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Abstract

Developing and Deploying Sim-to-Real Reinforcement Learning Techniques with
Applications in Energy Systems

by

Lucas Spangher

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Costas Spanos, Chair

Climate change requires a radical and complex transition in the way our energy sector
generates and uses energy. Solar and wind energy are leading carbon-free power sources, but
they are non-dispatchable, meaning that an operator cannot control when their generation
occurs. As a result, their growth may be stymied unless supporting technologies can change
how the rest of our energy system responds to their generation. Demand response is an
important tool in a suite of supporting technologies that help smooth the introduction of
non-dispatchable energy into the grid. The more effective demand response signals (prices)
are on responses (deferring of energy by appliances and building systems), the more quickly
solar and wind may decarbonize our energy system.

Demand response signals may be amplified by advanced controls, of which reinforcement
learning is a prime example. We present two different environments for testing demand
response price-setting at different levels of the grid. The first environment is MicrogridLearn,
an environment that transmits prices to a collection of buildings and learns to set prices in a
way that better shapes the energy and lowers energy costs for all buildings in its purview.
The second environment is OfficeLearn, an environment that simulates behavioral response
to prices. Using these two environments, we identify six key challenges in moving RL from
simulation to reality, and present RL strategies, some novel, to overcome them. First, RL
controllers implemented in the real world need to be data efficient: we present Offline-Online
RL, Surprise-Minimizing RL, and extrinsic and intrinsic planning as solutions. Second, RL
in the real world should be robust and guarantee safe action: we present a novel method, the
guardrails planning model, and demonstrate that using a conservative decision process with a
distributional prediction can help learning. Third, RL may get stuck in local optima: we
present meta-learning over domain randomization as a technique to ensure agent robustness.
Fourth, agents may be attacked: we demonstrate a novel adversarial attack on RL and
present a defense. Fifth, energy applications may require real-world RL to protect privacy
and generalize to new subdomains easily; we present the first ever application of Personal
Federated Hypernetworks (PFH) to RL to accomplish both tasks. Finally, hyperparameter
sweeps may entail large data consumption; we present a regression analysis of hyperparameter
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sweep values to give a sense of hyperparameter-parameter strength.

Finally, we discuss how RL may be implemented in experiment. We give a prospective
experiment plan. We present an API to connect the RL controller to the real world. We then
discuss two prior experiments run in the same office setting: an A/B test of two different
energy visualizations, and a measure of the persistence of the effects of energy reduction after
the experimental period ended.

Our work contributes to societal knowledge in the following ways. We are the first to propose
the use of RL for price-setting in energy systems, and we are the first to propose a Social
Game as a mechanism to incentivize price sensitivity in an office setting. Of our RL methods,
we are the first to propose adversarial poisoning during train time of algorithms. We are also
the first to propose the use of personal federated hypernetworks for training new RL agents.
Our other methods have been inspired by similar implementations in other fields, but are
novel to the communities and application spaces in which we operate.

We hope that, from our work, the community may continue to iterate on RL architectures
for price-setting, and may implement these techniques in experiment.
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X⊺ The transpose of some matrix X
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Table 0.2: List of functions used.
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β1, β2 First and second moments of ADMM
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δ Temporal difference error

ϵ A noise term

η A task, i.e. η ∈ T (see below)
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A The Advantage function, defined as the difference in value between a specific
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(see d and e.)
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D A dataset

e The total net demand after behavioral energy demand response might reduce or
defer energy and after battery discharge or solar generation might offset energy.
I.e., first some counterfactual baseline b exists, then some d is generated based
on a DR intervention, and then some net e is observed

E Total energy

g Gross local generation

G A Guardrail rule

h A specific hour in a set of hours

H A total number of hours considered (i.e. a workday, or full day)
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i, j Denotes indices, freely defined locally depending on context, and many times
used in tandem in the same equation

I An incentive

J An RL objective; may be expressed as a function of θ

k May be used to express a small number of tries or categories, i.e. k-shot learning

K Population level categories

L A loss, often as a function of model parameters θ and observed data y

M Environmental steps

n,m Counts, freely redefined locally, usually representing sample sizes, vector length,
etc

N A population level count

O Order, as in order of operations

p Price, often used with subscript to denote who is setting the price

P A probability. Includes transition probabilities, action probabilities, and plan-
ning model probabilities. Can be used as a function or a singleton

q,Q An observed value and an unobserved or functional form of an (s, a) pair,
respectively

r A reward function in RL

s, st A specific state and a specific state at a specific time t, respectively

T max time step or steps

u Battery behavior (Ah discharged or charged.)

U Number of workers

v Vector embeddings

V expected discounted reward from a state, s

w Weights, often freely and locally defined

W World

X Generally used to denote independent variables or distributions

Y Generally used to denote dependent variables or distributions

z, Z Latent variables and distributions, respectively

A The set of all possible actions in an environment; the action-space

B The Bernoulli distribution
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E Set of Environments

F A planning model

G The Geometric distribution

H Entropy

H Honest values (in terms of adversarial training.)

M An MDP

N The normal distribution, often as a function of µ and σ, i.e. N (µ, σ)

R The set of real numbers

R The space of rewards, used in general definitions of MDPs

P The set of transition probabilities in an MDP

P The set of possible prices, implying bounds on each element.

S The set of all possible states in an environment, i.e. the state-space

T A set of tasks, i.e. η ∈ T

U Regret measure

W An indicator function of whether an action is accepted in the real world
(guardrails)

Z The set of integers

Table 0.4: List of symbols used.
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Symbol Definition

∀ “for all” members, generally of a set, i.e. ∀x

∈ A member is inside a set, i.e. x ∈ X

⊂ A set is a subset of another set, i.e. A ⊂ B

≃ Is almost equal, i.e. x ≃ y

∝ A value is proportional to another, i.e. x ∝ y

≥ Greater or equal to

≤ Less than or equal to

≡ Equivalent to

Table 0.3: List of (set) relations used.
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Chapter 1

Introduction

1.1 Motivation in Energy and Climate Change

Climate change threatens myriad processes that power our modern world and its various
lifeforms: be it direct, obvious, and significant impacts like ecosystem collapse (Nadeau et al.,
2022; Canadell and Jackson, 2021), food security (Gregory et al., 2005), disease spread (Rohr
et al., 2011), war (Zhang et al., 2007), or the vast movement of people1 (Masson-Delmotte
et al., 2021; Piguet et al., 2011), or indirect and non-obvious impacts such as the probability
of fights during a baseball game (Salehyan, 2014; Mooney, 2014) or the increased probability
of volcanic activity2 (Cooper et al., 2018). The phenomenon is complex and varied, and
it is possible to learn new things about it every time one addresses the subjectI3. I start
my dissertation assuming some personal knowledge and relationship from the reader to the
breadth of the threat that climate change poses to societyII.

What may be less well understood by the casual reader of this dissertation4 is the physical
basis by which climate change occurs. For an important discussion on the physical basis for
climate change and on the development and trustworthiness of climate models, please see
Appendix I.

1.1.1 The Energy Transition

Swift and radical transition away from carbon emitting fossil fuels is generally seen as a way
to avoid the worst effects of climate change (Delina, 2017; Creutzig et al., 2014). Energy

1The most significant direct impacts that are not noted in the main text are: desertification of previously
fertile lands (Le Houérou, 1996), rising sea levels due to melting glaciers (Lindsey, 2020), more severe and
intense storms due to warming oceans (Woodward and Samet, 2018), and changing rain patterns (Hendrix
and Salehyan, 2012).

2Volcanic activity may result from a decrease in downward pressure from land-based glaciers as they
shrink and lose mass.

3For this dissertation, I will use roman numerals to indicate chapter endnotes and arabic numerals to
indicate footnotes. I will keep footnotes limited to strict factual or meta-asides that may be helpful for
contextualizing direct writing intentions. I have put climate change chapters into their own appendix to give
them special importance.

4I assume that some readers may come from Machine Learning (ML) or Reinforcement Learning (RL)
background and may enjoy learning about the history and physical basis of climate change.
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Transition requires a very complex coordination of different technologies (Smil, 2010), which
we will discuss. In framing the goals of the Energy Transition, we will for the body of
this dissertation note only that the Energy Transition is best understood as providing a
system of alternatives to a fossil-based energy system which preserves the freedoms that fossil
energy provides: freedom of movement, freedom of material accumulation, and freedom of
time (Williams, [n. d.]). For further foray into the Energy Transition’s philosophical goalsIII,
constraintsIV, and ethicsV, and please see the chapter endnotes.

The Energy Transition may face material bottlenecksVI, but because the technology of the
Energy Transition supports the generation of energy rather than composes the fuel necessary
for generation (Dresselhaus and Thomas, 2001), our current market structure is well designed
to facilitate substitutions VII to bottlenecks5. An alternative system of electricity will be
composed of a coordination of many changing parts (Markard, 2018). My dissertation will
focus on facilitating one of these parts.

1.1.2 Leading Carbon-Free Electricity Generators are
Non-Dispatchable.

For the purposes of this writing, we will define power as the rate at which energy, or the
capacity to do work, is generated. We define alternative power generation as any power
generation that does not meaningfully produce Greenhouse Gas (GHG) emissions during
operation6(Michaelides, 2012). The main types of alternative power, currently, are hydropower,
nuclear, wind generation and solar generation. Here we define the dispatchability of a generator
to be the ease with which an operater may choose the level of power that it is producing
(please see (Mudumbai et al., 2012) for a definition of the economic dispatch problem.) We
define volatility to be the uncontrolled variability with which a generator produces power,
whether or not it is predictable.

1.1.2.1 Dispatchable Carbon-free Generation

Hydropower The most significant current formVIII of hydropower is large-scale and dam-
based, which generates energy by harnessing the potential energy of water (Cernea, 1997).
These generators are dispatchable because an operator may directly control the dam, letting
more or less water go through the turbines in a dam and continue downstream (Carvalho et al.,
2011). Dam-based hydropower, while featuring a low Levelized Cost of Energy (LCOE) and
dispatchable (Killingtveit, 2019), is unlikely to comprise a significant part of new generation:
it is location limited and it may be increasingly difficult to create new dams as water politics
become more fraught (Scudder, 2012). LCOE takes into account manufacturing and operating
costs (Ueckerdt et al., 2013); for a thorough definition of LCOE and a discussion on the
“tyranny of LCOE”, please see the chapter endnotesIX

5Thus, we believe that it is inappropriate to fully criticize the Energy Transition for only being a
continuation of the current material status quo.

6There is of course life-cycle carbon dioxide emissions in the manufacturing and installation of the
equipment, and small carbon emissions in the operation of the equipment (i.e., imagine the carbon released
from boats that drive around offshore wind turbines to maintain them.) We ignore these in our definition.
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Nuclear Power Nuclear power refers almost exclusively to nuclear fission, i.e. the breaking
apart of large atomic nuclei in order to capture the resulting energy from broken atomic bonds
(Cameron, 2012). For a brief discussion distinguishing nuclear energy from chemical energyX

and the mechanicsXI, and newer generations of fission reactorsXII, please see the chapter
endnotes. Nuclear fission is not exactly dispatchable, in that an operator cannot easily turn
down a reaction without destroying the ability for those specific cores to be turned back on;
however, as fission is an intensely controlled reaction, it is non-volatile, and operators can
guarantee a baseline supply of energy (Guoqiang et al., 2021). However, despite nuclear’s
reliability and cost-effectiveness (Schwarz and Cochran, 2013), a large-scale energy transition
strategy dependent on nuclear fission alone would be difficult given political resistance to
nuclear due to perception of safety (Schmidt et al., 2015). For brief discussions of the safety
of current reactorsXIII and nuclear fusionXIV, please see the endnotes.

1.1.2.2 Non-Dispatchable Carbon-Free Generation

Wind Power Wind power harvests energy from the motion of air across the earth’s
surface. The recognizable horizontal axis wind turbine7 has become one of the more exciting
developments in green power development, consistently decreasing in Levelized Cost of Energy
(LCOE) from 1980-2020 until it has among the lowest LCOE of any power source, including
fossil fuels (Beiter et al., 2021). Wind power’s decrease in LCOE has in part to do with
improving scales of technology8 as well as increasing scales of production. (For a short
historyXV long aside on technological scalingXVI, please see the chapter endnotes.

Wind has a major vulnerability: it is both volatile, non-dispatchable, and tough to predict
(Tian, 2021). In fact, according to the National Renewable Energy Laboratory (NREL), “for
any particular generator, there is an 80% chance that wind output will change less than 10%
in an hour and a 40% chance that it will change 10% or more in 5 hours” (NREL, 2012).
Non-dispatchability is improved by offshore wind technologies, which harvest from more
constant wind bases (Brunner et al., 2020). However, alone, wind power cannot meet the
promises of modernity as it constrains when resulting energy can be used.

Solar Power Solar power shares some similarities with windXVII. It encompasses a
broad range of technologies, broadly taxonomized as technologies that harvest solar thermal
energy9, and technologies that directly convert solar energy to electicity10, called photovoltaics.
Photovoltaic (PV) generally function by stacking layers of one-way electron-impermeable

7Of course, “wind power” is an umbrella term covering many types of technologies, the most notable of
which are horizontal three pronged turbines, vertical axis turbines, and offshore floating turbines of both
types.

8One large technological trend has been the discovery that larger wind turbines tend to reduce the LCOE
as there tend to be some fixed costs to manufacturing and installation of each turbine that are independent
to its size.

9Concentrated solar energy generally takes the form of a large-scale plant that focuses rings of concentric
mirrors towards a central heat collector. It used to be one of the most promising solar technologies given its
LCOE was the lowest within solar. However, the LCOE of concentrated solar was overtaken by the LCOE of
photovoltaics (Dowling et al., 2017).

10The author also has a tattoo of concentrated solar thermal energy. If the reader reads this footnote,
they are welcome to ask for a picture.
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material on top of each other, with doping materials like boron that help light permeate and
absorb the energy to lift electrons to higher layers of material. Prevented from returning
directly to the source atom, the electrons accumulate and eventually force themselves to
“go around the long way”, passing through wires that harvest their current (El Chaar et al.,
2011). PV are the dominant form of solar energy production, as they are modular and have
low LCOE. Unfortunately, although solar power is more predictable than wind power, it is
perhaps even more non-dispatchable (Emmanuel et al., 2020). Solar systems produce most of
their power towards the middle of the day when the sun is directly overhead, and level off to
zero by the time night falls.

1.1.3 Energy System Cost

A discussion of the various features of energy brings around a simple but powerful observation
(Koningstein, 2022; Koningstein and Fork, 2014):

The viability of alternative energy should not be based on alternative energy cost
alone, but rather, by alternative energy system cost.

We will now discuss exactly what this means.

1.1.3.1 Problems with Volatility

Electrical power is distributed from generators to consumers by way of a grid, an incredibly
complex collection of physical wires. Electrical power is bid onto the grid based on demand
predictions that fluctuate daily. Thus, electricity markets must be controlled to an exquisite
degree. Indeed, given the interchangeability of electrons generated, it is amazing to think that
when one turns on an electric water boiler for their morning coffee, a generator many miles
away is likely harvesting electrons from coal burning. The orchestration of such a complex
“organism” is truly an accomplishment of humanity.

Where energy is produced in the grid effects whether it can be sold at all. If a wind farm is
generating many miles away from a city center, it may be capacity limited by some outgoing
transmission wire. Generation that is larger than the capacity of the wires connecting it
to demand is sent into ground, i.e. thrown away, as it would damage the wire and various
transformers that compose the system (Fork and Koningstein, 2021; Bird et al., 2016).

When energy is produced also effects whether it can be sold. Even supposing high capacity
transmission lines connect a wind farm to demand, if the wind farm were generating at
some hour during the night when energy demand is low, then the energy would be sent into
ground as well. Too much energy causes an increase in electrical frequency that can damage
appliances across the network. Thus, energy is often curtailed, or sent to ground (Bird et al.,
2016). In 2020, 3% of all California’s solar produced was sent into ground, and on some days
that number reached 20-25% (O’Shaughnessy et al., 2020). Here, the speed at which other
generators in the network can react is important: some peaker plants of natural gas may spin
generators up and down in a matter of seconds, but other generators, such as coal or nuclear,
require hours to spin up and down. One may not rely on flexibility from other generating
sources to aid in high solar and wind penetration, especially as we desire the reservoir of
flexible generators to shrink as we reach higher decarbonization goals.
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Figure 1.1: One day of net demand (gross demand minus solar production) in the grid, heavily
smoothed. Reproduced from NREL (Denholm et al., 2015).

Figure 1.1 is a famous and extremely influential chart produced by the Department of
Energy and affectionately nicknamed the “Duck Curve” due to the resemblance to the outline
of a duck11 (Denholm et al., 2015). The curve shows a heavily smoothed net demand on the
Californian grid on the same day over multiple years. Due to the statistical averaging of lines
on the Duck Curve, it is difficult to see the danger inherent in approaching zero: fluctuations
around the mean are likely to cause negative net load and thus risk energy curtailment.

It is important to note that the problem of volatile energy is starting to rear its head now,
when renewable energy still makes up a small portion of the overall grid (Zhou et al., 2016).
Indeed, the statistics quoted about California’s grid described grid dynamics where only 17%
of all energy is solar and 6% of all energy is wind (O’Shaughnessy et al., 2020): how might
these change in the future when these resources push 50-60% each?

The Annual Energy Outlook (AEO) model, produced by the US Energy Information
Agency (EIA) (Center, 2020), has helped National Renewable Energy Laboratory (NREL)
estimates the value of additional photovoltaics on the grid (please see Figure 1.2 (Stoll
et al., 2017).) Under a scenario with little flexibility (see below for technologies that create

11Here we speculate that the US Department of Energy, despite the boundless extents of its whimsical
creativity, did not in fact come up with this name.
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Figure 1.2: Cost of each PV installed decreases as the total penetration of PV increases,
different scenarios considered by gigawatt (GW). Reproduced from (Stoll et al., 2017).

flexibility), additional photovoltaics dropped below the price of the photovoltaics; i.e., their
value does not justify their cost.

However, in the AEO, if flexibility is built into the grid, photovoltaics are able to retain
their value. Thus, it is absolutely essential now to develop solutions that ease the addition of
volatile energy sources onto the grid.

1.1.3.2 Technologies to Address Non-Dispatchability

Thankfully, there exist some methods to address energy sources that are non-dispatchable:
geographic averaging, energy storage, and energy Demand Response (DR). We will cover
each now.

Geographic Averaging Geographic Averaging is an approach that aims for larger, more
connected grids, so that generators that can service the grid are spread out over larger areas.
In the case of wind, geographic averaging essentially harnesses the Central Limit Theorem of
probability: if a distribution made up of a few random samples per hour of the day has high
variability, taking more samples will result in a less variable, more normal distribution. The
power output of a larger geographic area essentially will average out volatility in generation
(Kwak and Kim, 2017). In the case of solar, geographic averaging increases the longitudinal
and latitudinal surface area over which the sun may shine, which makes the daily cycle over a
narrower latitude and longitude range less pronounced and more matched to energy demands,
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which tend to peak between 7am - 10am and 4pm - 9pm (Gyamfi et al., 2013). In the US, the
main way to enable geographic averaging is through grid interconnects of main grid areas12

Of course, there are drawbacks that geographic averaging cannot fully solve: solar cannot be
averaged into the grid in when the United States’ East Coast experiences its 7am, and there
are seasonal variations in wind that affect the entire US (Bloom et al., 2021; Brinkman et al.,
2021).

Energy Storage Energy storage may be thought of as moving energy throughout time.
“Energy storage” encompasses perhaps the largest diversity of technologies of any alternative
energy umbrella term used thus far. Energy storage may be broken down into chemical storage
(i.e., batteries) and physical storage (i.e., pumped hydropower, flywheels, gravitational storage).
In chemical storage, most notable at time of this writing is Lithium-Ion battery technology,
as it commands the storage market with enormous factories and scales of production (Kim
et al., 2019). In the future, large flow-based batteriesXVIII may be emerging for stationary
grid applications, and solid-state batteriesXIX may be emerging for Electric Vehicle (EV)
applications13 (Rahardian et al., 2019). In physical storage, pumped hydro is the most notable
(Rehman et al., 2015). Pumped hydro is a system consisting of tanks or pools of water at
different elevations that intakes energy in order to move water to higher stages and then
release energy by allowing water to flow through turbines to lower pools. It remains the
most efficient form of energy storage writ large, with over 90-95% of energy recoverableXX.
However, pumped hydro is limited by geographic availability (Yang and Jackson, 2011).

In general, energy storage turns non-dispatchable energy into dispatchable energy, thereby
making it a natural companion to wind and solar. However, it requires material infrastructure,
time, and thoughtful construction to implement on a large scale. These limitations open the
way for DR to contribute a third option.

Demand Response (DR) DR, which is a main subject of this dissertation, is a mechanism
by which energy consumers are incentivized to shift demand away from times when generation
is scarce to times when generation is plentiful (Siano, 2014). As DR does not need physical
infrastructure (Radovanovic et al., 2021) and can oftentimes fully recoup the costs of its
own incentives, it has distinct advantages to energy storage and long-distance transmission,
both of which require fairly substantial material investment. We argue here that DR can
play an immediate role in easing the effect of volatile renewable energy, and over time will
continue to play a complementary role (Albadi and El-Saadany, 2007). It is being considered
internationally, with businesses in the US having earned over $2.2 billion in revenue through
DR in 2013 and the European Commission having voiced strong support of DR (Coalition,

12One large and influential study, the NREL Seam Interconnect study, demonstrates that under any future
scenario of grid technological makeup, connecting the Eastern and Western grids could significantly increase
the ability for the grids to share generation resources and lower costs across the board. In fact, according to
NREL, “expanding international transmission would provide up to $30 billion (2018 $US) of net value to the
continental power system between 2020 and 2050—increasing power system reliability and enabling exchange
of load and renewable generation diversity between regions.” (Bloom et al., 2021).

13For an example of how swiftly the field is moving, at the time of writing, Honda is investing $300 million
into a solid state battery plant in Togichi, Japan, and aims to introduce the batteries in EVs by 2025 (Patel,
2018).
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Figure 1.3: Grid generation makeup by generation type. Reproduced from NREL (Mai et al.,
2018).

2014). DR in the Asia-Pacific region is rapidly growing as well, with South Korea leading the
pack at 3.8 GW (Sullivan, [n. d.]). Indeed, an influential study by NREL called “Electrification
Futures” (Mai et al., 2018), which was “designed to quantify potential energy, economic, and
environmental impacts to the U.S. power system and broader economy”, estimated the need
for flexible dispatch in the future. A scenario likely to reduce a medium amount of carbon
emissions, shown in Figure 1.3 shows flexible load on the same order of magnitude as the
generation as it is able to offset the massive amount of non-dispatchable energy generated by
wind. Most of this energy is made up of EVs.

1.1.4 What is Special about DR?

In addition to being a no-material, quickly implementable way to facilitate energy dispatcha-
bility, DR may be thought of as generation in its own right. A concept pioneered by Lawrence
Berkeley National Lab’s Art Rosenfeld, the “negawatt”, is an amount of energy “avoided” due
to energy efficiency or DR signals (Gillingham et al., 2006). It has famously been monetized
as actual generation by Google Nest through its fleet of smart thermostats (Payne, 2018).
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There is, of course, merit to this concept: a utility, who must contractually meet the total
demand of its ratepayers, would consider an additional kilowatt (kW) avoided equivalent to
an additional kilowatt generated, and pays as such.

The ability to produce a DR gives democratization over energy supply by allowing all
consumers to take part in “generation”. Now, any home may perform some degree of
dispatchability with its appliances. The scope of this power is potentially vast (Albadi and
El-Saadany, 2007).

1.1.5 Controls in Energy Systems

The way in DR is determined (i.e. how a utility quantifies the amount of DR to ask for),
signalled (i.e. how the needs of the utility are transmitted to end users), and responded to
(i.e. how end users react to DR signals) will necessitate a series of conscious and automatic
decisions. Here, controllers are important for optimizing automatic decisions (Pal and
Chaudhuri, 2006).

1.1.5.1 Controller Types, with HVAC Control as an Example

In order to implement all of these technologies - price-setting, home appliance reaction,
and everything in between - control is needed. We will describe several different types of
controllers, and, using taking Building Heating, Ventilation, Air-conditioning and Cooling
(HVAC) as an motivating example, we will demonstrate why the development of advanced
control may be necessary.

Controlling the HVAC system of a building can be, and for many decades has been,
accomplished by classical control techniques. However, recent research has expanded the
sophistication of controllers as well as expanded the types of systems that controllers may
control. Some work focuses exclusively on window (Chen et al., 2018), others on shading
Han et al. (2020), and others exclusively on HVAC setpoints (Esrafilian-Najafabadi and
Haghighat, 2021). Still others attempt to unify these systems into single controllers, including
the OCTOPUS controller (Ding et al., 2019a). For reviews of control research in building
systems, please see (Wang and Hong, 2020).

Heating, Ventilation, Air-conditioning and Cooling (HVAC) As a note, the author
had the pleasure of working on a project within Google Research called “Smart Buildings
(SB)”, a system for real-world control within office buildings14, and so we will intersperse our
discussion of HVAC with examples from this project. We will describe the aims and goals of
the project here for the sake of demonstrating what types of building control are possible
and to demonstrate that corporate entities are taking advances in building control seriously,
as they can result in serious financial benefits (Sipple, 2022).

The HVAC of buildings are broken up into intricate networks of components. A central
controller may propagate signals to adjust the boiler or air chiller setpoint, which then blows
hot air through a series of Air Handling Units (AHUs) to Variable Air Valves (VAVs). This

14Unfortunately, the specific technology that the author worked on has not been cleared for publication,
so we will talk about the motivation and setup for the SB project in the introduction and not later sections
where the author’s direct work will feature prominently.
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(a) Depiction of AHU, Boiler, Meters, and Chillers.

(b) Depiction of a VAV.

Figure 1.4: Two images depicting the location of various HVAC components in a building.
Images originally created by Google Research and are reproduced with permission (Sipple,
2022).

system enervates the building, and is accompanied by meters reading the temperature in
different building zones. One large room may have multiple zones (VAV domains), and
conversely one zone may cover several small rooms (Yun et al., 2021; Jiménez-Raboso et al.,
2021). Please see Figure 1.4 for a depiction of HVAC components on a building.

Simple Control Controlling the HVAC system of a building can be, and for many decades
has been, accomplished by classical control techniques, if our design goal is to keep tempera-
tures somewhat close to a setpoint. Two simple controller types have proven to achieve this
goal for HVAC systems: threshold-based “bang-bang”controllers, and Proportional Integral
Derivative (PID) controllers.

Bang-bang controllers are ones that exert binary control over a system: they turn on
when they hit a low setpoint, and off when the hit a high setpoint. In other words, they
applies the greatest allowable heating or cooling when the measured temperature leaves a
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Figure 1.5: An idealized Bang-bang controller in action. Image from (Mortenson, 2022).

Figure 1.6: A schematic of the control inputs in a PID controller. Image from (Borase et al.,
2021).

certain band around the target temperature, but otherwise remains inactive (Seyde et al.,
2021). Please see Figure 1.5.

Proportional Integral Derivative PID controllers use a linear feedback strategy, which
decides a control action using a linear function of previous measurements. PID denotes a
sum of Proportional, Integral, and Derivative functions formed as the sum of the current
measurement (the proportional component) and approximations of the time derivative and
integral of the temperature (Borase et al., 2021; Geng and Geary, 1993).

These simple control policies even achieve optimality in certain cases and for certain
metrics: for example, the bang-bang strategies are optimal for minimizing the total time that
the HVAC system is active, and PID controllers can be tuned to minimize the sensitivity
of the controller to exogenous disturbances (Seyde et al., 2021). However, if we ask for a
strategy that is optimal with respect to delivering thermal comfort, carbon emissions, or even
a combination of several objectives, to act predictively of energy load profiles throughout the
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day, to take into account occupancy when deciding on HVAC setpoints, or other desiderata
of intelligent controls, we approach the limit of what is possible for simple controllers. What
may be considered the output of the system is also the only input that it can consider: the
output of the HVAC system being temperature means that this is the only input that it
considers, and even modern Building Management Systems (BMSs) do not feed descriptive
input like occupancy into controllers. Given this lack of info, bang-bang or PID controllers
cannot form rich functions combining different metrics, and thus act only to immediately
adjust temperature above or below manually set setpoints Kasahara et al. (1999). In this way,
the controller is not only unidimensional in terms of objective but also purely memoryless.

If we wish to account simultaneously for the many input-output subsystems that the
building comprises, or if we wish to take detailed account of human behavior in the feedback
loop, we leave the frontier well behind us. Simple control cannot consider multiple objectives,
or different objectives than the direct input/output. It cannot consider a state space richer
than a single variable. It also cannot incorporate or plan for future desiderata. In the case of
HVAC, this means that it cannot incorporate occupancy as a state space consideration nor
occupancy prediction as a way to plan actions. It cannot act to reduce energy consumption as
well as carbon emissions, and it cannot plan for a 9am setpoint change by pre-cooling or pre-
warming the space (Attaran et al., 2014). To find controllers that satisfy these new objectives,
we must turn to modern BMS frameworks that collect, synthesize, and communicate data
called Building Operating Systems (BOSs). These allow for more complex methods in control
theory and RL. For systems that we can model, even if the model is only partly specified and
possibly very complicated, modern control theory can synthesize safe and optimal controllers;
when the system cannot reasonably modeled, such as where human decisions play a direct
role, we shall find that RL can develop very effective controllers.

Model Predictive Control (MPC) MPC takes a large step towards allowing for multiple
objectives and predictive control. MPC improves these aims by incorporating optimization
directly into the control policy. MPC relies on an ancillary dynamics model, and solves a
prediction problem T steps into the future at each step. Generally, if the dynamics model is
f , the action a, the state s, the objective g, and the current timestep t, then MPC solves:

maximize
a

t′+T∑
t=t′

g(s, a)

subject to: s(t+ 1) = f(s(t), a(t)); t = t′, . . . , T − 1

s(t′ + T ) = 0; t = t′, . . . , T − 1

s(t) ∈ S; t = t′, . . . , T − 1

a(t) ∈ A; t = t′, . . . , T − 1

(1.1)

The condition s(t) ∈ S is a state space constraint, which can be used to ensure safety by
attempting to keep the state vector in a region of the state space that is known a priori not
to be dangerous.

When considering a linear dynamics model, f becomes:

s(t+ 1) = Bs(t) + Ca(t) (1.2)
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i.e., series of states that are modelled in such a way to be linearly related (via matrices B
and C) to the prior states (Afram and Janabi-Sharifi, 2014).

Limitations with MPC The state space S can be multi-model and expressive relative
to the bang-bang controller, but practitioners may find that the state space of RL models
can be far larger, containing hundreds to thousands of variables. MPC also cannot handle
complex datatypes such as images, or complex and long-term time series data which policy
networks of RL can digest and use effectively through convolutional or Long Short Term
Memory network (LSTM) embeddings, respectively.

MPC is fast, computationally efficient, and crucially, it lends itself to safety critical
applications better than RL would, as it constrains itself to a narrower, known state space.
There are times, however, when the safety constraints of the state space are either not
important or under-determined. For instance, if assumptions of linearity in state transition
are incorrect, or if there are important exogenous variables not measured (e.g. occupancy
metrics, behavioral preferences, or even sensor dysfunction), a linear model may be a very
poor fit to the data and an MPC may optimize for the wrong predictions. Using a Neural Net
(NN) to fit to the dynamics function can go a decent way towards approximating non-linear
or complex dynamics, but may require significantly more data (Afram and Janabi-Sharifi,
2014).

In this dissertation, we lean whole-heartedly into RL in order to accomplish these goals.
We will define RL technically and thoroughly.

1.2 Reinforcement Learning

1.2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are discrete-time stochastic control processes defined by
the tuple:

M = (S,A,R,P) (1.3)

Where S are a set of states, A a set of actions, R : S ×A× S → R as a reward signal15,
and P : S ×A×S → [0, 1] as a set of state transition probabilities for each state, action, and
subsequent state an agent16 may attempt to reach (or not reach.) They provide a generic
modeling framework that underpins RL (Puterman, 2014; Sutton and Barto, 2018).

For example, a controller might take a discrete-valued action at ∈ Z|A| in an MDP for T
days indexed by t = 1, 2, . . . , T . The discrete action may be: “0: turn on lights, 1: turn off
lights”17 The pertinent data available at a period t to make decisions would be represented
using a state vector st. These data can be temperature readings (Sipple, 2022), image

15Please note that some reward functions may not factor in the next state, and so may be more succinctly
defined as R : S ×A → R.

16The terms “agent”, “controller”, and “policy” are used relatively interchangeably in the various fields
that touch the general application space of controls. All indicate that there is some automatic decision maker
who acts in an environment which gives it some feedback.

17If the action space is continuous, it would be: at ∈ R|A|, and an example of the action may be a price.
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embeddings (Bandara et al., 2022), audio waves (Latif et al., 2022); anything that can be
quantified. Defining an agent’s state space is often done by a human designer and thus are a
possible source of bias.

The MDP cannot be solved directly since the state transition probabilities P (st, at) are
unknown a priori. RL is useful to address this issue by implicitly estimating the state
transition probabilities. RL can also encode extensions of MDPs (Partially Observed Markov
Decision Processes (POMDPs), (Krishnamurthy, 2016), multi-step MDPs, i.e. semi-MDPs
(Sutton et al., 1999b).)

1.2.2 RL Definitions

An RL controller’s actions seek to optimize the “objective” J (notation defined fully in the
paragraph below), a discounted expected sum of rewards r for actions (at) and states (st),
i.e.,

J(θ) = E
∑

st,at∼τπθ

[γtr(st, at)] (1.4)

Where γ :→ [0, 1] is some discount factor privileging more recent actions, and θ are the
parameters that define a policy,18 denoted π(θ) or πθ. π(θ) : R

S → RA is a surjective function
mapping states to actions, and πθ is shorthand for a policy parameterized by θ. With a fixed
policy, one can collect a rollout or trajectory of data relative to that policy τπ(θ). RL training
loops change θ in order to increase the performance of its policy. An optimal policy is defined
as one that always chooses the best possible action, and is denoted π∗.

An additional metric, the value function V (s) may be thought of as an instantiation of
the objective given a certain state. I.e., we can create and sum a trajectory of states and
actions (thus summing the discounted rewards) from each state given a policy:

V π(st) =
T∑
t′=t

Eπθ [γ
t′−tr(st′ , at′)|st] (1.5)

We define here also an optimal Q-function, Q∗ which may be thought of as an instantiation
of the objective given both a state and an action, and functions as a useful “what-if” for
possible actions:

Q∗
r(st, at) = r(st, at) + γEP (st+1|st,at) argmax

at+1

Q∗(st+1, at+1) (1.6)

Where P (st+1|st, at) is a specific probability. The optimal policy and the optimal Q-
function are related according to π∗

θ(s) = argmaxaQ
∗(s, a). Please see Figure 1.7 for a

simplified pathway of RL actions.

18Here, the parameters θ can refer to any parameters that make up the policy function, and it is the
tendency of the field to try to be agnostic to which model this is. Thus, they could be linear model weights,
random forest parameters, or Support Vector Machine (SVM) parameters, but they are almost invariably
neural net weights and biases. RL is dominated by agent architectures composed exclusively of deep NNs
(Mahesh, 2020)
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Figure 1.7: A simplified diagram of a generic RL pipeline.

In most cases, an RL agent is comprised of a combination of neural nets that help the agent
perform various tasks such as helping it both predict long-term effects of its actions as well as
choose the correct subsequent actions. As a brief aside, the structure and interaction of these
neural nets can vary widely, with groups using them for such functions as embedding inputs,
modeling other agents, and predicting long term reward. Please see Figure 1.8 for Richard
Sutton’sXXI, generally considered a grandfather of the field, depiction of the strictly necessary
elements of an agent that will aspire for general intelligence (Sutton, 2022). RL has classically
been applied to contexts where actions and environments are simple or data is plentiful,
with early use cases involving the control of backgammon (Tesauro, 1994), the cart-pole
problem, and Atari (Mnih et al., 2013). Much recent work has been done to extend RL to
other situations where data is less plentiful, rewards are more sparse, and required actions
are more complex using Surprise Minimizing Reinforcement Learning (SMiRL) (Arnold et al.,
2021b) and offline RL (Jang et al., 2021c). When we speak about “data” in the context of
RL, we are generally referring to tuples of (st, at, st+1, rt), as tuples of this data are sufficient
to calculate the prior metrics (Equations 1.5, 1.6, 1.4) Of course, calculations of the metrics
will change as more data comes in.

