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Abstract

Intensity Based Visualization of Pulmonary Biomarkers on Ultrashort Echo Time (UTE)
MRI

by

Darren Hsu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Michael Lustig, Chair

Current non-invasive pulmonary function tests include spirometry and plethysmography,
which assess lung volume, rates of flow, and gas exchange in both lungs. These tests can
collectively measure aggregate respiratory metrics of both lungs, but not the right or left
lung separately. This key drawback motivates a localized approach, through signal intensity
based pulmonary function biomarkers. Recent advances in ultrashort echo time (UTE) MRI
allows for robust imaging in pulmonary free-breathing exercises, without harmful ionizing
radiation. Applying signal intensity based methods, biomarker metrics such as time to signal
intensity peak (TTP) or full width at half maximum (FWHM) intensity are extracted from
the image. The resulting visualizations depict localized respiratory function to help clinicians
understand the rate and velocity at which lung tissue expands from full inspiration to full
expiration.
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Chapter 1

Introduction

1.1 Background

Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is a high-resolution medical imaging modality that allows
clinicians to gain visibility inside the human body, without using harmful ionizing radiation.
Its comparative advantage over ionizing imaging methods, such as chest X-rays and computed
tomography (CT), is well recognized [1]. In pediatric patients or pregnant women, where
radiation exposure may be harmful, MRI based methods stand to compete as a powerful
alternative imaging technique.

Ultrashort Echo Time (UTE) MRI

Historically, low proton density, fast signal decay, and respiratory movement in the lung
made images susceptible to artifacts [2]. As a result, it was challenging to generate a high
signal-to-noise ratio (SNR) images of the lung. To overcome these challenges, 1H (proton)
MRI is used to exploit the resonant high-frequency signal of protons in lung tissues and
liquids. Recent advances in 1H (proton) ultrashort echo time (UTE) MRI allow for motion
robust imaging in pulmonary free breathing images [3]. With these advances in pulmonary
MRI, it is now possible to generate high SNR images of the lung [4].

1.2 Motivation

Current non-invasive pulmonary function tests include spirometry and plethysmography,
which assess lung volume, rates of flow, and gas exchange in both lungs [5]. These tests
can collectively measure aggregate respiratory metrics of both lungs, but not the right or
left lung separately [6]. This key drawback motivates a localized approach, through signal
intensity based pulmonary function biomarkers. In past papers, signal intensity biomarkers
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have been shown to measure lung function, lung movement, and respiratory function [7, 8,
9]. Using the time to peak (TTP) and full width at half max (FWHM) biomarkers, we
will show that signal intensity based biomarkers are a viable alternative to spirometry and
plethysmography tests. The TTP biomarker was selected for its property of characterizing
the peak of respiratory motion. The FWHM biomarker was chosen because it provides
insight into the speed of respiratory motion.

1.3 Related Work

There has been considerable work done in developing pulmonary biomarkers, so we will
discuss two relevant methodologies.

Pulmonary Ventilation Analysis

In a recent study, pulmonary ventilation analysis was performed on UTE free breathing lung
MRI for the first time [10]. The paper sought to quantify regional ventilation through a local-
ized approach. The resulting ventilation maps showed that they were reproducible and were
able to show lung abnormalities in patients with Bronchiolitis Obliterans (an inflammatory
obstruction of the lung’s tiniest airways).

Using UTE 1H (proton) MRI, the authors were able to leverage structural and functional
information of the lung. Furthermore, respiratory motion-resolved 3D imaging enables the
separation of several respiratory states between expiration and inspiration. After data acqui-
sition, each respiratory state was registered to the end expiratory state with three di↵erent
methods.

1. Cyclic Registration: B-spline 3D+t cyclic registration utilizes the sinusoidal character-
istic of breathing patterns in the human respiratory system.

2. Multi B-spline Registration: Multi B-spline registration is a deformable registration
method that accounts for sliding motion of the lung across the chest wall.

3. Symmetric image normalization (SyN): SyN registration with the mutual information
metric minimizes the e↵ect of intensity changes during respiratory motion.

By analyzing the lung tissue deformation variation across the expiratory and inspiratory
phases, a motion field for the respiratory movement was generated. To create the visualiza-
tions, the Jacobian determinant was applied to quantify the ratio of volume at the respiratory
state to the end expiration state.

