
w = 50kb:

Hij =
X

m=i,...,i+w
n=j,...,j+w

Hraw

mn ,

The indices of this matrix label genomic windows. All further steps in HiDENSEC work with
such a coarse-grained matrix.

For a completely homogeneous cell population, we can model H as a random matrix of
the form H = Nh+ "N , where N is the total number of cells involved in the Hi-C experiment,
h represents the (deterministic) interactions between genomic loci in cells of a given type
(and so in particular, h may differ across different cell populations), and "N is an error matrix,
on which we do not impose any restrictions other than limN!1 "N/N = 0 (in probability).
This assumption ensures the identifiability of h, and is expected under the very plausible
assumption that the numbers of reads contributed by different cells in the experiment are
independent).
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Hi-C experiments are generally conducted on samples containing mixtures of cells with
different genomes. We denote the set of genomes by G, and represent the cellular mixture
fractions by

�
fG

�
G2G . Since chromatin contacts only occur between genomic segments within

the same nucleus, the Hi-C contact map of the sample is expected to be a simple superposition
of these distinct Hi-C signatures. That is,

hij =
X

G2G

fGhG
ij,

where hG is the h matrix associated with genome G. To test the superposition assumption
we confirmed the lack of Hi-C contacts between neighboring cells by performing Fix-C on a
1:1 mixture of human and mouse cells, finding negligible ligation products that include both
mouse and human sequence (Supplementary Table 1).

Each genome G will have an absolute copy number profile pGi at each site i representing
the local, integer-valued, copy number at that locus. In a superposition of multiple genomes,
however, we more directly measure the weighted average of these copy numbers, ⇡i =P

G2G f
GpGi , which we refer to as the effective copy number ⇡i for the sample. If we knew

the contact maps hG
ij in isolation for each genome G 2 G, then we should be able to infer the

mixture proportions fG, for G 2 G. With these in hand, we can also interpret rearrangements
within each genome, which are represented by pGij, the absolute number of site i copies that
are in contact with site j in genome G due to translocations and other rearrangements. To
keep formulas and descriptions compact, we will occasionally refer to pi as pii.

In analyzing the Hi-C matrices discussed in this paper, we find that it is typically sufficient
to include one or sometimes two cancer genotypes along with the diploid reference genome
(which is free of copy number and other structural variation). Thus |G| = 2 for most samples,
except sample 1 from patient 3 which requires |G| = 3. When |G| = 2 there is no risk of
confusing distinct genomes, and so for notational simplicity we drop the superscripts and
refer to the interaction strengths, mixture proportion and copy numbers of the non-reference
genome as h, f and p, respectively.

The goal of HiDENSEC is then simply stated: Given experimentally observed Hi-C counts
H from a composite sample, we wish to infer the mixture proportions f , copy number profile
p = (pi), and identify the set of non-adjacent structural variants {(i, j) : pij > 0} together
with the precise nature of these structural changes; that is, determine the values of pij
(whenever identifiable).

A.2 Covariate correction

As described in the Online Methods, there are several biological and technical effects which
can substantially affect read counts (see Supplementary Figure A.1A, and Supplemen-
tary Figure A.1B). To begin to account for these covariates we focus on the "diagonal"
local contact hii and model its dependence on the true contacts pi as

hii = C0pig(x
0
i , x

1
i , x

2
i , x

3
i ), (A.1)



APPENDIX A. HIDENSEC SUPPLEMENTARY INFORMATION 62

for a function g to be determined, where x0 through x2 encode the numerical, experiment-
related covariates (e.g., GC content, cut-site density, and read mappability), and x3 is a
discrete indicator of one of the six chromatin compartments C = {A0, A1, A2, B1, B2, B3}.

Two observations inform the form of g:

1. The dependence between Hi-C contact intensities and covariates appears to be sensitive
to protocol differences in the experiment. Although in-situ Hi-C based covariate
structures tend to look very similar to Supplementary Figure A.1, those obtained
from Fix-C experiments usually look like the plots depicted in Supplementary Figure
A.2.

2. Even though the details of this effect may differ across protocols, their qualitative shape
appears close to linear for x0 and x1, with x2 exhibiting a cut-off phenomenon (see
panels B of Supplementary Figure A.1 and Supplementary Figure A.2) without
substantial interaction (see panels C of the same figures). Constructing g using these
qualitative trends leads to satisfactory model fit (see the subsequent paragraph).

We therefore filter genomic bins, retaining only those for which x2 > 0.8, and adopt a simple
descriptive linear regression model, with different regression line for each type of compartment
for x0 and x1. That is, g is fit as

g(x0, x1, x2, x3) =
X

c2C
c(x

3)gc(x
0, x1), (A.2)

where gc is linear for all c 2 C. For purely diploid genomes this model explains 80-90% of the
observed variance, satisfying standard model-fit criteria (normality and identical distribution
of studentized residuals, independence of residuals and predictions, etc.)

For simplicity we also assume that covariate corrections Eq. (A.1) and Eq. (A.2) derived
for karyotypically normal genomes can also be applied to cancer genome (that is, as a first
approximation we neglect changes in compartment structure in the cancer genomes). By the
superposition principle it follows that Eq. (A.1) and Eq. (A.2) also hold with pi replaced by
⇡i. Such covariate correction was performed for all Hi-C maps used in the main manuscript,
based on g fit to Fix-C from a karyotypically normal reference, corresponding to Sample 1 - I.
An illustration of both the need for adjusting raw counts, as well as the protocol sensitivity
of any such adjustment is shown in Supplementary Figure A.11.

In principle, one could attempt a similar correction procedure on the off-diagonal entries
hij, i 6= j, with a corrector function g0 : (C ⇥ R3)2 ! R that depends on pairs of covariates.
However, as indicated in the main text, the magnitude of off-diagonal signals are difficult
to interpret due to uncertainty in the precise break-point within a 50 kb window, and
the possibility of substantially altered compartment structure associated with large-scale
structural variants (Supplementary Figure A.4). Nevertheless, these off-diagonal signals
can clearly distinguish hij > 0 from hij = 0. For the precise inference of large-scale structural
variants and their copy numbers, this type of on-or-off signal is sufficient as will be illustrated
in Appendix A.4.
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If a reference contact map is not available, or the underlying experimental protocol
is unknown, then an internal covariate correction is still possible based on read counts
reliably identified to correspond to ⇡mode (see section below). Such correction empirically
performs competitively with the procedure described above, and in HiDENSEC is resorted
to automatically if no explicit reference protocol and/or data set is specified.