1.2.3 Gradients: How Models Train

It is useful to briefly touch on a guiding technique used throughout RL: the creation and
propagation of gradients. Gradients are defined as the derivative of a multi-dimensional
function with respect to each dimension. If f(x) : x ∈ Rn → R, then ∇xf : Rn → Rn and is
defined by:

∇xf =

[
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

]⊺
(1.7)

A gradient may more intuitively thought of as multi-directional direction of change in
some manifold (an extension of high-school intuition of a derivative.) In ML, the shape of
the manifold of interest is defined by functions that relate the model’s current predictions
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Figure 1.8: Sutton’s depiction of a general intelligence agent (Sutton, 2022).

to observable data, such as the loss in supervised learning or Q or V predictions in RL,
or the policy surface more directly. We will look at one common loss as it’s simplest, the
Mean-Squared Error Loss, which is defined

LMSE(y, ϕ) =
1

2
E(y − fϕ)2 =

1

2n

[
n∑
i=1

(yi − fϕ,i)

]2

(1.8)

using fϕ,i as a shorthand for the ϕ parameterized model’s prediction at dim i, ŷi. It
changes based on each batch of data (the true yi observed will be different) and the gradient
is a vector of the following:

∇ϕLMSE =

[
∂LMSE

∂ϕ1

, ...,
∂LMSE

∂ϕm

]⊺
=

[
1

n

n∑
i=1

(yi − fϕ,i)
∂fϕ,i
∂ϕ1

, ...,
1

n

n∑
i=1

(yi − fϕ,i)
∂fϕ,i
∂ϕn

]⊺ (1.9)

In sum19, parametric ML models like neural nets are all trained with high-dimensional
manifolds in the space of the parameters. Computing the gradient of these manifolds forms
the basis of model training, whose goal is to adjust the parameters so that their predictions
may consistently achieve a better loss or objective. Much of training consists of determining
the appropriate direction in the parameter space to move all parameters in. The direction
chosen is the gradient, and distance the parameter vector travels along this direction is often
the learning rate (although there are much more sophisticated ways to determine distance –

19No pun intended.
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Figure 1.9: A taxonomy of prominent RL architectures.

please see momentum (Ding et al., 2019b) or other adaptive methods (Wang et al., 2019b)
for more information.)

1.2.4 Common Architectures Used

We present a brief overview of common RL architectures. Please see Figure 1.9 which,
tailored to our group’s needs, represents a specific understanding of the important groupings
in RL taxonomy. In this figure, an ellipses (“...”) represents many additional architectures
under each grouping that we note. We will now briefly discuss two Policy Gradients, Actor-
Critic, Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO) methods, common
architectures that we use throughout the paper, but all other methods listed can be found in
(Sutton and Barto, 2018) save Pathwise Optimization (Yang et al., 2021).

1.2.4.1 Policy Gradient and PPO

General Definition At a very broad level, policy gradient methods seek to nudge the
policy along estimates of ∇θJ(θ) computed from data collected at each step. Typically, a
policy would be set while it gathers data from a trajectory of length T , and then the objective
computed as above. The parameters are updated at the end of the trajectory as per the
following:

θT+1 = θT + αT ˆ∇θT J(θT ) (1.10)
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However, the ways in which policy gradient algorithms compute the objective differ widely,
and thus there is a rich and varied literature in different types of policy gradients. Often,
estimates of ∇θJ(θ) are accomplished through different weighting of the gradient of the
policy’s action probabilities per state. One example estimates the objective’s gradient by
weighting action probabilities by the Q estimate, i.e.:

ˆ∇θJ(θ) ≃ Eπ
∑
a

qπ(at, st)∇θπ(at|st) (1.11)

Which forms the basis behind the REward Increment = Nonnegative Factor x Offset Rein-
forcement x Characteristic Eligibility (REINFORCE) algorithm (Williams, 1992). Intuitively,
this weighting steps along this direction steer the parameter set towards action-probability
surfaces that place higher probability on actions that produce higher Q values.

1.2.4.2 Actor-Critic Architectures

General Definition : Actor-critic architectures have long been a feature of RL (Sutton
and Barto, 2018). Here, one network acts as the policy, and another estimates the value
V of a given state. The policy acts directly in the world, and so at each step the policy
computes an action and the critic computes what may be thought of as a separate estimate
of the longer-term reward (Sutton and Barto, 2018). The critic’s evaluation is the temporal
difference error:

δt = rt+1 + γV (st + 1)− V (st) (1.12)

Where V is estimated from the critic (and thus changes at each step as both networks
learn.) The actor’s parameters are changed at each step by input from the critic:

θ(st, at)← θ(st, at) + αδt (1.13)

Where α is some hyperparameter defining step-size. Temporal difference learning is among
the simplest ways of updating the critic (Sutton and Barto, 2018), and other methods exist.

Please see Figure 1.10 for a graphical depiction.

Proximal Policy Optimization (PPO) PPO methods vary slightly, but all seek to
constrain the actor’s gradient step made by specifying some region around the objective space
beyond which the training cannot step. This generally leads to more stable learning. The
clip method we use modifies the objective function in the following way:

JCLIP(θ) = E [min [νt(θ)At(a, s), clip(νt(θ), 1− ϵ, 1 + ϵ)At(a, s)]] (1.14)

Where ϵ is a hyperparameter, usually ∈ (0, .2], At(a, s) is the estimated “advantage”
function (Baird, 1994), defined as the difference in Q values between the action chosen and
the average action, i.e.

A(a, s) = Q(a, s)− V (s) (1.15)

and νt is the ratio of probability under the new and old policies, i.e.
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Figure 1.10: Actor Critic architectures (Sutton et al., 1999a)

νt =
πθ(at|st)
πθold(at|st)

(1.16)

and “clip” is a function taking three arguments, (x, y, z) and if necessary clips x such that
x ∈ [y, z].

We use PPO extensively throughout our work. For more info, please see (Schulman et al.,
2017).

Soft Actor-Critic (SAC) SAC (Haarnoja et al., 2018), performs well out of the box on a
range of tasks. It adds an entropy term to the objective function:

J(θ) =
T∑
t=0

E(st,at)∼τπθ [r(st, at) + αH(π(.|st))] (1.17)

Where H is the entropy calculation and α is a weighting that changes per step as the
model becomes more confident in its predictions. It also modifies the value function:

V (st) = E[Q(st, at)− log(π(at|st))] (1.18)

Which ensures that the Value is never 0. These modifications bias the model to choose
actions that have higher entropy given the same reward, leading it to explore more effectively.
We use SAC extensively throughout this work.
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1.2.5 Model Based RL

Model-based RL is arguably most common in energy planning applications. Here useful
functions like estimates of state transition dynamics are learned from offline data before
optimizing the policy. Such auxiliary models are referred to as a “planning model” in RL
because queries of the real world can instead be replaced in the MDP by queries of a fitted
model. The pricing policy obtained by solving an MDP supervised by a planning model will
depend on how well the planning model reflects the true environment.

Model-free RL forgoes a planning model by learning directly from the true environment
and optimizing the policy. A central problem in this approach is balancing the trade-off
between “exploration” and “exploitation”. “Exploration” may be thought of as emitting
actions for the purpose of understanding more of the environment’s dynamics, not to achieve
the lowest immediate cost. A simple exploration strategy could be to sample randomly in
a neighborhood around the RL agent’s chosen price. “Exploitation”, may be thought of
as emitting actions for the purpose of optimizing short or mid term cost. However, unlike
model-based RL, there is no specific planning model. Rather, a stochastic policy implicitly
encodes knowledge of the state space.

1.2.6 Case Study: Google’s SB Project RL Results

We will know explain how Google’s SB HVAC agent is structured so as to give an example of
how the RL theory described above may be applied.

The SB RL controller’s state space S is defined as a tuple of intake air flow, temperature,
and CO2 unique to each building’s sensors, and action space A is a tuple of water and air
supply setpoint temperatures. Please see Figure 1.11 for a graphic representing the flow of
information in the SB MDP. The software design was modular in that different RL agents
could be tested in addition to different environments (shown in Figure 1.11 is the real building,
a (data-driven) emulation of the building, and a physical simulation of the building), different
rewards could be tested, and different RL architectures (Sipple, 2022).

The reward structure was called the “three C’s” reward, and was a weighted sum of
carbon emissions, cost, and comfortXXII:

RSB = w1 ∗ carbon + w2 ∗ cost + f(t) (1.19)

Where wi are weights and comfort is represented by f(t), some negative quadratic
weighting on a temperature regime outside the range of average comfort. Weighting was
determined manuallyXXIII based on simulation behavior.

The SB agent produced, in simulation, a strong outcome when compared to a baseline PID
controller. After training in simulation, the agent is able to measurably improve functioning
in the building’s HVAC. Please see Figure 1.12 and Figure 1.13 for a demonstration of the
building functioning and aggregate metrics after convergence. Preliminary results show that
the agent is able to learn and improve efficiency of buildings in simulation (Sipple, 2022).
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Figure 1.11: SB RL flow. Image reproduced with permission. (Sipple, 2022).



CHAPTER 1. INTRODUCTION 22

F
ig
u
re

1.
12
:
E
x
am

p
le

of
op

er
at
in
g
co
n
d
it
io
n
s
of

th
e
R
L
ag
en
t
in

th
e
si
m
u
la
ti
on

.,
(S
ip
p
le
,
2
0
2
2
)



CHAPTER 1. INTRODUCTION 23

The SB project is one among many examples of increasing sophistication of controls
within buildings. Such a controller may in the future receive an input of grid prices during
the day and coordinate setpoints without a human interfering in the process. The relative
beauty of this example is that advances may occur independently of each other: the SB’s
controller optimizes a building’s cost and carbon under any price regime that is handed
to it, including the current flat price regime, thus it is financially prudent for an entity
like Google to develop now (Sipple, 2022). However, a utility-scale dynamic price scheme
may be developed sometime in the future and integrate smoothly with the same controller
architecture.

1.3 A Roadmap to this Dissertation

1.3.1 Aims of this Dissertation

Our goals in this dissertation are multifold.

Two New RL Benchmarks We wish to surface and highlight two new RL benchmarks
in energy DR: OfficeLearn and MicrogridLearn, discussed in Chapter 2. Both are transactive
control settings where agents set prices in order to influence behavioral response. These are
two unique and interesting environments that we use to test RL agents. We are the first to
propose the use of RL in price-setting of this nature.

Articulation of Problems in Sim-to-Real RL We explore six problems in Simulation-to-
Reality (Sim-to-Real) RL: data inefficiency, lack of robustness and safety, suboptimal training
in simulation, potential for adversarial attacks, privacy preservation and generalization to
new subdomains, and hyperparameter optimization. We hope that the articulation of these
problems is interesting and compelling, and may lead to future work.

Methodological Innovations Of the many techniques that we investigate to address the
problems above, we produce new and interesting methods in the space of RL. We wish to
highlight the guardrails approach in planning models (Jang et al., 2021b), application of
Personal Federated Hypernetwork (PFH) to RL (Jang et al., 2022b), and adversarial data
poisoning (Gunn et al., [n. d.]) as novel advancements in RL Theory.

Methodological Recommendations Of the methods we try, we wish to recommend
methods that were especially helpful to our work. Specifically, we recommend guardrails,
Domain Randomization with Meta RL (Jang et al., 2021a), and subsequent study in Auto-
curricula.

Education and Awareness We see this dissertation as one that bridges the gaps between
two different communities: energy and Artificial Intelligence (AI). We wish to educate readers
from the energy community about aspects of AI and RL that we find important. Similarly,
we wish to educate members of the AI community on aspects of energy that we find most
compelling and interesting.
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(a) Carbon outputs in the simulation under the agent’s policy versus baseline.

(b) Energy consumption in the simulation under the agent’s policy versus
baseline.

Figure 1.13: Results from the agent running in simulation versus the baseline. Image
reproduced with permission. (Sipple, 2022).
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1.3.2 Advice to Different Readers

Our goals in DR is to break ground on a technique we believe may strongly impact the field.
We wish to challenge the assumptions that price-setting may only happen from top-down
control, and suggest that price-setters can automatically incorporate observation and feedback
in a way to optimize the prices set. If the reader is approaching this dissertation hoping to
learn more about DR and transactive control, they may prefer to focus on Sections 1.1, 2.1,
2.2, and 2.3.

Our goals in RL are to provide a recommendation of, out of the many techniques that we
have tried, a few that may be particularly helpful in guiding a transition between simulation
and reality. They are clustered around specific problem types that come up in the area. If
you are reading this for the purpose of understanding RL methods, I recommend that you
glance over Chapter 2, giving some attention to Sections 2.2 (MicrogridLearn (Agwan et al.,
2021a)) and the first parts of 2.3 (OfficeLearn (Spangher et al., [n. d.])) to understand how
our environments are setup. You may choose to skip 2.4 and 2.5 entirely. You may then
focus on whichever issue with sim-to-real RL that is most pertinent to your problem at hand.
I strongly recommend that all RL readers read our proposed guardrails method and our
proposed use of auto-curricula to guide HVAC development.
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Chapter 2

Demand Response Problems as
Reinforcement Learning Environments

2.1 Introduction

2.1.1 The Price Setting Problem

Consider a system composed minimally of price-respondent entities and a price-setter20. The
price setting entity may set a different price p⃗ : [p1, ..., pH ] for each hour of the day which
is functionally composed of H hours. The price respondent has some energy DR function
d(p, b) : b ∈ RH → RH ; i.e. the energy demand of one hour is dependent on not only prices
of that hour but all other hours as well. The goal of the price-setter then is to pick the prices
that optimize some objective T that it cares about:

argmaxp⃗ g(d(p⃗)) (2.1)

Features of the environment influence the price-setter’s actions, including whether there
exists another price-setter, whether price-respondent entities are prosumers in that they both
buy and sell a resource according to prices or just consumers who buy the resource, and how
many price-respondent entities exist.

2.1.2 The Price-Setting Problem in Demand Response

2.1.2.1 Instantiating the Price-Setting Problem

When we instantiate the price-setting problem in DR, we assume that prices are an important
way to signal the utilities’ DR needs. The utility, or some aggregator below the utility, which
may be thought of as a localized market clearing-house for energy, is thus the price-setter. The
price-respondent entities are consumers of energy, be they abstract (microgrids) or individual
(i.e. users within a building.)

20We extend this setting to include other entities as well.
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2.1.2.2 Why Focus on Prices?

As previously discussed, DR has the potential to both democratize energy “production”
through the concept of the negawatt, and coordinate a massive fleet of end appliances.
However, harnessing the aggregate amount of DR requires a flexible way to signal to consumers.
A complication is that the signal that may need to be individualized for localities or individuals:
it must encourage shifting while not penalizing energy use when it is necessary. Such a signal
must learn over time, as appliance bases and communities change. Individuated energy prices
are thus a good signal for DR.

2.1.2.3 Current Practices

Currently, utilities do not signal to residential consumers at all: they pay a flat rate for energy
consumed at any point of the day. On the vanguard of the movement is so-called Time of Use
(TOU) pricing, which communicates two prices throughout the day. For example, Oakland
City charges consumers one higher price from 4-9pm and a lower price for the rest of the day.
However, this is clearly inadequate when considering that a grid’s energy makeup (and cost
to the utility) may change dramatically across both of those time intervals.

We argue that flexible prices throughout the day are a natural way to signal to consumers
the value of energy consumed throughout the day. Under many utility jurisdictions, “net-
metering” rules apply to energy produced, wherein consumers may sell net metering for
the same price that they would buy it. Flexible prices combined with net metering truly
democratizes energy generation and consumption by allowing consumers to decide when they
may want to sell avoided their energy and when they may want to buy energy.

2.1.3 Common RL Environments: OpenAI Gym

As RL implementations become more standardized, it is important for the environments they
operate in to adopt a common structure, or API. OpenAI, a non-profit very involved with
the proliferation of RL, was one of the first to put out a common environment Application
Programming Interface (API) called OpenAI Gym. OpenAI Gym environments are a series of
standardized environments that provide platform for benchmarking the progress of learning
agents. (Brockman et al., 2016). OpenAI Gym environments allow researchers to create
custom environments that immediately allows deployment of a suite of out-of-the-box RL
techniques.

We have coaxed the price-setting problem into one that is natural for RL: there is a
regular time-period, actions (prices), and unknown environmental response with clear rewards.
We will thus describe the software basis for implementation.

Popular, well-made, or particularly realistic Gym environments tend to concentrate focus
and energy around a specific problem that they describe. We thus describe three different
Gym environments that we have created and put into the open-source repo, hoping to lead
work in the area.
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2.2 Within a Microgrid

2.2.1 Background and Motivation

Many researchers have studied how to coordinate the energy of several buildings or agents
with relative success: (Johnson et al., 2015) examines the control strategies of load deferral,
thermostat adjustment, and load shedding for multiple simulated buildings, (Ma et al.,
2015) explores a cooperative demand response scheme for multiple industrial refrigerated
warehouses. We describe these works as fitting in some level in between individual building
level or microgird level; we may imagine that one company that owns a few buildings within
a larger microgrid may have reason to coordinate their buildings under the one agent’s hood.
These works have generally examined how to control appliances or buildings in response to
some price or other supply signal.

Why control pricing in microgrids? Traditional consumers like buildings are increasingly
investing in distributed energy resources such as solar panels and battery backups, and
electrifying loads like vehicles. These resources can be used to supply the building’s own
demand, shave the peak load to reduce demand charges, or to increase resiliency in the face
of grid failure or power shutoff and enable consumers to become prosumers, i.e. be electricity
producers as well. However, such resources may remain underutilized, or be sized over-capacity
to account for weather and load variability. Prosumers can profit from trading their surplus
energy with other prosumers and improving resource utilization. Utilities have typically
accommodated Distributed Energy Resources (DERs) through net-metering programs that
compensate producers at the retail tariff. However, retail tariffs are much higher than
wholesale energy market prices, and utilities have begun to phase out net metering programs
in favor of direct market participation of DERs through aggregations. Prosumers can increase
their profitability if they trade energy with other prosumers using social net-metering schemes
implemented by utilities (Henriquez-Auba et al., 2018). In these schemes, communities can
share energy resources while presenting the net consumption to the utility as a single entity.

Recent regulations have opened up multiple avenues for DERs to participate in energy
markets. However, wholesale markets have minimum participation sizes and may require
DERs to construct demand and supply bids. Virtual microgrids and DER aggregations offer
a pathway for prosumers to trade energy locally instead of participating in energy markets.

2.2.2 Prosumer Aggregations

In this section, we imagine prosumer aggregations that facilitate trading between participants
in the aggregation, and then balance the net load by purchasing from or selling to the utility.
They can be formed with a variety of motives: private entities could manage aggregations
for a fee or for a profit, and participants could form cooperative aggregations to maximize
social welfare. Each aggregation has control the energy consumption and production of
its participants, either through direct control or through some signal which can convey
operational information to the participants. Realistically, prosumers will have independent
cost minimization objectives, and will seek to optimize the operation of their resources for
their own profit. Coordinating independent entities which are separately owned and managed
is a difficult task, and transactive control is a strategy which uses the price of electricity



CHAPTER 2. DR PROBLEMS AS RL ENVIRONMENTS 29

Figure 2.1: Net metering as a prosumer aggregation (Agwan et al., 2021a).

to influence the operation of prosumers. For a prosumer, responding to a day-ahead price
is easier than estimating load/generation schedules required to participate in a market, or
responding to real time prices. The aggregator can communicate TOU rates a day ahead
to aggregation participants, who can then schedule their operation in response to energy
prices similar to utility TOU rate plans. The aggregator has the task of designing prices that
achieve the aggregation’s objectives while dealing with an uncertain environment: first, the
response of prosumers to energy prices is not known to the aggregator, and second, loads and
generation are not perfectly predictable and have inherent occupancy and weather driven
uncertainty. Plesae see Figure 2.1 for a visualization of what this may look like. Experts we
conferred with, such as Duncan Callaway, have recognized controller-set hourly prices to be
feasible in the real world (D Callaway, personal communication, 2022).

Researchers have worked on developing methods to control such aggregations. While
microgrids have traditionally controlled distributed resources through a central authority
dictating consumption/generation decisions, this can not be implemented in a situation where
self-interested prosumers want to aggregate without ceding control of their operational deci-
sions. (Kim and Giannakis, 2016; Wischik et al., 2008) considers a microgrid central controller
trying to shape the load curves of participants by employing participant differentiated real
time pricing. (Jia et al., 2013) studies the problem of minimizing deviation from day ahead
estimates through pricing, and (Wang et al., 2015) models a hierarchical optimization problem
to solve the aggregation control problem. We model a similar hierarchical optimization in
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Section 2.2.3.
Aggregations commonly employ iterative pricing methods: (Wang and Huang, 2016)

models prosumer trades as a Nash Bargaining problem, and solves it by decomposing
it into two sequential problems which are solved iteratively using ADMM. This involves
communicating price and energy consumption information back and forth between the
aggregator and participants. Similarly, (Liu et al., 2017b) develops a pricing model for a
prosumer aggregation but settles on a price in an iterative manner. These methods have a
couple of disadvantages: first, they require the participants to communicate back-and-forth
with the aggregator which requires two-way communication infrastructure; second, prosumers
are required to develop demand forecasts, which can unnecessarily raise the computational
barrier for entry.

2.2.3 RL Environment 1: MicrogridLearn

We model the prosumer and aggregator behavior as solutions to optimization problems, and
then introduce the RL controller that we use to estimate prices in a day ahead manner.

Prosumer Model A prosumer typically has a combination of loads (flexible and inflexible),
local generation and energy storage. We can denote the net energy consumption as e(t) =
d(t) − g(t) + u(t) where in any time period t, the prosumer has energy demand d(t), local
generation g(t), and storage operation u(t). The prosumer purchases its net load at a time-
of-use rate pb(t), and sells back any excess generation at ps(t). These prices are typically
different (Henriquez-Auba et al., 2018), as utilities remove or disincentivize net-metering
programs. The prosumer optimization problem (P-OPT) can be formulated as

P-OPT(p⃗b, p⃗s) : min
u⃗

T∑
t=1

[
p
(t)
b e

(t)
+ + p

(t)
s e

(t)
− + pbat|u(t)|

]
(2.2a)

= p⃗⊤b e⃗+ + p⃗⊤s e⃗− + pbat1⃗
⊤
T |u⃗| (2.2b)

s.t. 0 ≤ Lu⃗ ≤ c (2.2c)

where u⃗ represents the vector of battery charge/discharge over time with positive values
denoting battery charging, p⃗b, p⃗s represent the time vectors of most favorable buy and sell
prices at each hour t for it between the aggregators’s prices and the utilities prices, i.e.:

p⃗b = max(pb,agg, pb,utility)t ∀t ∈ [1, T ] (2.3)

and

p⃗s = min(ps,agg, ps,util,s)h ∀t ∈ [1, T ] (2.4)

and e⃗+, e⃗− represent the time vectors for net positive demand and net negative demand
(net generation) respectively. The optimization objective (2.2a) incorporates the cost of
procuring any net demand e+ at the buy price, the revenue from selling any net surplus
energy generation e− at the sell price, as well as the cost of battery degradation evaluated
with pbat. The constraint (2.2c) encapsulates physical constraints on the state of charge for
energy storage, charging speed constraints. More details, such as how a one-way battery
efficiency is factored in, can be found in (Agwan, 2020).
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Aggregator Model Aggregators can be operated as central clearing houses where energy
trades are balanced, and the net consumption is procured from the utility which acts as
the outside option. All prosumers purchase their net energy needs from the aggregator at
a price set by the aggregator. The aggregator is constrained in its choice of prices: if it
is worse then the outside option (the utility), prosumers will have no incentive to trade
with it. This constraint is encapsulated as p⃗s,util ≤ p⃗s,agg, p⃗b,agg ≤ p⃗b,util, where p⃗s,agg, p⃗b,agg
represent the aggregator-set sell and buy prices respectively. Aggregations can be formed
with multiple objectives, and we explore two particular objectives: profit maximization and
market balancing.

For-Profit Aggregator Aggregators can aim to maximize the profit they earn for acting as
a trade facilitator, and in a situation with perfect information they would solve the following
bi-level optimization problem to set prices:

max
p⃗b,agg, p⃗s,agg

[
p⃗⊤b,agg

∑
(e⃗∗,+) + p⃗⊤s,agg

∑
(e⃗∗,−)

]
−
[
p⃗⊤b,util(

∑
e⃗∗)+ + p⃗⊤s,util(

∑
e⃗∗)−

]
(2.5a)

s.t. p⃗s,util ≤ p⃗s,agg, p⃗b,agg ≤ p⃗b,util (2.5b)

e⃗∗ = d⃗− g⃗ + u⃗∗; u⃗∗ = argminu⃗ P-OPT(p⃗b, p⃗s) (2.5c)

where the objective in Eq. 2.5a represents the net profit for the aggregator, i.e. the revenue
from sales to the prosumers minus the cost of procuring the net energy demand from the utility.∑

(e⃗∗,+),
∑

(e⃗∗,−) are the sum of each prosumer’s optimal demand and generation taken
separately, while (

∑
e⃗∗)+, (

∑
e⃗∗)− are the net demand and generation of the aggregation

once all internal trades have been balanced.

Transactive Control Using RL The problems modeled in Section 2.2.3 are hierarchical
optimization problems, and do not have a closed-form solution without some form of infor-
mation sharing between the aggregator and prosumers. As discussed in other papers which
use ADMM and iterative pricing methods (Section 2.2.1), decentralized pricing methods
require iterations to converge to a solution. We develop an RL controller that relies on a
day-ahead price set using historical price information, generation forecasts, and prior energy
consumption; i.e. the state space:

St := [p⃗t−1, e⃗t−1, g⃗t] ∈ R3T (2.6)

The transactive controller does not iterate over prices, and instead learns to estimate
future prices in a one-shot manner. Our action space A is the space of aggregator prices:

p⃗agg ∈ RT (2.7)

It is simple enough to be covered by an entropy maximizing agent, and we employ a SAC
architecture to do so. The reward r for the for-profit aggregator is computed as the objective
expressed in Eq. 2.5a. We simulate the behavior of our controller under uncertain generation
forecasts and compare it to baseline iterative pricing algorithms in Section 3.5.2.5.
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Figure 2.2: Training curves for RL agents under different instantiations of MicrogridLearn
(Agwan et al., 2021a).

2.2.3.1 Results and Discussion from MicrogridLearn

We will now describe our results for each of the two objectives: market solving and profit
maximization, prefaced by an explanation of our data, architecture and training process.
Each step in the environment is a day where the RL controller broadcasts prices to the
prosumers, who modify their energy storage and consumption to minimize their costs, and
the controller uses their consumption data to calculate its reward.

Implementation We use the stable-baselines fork of OpenAI baselines (Hill et al., 2018),
and our other implementation choices are detailed in our Github repository (Spangher et al.,
2021). The final run presented here was distributed across 24 Central Processing Units (CPUs)
for 12 hours each. The Q loss shown in Fig. 2.2 is one of many metrics that represents the
neural network’s training. For the simulations presented in this paper, the utility pricing is
obtained from (OpenEI, 2017) and the prosumers considered are commercial office buildings
modeled using load data taken from (Miller and Meggers, 2017) with additional details
presented in (Agwan, 2020). A total of 10 commercial and university buildings in the Los
Angeles region were chosen for simulation. Their power usage is of the order of 10− 200 kW,
and the simulations use three levels of battery installations and PV array sizes for each of
the buildings: small, medium and large.

Marginal Benefit of Aggregating We compare the system costs in the presence and
absence of a profit-maximizing aggregator for two different levels of prosumer solar generation
and battery capacity. As can be see in Fig. 2.3, the RL controller reduces the system costs
and provides value which can be distributed among the aggregator and prosumers.

RL controllers are particularly well suited for dynamic data driven environments with
unknown, complex, and changing system models, e.g. with changing prosumer resources. The
novelty of our proposition is in using RL to preemptively price energy in local markets, but
is accompanied by many challenges that will need to be addressed for practical applicability.
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Figure 2.3: Comparing system costs, i.e. sum of aggregator and prosumer costs with and
without a profit maximizing RL controller for two resource levels: a) Medium, and b) Small.
(Agwan et al., 2021a)
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2.3 Within a Building

2.3.1 Background and Motivation

We now wish to ask the question: what tools may a building manager leverage to respond to
prices set at the aggregator or utility scale? We will describe the existing work in building-level
DR , specifically focusing on behavioral energy deferral.

Buildings are a natural place to implement automated DR strategies. It has been shown
that prices can affect DR in individual homes, be they appliance or system-based response.
For instance, (Adelman and Uçkun, 2019) study the effect of passing a dynamic price profile
to homes with smart meters and appliances, comparing this profile to flat and peak pricing
and concluding that dynamic prices elicit changes in demand.

Many DR strategies have been explored to coordinate the action of appliances, such as
linear programming for HVAC controls (Kim, 2018), rule-based HVAC controllers (Yoon
et al., 2014b), and supervised machine learning for Internet of Things (IoT) device control
(Kaur et al., 2021). For example, RL has been used for HVAC and window controllers
(Chen et al., 2018), whole building HVAC controllers (Azuatalam et al., 2020), commercial
building HVAC controllers (Kathirgamanathan et al., 2021), and home energy management
(Lissa et al., 2021). (Gao et al., 2015) examines the control of appliances in the presence
of load uncertainty using a Monte Carlo method, and (Peirelinck et al., 2022) looks into
different approaches to the same problem by minimizing uncertainty through transfer learning
approaches.

2.3.2 Behavioral Energy Shifting via Transactive Control

We will now dive into another type of load shifting that a building may seek to develop.
For the purposes of this work, we define behavioral energy demands as demands related

to direct uses of energy by office workers. In a traditional office, desk-level resources may
include computer use, refrigerator use, desk fan use, and cell phone charging. In newer offices,
common energy demands may be behaviorally influenced by voting systems that allow users
to submit input on what level heating, cooling, or light intensity should be at. One may
consider these novel systems as ways to incorporate behavioral preferences into energy DR .

Studying behavioral DR is very relevant. Most DR research has focused on intelligent
control of appliance signals ((Asadinejad et al., 2018), (Ma et al., 2015), (Li et al., 2018),
(Yoon et al., 2014a), (Johnson et al., 2015), (Das et al., 2020), (Kim, 2018)). However, there
is limited literature on the supply side of the problem; i.e. how to actually set those signals.
There is even less literature on conducting behavioral DR to influence the energy consumption
behavior at the level of office workers instead of at the level of markets composed of entire
buildings. . The lack of office-centered price-setting studies is understandable considering
that offices do not have a mechanism to pass energy prices to workers. Social games have been
studied as a way to address this issue. A reversed Stackelberg social game is implemented in
(Ratliff et al., 2014) with results from real office workers. The use of cheap IoT and mobile
devices for social games is explored in (Papaioannou et al., 2018) and (Iria et al., 2020),
respectively. These Social Games have been shown to motivate energy behavior in workers
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Figure 2.4: A schematic of the energy consumption in a hypothetical “Acme Energy office”
that demonstrates the value in tailoring a price signal for a specific office schedule.

by sharing energy consumption information and rewards for energy savings (Spangher et al.,
2019c)

In the presence of such a Social Game mechanism, “artificial” price signals could represent
an exciting control for DR . To elaborate, consider an office building that receives energy
from a utility via a TOU pricing program. DR amounts to the ability of workers to shift
some of their energy usage across time or curtail energy consumption to reduce the energy
cost with respect to the price signal shared with them. The simplest form of a price signal
could be the TOU price schedule of the utility itself. This signal may not be efficient in
eliciting the best DR from workers since it does not account for the nature of work being
performed and the ability of specific workers to shift consumption. Therefore, “personalizing”
a price signal to a building; specifically the energy responses of its workers, could lead to
lower building energy costs than passing through the TOU price signal.

To illustrate, consider the example shown in Figure 2.4. In Acme Energy Office, the
office manager pays for energy on a TOU pricing that is high from 3pm-7pm, which means
that the office manager would like to shift energy use earlier in the day. The office workers
generally take their lunch at noon, which is low-energy, but can move lunch an hour before or
afterwards. Thus, a high price before they normally take lunch may encourage them to shut
down their computers and take lunch early. The office generally collaborates on intensive
computer modeling from 1pm-4pm, which should be an unbroken three hours but can be
moved forward. If lunch is moved forward, then lower prices from 12pm-3pm and the highest
price of the day from 3pm-7pm may encourage a shift of the modeling from 12pm-3pm. The
possible ideal controller price may encourage a shift in demand to the middle of the day that
allows the demand to coincide with a time period when solar generation affects overall grid
energy composition.
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Thus, the work we propose creates a mechanism to study behavioral response. In section
2.3.3 we will propose a simulation environment for testing RL for price-setting within buildings,
and in 4.1 we will propose an experiment to validate the work.

2.3.3 RL Environment 2: OfficeLearn

Here, we formalize an OpenAI Gym environment for the testing of RL agents within a single
office building to encourage exploration in occupant level building DR. At a high level, the
office workers are incentivized with a fixed cash reward to save energy by either shifting
some of their energy usage to parts of the day when price signals make energy cheaper, or
curtailing some energy usage altogether. See Figure 2.5 for an overview of our overall setup.

At a high level, Figure 2.5 is a schematic showing the interplay between agent and office
environment, and ensuing energy responses. The agent receives prices from the grid, then
transforms it into “points” (called as such for differentiation.) Office workers engage with
the points in the way an individual might be engaged with their home energy bill, which is
reasonable assuming behavioral incentives detailed in (Spangher et al., 2020c). The office
receives these points at the beginning of the “day”. Workers proceed to use energy throughout
the day and at night the system delivers a record of their energy consumption, which is
reduced into a reward that trains the agent.

2.3.3.1 Formal Setup

We consider an office of U simulated people with H hour workdays 21. The office buys energy
from a grid-level utility that sells energy at different prices during different hours of the day.
We assume the utility uses a TOU pricing scheme 22; i.e. a pricing scheme with a base price
for much of the day and a higher price for a few hours when grid demand is congested that is
constant across the yearXXIV.

A building manager wishes to shape energy consumption to lower the building’s current
energy cost, which is the sum of energy cost incurred by each worker at each hour of the
day:

∑U
i=1 p⃗

⊺
utilb⃗i, where b⃗i = [bi,1, ..., bi,H ] is the baseline energy consumption of the ith worker

when there is no DR, p⃗util,h are the bounded, nonnegative TOU grid prices for each hour
h = 1, 2, . . . , H. In contrast, workers are unaware of energy prices and have no direct incentive
to change behavior. Therefore, the building manager implements a DR system consisting of
a price controller and a reward system. The price controller chooses a vector of bounded,
nonnegative prices p⃗RL = [pRL,1, ..., pRL,H ] for each hour of the day and broadcasts these prices
to all workers. In addition, the building manager incurs a total fixed expense of I dollars
($) to incentivize workers to minimize their energy cost relative to this price signal. More

21We focus on homogeneous workdays for simplicity, i.e. ones in which every worker responds the same,
but our model extends to handle heterogeneous workdays in a straightforward manner.