The key point was that regional ventilation biomarker methods using the Jacobian deter-
minant of the motion field are feasible and reproducible in healthy volunteers. All three regis-
tration methods (cyclic registration, multi-b-spline, and SyN) showed similar reproducibility
in the pulmonary ventilation analysis. In future studies, the authors seek to conduct more



CHAPTER 1. INTRODUCTION 3

MRI scans on patients with cystic fibrosis and other lung diseases to assist their diagnosis
with precise treatments.

Phase-Resolved Functional Lung (PREFUL) MRI Biomarkers

In a feasibility study, dynamic perfusion and ventilation biomarkers were extracted from 1H
(proton) MRI [7]. The authors demonstrated the practical implementation of phase-resolved
functional lung imaging to gain quantitative information regarding regional lung perfusion
and ventilation, without the need for ultrafast imaging.

Through their study, healthy volunteers and patients with cystic fibrosis were imaged.
Afterward, the subject time series images were registered to a fixed image in the intermediate
lung position. To increase the signal-to-noise ratio, edge-preserving guided image filtering
was applied. To model the human respiratory motion, a sinusoidal curve fitting model was
fit to the signal intensity values. The perfusion-weighted maps were then generated with the
TTP PREFUL biomarkers.

The resulting PREFUL biomarkers depicted a pattern of below average hypoventilation
and decreased perfusion for the cystic fibrosis patient when compared to the healthy volun-
teer. The PREFUL biomarkers had visual agreement with clinical CT scans. This study
depicts the feasibility of obtaining quantitative information regarding regional lung perfusion
and ventilation by applying phase-resolved functional lung imaging. By removing the need
for ultrafast imaging, clinicians will benefit in future clinical translation studies.
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Chapter 2

Methods

2.1 Methods Overview

Figure 2.1: Overview of the biomarker visualization pipeline.
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Figure 2.1 depicts the full pulmonary biomarker pipeline for one representative healthy
volunteer. In summary, the application of the time to peak and full width at half max
biomarker methods presented are as follows:

1. Free breathing pulmonary ultra short echo time (UTE) MRI scans were acquired on
six healthy volunteers with repeated scans.

2. Twelve phases were reconstructed to segment respiratory motion using self-navigation
phase-resolved reconstruction.

3. A non-rigid cyclic registration algorithm registered the respiratory states to the end
expiratory state.

4. Using the ANTsPyNet package, a lung mask was generated to segment the 3D pul-
monary image from human tissue.

5. Application of denoising methods included voxel generation and strided convolutions
with padding.

6. With a voxel based approach, a 3rd and 4th degree polynomial curve fitting model was
applied in the respiratory phase direction.

7. Time to peak (TTP) and full width at half max (FWHM) biomarkers were generated
from the polynomial curve fitting models.

2.2 Subjects

Six healthy volunteers, aged 23-30, were recruited to participate in the study. The MRI
scans were performed during free breathing. This study was approved by the University of
California, San Francisco Institutional Review Board ethics committee, and written informed
consent was obtained from all participants.

2.3 Imaging Procedure

Pulmonary MR images were acquired on a 3T MR750 clinical scanner (GE Healthcare,
Waukesha, WI) with an 8-channel cardiac phased-array coil using 3D radial UTE sequences
[3]. A golden angle ordering with variable-density 3D radial UTE sequence was used during
the free-breathing scan [10]. The parameters were: flip angle=4�, FOV=40cm, TE/TR=0.1 /
2.4ms, BW=+/-125kHz, number of spokes=200,000, resolution=2.5mm isotropic [11]. Sub-
jects were scanned twice on the same day for reproducibility.
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2.4 Registration and Denoising

The raw data was segmented into twelve phases according to the respiratory motion and re-
constructed using self-navigating, phase-resolved reconstruction [12]. The respiratory states
were registered to the end expiratory states using the non-rigid cyclic registration algorithm
[13]. After registration, the ANTsPyNet package [14] created a lung mask with a morphology
closing diameter of 3 voxels. The lung mask was then utilized to extract the 3D pulmonary
image from the rest of the tissue. Since signal intensity values of pulmonary tissue vary with
expansion and contraction between phases, we analyze signal intensities through a voxel-
based approach. Lung tissue has higher proton density providing higher signal intensity
during contraction and presenting lower signal in expansion. A 2x2x2 voxel size was chosen
for strided image convolutions to reduce the noise in the image. Voxel padding was also
added for the strided convolutions.