A.3 Inference of copy numbers & mixture proportions

Given the covariate correction as described in Appendix A.2 the resulting corrected read
counts Hii are effectively modeled as Hii = C0N⇡i + "ii as mentioned in Appendix A.1 (see
also Supplementary Figure A.12A for an illustration of the underlying generative model).

First we note that, in the general case (arbitrary numbers and forms of cancer genomes),
we cannot infer ⇡ from H as a matter of principle, even in the limit of infinite data, without
further assumptions:

1. Relative copy number profiles determine absolute copy number profiles only up to integer
scaling. Since ⇡ =

P
g2G f

GpG is only observed up to an overall factor, any two sets
of copy number vectors p and p0 that differ by a multiplicative constant (that is,
p0 = Kp for some K 2 N) are indistinguishable on the level of H, since C0 and N
are generally unknown. E.g., a completely diploid and a completely triploid genome
are indistinguishable based on their relative copy numbers. Indeed, without explicit
knowledge of C (which depends, among other factors, on the number of cells involved in
the experiment, and so is typically difficult to obtain), any absolute copy number profile
consistent with the Hi-C map can be scaled by an integer and remains consistent.

2. Absolute copy numbers only involve the products of mixture proportions and copy
numbers, not either of them individually. Since ⇡ involves products of proportions
and copy numbers, an increase in one can often be compensated by a decrease in the
other without affecting even absolute values ⇡ (i.e., this type of unidentifiability is
independent of the scaling factor C0N). More concretely, for any genome G0 2 G,

⇡ =
X

G2G

fGpG = fG0pG0+
X

G2G0

fGpG =

0

@1�
X

G2G0

fG

1

A pG0+
X

G2G0

fG
�
pG0 + pG � pG0

�

= pG0 +
X

G2G0

fG
�
pG � pG0

�
= pG0 +

X

G2G0

✓
fG

KG

◆
·KG

�
pG � pG0

�
,

where G0 = G \ {G0} and KG
2 N are genome-specific constants. That is, even if

the copy number profile for a single genome G0 is completely known (in, e.g., most
samples not derived from cell lines, it is reasonable to assume the presence of the purely
diploid reference genome), the relative difference of all other genomes to G0 are, in
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the most general setting, not determined by ⇡. For the simplest case of two distinct
cell populations, one purely diploid and the other with absolute copy number profile p,
mixed at proportions 1� f and f , respectively, the effective copy number profile reads

⇡i = 2(1� f) + fpi = 2 + (pi � 2)f.

That is, given the exact absolute copy number, it is only possible to infer the product
(pi � 2)f , and not either of them individually.

Given these fundamental limitations we must impose additional suitably restrictive, yet
biologically plausible, assumptions. HiDENSEC does so by positing that:

(a) The most common effective copy number is known in advance; i.e., one has an estimate
of

⇡mode =⌧ 2
S

i ⇡i # {i : ⇡i = ⌧} .

Where # {i : ⇡i = ⌧} is the number of bins with effective copy number ⌧ . This assump-
tion allows rescaling of the Hi to correct for the factor of C0N . While we could use
mean or median of ⇡ for this purpose the mode of ⇡mode is particularly appealing in
that

1. unless the genomes are extraordinarily complex, ⇡mode will be 2, and
2. # {i : ⇡i = ⇡mode} is often large, so that rescaling is effectively based on averaging

many noisy observations, which in general outperforms estimation based on a
single observation (as is done when only considering ⇡1).

(b) Copy number profiles are as close to purely diploid as is consistent with the data, in that
maxi,G pGi is chosen as small as possible. For instance, consider the hypothetical example
of G = {G0, G1}, pG0 ⌘ 2, ⇡i = 2· {1,...,i⇤}(i)+2.5· {i⇤+1,...}(i), HiDENSEC will estimate
fG0 = 0.5, fG1 = 0.5, pG0 ⌘ 2, pG1

i = 2 · {1,...,i⇤}(i) + 3 · {i⇤+1,...}(i) rather than, say,
fG0 = 0.9, fG1 = 0.1, pG0 ⌘ 2, pG1

i = 2 · {1,...,i⇤}(i) + 7 · {i⇤+1,...}(i), which is consistent
with the principle of parsimony. Prior knowledge favouring a non-parsimonious solution
can be explicitly fed into HiDENSEC as an optional argument if desired.

Although these assumptions narrow down the feasible solutions substantially, it can be
shown that, in the most general setting, obtaining a solution is computationally intractable:

Identifying the smallest number of genomes |G| that explain a given noise-less effective
copy number profile ⇡ using mixture proportions bounded away from zero (e.g.„ minG2G fG

�

o(|G|�1)) and bounded absolute copy numbers (i.e., maxG2G kpGk1  B for some B 2 N) is,
in general, at least as hard as the subset sum problem, and therefore NP-complete.

Even though its proof does not immediately inform inference (and is therefore deferred to
Appendix A.5), this theorem suggests that any feasible inference procedure must be based on
either
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1. assumptions that are strong enough to render the subset sum problem efficiently solvable,
yet are still biologically plausible, or

2. approximate inference which may work well for few genomes (e.g., |G| is small) but may
become inaccurate as |G| grows large.

Given that empirically |G| = 2 appears to typically explain the data well, with |G| > 3
rarely being required (indeed, none of the cases described in the main text requires more
than three genomes, HiDENSEC assumes a modest number of cancer genomes, and proceeds
as follows:

1. Normalize the data {Hii}i by Ĥmode/⇡mode, where Ĥmode is an estimate of the mode
of {Hii}i. Data is typically abundant enough that obtaining Ĥmode through either a
kernel density estimate or a simple histogram is sufficient. This normalized data is
referred to as {⇧i}i.