22As a reminder to the reader, other approaches to dynamic pricing also exist, such as a Real Time Pricing
(RTP) scheme, in which every hour has a different price and every day features a different price curve, and
the familiar “flat pricing”, which features a single price per day. Time of Use (TOU) pricing has two prices in
a day. We choose the unvarying TOU case for our simulation to reflect a common real-world middle ground,
but our model extends to handle a fully varying RTP scenario in a simple manner
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formally, when facing price p⃗RL, the worker i deviates to net enegy e⃗i from his/her baseline

consumption b⃗i to a deterministic consumption response function23

e⃗i := di(⃗bi, p⃗RL) := [di,1(bi, pRL), di,2(bi, pRL), . . . , di,H(bi, pRL)] (2.8)

The building manager’s objective is to minimize the total worker energy cost by setting
the prices p⃗RL to influence worker energy consumption di(bi, pRL):

min
p⃗RL ∈ PRL

U∑
i=1

p⃗ ⊺
util di(⃗bi, p⃗RL) + I. (2.9)

Let p⃗RL,∗ denote an optimal solution to this problem.
Note that the fixed amount I paid to incentivize workers affects the optimal p⃗RL,∗ only in

terms of guaranteeing the consumption response di(⃗bi, p⃗RL,∗) from the workers in Equation
2.9. From this objective formulation, we can see that implementation of DR is desirable to
the building manager only if:[

U∑
i=1

p⃗ ⊺
util di(⃗bi, ⃗pRL) + I

]
<

U∑
i=1

p⃗ ⊺
util b⃗i (2.10)

that is, if the total energy cost under DR and the cost of the incentive is smaller than the
total energy cost without DR.

2.3.3.2 Environment Mechanics Overview

In this section, we highlight a summary of the environment and the underlying Markov
Decision Process. The flow of information is succinctly expressed in Figure 2.5.

The environment takes the format of the following Markov Decision Process (MDP),
(S,A,P , r). They are defined as follows:

St := [p⃗util, t, d⃗t−1, b⃗t] ∈ R3H (2.11)

Where H=10 to cover the workday.

A : p⃗RL ∈ RH (2.12)

P : 1[e⃗i == di(p⃗RL)] ∀ i ∈ [1, ...U ] where e⃗i ∈ RH (2.13)

The reward, r, defined in Section 2.3.3.6.
We describe out design choices and variants of the MDP below.

23A deterministic DR may be appropriate in certain building environments such as data centers or other
largely human-free buildings. It is a mild assumption in our work as we will relax the assumption that we
know this function in the next section.
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Figure 2.5: RL flow of the OfficeLearn environment.

2.3.3.3 State Space, S

The steps of the agent are currently formulated day by day, with ten-hour working days
considered. Therefore, while the state space has several different components (described
below), each is of ten dimensions as each one is hourly in nature.

2.3.3.4 Grid Price Regimes

Utilities are increasingly moving towards time dependent energy pricing, especially for bigger
consumers such as commercial office buildings with the capacity to shift their energy usage.
TOU pricing involves is a simple, two-level daily price curve that changes seasonally and is
declared ahead of time. We use PG&E’s TOU price curves from 2019. Real Time Pricing
(RTP), meanwhile, is dynamic for every hour and changes according to supply and demand in
the energy market. We simulate it by subtracting the solar energy from demand of a sample
building. There is significant seasonal variation in prices depending on geography, e.g. in
warmer climates, the increased cooling load during summer can cause an increase in energy
prices.

• Energy of the prior steps, d⃗t−1: The default instantiation of the environment includes
the energy use of office workers of the prior step. This allows the agent to directly
consider a day-to-day time dependence. The U simulated office workers in this version
are currently memory-less from day to day in their energy consumption, but a future
simulation will allow for weekly deferable energy demands to simulate weekly work
that can be deferred and then accomplished. The energy of the prior steps may be
optionally excluded from the state space by those who use our environment.

• Grid prices of the prior step, p⃗util, t-1: Users may optionally include the grid price
from prior steps in the state space. This would allow the agent to directly consider the
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behavioral hysteresis that past grid prices may have on a real office worker’s energy
consumption. Although this is a noted phenomenon in human psychology generally
(Richards and Green, 2003), it is not well quantified and so we have not included it in
how we calculate our simulated human agents.

• Baseline energy, b⃗t: Baseline Energy may optionally be included in the state space.
If the agent directly observes its own action and the baseline energy, it observes all of
the information necessary to calculate certain simpler simulated office worker responses.
Therefore, inclusion of this element will make the problem fully observable, and truly
an MDP rather than a POMDP.

• Action space, A: The agent’s action space expresses the points that the agent delivers
to the office. The action space is by default a continuous value between zero and ten,
but may be optionally discretized to integer values if the learning algorithm outputs
discrete values. The purpose of the action is to translate the grid price into one that
optimizes for behavioral response to points. Therefore, the policy will learn over time
how people respond to the points given and maximally shift their demand towards the
prices that the grid gives.

2.3.3.5 Office Workers: Simulated Response Functions

In this section, we will summarize various simulated responses that office workers may exhibit.

• “Deterministic Office Worker”: We include three types of deterministic response,
with the option for the user to specify a mixed office of all three.

– In the linear response, we define simple office worker who decreases their energy
consumption linearly below a baseline with respect to points given. Therefore, if
b⃗t is the baseline energy consumption at time t and p⃗RL,t are the points given, the

energy demand d⃗t at time t is d⃗t = b⃗t − p⃗RL,t, clipped at dmin and dmax as defined
in Section 2.3.3.6.

– In the sinusoidal response, we define an office worker who responds well to points
towards the middle of the distribution and not well to prices at the. Therefore,
the energy demand d⃗ at time t is d⃗t = b⃗t − sin p⃗RL,t, clipped at dmin and dmax.

– In the threshold exponential response, we define an office worker who does not
respond to points until they are high, at which point they respond exponentially.
Therefore, the energy demand d⃗ is

d⃗t = b⃗t − [exp p⃗RL,t ∗ (p⃗RL, t > 5)] (2.14)

Clipped at dmin and dmax.

• “Curtail And Shift Office Worker”: Office workers need to consume electricity to
do their work, and may not be able to curtail their load below a minimum threshold,
e.g. the minimum power needed to run a PC. They may have the ability to shift
their load over a definite time interval, e.g. choosing to charge their laptops ahead
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of time or at a later time. We model a response function that exhibits both of these
behaviors. We can model the aggregate load of a person (⃗bt) as a combination of fixed

inflexible demand (⃗b fixed
t ), curtailable demand (⃗b curtail

t ), and shiftable demand (⃗b shift
t ),

i.e., b⃗t = b⃗ fixed
t + b⃗ curtail

t + b⃗ shift
t . All of the curtailable demand is curtailed for the Tcurtail

hours (set to 3 hours in practice) with the highest points, and for every hour t the
shiftable demand is shifted to the hour within [t−Tshift, t+Tshift] with the lowest energy
price. For an example of “curtail and shift” in the wild, please see the endnotesXXV.

2.3.3.6 Reward

Specification of the reward function is notoriously difficult, as it is generally hand-tailored
and must reduce a rich and often multi-dimensional environmental response into a single
metric. Although we include many possible rewards in the code, we outline the two rewards
that we feel most accurately describe the environment. As we already demonstrated in prior
work the ability to reduce overall energy consumption (Spangher et al., 2019a), we endeavor
to direct this agent away from reducing consumption and towards optimally shifting energy
consumption to favorable times of day.

• Scaled Cost Distance: This reward is defined as the difference between the day’s
total cost of energy and the ideal cost of energy. The ideal cost of energy is obtained
using a simple convex optimization. If d⃗ are the actual demand of energy computed
for the day, p⃗util is the vector of the grid prices for the day, E is the total amount of
energy, and dmin, dmax are 5% and 95% values of energy observed over the past year,
then the ideal demands are calculated by optimizing the objective:

d⃗ ∗
t = argmin

d⃗

d⃗ ⊺
t p⃗util, t (2.15)

Subject to the constraints 1⃗⊺d⃗t = Et and dmin < d⃗ < dmax. Then, the reward becomes:

r(d) =
d⃗ ∗⊺p⃗util − d⃗ ⊺p⃗util

d⃗ ∗⊺p⃗util
(2.16)

i.e. taking the difference and scaling by the total ideal cost to normalize the outcome.

• Log Cost Regularized: Although the concept of the ideal cost is intuitive, the
simplicity of the convex optimizer means that the output energy is often an unrealistic,
quasi step function. Therefore, we propose an alternate reward of log cost regularized.
Following the notation from above, the reward is

r(d) = −d⃗ ⊺p⃗util − λ

[
H∑
t=1

d⃗ < 10 ∗ (.5 ∗ bmax)

]
(2.17)

where bmax refers to the max value from the baseline. In practice, we set λ to some
high value like 100. The purpose of the regularizer is to penalize the agent for driving
down energy across the domain, and instead encourage it to shift energy.
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2.3.3.7 Illustration of Features

We will now demo the environment’s functioning. All comparisons are done with a vanilla
SAC RL agent that learns throughout 10000 steps (where one step is equal to one day), with
a TOU pricing regime fixed at a single day. The agent’s points are scaled between -1 and 1.

We present the effect of using the Log Distance Regularized and the Scaled Cost Distance.
Please see Figure 2.6 for side by side comparison of the reward types. The energy output of
the simulated office workers is drawn in light blue, and corresponds to the primary axes. The
grid prices are drawn in red, and refers to TOU pricing. It corresponds to the secondary axes.
The agent’s actions are drawn in dark blue, is scaled between -1 and 1 to improve readability
of the plots, and correspond to the secondary axes. In this figure, you can see that not only
is the agent capable of learning an action sequence that accomplishes a lower cost than if the
simulated office workers were to respond directly to the untransformed grid prices, but also
differs in how the learning is guided. The log cost regularized reward accomplishes smoother
prices that result in the agent deferring most of the energy for the end of the day, whereas the
scaled cost distance reward allows for more energy earlier in the day, guiding the simulated
office worker to increase energy gradually throughout the day.

We present the effect of using different simulated office workers on the output of energy
demand. Please see Figure 2.7, in the Appendix, for a comparison of two types of simulated
office workers. The energy output of the simulated office workers is drawn in light blue, and
corresponds to the primary axes. The grid prices are drawn in red and corresponds to the
secondary axes. The agent’s actions are drawn in dark blue, is scaled between -1 and 1, and
correspond to the secondary axes. In the exponential response, we see an example of how
the office worker’s energy demand responds to points – that is, perhaps, too coarsely for a
learner to make much difference. Meanwhile, the Curtail and Shift response demonstrates a
much richer response, which enables a learner to learn the situation and perform better than
the control.

2.3.3.8 Simulating DR in Your Building

The environment we provide contains many ways to customize your own building. You may
choose the number of occupants, their response types, baseline energies, grid price regimes,
and frequency with which grid price regimes change. You may also choose from a host of
options when it comes to customizing the agent and its state space.
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Figure 2.6: A comparison of the Log Cost Regularized and the Scaled Cost Distance rewards.
The energy output of the simulated office workers is drawn in light blue, and corresponds to
the primary axes. The grid prices are drawn in red, and refers to TOU pricing. It corresponds
to the secondary axes. The agent’s actions are drawn in dark blue, is scaled between -1 and 1
to improve readability of the plots, and correspond to the secondary axes.The control (top
left) simply sets p⃗RL := p⃗util. (Spangher et al., [n. d.])
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Figure 2.7: A comparison of the “Exponential Deterministic Office Worker” to the “Curtail
and Shift Office Worker”. The energy output of the simulated office workers is drawn in light
blue, and corresponds to the primary axes. The grid prices are drawn in red, and refers to
TOU pricing. It corresponds to the secondary axes. The agent’s actions are drawn in dark
blue, is scaled between -1 and 1 to improve readability of the plots, and correspond to the
secondary axes. The control (top left) simply sets p⃗RL := p⃗util. (Spangher et al., 2020d)
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Figure 2.8: A description of the multi-microgrid environment. (Gunn et al., [n. d.])

2.4 Within Microgrid Clusters and Beyond

We now broaden our scope to applications above the level of just one microgrid or one
building, and consider a similar transcative structure to larger entities.

2.4.1 RL Environment 3: Multi-Agent MicrogridLearn

Consider a setting of 100 microgrids. One RL agent sets the policy parameters θ of all 100
microgrid controllers, which transacts locally within each microgrid. Each microgrid consists
of 7 prosumer office buildings. Every prosumer has a battery, solar panel array, and baseline
energy consumption; each wants to minimize their energy cost. Prosumers see both grid-set
hourly energy buy and sell prices and local microgrid controller-set hourly energy buy and sell
prices. Prosumers choose to transact with either the grid or the RL aggregator at each hour.
Prosumers also decide when to discharge their battery according to both their demand and
the energy prices. The microgrid controller accepts all transactions the prosumers request
of it. It does not produce or store energy, but sells energy it has bought from prosumers
producing energy in a timestep to prosumers demanding energy in the same timestep. The
aggregator balances the net load by purchasing from or selling to the energy utility under
which they sit, usually at a loss. As the manager of the RL-aggregator, you see the grid’s buy
and sell prices, and wish to learn an automatic pricing strategy such that you consistently
turn a profit. See Figure 2.8 for a graphical depiction of the environment.

We create this problem setup by extending MicrogridLearn to a multi-agent environment.
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Here, each agent sets prices for a microgrid defined by the same hyperparameters as the
original environment. Please see Figure 2.8 for a visualization of what this may looks like. In
this figure, the brain is the multi-agent RL agent, the black dot is a distributed microgrid
controller, which constitutes one agent in a multi-agent framework. Each collection of yellow
buildings is a separate and possibly different microgrid that the brain controls.

2.5 A Brief Note on Leveraging Hierarchy in the Grid

for Multiple levels of RL Control

As we demonstrate to show, similar price-setting architectures may be applied at multiple
levels of the grid. At the simplest level, all a price-setter would have to know would be the
prices set by those above it and an accurate reward calculation of the aggregate entities below
it. The mechanics of RL would help different price-setters at different levels adapt to the
dynamics of their position in the grid.

This observation relies on the fact that, for our purposes, the grid may be simplified
into a real-life tree with no functionality lost from the simplification24. Each node receives
information of actions taken first by a linear line of nodes above it takes an action that affects
the subtree below it, and then observes the effect of its action. Peer nodes or nodes not
directly in the linear causal chain from root to node would set prices for different subsections
of the utility’s base, and so would not effect the node in question.

We thus imagine that a minimal extension of our work is to put multiple RL controllers
in hierarchy with each other. We leave this currently as a thought experiment (Spangher,
2021), but are excited to share it and possibly pursue it in the future.

24The physical grid is not an exact tree, given redundant lines and some amount of bidirectionality
with solar. However, for the purposes of transactional directions only, it simplifies into a tree with no lost
information (Von Meier, 2006).
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Chapter 3

Implementing Reinforcement Learning

3.1 Introduction

3.1.1 Overview

RL is not a magic bullet. We seek to identify six different problems in Simulation-to-Reality
(Sim-to-Real) RL and apply them in the environments we have previously designed. Although
each will each be applied within a single environment, they are all extensible to other
environments.

We will provide several different enhancements on RL to address the problems that we
define. Thus, this section may be seen as a survey of the add-ons of RL that were promising at
the time of this publication. We also seek to identify which of the methods seemed especially
promising to us.

We borrow Sutton’s RL cell to put rough approximations of the problems we surface in
Sim-to-Real RL onto the RL agent. Please see Figure 3.1 for a visualization. We hope that
this visual serves as a helpful overview of the topics that we will cover.

3.1.2 Simulating Sim-to-Real Test Cases

It may be non-traditional to structure a dissertation around Sim-to-Real RL when there is no
“real” experiment that we have tested our agents in. While we had prepared for one25, and
so have some insight in the tools needed beyond pure RL (please see the API and proposed
experiment design), we still cannot fully claim to test our modifications in the real world.

We persistently make the argument that one may create two levels of complexity in
simulation. When testing Sim-to-Real techniques in simulation, we argue that one may
limit their training to the lower level of complexity and test in the higher. When testing
Sim-to-Real techniques in the real world, we argue that one can then use both levels of
complexity in simulation to prepare the agent for the noise that it may face in the world.
In using simulation complexity as a proxy for Sim-to-Real complexity, we hope to make the
case for certain methods that we champion.

25Unfortunately, SARS-CoV-2 (COVID-19) prevented us from running the experiment in a test office.



CHAPTER 3. IMPLEMENTING REINFORCEMENT LEARNING 47

Figure 3.1: Overview of the problems we identify in sim-to-real RL. Base image from (Sutton,
2022).
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3.2 Data (In)Efficiency

3.2.1 Introduction to the Problem

It is well known that RL requires large amounts of data to run, which hamstrings its ability
to be performant in the real world. We demonstrate the problem in our own work and then
recommend our preferred strategies after several we chose.

In the OfficeLearn environment, we were able to achieve performance that beat both a
control and standard, TOU baseline. Indeed, we observe from Fig. 3.2 that it is possible to
eventually achieve a pricing strategy that saves $4500 per year compared to buildings with
no incentive structure (Flat pricing) and $3250 per year compared to TOU. However, 10,000
steps of data is necessary to achieve performance comparable to TOU: approximately 40 years
of training data. We will define the “initial deployment cost” as the higher energy cost that
the RL price controller incurs relative to the TOU pricing strategy during the initial time
period when the RL prices perform worse than the TOU price. The initial deployment cost of
the SAC agent is approximately $175,000, suggesting that at least 93 years of deployment is
necessary to recoup the initial deployment cost. The return over 5 years would be $37,500 less
than using TOU. This clearly unrealistic data requirement shows that an off-the-shelf SAC
agent is in fact worse than the TOU price for all practical purposes. It suggests potential
value in modifying the vanilla RL architectures in order to have a custom pricing agent for
our setting.

3.2.2 Offline-Online RL and DAggr

3.2.2.1 Offline-Online Reinforcement Learning

With the online ”vanilla” SAC optimization procedure, several decades worth of real-world
training data would have to be collected to fully train an hourly price-setting controller
(Spangher et al., 2020b) in our Social Game. We seek to leverage a detailed simulation with
behaviorally reasonable dynamics encoded in a model that can train on both simulated and
experimental environments to accelerate this process. SAC is an off-policy algorithm, which
means that it can be trained on state transitions that did not originate from its policy. This
allows SAC to be used to train networks on offline datasets of previously collected samples.
Thus we propose pretraining SAC on an offline dataset of state transitions collected from our
Social Game simulations, in order to learn a warm-started neural network initialization that
can generalize to the experimental environment with few real world steps, decreasing data
cost. We will refer to this procedure as ”Offline-Online SAC”, as this SAC is first trained on
offline data before transitioning to online data.

3.2.3 Dataset Aggregation (DAggr)

Instead of the strict transition from offline to online training in Offline-Online SAC, we
explore interleaving offline and online training through a DAggr inspired weighting scheme.
For our ”offline” component in this variant, we explore the possibility of using a planning
model to accelerate training. This model is a neural network trained to predict the responses
of people to a proposed price, essentially a trained simulation of the rewards an agent would
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Figure 3.2: Vanilla RL price controller cost as training progresses, illustrating one vivid
example of the “data hunger” noted in RL (Jang et al., 2021c).

receive given a state and an action in the real world. We use this planning model as our
offline component here instead of the Social Game simulations from Section 2.3.3, because we
believe training on data from two completely different distributions at the same time would
not yield a model that learns efficiently for the real world task. We thus try to make our
offline data source as close as possible to the online data. However, with a limited number of
samples it is impossible to train a planning model F(s, a) : S ×A → R that exactly predicts
the reward from the real environment, so we are still faced with the issue of having a source
of training data that may not be aligned to the distribution of test data.

DAggr (Ross et al., 2011) is a meta-algorithm that helps solve the problem of distribution
shift between training and test data in imitation learning. In the original paper, DAggr was
used to solve the problem of training on one distribution (states reached by humans) and
testing on another (states reached by the RL agent). Inspired by this, we attempt to adapt
DAggr to bridge the gap between two distributions of training data: samples from the target
environment, and samples from our planning model.

In order to mix data from the planning model and target environment, we employ a
weighting strategy inspired by DAggr. We alternate training in the planning model and
target environment, exponentially decaying the ratio of planning model steps as training
continues. Our rationale is that our RL price controller should glean as much information as
possible from the planning model first, since sampling from the planning model has negligible
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cost compared to sampling steps from the target environment. Once the model has learned
enough from the planning model, steps from the target environment are slowly introduced
into the training dataset, ultimately producing a price controller that performs well on the
target environment with fewer steps. In this way, we dynamically weight the two data sources
for SAC for more efficient learning. For our experiments, we set the initial ratio of planning
steps to target environment steps as M = 10, and exponential decay parameter β = 0.99.
The algorithm for our data mixing procedure can be seen in Alg. 1. We refer to this training
procedure as “DAggr SAC” since it interleaves online real world and offline planning model
data to form an aggregated dataset for SAC to optimize the price controller. We will also
refer to “Offline-DAggr SAC”, which consists of employing DAggr SAC during Offline-0nline
SAC’s online portion. Though DAggr SAC does have an upfront data cost to train the
planning model, our results show that this algorithm does ultimately decrease data cost by
leveraging knowledge from the planning model.

Algorithm 1 Planning model F and target environment data mixing procedure

Initialize D ←− 0
Initialize πθ1 to any policy in

∏
for i = 1 to N do

Sample T -step trajectories using πi
for j = 1 to ⌊Mi⌋ do

Get dataset Dij = (s, πθi(s), rF(s, πθi(s))) of visited states and actions taken by πθi ,
and rewards given by the planning model.

end for
Get dataset Di0 = (s, πθi(s), r(s)) of visited states and actions taken by πi, and rewards

given by the target environment.
Aggregate datasets: D ←− D

⋃
Di0, Di1...DiM

Train policy πθi+1
on D

Let Mi+1 =Mi ∗ β
end for

To test our hypothesis that Offline-Online SAC will enable faster adaptation to unfamiliar
environments like a real-world Social Game, we pretrained SAC on several simpler models of
simulated person response. We then evaluated how quickly SAC (starting from the pretrained
weight initialization) can learn in an OfficeLearn environment with more complex models of
simulated person response. We use ”Curtail and Shift” office workers in place of real office
workers. We argue that the transition from ”Deterministic Function” workers to ”Curtail
and Shift” workers represents a similar step up in complexity as the transition from ”Curtail
and Shift” to workers in the real world. Training environments are instantiated by randomly
sampling ”Deterministic Function” response types and randomly sampling multipliers for how
many ”points” simulated humans received for reducing energy usage. The former sampling
distribution is binomial with equal parts, and the latter is uniform between 0 and 10. Though
the training environments used to train SAC had randomized parameters, the validation
environments (with ”Curtail and Shift” response types) were kept constant to ensure fairness.
To ensure an accurate representation of each network’s capabilities, we averaged the results
from 5 different test trials and report the mean and standard error for each test. SAC is
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trained with an ADAM optimizer with learning rate 3e-4, 0.9 β1, and 0.999 β2, where β1
refers to the first moment and β2 refers to the second. The offline dataset used to pretrain
SAC was generated with 256,000 steps from each ”Deterministic Function” type environment,
for a total of 768,000 state transitions, evenly distributed among the three ”Deterministic
Function” response models, with a variety of randomized parameters. Our intention was
to provide a wide, varied, and rich dataset of simplistic responses that would allow for our
Offline-Online SAC model to learn the dynamics of a Social Game without overfitting to
a specific model of human response to prices. Offline-Online SAC was pretrained on this
dataset for approximately 15 epochs with an ADAM optimizer with the same parameters as
above.

For the planning model used in DAggr SAC, we train a 4 layer neural network with
32 hidden units in each layer to predict people’s energy usage given the hourly prices of
energy for each day. The model is trained on 1000 randomly sampled state transitions from
OfficeLearn with the ’Curtail and Shift’ response type. The network was trained for 10,000
epochs with the ADAM optimizer with learning rate 0.001 and L2 regularization weight 0.001.
Over the 10,000 epochs, the model with the lowest loss on a holdout validation set of 256
randomly sampled transitions was used for the rest of the experiment.

3.2.3.1 Results

We will now describe the results obtained from our pretraining and data aggregation ap-
proaches.

Offline-Online SAC Fig. 3.3 compares the performance of Offline-Online SAC, DAggr
SAC, and Online SAC against our TOU and Flat Pricing baselines. In order to compare data
costs, we define data cost here as the number of days’ worth of data needed to train the price
controller to beat the TOU baseline since it is the baseline with lowest energy cost.

First, note that the costs for TOU and the RL controllers shown in the figure are inflated
by $10,000 to account for the annual cost of running the Social Game ($400 every two weeks
for a 250 day business year.) So, if the figure at one point shows that the RL controllers cost
$30,000 per year, $20,000 of it is the actual cost of the energy and $10,000 is for Social Game
incentives and logistics. This inflation does not occur for the Flat Pricing baseline since it
would not make sense to run the Social Game for a flat price signal. Also note that each step
in the simulated Social Game represents one day.

We observe that, for the first 4000 steps, Online SAC fails to beat the TOU and Flat
Pricing baselines; while it makes significant progress toward learning a good policy, the
learning speed is not enough to justify the cost of implementing it as a Social Game even with
over a decade’s worth of simulated training data. Our Offline-Online SAC, however, appears
to have already learned a slightly better policy than TOU during its pretraining, with an
effective data cost of 0 sampled steps. In contrast, Online SAC has a data cost of 8000 days
(32 years). In addition, the model converges to a price controller that appears to provide
over $7000 in energy savings per year, with just 1000 days worth of simulated training data.
The annual savings that Offline-Online SAC can provide clearly justify its implementation,
even with the additional cost of running the Social Game. The success of the Offline-Online
SAC model also suggests that, given a dataset of simplistic simulated models of human
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Figure 3.3: Offline-Online SAC and DAggr SAC Results. (Jang et al., 2021d)

Performance of Offline-Online SAC and DAggr SAC adapting to ”Curtail and Shift” in
comparison to Online SAC. We show the mean of 5 trials, with the standard error of the
mean shaded.

behaviour, our price-setting model can learn helpful aspects of the price-setting problem
that can warm-start it in a more complex environment. Our pretraining scheme appears
to prepare the controller for steps up in complexity similar to what we might encounter
transitioning from the simulation to the real world.

DAggr SAC The effect of DAggr SAC is less clear cut. We plot the cost of price controllers
with models trained by the planning model 1000 steps to the right, to account for the up-front
data cost of 1000 steps that must be collected to train the planning model in the first place.
We assume during this planning model training period that TOU pricing is used as it is
the cheapest baseline. As can be seen in Fig. 3.3, pretraining helps immensely in training
the Online price controller, reducing the data cost by a factor of 2 compared to the Online
controller without planning. On the other hand, the planning environment seems to slow
down the training of Offline-DAggr SAC, performing only marginally better than TOU for
the first 4000 days while Offline-Online SAC without the planning environment significantly
diverges from TOU after just a few hundred steps.
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Conclusion In conclusion, we found that vanilla offline training helped the performance of
the algorithm by a significant amount. We believe that DAggr was not as performant, as it
drew the agent away from local optima. Thus, we caution the reader to carefully consider
distribution shift in their work.

3.2.4 Surprise Minimizing Reinforcement Learning

3.2.4.1 Background

Some stability of control is desirable, for both human subjects and the agent. Incentivizing
the agent to minimize the surprise it experiences is equivalent to incentivizing it to minimize
peoples’ change in energy usage across days. This corresponds to adjusting people’s habits in
a stable system rather than forcing them to confront and attempt to understand an unstable
one. Additionally, people behave predictably on aggregate, and thus choosing to minimize
surprise may in fact make it easier for the agent to learn. In general, we define surprise
minimization to be the reduction of novel events experienced by the RL agent. In this context,
this equates to the RL controller experiencing stable energy demands by the office workers.

Surprise Minimizing Reinforcement Learning (SMiRL) is an algorithm that aims to reduce
the entropy of visited states. SMiRL is useful when the environment provides sufficient
unexpected and novel events for learning where the challenge for the agent is to maintain a
steady equilibrium state (Berseth et al., 2019).

SMiRL maintains a distribution Pπθ(s) about which states are likely under its current
policy. The agent then modifies its policy πθ so that it encounters states s with high Pθ(s),
as well as to seek out states that will change the model Pθ(s) so that future states are more
likely.

We make use of SMiRL as an auxiliary reward in addition to our usual reward to calculate
a combined reward rcombined = renergy+αrSMiRL. With a SMiRL weight α as a measure of how
much the SMiRL reward influences the total reward. We will describe the explicit formulation
of the SMiRL reward in Section 3.2.4.2.

3.2.4.2 Methods

Environment As a reminder to the reader, we are operating solely in the OfficeLearn
environment. Please refer to Section 2.3.3 for precise definitions.

SMiRL Reward Formulation A SMiRL agent receives an auxiliary reward for experi-
encing familiar states based on an updating distribution of states it has experienced. This
is exactly equivalent to learning a policy with the lowest entropy. Assuming we have a
fully-observed Controlled Markov Process (CMP) with state st and action at at time t, and
P (s0) as the initial state distribution, and transition probabilities P (st+1|st, at), the agent
learns a policy πϕ(a|s) parameterized by ϕ. As described earlier, we keep track of an estimated

state marginal P̂πθt−1
(st) for the actual state marginal P (st+1|st, at). As usual we denote
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entropy of a state st by H(st). The entropy can then be calculated by the marginal as

T∑
t=0

H (st) = −
T∑
t=0

Est∼P (st,at) [logP (st, at)] (3.1)

≤ −
T∑
t=0

Est∼P (st,at)

[
log P̂πθt−1

(st, at)
]

(3.2)

We bound Equation 3.1 by the entropy of an estimated marginal P̂πθt−1
in Equation 3.2.

Minimizing the right side bound is then equivalent to maximizing an RL objective with
reward rSMiRL(st) = log pθt−1(st) We note that the optimal policy must also consider future
changes to pθt−1(st), as the distribution of visited states changes at each step. To account
for the changing distribution of visited states, we use an augmented MDP that captures
this notion (Berseth et al., 2019). We note that in our implementation of SMiRL, pθt(s) is
normally distributed. To construct the augmented MDP we include sufficient statistics for
pθt(s) in the state space such as the paramaeters of our normal distribution and the number
of states seen so far.

SMiRL Implementation SMiRL is simply implemented in our existing OpenAI socialgame
environment. We introduce SMiRL into our existing Social Game environment by initializing
a buffer that tracks the agent’s observed states and computes an estimated state marginal pθt .
As noted earlier, in the augmented MDP the state space also contains the number of observed
states and this information is stored in the buffer as well. At each step in our simulation
we add newly observed states to our buffer, and update pθt . The agent then adjusts the its
policy based on the combined reward.

We note that since pθ(s) is modeled as an independent Gaussian for each dimension (hour)
in the observation (consumption for a day), then the SMiRL reward is expressed as

rSMiRL(st) = −
∑
i

(
log σi +

(si − µi)2

2σ2
i

)
(3.3)

where µi and σi are the sample mean and standard deviation from our state marginal and si
is the ith feature (ith hour of day) of s (Berseth et al., 2019). With this formulation we can
efficiently calculate the SMiRL reward from our buffer.

SMiRL as an Auxilary Reward We use SMiRL as an auxilary reward to provide faster
learning and more stable outputs. We achieve this by calculating the SMiRL reward rSMiRL

as described in the previous section, and applying a SMiRL weight α to it and then using the
sum with our usual energy reward renergy = log(e⃗⊺putil). This gives us a combined reward of

rcombined = renergy + αrSMiRL (3.4)

and it is this reward that we use to train the RL agent. In our simulations, we found the
optimal SMiRL weight α to be approximately α = 0.12 after hyperparameter tuning. We
will discuss the exact results of various SMiRL weights in Section 3.2.4.3.
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3.2.4.3 Results

We now discuss our two aims: more effective learning and a more stable environment.

Observing Lower Sample Entropy As the primary objective of a surprise minimization
technique is, in fact, to minimize surprise, it is natural to determine whether SMiRL does so.

We first quantify the degree to which the environment is more or less entropic when
under the influence of an agent employing SMiRL. Since we assume each variable in our
sample space is normally distributed in a given timeframe, we can compute its entropy as
H = 1

2
ln(2πeσ2). For each step, we compute the sample variance of the last 100 steps and

use this to compute a sample entropy, shown in Figure 3.4.
While both agents do reduce the sample entropy over time, the SMiRL + PPO agent

does so earlier than the baseline PPO agent. The SMiRL + PPO implementation exhibits
lower sample entropy for all iterations compared to baseline PPO, and hence energy usage
over the course of the simulation is more consistent when using SMiRL.

Additionally, the SMiRL + PPO agent converges towards a policy which generates a
more stable final environment than the baseline PPO agent. The SMiRL + PPO agent’s
behavior confirms our hypothesis that the stability of our environment is superior to our
baseline PPO agent by incentivizing the RL agent to revisit familiar states. We also note
that the both agents continue to explore changes to their policies after convergence, however
the SMiRL + PPO maintains a lower sample entropy in late timesteps. Hence, the SMiRL +
PPO agent explores in ways that maintain a more stable environment, while the PPO agent’s
exploration results in more unstable energy usage.

In this sense, the addition of the SMiRL reward can allow an agent to strike a balance
between exploration and stability.

3.2.4.4 Discussion: Improved Learning with SMiRL (Compared to Baseline
PPO)

While environment stability is important, it is essential that the agent still encourages efficient
energy usage. We also wish to understand whether the SMiRL reward models our assumption
of predictability in our system by improved learning speed.

Faster Learning and Consistent Outcomes We observe that our SMiRL + PPO
implementation induces significantly faster learning and convergence to an equally optimal
policy, with the same reward. As shown by Figure 3.4(a), both agents maintain similar
rewards up until step ∼ 30k, after which the SMiRL + PPO agent begins to achieve, on
average, a higher reward. The SMiRL + PPO implementation converges in roughly half
the time as the baseline PPO agent (step ∼ 50k v.s. step ∼ 110k). The reward in the
environment around step ∼ 60k whereas the PPO baseline does not converge to the maximum
reward in the environment until step ∼ 110k. Our results support the hypothesis that an
auxiliary SMiRL reward improves learning speed.

Note that we compare the energy rewards (renergy) here directly and not the combined
reward which includes the SMiRL reward and weight. This demonstrates the influence of
the SMiRL reward on the energy reward alone, which describes the overall effectiveness of
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Figure 3.4: A comparison between the PPO + SMiRL agent and the baseline PPO agents’
(a) rewards and (b) sample entropies over training steps. Shaded regions are one standard
deviation of observations binned to every 100 steps (Arnold et al., 2021a).

our agent. Hence the inclusion of the SMiRL reward results in improved learning speed of
our agent in the task it is given. Please see section 3.2.4.4 for a brief note on the seemingly
adverse behavior in the SMiRL+PPO.

Faster convergence is demonstrated by Figure 3.5, which shows energy consumption
throughout the day graphed at different training iterations (i.e., 10k, 40k, 80k, etc.) The grid
price signal the agent receives is graphed as a dotted line in Figure 3.5. We observe that,
for both the PPO and SMiRL + PPO agent, the agent ultimately learns a price signal that
effectively shifts people’s energy consumption away from hours when the grid price is higher.
By step 40k, the SMiRL + PPO agent has already begun to greatly reduce consumption
during peak, and people have shifted it towards just before that peak. By step 80k, the
SMiRL + PPO agent has completely diminished any energy usage during the peak pricing,
while the PPO agent only does so by step ∼ 120k (when its reward converges).

Optimal SMiRL Weights We note that while an appropriate SMiRL weight provides
significant improvement in learning speed and sample entropy, an inadequate SMiRL weight
can lead to poor learning that converges to a suboptimal result, and may not outperform a
baseline PPO.
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Figure 3.5: Energy consumption with the PPO and SMiRL + PPO agent at steps 10k, 40k,
80k, and 130k compared to the grid price (Arnold et al., 2021a).

Specifically, we found SMiRL weights of α = 0.25 and higher performed worse than
baseline PPO. In fact, we find that they converge to a suboptimal reward in the environment,
hinting that too much surprise minimization might hinder exploration.

For much lower SMiRL weights such as α = 0.01, we do not see any significant benefits
when compared to baseline PPO; there possibly isn’t enough weight on the SMiRL reward to
have a meaningful impact.

