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Abstract
Perceiving People over Long Periods: Algorithms, Architectures & Datasets
by
Karttikeya Mangalam
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Jitendra Malik, Chair

Long-form video understanding remains as one of the last enduring open problems in computer
vision. While the natural world offers long periods of visual stimuli, most computer vision systems
still operate within a limited temporal scope, typically just a few seconds in both input and output.
This thesis presents my work developing the neural machinery, i.e., the algorithms, architectures and
datasets, that extend the temporal capacity of video understanding systems to minutes and beyond.

I start by presenting my work on algorithms for long-term multimodal human motion forecasting,
termed PECNet and Y-net. Next, I introduce my contributions on neural architectures for hierar-
chical, temporally scalable and memory-efficient neural architectures for understanding long-form
videos in form of MViT and Rev-ViT. Finally, I close by presenting my work on EgoSchema, the
first certifiably long-form video-language dataset, which serves as a benchmark for evaluating the
long-form understanding capabilities of multimodal models. The presented benchmark results
on EgoSchema highlight the existing performance gap between current state-of-the-art models
and human-level long-form video understanding. I believe that my presented advancements in
algorithms, architectures, and datasets not only address several existing limitations but also open
new avenues for future research and application.
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Chapter 1

Introduction

Intelligent agents, be they natural and active like humans, artificial and passive such as large
multimodal models, or artificial and active like social robots, must crucially rely on the ability to
perceive a dynamic world populated by other moving entities. For humans, understanding others’
intentions, behaviors, and goals over long periods is an innate capability [7]. However, despite more
than fifty years of advancements in computer vision, with remarkably fast progress in the last decade,
contemporary computer vision systems still significantly lack the ability to perceive people over
long periods. While image models have experienced rapid progress across all the major divisions of
computer vision — recognition [152, 112, 67], reconstruction [267, 201] and generation [94, 244],
modern video understanding systems primarily operate within a limited temporal scope, typically
spanning just a few seconds for both input and output.

The 2018 Turing award bestowed to Bengio, Hinton and LeCun underscores that progress in
deep learning is propelled by the synergy of algorithms, architectures, and datasets. It’s crucial to
distinguish between algorithms and architectures: while algorithms encompass domain-specific
aspects like tractable formulations and training procedures, architectures refer to broader neural
network models applicable across various applications. In this thesis, I present techniques that make
significant progress on all of the three fronts, algorithms, architectures and datasets, in service of
improving video model capabilities to better perceive people over long periods.

First, on the algorithms front, I address the challenge of long-term human motion forecasting.
Here, I will present two techniques that together enable forecasting a reliable distributional estima-
tion of agent motion, upto a minute in future which is 10 times longer than other the capabilities
of trajectory forecasting models available at the time. Next, on the architectures front, I will first
present Multiscale Vision Transformers, a technique to integrate hierarchical visual priors into
transformers [270, 67]. This is succeeded by the development of reversible vision transformers, an
extremely memory-efficient version of vanilla transformers. This efficiency is achieved through re-
versible backpropagation, allowing for scalability in transformer training across various dimensions,
including longer input sequence lengths. Finally, on the dataset front, I will present EgoSchema,
the first truly long-form video benchmark for understanding the long-term video understanding of
modern multimodal models.
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Algorithms. In Chapters 2 and 3, the focus is on algorithms tailored for human motion forecasting.
This task entails predicting future positions of agents based on their observed movements over
the past few seconds. To effectively tackle human motion forecasting, models need to interpret
both low-level motion dynamics, like velocity and direction, and high-level cues, such as goals and
motion intent. Additionally, considering the multi-agent context where multiple human trajectories
interact, these models must also account for social dynamics, including collision avoidance, to
enhance the accuracy of long-term forecasts.

Chapter 2 introduces PECNet, an efficient model for motion forecasting that directly captures
long-term agent intent by focusing on trajectory endpoints. This model utilizes these endpoints to
fill in the trajectory details for intermediate time steps. Following this, Chapter 3 presents Y-net, a
scene-aware motion forecasting model that builds upon PECNet’s concepts. Y-net extends endpoint
conditioning to long-term forecasts, reaching up to a minute into the future. It employs intermediate
waypoints for step-wise conditioning, enabling the generation of detailed and long-term forecasts.
This approach also facilitates the visualization of future local distribution heat maps for the predicted
locations, allowing interpretable long-term motion forecasts.

Architectures. In Chapter 4, I introduce the Multiscale Vision Transformers (MViT), a novel
transformer architecture designed for visual inputs. MViT effectively integrates the hierarchical
representation of visual priors into the traditionally uniform structure of vision transformers. This
integration is grounded in appropriate visual inductive biases, and leads to significant improvements
in FLOP efficiency across both videos and, with a straightforward extension, to images. Following
this, Chapter 5 details the development of Reversible Vision Transformers, a highly memory-efficient
variant of Vision Transformers. This model uniquely enables the memory required for transformer
training activations to be independent of model depth. For example, with reversible configuration,
a transformer with 100 blocks can be trained using the same amount of activation memory as
one with just 2 blocks. This efficiency is achieved by re-engineering the residual connections
within the transformer block, allowing it to become block-wise reversible. Building further on the
MVIT architecture, I propose the rev-MViT architecture, which combines the advantageous visual
inductive biases with the memory-efficient training benefits of reversible transformers.

Datasets. Finally, in Chapter 6, I begin by clarifying the concept of long-form video tasks through
the introduction of ’temporal certificates.” Temporal certificates are essentially a measure of the
minimum length of a video sub-clip required for a human viewer to reliably solve a given task.
Leveraging this concept, I develop a question-answer generation pipeline utilizing advanced Large
Language Models (LLMs) like GPT-4. This pipeline serves as the foundation for the creation of
EgoSchema, the first benchmark specifically designed for understanding long-form video content.
To compile EgoSchema, I employ a rigorous process of data generation and filtering, supplemented
by crowdsourcing. This method ensures a high-quality, comprehensive dataset. The final section of
the chapter is dedicated to benchmarking a range of both open-source and proprietary state-of-the-art
video models using EgoSchema. The results reveal a significant performance gap between these
models and human capabilities, underscoring the substantial opportunity for future research in the
realm of long-term video understanding.



Chapter 2

It is not the Journey but the Destination:
Endpoint Conditioned Trajectory Prediction

2.1 Introduction

Predicting the movement of dynamic objects is a central problem for autonomous agents, be
it humans, social robots [20], or self-driving cars [259]. Anticipation by prediction is indeed
required for smooth and safe path planning in a changing environment. One of the most frequently
encountered dynamic objects are humans. Hence, predicting human motion is of paramount
importance for navigation, planning, human-robot interaction, and other critical robotic tasks.
However, predicting human motion is nuanced, because humans are not inanimate entities evolving
under Newtonian laws [14]. Rather, humans have the will to exert causal forces to change their
motion and constantly adjust their paths as they navigate around obstacles to achieve their goals
[328]. This complicated planning process is partially internal, and thus makes predicting human
trajectories from observations challenging. Hence, a multitude of aspects should be taken into
account beyond just past movement history, for instance latent predetermined goals, other moving
agents in the scene, and social behavioral patterns.

In this work, we propose to address human trajectory prediction by modeling intermediate
stochastic goals we call endpoints. We hypothesize that three separate factors interact to shape
the trajectory of a pedestrian. First, we posit that pedestrians have some understanding of their
long-term desired destination. We extend this hypothesis to sub-trajectories, i.e. the pedestrian
has one or multiple intermediate destinations, which we define as potential endpoints of the local
trajectory. These sub-goals can be more easily correlated with past observations to predict likely
next steps and disentangle potential future trajectories.

This chapter is based on joint work with Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra
Malik and Adrien Gaidon [196], and is presented as it appeared in the ECCV 2020 proceedings.
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Second, the pedestrian plans a trajectory to reach one of these sub-goals, taking into account the
present scene elements. Finally, as the agent go about executing a plan, the trajectory gets modified
to account for other moving agents, respecting social norms of interaction.

Following the aforementioned intuition, we propose to decompose the trajectory prediction
problem into two sub-problems that also motivate our proposed architecture (Figure ??). First,
given the previous trajectories of the humans in the scene, we propose to estimate a latent belief
distribution modeling the pedestrians’ possible endpoints. Using this estimated latent distribution,
we sample plausible endpoints for each pedestrian based on their observed trajectory. A socially-
compliant future trajectory is then predicted, conditioned not only on the pedestrian and their
immediate neighbors’ histories (observed trajectories) but also everybody’s estimated endpoints.