2. For a fixed window size w (in the main text analysis w = 100), choice of f , and
candidate copy number p, we define ⇢(f, p) = (1� f)2 + fp and

mx(f, p) =
1

2w + 1

x+wX

i=x�w

|⇧i � ⇢(f, p)| ·
⇥
p ·md

�
⇧[x�w,x+w]

�⇤�1
,

where md(X) is the median deviation of a set of numbers X, and the normalization
involving it is motivated by the heteroskedasticity observed in contact-intensity counts
(see Supplementary Figure A.12B). For a choice of maximum copy number pmax,
compute a first estimated copy number profile p̂1x and associated mixture proportion f̂ 1

as the minimizers of mx(f, p) aggregated over the entire genome

f̂ 1 =f

X

x


min

p2[pmax]
mx(f, p)

�
p̂1x =p2[pmax] mx(f̂

1, p),

and estimate the corresponding effective copy number profile ⇡̂1 as ⇡̂1 = f̂ 1p̂1. Estima-
tion based on mx(f, p) in this manner exploits the strong spatial correlation present in
⇧, while otherwise remaining fully non-parametric.

3. Refine ⇡̂1
x by adjusting points of copy number changes, measuring their significance,

and fine-tune pmax (see section below). Call this refined profile {⇡̂1
x}x as well.

4. If ⇡̂1
⌘ 2, then return ⇡̂0

⌘ 2 and f̂ 0 = 0.

5. Otherwise repeat steps 2-5 on the corrected effective copy number profile ⇧1 = ⇧� ⇡̂1

until ⇡̂K
⌘ 0, and then return f̂G =

S
k2[K] f̂

k, p̂G =
S

k2[K] p̂
k and ⇡̂ =

P
k2[K] f̂

kp̂k.
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In this way, HiDENSEC attempts to greedily explain the shape of ⇧ by subtracting the
effect of an individual genome one at a time. It can be shown that this greedy procedure
accurately recovers ground-truth fG and pG in the limit of noiseless data if the following
conditions are met:

(a) ����� supp p
Gk \

K[

i=k+1

supp pGi

����� �

�����

K[

i=k+1

supp pGi

�����,

for all k 2 [K], where supp p = {i : pi 6= 2}, and the Gk are ordered such that fG1 �

fG2 � · · · � fGK .

(b)
2
��⇢

�
fGk+1 , ..., fGK , pGk+1 , ..., pGK

���
1  fGk ,

also for any k 2 [K], where by slight overloading of notation, ⇢ (f1, ..., fr, p1, ..., pr) =
2 (1�

Pr
k=1 fk) +

Pr
k=1 fkpk.

(We note that if these conditions are not met, then the results of HiDENSEC may not be
accurate.)

It is clear that these conditions tend to more easily be met if K is small, while they become
more restrictive as K grows. Intuitively, they stipulate that genomes of more abundant
cell populations should exhibit more substantial copy number changes than those of rare
populations, and that mixture proportions be far away from uniformity; which—given the
nature of logistic growth, and the fact that more abundant cell types likely had more time to
evolve—appear biologically plausible. Indeed, these assumptions are satisfied in all samples
analyzed in the main text (the majority of which carries K = 1 cell population in addition to
the reference genome, in which case these conditions are trivially satisfied).

Refining effective copy number profiles

Due to the randomness inherent in chromatin folding and Hi-C experiments, the procedure
described in step 2 above will occasionally detect copy number changes that are either
imprecisely located or purely the result of stochastic fluctuation rather than biologically
meaningful structure, and so it is desirable to correct for such misinference. HiDENSEC does
so in various ways.

1. Refining change points: A site x at which copy numbers change is characterized by
the fact that E⇧x�� = ⇡x�� 6= ⇡x+� = E⇧x+�, for any sufficiently small �. If this gap
between ⇡ left and right of x is sufficiently large compared to the variance of the data,
then it is reasonable to assume that

x =j2N (x) EVar
⇥
⇧� | [�1,j�1](�)

⇤
, (A.3)
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where N (x) is a suitably small neighbourhood around x, and � ⇠ Uniform (N (x))
is a uniform draw from N (x). That is, once likely change point candidates have
been identified in step 2 above, their precise location can be refined by choosing
suitable neighbourhoods N around them, and optimizing Eq. (A.3) accordingly (this
essentially corresponds to fitting a depth-1 decision tree regressing sites in N against
⇧). The resulting refined change points are further adjusted or shifted to ensure that
corresponding excursions (see below) do not cross chromosome boundaries.

2. Interpreting change points: The optimization procedure described above will return
a refined choice of x even if N does not undergo any copy number change, and so
it is of interest to quantify the extent to which x separates copy number levels. To
do so, HiDENSEC assesses significance by performing 100 replicates of a permutation
test on N , and computing the p-value pN (x) of Var [⇧ | �x] on the resulting empirical
distribution. It should be noted that a priori it is unclear whether p-values calculated
in such manner are well-calibrated even in the limit of large N (indeed, they should
instead be formed based on the null distribution of counts around ⇡ = 2 conditional
on ⇡̂ 6= 2; which, however, is not accessible), but they do behave super-uniformly
empirically (see Supplementary Figure A.12C).

3. Interpreting excursions: An excursion e of an effective copy number profile ⇡̂ is defined
to be any tuple e = (x1, x2, ⇡̂x1+1) for two adjacent change points x1 and x2, for which
⇡̂x1+1 6= 2. e is likely to be reflective of actual biological signal if maxx2{x1,x2} pN (x) is
small, if the length x2 � x1 of e is large, and if the aggregate read counts on [x1, x2] are
broadly no more variable than expected for level ⇡̂x1+1 (if they are significantly more
variable, then the change in effective copy number is prone to being merely a result of
fluctuation). HiDENSEC thus assigns a significance to each excursion e = (x1, x2, ⇡) by
incorporating the two p-values of both x1 and x2, one p-value associated with x2 � x1

based on a reference diploid genome, as well as one calculated from the median deviation
of ⇧ on e in relation to appropriately re-scaled diploid ⇧ values in the vicinity of e
(since read count fluctuations generally exhibit spatial dependence, with stochasticity
increasing in smaller chromosomes, it is preferable to construct local empirical null
distributions over global ones). Under H0, p-values computed in such a manner on
a given set E of excursions behave broadly uniformly (see Supplementary Figure
A.12C).

4. Model selection: To assess whether ⇡̂ likely captures true copy number variation, or
simply overfits to a noisy ⇡ ⌘ 2 profile, various empirically well-performing checks are
in place. More concretely, a ⇡̂ instance is declared overfitting (and whence adjusted to
⇡̂ ⌘ 2) if it clears any three of the following criteria:

• Inferred mixture proportion f̂ < 0.15. The amplitude A of a length-` excursion
that is purely due to stochastic fluctuations decays broadly as O(e�A2`), and so
detecting excursions consistent with large f is unlikely under H0.