Sample Entropy and Environment Reward Curves When comparing the sample
entropy and reward curves in Figure 3.4 we see that beginning at steps ∼ 50k, the SMiRL +
PPO agent’s observed sample entropy drops significantly below that of the baseline PPO
agent. This correlates closely at ∼ 50k steps where the PPO + SMiRL implementation begins
to experience significantly greater rewards than baseline PPO. Thus, a noisier environment,
such as one which featured more house level wind turbines26, may have been benefitted
by SMiRL. Lastly, we observe that at ∼ 110k steps, both agents have observed a drop in
sample entropy, and their environment rewards converge. This correlation between entropy
and reward may support our hypothesis that aiming for a stable environment via surprise
minimization can help the agent learn faster.

26The author has a tattoo of a wind turbine near his neck. If the reader sees this footnote, they are
welcome to email and ask for a picture.
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3.2.5 Pretraining Methods Under Consideration

For the sake of brevity, we will not detail every experiment that we made towards reducing
dependence on in-environment training iterations. However, it is worth noting that you may
find two techniques of interest, both of which use a planning model: (1) extrinsic pre-training,
and (2) intrinsic pre-training. A planning model is a dynamics model of the environment; i.e.
one that is capable of estimating transitions: F(s, a) = st+1.

3.2.5.1 Extrinsic Pretraining

Background : The term pretraining is commonly used to refer to on-policy training in a
simulation environment, and in extrinsic learning, an RL agent’s reward explicitly encodes
some of the programmer’s desires. Extrinsic pretraining is thus the use of a planning model
as a direct training environment for an agent, carrying over the environmental reward to
guide the agent’s search. Simply, this would look like training the agent in the simulation for
M steps.

Method: In the following work, we will demonstrate the use of extrinsic pretraining in
OfficeLearn. Constructing a good planning model for human behavior in the office – and
specifically response to points – could provide a way for the algorithm to “imagine” the
world’s direct responses to its actions and explore more than it would otherwise. In our
framework, the agent would step once in the office (i.e. deliver an action vector to the world
and then observe the reward), and generate a vector of (state, action, next state, done) that
will contribute to a memory buffer specifically for office (“real world”) observations. Next,
stepping in the planning model space, the agent will deliver an action to the planning model,
which predicts energy consumption. This tuple gets added to a separate planning memory
buffer that the agent will train from. We experiment with:

• differing the batch size of buffer sampling

• whether the planning buffer has long term memory (never empties) or short term
memory (empties after every step in the environment)

• a variety of planning model types.

We present four different planning models. Each model is trained on a simulated dataset
of two months worth of energy.

• NN: Of various Automatic Machine Learning (AutoML) strategies, we present here the
top performing Gaussian Optimization using GPy (GPyOpt) LSTM search (Knudde
et al., 2017)

• Ordinary Least Squares (OLS): We fit an OLS on the training dataset.

• Oracle: for a theoretical upper bound, we provide a model that calls the same function
as the simulation would call. Thus, this model responds to the agent’s actions in the
same way the real world would.
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• Baseline: For a theoretical lower bound, we test a model that only returns zero when
queried. We hope that this model performs the worst.

Results: Comparison of Learning Curves. Here we compare the learning of agent with
planning and those without: a full learning curve over 10k+ iterations for TOU and RTP
regimes is shown in Figure 3.6, whereas performance over the first thirty days is shown in
figure 3.7. Figure 3.6 confirms our hypothesis that the planning models indeed help the agent
learn more quickly. On the left are the agents acting under a TOU price regime, and on
the right are the agents acting in a RTP price regime. In both regimes, the agent’s learning
appears to be dramatically aided by the presence of a planning model. In Figure 3.7 the
LSTM, labelled NN, generally outperforms the baseline model over the course of thirty days,
and overperforms the OLS almost entirely. The performance of the LSTM is most pronounced
when the batch size is lowest, implying that the lower the batch size, the more the agent’s
planning exploration is positively influenced by recent additions to buffer.

Figure 3.6: Comparison of the agents with and without planning (Spangher et al., 2020a).
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Figure 3.7: Effect of batch sizes in training when comparing the LSTM planning model to
the OLS planning model, in an RTP pricing regime (Spangher et al., 2020a).

Results: Comparison of Short-Term vs. Long-Term Buffer Memory .
Following from that finding, we found that short term memory, i.e., learning produced

when the memory buffer is emptied between every step in the environment, performed better
than long term memory, shown in Figure 3.8. The result makes sense when considering that
short term memory trains with examples that are more immediately relevant to the agent’s
next decision.

Figure 3.8: An exploration of the difference in memory buffer type. It is performed with the
OLS because this required much lower compute than the LSTM predictions (Spangher et al.,
2020a).

Discussion The results of this preliminary stop in our work are somewhat promising: we
see that the machinery of the RL environment is working, and that planning models seem
to have a generaly positive effect. While the OLS eventually helps the agent in lengthier
training, it seems to hurt the RL agent’s initial performance relative to the LSTM. From
this, we assume that the planning model needs to be quite accurate in order to add to the
simulation initially, but that when more iterations are possible, merely having a planning
model present helps with training.
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3.2.5.2 Intrinsic Pretraining

Background on Intrinsic Pretraining In contrast to extrinsic rewards, intrinsic rewards
are ones which do not directly encode a programmer’s desires. These include rewards such
as ones that directly measure an agents’ uncertainty in value prediction state by state. By
pretraining with intrinsic rewards and then switching to extrinsic rewards in pretraining,
researchers have shown that agents may be incentivized to explore states spaces and actions
that they may not have explored if they were just optimizing for the same extrinsic reward.
In a sense, cycling from intrinsic pretraining to extrinsic pretraining should lead to more
well-rounded agents.

We believe that intrinsic motivation relies to heavily on the quality of the planning model.
We also suspect that other methods guarantee some breadth of exploration in extrinsic
motivation (i.e. SAC has a randomness parameter that rewards it for choosing an array of
different actions) so encouraging exploration of uncertainty may already be built into state
of the art methods. However, given that testing intrinsic motivation simply cycles out a
different reward when a planning model is used, it is not difficult to implement.

We will now explain a brief series of experiments that we conducted to explore intrinsic
motivation.

Experimental Methods To set up our experiments, we tested intrinsic motivation methods
with three strategies: unsupervised exploration, unsupervised exploration, then RL, and RL
with a so-called “curiosity” bonusXXVI. In order to capture uncertainty, we first created an
planning model mathcalF for our situation: an ensemble of twenty-four neural networks
trained on data saved from a former run of the OfficeLearn simulation. The neural ensemble
maps controller prices p⃗RL, t to baseline energy behavior b⃗t, and so as such is not a traditional
transition model, i.e. f(st) = st+1; part of our methods inquiry rests on a question too of
whether this partial planning model is useful. We chose an ensemble of networks because
of their distributional nature, and so we directly define six different intrinsic rewards that
capture some aspect of uncertainty:

• Mean of standard deviation of estimates: The neural ensemble’s twenty-four
estimates can be summarized as a Gaussian distribution for hour of the day, i.e.
n(pRL,1) = N(µpRL,1

, σpRL,1
). We take the distribution of standard deviations and return

the mean as the reward itself; i.e. σp⃗RL
, the average spread in planning model estimate

for that hour. We notice that this reward function behaves relatively well – the reward
tends to converge after 400-500 steps.

• Max of the std of estimates: We return the max of the distribution of estimates; i.e.
the direction along which the distributions produce the highest uncertainty. We notice
that this reward function behaves poorly; it tends to get stuck on a single estimate.

• L2 norm of the standard deviation of estimates: We return the L2 norm of the
standard deviation of estimates, i.e. ||

∑H
i=0 σ

2
i ||2 and we see that this behaves very

well, tending monotincally upwards in a concave manner.

• Intrinsic + Extrinsic Rewards: We return the mean of the standard deviation of
estimates as an auxiliary reward to the extrinsic reward.
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Figure 3.9: Baseline agent (red) compared to the L2 std norm (green) and Max std (blue).
Un-published work.

• Active Pre-Training (APT): The final method to add intrinsic motivation that we
tested was APT. This consisted of the following strategy:

run model 10x
take reward (1 ) 10 t imes
adding un i f (− .01 , . 0 1 ) f o r each hour ’ s ac t i on

average these

Results: Best performing Intrinsic Methods vs. Baseline PPO : Please see Figure
3.9 for a reward plot for baseline PPO on our environment. From the results, it is apparent
that most methods perform similarly to the baseline. One reason why this can be the case is
that the exploration phase has not caused a diverse behavior to be learned. Another reason
intrinsic motivation performs similarly to baseline is that the intrinsic motivation signal may
be too weak for the agent to learn useful exploratory behavior.
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3.3 Robustness and Safety

In many (but not all) real world cases, it may be very costly for an RL controller to make a
mistake. For example, a self-driving car may crash, a power system controller may overload
a transformer, or a Social Game controller may cause a worker to lose interest in the Game
after the controller proposes some difficult prices.

Safety-critical cases pose a special challenge to RL as they eliminate the benefit of implicit
understanding that an agent may bring to the situation after unfettered exploration. A
first-cut solution may be that the programmer explicitly restricts actions or sequences of
actions so that the agent does not reach dangerous parts of the state space. At best, this
explicit action space pruning may force the agent into a local optimum as it converges to
suboptimality in its reduced space. Worse, it may be difficult to actually determine ahead of
time which sequence of actions may be dangerous, which may mean that the RL agent may
still act unsafely despite certain action curtailment. Thus, it may be important to allow the
agent some form of exploration despite safety concerns.

For safety-critical applications, we recommend pairing RL agent with a planning model
of the environment. These may be used for the techniques previously noted: extrinsic and
intrinsic pretraining, both of which help agents reap the benefits of exploration during training
“for free” with respect to real-world training costs. However, simply using a heuristic in
pretraining, such as forcing the model to step one time in the real world and 10 times in the
planning model, does not directly guarantee that the actions emitted to the real world are
safe. If safety is the goal, planning models may be used in more targeted ways.

We present a methodological innovation we call guardrails as our best recommendation of
how to use a planning model to. Our guardrails technique: (1) weeds out unsafe actions, (2)
decides when to explore or not, (3) allows the agent to learn from both a planning model and
the real world. We are the first to propose the method, and we believe that it can be helpful
in combining the insight of a planning model with optimal control. The main methodological
contribution of the guardrails method is that it intelligently decides when to safely propagate
an action into the world and helps the agent continue to “explore” when it is not safe.

3.3.1 Planning Guardrails for Risk-Aware Reinforcement
Learning

3.3.1.1 Background

Notions of incorporating risk into action selection have been considered in RL. For instance,
(Prashanth et al., 2022) review work that accounts for a risk-sensitive objective function,
such as a conditional value at risk. Similarly, the explicit management of risk arising from
unknown consumer behavior in online learning is also fairly recent (Chen et al., 2020). In
our work, we consider the risk of the RL agent’s price leading to higher energy cost than the
baseline energy cost that would result from the passing on of a readily available TOU price
signal. Our use of guardrails provides a new mechanism for managing the risk of posting
poor prices in the real world that does not involve directly modifying the RL objective to be
risk sensitive, which has the benefit of allowing us to continue to leverage established RL
algorithms such as SAC.



CHAPTER 3. IMPLEMENTING REINFORCEMENT LEARNING 64

Planning models are one way in which risk consideration is implemented. Methodologically,
planning models used as surrogate environments for agents to train in has existed as a concept
for a while (Sutton, 1991a), but creative ways in which they can be used are just now beginning
to emerge. For example, planning models have gotten attention in complex domains like
autonomous driving (Hoel et al., 2019) and robotic manipulation (Wang et al., 2019a) by
providing alternate environments for agents to learn in. Only recently have fields emerged like
“curiosity” driven learning, which make use of a planning model for uncertainty quantification
(Frank et al., 2014). For example, (Lakshminarayanan et al., 2017) employ a neural network
ensemble to quantify uncertainty, and (Kidambi et al., 2020) use a planning model that uses
this uncertainty quantification method to minimize the risk of training an RL agent where
the model is uncertain. To the best of our knowledge, the guardrails approach of using an
ensemble planning model for detecting a risky action and rejecting its use in the real world
is new. By employing guardrails to switch between real and planning steps, we can: (1)
significantly reduce overall real-world data collection, (2) minimize the cost of the real-world
data that is collected, and (3) achieve greater final reward.

3.3.1.2 Methods

We base the following work in the OfficeLearn environment.

Planning Model Creation We assume the availability of limited offline data, possibly
from applying demand response at a secondary building. We train a planning model that
transforms a price signal to a predicted energy consumption of the N workers using this
offline data. In the context of the RL problem, the planning model can be used to estimate
the reward associated with an action. We implement our planning model as an ensemble of
neural networks, because neural networks are expressive at representing nonlinear functions
(Goodfellow et al., 2016) but known to have high variance. We therefore consider an
ensemble of J neural networks. The planning model represented by the j-th neural network
is ENN

j (pRL,t), which again predicts the energy consumption of the U workers. We will use
ENN
j,i (pRL,t) to denote the hourly energy consumption vector of worker i. Then, the energy

cost for the j-th NN’s energy consumption prediction is:

cNN
j (pRL,t) :=

N∑
i=1

p⊺tE
NN
j,i (pRL,t) (3.5)

The consumption response of this ensemble planning model is the energy consumption di
of each worker i across the N neural networks, i.e.:

di = (1/N)
N∑
i=1

ENN
j,i (pRL,t) (3.6)

The expected energy cost associated with this mean consumption is:

ENN[c(pRL,t)] := (1/N)
J∑
j=1

U∑
i=1

p⊺tE
NN
j,i (pRL,t) (3.7)
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We will refer to Equation 3.7 henceforth as mean predicted cost. This can easily be
converted to an estimate of the reward since we defined rt as:

rt := − log [c(pRL,t)] (3.8)

Guardrails Method Since some prices pRL,t could be more expensive to actually try in
the real world than the readily available TOU price, can we use our planning model to
estimate which prices are at “risk” to be worse than the TOU price and filter them out before
they are sent to the real world? Here we will describe how to implement “guardrails” that
use the planning model to identify prices that could result in high energy costs and query
the planning model with these prices instead of the real world. Let W(at) be an indicator
function expressing whether action at is accepted in the real world, and PW(pRL,t) ∈ [0, 1]
denote the probability of posting a price pRL,t to the real world to obtain a real energy cost
and 1− PW(pRL,t) be the probability of posting this price to the planning model to obtain
predicted energy cost. Figure 3.10 is a schematic of our approach. Model-free RL corresponds
to PW(pRL,t) ≡ 1. The idea of guardrails is to define PW(pRL,t) such that prices that result in
high energy costs are unlikely to be posted in the real world. We define guardrails relative to
the baseline energy cost associated with sending the TOU price signal to the workers. We
denote this TOU cost by cTOU. Let 1[·] represent an indicator function that evaluates to 1 if
its argument is true and to 0 otherwise. The guardrail definition we will highlight here is
the Quantile approach. At a high level, we compute N estimates of the expected cost of our
price signal with a total of N neural networks in our planning model ensemble, and only send
the price signal to the real world if a certain number of the N estimates agree the estimated
cost is low enough.

Quantileα : PW(pRL,t) = 1[n(pRL,t) < αN ]

Here, α belongs in the interval [0, 1] and n(pRL,t) is the number of neural networks in
the ensemble with predicted cost cNN

j (pRL,t) greater than the TOU cost cTOU. To illustrate,
suppose that α is 0.5. Then a price pt is passed on to the real world only if 50% of the
ensemble’s N NNs predict a cost for this price that is less than cTOU. We refer to this strategy
as “Quantile” because it checks if the αth quantile of the predicted costs is less than cTOU.
As α increases it is less likely that a price will be played in the real world.

Other rules we considered are defined in Supplementary Material in Section A.2.1. The
efficacy of a guardrail depends on at least two factors: (1) the quality of its assessment that a
price would have higher cost than the TOU price signal, and (2) if there is useful information
in the planning model feedback to guide policy learning when such risky prices are posted.

Please see algorithm 2 detailing the algorithm. Also, please see figure 3.10 for a schematic
of how the process would work.

Summary These components together represent a risk-aware deep RL approach for price
setting. When used in conjunction with SAC, we refer to the resulting methodology as
Risk-Aware Soft Actor Critic (RA-SAC). To sum up the flow of information (illustrated in
Figure 3.10), the SAC RL agent first proposes a price vector, which is sent to the planning
model to test for risk. Our “guardrail” method takes in the output of the planning model
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Algorithm 2 Risk-Aware Soft Actor Critic (RA-SAC)

Input:
πψ : st → at Policy with parameters ψ.
F : (st, at)→ Et Planning model, here a NN ensemble, predicting env response Et,
G : F(at)→ PW(at) Guardrail rule giving probably of action being sent to World.
W : (st, at)→ Et “Real world”; i.e. the true response function to Et.
W: Indicator if at is accepted in the world.
Output:
πψ : Fully trained policy.
D : Dataset of (st, at, st+1, rt) tuples
for t ∈ 1, . . . , T do

Observe state st and select action at ∼ πψ(·|st)
Predict ENN(at) according to each NN ∈ F , i.e., (ENN

1 (at), E
NN
2 (at), ..., E

NN
N (at))

Resolve PW(at) according to G
Sample W ∼ B [PW(at)]
if W = 1 then ▷ Evaluate action at in the real world

Compute Et ← W (at). Derive (st+1, rt) from Et.
Store (st, at, st+1, rt) ∈ D

else if W = 0 then ▷ Evaluate action pRL, t in the planning model
Compute Et ← F(at). Derive (st+1, rt) from Et.
Store (st, at, st+1, rt) ∈ D

end if
if it is time to update then:

Perform a SAC training update on ψ as per (Haarnoja et al., 2018) with D
end if

end for

and determines whether the price vector is low or high risk. If it is low risk, we post the
price vector to the “real” environment, where we collect a reward by observing the energy
consumption of office workers in response to the price vector. If it is high risk, the reward is
instead calculated from the planning model, and the price vector is never posted to the real
environment. For pseudocode summarizing our approach, please see Algorithm 2.

3.3.1.3 Results

We compare RA-SAC with model-free and model-based benchmarks in simulation. The setup
of our experiments is described in Section 3.3.2. Results and insights are discussed in sections
3.3.2 and 3.3.2, respectively.

3.3.2 Experimental Setup

In order to evaluate our approaches to guiding RL price controller training, we simulate a
social game composed of 500 office workers. These simulated workers will compete for points
in the social game by shifting their energy consumption behavior. We assume a homogeneous
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RL Agent

Real World

Planning
Model

P (W |at)

1− P (W |at)

at ∼ πψState (st)

Use energy cost to update ψ

Decision

Figure 3.10: A ball-and-stick schematic detailing the flow of information and decisions in the
RL with guardrails approach.

environment where each worker exhibits a Curtail and Shift response as discussed in Section
2.3.3. We assume a 250 day work year, a 5 day work week, and a 10 hour work day.

We setup the three components of RA-SAC as follows:
(i)Model-free RL. We use an out of the box implementation of SAC from RLLib with

standard hyperparameter tuning. We chose the state space to include only the TOU grid
prices XXVII. We replaced the cost function c(st, pRL,t) by

log

[∑
i

p⊺util,tdi

]
+ λ ∗ 1

[∑
i

di >

∑
i bi
2

]
. (3.9)

We use the logarithm of the energy cost as RL tends to learn with more stability when the
reward signal is closer to zero. Experiments without this logarithmic term did not perform

as well. In equation 3.9, the term λ ∗ 1
[∑

i di >
∑

i bi
2

]
acts as a regularizer to encourage the

controller not to reduce energy uniformly across the boardXXVIII. In practice, we set λ to 10.
(ii) Planning Model. We use an ensemble of 20 fully connected networks, each with 5

hidden layers and 64 units in each hidden layer, batch normalized, with ReLU activations.
Each network was randomly initialized, and the output of the ensemble is just the average
of the outputs of all the networks. We train the planning model using an offline data set
generated by sampling energy prices from a log normal distribution and then feeding them to
the Curtail and Shift model to obtain energy consumption response data.

(iii) Guardrails. We considered the guardrails discussed in Section 3.3.1.2.
We use static grid prices from the PG&E Spring quarter for each simulation. We assume

the energy consumption of our building is not large enough to impact the outside grid’s
energy prices.
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We assume that the RL agents are trained using the building manager’s personal computer.
This is reasonable since it takes an entire day to collect one training sample of data, and data
is not collected during the night. The computational time of training the agent is negligible
compared to data collection time. No experiment described in this paper took longer than
1.5 hours on an Nvidia GTX 3060 and Intel i7-11700k, of which much of the overhead was
CPU-bound environment simulation.

Value of TOU Pricing The cost of running the social game infrastructure as described
above for an office of 500 workers is approximately $40 per day (see 3.3.2). Our simulated
“Curtail and Shift” people use about $120 per day on energy without any social game (and
its incentives), and $75 per day with TOU pricing. Since using the TOU pricing requires
the incentive to be in place, the total cost of TOU pricing is $115 USD. Thus, there is an
effective $5 per day savings with TOU, which yields a return of $1250 over 1 year and $2500
over two years. We will compare our RL pricing strategy against this baseline. This finding
suggests that the building demand response Social Game adds value even without an RL
agent by incentivizing workers to adjust their consumption based on the TOU price signal.
Moreover, there is no deployment cost related to data since the TOU price signal is readily
available. Nevertheless, the savings of $5 , which is a 4% reduction over the daily energy cost
under a flat price, is likely insufficient incentive for the building manager to administer the
social game. This motivates the exploration of an RL pricing agent.

Value of RL Based Pricing We investigate the design of an RL pricing agent that would
increase the value of the social game, and if such an agent would provide sufficient incentive
for a building manager to adopt a social game based building demand response program.

Model-Free SAC We begin by assessing the energy cost savings of an off-the-shelf and
state-of-the-art SAC RL agent is deployed, henceforth model-free SAC.

We use the SAC implementation from Reinforcement Learning Library (RLLib) (Liang
et al., 2018) with RLLib’s default neural network architectures, batch size of 256, a learning
rate of 0.0001, and starting learning immediately. These parameters were used for every
experiment we report for the SAC price controller. Since we use a stochastic price controller,
we run each of our experiments 5 times and report the standard deviation as error bands.

Model-Based SAC Since learning from the real world is costly, we evaluate a SAC agent,
henceforth model-based SAC, that posts prices to and learns from only the neural network
ensemble planning model (see Section 3.3.2). This model is trained using an offline dataset
of 500 days’ worth of data. The model-based SAC agent is evaluated on the real world
environment for 256 days. This model-based SAC was only able to achieve an average cost
of $114 per day (including the $40 per day in incentives). This is approximately the same
performance as the $115 cost of TOU pricing.

Model-based SAC can be seen as substituting costly real world data with “free” data
from the planning model. This helps reduce deployment costs substantially compared to
model-free SAC. However, this fully supervised SAC adds essentially zero value relative to a
TOU pricing signal, which is discouraging. Practically, we are back in square one, that is,
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when using either a TOU pricing signal (see section 3.3.2) or a model-based SAC agent, there
isn’t sufficient value for the building manager to administer a demand response social game.
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Figure 3.11: RL price controller with neural network ensemble guardrails (with a “hard”
trigger) as training progresses (Jang et al., 2022a).

Risk-Aware Soft Actor Critic (RA-SAC) We begin by discussing RA-SAC with a
Quantileα=50% guardrail based on an ensemble of neural networks (see Section 3.3.1.2). This
is arguably the simplest specification of RA-SAC. Figure 3.11 shows that this specification of
RA-SAC with a planning model trained using just 1000 steps of data is enough to provide
substantial savings over model-free SAC. In particular, it beats TOU in 1200 days compared
to model-free SAC, which takes 10,000. This is an 8x speedup in learning, which translates
to $127,000 in savings in initial deployment cost ($48,000) compared to model-free SAC
($175,000). Put differently, it would take 93 days for a fully trained RA-SAC to recoup
deployment costs instead of about 18 years taken by model-free SAC. The total energy cost
after 5 years would still be $14,000 more than TOU, but this is a substantial improvement
over the model-free SAC which is worse by $37,500.

Figure 3.12.A compares the performance of RA-SAC with different guardrail strategies
using neural network ensemble planning models. Most guardrails, defined in the endotesXXIX,
appear to have similar performance, except for the quantile based guardrails of section 3.3.1.2.
This is likely because the other guardrails are similar in that they let all actions with predicted
cost (the mean of the ensemble’s predictions) lower than ctou into the real world and gradually
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Figure 3.12: The costs of RA-SAC with neural network ensemble planning models trained on
1000 steps of training data, with different guardrail strategies (Jang et al., 2022a).

increase the probability of switching to the planning model as the predicted cost increases.
On the other hand, quantile guardrails with lower α are much more conservative; all 20 neural
networks in the ensemble predicting lower cost than ctou is less likely than their mean doing
so.

Notably, RA-SAC with a Quantileα=5% guardrail can substantially reduce the amount
of early mistakes even over the RA-SAC with a hard guardrail (hard is equivalent to
Quantileα=50%). The initial deployment cost is cut to less than $200 with a neural ensemble
trained using 1000 samples, a reduction of 99.89% compared to the initial deployment cost of
model-free SAC. Further, this version of RA-SAC appears to have identified a pricing strategy
that is more effective than model-free SAC, costing $24,000 per year instead of $25,000. This
represents an annual return of $5,500 compared to Flat pricing and $4250 compared to TOU.
The building manager would only take 17 days to recoup initial deployment cost compared to
93 days when using a trained RA-SAC with hard guardrails. After 5 years, one would expect
to see a return of $45,500 more than TOU in energy savings. RA-SAC with a quantile
guardrail provides significant value over Flat and TOU pricing signals quickly: a tempting
incentive for building managers to implement social-game based demand response in their
own buildings.
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3.3.2.1 Conclusion

In sum, we have seen startlingly good performance gains based on how we propose to use
the planning model. Thus, we recommend further study and use of this technique across the
literature.
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3.4 Finding Global Optimality and Transferring it

from Simulation

3.4.1 Introduction to the Problem

Oftentimes, an RL agent may have found an near-global optimum in simulation that is very
local in reality due to the variety of stochastic factors in the world.

We recommend methods on the environment-side to address this issue. The first option
we propose is the use of meta-RL in domain randomization. We will demonstrate this inside
OfficeLearn (please see Section 2.3.3.)

3.4.2 Meta RL with Domain Randomization

3.4.2.1 Background

Model Agnostic Meta-Learning (MAML) Model Agnostic Meta-Learning (MAML)
((Finn et al., 2017a)) is a meta-learning algorithm that seeks to learn a NN weight initialization
θ that allows for fast adaptation to different types of tasks. We first define a task as a transition
distribution P (st+1|st, at) and a reward function ri. MAML can be implemented over any
model. In the RL variant, given a set of tasks T and a distribution of those tasks P (T )
MAML seeks to find an initialization θ that can achieve as high a reward as possible after K
gradient update steps in any task. To maximize reward after K updates, MAML optimizes a
policy network, πϕ for K gradient update steps starting from the learned initialization θ and
computes the following meta loss:

Lηi(πθ) = −Est,at∼πϕ,Pηi (st+1|st,at)[
K∑
t=1

Ri(st, at)] (3.10)

MAML then optimizes θ by gradient descent on the sum of the meta-losses over all tasks,
computing parameters θ that produce good results after just K update steps. Training
MAML on PPO in a task distribution can be described as consisting of an inner adaptation
step per task and an outer, meta adaptation step between tasks. In the inner step, PPO is
trained on a task ηi, randomly chosen according to P (T ); i.e. η ∼ T for K PPO update steps,
starting from the weight initialization MAML is optimizing. In the outer step, the weight
initialization is updated according to the training trajectories of PPO that were collected in
the inner adaptation steps. These outer and inner adaptation steps are alternated to compute
the weight initialization that produces the highest reward after PPO is trained for K steps
on a task from the task distribution η. We observe in this paper the performance of a trained
MAML+PPO weight initialization on several test tasks that are outside of the training task
distribution T but are still within our simulated Social Game setting.

We hypothesize that MAML applied to a PPO agent learning over different hyperparameter
initializations of OfficeLearn will be able to warm-start the agent for better adaptation to
new environments. We adapt MAML to the problem of optimizing a price-setting agent in
OfficeLearn.
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3.4.2.2 Methods

To test our hypothesis that MAML + PPO will enable faster adaptation to unfamiliar
environments like a real-world Social Game, we trained MAML on several models of simulated
person response. We then evaluated how quickly PPO, starting from the MAML weight
initialization, can learn in an OfficeLearn environment with different models of simulated
person response.

The training environments had randomized “Deterministic Function” response types
and multipliers for how many “points” simulated humans received for reducing energy
usage. Though the training environments used to train MAML had randomized parameters,
the validation environments were kept constant to ensure fairness. To ensure an accurate
representation of each network’s capabilities, we averaged the results from 5 different test
trials and report the mean and standard error for each test. MAML is trained with an ADAM
optimizer with learning rate 0.0001, 0.9 β1, and 0.999 β2, where β1 refers to the first moment
and β2 refers to the second. MAML sampled approximately eight PPO training trajectories
in (parallel) training environments at a time between (sequential) meta-update steps. We
trained PPO for 5 steps at a time in MAML’s inner adaptation phase and trained MAML
once per trajectory sampling. We trained MAML for up to 200 iterations. For evaluation, we
trained PPO for 100 steps from the MAML-learned weight initialization and from a random
initialization and compared the two. PPO (in both MAML+PPO and PPO) is trained with
the clipped surrogate loss with a clipping parameter of 0.3 and a Stochastic Gradient Descent
(SGD) optimizer with learning rate 0.01. The action and value estimators shared layers in
the neural network for our implementation, and the value loss had a weighting of 0.5. We
present three different experiments:

Adaptation to “Curtail and Shift” Response We train MAML on a distribution
of environments with three simple models of human response to price, i.e. the three “De-
terministic Functions”, and see if it can adapt to a more complex model that we believe
may be more representative of real-world behavior, i.e. “Curtail and Shift” function. Here,
testing was done over 5 different test trials “Curtail and Shift” with different hyperparameter
instantiations. Please see Figure 3.13 for a depiction of the experiments.

Adaptation to Threshold Exponential Response In this experiment, we train MAML
on a distribution of environments with two different models of human response to price instead
of three: “Deterministic Function” with linear or sinusoidal responses. Each variant environ-
ment, along with other parameters, is created by sampling environment hyperparameters at
random within training task parameter distributions. We test this trained model’s ability to
adapt to an environment with a different model of human response: “Deterministic Function”
Person with threshold exponential response, with all 5 validation runs of MAML+PPO and
PPO.

MAML Training Behavior We observe the performance of MAML + PPO in the
Adaptation to Curtail and Shift Response task after different numbers of MAML training
iterations. When training MAML, we saved checkpoints of the meta-optimized weight



CHAPTER 3. IMPLEMENTING REINFORCEMENT LEARNING 74

Figure 3.13: Setup of testing frameworks to simulate steps up in complexity.

initialization at 50, 100, 150, and 200 MAML iterations and observed the performance of
PPO starting from each of those warm starts.

3.4.2.3 Results

We will now describe the results obtained from using MAML.

MAML Results (Compared to Baseline) As can be seen in Fig. 3.14.A and B, MAML
+ PPO significantly outperforms baseline PPO from the start to the finish of training. In
both adaptation experiments, MAML+PPO converges to a solution with higher reward, and
thus lower simulated energy cost than PPO. Note that PPO appears to have plateaued with
constant reward. MAML decreases total energy cost by about 40% in both environments
compared to PPO by the end of training on average. It takes fewer than two PPO steps
worth of training data for MAML+PPO to outperform PPO after training for 100 steps,
which suggests that the use of MAML with PPO to warm start learning from our simulation
was successful. Using MAML allowed us to find a weight initialization that generalized to
more complex tasks, thus decreasing the amount of data necessary to train the controller.
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Figure 3.14: MAML+PPO Results (Jang et al., 2021a).

(Above) Performance of MAML+PPO in training on “Deterministic Function”, and adapting
to a more complex model, “Curtail and Shift” in comparison to PPO. (Below) Performance
of MAML+PPO in a lateral shift in complexity, i.e. adapting to a different model of human
behavior, “Deterministic Threshold Exponential” in comparison to PPO.
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Figure 3.15: MAML Reward vs Update Steps (Jang et al., 2021a).

Performance of MAML+PPO on “Curtail and Shift” task after different number of iterations
of MAML in simulation.

As we are interested in both the reward achieved by each algorithm and how quickly
the reward is achieved, we chose to plot the training graphs of the validation runs of each
checkpoint in Fig. 3.15 instead of simply plotting the total reward of each validation run. We
observe that performance appears to increase with number of MAML training steps up until
200 iterations, where MAML appears to have overfit to a local minimum. Training MAML
for too few steps, for example only 50 iterations, appears to increase instability in the PPO
training on the MAML weight initialization.

3.4.2.4 Discussion and Conclusion

Meta-learning and K-shot learning are fields of machine learning focused on applying knowl-
edge obtained from one domain to another. This makes techniques like MAML especially
helpful in taking advantage of simulations, where data is plentiful, to increase performance in
the real world, where data is costly. Whereas other RL tasks like robotic grasping can use
highly accurate physics simulations to train a model and successfully employ the same model
to real world equivalent tasks, the human response to changes in electricity price is not as well
studied as physics. The models of human behavior we employ in simulations are simplistic
and likely inaccurate with regard to real human behaviour. However, the novelty of our
experiment is in showing how MAML might be applied to transfer knowledge acquired from
training in simulation to accelerating adaptation in the real world, by demonstrating that
MAML allows fast adaptation to different models of human responses to energy price. From
our results, we are hopeful that MAML+PPO can be applied in our real world price controller.
By training MAML+PPO in an environment different from the test environment, we were
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able to affirm that the technique can be used to adapt training in simulation to a different
task in simulation. The jump in complexity between the ”Deterministic Function” response
the model was trained on and the ”Curtail and Shift” response shows that MAML+PPO
can be used to adapt to tasks that are outside of its training task distribution and are more
complex. We believe that this ability for MAML to close gaps in complexity has a high
probability of enabling a MAML optimized model to work as a real world RL price controller.

3.4.3 Environment Search

We conclude our discussion of Meta RL under domain randomization with a proposition:
if simply randomizing the parameters behind automatic environment selection provided a
gain in performance, can intelligently selecting the parameters for successive environments
do even better?

We believe the question warrants further merit, and we believe that we are the first to
propose using environment auto-curricula techniques to prepare the agent for sim-to-real
transfer. We will discuss this idea further in Future Work.



CHAPTER 3. IMPLEMENTING REINFORCEMENT LEARNING 78

3.5 Adversarial Attacks

Energy grids are known to be lucrative targets for cyberattacks (e.g., (Kshetri and Voas,
2017)). Our work investigates the robustness of an AI-based microgrid controller to malicious
actors. We present a novel attack that enables a few compromised microgrid controllers to
adversely affect the behavior of connected controllers by poisoning the data on which it is
trained. Our adversarial work expands on a recent explosion of interest in adversarial attacks
(Madry et al., 2018; Rakhsha et al., 2021; Goodfellow et al., 2014). We pair our attack with
a gradient-based defense that eliminates the threat of our attack.

More concretely, we examine MicrogridLearn: a setting in which a network of microgrid
controllers collect supply and demand data that are continually aggregated by a central agent.
The agent uses RL to optimize its profits. In our attack, a few microgrid controllers are
compromised by a malicious adversary. The adversary applies a perturbation to the collected
data, severely impacting the provider and the entire network of controllers. The provider is
made to operate at a loss, and all prosumers are made to pay higher energy costs, use their
batteries less, and violate more transformer power constraints.

Our work is set against a backdrop of developments in energy grid control that hold both
promise and peril: RL-based controllers allow for sophisticated control in unprecedented
granularity. Yet, we must be careful to minimize risk enabled by the opaque nature of deep
learning. Our attack stands out in its subtlety and its scope. Other forms of large-scale
interference such as blackouts and line disruptions are, by definition, easily detectable and
local. Yet our attack causes harm by interfering with the agent’s learning, and may not be
detected until significant financial damage has been incurred. Furthermore, by interfering
with the central agent’s learning, our methods can damage systems that are physically
disconnected from the energy grid under attack.