2.5 Respiratory Cycle Reconstruction

Intensity values were smoothed in the respiratory phase direction by using a third and
fourth degree polynomial curve fitting model. Afterward, a polynomial curve fitting model
was generated for each voxel of the pulmonary lung image, along the respiratory dimension.
As a result of the polynomial curve fitting process, the 4D images were transformed into 3D
images since each voxel now contains a unique biomarker metric. Please reference section
2.6 for biomarker calculations. A polynomial curve fitting model was chosen due to the
robustness of the additional degrees of freedom, compared to a sinusoidal or Gaussian curve
fitting model.

The least squares polynomial fit was used to minimize the variance of the unbiased
estimators of the coe�cients. In the polynomial curve fitting model, we are solving for the
unknown � parameter values shown below:

y = �0 + �1x+ �2x
2 + �3x

3 + · · ·+ �nx
m (2.1)

Expressing the polynomial curve fitting model in matrix form, we reach the following
below. Equation 2.2 contains the Vandermonde matrix X, output vector ~y, and unknown
parameter � values. Since the TTP and FWHM biomarkers in section 2.6 were fit to third or
fourth degree polynomials, m=3 or m=4. Each i-th row of the Vandermonde matrix X will
be a unique data point with its corresponding i-th output y value. Since respiratory motion
is segmented into twelve bins, n=12 for the twelve data points in the respiratory dimension.
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Writing the matrices in vector matrix form, we arrive at:

~y = X~� (2.3)

Applying ordinary least squares estimation, the � values are estimated with:

b~� = (XTX)�1 XT
~y, (2.4)

2.6 Pulmonary Biomarker Analysis

In this paper, we propose two di↵erent biomarkers, the time to peak (TTP) and the full
width at half max (FWHM).

Time to Peak (TTP)

For calculating the TTP biomarker, the vertical position of the maximum signal intensity
value correlated with the expiratory state is calculated. The di↵erence between the maximum
expiratory state and the inspiratory state constitutes TTP, where t is time in phase state.

Figure 2.2: The Time to Peak Biomarker of a representative voxel sample across the phase
dimension of respiratory motion.

T ime to Peak (TTP ) = tmax expiration � tinhalation state (2.5)
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Full Width at Half Max (FWHM)

For the FWHM biomarker, the distance between two points where the function reaches half
of its maximum value is calculated. Taking the di↵erence between these two points yields
the biomarker FWHM. The variable P is the peak’s prominence and is calculated at the
maximum expiration state, where the intensity value is the highest.

Figure 2.3: The Full Width at Half Max Biomarker of a representative voxel sample across
the phase dimension of respiratory motion.

Full Width at Half Max (FWHM) = hhalf max,right � hhalf max,left (2.6)

hhalf max = tmax expiration ± P ⇤ 0.5 (2.7)
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2.7 Reproducibility

For the reproducibility metric, the root mean squared (RMS) and logarithmic within-subject
coe�cient of variation (CV) were calculated [15]. X1 and X2 are pulmonary function
biomarkers from repeated scans of the same subject. X1 and X2 were calculated by av-
eraging all TTP or FWHM biomarker voxels, with their respective 3rd or 4th degree curve
fitting methods.

For the RMS coe�cient of variance, the mean of the two scans were first calculated in
equation 2.9. Applying the root mean squared, we arrive at the equation below:

RMS Coefficient of V ariance (%) =

sP
(X1�X2

Mean )
2

2n
⇥ 100 (2.8)

Mean =

P
(X1 +X2)

2n
(2.9)

For the logarithm coe�cient of variance, exponentiating the log of the X1 and X2 scans
arrives at this equation below:

Log Coefficient of V ariance (%) = (exp

rP
(logX1 � logX2)2

2n
� 1)⇥ 100 (2.10)
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Chapter 3

Results

3.1 TTP and FWHM Biomarkers

Applying the biomarker reconstruction pipeline, Figure 3.1 and Figure 3.2 depict the coronal
plane and sagittal plane, respectively, of the TTP and FWHM pulmonary biomarkers.

Figure 3.1: Coronal Plane of the Time to Peak and Full Width at Half Max Biomarkers



CHAPTER 3. RESULTS 11

Each biomarker was overlaid on a registered phase-resolved lung MR image for one rep-
resentative volunteer. For reproducibility, each subject was scanned twice in the same day
with the same imaging procedures and MRI sequences. As shown, all four biomarkers ex-
hibit homogeneous ventilation on the colormap visualization. The absolute di↵erence of the
biomarkers also exhibit a uniform distribution of the voxel biomarker intensity values.