APPENDIX A. HIDENSEC SUPPLEMENTARY INFORMATION 68

• md⇧ � f̂ . Small mixture proportions are only reliably attributable to biological
signal if the fluctuations in ⇧ are of smaller order.

• Number of excursions � 60. Under H0, small-amplitude excursions are typically
frequent.

• |{e = (x1, x2, ⇡e) 2 E : x2 � x1  200}| / |E| > 1/2. Under H0, lengths of excur-
sions decay exponentially, and so most observed excursions ought to be short.

• The Benjamini-Hochberg threshold calculated on p-values computed in step 3 above
calls less than 10% of E significant at ↵ = 0.25. Under H1, p-values tend to be
strongly significant.

• Fluctuation strength is not monotonically increasing with copy number. Under H1,
larger copy numbers are associated with larger fluctuations.

• # {x : ⇡̂x = ⇡mode} makes up less than '% of all x, where ' is by default set to 50,
but can be adapted based on prior knowledge. Overfitting will lead to erroneous
excursions away from ⇡mode.

5. Utilizing off-diagonal information: The presence or absence of off-diagonal signal at
either boundary of an excursion e provides further evidence for the biological significance
of e. Thus, uncertainty quantification of off-diagonal intensities (discussed in the
following section) is incorporated into the overall computation of a p-value associated
with an excursion e.

Illustrations of effective copy number profiles called in this manner on the data sets
analyzed in the main text are given in Supplementary Figure A.13.

Confidence intervals for mixture proportions f̂G

There are primarily two sources of noise that contribute to uncertainty in the proportion
estimates f̂G:

1. The stochasticity of read counts conditional on h; that is ".

2. Shifts in the expected intensities h themselves, due to, e.g., uncaptured covariates.

The former is a commonly encountered complication in statistical inference and can be
addressed by classical non-parametric tools like the bootstrap (or versions thereof; e.g., the
block or sieve bootstrap to account for the lack of independence and identical distributions
in "; it is also this lack of regularity in " that prevents exploiting more explicit tools based on
central limit arguments or semi-parametric assumptions), while the latter is more delicate:
It includes systematic biases in the data that may be unique to G (and therefore h) itself,
and therefore can be difficult to estimate. For instance, for a (ground-truth) effective copy
number profile ⇡ featuring two excursions e1 and e2 at levels ⇡e1 = 2 + �� �, ⇡e2 = 2 + �+ �
(for some � 2 [0, 1] and small � > 0), both of identical length, it is reasonable to either infer
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|Ĝ| = 3, f̂ 1 = �, f̂ 2 = �, or |Ĝ| = 2, f̂ = � and attribute the shifts by � to systematic biases
that have not been captured by the covariate correction described above. HiDENSEC will
decide between these two situations based on the fluctuations around these effective copy
number values both inside and outside of these excursions, but if the latter is returned, then
the difference of � ought to be reflected in any uncertainty quantification of f̂G. To do so,
HiDENSEC performs the following bootstrap procedure, estimating confidence intervals for
each fk in turn, and decoupling each excursion e 2 E :

1. For each e 2 E with e = (xe, ye, ⇡̂e = 2f̂ 0 + f̂ 1p̂1) (that is, every excursions in which
only the first non-reference genome in G is not diploid) of length ne = ye � xe, resample
Be Bootstrap replicates ⇧b⇤

e , b = 1, ..., Be (where Be is determined below) of ⇧ on e,
and compute local proportion estimates (f̂ 1

e )
b⇤ as the medians of |⇧b⇤

e � 2|/f .

• The resample sizes Be are chosen as the closest integer to Bne/(
P

e0 ne0), where B
is chosen as large as computationally feasible (by default B = 103).

2. Remove outliers from
S

e,b(f̂
1
e )

b⇤ by truncating past 3.5 median deviations, and return
a 95% confidence interval around the resulting distribution’s median.

3. Repeat steps 1 and 2 on each higher-order ⇡̂k that is not uniformly diploid, incorporating
for each e whose effective copy number estimate is contributed to by f 1, ..., fk the
previously estimated uncertainties of f 1, ..., fk�1.

The weighting scheme in step 1 is designed so as to attribute more importance to longer
excursions, as these contribute more heavily towards estimating f̂G, with the trimming of step
2 encouraging erroneously called excursions to be excluded. Resorting to previously estimated
uncertainties in f 1, ..., fk�1 when estimating confidence intervals for fk in step 3 is necessary as
fluctuations of

Pk
i=1 f̂kp̂k inform fluctuations in f̂k only when the fluctuations of f 1, ..., fk�1

are known. Confidence intervals computed in this manner are likely to be conservative
(though proving so requires further assumptions on the uncaptured covariates), since the
bootstrapping design above effectively simulates inference of f̂G on each excursion individually,
while HiDENSEC estimates f̂G using all excursions jointly. Nevertheless, Supplementary
Figure A.3 illustrates that the resulting confidence intervals are reasonably small whenever
appropriate.

A.4 Inference of large-scale structural variants

Large-scale structural variants typically result in off-diagonal intensities arranged in either
of the six patterns given in Supplementary Figure A.14, which in the following will be
referred to as P = P1 [ P2 = { , , , } [ { , }. While events in P1 are most often
associated with changes in the copy number profile, rearrangements falling into P2 typically
are not, and so HiDENSEC treats their analysis separately. In particular, while HiDENSEC
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largely relies on its previously inferred copy number profiles ⇡̂ for detecting the former, the
latter are called primarily based on their characteristic diagonal shape.

Detecting patterns in P1

Hi-C sub-matrices structured like the patterns in P1 can be found abundantly throughout
the entire genome, and often correspond to intrinsic DNA geometry, compartment structure,
or simply stochastic fluctuations inherent in the underlying biological and experimental
processes. Moreover, in particularly noisy data or comparatively complex rearrangements, the
area of largest intensity in any given p 2 P1 may not be straightforward to identify, in which
case all p, q 2 P1 are approximately related to each other by a translation, and assigning
one of them to a given empirical Hi-C sub-matrix may be under-determined. HiDENSEC
addresses these two sources of uncertainty in two ways:

1. By default, HiDENSEC only reports off-diagonal events associated with excursions and
corresponding copy number change points that have been evaluated as significant under
the hypothesis testing scheme described in Sec. A.3. Switching to non-default behavior
and scanning arbitrary points along the genome is possible, but care should be taken in
interpretation, as off-diagonal squares of enriched read counts may be confounded by
above-mentioned biological and experimental hidden covariates. Reliably distinguishing
signal due to noise from signal due to genomic rearrangement is often difficult even
under manual detection by experts.