Outline In Section 3.5.1 we briefly contextualize our work within RL and energy controls.
In Section 3.5.2 we describe the threat model, attack, and defense. In Section 3.5.2.4 we
introduce our experimental setup, which is used in Section 3.5.2.5 to evaluate the efficacy of
our attack and defense in an energy grid environment. Finally, in Section 5.2.6 we discuss
limitations and future work.

3.5.1 Background: Adversarial Attacks on RL for Prosumer
Energy Pricing

The literature on adversarial attacks for RL in demand response focuses on responding to
prices (Wan et al., 2021) rather than setting them. To our knowledge, there are no works on
adversarial attacks on dynamic price setting for demand response.

3.5.2 A Novel Adversarial Attack and a Defense Against It

3.5.2.1 Threat Model

In our setting, N controllers continuously collect data to be aggregated by a centralized agent.
Learning takes place over multiple iterations; in each iteration, each controller collects a
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trajectory τ ∼= (si, ai, ri)i collected according to the agent policy πθ. The agent’s policy πθ
is described by a neural network. Nodes are required to feed observations through πθ so as to
collect policy-specified actions (pricing schemes), so we assume that the network parameters
θ and architecture are shared with the controllers.

The attacker’s power is determined by a fraction of corrupted controllers ε ∈ (0, 1), and a
perturbation bound ρ > 0, as follows: An attacker controls ε ·N of controllers. The attacker
perturbs the trajectories collected by each compromised controller, causing it to report back a
trajectory τ̃ instead of the collected trajectory τ . Crucially, these perturbations are of small
norm, that is,

∥τ̃ − τ∥∞ ≤ ρ

for some perturbation bound ρ > 0. Note that our attacker adheres to the suggested policy
πθ, but lies about the result to the agent.

Remark 1 In our setting, the attacker may only perturb the actions of each trajectory.
Observations and rewards remain unperturbed, because such perturbations would be expensive
or easily noticed. This is in contrast to previous work in RL poisoning in which only rewards
are poisoned (Rakhsha et al., 2021).

3.5.2.2 The Attack

At a high level, our attack aims to perturb each trajectory to reverse the direction of
the estimated gradient ∇θf(θ). Let θ be the parameters of the agent’s policy, τι be the
unperturbed set of compromised trajectories (the trajectories collected by compromised
controllers), τ̃ι be the set of perturbed adversarial trajectories (reported back to the agent),
and τH be the set of honest trajectories (unaffected by the adversary). Our adversary
minimizes the correlation of the gradient post-perturbation with the honest one by solving
the following constrained optimization problem:

min
τ̃ι

⟨∇θfθ (τ̃ι) ,∇θ (fθ(τι) + fθ(τH))⟩ (3.11)

such that ||τ̃ι − τι||∞ ≤ ρ.

Since the compromised controllers report τ̃ι to the agent instead of τι, the agent will take gradi-
ent steps according to∇θ (fθ(τ̃ι) + fθ(τH)). Therefore, choosing τ̃ι to minimize Equation (3.11)
should maximally mislead the gradient towards a sub-optimal policy. Equation (3.11) is
optimized by the adversary using the Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2014). Interestingly, we find that our adversaries can obtain nearly identical results by solving
Equation (3.11) without the τH term, meaning that the adversary does not require any
information about the honest (uncompromised) controllers.

3.5.2.3 The Defense

We propose a defense to protect an RL agent from the attack described in Section 3.5.2.2. Our
defense works by identifying and removing the trajectories which have the largest influence
on the gradient from the training data. Intuitively, this defense works because the honest
trajectories are not expected to have out-sized gradients. Note that the poisoned trajectories
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are not easily identifiable without calculating the gradient through the policy; while the
adversarial perturbations significantly influence the gradient estimate, the perturbations
themselves are small. More formally, if the RL agent suspects that some fraction ϵ̂ of the
microgrids are adversarially controlled, then, when estimating the gradient ∇θf(θ), it ignores
the ϵ̂-fraction of trajectories τ with largest ||∇θfθ(τ)||2.
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3.5.2.4 Experimental Setup

We use a multi instance of MicrogridLearn to demonstrate this attack.

Adversarial Microgrid Poisoning “In the Wild” We briefly present a potential real-
world example of our adversary in action.

Suppose that Eastern Gas and Electric (EG&E) is piloting a dynamic, local pricing
program. To do this, EG&E instantiates an RL agent to train across a sample of building
clusters (i.e. microgrids grouped locally). Unfortunately, there is an attacker who wishes to
disrupt the functioning of EG&E, and they intercept the outflow of data from one of the local
microgrid controllers. In one attack strategy, the attacker wishes to minimize the extent to
which the outgoing prices are perturbed so as to escape detection. In another attack strategy,
the attacker considers high perturbations in order to maximally disrupt profitability.

3.5.2.5 Results

Next, we present experimental results demonstrating the gradient-reversing adversary’s
harmful potential, as well as the efficacy of the filtering defense.

All of our experiments used the MicrogridLearn environment (Agwan et al., 2021b)
consisting of 100 microgrids of 7 buildings each. The RL agent is an Actor-Critic agent which
updates every week over the course of one year.

The Attack Figure 3.16.B shows our attacker can significantly hinder the RL agent’s
learning by co-opting a single microgrid controller. The maximal difference between successive
actions taken by the true policy is around 6, so the strongest attack in the single-trajectory
setting requires a relatively high perturbation budget ρ = 10. However in Figure 3.16.C,
our attack utilizes a smaller perturbation budget of ρ = 3 with ten (ε = 10%) compromised
controllers to achieve significant damage.

The Defense We find that our defense recovers the original performance of the RL agent,
even under generous ϵ and ρ. See Figure 3.16.C.

3.5.3 Characterizations of Environmental Response

We investigated several ways in which the environment responded to adversarial attack
beyond the sheer profit: individual prosumer energy costs (i.e. the sum of the building’s
energy expenditures in an environment with the adversary and without), battery utilization
(i.e. the number of times batteries were charged and discharged, and the total capacities)
and transformer power constraint violations. According to all measures, the environment
performed worse with an adversary, even those that were not directly targeted: the prosumers
paid on average more for the energy, the battery was used less when the microgrid controller
was adversarially perturbed, and transformer power constraints were violated more. We
present the prosumer prices in Figure 3.18 and omit the rest due to space constraints.
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Figure 3.17: Effect of our defense in the presence of an adversary (Gunn et al., [n. d.]).

Figure 3.18: Characterization of prosumer costs in the baseline and adversarial scenarios.
The prosumer consistently pays more in energy when the adversary interferes (Gunn et al.,
[n. d.]).
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3.6 Privacy Preservation and Generalization to New

Subdomains

3.6.1 Introduction to the Problem

As RL methods are applied to real-world problems and novel environments, challenges arise
that are not present in classical RL environments. Two challenges and desiderata we will
now focus on are: privacy preservation and a simultaneous objective, often competing, of
generalizations to new tasks.

3.6.1.1 Privacy Preservation

The preservation of privacy within local tasks27 of the environment is an important
challenge in RL. Real applications at scale may require privacy guarantees which are not
provided by modern multi-agent RL algorithms, as they may need to be trained on privileged
or corporate data (Lowe et al., 2017; Sunehag et al., 2017; Rashid et al., 2018). Indeed, any
app that personalizes an RL agent to individual users must take care to protect their privacy
by not storing all their data in a central server.

We present a hypothetical setting in which one may imagine privacy demands of our
application of interest: energy. One may imagine a hypothetical company, CovertAI, that
is concluding a multi-month endeavor to train their new 80 quintillion parameter language
model, CPT-4. Now imagine that a malicious hacker is listening to the energy consumption
of CovertAI’s datacenter, and is able to infer when more of their computing cores are active.
From this, the hacker can tell when CovertAI is performing model training, and can thus
conclude the right moment to intefere with training. This may come in the form of sabotaging
power lines at the right moment to erase learning gains or launching programs on certain
cores that would scramble their datasets (i.e, please see the previous section on adversarial
attacks.) This could result in CovertAI’s model training to be incorrect or incomplete.

Separately, we can imagine attacks on residential neighborhoods. In this setting, hackers
might observe the energy consumption of domestic buildings to figure out when people are
not home. They could time a theft for maximal effectiveness; or they they could disaggregate
energy signals to learn the appliances the homeowner has or glean sensitive health information
if medical devices produce noticeable patterns in energy consumption.

Classical RL is fundamentally ill-equipped to deal with the problem of privacy preservation,
as it aggregates data into a central, hackable server. Not only would keeping data of buildings’
energy consumption at one central location present a major privacy concern if this central
machine is compromised, but message passing of the raw data could present an additional
source of vulnerability. Although each microgrid might have access to the data of a few
buildings at a time, the scale of damage would be much larger if data was stored in a central
server across multiple microgrids.

27For the purpose of this writing, we define “tasks” to be a local group, goal, or objective in an environment
that may contain many heterogenuous tasks.
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3.6.1.2 Generalization to New Tasks

One may imagine that as privacy of unique tasks is increased, the ability to learn from prior
tasks is necessarily limited: the most privacy preserving setup may be one in which an agent
“starts fresh” each task. Thus, we pair the real world demand of privacy with another demand
of learning another task, hoping to use the simultaneous use of prior subdomains to provide
a jump on learning in new subdomains.

Real world applications are always likely to feature heterogeneous tasks; every user, robot,
energy system will have different traits that cannot be accounted for by ”one size fits all”
algorithms. As previous work in privacy-preserving RL (Qi et al., 2021; Wang et al., 2020b;
Ren et al., 2019; Anwar and Raychowdhury, 2021) does not extend to personalized models,
the competing goals of privacy and personalization must be accomplished at the other’s
expense.

We relate these two characteristics inextricably in the solution, thus we present them
together in a single section. We will now proceed to discuss our solution.

3.6.2 Privacy-Preserving Personal Federated Hypernetworks

3.6.2.1 Background

One approach toward privacy preservation by decentralizing data servers within supervised
learning is federated learning (Shokri and Shmatikov, 2015). Federated learning algorithms
train a global model from gradient updates sent by individual clients training on their
own data, which is never sent to the central server. An extension of federated learning
technique is Personal Federated Hypernetwork (PFH) (Shamsian et al., 2021), which allows
for behavior tailored to individual heterogeneous tasks by splitting the model into a global
common component (i.e. the hypernetwork), and a local individual component (i.e. a
local network generated by the hypernetwork), which is tailored to each client. This task
specialization allows for the learning of common features together in a global component
network while allowing for learning client-specific knowledge in the local agents.

The combination of the two fields, federated multi-agent reinforcement learning, has
focused mainly on learning global models, not personalized models for heterogeneous tasks Qi
et al. (2021); Wang et al. (2020b); Ren et al. (2019); Anwar and Raychowdhury (2021); Kwon
et al. (2020); Zhang et al. (2021b); Xu et al. (2021). Decentralized multi-agent reinforcement
learning does learn personalized models Zhang et al. (2021a, 2018), but it may be difficult to
scale up a decentralized system such that each agent can benefit from the experiences of all
the others without large communication costs. The superlinear combinatoric communication
increase is not as much of an issue for federated learning, as communication only needs
to occur between clients and a server rather than clients and all their peers. Although
decentralized systems have their benefits, we focus mainly on federated systems in this work.

3.6.2.2 Caveat on “Privacy Preservation”

We note that “privacy-preservation” might be to an extent an overstatement, as works have
shown that the transmission of gradients can allow one to recreate private data (Xie et al.,
2019; Hitaj et al., 2017; Melis et al., 2018). Thus, while we note that our work guarantees
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privacy to the extent of other works within the field of federated learning (Wang et al.,
2020c; Li et al., 2019; Acar et al., 2021; Zhang et al., 2020), one should apply the term
privacy-preservation with the same caveats to our work as to the rest of the field.

3.6.2.3 Disambiguation between Multi-task and Multi-Agent

We wish briefly to disambiguate between multi-task and multi-agent for the reader’s
convenience. We use them in the conventional sense: multi-task relates to multiple, related
settings (in our case slightly different MDP’s in each different microgrid) whereas multi-agent
refers to multiple different policies.

3.6.2.4 Related Work

We position our literature within an ecosystem of work related to transactive pricing in
microgrids. A price-setting RL agent was first shown to help an energy aggregator improve
demand response and generate a profit (Agwan et al., 2021a). Since then, a number of works
have explored the issue (Shojaeighadikolaei et al., 2021; Wen et al., 2020; Han et al., 2021;
Rolnick et al., 2022), with some work exploring different configurations of RL.

We wish to provide an example of federated learning. “Distributed Selective Stochastic
Gradient Descent”, i.e. DSSGD (Shokri and Shmatikov, 2015), is an interesting example
which deserves further exploration from the interested reader. In DSSGD, each local model
exchanges select parameters and gradient updates with the central server. In contrast,
FedAvg (McMahan et al., 2017) averages all local model gradient updates and syncs all local
model parameters. There exists much application of federated learning in RL, but very little
attempts to personalize RL and no attempts to do so using PFH Nadiger et al. (2019); Wang
et al. (2020a); Qi et al. (2021).

Existing multi-agent environments are often solved through multi-agent RL algorithms like
MADDPG (Lowe et al., 2017), VDN (Sunehag et al., 2017), and Q-Mix (Rashid et al., 2018),
but these aggregate data from all the agents onto one central machine during training, and
take advantage of joint action-values from all agents. Other works use federated hypernetworks
for multi-task setups, but specifically not those in RL.

3.6.2.5 Our Contribution

We present a novel application of PFH to RL in a realistic power systems setting that requires
both privacy and heterogeneity in agents to accommodate diverse, sensitive environments.

Methodologically, our paper is novel in its presentation of an adaptation of a state of
the art privacy-preserving algorithm to RL. To our knowledge, we are the first to explicitly
apply personalized federated learning to multi-task, multi-agent RL when centralized learning
and joint action-values are unavailable. Application-wise, our paper is also novel in its
improvement in energy demand response across heterogeneous microgrids. We hope our work
highlights an important microgrid environment to the RL community, helps establish the use
of PFH within RL, and allows for RL to address problems where learning speed and privacy
are fundamental.
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3.6.2.6 Environment Setup

To increase the amount of data available, we consider multiple RL agents, each managing their
own (slightly different) microgrid through energy prices and collecting data in parallel. We
modify the MicrogridLearn environment into the Multi-MicrogridLearn environment, which
we define as a multi-task, multi-agent setup in which the management of each microgrid,
through prices, constitutes the task of a single agent. We characterize our problem as
multi-agent because we have multiple RL agents optimizing a shared reward (total profit),
and multi-task because optimization of profit in each of the different microgrids presents
tasks that are related but also independent due to differences in size, number of batteries in
each building, etc. We hypothesize that we can accelerate training by incorporating data
from multiple microgrids with different characteristics. Learning to set prices using data
from multiple microgrids (i.e. the source tasks) also opens the door to few-shot learning in
new microgrids (i.e. the target tasks), wherein we learn to generate near-optimal prices for
a microgrid very quickly. It is our hope to contribute to privacy protection by aggregating
learning, not data, to one central source.

3.6.2.7 RL setup

Although our technique is RL architecture agnostic, we will briefly explain the RL agent
that we use. We use PPO (Schulman et al., 2017) to train all of our RL agents to solve
the MDP introduced in 2.4.1 because PPO is reliable and highly performant. Note that
both algorithms introduced in 3.6.2.8 and 3.6.2.8 are agnostic to the architecture of the local
policies, so one could use any gradient-based model.

3.6.2.8 Technical Setup of Personal Federated Hypernetworks

Federated Learning In order to learn a shared model between multiple microgrids in a
privacy preserving manner, we turn to federated learning. McMahan et al. (2017) presented
what is now the most popular federated learning scheme: Federated Averaging (FedAvg).
FedAvg is simple to implement. Let the parameters for the policy for microgrid i at timestep t
be θi,t. All θi,0 are initialized with the same weights, so θ1,0 = θ2,0 = ... = θn,0, etc. Then, each
policy trains on its own microgrid for k local steps, producing a new θ′i,k for each microgrid,
which has adapted to be better at price-setting in microgrid i than the original θi,0. All θ

′
i,k

are transmitted back to a central server, where they compute the shared model for the next
iteration by averaging all the θ′i,k.

θ1,k = θ2,k = ... = θn,k =
1

n

n∑
i=1

θ′i,k (3.12)

Then the local models train on their own, send trained models back to a central server, and
repeat. Sending model information only preserves privacy because only the parameters θi,t’
and not any data are communicated with the central server. Note that in our setup, every
client participates in the weight exchange process, not just a sampled subset of the clientsXXX.
While FedAvg is a simple algorithm that performs well in supervised learning, it learns a
global policy for all the price-setting agents. In our case, a global model is not ideal as
microgrids may have different energy consumption/supply behaviors.
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Hypernetworks for Personalized Federated Learning (PFH) To learn a shared
model that is still able to personalize to individual microgrids, we turn to hypernetworks
for personalized federated learning. (Shamsian et al., 2021). Personalized federated learning
algorithm has found great success in supervised learning, beating FedAvg and personalized
federated learning approaches based on meta-learning (Fallah et al., 2020), Moreau Envelopes
(T Dinh et al., 2020), and Personalization Layers (Arivazhagan et al., 2019). However,
personalized federated learning has never been used before for RL.

Figure 3.19: Microgrids and PFH: A. We imagine a prosumer that can, at each hour of the
day, choose to sell energy surplus or purchase unmet energy demand from the larger utility or
to the microgrid aggregator. The microgrid aggregator’s energy buy/sell prices are determined
by an RL controller. B. A Hypernetwork for Personalized Federated Learning (PFH) receives
gradient updates from RL controllers and sends back weights. C. The hypernetwork takes
as input an environment embedding vector and outputs weights for an RL controller. The
RL agent takes as input buy/sell prices from the utility and outputs buy/sell prices to
the buildings in the microgrid the agent manages. The RL agent sends back a gradient
update to the hypernetwork, which uses the update to compute the gradient update for the
hypernetwork’s own weights (Jang et al., 2022b).

Now we will describe PFH more formally. Please refer to Fig. 3.19 for a visual of the
algorithm, and Algorithm 3 for pseudocode. Consider again θi,t ∈ Rm as an m dimensional
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Algorithm 3 Personalized Federated Hypernetworks in RL

Input: Task set T and hypernetwork ξϕ. For each task η ∈ T , an RL policy πθ(η) and
hypernetwork-specified parameters ξϕ(η).
Hyperparameters: Number of training rounds N , number of local training steps per
hypernetwork update K, learning rate α.
for i = 1, . . . , N do

for task η ∈ T do
Get parameters θ̃(η) := θ(η) := ξϕ(η).
for k = 1, . . . , K do

Collect rollouts τη,i from η using policy πθη,i(η) with parameters θ̂(η).

Update θ̂(η) using PPO with rollouts τη,i.
end for

end for
Initialize ϕ̄update := 0.
for task η ∈ T do

∆θ(η) := θ̂(η)− θ(η)
ϕ̄update := ϕ̄update +

∇ϕθ(η)
T∆θ(eta)

|T |
end for
Update hypernetwork parameters ϕ = ϕ− α · ϕ̄update.

end for

vector denoting the parameters of the policy for microgrid i at timestep t. A hypernetwork is
a neural network that outputs the parameters of another neural network. We will have one
global ξϕt ∈ Rl → Rm parameterized by ϕt. ξϕt takes as input an environment embedding
vector vi ∈ Rl, which is learned for each environment along with the hypernetwork. We
initialize θi0 = ξϕ0(vi) ∀i ∈ [1, ..., n]. Then each28 local agent trains for k steps, producing
new parameters θ′i,k. Then, ∆θi,k = θ′i,k − θi,0, is sent back to the central server, where it is
used to update the hypernetwork:

ϕk = ϕ0 −
1

n

n∑
i=1

α∇ϕ0θ
T
i,0∆θi,k (3.13)

Since the hypernetwork outputs NNs conditioned on the environment, it is able to create
RL agents that are personalized to the needs of each microgrid. We also still preserve privacy
by only communicating parameters with the central server instead of data.

Diversity and Optimal Use of PFH One factor that could affect the relative performance
of PFH is the heterogeneity of the scenario. A homogeneous scenario (imagine a cookie-cutter
residential neighborhood) could be suitable for federated learning methods due to similarity
in behavior. In contrast, an extremely heterogeneous scenario (imagine mixed-use city blocks
with night-life, shopping, and residential real estate) could have wildly different energy

28Note our setup is slightly different from the original PFH (Shamsian et al., 2021); every client participates
in each round, not just a sampled subset of clients. We made this small variation to better understand
whether scaling the algorithm to larger numbers of microgrids would be useful.
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demands, which may be better learned by individual local networks without any mechanism
to share learning. We hypothesize PFH will perform competitively in some average of these
two extremes. If local environments are diverse yet share similar underlying mechanisms,
PFH will be able to fit to local conditions while sharing information on common trends.

3.6.2.9 Experimental Setup

Simulating Diverse Microgrids Because each microgrid is defined by a distribution of
photovoltaics and battery sizes, we propose a simple way to tweak the amount of diversity
in a system. We sample photovoltaic and battery sizes from normal distributions, changing
the variance σ2 as the diversity parameter, and round outcomes to the nearest integer29 We
sample from N (µ = 100, σ = 10) for low diversity cases, N (100, 30) for medium diversity
and N (100, 50) for high based on the spread of two standard deviations30. We note here that
we have chosen the low, medium, and high cases such that 95% of samples (i.e. 2 standard
deviations around the mean) in the high case hit realistic bounds in the environment; i.e., 0
(an obvious lower bound) and 20031.

Baselines We compare PFH against FedAvg and two other baselines. First, we observe
what happens with no RL control at all; the microgrid aggregator outputs prices that are
exactly the same as the utility’s. We assume buildings choose to meet half their energy
demand/surplus with the utility and half with the aggregator. Our second baseline is the
approach used in Agwan et al. (2021a): training all the local RL controllers with only their
own data: no central model or inter-microgrid communication. These two baselines, no
RL and local control, are designed to highlight the added value of RLXXXI to the task of
price-setting for energy demand response in microgrids, and the added value of having some
central model that aggregates learning across multiple microgrids, respectively.

For specification on how we selected hyperparameters, please see Section 3.7.1.

Multi-Task Transfer An interesting feature of our hypernetwork-based setup is the
potential for multi-task learning and few-shot transfer learning. The optimization problem
of setting prices for each microgrid can be viewed as an individual task, η ∈ T . Since
the hypernetwork should learn some common strategies for each task, we tested whether
it can generalize to unseen tasks with little training. To test this hypothesis, we simply
take a hypernetwork that has trained for to manage a microgrid cluster with 20 microgrids
of medium diversity and train the hypernetwork to manage a new microgrid cluster of 20
microgrids with the same level of diversity. By pretraining our hypernetwork on 20 varied
source tasks, we hope to encode enough knowledge applicable to the new target tasks to
make few-shot transfer learning possible. We will refer to such a pretrained hypernetwork as
a Few-Shot PFH.

29As we are sampling from a “hyper” distribution to instantiate houses, the means of the distribution are
not as important as the variances in instantiating diversity.

30All distributions are truncated at 0.
31200 is a realistic upper bound in both solar panels and batteries: 200 solar panels would require an area

of 60 x 70 ft, which bounds the square footage of many commercial roofs, and 200 batteries would be a
realistic upper bound of entities not engaging in commercial grid services.
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Table 3.1: Cumulative profits above base utility pricing after 10,000 days, in hundred
thousands.

Scenario PFH FedAvg Local Baseline

Simple, 5 agents 39.23 45.75 43.72

Simple, 10 agents 42.11 41.65 43.18

Simple, 20 agents 40.85 34.52 42.82

Medium, 5 agents 47.50 40.95 40.12

Medium, 10 agents 46.89 43.82 41.73

Medium, 20 agents 48.22 39.38 39.66

Complex, 5 agents 34.77 32.66 35.60

Complex, 10 agents 43.01 42.08 45.24

Complex, 20 agents 44.39 38.70 40.78

3.6.2.10 Results and Discussion

PFH Accelerates Learning in Medium Diversity microgrid clusters Fig. 3.20
shows average daily profit gained by each microgrid in a microgrid cluster with 5, 10, and
20 microgrids, with varying amounts of diversity. The middle column of Fig. 3.20 shows
PFH is more efficient and profitable for a microgrid cluster than a microgrid cluster under a
FedAvg or local control scheme. As shown in Table 3.1, PFH results in up to $8,500,000 of
additional cumulative profit after 10,000 days over the local control baseline in a microgrid
cluster with 20 microgrids. However, this advantage does not carry over to cases of small or
large diversity. For less diverse scenarios, PFH was comparable or less profitable than FedAvg
or local control. For more diverse scenarios, local control was generally more profitable. The
number of microgrids in microgrid clusters also did not seem to have much effect on learning
speed here.

FedAvg Recovers Local Performance at Best Curiously, our results indicated that
FedAvg presented did not improve the management of a microgrid cluster over a collection of
local agents. We had expected FedAvg to perform better in the homogeneous case, and to
scale with the number of agents, but neither effect appears in our results. Although FedAvg
may perform well in supervised learning (McMahan et al., 2017), it may not extend well
to RL. We explain FedAvg’s poor performance as follows: unlike supervised learning, RL
requires exploration. One could imagine each microgrid’s local agent explores in different
direction to another, causing gradient updates that are not well conditioned when averaged
together. Meanwhile, the hypernetwork is able to learn how to build RL policies with different
exploration behaviors from the aggregated gradient because it outputs agents personalized to
each task.
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Figure 3.20: RL Agent Performance: The performance of the RL price-setting agent as a
function of the number and diversity of the microgrids in the microgrid cluster . Performance
is measured by looking at the average daily profit gained by each microgrid (Jang et al.,
2022b).

PFH Enables Few-Shot Learning Fig.3.21.A shows the hypernetwork adapted to a new
set of microgrid management tasks extremely quickly. On average, within ≈ 1.5 months (42
days), each new microgrid achieved ≈ $380 in daily profit, which is about the daily profit
of the local agents baseline after 13 years (5000 days) of training. The original, randomly
initialized PFH required 3000 days to achieve similar performance. Thus, Few-Shot PFH
achieved a 119x speedup over local agents and 71.4x over a randomly initialized PFH over the
first 1.5 months. Within 7 months (210 days), Few-Shot PFH achieved a daily profit of $565:
44% higher profit than the local agents ever achieve. A randomly initialized PFH required ≈
22 years (8000 days) to achieve similar performance: a 38x speedup in the first 7 months
of training. Cumulatively, having a pretrained PFH on 20 microgrids saves ≈ $1,500,000
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Figure 3.21: PFH Enables Few Shot Learning: A. Mean microgrid profit of PFH
pretrained on 20 microgrids learning to manage 20 new microgrids (“Pretrained PFH”),
compared to randomly initialized PFH (“Baseline PFH”) and the local agents baseline (“Local
Baseline”), over training days on the new microgrids. B. Mean microgrid profit of PFH
pretrained on 5, 10, and 20 microgrids on a new set of microgrids, over a longer time than A.
C. A plausible scenario in which PFH may need to quickly adapt to new microgrids (Jang
et al., 2022b).

over the course of training on the new microgrid management tasks compared to a randomly
initialized PFH.

Few-Shot Learning Capability Scales with microgrid cluster Size When we tried
the same experiment with hypernetworks that were trained for 10,000 days on 5 microgrid
management tasks and 10 tasks in Fig. 3.21.B and tested on 5 and 10, respectively, we saw
significantly smaller boosts in the mean reward over groups of new tasks with fewer training
tasks. The smaller scale of benefit was expected given a multi-task learning strategy with
fewer source tasks and data. Indeed, when trained on 5 tasks, there was hardly any initial
training speedup. Starting from 10 tasks, we observed a large initial boost (although not as
large as with 20.) Rather strikingly, Few-Shot PFH pretrained on 5 and 10 tasks converged to
lower reward curves than even the baseline PFH (i.e., a randomly initialized hypernetwork.)
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With 20 tasks, we saw both a large initial boost in training speed and no adverse impact
on long term training. We hypothesize the fewer microgrid source tasks provided, the more
information is stored in the environment embedding, which makes the hypernetwork brittle
to new environments. Thus in the 5 and 10 case, the net has not learned enough shared
dynamics in the other parameters to generalize to new settings. In the case of 20 and above,
we expect that enough shared dynamics are learned that the net can generalize. The range
of training speed benefits we observed suggested the potential in some configurations for a
Few-Shot PFH to quickly adapt to new tasks depends on how many tasks it was initially
trained on.

3.6.3 Societal Impact

What are potential negative societal effects of our work? Overall, negative effects to prosumers
are limited, as the focus of our work is in protecting consumer information. Furthermore,
prior work demonstrated that the presence of an aggregator consistently reduced energy costs
for consumers.

However, a persistent danger of Artificial Intelligence (AI) is that it is often deployed
through centralized profit-seekers. Our work is no different in this regard. Although our
specific innovation protects prosumers, it may improve the economic viability of a profit-
seeking entity whose scale may eventually enable it to further its own profit at the expense
of prosumers.

Also, the act of setting prices in systems may raise fairness concerns. If initial training
microgrids are biased towards wealthier residents, the PFH may initialize new policies with
pricing that benefits consumption habits of wealthier clients but not poorer clients. A vivid
illustration may be seen in the types of prosumers who are best poised to benefit from economic
aggregation: prosumers with large solar panels and batteries are able to shield themselves
from or profit off of high prices by consuming their own energy, and may fully charge their
batteries when prices are low. Prosumers with smaller or no storage capabilities do not have
this luxury, and thus are more vulnerable to the negative effects of price fluctuation.
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3.7 Hyperparameter Sweep Difficulty

Training RL agents can be fairly tricky even when we happen to choose the right hyper-
parameters, i.e. the parameters that define structural aspects of the agent such as the
number of layers in the policy, the learning rate, etc. Choosing these hyperparameters, or
defining a heuristic to choose them, may be even more challenging. It is essential that these
hyperparameters are chosen in simulation, as any attempt to sweep on hyperparameters in
the real world would be extremely data costly. Thus, we will present a technique from classic
statistics to help alleviate hyperparameter search complexity.

3.7.1 Regression Analysis of Hyperparameter Optimization

We suggest the use of inferential statistics to gain an intuition of hyperparameter fitness.
Simple linear regression can be a powerful tool for this application. We regress the average
reward during training on the hyperparameter combination:

y ∼ w0 + w1α1 + ...+ wnαn (3.14)

Where each weight wi is a linear coefficient on a corresponding hyperparameter αi. Using
standard, classic methods of linear regression fitting, one can eliminate hyperparameters from
consideration that have low impact on the reward, thereby saving considerable compute by
dropping these parameters.

We will demonstrate fitness in the data from the experiments detailed in the above section,
PFH.

3.7.2 Regression Explorations of Hyperparameter Sweeps

Here we present, for the reader’s interest, a regression fit on the hyperparameters that were
swept over. In this regression, each observation is a single run of the sweep, the dependent
variable in both is the reward mean of the learning trajectory, and the independent variables
are those listed in the rows.

We believe that this regression contains some interesting information; specifically on the
direction of coefficients (i.e. whether they are negative or positive) and on which parameters
were significant in producing a positive reward. We note that the basic assumption of
linear regression, that observations are sampled IID from a distribution, is not the case here;
observations are loosely dependent on each other as the parameter configurations in each
batch are determined by the performance of parameters in the previous batch. Thus, we
caution that the positive results may be mused over as a curiosity only. We are more confident
in the negative results of this regression, i.e. which variables are insignificant after controlling
for the others, than the positive results, as this indicates parameters that the sweep chose not
to focus on. We believe that further work in regressions of hyperparameter values may be an
interesting research endeavor for understanding ML models as well as for ML applications
like AutoML.
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3.7.2.1 Full Regression Model (Table 3.2)

Of specific interest in the full regression are which hyperparameters did and did not effect
the average reward. Many variables in the hypernetwork itself do not seem to matter:
the hypernetwork’s learning rate, number of layers, and L2 regularization did not matter.
However, whether or not the hypernetwork selected for dropout did matter, and it hurt the
performance, implying that hypernetwork fitting was more important than robustness. Some
parameters of the PPO agents, such as the clip parameter or number of gradient updates,
did not matter much either.

Table 3.2: Full regression model

Dep. Variable: Avg Reward R-squared: 0.362
Model: OLS Adj. R-squared: 0.348
Method: Least Squares F-statistic: 24.62
Date: Thu, 19 May 2022 Prob (F-statistic): 1.08e-43
Time: 08:16:34 Log-Likelihood: -3188.0
No. Observations: 533 AIC: 6402.
Df Residuals: 520 BIC: 6458.
Df Model: 12

coef std err t P> |t| [0.025 0.975]

Intercept 344.6188 29.679 11.612 0.000 286.314 402.924
sizes -1.9453 0.777 -2.504 0.013 -3.472 -0.419
n layers 5.2696 2.806 1.878 0.061 -0.243 10.782
learning rate -1835.5718 128.380 -14.298 0.000 -2087.779 -1583.364
ppo clip param 49.4402 38.009 1.301 0.194 -25.230 124.110
hnet lr 77.4179 63.747 1.214 0.225 -47.815 202.651
hnet num local steps 1.0579 0.150 7.043 0.000 0.763 1.353
ppo num sgd iter -0.3889 0.741 -0.525 0.600 -1.845 1.068
hnet num layers -2.3439 2.571 -0.912 0.362 -7.395 2.708
batch size -0.6685 0.171 -3.910 0.000 -1.004 -0.333
hnet embedding dim 0.0077 0.028 0.271 0.786 -0.048 0.063
hnet l2 reg -10.4826 19.912 -0.526 0.599 -49.601 28.636
hnet dropout -68.5849 21.070 -3.255 0.001 -109.978 -27.192

Table 3.3: Regression parameters from hyperparameter search (Jang et al., 2022b).

3.7.2.2 Reduced Regression Model with Only Significant Coefficients Included
(Table 3.5)

We believe that this test is more interesting for examining the direction of significant variables
after controlling for the other variables. Here, it is interesting to note greater sizes of policy
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Omnibus: 16.401 Durbin-Watson: 1.670
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.555
Skew: 0.336 Prob(JB): 5.67e-05
Kurtosis: 3.655 Cond. No. 9.08e+03

Table 3.4: Regression parameter metrics of fit (Jang et al., 2022b).

networks, (“sizes”), has a negative effect, while number of layers of policy networks have
a positive effect, offering a mixed view on whether policy complexity is important. The
learning rate is negatively important, implying that more stability in network is preferred.
The number of local model update steps allowed is positively correlated to mean reward,
implying that the more the local models are allowed to fit, the better. The combination of
a negative effect of batch size and positive effect of learning rate implies that the local RL
agents found it easier to take few steps (lower batch sizes) but update policies at a more
conservative rate (lower learning rates), which makes sense in the RL context.

Table 3.5: Reduced regression model

Dep. Variable: Avg Reward R-squared: 0.357
Model: OLS Adj. R-squared: 0.349
Method: Least Squares F-statistic: 48.63
Prob (F-statistic): 1.79e-47 Log-Likelihood: -3190.3
No. Observations: 533 AIC: 6395.
Df Residuals: 526 BIC: 6425.
Df Model: 6

coef std err t P> |t| [0.025 0.975]

Intercept 364.7212 15.515 23.507 0.000 334.242 395.201
sizes -2.1970 0.627 -3.502 0.001 -3.429 -0.965
n layers 5.1216 2.759 1.856 0.064 -0.299 10.542
learning rate -1829.2013 127.609 -14.334 0.000 -2079.887 -1578.516
hnet num local steps 1.0482 0.149 7.055 0.000 0.756 1.340
batch size -0.6409 0.167 -3.841 0.000 -0.969 -0.313
hnet dropout -65.1701 20.923 -3.115 0.002 -106.273 -24.067

Omnibus: 17.230 Durbin-Watson: 1.669
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.988
Skew: 0.360 Prob(JB): 4.57e-05
Kurtosis: 3.618 Cond. No. 2.57e+03

Table 3.6: Reduced regression coefficients pruned for significance (Jang et al., 2022b).
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3.7.3 Conclusion to Hyperparameter Regression

We are not confident that this method will outlast our focus on it. However, it is our hope to
present it to remind the reader that (a) some cursory attention to hyperparameters in a fit is
important (b) classical statistical techniques may still have value entering this new age of
automated learning.
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Figure 3.22: Overview of the methods presented as solutions to sim-to-real problems. Base
image from (Sutton, 2022).