In conclusion, our contribution in this work is threefold. First, we propose a socially compliant,
endpoint conditioned variational auto-encoder that closely imitates the multi-modal human trajectory
planning process. Second, we propose a novel self-attention based social pooling layer that
generalizes previously proposed social pooling mechanisms. Third, we show that our model can
predict stable and plausible intermediate goals that enable setting a new state-of-the-art on several
trajectory prediction benchmarks, improving by 20.9% on SDD [229] & 40.8% on ETH [213] &
UCY [161].

2.2 Related work

There have been many previous studies [232] on how to forecast pedestrians’ trajectories and predict
their behaviors. Several previous works propose to learn statistical behavioral patterns from the
observed motion trajectories [153, 175, 21, 257, 141, 6, 144, 90, 291, 154] for future trajectory
prediction. Since then, many studies have developed models to account for agent interactions that
may affect the trajectory — specifically, through scene and/or social information. Recently, there
has been a significant focus on multi-modal trajectory prediction to capture different possible future
trajectories given the past. There has also been some research on goal-directed path planning, which
consider pedestrians’ goals while predicting a path.

Context-Based Prediction

Many previous studies have imported environment semantics, such as crosswalks, road, or traffic
lights, to their proposed trajectory prediction scheme. Kitani et al. [150] encode agent-space
interactions by a Markov Decision Process (MDP) to predict potential trajectories for an agent.
Ballan et al. [15] leverage a dynamic Bayesian network to construct motion dependencies and
patterns from training data and transferred the trained knowledge to testing data. With the great
success of the deep neural network, the Recurrent Neural Network (RNN) has become a popular
modeling approach for sequence learning. Kim et al. [145] train a RNN combining multiple
Long Short-term Memory (LSTM) units to predict the location of nearby cars. These approaches
incorporate rich environment cues from the RGB image of the scene for pedestrians’ trajectory
forecasting.
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Behaviour of surrounding dynamic agents is also a crucial cue for contextual trajectory prediction.
Human behavior modeling studied from a crowd perspective, i.e., how a pedestrian interacts with
other pedestrians, has also been studied widely in human trajectory prediction literature. Traditional
approaches use social forces [118, 199, 298, 2] to capture pedestrians’ trajectories towards their
goals with attractive forces, while avoiding collisions in the path with repulsive forces. These
approaches require hand-crafted rules and features, which are usually complicated and insufficiently
robust for complicated high-level behavior modeling. Recently, many studies applied Long Short
Term Memory (LSTM [123]) networks to model trajectory prediction with the social cues. Alahi
et al. [3] propose a Social LSTM which learns to predict a trajectory with joint interactions.
Each pedestrian is modeled by an individual LSTM, and LSTMs are connected with their nearby
individual LSTMs to share information from the hidden state.

Multimodal Trajectory Prediction

In [158, 106], the authors raise the importance of accounting for the inherent multi-modal nature
of human paths i.e., given pedestrians’ past history, there are many plausible future paths they
can take. This shift of emphasis to plan for multiple future paths has led many recent works
to incorporate multi-modality in their trajectory prediction models. Lee et al. [158] propose a
conditional variational autoencoder (CVAE), named DESIRE, to generate multiple future trajectories
based on agent interactions, scene semantics and expected reward function, within a sampling-based
inverse optimal control (IOC) scheme. In [106], Gupta et al. propose a Generative Adversarial
Network (GAN) [94] based framework with a novel social pooling mechanism to generate multiple
future trajectories in accordance to social norms. In [233], Sadeghian et al. also propose a GAN
based framework named SoPhie, which utilizes path history of all the agents in a scene and the scene
context information. SoPhie employs a social attention mechanism with physical attention, which
helps in learning social information across the agent interactions. However, these socially-aware
approaches do not take into account the pedestrians’ ultimate goals, which play a key role in shaping
their movement in the scene. A few works also approach trajectory prediction via an inverse
reinforcement learning (IRL) setup. Zou et al. [329] applies Generative Adversarial Imitation
Learning (GAIL) [121] for trajectory prediction, named Social-Aware GAIL (SA-GAIL). With IRL,
the authors model the human decision-making process more closely through modeling humans
as agents with states (past trajectory history) and actions (future position). SA-GAIL generates
socially acceptable trajectories via a learned reward function.

Conditioned-on-Goal

Goal-conditioned approaches are regarded as inverse planning or prediction by planning where
the approach learns the final intent or goal of the agent before predicting the full trajectory. In
[224], Rehder et al. propose a particle filtering based approach for modeling destination conditioned
trajectory prediction and use explicit Von-Mises distribution based probabilistic framework for
prediction. Later in a follow-up work, [225] Rehder et al. further propose a deep learning based des-
tination estimation approach to tackle intention recognition and trajectory prediction simultaneously.
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The approach uses fully Convolutional Neural Networks (CNN) to construct the path planning
towards some potential destinations which are provided by a recurrent Mixture Density Network
(RMDN). While both the approaches make an attempt for destination conditioned prediction, a fully
probabilistic approach trains poorly due to unstable training and updates. Further, they ignore the
presence of other pedestrians in the scene which is key for predicting shorter term motions which
are missed by just considering the environment. Rhinehart et al. [227] propose a goal-conditioned
multi-agent forecasting approach named PRECOG, which learns a probabilistic forecasting model
conditioned on drivers’ actions intents such as ahead, stop, etc. However, their approach is designed
for vehicle trajectory prediction, and thus conditions on semantic goal states. In our work, we
instead propose to utilize destination position for pedestrian trajectory prediction.

In [165], Li et al. posit a Conditional Generative Neural System (CGNS), the previous estab-
lished state-of-the-art result on the ETH/UCY dataset. They propose to use variational divergence
minimization with soft-attention to predict feasible multi-modal trajectory distributions. Even
more recently, Bhattacharyya et al. [23] propose a conditional flow VAE that proposed a general
normalizing flow for structured sequence prediction and applies it to the problem of trajectory
prediction. Concurrent to our work, Deo et al. [59] propose P2TIRL, a Maximum Entropy Re-
inforcement Learning based trajectory prediction module over a discrete grid. The work [23]
shares state-of-the-art with [59] on the Stanford Drone Dataset (SDD) with the TrajNet [234] split.
However, these works fail to consider the human aspect of the problem, such as interaction with
other agents. We compare our proposed PECNet with all three of the above works on both the SDD
& ETH/UCY datasets.

2.3 Proposed Method

In this work, we aim to tackle the task of human trajectory prediction by reasoning about all the
humans in the scene jointly while also respecting social norms. Suppose a pedestrian p* enters
a scene Z. Given the previous trajectory of p for past ¢, steps, as a sequence of coordinates
7;’“ = {uk}z’;l = {(a*, yk)}?:l, the problem requires predicting the future position of p* on Z for
next g steps, T/ := {u*}2) ' = {(,y) 120 -

As mentioned in Section 4.1, we break the problem into two daisy chained steps. First, we model
the sub-goal of p*, i.e. the last observed trajectory points of p* say, G* = u”|;, 1, as a representation
of the predilection of p* to go its pre-determined route. This sub-goal, also referred to as the
endpoint of the trajectory, the pedestrian’s desired end destination for the current sequence. Then
in the second step, we jointly consider the past histories {7,"}¢_, of all the pedestrians {p"}{_,
present in the scene and their estimated endpoints {G*}¢_, for predicting socially compliant future
trajectories 7}’“ In the rest of this section we describe in detail, our approach to achieve this, using
the endpoint estimation VAE for sampling the future endpoints G and a trajectory prediction module
to use the sampled endpoints G to predict 7.
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Figure 2.1: Architecture of PECNet: PECNet uses past history, 7; along with ground truth endpoint
G. to train a VAE for multi-modal endpoint inference. Ground-truth endpoints are denoted by
whereas x denote the sampled endpoints G.. The sampled endpoints condition the social-pooling &
predictor networks for multi-agent multi-modal trajectory forecasting. Red connections denote the
parts utilized only during training. Shades of the same color denote spatio-temporal neighbours
encoded with the block diagonal social mask in social pooling module. Further Details in Section
2.3.

Endpoint VAE

We propose to model the predilection of the pedestrian as a sub-goal endpoint G := w;, = (7¢,, ¥;,)
which is the last observed trajectory point for pedestrian p*. First, we infer a distribution on G based
on the previous location history 7; of p* using the Endpoint VAE.