2. Since biological or experimental noise rarely result in individual P1 patterns in isolation,
but rather display effects that tend to propagate horizontally, vertically, and locally
along the Hi-C matrix (see, e.g., �p

6 of Sample 1-II in Figure 4), each candidate Hi-C
sub-matrix H [J ,K] that may potentially contain signal reflecting large-scale structural
variant is evaluated in comparison to all sub-matrices obtained by translating H[J ,K]
vertically (i.e., {H[J ,K + y]}y), horizontally (i.e., {H[J + x,K]}x), and locally (i.e.,
{H[J + x,K+ y]}wx,y=�w for some window size w). Only if a suitable summary statistic
of H[J ,K] (to be discussed below) appears sufficiently significant in comparison to
the entire class of shifted sub-matrices, is H[J ,K] declared as containing evidence of
genomic rearrangement events.

More concretely, HiDENSEC proceeds as follows.

1. For a given set of excursions E and associated p-values as determined in Sec. A.3,
select their most significant subset through Benjamini-Hochberg on a given significance
threshold ↵ (by default ↵ = 0.05). Call C the set of boundary points of the so selected
candidate excursions.

2. For a choice of weight w = (w1, w2) and off-diagonal point x = (x1, x2), define the four
quadrants

Qjk
w (x) = {(x1 +m, x2 + n) : m 2 [0, jw1], n 2 [0, kw2]} ,
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for j, k 2 {±1}, and denote by Hw(x) the associated empirical distribution

Hw(x) =
X

j0,k02[j,kQ
jk
w (x)

Hj0k0�j0k0

of read count locations. If X ⇠ Hw(x), Y ⇠ Uniform
⇣S

j,k2{±1} Q
jk
w (x)

⌘
are random

variables distributed according to Hw(x) and the uniform measure on [x1 � w1, x1 +
w1]⌦ [x2 � w2, x2 + w2], respectively, then HiDENSEC considers as test statistics

S1
w(x) = ⌘ (E [X | Qw(x)]) S2,⌧

w (x) = EVar [E (H(Y ) | Y⌧ ) | Q
⌧
w(x)] ,

for ⌧ 2 {1, 2}, where ⌘(Z) is the entropy of the random variable Z, Qw =
�
Qjk

w (x)
 
j,k2{±1},

Q
1
w(x) =

nS
k2{±1} Q

jk
w

o

j2{±1}
, and Q

2
w(x) =

nS
j2{±1} Q

jk
w

o

k2{±1}
. That is, while

S1
w(x) essentially captures the extent to which read counts tend to accumulate in

only one of the quadrants, S2,⌧
w measures whether read counts, projected onto the X⌧

coordinate, exhibit evidence of copy numbers changing at x (cf. Eq. (A.3) in Sec. A.3).

3. For each pair of boundary points {x1, x2} 2
�
C
2

�
that fall into distinct chromosomes,

refine its location by maximizing S1
w(x1, x2) locally through, e.g., coordinate ascent,

and denote the resulting
�|C|

2

�
off-diagonal indices by C as well.

4. For each {x1, x2} 2 C, compute p-values p1x1
(x2) and p1x2

(x1) from comparing S1
w(x, y)

against the empirical distributions Ŝ1
w(x1) = {S1

w(x1, y)}y and Ŝ1
w(x2) = {S1

w(y, x2)}y,
where the index y ranges over all genomic locations not part of the chromosome
containing x1 and x2, respectively.

5. Compute p-values p2,⌧ (x1, x2) by comparing S2,⌧
w (x1, x2) against the permuted random

variable X̃ ⇠ (�1 �X1, �2 �X2), where �k is drawn uniformly from the symmetric group
on [�wk, wk].

6. Under the null hypothesis of S1
w(x) following either Ŝ1

w(x1) or Ŝ1
w(x2), and X1 ?? X2,

H(X⌧ )??Q
⌧
w(x), mw(x1, x2) = min{p1x1

(x2), p1x2
(x1} is super-uniform, while p2,⌧ (x1, x2)

are uniformly distributed, with all three quantities independent of each other (note
that the optimization in step (3) may affect these properties slightly, though as long
as the refinement is kept sufficiently local, its impact appears empirically negligible;
see Supplementary Figure A.13). HiDENSEC thus ranks candidates in C based
on p-values associated with mw(x1, x2) +

P
⌧ p

2,⌧ (x1, x2), and declares a set C+ ⇢ C of
significant off-diagonal contacts by means of the Benjamini-Hochberg procedure.

7. For each site x identified in step (1), denote by Cx ⇢
S

c2C+
c the set of all its refinements

partaking in a significant pair, and extract a single refinement by computing a combined
on- and off-diagonal statistic akin to Eq. (A.3) on each element in [minCx,maxCx].
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Detecting patterns in P2

Patterns in P2 are typically not tied to changes in copy number profiles, and thus require a
more global search than what was necessary in the case of P1. However, their characteristic
block-diagonal shape is rather more rigid; e.g., translational and within-block rotational
symmetries do not apply in the same manner they did in P1, which HiDENSEC exploits for
their detection. More explicitly, HiDENSEC proceeds as follows.

1. For each pair of chromosomes {�a,�b}, denote by H[�a,�b] the Hi-C sub-matrix
recording all contacts between �a and �b.

2. For a fixed choice of r (by default, r = 50), convolve H[�a,�b] by r�2
[r] ⌦ [r], where

[r] 2 Rr is the all-ones vector, and replace each entry hij of the resulting smoothed
matrix H̃[�a,�b] by hij>m, where m is the median of non-zero values in H̃[�a,�b].
Interpret the so-constructed matrix H[�a,�b] as an encoding for a graph G[�a,�b],
whose vertices v are labeled {1, ..., |�a|}⇥ {1, ..., |�b|} and whose every pair of vertices
v, w is connected by an edge if mins2{v,w}

�
H[�a,�b]s

 
= 1 and kv � wk1 = 1.