3.8 Comparison of Sim-to-Real RL Methods

Here we endeavor to compare across the methods we have presented here. Please see Figure
3.22.

We again reproduce the cell of the generally intelligent agent32 presented by Sutton. Here,
we map each solution approximately onto the area that it affects. In this case, we put arrows
in to point towards both policy and value function when a method affects training, as both
are included in Actor-Critic methods.

We color in green the methods that we believe are most promising to help RL in the real
world. The reasons we select these two are the following:

Guardrails Method: We expect that any RL agent operating in a space in which real data
is costly to collect will have a simulation or planning model associated with its development33.

32We unfortunately pay little attention to the perception module in our work, leaving it only as identity.
33We have seen that planning models are common in development in our experience. developing real life

RL agents: sometimes it is for as trivial a reason that a team of software engineers completes the RL agent
but is waiting on a team of hardware engineers to hookup the system, so they make a realistic simulation of
the system in its stead.
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However, many methods that we surveyed were only as good as the accuracy of the planning
model. The guardrails method we proposed, instead, was shockingly effective in its effect
on learning, precisely because it takes advantage of the uncertainty in the model output in
accommodating distributions. Thus, we recommend it for general use.

Meta-Learning in Domain Randomized Environments One way to anticipate some of
the variation in the real world is to train in version of the world that have variable dynamics.
We believe that the general approach that meta-learning provides paves the way for more
interesting approaches in auto-curricula and guided environment design. We believe these
directions hold tremendous promise in RL. We hope to contribute to these directions in the
future.

Personal Federated Hypernetworks It is the opinion of the author alone, and probably
not his colleagues, that PFH deserves an honorable mention. If PFH were to work well,
the benefits are tangible and obvious. Of course we would want new subdomains to be
instantiated with knowledge from previous. However, it is unclear the scale required from
previous subdomains, and the efficacy of the controller before the point of PFH effectiveness
is important to guarantee.
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Chapter 4

Experiments

Finally, we wish to address the “real” part of our Sim-to-Real RL goals. We will first present
the setup of a proposed experiment demonstrating the effectiveness of OfficeLearn, with
the experimental setup and supporting software described. We will then present two real
experiments ran in a similar setup prior to our investigation of RL in demand response.

Our goals in Chapter 4 are as follows.
First, although the experiment was postponed indefinitely due to mandated office shut-

downs in Singapore’s COVID-19 response, we laid groundwork for implementing RL in
experiments. Hopefully a reading of our experimental setup can help germinate ideas on how
to implement the reader’s own RL-related experiments.

Second, we wish to present hard evidence from prior experiments that demonstrates that
aspects of the RL-related setup are well tuned. The incentive allocation, for instance, turned
out to be tuned finely enough to elicit differences in behavioral response. A strong decrease
in energy consumption was noted when an experimental group was shown trees depicting
their energy use, whereas no effect was noted when an experiment group was only shown
barcharts. Had the incentive allocation been an incredibly strong motivator, we believe we
would have seen significant responses from both over a control group that were not part of
the experiment. Thus, we present these experiments to justify why choices were made in
what would have been the later experiment administering RL.
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4.1 Proposed Experiment: Price-Setting

Reinforcement Learning Optimizing Office

Behavioral Energy Demand Response

In 2019, we proposed to experimentally validate our OfficeLearn through an experiment.
Here we will describe the implementation of the experiment, starting with contextualization
in the literature, the experimental design, and social game implementation.

4.1.1 Background

Notable work has been performed in creating and administering “Social Games” – for our
purposes, defined as competitions around energy use. Social Games tend to comprise of: (1)
informing each player of their energy use in a friendly and easy to consume manner and (2)
an accompanying competition in which higher energy savings relative to others is rewarded.
Many studies have either created Social Games themselves ((Konstantakopoulos et al., 2017),
(Ratliff et al., 2014), (Papaioannou et al., 2018), (Papaioannou and Stamoulis, 2018)) or
studied existing Social Games ((Cowley et al., 2011), (Ayres et al., 2012)) to draw insight.
To this end, the general finding has been that Social Games increase the extent to which
an individual is motivated to and able to save energy in their daily functioning within their
office or home.

4.1.2 Allocation of Incentives

We would like to give special importance to our treatment of incentives, I, as it has been
tested in practice and will be an important part of running this experiment.

The expense I can be seen as a fixed amount prize that is awarded to high performing
workers. It serves as a level of behavioral engineering to stimulate interest in the building
manager’s price signal. In other words, given a price signal, the presence of a prize-based
incentive ensures that office workers modify their consumption to minimize the cost of energy
in accordance to the price signal. An example of such a mechanism is a points-based energy
competition developed and implemented in experiment in (Konstantakopoulos et al., 2019b)
and (Konstantakopoulos et al., 2019a) with significant success. Each player is given a baseline
amount of points daily depending on historical energy usage without the price signal, and
the price of their energy that day in the game is subtracted from the baseline. At the end of
each two week period, the building manager hosts a building-wide meeting in which the top
third of players (by accumulated points) are entered into a lottery, and gifts such as Amazon
gift cards are allocated randomly per the Vickrey-Clark-Groves (VCG) auction mechanism.
The total value of the prizes (I ) given out at the end of every two week round is fixed at
around $400. I is independent of the total number of people playing the game, which makes
the incentive mechanism scale nicely for larger offices.



CHAPTER 4. EXPERIMENTS 103

4.1.3 Proposed Experimental Timeline

We observe two experimental units for a period of five months, from August to December.
We are interested in estimating the causal effects of two distinct reinforcement learning
architectures, RLj, for j ∈ {1, 2}, in addition to the causal effect of combining reinforcement
learning with behavioral feedback from the planning model.

We estimate seasonality effects at period t (δt) and improvements in learning due to the
accumulation of observations (Ωt), by taking the average difference between performance
across all conditions at time t and t−1. We also estimate the effect of incorporating parameters
from the social cognitive model by comparing observations within a single RL architecture,
controlling for seasonality. Finally, we causally identify the effect of each RLj, which is the
difference between the score for RLj versus RL j, and the difference in scores between RLj
and RL j, conditional on incorporating the social cognitive model, controlling for seasonality
in each case.

Month Group 1 Group 2 Control
July — System ID —

August RL2 RL1

September RL1 RL2

Table 4.1: Experimental Timeline in which we compare two different RL architectures and
the effect of a planning model Spangher et al. (2020a).

We then use later experimental periods to train the model on smaller subsets of our
experimental subjects: smaller groups and then at the individual scale.

Although we have leave RL1 and RL2 unspecified in this chapter, the reader may refer
back to Section 3.8 to see what we recommend to be most promising RL architectures that
may be tested in this forum.

4.2 Bridges between Proposed Experiment and the

Real World: Software Methods

4.2.1 RL API

Implementing RL in the real world is a challenge that requires attention to scaffolding
software well beyond the RL agent itself. Here we describe the development of an Application
Programming interface to allow the Social Game agent to communicate with the administrator
of the building Social Game.

4.2.1.1 What is an API?

An API is a software interface that connects two pieces of software to each other in intentionally
simplified ways. The connection must be done such that the first piece of software can access
the functionality of the second without needing to know what happens under the hood,
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and vice-versa. The main type of API, a RESTful API, is a framework for caching and
guaranteeing on-demand interoperability. In this case, we propose an API to connect the
software used to manage a social game in Singapore with an RL controller that determines
how many points to assign each participant in the social game.

Popular libraries for RL include RLLib and StableBaselines. StableBaselines does not
present a formal API. While RLLib has an API, it is not RESTful, and limited to functionality
that governs agent operation within a contained simulation environment. We require greater
functionality than it can provide: it would have difficulty interacting with databases, switching
between different agents, or performing other operations that are necessary for our server
side. Thus, a custom API is needed.

Our interface facilitates plug-and-play of any kind of underlying RL model for the
points controller, while maintaining a single data store. This allows researchers to freely
iterate on their social game API containers with improved models without any risk of
interrupting their data collection pipeline. Our API was created using Flask (a Python
backend software facilitating API creation), backed by a disk-local SQLite database (which
is based on Structured Query Language (SQL)), and containerized in Docker. Docker is
a secure packaging software, facilitating creation of isolated containers in which to deploy
software environments. One would query our API using Postman, curl, or any other HTTP
request creation software.

Our API exposes asynchronous endpoints to add participants to the game, get energy
pricing for each participant for the upcoming day, submit participants’ energy usages for the
day, and more. It provides a centralized, standardized way for social game researchers to
interface with our RL models, upload social game history and retrain models with the most
up-to-date data, and receive suggestions for points to assign participants the next day. It
performs all point calculations automatically upon data entry, and can output a running tally
of scores and a leaderboard at the conclusion of the game. It also contains comprehensive
logging for debugging and observability. As per RESTful guidelines, PUT requests are ones
that modify information on the server side (i.e. our side) whereas GET requests provide
information for the client side.

Endpoint Descriptions

• Submit Game Users [PUT] [/participants]

Function: Add participants to the social game; i.e., add a coded player to the internal
list of players that is maintained as part of the social game. Later endpoints will iterate
over each of these participants to save their energy data.

• Get Hourly Energy Pricing [GET] [/energy/pricing]

Function: Load price signal for the upcoming day for each participant in the game,
calculated using loaded model parameters. This is either the agent’s predicted actions,
or baseline square waves hard-coded for initial training periods.

• Submit User Hourly Energy Consumption [POST] [/energy/consumption]

Function: Add participant energy usage data from the previous day to the SQLite
database. The agent will draw from this database to train through an internal function.



CHAPTER 4. EXPERIMENTS 105

Figure 4.1: An illustration of a possible path of commands that the API endpoints expose.
Un-published work by the author.

• Get Points Earned and Base Points [GET] [/energy/points]

Function: Calculate how many points to award each participant based on each individ-
ual’s price signal and energy usage. These values are calculated from (historical) base
points and are not related directly to the RL agent.

• Calculate Game winners [POST] [/game/winners]

Function: Maintain leaderboard throughout the social game. Position in the leaderboard
is an aggregation of points throughout the game.

In sum, the API allows for the deployment of the RL agent and scaffolds surrounding
aspects for its proper functioning. It allows the RL agent to interact with databases for more
robust data storage, and creates a record of operations so that long term logging can occur.
In this way, it is a novel and custom advancement from standard off-the-shelf RL APIs.
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4.2.2 Experiment Implementation Indefinitely Postponed Due to
COVID-19

The target office for our experiment was the Singapore Berkeley Building Energy in the
Tropics (SinBerBEST) research office in Singapore. The office was composed of 40-50 graduate
students, postdocs, faculty researchers, and administrative staff who used energy in structured
ways. We began planning this experiment in Spring 2019.

Unfortunately, the experiment was relied on conventional office dynamics pre-COVID.
Specifically, office workers needed to generally keep to a certain schedule and come into the
office regularly. As the experiment was set to deploy in Spring 2020, it was first postponed
as the COVID pandemic drastically changed office habits and then cancelled altogether as
we could not predict when office workers would return to the office with some semblance of
regularity. Indeed, the office has as of this writing not returned to normal routines.

Thus, we will now describe prior experiments we ran in the same office building as a proof
of concept for how the price-setting experiment may run. Specifically, we wish to demonstrate
that the prior experiment elicited enough signal from the study population that we saw an
effect from the experimental treatment but not the baseline or control treatments.
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4.3 Energy Reduction Experiment 1: Testing

Visualizations Guiding Energy Awareness

Here we will describe an experiment that we ran to reduce energy consumption during work
hours. As the experiment is too coarse a signal to mediate energy during certain parts of
the day, we do not wish to imply that it is a demand response experiment. However, we do
want to note that shortening the time window of hours in which energy is reduced may be
a simpler way to implement demand response generally. It is our hope that in describing
this experiment carefully, the reader may understand nuances in how to implement their own
experiment in energy reduction.

4.3.1 Background on Energy Visualization

Data visualizations as they relate to energy have also been studied extensively ((Holmes,
2007), (Börner et al., 2012), (Murugesan et al., 2013)). The literature generally taxonomizes
the space of visualizations into two main types that we consider here (Rodgers, 2011):

1. “engineering-type” visualizations composed of barcharts, line graphs, scatterplots –
i.e. a formal, work-like presentation of the data in a way that would be used in scientific
papers

2. “ambient-type” visualizations, in which a linear scale is communicated by some
abstract, pleasant, artistic visuals34.

Examples of an “ambient-type” visualization would include the so-called “power-aware”
cord, a power cord that glows more brightly the more energy is being used (Gustafsson and
Gyllenswärd, 2005), a “thrifty faucet” which shines a red or blue light depending on the
temperature of the water (Togler et al., 2009), or an ambient battery communication system
that communicates the battery’s charge with a proportional intensity of light (Elbanhawy
et al., 2016).

The consensus in the literature is centered around the idea that ambient visualizations are
more effective than engineering type visualizations at consistently communicating to a user
their energy usage ((Chetty et al., 2009; Piccolo et al., 2014; Kim et al., 2009; Quintal et al.,
2010; Polson and Selin, 2012; Spangher, 2018)). The effect has been studied qualitatively.
However, we are unaware of a study that attempts to quantify the behavioral differences
that types of data visualizations engender. Therefore, we aim to reproduce a Social Game
experiment and quantify the difference in energy consumption from participants exposed to
different types of visualizations.

34There is a third type, the (3) “natural type” visualizations, in which images closely match the natural
world and map energy onto environmental impact. However, it has been generally found that this type of
visualization invokes guilt in the viewer and is thus less often used.
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4.3.2 Experimental Methods

4.3.2.1 Pre-treatment Survey

We conducted a pre-treatment survey to identify trends in the social game population
as it pertains to energy literacy and climate change opinions. The survey also collected
demographic information from participants, including age, ethnicity, and job position. Our
objective was to explore the extent to which the social game population was heterogeneous in
their demographic, energy literacy, and beliefs about climate change. The survey was emailed
through a Google Form to all participants six weeks before treatments were first administered.
18 responses to the survey were collected of the 28 individuals studied, representing a
64% response rate. In order to look for relationships between question responses, we used
exploratory data visualizations and multiple regressions.

4.3.2.2 Social Game Experiment

The experiment was conducted in the Campus for Research Excellence and Tech Enterprise
(CREATE) tower, a building in Singapore. Interaction with study participants took place
through an online platform where participants could monitor their progress in saving energy
relative to others, receive tips on how to change their energy saving behavior, and, crucially,
to schedule times in which certain plugs at their desk would be on or off. Office workers were
voluntarily enrolled in the Game at the start of August, 2018.

The Game was structured in the following manner: first, a normal distribution was fit to
the historical energy data of each participant to make energy savings relative to their own
baseline. Then, for five periods of two weeks each, participants competed against each other
to reduce their energy consumption. Amongst the top five of every round, a random number
generator picked the first, second, third and fourth place winners, all of whom received prizes
of various amounts.

We were interested in exploring the effect of different types of data visualizations on the
user’s engagement with the system and energy savings. To this end, two types of visualizations
were created: an engineering-type bar chart (please see Figure 4.2), and a ambient-type
visualization (please see Figure 4.3). The ambient-type was intended to communicate a sense
of linear scale without appearing too formal. Although we developed it in house, we relied
heavily on the tree design presented by Froelich et al in their 2009 ACM CHI Conference on
Human Factors in Computing Systems Proceedings (Froehlich et al., 2009). All participants
were emailed a treatment once a week, on either a Wednesday or a Thursday.35 The emails
consisted of Treatment A, which included the barchart and the following language:

35There was no pattern in whether a Wednesday or Thursday was chosen; it was due to technical limitations
on the time of our software engineer.
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Figure 4.2: The “engineering type” visualization sent to Social Game participants as a
treatment (Spangher et al., 2019a).

Thank you for your participation thus far in the Social Game!

Through participating in this game, your actions are being studied to learn more
about how energy is used in office settings.

Your ranking so far is:

__ of 27.

You progress with regards to last week and your baseline use is as shown:

Treatment B consisted of the same language and an image of the tree visualization, and
finally a control email consisted only of the language.

The curious reader might wonder why we opted to include language in the control instead
of simply not sending an email at all to a control group. Our experimental setup was modeled
after the experimental setup noted in (Gerber et al., 2008). Here, the authors send a control
postcard noting that the participants are being studied in order to deal with the Hawthorne
Effect, a noted positive effect that occurs simply because the subject is aware of her being
studied. Therefore, comparing the effects of a control whose email differs from a treated
subject only by a visualization, we have in the difference of the responses the effect of the
visualization itself.

The treatments are labelled as follows. Treatment A is an engineering-type visualization
with the above language. Treatment B is an ambient-type visualization with the above
language.

Participants were randomly selected to receive either Treatment A, Treatment B, or
a control. Assignments switched three and six weeks following a step-wedge assignment
protocol.
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Figure 4.3: The “ambient type” visualization sent to Social Game participants as a treatment
(Spangher et al., 2019b).

4.3.2.3 Post experiment survey

Following the conclusion of the Social Game, all participants were sent a questionnaire
seeking feedback on the energy visualizations and the competition’s impact on their energy
consumption habits. Responses were compared with findings from the experimental data to
analyze trends between the qualitative participant feedback and quantitative outputs from
Social Game. Results from the post experiment survey were also used to frame the future
direction of our experimentation.

4.3.2.4 Simulation of people’s energy responses

Our ultimate goal is to make predictions about the effect of visualization type on total energy
usage at the scale of an entire building, using the energy usage data we have collected from a
small number of participants.

One way to use individual energy data to make predictions about energy use at the
building scale is to construct a probabilistic model for individual energy use based on the
individual energy data, and “simulate” the energy use of a building’s worth of participants.

Here we introduce one such model, a Hidden Markov Model (HMM) for an individual’s
energy use per unit time (daily, for instance) (Baum and Petrie, 1966). An HMM is intended
to be as simple as possible while capturing the effect that the visualization has on individual
energy use.

Our model assumes that the energy use of an individual can be modeled at least roughly
in the following way. In the absence of any kind of treatment, we assume that the individual’s
energy use per unit time follows some probability distribution, which is their baseline
distribution. Some time after receiving treatment (that is, the energy visualization), we
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Figure 4.4: Diagram of the HMM model for individual energy use. The hidden states E and
B represent whether the individual is following their energy-saving distribution (E state)
or their baseline distribution (B state). The observations, all normally-distributed in this
model, correspond to the energy use of the individual per unit time (Spangher et al., 2019a).

assume that the individual will modify their energy use in such a way that their energy
use follows a new distribution, which is their energy-saving distribution. After spending
some time in the energy-saving distribution, the individual eventually resumes their baseline
distribution, and remains there indefinitely.

With this in mind, our model is an HMM with Gaussian observations, shown in Figure
4.4. The states correspond to whether the user is following their baseline distribution (state
B) or their energy-saving distribution (state E). An execution of the HMM model represents
a trace of the modeled individual’s energy use over some time period. Since we have collected
individual energy use over time for several participants, we can use this data to fit model
parameters for each individual using an EM algorithm.

Under this model, how much energy does an individual save when they are influenced by
the treatment? Without the treatment, the individual would remain in the baseline state the
entire time, so the difference in energy use effected by the visualization comes entirely from
the time spent in the energy-saving distribution. Assuming that the individual enters the E
state once per treatment, and otherwise remains in the B state, the number of time units
spent in the E state nE is distributed geometrically, that is nE ∼ G(PEB). As such, the total
energy used during the user’s duration in the E state is a random sum of random variables,
which we will denote as

∑H
t=1Et. By Wald’s equation, the expected energy use during the

energy-saving state is:
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E[
H∑
t=1

Et] =
1− PEB
PEB

E (4.1)

Had there been no treatment, the individual would have spent the same amount of time
in the baseline distribution, using an amount of energy

∑H
t=1Bt, whose expected value is:

E[
H∑
t=1

Bt] =
1− PEB
PEB

B (4.2)

Therefore, the expected energy savings effected by the visualization for an individual is

E

[
H∑
t=1

[Bt − Et]

]
=

1− PEB
PEB

[
B − E

]
. (4.3)

For a more detailed look at the behavior of this model, in particular the effect of having
models of multiple participants each with unique parameters, we turn to simulations, which
we discuss in the next section.

4.3.3 Results

4.3.3.1 Pre-treatment survey

Distributions of scores on the energy literacy questions (Figure 4.5a) indicate a varied
knowledge of climate related topics, although average participant scores were somewhat
respectable at 68%. When pressed on whether Singapore is managing its energy correctly,
participants responded across a uniform distribution centered at 6.4 points out of 10 (Figure
4.5b). This result indicates a spread in faith in the energy management of the Singaporean
government.

We completed a regression analysis on bivariate relationships in the data and present two
takeaways. First, those who believed that the world should take collective action on climate
change tended to also value scientists’ portrayal of climate change as accurate (p=0.001)
(Figure 4.6a). Second, those who believed Singapore is managing its energy correctly also
tended to view it as a responsible actor in the world’s climate goals (p=0.005) (Figure 4.6b).

Our results concur with other literature on Singaporeans’ energy literacy and climate
change opinions. Rosenthal and Ho note that most Singaporeans (84%) view climate change
as somewhat or very serious (Rosenthal et al., 2013), which agrees with our observation
that respondents tended to place an importance on the necessity for global climate action.
Interestingly, a 2016 survey conducted by Singapore’s National Climate Change Secretariat of
Singapore (NCCS) found that most Singaporeans strongly believed that climate action should
be driven by the government as opposed to individual actions (Jamil, 2017).36 The NCCS
results may explain the correlation in our survey between positive appraisals on Singapore’s
energy management and how responsible the Singaporean government is in the world’s climate
goals.

36Many attribute this trend to the so-called “nanny-state” syndrome, whereby years of state intervention
have created a dependency on the government to address climate issues.
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(a)

(b)

Figure 4.5: (a) Distribution of scores on energy literacy test survey questions amongst
participants (out of 11 points) (b) Distribution in opinion on whether Singapore is managing
its energy correctly amongst participants (10 indicates highest agreement) (Spangher et al.,
2019a).
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(a)

(b)

Figure 4.6: (a) Relationship between participant opinion on whether the world should take
collective action on climate change and whether scientists’ portrayal of climate change matches
the phenomenon (10 indicates highest agreement) (b) Relationship between participant opinion
on whether Singapore is managing its energy correctly and whether Singapore is responsible
actor in the world’s climate goals (10 indicates highest agreement) (Spangher et al., 2019a).
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Figure 4.7: Summary of the main results from the experiment. Here we show averages of
groups per day across the week, with the yellow section highlighting the part of the week
which occurred after the treatment. The x-axis, “centered time around treatment” is the
days translated such that the treatment day always occurs on day 0 (Spangher et al., 2019a).

4.3.3.2 Results from Regression Analysis

This section describes the results of an extensive exploratory analysis. First, we show a
display of the data in figure 4.7. There are several items of note herein, which we will note and
support through through regression analysis: (1) working days are generally indistinguishable
from each other, (2) people tend to engage with the Game less, even though energy savings
persist over the duration, (3) greater logins to the online platform correlated with greater
energy savings (4) numerous predictor variables and interactions significantly predict daily
aggregate energy use (E), which we present in a regression output shown in Figure 4.2
(Section 4.3.3.2).

Main regressions results of note:

• Weekend Indicator (WI): Uniformity of weekday vs. weekend: First, we
observe that the working days of the week (i.e. Monday through Friday) are visually
indistinguishable from each other with respect to E, yet significantly different than
weekend usage. This was further confirmed in a regression analysis predicting E; a
categorical variable treating each day of the week as an independent predictor found
four of the five weekdays to have insignificant37 predictive power with respect to the

37When we say a predictor was insignificant in predicting a response, we use conventional definitions of
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response, after the variation from the first weekday was controlled for.

• Treatment Number (TN): Effect of repeated treatments: Second, we observe
that participants login less after multiple treatments, but save energy consistently
throughout the experiment. We tested multiple treatments by coding a TN: an integer
value that counted the number of times an individual had been treated. TN returned
as significantly negative when included in a regression predicting a users’ Login Count
(LC), which was an integer value counting how many times a user logs onto their online
profile. The significant relationship implied that there was a significant decrease over
time with how often users interacted with the Game. However, despite this, TN was
insignificant when predicting E across time, which implies that the energy habits that
the Social Game encouraged persisted throughout the treatment period.

• Login Count: Effect of interaction with the platform: Third, we observe a
positive relationship between LC and E. A safeguard was put into place to ensure
that LC was not unrealistically inflated; the count could increment only once every five
minutes. Regressions showed that Login Count robustly predicted E when controlling
for a variety of factors such as weekday vs. weekend and TN. As expected, the regression
coefficient in LC was negative, implying that the more a user logged into their system,
the more energy they tended to save.

• Main treatment effect on energy savings: Finally, we observe numerous significant
predictors of E, which, again, is our main response of interest, measuring daily aggregate
energy from each plug load of each desk. Given that E is a periodic time series, we
segmented the resulting data into three days before treatment and three days after
treatment. We include the previously noted variables, testing for a multiple regression
of the following form:

E ∼ TN+WI + LC ∗ TT + TI : TT + out of office (4.4)

Here, E is predicted by TN, WI, an interaction between LC and Treatment Time (TT):
i.e., A, B, or control, and an interaction between TT and “Treatment Indicator” (TI).
TI is an indicator variable that is 0 for three days before each treatment and three days
after, which measures the average energy use that persists after a few days. Note that
the equation follows standard R syntax, where ∗ is an interaction with terms considered
independently, and : is an interaction with only bi-variate terms considered.

• Interaction terms: The first interaction, LC:TT, attempts to elucidate an effect
between people’s LC and their TT that is above the average effect of LC; i.e., does a
different type of treatment engender different impact from interacting with the system?
The second interaction, TI:TT attempts to provide the average treatment effect for
different treatment types several days after treatment. The final term, Out of Office
(OO), is an indicator that keeps track of whether or not a person was physically in the
office, which we guessed from looking at distributions of energy demand.

5% significance in a frequentist OLS framework.
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Dep. Var: Energy R-sq: 0.284
Model: OLS Method: Least Sq
No. Obs: 1223 Df Resid: 1213
Df Model: 9

coef std err P>|t|

Intercept 599.27 34.03 0.00
TN -4.43 5.54 0.42
WI 77.73 34.157 0.023
LC -71.98 18.30 0.00
LC:TT[Ambient] 22.21 29.38 0.45
LC:TT[Control] -64.17 56.52 0.26
TI:TT[Engineering] 34.93 27.75 0.21
TI:TT[Ambient] -82.67 37.07 0.03
TI:TT[Control] 19.58 54.56 0.72
OO -610.19 33.20 0.00

Table 4.2: Summary of the OLS regression results (Spangher et al., 2019a).

Results of this regression conform to our hypotheses. TN is insignificant, which implies that
users’ energy savings does not majorly diminish during the extent of the game. Whether or
not a day is a weekend significantly predicts E, as we expect: during the weekends, desks use
77Wh less energy than during weekdays after controlling for the other factors. LC remains
significantly negative in this regression; for an average increase of one login, we expect energy
use to be approximately 71 Wh less per day. The TT interacted with LC, meanwhile, do not
significantly predict total energy, implying that the treatments do not effect the relationship
between interacting with the platform and reducing energy use. The TT interacted show a
strongly significant negative effect of treatment B: for the three days following treatment B,
we can expect on average 82 Wh less energy use after controlling for other variables. When
people are out of the office, we expect 610 Wh of energy use less (this variable is highly
collinear with, but not entirely explained by, WI.)

4.3.3.3 Post experiment survey

Through the post experimental survey, we endeavored to explore whether the quantitative
results we measured were perceived by the participants.

First, we queried the participants on the negative effect of TN on LC (see section 4.3.3.3):
people seemed to interface less with the game through repeated treatments. When asked
whether interaction lessened over time, two thirds of the respondents answered ”Yes”, which
confirms the quantitative findings.

Second, we queried the participants on our observation that the tree visualisation seemed
more engaging. Of the tree, a respondent stated:
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“The tree visualization provided insight and view on energy usage.”

Meanwhile, of the bargraph, a respondent stated:

“It was clear but I did not feel it to have any distinctly engaging quality.”

We received several comments similar to the ones shown above.
Finally, we received confirmation that the format of the treatment was sound, addressing

a concern that the treatment emails may have often been left unread. When asked how often
they opened the weekly email (the treatment), 83% of respondents said that they opened
it “all the time” or “almost all the time”. This was significantly different from responses to
being asked how important the email was to their interactions with the Game: responses
were uniformly distributed across a five point scale from “unimportant” to “important”,
confirming that while the emails may not have been impactful, at least that the method of
treatment delivery was sound.

4.3.3.4 Results from the Simulation

We will now argue that a scale up in simulation is appropriate. Our test population reflects
the wider Singaporean office worker population enough that behavioral dynamics from the
test population can be seen as generalizable. This is important because individual energy
savings only significantly improve sustainability when the savings are part of a collective shift
in behavior.

We claim generalizability for a number of reasons. First, the Social Game was run in
a general office with standard desk equipment38 and a normal 40 hours per week working
schedule (Monday-Friday). Second, the distribution of energy literacy’s width (see section
4.3.3.1) indicates that the participants are not uniformly experts on the subject — as one
might expect in a general office. Third, baseline energy consumption varied widely amongst
participants, indicating a spread in energy consumption as well.

We ran our simulation with 1000 simulated actors across 100 days. In total, the energy
savings were estimated to be 1.1 megawatt Hour (MWh), or approximately 1 kWh a person
over these days. Each person was in the “energy saving state” for a different amount of time,
so producing a estimate of savings per day would be a less meaningful task.

4.4 Energy Reduction Experiment 2: Persistence of

energy reduction behaviors following an

intervention

4.4.1 Background on Persistence of Energy Savings

An extensive study on energy reduction competitions found a mean electricity savings of
5% during the program period (Vine and Jones, 2015). Other studies have created energy

38Laptop or desktop computer, 1-2 monitors, desk lamp, etc.
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Figure 4.8: Distribution of participant weekday baseline energy consumption in log(kWh)
(taw, 2020).

competitions and determined that gamified frameworks motivate participants to save energy
(Ratliff et al., 2014; Dimitriou et al., 2018).

However, selected works have cautioned against the persistence of energy reduction schemes
past program periods. (Prindle and Finlinson, 2011) observed that energy competitions are
traditionally perceived as problematic because they require costly prizes, are zero-sum, lack
sustainability, and lack substantial evidence on the persistence of effects. (McKenzie-Mohr
and Schultz, 2014) further suggested that while extrinsic rewards can produce large changes
in behavior, they may also induce various side effects when retracted including reversion to
prior habits and “overjustification” effects, whereby intrinsic motivation to perform a task
decreases. Thus, we postulate that currently, reliance on extrinsic motivators (i.e. prizes)
prohibitively increases the cost of energy competitions, and intrinsic motivation to save energy
(developed through social norms, personal satisfaction, and heightened awareness) varies
based on individual characteristics once extrinsic rewards are removed. Many studies have
accordingly concluded that further research is necessary to determine how energy competitions
may address these challenges to support behavior change beyond the short term (Vine and
Jones, 2015; Geelen et al., 2012).

Recent evidence suggests that short-run energy policies can shape behavior in the long term
(thereby extending savings beyond the program period). While the evidence is collected in a
unique context (population, type of intervention, presence of crisis), we seek to quantitatively
understand if the measured effect generalizes to energy competitions. (Costa and Gerard,
2021) conducted an extensive study on the importance of hysteresis for the welfare evaluation
of corrective policies. The paper examined residential electricity use in Brazil during the
2001 electricity crisis and determined that energy savings produced by a 9-month-long policy
persisted for 12 years. Specifically, the energy-saving policy realized half of the short-run
impact (–23%) in the long term (–12%). The authors noted that the mechanism of hysteresis
was changes in utilization habits, and formulas presented in the paper could inform the design
of persistence experiments in other contexts.
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From this, we endeavor to answer two questions about the persistence of energy reduction
behaviors that— provided substantiation— would begin to reconcile issues of cost and
response heterogeneity in the energy competition environment.

First, do energy saving competitions— in lieu of energy policies— benefit at all from
savings persistence after the program period? Here, we hope to uncover extended energy
savings that increase competition cost-efficiency (extrinsic incentive dollars / kWh saved).
Currently, persistence in behavior programs remains a great unknown and most competitions
only assume savings to be counted while behavior change efforts are active. (Vine and
Jones, 2016) methodically selected twenty energy competitions to review and found only
anecdotal information on the persistence of energy savings. While competitions did not
measure persistence, the authors wrote that certain programs did study the persistence of
actions. For example, they cite that the winning fire department in El Paso’s Energy Savings
Challenge developed sustainable air-conditioning and lighting habits. Though qualitative,
the habits are indicators for persistence given that they are difficult to break (Becker and
Murphy, 1988). We are unaware of a study that attempts to quantify the persistence of
energy savings in an office space following a competition. The literature accordingly calls for
more contemporary and thorough research into savings persistence to assess the full value of
energy saving interventions (Hoffman et al., 2015).

Second, do reductions in energy consumption following a competition persist differently
for different people? Here, we attempt to provide greater clarity on the variation of intrinsic
motivation to save energy among participants after extrinsic rewards are removed. However,
energy forecasting of individual participants is difficult to model given the complex stochastic
structure of consumption (Shchetinin, 2019). Therefore, we attempt to group participants on
pre-competition energy signatures and evaluate the post-competition predictive power of the
resulting clusters (i.e. whether certain clusters end up displaying greater savings persistence).
We hope to isolate participants that are more likely to exhibit savings persistence post-
competition and recommend behavior change efforts be tailored to them. The literature
provides empirical justification for a clustering-based approach to energy forecasting. (Mikulik,
2018) performed a clustering analysis based on k-means to isolate daily energy demand and
meteorological patterns in an office building. The study concluded it was possible to distinguish
three daily energy demand patterns and established that clusters could be used in forecasting
models.

Reliable persistence measurements and predictive clustering outcomes would promote
cost-effectiveness and personalization in the energy competition environment. This paper
attempts to build towards that end. We will next examine the results of our tests for
persistence on the complete and cluster subdivided datasets. Finally, we conclude with an
analysis of the results and future directions.

4.4.2 Methods

4.4.2.1 Clustering

Per our second research question, we endeavor to understand whether certain groups of
competition participants exhibit greater savings persistence than others. This requires a
clustering regime that groups participants with similar pre-competition energy use patterns.
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Furthermore, the ideal regime will also produce groupings that exhibit similar post-competition
energy use patterns (this data is not visible to the clustering algorithm). Here, we evaluate
six regimes for clustering participants on pre-competition energy consumption. This section
covers our methods for narrowing down a tool that evaluates the post-competition predictive
power of the clustering regimes, selecting a clustering regime by means of that tool, and finally
applying the selected clustering regime to the dataset. The outcome is three distinct groups
of participants that we are then able to each test for energy saving persistence. Clustering
describes a process in which a given set of data points are grouped in k clusters such that:

• points within each cluster are similar to each other (homogeneous)

• points from different clusters are dissimilar (heterogeneous)

Data points are typically in a high-dimensional space and similarity is defined using a
distance measure such as Euclidean, cosine, or Jaccard distance. Here, we experiment with
both probabilistic– so-called “soft” clustering– and its counterpart– “hard” clustering. Hard
clustering assigns each data point to a single cluster with probability 1. For example, a
participant would only be assigned to one of k groups. Conversely, soft clustering assigns each
data point with a probability or likelihood of belonging to each of the clusters considered.
Given our previous example, each participant would be assigned a probability of belonging
to each of the k clusters.

We attempt to cluster on weekly increments over the pre-competition period to capture
nuanced behavior. Mean hourly energy usage per participant is normalized across each of the
weekly periods to prevent the clustering algorithm from simply picking up on total energy
consumption. Additionally, we extract auxiliary features in the form of peak characteristics
from each participant’s daily energy usage. These features include the number of peaks,
average peak height, average peak width and average peak prominence per day.