As illustrated in Figure 3.2, we extract the previous history 7;* and the ground truth endpoint
G* for all pedestrian pj, in the scene. We encode the past trajectory 7;* of all p; independently
using a past trajectory encoder E, . This yields us E,.(7;), a representation of the motion history.
Similarly, the future endpoint G* is encoded with an Endpoint encoder E,,; to produce Eend(gk)
independently for all k. These representations are concatenated together and passed into the latent
encoder Ey,.,, which produces parameter (u, o) for encoding the latent variable z = A (u, o) of
the VAE. Finally, we sample possible latent future endpoints from N (u, o), concatenate it with
E,.«(7;) for past context and decode using the latent decoder D4, to yield our guesses for Q k.
Since the ground truth G* belongs to the future, and is unavailable at test time, during evaluation we
sample z from A (0, o7I), concatenate with E,,,(7;) (as done in training) and then use the learned
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Dy ens to estimate the future C;k This is illustrated in Figure 3.2 where the red connections are only
used in the training and not in the evaluation phase.

Truncation trick: In [25], Brock et al. introduce the ‘Truncation Trick’ as a method of trade-off
between the fidelity and variety of samples produced by the generator in BigGAN. In this work, we
propose an analogous trick for evaluation phase in multi-modal trajectory forecasting where the
variance of the latent endpoint sampling distribution is changed according to the number of samples
(K) allowed for multi-modal prediction. In a situation requiring few shot multi-modal prediction,
such as under computation constraints, where only a few samples (X = 1,2 or 3) are permissible,
we propose to use o = 1 and truncate the sampling distribution at +c+/ K — 1. In contrast, in
situations where a high number of predictions are to be generated (such as K = 20, a standard
setting on benchmarks) we propose to use o7 > 1 with no truncation. We posit that this procedure
allows simple adjustment of prediction diversity in favor of overall performance for different /,
thereby providing a simple method of achieving good performance in all settings without requiring
any retraining.

Endpoint conditioned Trajectory Prediction

Using the sampled estimate of the endpoints G from Endpoint VAE, we employ the endpoint encoder
E..; once again (within the same forward pass) to obtain encodings for the sampled endpoints
E...(G¥). This is used along with prediction network to plan the path T; starting to G thereby
predicting the future path.

Note that, another design choice could have been that even during training, the ground truth
E..q(G*) are used to predict the future 7T;. This seems reasonable as well since it provides cleaner,
less noisy signals for the downstream social pooling & prediction networks while still training
the overall module end to end (because of coupling through E,,;). However, such a choice will
decouple training of the Endpoint VAE (which would then train only with KL Divergence and AWL
loss, refer Section 2.3) and social pooling network (which would then train only with ATL loss,
refer 2.3) leading to inferior performance empirically.

The sampled endpoints’ representations Eend(gA ’“) are then concatenated with corresponding
E,.«(7;) (as in Section 2.3) and passed through /N rounds of social pooling using a social pooling
mask M for all the pedestrians in the scene jointly. The social pooling mask M is a X a block diag-
onal matrix denoting the social neighbours for all {p;}$; pedestrians in the scene. Mathematically,

0 if 1SIT£13111§% Jul, — w2 > ta

Mz, j| 0 1f1%nml£1tp |F(ug) — F(ul)| = 1§mm12tp | F(u,,) — F(u))]) >0 (2.1)
1 otherwise
where F(.) denoted the actual frame number the trajectory was observed at. Intuitively, M defines

the spatio-temporal neighbours of each pedestrian p; using proximity threshold ¢, for distance
in space and ensure temporal overlap. Thus, the matrix M encodes crucial information regarding
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social locality of different trajectories which gets utilized in attention based pooling as described
below.

Social Pooling: Given the concatenated past history and sampled way-point representations X ,51) =
(Epast(T,F), Eena(G*)) we do N rounds of social pooling where the (i + 1)th round of pooling
recursively updates the representations X ,ff)
mechanism [278]:

from the last round according to the non-local attention

i i 1 ()7 g(x ()
XD = xO ZMu PTG Dg () 22

where {0, ¢} are encoders of X}, to map to a learnt latent space where the representation similarity
between p; and p; trajectories is calculated using the embedded gaussian exp(¢(X;)70(X;)) for
each round of pooling. The social mask, M is used point-wise to allow pooling only on the spatio-
temporal neighbours masking away other pedestrians in the scene. Finally, g is a transformation
encoder for X used for the weighted sum with all other neighbours. The whole procedure,
after being repeated NV times yields X ,gN), the pooled prediction features for each pedestrian with
information about the past positions and future destinations of all other neighbours in the scene.

Our proposed social pooling is a novel method for extracting relevant information from the
neighbours using non-local attention. The proposed social non local pooling (S-NL) method is
permutation invariant to pedestrian indices as a useful inductive bias for tackling the social pooling
task. Further, we argue that this method of learnt social pooling is more robust to social neighbour
mis-identification such as say, mis-specified distance (%) threshold compared to previously
proposed method such as max-pooling [106], sorting based pooling [233] or rigid grid-based
pooling [3] since a learning based method can ignore spurious signals in the social mask M.

The pooled features X, ™) are then passed through the prediction network Py, to yield our

estimate of rest of trajectory {u*} k”t f+1 which are concatenated with sampled endpoint G yields

7}. The complete network is trained end to end with the losses described in the next subsection.

Loss Functions

For training the entire network end to end we use the loss function,

Lppeve =M DeWV (1, @) IN(0.1) +Xo |G = Gell3 + |77 - Tl (2.3)

v Vv NV
KL Div in latent space AEL ATL

where the KL divergence term is used for training the Variational Autoencoder, the Average endpoint
Loss (AEL) trains E,,4, Eyu5, Eigrens and Dy, and the Average Trajectory Loss (ATL) trains the
entire module together.
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Network Architecture
E..q 2—-8—=>16—16
E,u 16 — 512 — 256 — 16
Elatent 32 -8 — 50 — 32
Digens | 32 — 1024 — 512 — 1024 — 2
o, 0 32 — 512 — 64 — 128
g 32 — 512 — 64 — 32
| Ppredier | 32 = 1024 — 512 — 256 — 22 |

Table 2.1: Network architecture details for all the sub-networks used in the module.

2.4 Experiments

Datasets

Stanford Drone Dataset: Stanford Drone Dataset [229] is a well established benchmark for human
trajectory prediction in bird’s eye view. The dataset consists of 20 scenes captured using a drone in
top down view around the university campus containing several moving agents like humans and
vehicles. It consists of over 11, 000 unique pedestrians capturing over 185, 000 interactions between
agents and over 40, 000 interactions between the agent and scene [229]. We use the standard test
train split as used in [233, 106, 59] and other previous works.

ETH/UCY: Second is the ETH [213] and UCY [161] dataset group, which consists of five different
scenes — ETH & HOTEL (from ETH) and UNIV, ZARA1, & ZARA?2 (from UCY). All the scenes
report the position of pedestrians in world-coordinates and hence the results we report are in metres.
The scenes are captured in unconstrained environments with few objects blocking pedestrian paths.
Hence, scene constraints from other physical non-animate entities is minimal. For bench-marking,
we follow the commonly used leave one set out strategy i.e., training on four scenes and testing on
the fifth scene [233, 106, 165].

Implementation Details

All the sub-networks used in proposed module are Multi-Layer perceptrons with ReLU non-linearity.
Network architecture for each of the sub-networks are mentioned in Figure 2.1. The entire network
is trained end to end with the Lz £ loss using an ADAM optimizer with a batch size of 512 and
learning rate of 3 x 10~ for all experiments. For the loss coefficient weights, we set \; = \y = 1.
We use N = 3 rounds of social pooling for Stanford Drone Dataset and N = 1 for ETH & UCY
scenes. Using social masking, we perform the forward pass in mini-batches instead of processing
all the pedestrians in the scene in a single forward pass (to aboid memory overflow) constraining all
the neighbours of a pedestrian to be in the same mini-batch.

Metrics: For prediction evaluation, we use the Average Displacement Error (ADE) and the Final
Displacement Error (FDE) metrics which are commonly used in literature [106, 3, 2, 165]. ADE
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SoPhie | S-GAN | DESIRE | CF-VAE* | P2TIRL' | SimAug' || O-S-TT | O-TT | Ours | PECNet (Ours)
K 20 20 5 20 20. 20 20 20 5 20
ADE | 1627 | 27.23 19.25 12.60 12.58 10.27 10.56 | 10.23 | 12.79 9.96
FDE | 29.38 | 41.44 34.05 22.30 22.07 19.71 16.72 | 16.29 | 25.98 15.88

Table 2.2: Comparison of our method against several recently published multi-modal baselines and
previous state-of-the-art method (denoted by *) on the Stanford Drone Dataset [229]. *-S” & -TT’
represents ablations of our method without social pooling & truncation trick. We report results for
in pixels for both K = 5 & 20 and for several other K in Figure 2.4. { denotes concurrent work.
Lower is better.

is the average /5 distance between the predictions and the ground truth future and FDE is the ¢,
distance between the predicted and ground truth at the last observed point. Mathematically,

th+tf+1

ADE — 2=2i=titl [0; — uyll2

t FDE = ||f1tp+tf+1 - lltp+tf+1H2 (2.4)
where u;, u; are the ground truth and our estimated position of the pedestrian at future time step j
respectively.