3. Fix a number C of candidates to be considered per chromosome pair {�a,�b}, and iden-
tify the C largest connected components K1[�a,�b], ..., KC [�a,�b] (ordered in decreasing
size) of G[�a,�b].

4. For each component Kj [�a,�b] identified in the step above, extract the vertex vj [�a,�b],
such that vj [�a,�b] =v H̃[�a,�b](v), and let V [�a,�b] =

S
j2[C] vj [�a,�b] be the collection

of these vertices.

5. For a choice of window size w, sites x, y and Qjk
w ,Qw,Q⌧

w, Hw, X, Y as introduced in
the previous section, define the statistics T 1,�

w (x, y), T 2,�
w , T 3,�

w , � 2 {±1} as

�T 1,�
w = P

⇥
(X,X 0) 2

�
Q11

w (x, y), Q�1�1
w (x, y

�⇤
�P

⇥
(X,X 0) 2

�
Q�1+1

w (x, y), Q+1�1
w (x, y)

�⇤

T 2,�
w = E

⇥
Hw(Y ) | kY � (x, y)k1  3, Y 2 Q1�

w [Q�1��
w

⇤

�T 3,�
w = ⌧12⌧21 � ⌧11⌧22,

where X 0 is an iid copy of X, and ⌧kj is given by

⌧kj = ⌧
�
m,E

⇥
Hw(Y ) | kY � (x, y)k1 = m,Y 2 Qkj

w

⇤�
m2[⇢] ,

with ⌧(·) being Kendall’s ⌧ , and ⇢ a pre-specified radius.

6. For each v 2
S

a,b V [�a,�b], refine its location by locally maximizing first Hw(v), and
then T 1,�

w (v). Call these two collections of refined vertices V
�, � 2 {±1}.
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7. For each v 2 V
�, compute (T j,�

w (v))j2{1,2,3}, and construct p-values p1,�w (v), p2,�w (v) for
every v with T 3,�

w (v) larger than some threshold t (by default, t = 5) as

pj,�w (v) = �µj,� ,⌫j,�
�
T j,�
w (v)

�
,

where �µ,⌫ is the CDF of a Gaussian distribution with expectation µ and variance ⌫,
and

µj,� = |V
�
|
�1

X

v2V�

T j,�
w (v) ⌫j,� = |V

�
|
�1

X

v2V�

(T j,�
w (v)� µj,�)2.

8. Under the null hypothesis of (X | Hw(X)) being uniformly distributed on Qw, T 1,�
w

and T 2,�
w become Gaussian as w and ⇢ increase, and so pj,�w is approximately calibrated

(see Supplementary Figure A.15C). HiDENSEC then uses min{p1,�w , p2,�w } to select
off-diagonal locations v likely to exhibit patterns in P2.

Supplementary Figure A.15A,B demonstrates the power and accuracy of the selection
scheme described above, showcasing its strong calibration, high sensitivity, and precise
localization: Manual expert inspection of all Hi-C matrices analysed in the main text yielded
three distinct type-P2 fusion events, two of which are associated with mixture proportions of
⇡ 10%. HiNT does not identify these two events as such (likely precisely due to their small
associated proportions), but does declare the remaining third event as significant (alongside
a similar number of false positives as discussed in the section above); however, returning
a location estimate that differs from the actual signal by about kx̂HiNT � xk1 ⇡ 67MB.
In contrast, HiDENSEC correctly identifies all three—and only these three; i.e., at zero
false-positive rate—events as such, with its location estimates coinciding precisely with those
obtained from visual inspection.

Benchmarking

In order to more thoroughly assess the performance of HiDENSEC relative to HiNT outside
the context of cell lines, the same benchmarking procedure as displayed in Figure 3 was
employed on all analyzed samples. As Supplementary Figure A.16 demonstrates, the
relative improvement in top-k recall remains as pronounced as, if not more so, in the setting
of cell lines.

A.5 Proof of Theorem

Identifying the smallest number of genomes |G| that explain a given noise-less effective copy
number profile ⇡ using mixture proportions bounded away from zero (e.g., minG2G fG

�

o(|G|�1)) and bounded absolute copy numbers (i.e., maxG2G kpGk1  B for some B 2 N) is,
in general, at least as hard as the subset sum problem, and therefore NP-complete. The
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proof proceeds by reducing the subset sum problem to two variants of it, one of which will be
directly reducable to identifying |G|. It begins by recalling the subset-sum problem in one
of its most commonly stated form (here referred to as SSP0): [SSP0] Given a set S ⇢ Q+

of K non-negative rational numbers, and a target T 2 Q, decide whether there exists a
subset R ⇢ S, so that

P
r2R r = T . SSP0 is well known to be NP-complete, and so any

reduction of it to a new task P will render P NP-hard. The P of interest in the case here is
the following: [Min|G|] Given a profile of effective copy numbers {⇡i}i, determine the smallest
set G, so that ⇡ =

P
g2G f

GpG for some mixture proportions fG and absolute copy number
profiles pG, with minG2G fG

� g(|G|) 2 o(|G|�1) and maxG2G kpGk1  B for some B 2 N.
It is clear that Min|G| 2 NP, and so reducing SSP0 to Min|G| suffices to show that it is
NP-complete. To do so, two intermediary reductions are needed:

SSP0  SSP1  SSP2  Min|G|,

where SSP1 and SSP2 are defined to be [SSP1] Given a set S ⇢ Q \ [0, 1] whose elements
are linearly independent in the Z/BZ-module Q, less than 2g(K), and sum to less than or 1;
and a target T , deciding if there exists a subset R ⇢ S for which

P
r2R r = T is NP-hard.

[SSP2] Given a set S as in SSP1, and a target T , deciding if there exists a subset R ⇢ S,
and multiplicities m ⇢ NS for which

P
r2R mrr = T is NP-hard. Indeed, if SSP2 is known

to be NP-hard, then hardness of Min|G| follows:

SSP2  Min|G|.