We elect to evaluate time series k-means and k-shape clustering algorithms (both “hard”
clustering methods) on the weekly pre-competition energy data and test k-means (“hard”
clustering) and Gaussian Mixture Model (GMM) (“soft” clustering) on peak characteristic
features. Hence, we considered six different clustering regimes.

For all clustering schemes, we used the “elbow” method to pick the number of clusters
(Ketchen and Shook, 1996), which ended up being k=3 on all models. While clustering is
performed on weekly intervals, we seek to prevent the clustering results from being influenced
by the assignments from one specific week. Therefore, we first attempt to aggregate results
using the mode of cluster assignments across all weeks of the pre-competition period. However,
this leads to “undecided” results when a player is equally often assigned to two or more
clusters. Instead, we elect to use the percentage of weeks a participant is assigned to each
cluster to alleviate potential uncertainty (i.e. 50% of weeks in cluster 0, 20% of weeks in
cluster 1, and 30% of weeks in cluster 2).

To select the best clustering regime, we diverge from traditional cluster quality metrics
found in the optimization problems that clustering regimes solve, such as in-cluster homo-
geneity. We do not seek to test how well the clustering regimes can separate participant
data, but rather how useful the clusters produced are for predicting post-competition energy
consumption. Thus, we decide to measure this predictive power by evaluating a simple linear
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Figure 4.9: Results of linear regression R2 based on the clustering method and dependent
variable (taw, 2020).

regression whereby cluster assignments are used to predict different dependent variables in
terms of their coefficient of determination, R2. The primary dependent variable of interest is
mean hourly energy usage after the game (EA)– though other variables are tested– and the
structure of the regression is of the following form:

EA ∼ C0 + C1 (4.5)

Here, mean hourly energy usage of a participant after the game is predicted by the
percentage of pre-competition weeks a participant is assigned to cluster 0 (C0) and cluster 1
(C1) by a particular clustering regime. Cluster 2 is omitted from the regression to serve as a
reference and to avoid multicollinearity.

Since each clustering regime is trained on pre-competition energy data, the regression aims
to show how well observation of characteristics occurring before the energy competition can
predict energy usage after the competition. An in-depth explanation on why the regression
model is chosen and how dependent variables are derived can be found below.

4.4.2.2 Model Explanation

We elect to build a linear regression model to measure the predictive power of the cluster
assignments produced by each of the six clustering regimes. We choose linear regression
mainly due to its simplicity and interpretability. We find no apparent need to capture more
complicated (e.g. non-linear) relationships in the data. To still account for the possibility of
such relationships, we experiment with Support Vector Machine (SVM) and classification and
regression tree (CART) models. However, the results do not contradict the simpler regression
results, so the regression is presented to preserve readability. Figure 4.9 displays five different
dependent variables used in the regressions.

Mean hourly energy is defined as:

ED =
TED
THD

and EA =
TEA
THA

(4.6)
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Figure 4.10: Results of linear regression R2 based on the clustering method and dependent
variable (taw, 2020).

Where TED/A is the total energy consumed by a player during (D) or after (A) the
competition and THD/A is the period duration in hours during or after the competition.
Overall competition performance is measured by the total number of times the participant is
in the top 5 winners throughout the two-week Social Game periods.

The ratio of energy savings is defined as:

RBD =
ED − EB

EB
and RBA =

EA − EB
EB

(4.7)

where EB is the mean hourly energy usage before the game and ED/A is the mean hourly
energy usage of a participant during or after the competition.

4.4.3 Results

4.4.3.1 k-Means Clustering

: The k-means clustering regime (on weekly energy values) results in assignments with the
highest R2 value on the post-competition dependent variable of greatest interest (EB). An
intuitive understanding on why the time-series variant of k-means performs best might be its
simpler nature, which complements the low-dimensional (only hourly energy consumption)
data well. Furthermore, k-means guarantees convergence (at least to a local optima) and is
known to work best for the fixed-size data the experiment provides. Finally, a few of the
clustering regimes have requirements (i.e. normally distributed features for GMMs) that may
not be satisfied, thereby contributing to the gap in predictive performance.

We use the k-means clustering algorithm to group participants based on cluster assignment.
The groups are used to partition the full Social Game dataset in preparation for persistence
testing as described in further detail below.
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Figure 4.11: List of indicators used to demarcate each period of the social game (taw, 2020).

4.4.3.2 Regression Analysis for Determining Persistence

This section describes the results of extensive data exploration and analysis on the energy
competition dataset. First, we present a more granular display of the data that captures
trends in energy consumption following the Social Game. Then, we set up and describe
the regression outputs in three stages: (1) we validate several indicators and variables that
predict energy use (2) we present results of the persistence regression without clustering (3)
we subset the dataset into individual clusters and re-run the persistence regression on each
cluster subset for greater insight into cluster significance.

We begin this section by describing and validating each of the indicators that are included
in the regression to control for confounding effects. Then, we analyze outputs of the persistence
regression without clustering followed by the persistence regression on subset cluster data.

• WI. We observe that consumption during the weekends is significantly lower compared
to weekday usage with respect to energy use. We confirm this in a regression analysis
predicting energy use with an indicator for weekends (p¡0.000).

• Game period indicator. We hypothesize that energy usage will change depending on
whether a date falls before, during, or after the Social Game. We further predict that
within these periods, energy usage may shift and should be analyzed. Therefore, we
split the raw data into 7 periods of roughly equal number of days to preserve consistency
(see Figure 4.11).

We assign indicators for each period in the dataset and validate that energy use is
statistically different before, during, and after the competition. We split periods with
equivalence so they may be statistically comparable to each other in the regression.

• Out of Office (OO) indicator. We detect office workers are not present at their
desk during certain periods. No log of office presence is made available, so we attempt
to resolve this using participant energy signatures. Office presence is inferred from
observing individual distributions of energy demand and marking a threshold for in-
office versus out of office. Thus, every participant is assigned an indicator each day
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with value zero if energy usage falls below the threshold for that day and value one if
threshold is met or exceeded. We observe energy consumption when office workers are
out of office is significantly lower than in-office readings (p < 0.000).

4.4.3.3 Persistence Regression without Clustering

We define Before Social Game (BSG), During Social Game (DSG) and After Social Game
(ASG). We now test for a multiple regression given previously noted indicators of the following
form:

E ∼ BSG1 +BSG2 + ASG1 + ASG2 + ASG3 +WI +OOI (4.8)

Here, energy usage (E) across all periods is predicted by each period of the dataset (DSG1

and DSG2 are omitted to serve as a reference and to meet the assumption that there is no
exact linear relation among the independent variables) along with the Weekend Indicator
(WI) and an Out of Office (OO). The results of the regression (see Figure 4) agree with
our hypothesis. Coefficients of energy usage during both before game periods are significant
(p < 0.05) and similar in magnitude, indicating participants consumed 49 kilowatt hour
(kWh) (BSG1) and 54 kWh (BSG2) more energy pre-competition versus during competition
(8-9% savings). This result is expected as the literature review highlighted previous findings
on the efficacy of energy saving competitions. ASG1 and ASG2 coefficients are insignificant
(p > 0.05), suggesting that energy consumption in these two periods immediately following
the energy competition did not deviate significantly from the reference value (DSG1 and
DSG2). However, statistical significance is observed on the ASG3 coefficient (p < 0.05).
The coefficient relative to the reference value (DSG1 and DSG2) is positive and similar in
magnitude to both before game periods, indicating a return to baseline consumption. Thus,
energy savings from during the game only appear to persist through the first two periods
immediately following the game.

4.4.3.4 Testing of Persistence effect on Data Subset by Cluster

Here, we test for a multiple regression with previously noted indicators on three subsets of
data (one subset per possible cluster), each limited to data from the top seven participants
with the greatest percentage of time spent in the cluster corresponding to the subset. The form
of the multiple regression is identical to the prior persistence regression without clustering
(see Equation 2). The results of all three multiple regressions are summarized in Figure
4.13 and highlight a couple points of interest. The magnitude of intercept in cluster 0 and
cluster 1 regressions are much lower than the cluster 2 regression intercept, indicating those
with higher baseline energy usage were placed in cluster 2. BSG1 is insignificant across all
three clusters for reasons that are not immediately clear but indicate that baseline energy
consumption well before the game was not significantly different from during game energy
usage levels. Significance is observed on the BSG2 coefficient in cluster 0 and cluster 1 while
the coefficient remains insignificant in cluster 2. Immediately following the game, cluster 2
exhibits a strong movement away from energy saving behavior, indicating a lack of persistence.
This finding is replicated well after the game in ASG3. Meanwhile, cluster 0 and cluster 1
demonstrate energy savings similar to in-game patterns in ASG1; however, cluster 0 reverts
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Figure 4.12: Summary of OLS persistence regression results without clustering (taw, 2020).

Figure 4.13: Summary of OLS persistence regression results on subset data (taw, 2020).

to baseline level energy consumption during ASG2 and ASG3 periods, while cluster 1 exhibits
persistence of energy savings at during game levels up to and including the ASG3 period.
Further analysis on cluster 1 shows that relative to BSG2, participants maintained energy
savings of 17% (44 kWh) in ASG1, 13% (34 kWh) in ASG2, and 11% (29 kWh) in ASG3.
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4.4.4 Conclusion

We conclude that in-game energy savings of roughly 8% are persistent for two months after
the Social Game followed by a reversion to pre-competition baseline consumption during
the third month. Furthermore, we conclude that clustering successfully isolates a group of
participants who uniquely maintain energy savings of 17% immediately following the game
followed by a decline to 11% savings during the third month.
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Chapter 5

Conclusions

5.1 Summary

Climate change requires a radical and complex transition in the way our energy sector
generates and uses energy. Solar and wind energy are leading carbon-free power sources, but
they are non-dispatchable, meaning that an operator cannot control when their generation
occurs. As a result, their growth may be stymied unless supporting technologies can change
how the rest of our energy system responds to their generation. Demand response is an
important tool in a suite of supporting technologies that help smooth the introduction of
non-dispatchable energy into the grid. The more effective demand response signals (prices)
are on responses (deferring of energy by appliances and building systems), the more quickly
solar and wind may decarbonize our energy system.

Demand response signals may be amplified by advanced controls, of which reinforcement
learning is a prime example. We present two different environments for testing demand
response price-setting at different levels of the grid. The first environment is MicrogridLearn,
an environment that transmits prices to a collection of buildings and learns to set prices in a
way that better shapes the energy and lowers energy costs for all buildings in its purview.
The second environment is OfficeLearn, an environment that simulates behavioral response
to prices. Using these two environments, we identify six key challenges in moving RL from
simulation to reality, and present RL strategies, some novel, to overcome them. First, RL
controllers implemented in the real world need to be data efficient: we present Offline-Online
RL, Surprise-Minimizing RL, and extrinsic and intrinsic planning as solutions. Second, RL
in the real world should be robust and guarantee safe action: we present a novel method, the
guardrails planning model, and demonstrate that using a conservative decision process with a
distributional prediction can help learning. Third, RL may get stuck in local optima: we
present meta-learning over domain randomization as a technique to ensure agent robustness.
Fourth, agents may be attacked: we demonstrate a novel adversarial attack on RL and
present a defense. Fifth, energy applications may require real-world RL to protect privacy
and generalize to new subdomains easily; we present the first ever application of Personal
Federated Hypernetworks (PFH) to RL to accomplish both tasks. Finally, hyperparameter
sweeps may entail large data consumption; we present a regression analysis of hyperparameter
sweep values to give a sense of hyperparameter-parameter strength.
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Finally, we discuss how RL may be implemented in experiment. We give a prospective
experiment plan. We present an API to connect the RL controller to the real world. We then
discuss two prior experiments run in the same office setting: an A/B test of two different
energy visualizations, and a measure of the persistence of the effects of energy reduction after
the experimental period ended.

Our work contributes to societal knowledge in the following ways. We are the first to
propose the use of RL for price-setting in energy systems, and we are the first to propose a
Social Game as a mechanism to incentivize price sensitivity in an office setting. Of our RL
methods, we are the first to propose adversarial poisoning during train time of algorithms.
We are also the first to propose the use of personal federated hypernetworks for training new
RL agents. Our other methods have been inspired by similar implementations in other fields,
but are novel to the communities and application spaces in which we operate.

We hope that, from our work, the community may continue to iterate on RL architectures
for price-setting, and may implement these techniques in experiment.
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5.2 Future Work

5.2.1 Extensions on MicrogridLearn Control

Safety: An RL controller might generate prices that result in infeasible operation. We tackle
this by using utility-set prices to enforce limits on the aggregator prices p⃗agg, s, p⃗agg, b ∈ [Ps,Pb].
An additional safety check would involve validating these prices through a single back-and-
forth communication with prosumers to ensure that their operation does not exceed system
limits. Probabilistic guarantees for RL controllers can be used (Bacci and Parker, 2020).
Additionally, supervised RL can help guarantee safety at the outset (Rosenstein and Barto,
2002).

Efficiency: While the large number of training iterations represent a greater computational
burden than iterative pricing methods, the RL controller will reduce the computational burden
on each individual prosumer by eliminating the need to construct forecasts or demand/supply
bids. Further, each prosumer’s computations occur in parallel and adding new prosumers to
the aggregation does not increase the problem complexity.

Robustness: Adversarial training is a useful method to construct robust RL controllers
(Pattanaik et al., 2017), and can be extended to our setup.

Optimality: Research has been done in bounding the sub-optimality of RL policies using
policy certificates (Dann et al., 2019), and research in this area can help provide guarantees
for our RL controller as well.

Practical Implementation: The training iterations needed are a barrier to real-life use of
an RL controller in a prosumer aggregation. However, there are numerous enhancements we
propose to address this. First, meta-learning: a large part of the training can take place in a
simulation environment which can use a rules-based heuristic as a starting point, and use
exogenous parameters to create a distribution of unique systems to train on (i.e. domain
randomization.) A technique like Model Agnostic Meta-Learning (MAML) can train in
the different simulations to approximate a starting distribution for policy network weight
initializations (Finn et al., 2017b). However, the accuracy of the simulation model will
determine how effective the RL controller is when it transitions to an actual aggregation.
Second, planning : a Dyna-like auxiliary model, either generative (i.e. GANs) or predictive
(i.e. regression or neural nets), could train with the agent and help augment data (Sutton,
1991b). Third, offline learning can incorporate data from other microgrids using techniques
in the causal methods literature to help adequately perform the data fusion necessary(Forney
and Bareinboim, 2019). However, validating these ideas will require more work.

As prosumer aggregations grow larger, they may participate in wholesale energy markets
instead of purchasing energy from utilities, and will have to adapt to variable energy market
prices as well as having to generate estimates of their own consumption and production. RL
algorithms have been previously used to optimize market participation, and these would be
complementary to the model we present here.

5.2.2 Variants of the OfficeLearn MDP

We plan to offer the user the choice between a step size that is a day’s length and a step size
that is an hour’s length. The alteration can provide a more efficient state space representation
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that provides for a fully observable MDP for the agent, as well as a longer trajectory for
action sequences (i.e., ten steps for every trajectory to determine the ten hours rather than a
single step producing all ten hours), at which RL tends to excel.

5.2.3 Future Work in the Multi-MicrogridLearn Setup

5.2.3.1 Proposed Work: Transactive multi-agent RL for Distributed Energy
Price Localization

Given that we have shown that a similar price-setting RL controller can be financially viable
at both the grid level and the building level, i.e. two different levels of the grid hierarchy, we
propose to expand the scope and complexity of our environment. What is the cumulative
effect of a network of RL controllers creating, essentially, localizing prices?

We propose to study the multi-microgrid environment above. As a “peer-network” of
controllers, a first solution would be to operate in parallel, with each receiving fixed input
prices from the utility. However, there emerges a natural hierarchy: we propose to situate
a meta-level RL controller on top of the level of microgrid controller; an aggregator of
aggregators. This meta-level RL agent may set a global set of prices in addition to the
utility’s set of prices. In addition, we can populate a level of controllers below the leaf: each
building, or at least one office building, may have a controller implementing a Social Game.
In this way, we may achieve greater coordination by taking advantage of environmental
structure.

5.2.3.2 Proposed Work: Fairness in Controls

Assuming that a microgrid controller covers a large enough area, we can be certain that
different socioeconomic strata are covered. If our RL controller sees a non-response by a
community to higher energy prices in an hour, it may be unable to determine whether the
reason is that it was a wealthier community indifferent to paying higher prices, or if it was
poor and had already deferred all the non-essential load. Thus, it would not know whether to
continue to increase the price or decrease the price. Unfortunately, it is the poor community
that stands to lose more if the controller makes a mistake. We propose now to simulate
microgrids socioeconomic status as observable meta-data. We propose to study differences in
behavior between controllers and intervene in architecture where necessary. For more reading
on fairness in AI, please see (Mehrabi et al., 2021).

5.2.3.3 Proposed Work: Vehicle to Grid Simulation

With some modifications of the action space, we can simulate “vehicle to grid” interactions
between the microgrids. A “vehicle to grid” deployment is a strategy in which electric vehicles
charge in one microgrid, and then drive over to another microgrid to release energy in times
of severe peak demand (Liu et al., 2013). We can easily extend our simulation to include
an action to deploy the fleet between grids to trade energy. Vehicle deployment may have
a significant effect on the prices that agents learn and thus have a significant effect on the
reward that the agent is able to attain.
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5.2.3.4 Proposed Work: Exotic Cryptocurrencies for Trading within a Cluster
of Microgrids

Cryptocurrencies are a way to securely transact between buildings while preserving privacy,
guaranteeing sales (“smart contracts”) and keeping a record. However, new coins can create
more unique features for better and more structured deployment of energy. For example,
tranched cryptocurrencies provide a way to “tier” the energy that is produced, which can
determine sale order when the production is volatile. Building A may opt to pay more per
kilowatt hour than Building B, which guarantees A’s place in line for the energy before
Building B(Russo et al., [n. d.]).

We could imagine an extension to MicrogridLearn where an agent helms the demand
response within each building and trades outwards. Financial benefit may accrue if other
buildings are willing to buy energy reductions (or local generation) for more than the utility’s
sale price. Specifically, imagine that if the utility’s sell and buy prices are $2/kWh and
$4/kWh, and a building may be able to reduce (or produce) energy for $1/kWh. It may then
sell that energy to another building for $x/kWh, with 2 ≤ x ≤ 4, so that building can avoid
paying more for the utility’s energy. The agent may set a different price for each tranche of
power, and transact with other buildings in a complex and nuanced way. The tranches create
a natural “waterfall” in which more energy in one tranche overflows into another tranche.
Energy sold in the most expensive tranches are most likely to filled to the full demand, and
thus, the expensive tranches provide a service close to baseload power. In a way, the agent is
selling not only power but also probability of delivering future power.

Please see Figure 5.1 for a depiction of how an energy-sales coin may work. On the top
panel are tranches filled by the coin, with senior, middle, and junior tranches by customer
priority. On the bottom are pro-rata, equal allocation which nonetheless proportionally
allocates energy.

We may even imagine an aggregator coordinating the sale of a large amount of prosumer
demand response from many buildings as a single entity in order to submit higher and more
influential bids on the generation market.

5.2.4 Further Investigation into Guardrails

5.2.4.1 Ablations of the Planning Model to Help Understand How to Leverage
Uncertainty

One of the important contributions of the guardrails project was the following: did the
guardrails would in spite of or because of planning model uncertainty?

Preliminary evidence is mixed. We found that a planning model with fewer training
examples was better for learning, which was a surprising finding. It was almost certainly due
to the fact, however, that the fewer the datapoints, the more uncertain the model was in
predicting, and so the more conservative the decision threshold was. A similar outcome may
have been accomplished by decreasing the cost threshold in the planning model with more
points: both would have required actions to be more certainly positive.

An ablation on training points and threshold would help us understand the role that the
planning model plays in helping an agent avoid unsafe actions. Clearly uncertainty by itself
may not hurt an agent’s ability to predict safe actions; it seems likely, furthermore, than some
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Figure 5.1: Two metrics from a proposed tranched cryptocurrency for energy, from (Russo
et al., [n. d.]).

uniform increase in uncertainty the state space is unlikely to hurt the agent. However, at
what point does incorrectly assessed uncertainty hurt a controller’s functioning? How might a
decision rule accommodate uncertainty in uncertainty? These are questions for future work.

5.2.4.2 Dynamic Decision Thresholds

In our study, thresholds were constant as the baseline, TOU pricing, was constant. In
another situation, where a baseline may also be moving (i.e. a rules based controller) it
would be interesting to understand whether we could still elicit improvements in learning.
We hypothesize yes, but perhaps the fixed threshold creates a rule that is easier for the agent
to internalize (a piece-wise function in the implicit dynamics space.)
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5.2.4.3 Including Offline Datasets in Planning Models

Methodologically, we seem to have stumbled upon an interesting use of offline data, but we
do not know how to take into account data distribution shift. Incorporating data distribution
shift may unlock the ability to incorporate larger offline datasets into planning model creation
which may smoothly handle the difference in data distribution (similar, in fact, to geographic
averaging in power systems.)

We propose to explore further how we can leverage larger offline datasets instead of
slowing the learning of the RL price controller. Some suggestions of how to do so may involve
exploring different distributions to sample actions for the initial offline dataset collection as
well as guardrail strategies for planning model ensembles with smaller variance among the
component neural networks. We may also use some form of Thompson sampling in decision
rules (Bouneffouf et al., 2020).

5.2.4.4 Use of Guardrails in a Longer Trajectory

We study a situation in which the environment’s state is a series of 1-step decisions. However,
the guardrails method is easily extensible to a situation where a trajectory is important.

The simplest and perhaps most extreme way to extend the Guardrails to multi-step
trajectories is to attempt to isolate single actions on the backdrop of greedy action in order
to compare apples to apples. That is, assuming a trajectory τ of length T , exploratory action
a1 ∼ πθ would be the next action sampled from the policy and a1,RBC ∼ πRBC would be the
action sampled from the rule-based controller, our baseline. Sample actions a2, ...aT from
greedily from the same policy (either πRBC(ai|si) or πθ(ai|si) for i = 2, ..., T − 1) thereafter,
in both cases, to ensure that the effect of the first decision is what is being compared. We
may call the trajectory τθ,b where the experimental action is sampled from our policy and
τRBC,a where the experimental action is sampled from our baseline, where b ∈ (θ, RBC) to
correspond to the policy where the remainder of the trajectory is sampled.

What metrics should be used as the decision rule? An aggregate metric for each trajectory,
such as the average return over τ , or the (single) reward at step T , may be appropriate. In
following with our method, any aggregate metric would be distributional in prediction if a
trajectory in our planning model is sampled. Thus, we may use distributional comparison
metrics (KL divergence or Kolmogorov-Smirnov tests) to say whether the experimental action
has had a significant effect.

Many implementation questions remain. If τ is long enough, would experimental actions
ever have a large effect? If not, then we could imagine sampling a few (t < T ) actions from
each comparison policy and then sampling the rest from the same policy, in order to test
a difference in short-term strategy. However, we believe that it is useful to answer such
questions if we are to usefully extend the guardrails method to other domains.
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5.2.5 Extension on Domain Randomization Driven Meta-Learning

5.2.5.1 Using Adversarially Compounding Complexity by Editing Levels
(ACCEL) to Create Structured Auto-Curricula for Intelligent
Environment-Side Evolution

Disconnects between simulation and real world may come in the form of variability and
idiosyncrasy.

Some of idiosyncrasies may be failures in communication between the environment and
the agent, such as the failure to communicate accurate (or any) state information, or the
failure of the environment to respond to actions. For instance, a transactional microgrid
environment may transmit biased, noisy, or flat readings of the power consumed along the
network. The interface that displays prices to prosumers may display zero prices instead of
the prices the agent intends to transmit (Sipple, 2020).

Other disconnects may come in forms of variability. For instance, the weather in the real
world may be much more varied than the weather in simulation. Holidays may skew energy
use. Summer months may bring difference in behavior (vacations, etc.)

Many of the disconnects mentioned above complicate the environment, but we may ideally
like the agent to learn the correct environmental dynamics before it learns the complications.
Some of the complications may be inline with existing dynamics (i.e., weather variability may
correlate with expected changes in energy use.) Other complications may seem to obscure
existing dynamics (i.e., if the environment does not receive a transmitted action, it may be
unclear to the agent whether this was some fundamental response of the environment or
simply a mistake) (Zhao et al., 2020). However, the agent in both cases, the agent may be
better suited to learning the correct dynamics first before learning complications.

Curricula may be a great way to help RL agents adapt to real world idiosyncrasies.
Curricula are sequences of environments that change in ways to produce valuable output
in agents’ functioning. Our work on domain randomization in meta-learning is a form of
curriculum, albeit it a disordered and inefficient curriculum. We may easily imagine other
types of curricula, such as manually incremented curricula, who build difficulty over time so
that an agent is first led to local optima in an easier environment and then introduced to a
novel dynamic.

However, if one’s goal was to adjust an agent to several different types of idiosyncrasies
at the same time (i.e. sensor failures, weather variability, and action sensitivity), it may be
inefficient for a human to decide to increment the difficulty of all idiosyncrasies at the same
time.

To this extent, auto-curricula may be important. Auto-curricula are sequences of en-
vironments that are determined with reference to the agent itself, rather than externally
determined. There exists a growing literature of work (Parker-Holder et al., 2022; Dennis
et al., 2020) interested in leveraging auto-curricula to help agents grow, which introduces a
very interesting development in RL: an environment-side learning in addition to an agent-side
learning.

Regret is an important measure for advancing autocurricula. It is defined as the difference
between the reward an optimal policy could achieve and the reward a current policy achieves
given a state:
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Figure 5.2: A depiction of the environment evolution process proposed by ACCEL. Image
copied from (Parker-Holder et al., 2022).

Ut(π(θ), θ) := argmax
π(θ)∗∈Π

V (π∗(θ))− V θ(π(θ)) (5.1)

Regret is a great measure to create an autocurriculum because it identifies: (1) sane
environments (2) useful environments for the agent at its current state. If an environment
did not have a feasible optimum for an agent, the optimal policy would perform poorly, and
so regret would be low. Similarly, if an environment were easy for the current agent, the
current policy would perform near optimal.

Of course, it is impossible to exactly recover regret (otherwise one would already have the
optimal policy.) Two attempts that recover regret are Positive Level Replay (PLR) (Jiang
et al., 2021), which estimates regret from the temporal difference error, and PAIRED (Dennis
et al., 2020), which optimizes an adversarial agent within an environment prior to evaluating
the current agent. Of the two, it is the opinion of the author that PLR is preferable due to
ease of implementation.

One auto-curricula strategy, ACCEL (Parker-Holder et al., 2022), uses PLR to estimate the
regret in novel environments, and continually leads an agent through sequential environments
that are estimated to have high regret. It evolves environment using genetic algorithms.
Please see Figure 5.2 for a depiction of their evolution process within their test environment,
a maze environment.

We are extremely interesting in applying (Parker-Holder et al., 2022) to Sim-to-Real
applications where we could evolve environments to have successively more and more failures.
Here, we believe that agents would be taught basic skills of well functioning environments and
gradually led to learn more and more idiosyncrasies in order to anticipate well the demands
of the real world.
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5.2.6 Extensions on Adversarial Attacks to RL

The goal of our work in adversarial attacks to RL is to call attention to the threats made
possible by adoption of RL in energy grid pricing. Towards this end, we focused on a narrow
yet concrete setting, leaving much room for future work.

• The classical adversarial machine learning literature has an abundance of targeted
attacks, in which the adversary is able to lead the agent towards a particular policy.
One of our next objectives is to design an adversary to cause targeted damage, for
example to lead the agent to learn a policy which puts the voltage constraints of the
power grid at risk.

• Our proposed defense requires the RL agent to drop as many trajectories as could
potentially be compromised. More sophisticated defenses could likely result in less
dropped data and more robust learning.

• We would like to explore our attack in more environments. In parallel, we hope to
achieve successful attacks with smaller settings of ρ and ϵ.

5.2.6.1 Weaker Attack Models

Our attack model considers a malicious entity that takes control over a small fraction of price
controllers and causes them to slightly misreport prices. The attacker leverages the pricing
scheme set by the provider to find small perturbations of prices that maximally mislead the
agent.

In this work, we granted the attacker full (read-only) access to the neural network used
by the RL agent. If the RL agent naively sets pricing schemes in each microgrid controller
by uploading the pricing policy in full, then this is indeed a realistic assumption. However,
a security-aware provider may instead upload an obfuscated pricing policy that retains the
same functionality of the learned policy without exposing the parameters of the neural
network. This precaution would prevent our attacker from being able to compute (and
reverse) the gradient. An alternative attack could perhaps exploit the transferability of
adversarial examples (e.g., (Papernot et al., 2016; Liu et al., 2017a)) to bypass this defense.

5.2.7 Intrinsic Motivation

A future exploration for our intrinsic motivation project may be to plot the visitation densities
in order to more directly measure the extent of exploration.

One area of future work that may be interesting is to try competence-based intrinsic reward.
This may cause different skills to be be learned for different areas of energy consumption and
different prices. This may better capture similarities in the environment for different choices
of price setting. Another extension of this project may be using multi-agent reinforcement
learning. By deploying multiple controllers, each trying to maximize their reward, we can
attempt to make each agent compete with each other to maximize their own reward. This
may allow the controllers to set better prices and lead to a more drastic shift in demand.



CHAPTER 5. CONCLUSIONS 138

5.2.8 Future Work in Personal Federated Hypernetworks Applied
to RL

5.2.8.1 “Cost of Privacy”

We wish to further investigate the “cost” of privacy in terms of the negative impact it may
have on training time and thus on cumulative aggregator profit. In order to create a true
apples-to-apples comparison, we would need a mechanism that aggregates information across
microgrids in a suitable way. Some ideas on this front include multi-agent RL that shares the
critic but personalizes policies, and hierarchical RL with a global aggregator.

5.2.8.2 Vertical Integration of the Hierarchy

In the future, PFH may enable further exploitation of the hierarchical nature of price setting
for energy demand response. The energy grid can be imagined as a hierarchical tree (Spangher,
2021), with buildings responding to energy prices set by microgrids, which respond to energy
prices set by city utilities, which respond to energy prices set by state utilities, etc. In the
future, we may have IoT devices adjusting demand to energy prices set at the building level.
At any level of the energy grid, the task is the same: set prices for agents beneath you to elicit
a demand response. In this work we have only looked at one level of this energy hierarchy,
but the methods we have used could be applied to other layers of the hierarchy as well, and
even multiple levels of the hierarchy. One could imagine a hypernetwork that learns from
price-setting agents at every level of the hierarchy, and can be used to rapidly initialize agents
to manage any new entrants to the energy grid, all while preserving privacy at different levels
of the tree.

5.2.9 Future Work in Extrinsic Pretraining

Our exploration in heuristic based extrinsic pretraining has many opportunities for future
work. One may bound the areas of the state space that it can explore, vary the structure of
the planning environment, or cycle through several different extrinsic rewards according to
their needs.
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5.3 Limitations

5.3.1 Limitations on OfficeLearn Environment Setup

Other Common Resources Considered It should be noted that our results perhaps
under-tell the story of office demand response: we lack a structured way to measure behavior
towards air conditioning, lighting, and ventilation, including a comfort model to capture the
interplay between price and perception of comfort. While our simulation might ambiguously
include some of these demands as generic office worker energy demands, it does not do so
explicitly. Indeed, according to EIA estimates Agency ([n. d.]), lighting accounts for 17% of
energy use, ventilation 16%, and cooling 15%, whereas computers and office equipment, the
categories that are best captured by our analysis, only account for a combined 14%. We
assume therefore that the cost estimates we provide are a lower bound on the total cost
savings that a pricing scheme within an office building.

Lack of Human Data We are limited by the inability to conduct an experiment on real
people in an office building due to the pandemic interrupting in-person office work, and thus
have resorted to reasonable behavioural simulations.

5.3.2 Limitations on Guardrails

5.3.2.1 Planning Model Data Needs

Our work assumes the ability to gather a cheap offline dataset of human responses to social
game prices, perhaps by conducting the experiment on a single floor of the building to start
with or a stratified sample of office workers.

5.3.2.2 Accurate Planning Model

Our neural net ensemble is an attempt to approximate the Oracle with a practical planning
model. However, while it produces a less biased distribution than a single network, it likely
still has some systemic bias in its predictions. The low frequency of the guardrail ”trigger”
in suggests that poorly trained ensembles tend to underestimate costs, which is followed by
worse performance.

Therefore, we suggest that our results are taken in the following: given a limited amount
of engineering time, one may balance the engineering required to increase the precision of
their planning model with the engineering required to increase the normalcy of errors of their
planning model. Gains in either direction will help the RL agent perform better and reduce
demand response deployment costs.
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5.3.3 Limitations on Adversarial Work

5.3.3.1 Practical Implementation and Subsequent Poisoning of a Pricing
Aggregator

On both the positive and negative end, our work may suffer from high so-called “deployment
costs”; i.e. the length of time that it may take a prosumer to train. Although within the
context of RL our agent and attack actually happen quite quickly, a real-life investor may
nevertheless balk at the notion of an RL algorithm leading microgrids on a twisting journey
of price exploration for close to a year. Additionally, a real-life microgrid may be much more
non-deterministic than even a complex simulation, making it difficult to forecast the strength
of an adversary.

5.3.4 Limitations on Personal Federated Hypernetworks

What are potential negative societal effects of our work? Overall, negative effects to prosumers
are limited, as the focus of our work is in protecting consumer information. Furthermore,
prior work demonstrated that the presence of an aggregator consistently reduced energy costs
for consumers.

However, a persistent danger of AI is that it is often through centralized profit-seekers
that it is deployed. Our work is no different in this regard. Although our specific innovation
protects prosumers, it may improve the economic viability of a profit-seeking entity whose
scale may eventually enable it to further its own profit at the expense of prosumers.

Also, the act of setting prices in systems may raise fairness concerns. If initial training
microgrids are biased towards wealthier residents, the PFH may initialize new policies with
pricing that benefits consumption habits of wealthier clients but penalizes those of poorer
clients. A vivid illustration may be seen in the types of prosumers who are best poised to
benefit from economic aggregation: prosumers with large solar panels and batteries are able
to shield themselves from or profit off of high prices by consuming their own energy, and
may fully charge their batteries when prices are low. Prosumers with smaller or no storage
capabilities do not have this luxury, and thus are more vulnerable to the negative effects of
price fluctuation.

Technically, our work is limited in several ways. We present a “goldilocks” zone in which
PFH outperforms other methods, but as our simulation reduces the complexity of the world
by a significant degree, it is unclear how or where this goldilocks zone would appear in the
real world. Second, we take care to make sure that information passed within our system is
privacy-preserving, but any privacy is only as safe as the firewalls on the rest of the system.
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Appendix A

Endnotes

A.1 Physical Basis for Climate Change

I wish to explain thoroughly the physical basis for climate change, as it is important for
everyone to understand. Thus, I will take some time to explain why the burning of fossil
fuels relates to climate change. To understand the former, we must understand a bit about
fossil fuel formation.

Fossil fuels is an umbrella term encapsulating different fuels such as coal, oil, natural
gas, and shale that are formed over millenia and are generally made up of molecules called
“hydrocarbons”. Generally, organic matter which, as it decomposes, is gradually transported
deep under the earth’s surface, is chemically transformed by geologic pressure and heat.
Oxygen was almost completely absent in these conditions, and so a specific reaction occurred
that turned the organic matter into a waxy substance called kerogen. As the geologic process
continued, kerogen gradually underwent a process called catagenesis, and transformed into
masses of substances with long hydrocarbon chainsXXXII.

The starting organic matter, geologic composition, and various amounts of heat and
pressure all create different fuels. Oil and other petrofuels tend to result from the remains
of algae that over many years sank to the bottom of shallow seas and were buried under
layer after layer of sediment. Coal, meanwhile, tends to result from massive peat forests and
trees which, over time, had some probability of cycling down in the massive ground carbon
cycles(pet, [n. d.]). Natural gas generally arises from oil deposits which occur under some
hard geologic layer, trapping the gas and allowing it to gather. Please see Figure A.1 for an
elementary recap of the above.