Baselines: We compare our PECNet against several published baselines including previous state-of-
the-art methods briefly described below.

* Social GAN (S-GAN) [106]: Gupta et al. propose a multi-modal human trajectory prediction
GAN trained with a variety loss to encourage diversity.

* SoPhie [233]: Sadeghian et al. propose a GAN employing attention on social and physical
constraints from the scene to produce human-like motion.

* CGNS [165]: Li et al. posit a Conditional Generative Neural System (CGNS) that uses
conditional latent space learning with variational divergence minimization to learn feasible
regions to produce trajectories. They also established the previous state-of-the-art result on
the ETH/UCY datasets.

* DESIRE [158]: Lee et al. propose an Inverse optimal control based trajectory planning
method that uses a refinement structure for predicting trajectories.

* CF-VAE [23]: Recently, a conditional normalizing flow based VAE proposed by Bhat-
tacharyya et al. pushes the state-of-the-art on SDD further. Notably, their method also does
not also rely on the RGB scene image.

* P2TIRL [59]: A concurrent work by Deo et al. proposes a method for trajectory forecasting
using a grid based policy learned with maximum entropy inverse reinforcement learning
policy. They closely tie with the previous state-of-the-art [23] in ADE/FDE performance.
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* SimAug [173]: More recently, a concurrent work by Liang et al. proposes to use additional 3D
multi-view simulation data adversarially, for novel camera view adaptation. [173] improves
upon the P2TIRL as well, with performance close to PECNet’s base model. However our
best model (with pooling and truncation) still achieves a better ADE/FDE performance.

* Ours-TT: This represents an ablation of our method without using the truncation trick. In
other words, we set o to be identically 1 for all K settings. Truncation trick ablations with
different K are shown in Fig 2.4 & Table 2.2.

* Ours-S-TT: This represents an ablation of our method without using both the social pooling
module and the truncation trick i.e. the base PECNet. We set or = 1 and N = 0 for the
number of rounds of social pooling and directly transmit the representations to P, the

prediction sub-network.

Quantitative Results

In this section, we compare and discuss
our method’s performance against above men-
tioned baselines on the ADE & FDE met-
rics.

Stanford Drone Dataset: Table 2.2 shows the
results of our proposed method against the pre-
vious baselines & state-of-the-art methods. Our
proposed method achieves a superior perfor-
mance compared to the previous state-of-the-art
[23, 59] on both ADE & FDE metrics by a sig-
nificant margin of 20.9%. Even without using
the proposed social pooling module & trunca-
tion trick (OUR-S-TT), we achieve a very good
performance (10.56 ADE), underlining the im-
portance of future endpoint conditioning in tra-
jectory prediction.

As observed by the difference in perfor-
mance between Ours-S-TT and Our-TT, the so-
cial pooling module also plays a crucial role,
boosting performance by 0.33 ADE (~ 2.1%).
Note that, while both P2TIRL [59] & SimAug
[173] are concurrent works, we compare with
their methods’ performance as well in Table 2.2
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Figure 2.2: Conditioned Way-point positions
& Oracles: We evaluate the performance of the
proposed method against the choice of future con-
ditioning position on ADE & FDE metrics. Fur-
ther, we evaluate the performance of a destination
oracle version of the model that receives perfect
information on conditioned position for predicting
rest of the trajectory.

for experimental comprehensiveness. All reported results averaged for 100 trials.
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S-GAN SoPhie CGNS* S-LSTM Ours - S - TT | PECNet (Ours)
ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE || ADE | FDE | ADE | FDE
ETH 081 | 1.52 ] 070 | 1.43 | 0.62 | 1.40 | 1.09 | 2.35 0.58 | 0.96 0.54 0.87
HOTEL | 0.72 | 1.61 | 0.76 | 1.67 | 0.70 | 093 | 0.79 | 1.76 || 0.19 | 0.34 0.18 0.24
UNIV | 0.60 | 1.26 | 0.54 | 1.24 | 048 | 1.22 | 0.67 | 1.40 || 039 | 0.67 0.35 0.60
ZARA1 | 0.34 | 0.69 | 0.30 | 0.63 | 0.32 | 0.59 | 047 | 1.00 || 0.23 | 0.39 0.22 0.39
ZARA2 | 042 | 0.84 | 0.38 | 0.78 | 0.35 | 0.71 | 0.56 | 1.17 0.24 | 0.35 0.17 0.30

[ AVG [ 058 [ 118 [ 0.54 [ 1.15 ][ 049 [ 0.97 [ 0.72 [ 1.54 | 032 [ 0.54 [ 0.29 | 048 |

Table 2.3: Quantitative results for various previously published methods and state-of-the-art method
(denoted by *) on commonly used trajectory prediction datasets. Both ADE and FDE are reported in
metres in world coordinates. ‘Our-S-TT’ represents ablation of our method without social pooling
& truncation trick.

ETH/UCY: Table 3.2 shows the results for evaluation of our proposed method on the ETH/UCY
scenes. We follow the leave-one-out evaluation protocol with K = 20 as in CGNS [165]/Social-
GAN [106]. All reported numbers are without the truncation trick. In this setting too, we observe
that our method outperforms previously proposed methods, including the previous state-of-the-art
[165]. We push the state-of-the-art on average by ~ 40.8% with the effect being the most on
HOTEL (74.2%) and least on ETH (12.9%). Also, without the social pooling & truncation trick
(OUR-S-TT) the performance is still superior to the state-of-the-art by 34.6%, underlining the
usefulness of conditioning on the endpoint in PECNet.

Conditioned Way-point positions & Oracles: For further evaluation of our model, we condition
on future trajectory points other than the last observed point which we refer to as way-points.
Further, to decouple the errors in inferring the conditioned position from errors in predicting a path
to that position, we use a destination (endpoint) oracle. The destination oracle provides ground
truth information of the conditioned position to the model, which uses it to predict the rest of the
trajectory. All of the models, with and without the destination oracle are trained from scratch for
each of the conditioning positions. Referring to Figure 2.2, we observe several interesting and
informative trends that support our earlier hypotheses. (A) As a sanity check, we observe that as we
condition on positions further into the future, the FDE for both the Oracle model & the proposed
model decrease with a sharp trend after the 7th future position. This is expected since points further
into the future provide more information for the final observed point. (B) The ADE error curves
for both the oracle and the proposed model have the same decreasing trend albeit with a gentler
slope than FDE because the error in predicting the other points (particularly the noisy points in the
middle of the trajectory) decreases the gradient.

(C) Interestingly, our model’s ADE and FDE is not significantly different from that of the Oracle
model for points close in the future and the error in the two models are approximately the same until
about the 7th future position. This suggests that till around the middle of the future, the conditioned
way-points do not hold significant predictive power on the endpoint and hence using our noisy
guesses vs. the oracle’s ground truth for their position does not make a difference.
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Way-point Prediction Error: The way-point position error is the {5 distance between the prediction
of location of the conditioned position and its ground truth location (in the future). Referring to
Figure 2.2, we observe an interesting trend in the way-point error as we condition on points further
into the future. The way-point prediction error increases at the start which is expected since points
further into the future have a higher variance. However, after around the middle (7th point) the error
plateaus and then even slightly decreases. This lends support to our hypothesis that pedestrians,
having predilection towards their destination, exert their will towards it. Hence, predicting the last
observed way-point allows for lower prediction error than way-points in the middle! This in a
nutshell, confirms the motivation of this work.

Effect of Number of samples (K): All the previous works use K = 20 samples (except DESIRE
which uses K = 5) to evaluate the multi-modal predictions for metrics ADE & FDE. Referring
to Figure 2.4, we see the expected decreasing trend in ADE & FDE with time as K increases.
Further, we observe that our proposed method achieves the same error as the previous works
with much smaller K. Previous state-of-the-art achieves 12.58 [59] ADE using K = 20 samples
which is matched by PECNet at half the number of samples, K = 10. This further lends support
to our hypothesis that conditioning on the inferred way-point significantly reduces the modeling
complexity for multi-modal trajectory forecasting, providing a better estimate of the ground truth.