Figure 3.2: Sagittal Plane of the Time to Peak and Full Width at Half Max Biomarkers
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3.2 Reproducibility

Coe�cient of Variation from Repeated Scans

Figure 3.3 shows the RMS and logarithm within-subject coe�cient of variation boxplot and
the data table. The boxplot indicates that the TTP third degree polynomial has a lower
median than the fourth degree polynomial but with a higher variance. For FWHM, both
polynomial curve fitting methods have similar medians but the 4th degree polynomial has
lower variance, which suggests that the 4th degree polynomial curve fitting methods are
more reproducible.

Figure 3.3: Within subject coe�cient of variation (CV) table and the corresponding box
plot. For the reproducibility metric, the root mean squared (RMS) and logarithmic within-
subject coe�cient of variation were calculated. A CV value closer to zero indicates smaller
di↵erences between the two repeated scans and thus the pulmonary function biomarkers are
more reproducible.
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Distribution of Biomarker Intensities

Figure 3.4 shows the split violin plot of repeated scans of the same subject, using the four
biomarker methods. The median of the two FWHM biomarkers ranged from 6-7, with a
normal distribution of values. The median of the two TTP biomarkers ranged from 7-8,
with a skewed distribution of values.

Figure 3.4: A split violin plot of each pulmonary function biomarker is created. The x-axis
shows the six subjects recruited for the study. The y-axis is the value of each biomarker
metric. The shaded area of each half of the violin plot represents the frequency of each
respective biomarker metric.
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Chapter 4

Discussion

The main findings of this study are as follows:

1. The TTP biomarker likely reflects the rate at which lung tissue expands from the full
inspiration to the full expiration phase.

2. The FWHM biomarker depicts the velocity of the tissue expansion from inspiration to
expiration, as it describes the width of the signal intensity peak.

3. Both the TTP and FWHM biomarkers are reproducible based on the RMS within
subject CV and Logarithm within subject CV.

4.1 Time to Peak (TTP)

For the reconstructed images, phase one corresponds to inspiration while phase seven cor-
responds to expiration. For the TTP biomarker, a value of seven is to be expected as the
seventh phase corresponds to exhalation, representing the highest signal intensity value. In
Figure 3.4 of the TTP violin plots, the distribution of values is clustered at the end of the
distribution. This is due to the high intensity white noise in the inspiration phase. This
phenomenon can be fixed with precise binning of phases and inspiration-expiration matching.

4.2 Full Width Half Max (FWHM)

For the FWHM biomarker, a value of six is expected, since it will capture the phases before
and after full exhalation. In the coronal plane and sagittal plane figures, the between-scan
di↵erence shows uniform variation. For the Figure 3.3 boxplots, we see that the variance of
FWHM is greater than the TTP biomarkers. This can be explained by noise or artifacts in
the scans since subjects 3 and 5 saw elevated CV.
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Chapter 5

Conclusion

This study underscores the feasibility of utilizing intensity based biomarkers to provide
quantitative insight into regional pulmonary function. The TTP biomarker likely reflects the
rate at which lung tissue expands from the full inspiration to the full expiration phase. The
FWHM biomarker depicts the velocity of the tissue expansion from inspiration to expiration,
as it describes the width of the signal intensity peak.

In essence, all four biomarkers showed similar reproducibility in healthy volunteers. The
3rd degree and 4th degree TTP polynomial fits are equally reproducible while the 4th degree
FWHM is more reproducible than the 3rd degree FWHM.

The ultimate goal is to use pulmonary respiratory biomarkers on all human subjects in
clinical studies. We demonstrated significant improvement in providing quantitative insight
into respiratory motion, and we hope that this system can be used to improve future clinical
research.

5.1 Future Work

In this project, we have demonstrated the e�cacy of using the TTP and FWHM biomarkers
on healthy human volunteers. Further studies of patients with cystic fibrosis or chronic
obstructive pulmonary disease (COPD) can assess the e�cacy of these biomarker results.
Furthermore, we seek to apply these pulmonary biomarkers to pediatric patients since they
would benefit from the non-ionizing radiation of MRI.

Additional work in developing a robust noise filtering model for post-processing pul-
monary images would be extremely beneficial. Due to the nature of intensity based visu-
alization of biomarkers, the biomarkers themselves are sensitive to noise. In this paper, we
utilized voxel based analysis and strided image convolutions to increase the signal-to-noise
ratio. To increase the SNR ratio even further, more aggressive filtering methods would need
to be applied.
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