Fossil fuels are all extremely useful for one reason: combustion. The long hydrocarbon
chains are composed of a backbone of carbon to carbon atoms surrounded symmetrically
by hydrogen atoms. Although stable at room temperature, these molecules are relatively
unstable above certain thresholds and burn easily due to the long carbon chains. Carbon to
carbon bonds surrounded by hydrogen molecules are relatively weak chemical bonds.. Perhaps
the most consequential building blocks of modern society have been a series of inventions
that harness the combustion of fossil fuels in increasingly sophisticated ways to harness
their chemical energy, creating electricity, powering engines, and manufacturing advanced
petrochemicals. When hydrocarbons are burned, their long hydrogen chains are split and the
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Figure A.1: An elementary diagram demonstrating fossil fuel formation (fos, [n. d.]b).

resulting cloud of carbon and hydrogen combines with atmospheric oxygen to form carbon
dioxideXXXIII Please see Figure A.2 for a visualization of some common fossil fuel structures.

Combustion of fossil fuel fuels would not be an issue climatically were it not for a
phenomenon known the warming potential of carbon dioxide and other greenhouse gases
(GHGs)XXXIV. Light that enters the Earth’s atmosphere enters as high energy photons in the
visible spectrum. The atmosphere scatters the energy of the light, but much makes it to the
ground which absorbs some of the energy. Some remaining energy, however, is reflected back
towards space as blackbody radiation, i.e. lower energy photons below the visible spectrum.
Carbon dioxide and other atmospheric molecules with high warming potentials re-reflect
some of this radiation before it leaves the Earth, essentially harvesting more energy from
the photons that originally entered. Earth’s atmosphere and a stable supply of greenhouse
gases are an incredibly intricate and finely tuned instrument; the process is essential to
maintaining a temperature that can support life as we know it. Please see Figures A.3 and
A.4 for demonstration of the blackbody effect and radiative forcing of common GHGs.

Regardless of the method of fossil fuel formation or fossil fuel combustion, the end result
is on an abstract level the same: many atmospheric elements, including carbon dioxide, were
at one point fixed into solid organic matter, and geologic processes buried them deep into
the earth’s core, preventing them from being easily reintergrated with the atmosphere. The
process of geologic carbon fixing slowly decreased the warming potential of the atmosphere.
However, as a result of burning the fuels, humans are causing a rapid reintegration with
the atmosphere, changing the composition of the atmosphere and the warming potentials of
the atmosphere at very fast rates relative to geologic timescales. This process is the process
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Figure A.2: Chemical structure of some common fossil fuels (fos, [n. d.]a).

Figure A.3: Visible light and blackbody radiation through the Earth’s atmosphere (bla,
[n. d.]).
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Figure A.4: Radiative forcing of common GHGs (Brunetti and Prodi, 2015).

known as “climate change” and could have profound impacts on nearly every system on the
planet.

The earth has myriad positive feedback loops which, once triggered, may result in runaway
climate change (Podesta and Ogden, 2008). The author looked into methods to address
climate change once thought extreme, such as geoengineering (Keith et al., 2010) or carbon
capture(Van Arsdale et al., 2022), but believes that because feedback loops must be accounted
for in carbon emission, believes that the entire conversation on carbon capture is slightly
impoverished. That said, positive social tipping points in climate change awareness are also
important to consider (Moser and Dilling, 2007).

A.2 Climate Modeling

Climate change modeling is a labor and compute intensive task. Lewis Fry Richardson, in
1922, first published a book on computational climate modeling, imagining that if he had
a “stadium full of 64,000 [human] computers”, he could compute the weather by solving
differential equations for gridded units dividing the earth’s surface(Cli, [n. d.]). Indeed, some
of the earliest computers, such as ENIAC at University at Pennsylvania, were deployed to
run early climate models. Later, the first supercomputers were developed to run modern,
large scale models known as Global Climate Models (GCMs).

Amazingly, even Richardson’s speculation on climate computation was not the first to
imagine and endeavor to compute potential climate change. Svante Arrhenius, the famous
Swedish chemist behind the Arrhenius equation that we learn in high school, laboriously
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completed numerical calculations necessary to estimate that decreasing carbon dioxide by
half in the Earth’s atmosphere would decrease global temperature by an average of four to
five degrees Celsius, which is correct within some margin of error (although a calculation in
the opposite direction, climate cooling, as the ones done today.) Guy Callendar was the first
to rigorously estimate the warming potential, using a 1D radiative transfer model to show
that rising CO2 levels are warming the atmosphere. His result is published in the Quarterly
Journal of the Royal Meteorological Society in a paper entitled, “The artificial production of
carbon dioxide and its influence on temperature”.

Callendar’s outcome shows the sheer length of time that the phenomenon was known
to scientists, a fact that the oil industry has often labored to hide. These models tell us
beyond all reasonable doubt that the atmospheric intuition explained in the previous section
is indeed affecting the world; they also give predictions on what effects are happening where
at given points in time.



APPENDIX A. ENDNOTES 146

Notes

II will describe briefly the aspects that personally motivate me the most about climate
change.

First and foremost, I am concerned with the forcible displacement of poorer people as
agrarian climate dynamics change and farming becomes untenable. The UN has estimated
that around 1.2 billion people to be official “climate refugees” by 2050(UNE, [n. d.]). The
term “climate refugee” comes from 1985, when UN Environment Programme (UNEP) expert
Essam El-Hinnawi defined climate – or environmental – refugees as people who have been
“forced to leave their traditional habitat, temporarily or permanently, because of marked
environmental disruption.” The depths and widespread nature of the suffering are difficult to
fathom, and the extent to which these masses of vulnerable people can be exploited by bad
actors (through cheap labor, expensive loans, and other forms of human trafficking) is painful
for me to imagine, especially when these people have contributed almost nothing to the cause.
For these reasons, it feels clear to me that climate change is clearly a form of class warfare.

Prefacing the following with the disclaimer that I am not a trained ethicist: while the
prospect and ramifications of ecosystem collapse worries me and of course I find the large-scale
suffering and untimely deaths of many animals to be deeply tragic (not to mention intricate
systems of animal-to-animal dependence which have developed over millennia - e.g., one
report found that specific snake populations on a remote island were devastated by decreasing
numbers of migratory birds who originate half a world away), their deaths feel like outcomes
that are more similar to what their deaths would have been in a counterfactual world without
climate change.

Instead, with displaced people, the effects of seems to moreso breach a social contract
that they have already contributed to with their labor. It is essential to note that most
climate refugees stay as internal refugees within their native countries, moving to cities and
urban slums in the hopes of picking up industrial work. However, some do travel to other
countries in order to find work and to be safe from climate-exacerbated conflict.

Thus, in response, political impacts arise related to the large-scale movement of poor
people. A PNAS paper (Kelley et al., 2015), although criticized, recently linked climate
change to the Syrian war, which caused mass displacement of Syrians, the speed of which
triggered protectionist political movements across Europe. While nothing but a dilettante
in political geography, I claim the Syrian mass migration event fueled a political movement
that may have languished otherwise: it is my guess that slower movements of people would
have created less political impact in societies. Indeed, more generally, we know generally that
perception of swiftly changing contexts leads voters to lean conservative.

Drawing the argument back to my personal relationship with climate impacts: I ultimately
want to live in a society that is culturally welcoming, politically liberal, and actively trying to
improve its concept of safety nets for all. Thus, I fear that the rapid and numerous changes
of climate change will contribute to a political climate that I do not wish. This, among with
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myriad other reasons, motivates me to work in the area.

IISometime from the years 2005-2020 it fell somewhat out of vogue to, when writing to
communities such as energy efficiency engineers, re-introduce climate change or allude to it
by describing one’s work as being in “sustainability” or “environmentally friendly”. I believe
there may be multiple reasons for this. First, by the 2000’s, generations of scientists had based
lives and careers on the issue, and so to be overly explicit about sustainability motivating
was to telegraph one’s newly having entered the field. The mindset of needing to persuade
one’s audience on the necessity of sustainability was that of one who primarily communicated
with audiences outside climate and energy a group that was growing increasingly large and
professionally diverse. Second, the “energy transition” was starting to find legs in motivations
other than altruistic concern for the environment. To focus work on those motivations was to
look forward into what the energy transition could become, not to look backwards into the
motivations that first powered it. Thus I will try not to inundate the reader with facts about
climate change in my introduction.

IIIIt is worthwhile to pause and note the philosophical goals of Energy Transition, which
are to maintain the fossil-fuel-derived promises of modernity without incurring negative
environmental externalities. promises of modernity can and should be defined is certainly
up for debate. For the purposes of this dissertation, I argue that these promises can be
encapsulated in three freedoms:

1. the freedom of large-scale movement arises from the use of petrofuels as engines
of travel which enables us to transport ourselves fast and far. Freedom of movement
dissolves the centuries-old practice of living where our familial roots are, and enables
some of us to choose where we live depending on what location we feel is most in line
with our values and personal aesthetics. One aspect of modernity is the fluid choosing
of identifies based on choice of common location.

2. The freedom of time results from the harnessing of petro-derived electricity to perform
labor that would have taken considerable human effort and time in the past. Freedom
of time creates time for economic specialization or leisure activities. A diverse economy
allows for an interesting multitude of job types and for the progression of academic
knowledge generation.

3. The freedom of material accumulation may result from an increasingly diverse and
petro-powered economy in which production per-capita is higher than at any point in
human history. This material availability positively impacts the quality, comfort, and
longevity of life that many are able to enjoy.

Energy Transition is an event that can and should happen, but it is the pragmatic belief
of the author that it must occur in a way that retains most or all of the freedoms that
comprise the promises of modernity.

There exists a field called “Energy Humanities” that seeks to train the critical lens
developed in critical and poststructural theory on the Energy Transition. Of the previous,
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Casey Williams (Williams, [n. d.]) takes a more assertive tone on how truly fossil-based the
promises of modernity are, saying:

It might be worth pointing out that the promises [this dissertation] identifies —
freedom of movement, time, accumulation — really only become recognizable
as promises as fossil-fueled industrialization begins to take off in Europe. In
other words, the promises of modernity are bound up with the sorts of economic
activity made possible by fossil fuels. This means that energy transition is really
about replicating the social and cultural features of a fossil fueled world without
fossil fuels. When we understand this, we can see that energy transition is more
complicated than simply switching energy inputs; it’s a process of reinforcing (or
challenging, as the case may be) ways of life, and expectations about how life
should be, that grew up alongside our expanding use of fossil fuels.

Will there be ways that the output of the green transition, i.e. a system composed of
competing manufacturers of new materials? The answer is almost certainly “yes”: batteries,
wind turbines, solar panels, etc., all require some degree of material accumulation which may
come from mining fraught with geopolitical implications. It is the opinion of the author that
many fields will develop alternatives to material bottlenecks. Many of the most problematic
minerals in green energy support as opposed to compose the energy generation, and so the
market is more suited to help innovate around bottlenecks. Green energy lends itself to
democratization of generation as well: rooftop and community based generators are possible
to harness common fuels of sunlight and wind in a much more decentralized way than centrally
mined fossil fuels.

In order to maintain the freedom on time that electricity provides, Energy Transition
must create an alternative system of electricity generation that meets the dynamic demands
of people.

IVWhile maintaining freedoms may seem like a constraint on the way Energy Transition
occurs, it in some ways is liberating itself: it allows us to unleash creativity on ways we
may retain freedoms under radically different forms. For instance, although not the focus
of this dissertation, we may first constrain ourselves to replicate the freedom of vehicle
transportation by creating an electric vehicle production economy; however, when realizing
that vehicle ownership is only instrumental to the freedom of transporting oneself and one’s
materials quickly and efficiently, we may then liberate our strategy to create mass public
transit systems that provide the same freedoms.

VI’ve grappled with the ethics of material accumulation for a long time: whether it was
moral, i.e. whether it was ethically permissible given the knowledge that a study of Marxism
gives one: that the production of material incurs some exploitation from the works by the
owners of the means of production, that the system inherently drives greater production and
greater consumption, and of the negative effects it may have on lower class labor and the
planet. All of these are at odds with the fact that the Energy Transition currently both seeks
to maintaining similar levels of material accumulation and is accomplished through material
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production. The Energy Transition gives us the chance to imagine what alternate system
might exist to help us achieve similar promises of modernity. However, it is the opinion of
the authors that, practically, the speed at which the Energy Transition must occur means we
must reconcile some of the ethical issues we have with the current system.

I once had the pleasure of asking a variant of the question to noted Marxist scholar Angela
Davis: did she feel complicit with the capitalist system in taking a job in the UC system,
which hegemonically reproduces capitalism around the world, and accruing material items?
She said that she tried for decades to escape the “system”, only to discover just how far the
system actually reaches (i.e., that it is impossible to escape.) She furthermore acknowledged
her own appreciation of the Apple computer she was speaking from, the car she drove, and
other material items she accumulated. She reconciles her material appreciation with the
knowledge of capitalist disparity by practicing constant detachment from her materials. She
enjoys her materials while mentally ensuring that if she were called to give them up during
a revolution, she would happily do so. Ultimately, the goal of any social utopia is not to
decrease the material quality of life of any class of people, but raise the floor so that all may
partake in the various freedoms.

One reaction that I got to this question was the following: “[I] should have asked Dr.
David whether she is comfortable advocating for a political system that would not have
provided her the same intellectual freedom that the current does to criticize it.” Although
an understandable critique, this may be responded to simply: one does not have to endorse
all of the negatives of the U.S. government in order to advocate for democracy as a form
of government. Indeed; one does not even need to advocate for certain ways in which
U.S. democracy is implemented: through a two tiered republic, with two parties, with
gerrymandering, etc., etc., in order to advocate for the ideal of providing some way for
members to vote. In Dr. Davis’ case, the ideals of non-materialism, worker equality, property
abolition, collective ownership, etc., etc., may be advocated for without endorsing specific
implementations of Marxism.

Technologists abstract away technological implementation concerns frequently. For
instance, there are many instances in which A.I. may be used as a tool of power, to discriminate,
and to increase the reach of authoritarian governments. It may also be used to increase the
power of corporations unbeholden to the people. However, one may advocate for and believe
in the principles of machine intelligence without endorsing every application.

VIThe author would like to note that rare earth shortages may be circumstantial to our
time period. Given the vast capital incentive, asteroid or moon mining may be a reality
in the future, which may help the green transition perpetuate itself (for more information,
please see an excellent survey of near-earth asteroids (Morales-Calderón et al., 2011) and
main-belt asteroids (Marchis et al., 2006b,a), and a review of asteroid mining (Zacny et al.,
2013). Of course, enhanced recycling campaigns and technologies are promising as well.

VIISpecifically, the author has sat through numerous judging committees or paper reviews
for battery development, and has seen firsthand the breadth of proposals to diversity battery
chemistries. Although few are immediately available, it seems increasingly likely that emerging
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battery companies will lean on anode and cathode alternatives as rare earth mineral mining
becomes more competitive.

VIIINewer and different forms of hydropower may include small tidal energy generators that
harvest energy from ocean currents. These have largely failed to produce a power density that
justifies their upfront cost, and so we do not believe that they are an extremely promising
long-term source of energy. They are, for the most part, non-dispatchable.

IXHere we pause briefly to explain what some call the “tyranny of LCOE”. LCOE is a
metric intended to contextualize the larger cost of an energy source by combining the cost of
construction and operation (i.e., fuel and maintenance), into a single number. It “represents
the average revenue per unit of electricity generated that would be required to recover the
costs of building and operating a generating plant during an assumed financial life and duty
cycle”. It has been used almost to a fault to rate developing technologies to determine which
should get grants and which shouldn’t, and may be the cause of the untimely demise of many
different technological developments in energy. Notoriously difficult to estimate, it makes
certain assumptions about construction cost, siting, lifetime, and maintenance needs, and
often ignores metrics such as environmental externalities, volatility of generation, or pace of
technological development that may reduce maintenance costs.

XAs a brief note for those who, unfamiliar with the physics of energy, may be forgiven for
noting a similar between the chemical energy harvested from hydrocarbon combustion and the
nuclear energy harvested from nuclear fission. The release of chemical energy results from the
breaking up of bonds between the atoms of a single molecule. The release of nuclear energy,
meanwhile, comes from breaking the much stronger bonds that bind subatomic particles (i.e.
neutrons and protons) within the nucleus of a single (albeit much larger) atom.

XIUranium is the classic heavy material used in fission reactors, with uranium-235 being
the primary fissile atom present at rates of 3-5% in fissile uranium cakes which may consist
of a range of uranium isotopes39 Bombarding the uranium cakes with a beam of particles
causes some atoms to gain protons (some uranium-235 turns into uranium-236) which make
them unstable, and they then break apart, releasing energy which causes other atoms to
undergo similar reaction. The resulting material is rich in plutonium and other radioactive
elements and must be stored in a stable location for thousands of years. Nuclear products
and techniques have many applications; please see Frame et al. (2022) for more details.

XIINewer generation fission reactors are able to process the waste plutonium and other
trace outputs into other radioactive products that have even shorter half-lives, lessening the
political and societal burden that nuclear fission poses. Newer reactors are also much smaller,
allowing for modular construction.

XIIIIt is the strong opinion of the author that the safe handling of nuclear waste is a much
easier societal problem to solve than climate change and local environmental toxicity caused

39An isotope is defined as a version of the same element that has a differing number of neutrons in their
nucleus as another isotope but the same number of protons, thus different isotopes of the same element have
the same nuclear charge.
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by the burning of fossil fuels, and that risk of nuclear meltdowns is heavily overstated.

Exactly three nuclear reactor meltdowns have occurred (Chernobyl, Three-Mile Island,
and Fukishima), and the number of people killed in any of them is under debate and may
be as low as 2000-4000. Reactor safety has increased considerably since the 1960-1970’s,
when Chernobyl and TMI happened, so the author does not believe events like these to be
future concerns. Fukishima was an extremely low probability event (an earthquake triggered
a tsunami, and both hit the reactor relatively hard at the same time) and it would be fairly
straightforward to site nuclear plants that reduce the chance of a Fukishima-like event to
occur even further.

Plus, given recent innovations till the present cut the amount of time necessary to store
spent fuel by orders of magnitude, we may expect future innovations to reduce storage time
necessary by even more. It is unclear the extent to which we can reduce radioactive decay in
fission waste products.

Of course, some of the risk estimation of nuclear fission is related to and bound up in
lingering social trauma from nuclear bombs and a Cold War that threatened global safety.
While that is fair, it is the strong belief of the author that the public is incorrect in its
estimation of risk surrounding new nuclear.

XIVAs an aside, the term “nuclear energy” could be an umbrella term encompassing nuclear
fusion as well, if that were commercializable. Nuclear fusion is an opposite process to nuclear
fission, and its goals are to combine lighter elements into heavier elements. The most common
fusion reaction studied for power is the reaction of smashing two hydrogen isotopes (tritium,
H3) together with enough force to break bonds, create a plasma, and form Helium. Doing
so requires immense force (currently magnetic or inertial) because the plasma, once formed,
creates extreme outward pressure.

Nuclear fusion is, notably, the reaction that powers the sun, and the sun is able to
overcome the plasma pressure and sustain a fusion reaction by the immense gravity that its
mass exerts inwards on itself. Lacking this type of mass on Earth, teams are currently trying
to create similar conditions with complex manipulation of magnetic or inertial forces. We
have already succeeded with creating an sustaining a plasma under laboratory conditions
(Langmore et al., 2019; Granstedt et al., 2018).

However, we have yet not been able to harvest more energy from the reaction than we
put in, which means that the technology stays in a bin of “theoretical possibility” rather
than commercializable reality. The US Department of Energy’s Advanced Research Projects
Agency (ARPA-E) recently put out a Request for Information on alternative fusion methods,
which may comprise of cold or room temperature fusion (Berlinguette et al., 2019).

Due to aforementioned perceptions around the safety of Nuclear Fission, however, I
personally doubt that the industry will use “nuclear energy” to refer to both, even if it is
semantically accurate.

XVHumans have harvested wind energy as early as they have risen sails against windy
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waters, which may have happened as early as the 9th century BCE. Evidence of wind powered
grain turbines in Iran, Afghanistan, and Pakistan as early as the 9th century CE and the first
use for electricity generation is documented by Professor James Blyth in Glasgow, Scotland,
in 1887. At the time of writing, the largest wind farm in the world is the Gansu farm in
China, rated at 8̃ gigawatt (GW) with thousands of turbines.

XVIA relatively large aside: Denmark and Holland make an interesting comparative case study
in how wind technology development should be approached. The two countries happened to
choose opposite directions in starting with small turbines and developing larger or vice versa,
with different outcomes in success. Through a series of governmental grants, directives, and
corporate decisions, wind energy generally started small in Denmark, and research efforts
focused on solidifying understanding of the production process of small-scale turbines, and
then scaling up size. Holland happened to choose the opposite route, opting for grants to
fund large scale megaproject turbines. Unfortunately, all technological endeavors involve
failures and associated learning, and when Holland’s wind megaprojects failed, they were
megafailures. When Denmark’s small-scale turbines failed, barely anyone noticed – and scale
of deployment increased as people bought them for their backyards. As a result, public
perception in Holland soured towards wind as being costly, overpromised, and underdelivered,
and public perception in Denmark generally improved as people formed community and
cultural attachments to the local turbines. As a result, Denmark hosts some of the largest
wind companies and innovators in the world (Vestas, Orsted, formerly Dong energy, etc.)
and Holland has none.

XVIIArguably, wind power is also derived from the sun, as the sun differentially heats different
parts of the earth and atmosphere to create wind – were there no sun, the fluid surrounding
the earth would likely be relatively solid. (It may be noted that, while there is some debate
about whether a “rogue planet” - i.e. a planet that does not orbit a star - could trap heat,
and the answer seems to be “almost certainly not over astronomical periods of time.”) By
this train of logic, fossil fuels were too derived from the sun. The author does not think
that entertaining this line of thought is particularly useful (or even interesting), and so we
carefully contain our definitions to “direct sources of energy.”

XVIIIFlow batteries are an exciting technology composed of large tanks that cycle hundreds
of gallons of electrolyte to relatively small reaction sites (i.e. anode and cathode.) They
make a common economic pain point for batteries, the mineral-rich anode and cathode, small
parts of the overall machine and thus save on cost per kilowatt hour (kWh). They can also
last many of cycles as there are less physical-on-physical contacts. However, it is difficult to
achieve necessary efficiencies or discharge rates.

XIXSolid-state batteries, named in contrast to the fluid electrolyte of Lithium-ion, were
proposed as early as the 1930’s when Faraday demonstrated a glass-based battery functionality.
John Goodenough, the co-inventor of Li-ion batteries with a hilarious last name, unveiled a
solid-state battery with a glass electrolyte and an alkali-metal anode consisting of lithium,
sodium or potassium in 2017. Solid state batteries are lighter, more energy dense, feature
faster recharge times, and are safer than lithium-ions, which makes them great for vehicular
applications. However, solid state batteries are plagued by cost concerns (much of the
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manufacturing process requires vacuums) and chemical concerns such as dendritic formation
in the anode piercing the separator and reaching the cathode.

XXLarge-scale implementation of pumped hydro is underway in Norway and Switzerland,
both mountainous regions with governments committed to climate innovation. Switzerland
just unveiled a massive 900MW pumped hydro facility called “Nant de Drance”, which took
14 years to build and increased Switzerland’s entire storage capacity by 33%.

XXII attended the RL and Decision Making (RLDM) 2022 conference, and Sutton actually
happened to give a poster in the poster presentation right next to me. During that conference,
I met an undergrad who stayed in a shared dorm and was surprised to be assigned Rich
Sutton as his roommate for the week.

XXIIWitnessing the success of the SB research proposal has suggested to the author that
RL can be an incredibly good sales tool: multiple competing stakeholder objections can be
lumped together in one reward function.

XXIIIThe weighting determined by the reward function was manual, and was tuned after
carefully examining the output behavior of the agent in simulation. There are ways to
incorporate multiple objectives into control, generally through multi-objective pareto fronts
(Ngatchou et al., 2005). Here, iso-reward surfaces provide numerous points where the
objectives are computed, and in many implementations, hand the decision off to a “decision
maker” to determine which solution is appropriate.

XXIVAssuming unvarying TOU prices as a pricing innovation is appropriate for the real
world. In general, pricing electricity differently throughout the day is a relatively new
practice, and although more utilities price differently with commercial buildings, very few
do it with residential consumers. Pacific Gas and Electric (PG&E), for example, widely
deploys time-varying prices for both commercial and residential in the form of different TOU
schemes (PG&E, 2021). As another example, Illinois defines customers based on the size of
their demand, with 2MW as a threshold between “non-competitive retail” (residential and
commercial below a size) and “competitive retail”. Competitive retail may be subject to
TOU pricing but non-competitive is entirely fixed rate (Commission, 2021).

XXVLet us provide an example of an office worker who behaves according to Curtail and Shift
Behavior. Imagine that an office worker may consume a total of 1000 Wh (280 kJ) throughout
the day, 300 Wh (83 kJ) of which are for printing documents that could be curtailed, 300
Wh (83 kJ) of which are for presenting at a meeting whose time can be shifted, and 400 Wh
(110 kJ) of which are the minimum required to run a PC. Upon receiving a price signal with
high prices from 11am-2pm, this simulated worker would curtail their printing away from
the 3 hours with the highest energy price, and schedule their meeting at the hour within
[h− Tshift, h+ Tshift] with the lowest energy price.

XXVIAs an aside, the author would like to note a curious tendency of the field to anthropomor-
phize various technical terms. To direct this example directly, the author notes that instead
of calling “curiousity” something more native to statistics, such as “error-seeking” we call
it a term that invokes a human brain process. Indeed, even the old terms of “uncertainty”,
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which may have overlap with more technical terms such as “error”, and “neural networks”,
which replaced “perceptron”, seem to be convenient anthropomorphizations. “Intrinsic” and
“extrinsic” motivation follow this model too. If neural networks had retained the title of
“perceptron” or a worse technical name such as “arithmetic-node-based-layer functions”, would
they have attracted the legion on researchers that, successively refining and advancing the
technique, forged it into the clear frontrunner amongst universal function approximators
to be used across Machine Learning? There existed other candidates for investigation at
the time of takeoff, including Support Vector Machines (SVMs), Deep Random Forests, and
Gaussian processes that may have been kernelized and refined for widespread use. We may
never know the answer to this question, and such questions are perhaps better addressed by
a Kuhnian critique of the social construction of science on the whole.

XXVIIThe reader may note from our problem setup that the workers only respond to prices
given to them that day; thus, a bandit architecture may be appropriate. We tried a
Upper Confidence Bound (UCB) bandit, but found that it was not as performant as SAC.
Furthermore, because the problem can be generalized to one in which multi-day trajectories
are considered, with weekly energy demands, we continue our exploration with SAC as it is
flexible to these generalizations.

XXVIIIWe tried alternative reward functions: we used simply − log
[∑

i p
⊺
util,tdi

]
as the reward,

but we found that when the agent was incentivized only to reduce energy cost, it tended to
converge to uniformly high prices for all hours, which was not a very useful control scheme.
We also tried optimally solving energy demand distribution at each step after total energy
use di was observed, i.e. the output of the equation d∗i = mine(p

d
util,ti) with inequality bounds

around some dmin and dmax and treating the reward as the distance (di − d∗i ), but the extra
computation required made the environment quite bulky, and the optimization output was
not particularly interesting or realistic. We thus chose the reward we present in the main
text for its interpretability, computational speed, and agent-behavior shaping.

XXIX

A.2.1 Other Guardrail Rules Considered

Here we list some other guardrail rules we considered that were in general less effective than
the quantile approach. We define b(pt) := ENN[c(pt)]− ctou

• Hard: θ(pt) = 1[ENN[c(pt)] < ctou]. Any price with a mean predicted cost smaller than
ctou is sent to the real world with probability one, while prices with a higher cost are
sent to the planning model.

• Convex: θ(pt) = min(1, e−b(pt)). We wish to test a threshold shape that simulates a
quick decrease from the initial bound, and then a gradual asymptote to 0. A convex
shape is appropriate for testing this, wherein the decrease after the boundary is quick
and the decrease thereafter becomes less and less.
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• S-curve: θ(pt) = min(1, 1 − 1
1+e−b(pt)/2

). We desire to test a threshold shape that
simulates slow initial growth and then an exponential leveling off in probability. The
S-curve is a common model for such an endeavor. It is common in fields such as
epidemiology and technology spread, and helps us test a more “real-world” model in
our suite of thresholds.

• Concave: θ(pt) = min(1, 1 − b(pt)2/100) if b(pt) > 0 else 1. Here, we seek to model
a threshold which initially rises gradually and then increasingly approaches one with
greater speed.

Compared to the Hard guardrail, Convex, S-Curve, and Concave, all experiments with
different shapes of “soft” thresholds that allow for some probability of a risky price being sent
to the real world. This is under the hypothesis that some real-world data on the consequences
of risky behavior is necessary for the controller to learn correctly. Quantile is the only
guardrail that takes a data-driven approach via the ensemble of neural networks to assess the
risk of a price.

XXXPrivacy concerns may exist when local models have so few weights (i.e. 4 or 5) that only
a few architectures are possible. An attacker may intercept the weights and instantiate their
own model, even using it to predict some of the original data. However, we use large enough
local models that we do not believe that is a concern.

XXXIThe most common non-RL methods for microgrid price-setting are iterative pricing
methods (IP) (Liu et al., 2017b; Wang and Huang, 2016) in which buildings ”bargain” with
microgrids to reach equilibrium prices. We exclude these baselines because they require each
building to develop their own demand forecasts. This requirement raises the computational
barrier for entry by an order of magnitude. For comparison, if we had 10 microgrids with
10 buildings each, local RL requires training 10 models (10 microgrids), PFH and FedAvg
requires 11 (10 microgrids + 1 central model), and IP requires 100 (10 buildings x 10
microgrids). Agwan et al. (2021a) also showed RL results in less volatile pricing curves and
better performance compared to IP.

XXXIIThe relatively long and unique process of fossil fuel formation and the origin of the
organisms that compose them, i.e. prehistoric plants that have journeyed through the Earth’s
mantle to arrive in their current state, would seem special enough to deserve some sort of
piety or austere deference. At the risk of stating a tautology, fossil fuels are truly “fossil”
fuels. I wonder if, given awareness, many would think twice about using the remnants of
ancient plant bodies to fuel such frivolities as a summer weekend trip to Puerto Vallarta.

XXXIIIThe atmospheric reaction described, i.e. the gassification of fixed carbon into carbon
dioxide after fossil fuel combustion, is of course an oversimplification, as fossil fuels are often
complex materials containing many trace impurities. Many of these result in quite toxic
products of combustion, and the ones of most concern at the time of the writing are sulfur
dioxides, nitrous oxides, and ground level ozone. All of these gases are dangerous for a
variety of acute and chronic health as well as climactic concerns. The field of study, known
as environmental justice, which seeks to understand patterns of environmental disruption
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that relate to the health of humans and how these are distributed relative to race, wealth,
and other societal hierarchices, is important for understanding how acute environmental
impacts are distributed. At the time of the writing, some level of “climate justice” has entered
political discourse around climate solutions.

XXXIVWe and much of the climate change community may use “carbon dioxide”, GHG, and
sometimes even “carbon” somewhat interchangeably, unfortunately. This notational fluidity
is largely through convenience but partially due to the centrality of “carbon dioxide” to the
entire climate change lexicon. A GHG’s warming potential is defined in terms of carbon
dioxide; specifically, it is a measure of how much energy the emissions of 1 ton of a gas
will absorb over a given period of time, relative to the emissions of 1 ton of carbon dioxide.
Furthermore, carbon dioxide is arguably the most physically impactful of the GHG suite and
almost certainly the largest emitted by gaseous quantity and breadth of emitting sources.
Thus, to an extent, to use “carbon dioxide” as a more abstract reference to the suite of
GHGs under concern is somewhat fair. To use “carbon” in place of “carbon dioxide” (i.e.,
“carbon-free fuels” or “carbon-intense lifestyle”) is somewhat less accurate and more a verbal
convenience, given the overlap with elemental carbon which may be solid and thus unrelated
to atmospheric carbon dioxide. It is worth noting that the entire stock of atmospheric carbon
exists as carbon dioxide.
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Anton Gustafsson and Magnus Gyllenswärd. 2005. The Power-aware Cord: Energy Awareness
Through Ambient Information Display. In CHI ’05 Extended Abstracts on Human Factors
in Computing Systems (Portland, OR, USA) (CHI EA ’05). ACM, New York, NY, USA,
1423–1426. https://doi.org/10.1145/1056808.1056932

Samuel Gyamfi, Susan Krumdieck, and Tania Urmee. 2013. Residential peak electricity
demand response—Highlights of some behavioural issues. Renewable and Sustainable
Energy Reviews 25 (2013), 71–77.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning. PMLR, 1861–1870.

G. Han, S. Lee, J. Lee, K. Lee, and J. Bae. 2021. Deep-learning- and reinforcement-learning-
based profitable strategy of a grid-level energy storage system for the smart grid. Journal
of Energy Storage 41 (2021). https://doi.org/10.1016/j.est.2021.102868 cited By
1.

Mengjie Han, Ross May, Xingxing Zhang, Xinru Wang, Song Pan, Yan Da, and Yuan Jin.
2020. A novel reinforcement learning method for improving occupant comfort via window
opening and closing. Sustainable Cities and Society 61 (2020), 102247.

Cullen S Hendrix and Idean Salehyan. 2012. Climate change, rainfall, and social conflict in
Africa. Journal of peace research 49, 1 (2012), 35–50.

Rodrigo Henriquez-Auba, Patricia Pauli, Dileep Kalathil, Duncan S Callaway, and Kameshwar
Poolla. 2018. The Sharing Economy for Residential Solar Generation. In 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 7322–7329.

https://doi.org/10.1145/1056808.1056932
https://doi.org/10.1016/j.est.2021.102868


BIBLIOGRAPHY 165

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. 2018. Stable Baselines.
https://github.com/hill-a/stable-baselines.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep Models Under the
GAN: Information Leakage from Collaborative Deep Learning. https://doi.org/10.

48550/ARXIV.1702.07464

Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine, and Mykel J Kochen-
derfer. 2019. Combining planning and deep reinforcement learning in tactical decision
making for autonomous driving. IEEE transactions on intelligent vehicles 5, 2 (2019),
294–305.

Ian M Hoffman, Gregory Rybka, Greg Leventis, Charles A Goldman, Lisa Schwartz, Megan
Billingsley, and Steven Schiller. 2015. The total cost of saving electricity through utility
customer-funded energy efficiency programs: estimates at the national, state, sector and
program level. Berkeley Lab Technical Brief (2015).

Tiffany Grace Holmes. 2007. Eco-visualization: Combining Art and Technology to Reduce
Energy Consumption. In Proceedings of the 6th ACM SIGCHI Conference on Creativity
&Amp; Cognition (Washington, DC, USA) (C&C ’07). ACM, New York, NY, USA, 153–162.
https://doi.org/10.1145/1254960.1254982
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Randall D Campbell, Jason CY Chin, Marcos A Van Dam, Scott K Hartman, Erik M
Johansson, et al. 2006a. A low density of 0.8 g cm-3 for the Trojan binary asteroid 617
Patroclus. Nature 439, 7076 (2006), 565–567.

F Marchis, Mikko Kaasalainen, EFY Hom, J Berthier, J Enriquez, D Hestroffer, D Le Mignant,
and I De Pater. 2006b. Shape, size and multiplicity of main-belt asteroids: I. Keck Adaptive
Optics survey. Icarus 185, 1 (2006), 39–63.

https://www.sciencedirect.com/science/article/pii/S2666546820300434
https://www.sciencedirect.com/science/article/pii/S2666546820300434


BIBLIOGRAPHY 170

Jochen Markard. 2018. The next phase of the energy transition and its implications for
research and policy. Nature Energy 3, 8 (2018), 628–633.

Valérie Masson-Delmotte, Panmao Zhai, Anna Pirani, Sarah L Connors, Clotilde Péan,
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