Lastly, as K grows large (K — o00) we
observe that the FDE slowly gets closer

—*— ADE [Truncated]
oofemuaed | to () with more number of samples, as
e == the ground truth G. is eventually found.
3 PRRELT) However, the ADE error is still large
%1 Sl (6.49) because of the errors in the rest
L . oratem) of the predicted trajectory. This is in
o 20 T .
Lol sopnie (k=20 accordance with the observed ADE (8.24)
ol °\0\.\,‘.\.\ somueo| Tor the oracle conditioned on the last ob-
. “8—e— | served point (i.e. 0 FDE error) in Fig.
24 2.2

1235 10 15 20 25 50 10! 10210° 10
K
Design choice for VAE: We also evaluate our

design choice of using the inferred future way-

Figure 2.4: Performance across : ADE & FDE P oints G for training subsequent modeules (so-
performance of our method against number of cial pooling & prediction) instead of using the

samples used for evaluation. Several previous grQupd truth gc', As mfantioned i'n .Section 2.3,
baselines are mentioned as well with their num- this is also a Vah'd, choice for training PECNet
ber of samples used. Our method significantly epd to el,ld' Empirically, we find that such a d.e'
outperforms the state-of-the-art reaching their per- §1gn achieves 10.87 ADE ar}d 17;03 FDE Th1§
formance with much lesser number of samples s worse (~ 3‘8%) than using _gc WAhICh mf)tl'
& performing much better with same number of vates our design choice for using G (Section

samples as theirs (K = 20). 2.3).
Truncation Trick: Fig. 2.4 shows the improve-
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ments from the truncation trick for an empirically chosen hyperparameter c ~ 1.2. As expected,
small values of K gain the most from truncation, with the performance boosting from 22.85 ADE
(48.8 FDE) to 17.29 ADE (35.12 FDE) for K = 1 (~ 24.7%).

2.5 Conclusion

In this work we present PECNet, a pedestrian endpoint conditioned trajectory prediction network.
We show that PECNet predicts rich & diverse multi-modal socially compliant trajectories across
a variety of scenes. Further, we perform extensive ablations on our design choices such as end-
point conditioning position, number of samples & choice of training signal to pinpoint achieved
performance gains. We also introduce a “truncation trick" for trajectory prediction, a simple method
for adjusting diversity for performance in trajectory prediction without retraining. Finally, we
benchmark PECNet across multiple datasets including Stanford Drone Dataset [229], ETH [213] &
UCY [161] in all of which PECNet achieved state-of-the-art performance.

°
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Figure 2.3: Visualizing Multimodality: We show visualizations for some multi-modal and diverse predic-
tions produced by PECNet. White represents the past 3.2 seconds while red & cyan represents predicted
& ground truth future respectively over next 4.8 seconds. Predictions capture a wide-range of plausible
trajectory behaviours while discarding improbable ones like, endpoints opposite to pedestrian’s direction of
motion.
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Chapter 3

From Goals, Waypoints & Paths To Long
Term Human Trajectory Forecasting

Figure 3.1: We tackle the problem of long term human trajectory forecasting. Given the past motion
of an agent (blue) on a scene over the last five seconds, we aim to predict the multimodal future
motion over the next minute @. To achieve this, we propose factorizing overall multimodality into its
epistemic and aleatoric factors. The epistemic factor is modeled with an estimated distribution over
the long term goals @ while the aleatoric factor is modeled as a distribution over the intermediate
waypoints ® and trajectory @ for each goal separately. This is repeated for multiple goals and
waypoints for scene-compliant multimodal human trajectory forecasting ®. Each color indicates
predicted trajectories for a different sampled goal.

3.1 Introduction

Sequence prediction is a fundamental problem in several engineering disciplines such as signal
processing, pattern recognition, control engineering, and in virtually any domain concerned with

This chapter is based on joint work with Yang An, Harshayu Girase and Jitendra Malik [195], and is presented as
it appeared in the ICCV 2021 proceedings.


https://openaccess.thecvf.com/content/ICCV2021/papers/Mangalam_From_Goals_Waypoints__Paths_to_Long_Term_Human_Trajectory_ICCV_2021_paper.pdf
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temporal measurements. From the seminal work of A. A. Markov [198] on predicting the next
syllable in the poem Eugene Onegin with Markov chains, to modern day autoregressive descendants
like GPT-3 [27], next element prediction in a sequence has a long standing history. Time series
forecasting is a key instantiation of the sequence prediction problem in the setting where the
sequence is formed by elements sampled in time. Several classic techniques such as Autoregressive
Moving Average Models (ARMA) [281] have been incorporated in deep learning architectures [269,
123] in modern day state-of-the-art time series forecasting methods [238].

However, humans are not inanimate Newtonian entities, slaves to predetermined physical laws
and forces. Predicting the future motion of a billiard ball smoothly rolling on a pool table under
friction and physical constraints is a problem of different nature from forecasting human motion and
positions. Humans are goal conditioned agents that, unlike the ball, exert their will through actions
to achieve a desired outcome [261]. Anticipating human motion is of fundamental importance to
dynamic agents such as other humans, autonomous robots [20] and self-driving vehicles [260].
Human motion is inherently goal directed and is put in place by the agent to bring about a desired
effect.

Nevertheless, even conditioned on the agent’s past motion and overarching long term goals,
is the future trajectory deterministic? Consider yourself standing at a crossing on a busy street,
waiting for the pedestrian light to turn green. While you have every intention of crossing the street,
the exact future trajectory remains stochastic as you might swerve to avoid other pedestrians, speed
up your pace if the light is about to turn red, or pause abruptly if an unruly cyclist dashes by.
Hence, even conditioned on the past observed motion and scene semantics, future human motion is
inherently stochastic [117] owing to both epistemic uncertainty caused by latent decision variables
like long term goals and aleatoric variability [60] stemming from random decision variables such
as environmental factors. This dichotomy is even sharper in long term forecasting since due to the
increased uncertainty in the future, the aleatoric randomness influences the trajectory much more
strongly in long rather than short temporal horizons.

This motivates a factorized multimodal approach for human dynamics modeling where both
factors of stochasticity are modeled hierarchically rather than lumped jointly. We hypothesize that
the long term latent goals of the agent represent the epistemic uncertainty within motion prediction.
While the agent has a goal in mind while planning and executing their trajectory, this is unknown
to the prediction system. In physical terms, this is akin to the question of where the agent wants
to go. Similarly, the aleatoric uncertainty is expressed in the stochasticity of the path leading to
the goal, which encompasses factors like environment variables such as other agents, partial scene
information available to the agent and most importantly, the unconscious randomness in human
decisions [142]. In physical terms, this is akin to the question of how the agent reaches the goal.

Hence, we propose to model the epistemic uncertainty first and then model the aleatoric
stochasticity conditioned on the obtained estimate. Concretely, with the RGB scene and the past
motion history, we first estimate an explicit probability distribution over the agent’s long term goals.
This represents the epistemic uncertainty in the prediction system. We also estimate distributions
over a few chosen future waypoint positions which along with the sampled goal points are used
to obtain explicit probability maps over all the remaining intermediate trajectory positions. This
represents the aleatoric uncertainty in the prediction system. Together the samples from the epistemic
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Figure 3.2: Model Architecture: Y-net comprises of three sub-networks U,, U, and U; modeled after the
U-net architecture [230] (Section 3.3). Y-net adopts a factorized approach to multimodality, expressing the
stochasticity in goals and waypoints through estimated distributions furnished by U,. And multimodality in
paths is achieved through estimated probability distributions obtained by U, conditioned on samples from
U, for predicting diverse multimodal scene-compliant futures.

goal distribution and the aleatoric waypoint and trajectory distribution form the predicted future
trajectory.

In summary, our contribution is threefold. First, we propose a novel long term prediction
setting that extends up to a minute in the future which is about an order of magnitude longer than
previous literature. Second, we propose Y-net, a scene-compliant long term trajectory prediction
network that explicitly models both the goal and path multi-modalities while making effective
use of the scene semantics. Third, we show that the factorized multimodality modeling enables
Y-net to improve the state-of-the-art both on the proposed long term settings and the well-studied
short term prediction settings. We benchmark Y-net’s performance on the Stanford Drone [228]
and the ETH [214]/UCY[161] benchmark in the short term setting. It outperforms previous
approaches by significant margins of 13.0% in ADE and 31.7% in FDE metric on SDD, and
on-par in ADE and by 7.4% in FDE on ETH/UCY. Further, we also study Y-net’s performance
in the proposed long term prediction setting on the Stanford Drone and the Intersection Drone
Dataset [24] where it substantially improves the performance of state-of-the-art short term methods
by over 50.7% and 39.7% respectively, on ADE and 77.1% and 56.0% respectively, on FDE
metric. The preprocessed data, model, and code can be found here for future work: https:
//karttikeya.github.io/publication/ynet/


https://karttikeya.github.io/publication/ynet/
https://karttikeya.github.io/publication/ynet/
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3.2 Related Works

Several recent studies have investigated human trajectory prediction in different settings. Broadly,
these approaches can be grouped based on the proposed formulation for multimodality in forecasting,
inputs signals available to the prediction model and the nature and form of prediction results
furnished by the model. Several diverse input signals such as agent’s past motion history [118],
human pose [194], RGB scene image [106, 233, 32, 158, 174], scene semantic cues [32], location
[236, 165, 23] and gaze of other pedestrian [194, 297] in the scene, moving vehicles such as
cars [236] and also latent inferred signals such as agent’s goals [196] have been used. The form
of prediction results produced are also diverse with multimodality [174] and scene-compliant
forecasting being central to the prior works.