[Proof of lemma] Given an instance of SSP2, enumerate the elements of S as {sk}k2[K], and
construct an effective copy number profile consisting of ⇡k = sk as well as ⇡K+1 = T . Due to
the linear independence and boundedness assumptions on S, any G explaining such ⇡ must
be of size at least K (with fGk = sk for k 2 [K]), and will be of size K + 1 if and only if
T =

PK
k=1 f

GkpGk =
PK

k=1 skp
Gk for some pGK+1 2 NK . That is, if a set of genomes G of size

|G| = K explains ⇡, then setting mk = pGk
K+1 solves SSP2; while otherwise no solution to

SSP2 exists. Thus it remains to show that SSP0  SSP2.

SSP0  SSP1.

[Proof of lemma] Given an instance of SSP0,

1. find an invertible linear transformation ⌧(x) = ax + b such that ⌧(S) satisfies the
boundedness assumptions of SSP1, and b = b0 + 10�e0 for some e0 much larger than
any of the ek discussed below,

2. replace each sk by two new elements

s0k = s0k + 10�ek s00k = s1k � 10�ek ,

where sik are positive, s0k + s1k = ⌧(sk), and S 0 = [k2[K]{s0k, s
00
k} is linearly independent

in the Z/BZ-module Q, and ek 2 N are exponents larger than the maximum of
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F10(aT +Kb) and maxk2[K],i2{0,1} F10(sik) (where F10(x) is the largest index—counting
from the left—at which the base-10 expansion of x is non-zero), distinct from each other;
i.e., ek 6= e` if k 6= `, and chosen so as to not violate any boundedness assumptions.

Then (S 0, aT + kb))k2[K] are all valid instances for SSP1, and any solution must either select
both or neither of s0k and s00k. If one of these instances, say the kth

⇤ , accepts on a subset of
indices R, then |R| = k⇤ due to the choice of e0, and since

X

r2R

asr + b = k⇤b+ a
X

r2R

sr = aT + k⇤b,

it must be true that
P

r2R sr = T , and so R too provides a positive answer to (S, T ).
Conversely, a solution R to (S, T ) will provide a solution to (S 0, aT + |R|b), and so the lemma
is proved.

SSP1  SSP2.

[Proof of lemma] A similar proof idea as in the lemma just proved works here as well: Each
element sk 2 S is replaced by two elements that indicate whether sk is used once or not at
all in the following manner.

1. Choose (ek)k2[K], so that ek � B0 +maxx2S[{T}F10(x), and such that |ek � e`| � B0 for
some B0 > B.

2. Replace each element sk with two elements

s0k = 10�ek s00k = sk + 10�ek .

3. Define S 0 = [s2S {s0k, s
00
k}, T 0 = T +

P
k2[K] 10

�ek , and query SSP2 on the instance
(S 0, T 0).

If SSP2 returns a solution R0 to this instance, then R = {k : s00k 2 R0
} provides a solution

of indices to SSP1 on (S, T ). The converse direction is clear. Chaining together these
individual lemmas yields the theorem as desired. Although this proof may appear contrived
on first glance, it in fact describes the very difficulty HiDENSEC must deal with: Given
various levels ⇡1, ..., ⇡K of ⇡, can a new level ⇡K+1 be explained by the same genomes that
explain ⇡1 through ⇡K or is the introduction of a new one necessary? The proof shows that
even when a set of genomes explaining ⇡1, ..., ⇡K is known, answering this question in general
is intractable—therefore, in practice, where the genomes explaining ⇡1 through ⇡K are not
known and must be estimated themselves, this must be true too.
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A.6 Supplementary Figures

Supplementary Figure A.1: Covariate dependence of Hj =
P

k Hjk in GM12878 in
situ Hi-C data. The impact of the four covariates compartment structure, GC-content,
number of cut-sites and mappability on row sums of Hi-C intensity matrices is displayed. A:
Hj conditioned on compartment structure, B: Hj as a function of remaining three covariates;
points are coloured by compartment, C: Hj conditioned on quartiles of the corresponding
column statistic in B, as a function of the two remaining covariates.
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Supplementary Figure A.2: Covariate dependence of Hj =
P