Unimodal Forecasting: Early trajectory forecasting work focused on unimodal predictions of the
future. Social Forces [118] proposes modeling interactions as attractive and repulsive forces and
future trajectory as a deterministic path evolving under these forces. Social LSTM [3] focuses
on other agents in the scene and models their effects through a novel pooling module. [297]
forecasts motion in ego-centric views and exploits body pose and gaze along with camera wearer’s
ego-motion for other agent’s future location prediction. [271] proposes to use attention to model
target agent’s interaction with other agent’s. [194] predicts trajectory as the ‘global’ branch for
pose prediction and proposes to condition downstream tasks such as pose prediction on predicted
unimodal trajectories.

Multimodality through Generative Modeling: Another line of work aims to model the stochastic-
ity inherent in future prediction through a latent variable with a defined prior distribution through
approaches such as conditional variational auto-encoders [148]. DESIRE [158] is an inverse
reinforcement learning based approach that uses multimodality in sampling of a latent variable
that is ranked and optimized with a refinement module. [194] introduces the use of a CVAE for
capturing multimodality in the final position of the pedestrians conditioned on the past motion
history. Trajectron++ [236] represents agent’s trajectories in a graph structured recurrent network
for scene compliant trajectory forecasting, taking into account the interaction with a diverse set of
agents. LB-EBM [209] learns an energy-based model in the latent space and a policy generator
to map the latent vector into a trajectory. The attention based method AgentFormer [311] jointly
models the time dimension and social interactions using a sequence representation while preserving
each agent’s identity. Introvert [239] uses a 3D visual attention mechanism conditioned on the
observed trajectory to extract scene and social information from videos. A future displacement
distribution is predicted and multiple sequences can be sampled.

A different line of work includes Social GAN [106] which uses adversarial losses [94] for
incorporating multimodality in predictions. While such generative approaches do produce diverse
trajectories, overall coverage of critical modes cannot be guaranteed and little control is afforded
over the properties of predicted trajectories such as direction, number of samples, etc. In contrast,
our method, Y-net, estimates explicit probability maps which allow easily incorporating spatial
constraints for a downstream task.

Multimodality through spatial probability estimates: Another line of work obtains multimodality
via estimated probability maps. Activity Forecasting from Kitani et al. [150] proposes to use a
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hidden Markov Decision process for modeling the future paths. However, in contrast to our work,
the future predictions in [150] are conditioned on activity labels such as ‘approach car’, *depart car’,
etc. More recently, some works have used a grid based scene representation to estimate probabilities
for future time steps [173, 174, 59]. Relatedly, some prior works such as [194, 319, 32] propose a
goal-conditioned trajectory forecasting method. However, no prior works have proposed factorized
modeling of epistemic uncertainty or goals and aleatoric uncertainty or paths as Y-net uses.

3.3 Proposed Method

The problem of multimodal trajectory prediction can be formulated formally as follows. Given a
RGB scene image Z and past positions of a pedestrian in the scene Z denoted by {u,,}""*, for the
past t, = n,/FPS seconds sampled at the frame rate FP S, the model aims to predict the position of
the pedestrian for the next ¢, seconds in the future, denoted by {U%}ZI’:ZZL where t; = ny/FPS.
Since the future is stochastic, multiple predictions for the future trajectories are produced. In this
work, we factorize the overall stochasticity into two modes. First are the modes relating to epistemic
uncertainty i.e. multimodality in the final destination for which the module produces K. goals.
Second are the modes relating to the aleatoric uncertainty i.e. multimodality in the path taken to the
destination stemming from uncontrolled randomness given the goal, for which the module produces
K, predictions for each estimated goal. In the short temporal horizon limit, since the overall path
length is small, the options for paths to a given goal are limited and similar to each other. This is
naturally modeled by constraining K, = 1 and so the total number of paths predicted (K in prior
works) is the same as K in the short horizon setting. However, for longer temporal horizons, there
are several paths to the same goal and hence K, > 1. Next, we describe in detail the working of our
model, Y-net and its three sub-networks U., U, and U, followed by details of the non-parametric
sampling process (Section 3.3) and loss functions used.

Y-net Sub-Networks

To effectively use scene information in semantic space (image-like) with trajectory information
(coordinates), pixel-wise alignment needs to be created between the different modalities. Some
prior works [233] achieve this by encoding the RGB image 7 as a hidden state vector extracted
from a pretrained CNN network. While this provides the network with scene information, any
meaningful spatial signal gets highly conflated when flattened into a vector and pixel alignment
is destroyed. This is highlighted in [196] establishing previous state-of-the-art without any scene
information, underlining the misuse of image information in prior works. In this work, we adopt
a trajectory-on-scene heatmap representation that solves the alignment issue by representing the
trajectory in the same space as image Z.
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S-GAN | CF-VAE | P2TIRL | SimAug | PECNet | LB-EBM | Y-net (Ours) || DESIRE | TNT | PECNet | Y-net (Ours)
K =20 K=5
ADE 2723 | 1260 | 12.58 | 1027 | 9.96 8.87 7.85 1925 | 1223 | 1279 11.49
FDE 4144 | 2230 | 2207 | 1971 | 1588 | 1561 11.85 3405 |21.16 | 29.58 20.23

Table 3.1: Short temporal horizon forecasting results on SDD: Our method significantly outperforms
previous state-of-the-art methods on the Stanford Drone Dataset [229] on both the ADE and FDE metrics for
both settings of K, where K represents the number of multimodal samples . Reported errors are in pixels
with ¢, = 3.2 sec, iy = 4.8 sec, n, = 8,ny = 12 and lower is better.

Trajectory-on-Scene Heatmap Representation

The RGB image 7 is first processed with a semantic segmentation network such as a U-net [230] that
produces segmentation map S of Z comprising of C classes determined according to the affordance
provided by the surface to an agent for actions such as walking, standing, running etc. In a parallel
branch, the past motion history {u,, }..”, is converted to a trajectory heatmap H of spatial sizes of Z
and n,, channels with one channel for each timestep. Mathematically,

max |[[(z,y) — .||
(z,y)eT

The heatmap trajectory representation is then concatenated with the semantic map S along the
channel dimension producing the trajectory-on-scene heatmap tensor Hs a H x W x (C' +n,)
dimensional input tensor which is passed to the encoder network U..

Trajectory-on-Scene Heatmap Encoder U,

The tensor Hs is processed with the encoder U, designed as a U-net encoder [230] (Fig. 3.2).
The encoder U, consists of M blocks, where the spatial dimensions are reduced from H x W to
H )y x Wy, halving after every block using max pooling (stride 2) and the channel depth is increased
sequentially from C' + n,, to C; doubling after a certain number of blocks using convolutional
layers with ReLLU. The final spatially compact and deep representation after block M along with
the M — 1 intermediate tensors H,, with 1 < m < M are passed onto the goal decoder U, and the
trajectory decoder U, as discussed below.

Goal and Waypoint Heatmap Decoder U,

The processed trajectory-on-scene tensors H,, at various spatial resolutions are passed onto the
goal and waypoint heatmap decoder U, which is modeled after the expansion arm in the U-
net architecture [230]. A center block consisting of two convolutional layers with ReL.U first
takes in the final and spatially compact feature tensor H,,. Then the expansion arm spatially
doubles the resolution at the beginning of every block using bilinear up-sampling and convolution
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| ETH  HOTEL UNIV  ZARAl ZARA2 | AVG

S-GAN 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 | 0.58/1.18
PECNet 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 | 0.29/0.48
LB-EBM 0.30/0.52  0.13/0.20 0.27/0.52 0.20/0.37 0.15/0.29 | 0.21/0.38
Introvert 0.42/0.70 0.11/0.17 0.20/0.32 0.16/0.27 0.16/0.25 | 0.21/0.34
Trajectron++ | 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33  0.11/0.25 | 0.19/0.41
AgentFormer | 0.26/0.39 0.11/0.14 0.26/0.46 0.15/0.23 0.14/0.24 | 0.18/0.29

Y-net (Ours) ‘0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27 0.13/0.22 ‘ 0.18/0.27

Table 3.2: Short term forecasting results on ETH/UCY benchmark: Our proposed method establishes
new state-of-the-art results on both the ADE/FDE metrics on the popular ETH-UCY benchmark with standard
short-horizon settings (same as SDD). Reported errors are in meters and lower is better.

(together forming Deconvolution [230]). After every Deconvolution, the corresponding intermediate
representation H,,, from U, is fused using skip connections and the features are processed with two
convolutional layers with ReLU non-linearity. Merging intermediate high-resolution feature maps
from U, is necessary since just using the final feature Hj,; would severely limit the final resolution
of the goal heatmap, thus missing fine spatial details that are preserved in the intermediate feature
maps. The U-net block starts with a deconvolution operation followed by feature merging and
two convolutional layers, all of which is repeated sequentially A/ times to form U,. The output
layer consists of a convolutional layer followed by a pixelwise sigmoid that for each N chosen
waypoint u,,, and the goal u,,,,, produces an explicit, non-parametric probability distribution,
P(uy,) and P(u,,,,,) after normalization. The overall output shape of Uy is H x W x (N* +1).
Thus, for each N waypoint plus the goal, this submodule predicts a I x W matrix, where the
(1, 7)th element of the matrix represents the estimate probability value of the agent being at location
(1, 7) at the selected timestep.

Trajectory Heatmap Decoder U,

U, comprises of M decoder blocks which proceed in a similar fashion as U, (Section 3.3). However,
in contrast to U, Uy is conditioned on the sampled goal and waypoints in addition to the scene S and
past trajectory {u, }.* ;. The probability distributions estimated by U, are used to sample potential
goal and waypoints sets. The sampling process is described in Section 3.3 and further details are in
Supplementary Section 1. In total, K, goals are sampled and for each goal K, waypoint sets are
sampled representing K, paths to the same goal. The obtained coordinate sample sets Gy, 1, for
the goal and {11, }Y'; for the intermediate waypoints are converted to a heatmap representation H,
similar to the past trajectory as described in Section 3.3. Finally, the obtained goal and waypoint
conditioning tensor H, is downsampled to fit the spatial size of each corresponding block and along
with the corresponding H,,, is concatenated to the output of the previous U, block and passed into
the next block. For each future timestep, it predicts a separate probability distribution, resulting in
an output of shape H x W x ny, with each channel corresponding to the location distribution in
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Figure 3.3: Qualitative Long Term Trajectory Forecasting Results: We show various heatmaps and
visualizations for three different scenes (rows) in SDD testset. The first column shows the past observed
trajectory for last £, = 5 seconds in blue. The second column shows the heatmap from U, for ¢; = 30
seconds in the future (goal multimodality) and some sampled goals from the estimated distribution. The
third column shows trajectory heatmaps from U, conditioned on a sampled goal from column two (path
multimodality). The last column shows the predicted trajectories, green indicating the ground-truth trajectories
and red our multimodal predictions.

each timestep.

Non-parametric Distribution Sampling

Given a distribution P of the future frame position as a matrix of probabilities X, we aim to
sample a two-dimensional point as our estimate for the position of the agent. This is difficult to
achieve reliably in practice since the estimated distribution P is noisy during the initial training
stages. Hence, taking a naive argmax is not robust. Instead, we propose to use the softargmax
operation [93],

e ’L] X,
softargmax (ZZ Z X Z Z ’ )
6 k4

to approximate the most likely position in a robust fashlon.
Further details on the sampling process including Test-Time Sampling Trick and Conditional
Waypoint Sampling can be found in Supplementary Section 1.1 and 1.2.
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Loss Function

Since the predictions are explicit probability distributions for each timestep, we impose losses
directly on the estimated distribution P rather than on the drawn coordinate samples. The ground
truth future is represented as a Gaussian heatmap P centered at the observed points with a prede-
termined variance o . All three networks, U, U, and U, are trained end-to-end jointly using a
weighted combination of binary cross entropy losses on the predicted goal, waypoint and trajectory
distributions.

Looat = BCE(P(unp-i-nf)v p(unp+nf))

Ewaypoint = ZBCE(POlwl)» p(uwl))

/v‘trajectory = Z BCE(P(UZ),P(UI))

L= Lgoal + )\lﬁwaypoint + )\2£trajectory

3.4 Results

We use a total of three datasets to study Y-net’s performance — the Stanford Drone Dataset (SDD)
[229], the Intersection Drone Dataset (InD) [24], and the ETH [214] / UCY [161] forecasting
benchmark.

Stanford Drone Dataset

We benchmark our proposed model on the popular Stanford drone dataset [229] where several
recently proposed methods have improved state-of-the-art performance significantly in the past few
years [53]. The dataset is comprised of more than 11, 000 unique pedestrians across 20 top-down
scenes captured on the Stanford university campus in bird’s eye view using a flying drone. For short
term prediction, we follow the [233, 196] standard setup and dataset split, sampling at FPS = 2.5
yielding a input sequence of length n,, = 8 and output of length ny = 12, i.e. t, = 3.2 sec, t; = 4.8
sec.

In our proposed long term setting, we sample at FPS = 1 thus yielding an, = 5 fort; = 5
seconds in the past and predicting up to one minute into the future. Further, we label the scenes with
semantic segmentation maps consisting of C' = 5 “stuff" classes, namely [30] pavement, terrain,
structure, tree and road, depending on the walking affordability of the surface. We split the dataset’s
scenes in the same way as the short term setup, to evaluate the performance on unseen scenes during
training.



CHAPTER 3. FROM GOALS, WAYPOINTS & PATHS TO LONG TERM HUMAN

TRAJECTORY FORECASTING 25
‘ Stanford Drone Dataset | Intersection Drone Dataset ‘
S-GAN PECNet R-PECNet Y-net (Ours) S-GAN PECNet R-PECNet Y-net (Ours)
K, 1 1 1 1 2 5 1 1 1 1 2 5

ADE | 15532 7222 261.27 47.94 4494 3949 || 38.57 20.25 341.80 1499 14.02 12.67
FDE | 307.88 118.13 750.42 66.71 66.71 66.71 || 84.61 32.95 1702.64 | 21.13 21.13 21.13

Table 3.3: Long term trajectory forecasting results: We benchmark performance on our proposed long
horizon forecasting setting predicting ¢y = 30 second into the future given ¢, = 5 second past motion history.
All reported errors are in pixels (lower is better) for K, = 20 with additional results for varying K, with a
fixed K..

Intersection Drone Dataset

We propose to use the Intersection drone dataset [24] for benchmarking long term trajectory
forecasting. The dataset comprises over 10 hours of measurements over 4 distinct intersection in
an urban environment. The dataset is recorded in FPS = 25. We downsample the trajectories to
FPS = 1 to match our SDD long term setting, filter out non-pedestrian and short trajectories and
use a sliding window approach without overlap to split long trajectories. After the preprocessing
steps, inD contains 1,396 long term trajectories with n,, = 5 and ny = 30. To evaluate performance
on unseen environments, we are using location ID 4 only during testing time. The scene is labeled
with the same C' = 5 classes as in SDD. We convert the coordinates from world coordinates (meters)
into pixel coordinates using the provided scale factors from the authors and evaluate metrics in
pixels.

ETH & UCY datasets

The ETH/UCY benchmarks have been widely used for benchmarking trajectory forecasting models
in the short horizon setting in recent years [52]. Forecasting performance has improved by over
~ 64% on average, within the last two years itself [106]. It comprises of five different scenes all
of which report position in world coordinates (in meters). We follow the leave one out validation
strategy as outlines in prior work [233, 106, 59]. For all ETH & UCY datasets, since the classes
of affordances furnished by the surfaces present is small, we use C' = 2, identifying each pixel as
either belonging to class ‘road’ or ‘not road’. Similar to short term SDD, the frames are sampled
at FPS = 2.5 predicting ny = 12 frames, ¢t; = 4.8 seconds into the future given the last n, = 8
frames comprising of ¢, = 3.2 seconds of motion history.

Implementation Details

We train the entire network end to end with Adam optimizer [146] with a learning rate of 1 x 10~*
and batch size of 8. A pre-trained segmentation model is used that is finetuned on the specific
dataset. Further details are mentioned in the supplementary materials.
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Figure 3.4: Benchmarking Performance against Time Horizons: On prediction horizons up to a minute,
we observe a consistently growing difference in ADE between Y-net and PECNet, highlighting the importance
of factorized goal and path modeling in long term forecasting.