k Hjk in Sample 1-I in
vivo Fix-C data. Plots are as described in Supplementary Figure A.1.
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Supplementary Figure A.3: Predictions of tumor purity correlate well with known
tumor purity. (a) The x-axis represents true tumor purity for in vitro and in silico samples;
while the y-axis represents the HiDENSEC inferred tumor purities. There is high concordance
between the two and the error bars represent 95% confidence intervals for the HiDENSEC
inferred tumor purity. (b) The x-axis represents different samples used in the analysis (1-II
represents Sample 1-II, for instance). The y-axis represents the inferred tumor purity (the
fraction of cells that are cancerous). The error bars represent 95% confidence intervals for
the inferred tumor purity.
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Supplementary Figure A.4: Off-diagonal intensities of LSSVs aren’t reliable estimators
of absolute copy number. Each panel represents the Hi-C intensities corresponding to
a particular off-diagonal event in the HCC1187C cell line (for instance the top-left panel
represents a translocation between chromosome 1 and chromosome 6). The horizontal axis
represents a measure of how large a window around the translocation (which manifests itself
as an off-diagonal event on the Hi-C map) was considered to compute the Hi-C intensity.
The Y-axis represents the resulting Hi-C intensity. The true ploidies of inter-chromosomal
translocations are denoted by the horizontal dotted lines while the colored curves represent
the measured Hi-C intensities. For balanced translocations there are two colored lines
corresponding to the two fusion events. The fact that the ratio of the true ploidy represented
by the horizontal dotted lines and the colored curves is not consistent across the various LSSVs
within the same sample, suggests that the off-diagonal intensities are confounded by covariates
in addition to absolute copy number and hence HiDENSEC does not use off-diagonal Hi-C
intensities to infer absolute copy numbers.
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Supplementary Figure A.5: HiDENSEC absolute copy number predictions correlate
well with genome-wide copy numbers inferred from next-generation sequencing.
Each panel represents HiDENSEC absolute copy number predictions for a particular sample
(whose identity is indicated inside each panel; e.g., 1-II in the top-right represents Sample
1 - II), compared to UCSF500 or Exome sequencing based (relative) copy number calls.
Copy number profiles inferred by HiDENSEC from Hi-C data use color codes consistent
with the main text (that is, blue curves correspond to Samples 1 - I, 2 - I, 3 - I, beige
curves to Samples 1 - II, 2 - II, 3 - II, and the green curve depicts Sample 3 - III), while
red and pink profiles represent relative copy numbers (transformed by x �! 2 ⇥ 2x) from
CNVkit using UCSF500 or Exome sequencing. For Sample 2 - I, the discordance between
the levels of the HiDENSEC absolute copy numbers and the CNVkit scaled relative copy
numbers inferred using UCSF500 data is likely due to differences in samples for the Hi-C
data and for the UCSF500 data, since the UCSF500 based tumor purity lies outside the 95%
confidence intervals of the HiDENSEC inferred tumor purity (Supplementary Figure A.3,
Supplementary Table 4). For Sample 3 - III, two UCSF500 based curves are displayed, as
UCSF500 data from two different metastases corresponding to this sample exists; both of
these are concordant with the HiDENSEC absolute copy number inferred using Hi-C data
from the metastasis sample, Sample 3 - III.
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Supplementary Figure A.6: Somatic mutant allele frequencies for Patient 1 and
Patient 2, based on somatic variant calls derived from Exome sequencing data
and UCSF500 data, respectively. (a) Somatic variant calls were obtained using Mutect2
from exome sequencing data in samples derived from Patient 1 and (b) UCSF500 data in
samples derived from Patient 2. These somatic variant calls were then filtered out for false
positives and the intersection of mutations observed in both samples within a patient was
considered. The x-axis and the y-axis in each of the two panels represents somatic mutant
allele frequencies. Each individual data point is a particular somatic variant call, from among
the intersection of filtered somatic variant calls within the two samples of a patient. The
red point denotes the well-known BRAF V600E somatic variant while the dashed lines are
drawn at exactly half of its mutant allele frequencies. The resulting quadrants are intended to
denote somatic variants common to both samples (corresponding to the top-right quadrant),
somatic variants present in only one of the samples (corresponding to the top-left and the
bottom-right quadrants), and somatic variants which are likely false positives (bottom-left
quadrant).
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Supplementary Figure A.7: Schematics demonstrating two particularly complex
structural variants. The translocations involving chromosome 2, 5 and 10 in both samples
of Patient 2 (Sample 2 - I and Sample 2 - II) and the inter-chromosomal translocation between
chromosome 5 and 7 in Sample - I have been depicted here. In order to infer the contacts
constituting these complex structural variants, the Hi-C maps of the relevant chromosomes
were carefully analyzed in conjunction with the HiDENSEC inferred copy numbers, as
shown in Supplementary Figure A.9, Supplementary Figure A.10. Arrows indicate
duplications and inversions of genomic segments of chromosome 2.
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Supplementary Figure A.8: Alternatives to the phylogenetic relationship between
the three cell types in Patient 3 . Two alternative phylogenies that are consistent with
the LSSVs in Patient 3. The phylogeny in Figure 7b was chosen over these two alternatives
following the principle of parsimony since the number of convergent events, denoted in red,
are higher in these two phylogenies, than the one described in Figure 7b.



APPENDIX A. HIDENSEC SUPPLEMENTARY INFORMATION 845
7

5
55

7

17

1917

19
Supplementary Figure A.9: Zoomed-in Hi-C maps of two translocations observed
in Sample 3 - I. Sample 3 - I contains two structural variants that are relatively smaller
in size than chromosome arms. The first of which is a complex structural variant between
chromosome 5 and chromosome 7, a schematic of which is depicted in Supplementary
Figure A.7b. The second structural variant is a short balanced translocation between
chromosome 17 and chromosome 19, depicted in the bottom right panel and its inset.
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Supplementary Figure A.10: Hi-C contact maps used to infer the inter-chromosomal
translocations involving chromosomes 2, 5 and 10 in Patient 2. This figure shows
the zoomed in Hi-C maps for chromosome pairs involved in the complex structural event
depicted in Supplementary Figure A.7a. The three line plots adjacent to the Hi-C maps
represent HiDENSEC inferred copy numbers for the three chromosomes, which were used to
determine the contacts constituting this complex structural variant.
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Supplementary Figure A.11: Covariate correction is protocol-dependent. A Hi-C
sample of the reference genome as well as the Fix-C Sample 3-II illustrate the necessity for
both covariate correction in general, as well as its protocol-specific nature.
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Supplementary Figure A.12: Generative model of signal & noise. Observed on-diagonal
contact intensities are modeled as an underlying effective copy number profile comprised of
a convex combination of individual, cell-population-specific absolute copy number profiles
(A), which is perturbed by heteroskedastic noise (B) and scaled by a generally unknown
constant C0N . Under H0 of ⇡ ⌘ 2, p-values associated with HiDENSEC ’s test statistics
behave super-uniformly or close to uniform (C).
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Supplementary Figure A.13: Inference of effective copy number profiles & interpre-
tation of excursions. Inferred ⇡̂ (solid black line) for each of the non-diploid samples
discussed in the main text as well as for in-silico and in-vitro mixtures (with f = 0.7 and
f = 0.5, respectively) are shown against ⇧ (blue line). Each excursion e is associated with a
p-value reflecting its biological significance, with greener colors mirroring higher significance.
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Supplementary Figure A.14: Hi-C intensity patterns and associated large-scale
structural variants. HiDENSEC detects Hi-C sub-matrices of six distinct patterns (A)
associated with six types of large-scale structural variants (B) (note: non-fusing segments
may interact with chromosomes other than �a and �b or be deleted without qualitatively
affecting the local Hi-C patterns of (A)).
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Supplementary Figure A.15: HiDENSEC reliably detects off-diagonal exchange pat-
terns. In those samples that do contain patterns in P2, HiDENSEC correctly recovers
them at zero false-positive rate (A), and identifies their precise locations accurately (B,
blue highlights indicate fusion sites inferred by HiDENSEC). Calibration of HiDENSEC is
primarily a result of computed p-values behaving super-uniformly (C, empirical distributions
based on all samples analyzed in the main text). Of the three events, HiNT only detected
the �4 ⇠ �8 fusion, locating it, however, ⇡ 42 and ⇡ 25MB away from the true signal on �4

and �8, respectively.
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Supplementary Figure A.16: Comparison of HiDENSEC’s (black) and HiNT’s (red) top-k
recall on the samples analyzed in the main text. As in the corresponding main figure, filled
regions indicate rearrangements deemed significant by either method.

A.7 Supplementary Tables

Supplementary tables associated with this work can be found here:
https://tinyurl.com/HiDENSECSupplementalTables