Metrics

We use the established Average Displacement Error (ADE) and Final Displacement Error (FDE)
metrics for measuring performance of future predictions. ADE is calculated as the /5 error between
the predicted future and the ground truth averaged over the entire trajectory while FDE is the /
error between the predicted future and ground truth for the final predicted point [2]. Following prior
works [106], in the case of multiple future predictions, the final error is reported as the min error
over all predicted futures.

ADE and FDE are well suited metrics for deterministic performance evaluation. However, they
use samples instead of the predicted distribution for error estimation. Hence, we report the kernel
density estimate-based negative log-likelihood (KDE-NLL) metric in the same fashion as [136, 236].
A standardized KDE is used to estimate a probability distribution function for each predicted future
timestep, and the NLL of the ground-truth trajectory is calculated using it. Note, that Y-net predicts
explicit probability maps. To be consistent with previous literature and enable fair comparison with
baselines we also apply the KDE.
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Short Term Forecasting Results

Stanford Drone Results: Table 3.1 presents results for the SDD in the short term setting. We report
results with K, = 5 and 20. Since there is limited aleatoric multimodality in short term settings, we
use K, = 1 thus being comparable to prior works using 20 trajectory samples for evaluation. Table
3.1 shows our proposed model achieving an ADE of 7.85 and FDE of 11.85 at K, = 20 which
outperforms the previous state-of-the-art performance of LB-EBM [209] by 13.0% on ADE and
31.7% on FDE. Further, at K’ = 5 it achieves an ADE of 11.49 and FDE of 20.23 outperforming
previous state-of-the-art performance of TNT [319].

ETH/UCY Results: We report results on the ETH/UCY benchmark in Table 3.2. Similar to SDD,
we set K, = 20, K, = 1. We observe that Y-net improves the state-of-the-art performance from
AgentFormer [311] in FDE by 7.4% to 0.27 and performs on par in ADE with 0.18.

Long Term Forecasting Results

To study the effect of epistemic and aleatoric uncertainty factorization, we propose a long term
trajectory forecasting setting with a prediction horizon up to 10 times longer than prior works (up to
a minute). To benchmark, we retrain PECNet [196], the previous state-of-the-art method from short
term forecasting and Social GAN [106] for each prediction horizon setting separately. We also train
a recurrent short term baseline based on PECNet (R-PECNet) where the model is trained only for
ty = 5 seconds and is fed its own predictions recurrently for predicting longer horizons.
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Figure 3.5: ADE & FDE boxplot and KDE-NLL: Left and middle: Boxplots of ADE and FDE, respectively.
Right: Results for the KDE-NLL metric. All metrics are estimated for the long term setting on SDD with 100
samples.

Forecasting Results

Table 3.3 reports the baseline and our results on SDD and InD for a time horizon of {; = 30
seconds in the future given the past ¢, = 5 second input. All reported results are with K, = 20 for
Y-net conditioned on N* = 1 intermediate waypoint at w; = 20, i.e. temporally midway between
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Figure 3.6: Benchmarking performance against aleatoric uncertainty (K ,): Fixing the goal multimodal-
ity (K¢) we vary K, to observe the effect of path multimodality. Also, we benchmark against PECNet by
allowing it 20 times more samples for each K, for a fair compare against the K. = 20 Y-net curve.

the observed inputs and the estimated goal. All reported baseline results are at X' = 20 for fair
comparisons with our K, = 20, K, = 1 setting. On SDD, we observe that our proposed model
outperforms the state-of-the-art short term baseline on the long horizon setting, achieving an ADE
of 47.94 and FDE 66.72 improving upon PECNet’s performance by over 50%. Similarly, Y-net
outperforms PECNet on InD improving ADE performance from 20.25 to 14.99 and FDE from
32.95 to 21.13.

To gain a more complete assessment of the performance, boxplots of PECNet and Y-net are
shown in Fig. 3.5. These display the median performance and variability of quartiles within the
long-term predictions on SDD. Y-net has about half the median error and is much more consistent
with less spread.

Further, Y-net achieves a KDE-NLL [136] score of 8.75, significantly better than PECNet’s
score of 12.15 on the same long-term setting on SDD (Fig. 3.5). These additional metrics confirm
our observations from the ADE and FDE metrics.

Varying Prediction Horizon

We compare Y-net with PECnet and R-PECNet for varying prediction horizons. In Fig. 3.4 we
observe that the difference in performance between Y-net and PECNet grows as prediction horizon
increases from 5 to 60 seconds. This shows Y-net’s adaptability for long prediction horizons
owing to factorized multimodality modeling. We also observe that for PECNet, training a separate
model for different time horizons is significantly better than using a short temporal horizon model
recurrently (R-PECNet). This motivates our proposal for studying long term forecasting since short
term models behave very poorly when applied out of the box recurrently to longer term settings.



CHAPTER 3. FROM GOALS, WAYPOINTS & PATHS TO LONG TERM HUMAN
TRAJECTORY FORECASTING 29

Varying K,

We also report results with K, = 2 and 5 for studying the improvement in performance from
aleatoric multimodality in Table 3.3. We observe a consistent improvement in ADE on both datasets,
thus indicating the diversity in predicted paths given the same estimated final goal u,,, ., . We also
report extensive results for varying the path multimodality K, with a fixed K for various choice
of K. and K, in Figure 3.6. Additionally for baselining, we benchmark against PECNet [194]
evaluated with K, times more samples than the corresponding Y-net model while varying K,. We
show consistent ADE improvements for various K, when increasing K, indicating effective use of
multimodality. Further, even with K, = 20 times more additional samples, PECNet’s performance
is significantly worse than Y-net at K, = 20 for all K, highlighting the importance of factorizing
goal and path multimodality for diverse and accurate future trajectory modeling.

Qualitative Results

We show some qualitative results for long term trajectory prediction (¢; = 30) on SDD in Figure
3.3. We observe that Y-net predicts diverse scene-complaint trajectories, with both future goals and
paths modalities.

3.5 Conclusion

In summary, we present Y-net, a scene-compliant trajectory forecasting network with factorized
goal and path multimodalities. Y-net uses the U-net structure [230] for explicitly modeling prob-
ability heatmaps for epistemic and aleatoric uncertainties. Overall, Y-net decrease the error of
previous state-of-the-art performance by up to 31.7% on the SDD and by up to 7.4% on ETH/UCY
benchmarks in the short term setting. We also propose a new long term trajectory forecasting
setting with a prediction horizon of up to a minute for exemplifying the epistemic and aleatoric
uncertainty dichotomy. In this setting, we benchmark on the Stanford Drone and Intersection Drone
dataset where Y-net exceeds previous state-of-the-art by over 77.1% and 56.0% respectively thereby
highlighting the importance of modeling factorized stochasticity.
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Chapter 4

Multiscale Vision Transformers

4.1 Introduction

We begin with the intellectual history of neural network models for computer vision. Based on
their studies of cat and monkey visual cortex, Hubel and Wiesel [133] developed a hierarchical
model of the visual pathway with neurons in lower areas such as V1 responding to features such
as oriented edges and bars, and in higher areas to more specific stimuli. Fukushima proposed the
Neocognitron [81], a neural network architecture for pattern recognition explicitly motivated by
Hubel and Wiesel’s hierarchy. His model had alternating layers of simple cells and complex cells,
thus incorporating downsampling, and shift invariance, thus incorporating convolutional structure.
LeCun et al. [157] took the additional step of using backpropagation to train the weights of this
network. But already the main aspects of hierarchy of visual processing had been established: (7)
Reduction in spatial resolution as one goes up the processing hierarchy and (ii) Increase in the
number of different “channels”, with each channel corresponding to ever more specialized features.

In a parallel development, the computer vision community developed multiscale processing,
sometimes called “pyramid” strategies, with Rosenfeld and Thurston [231], Burt and Adelson
[29], Koenderink [151], among the key papers. There were two motivations (i) To decrease the
computing requirements by working at lower resolutions and (ii) A better sense of “context” at the
lower resolutions, which could then guide the processing at higher resolutions (this is a precursor to
the benefit of “depth” in today’s neural networks.)

The Transformer [270] architecture allows learning arbitrary functions defined over sets and
has been scalably successful in sequence tasks such as language comprehension [69] and machine
translation [27]. Fundamentally, a transformer uses blocks with two basic operations. First, is an
attention operation [13] for modeling inter-element relations. Second, is a multi-layer perceptron

This chapter is based on joint work with Haoqi Fan, Bo Xiong, Yanghao Li, Zhicheng Yan, Jitendra Malik and
Christoph Feichtenhofer [71], and is presented as it appeared in the ICCV 2021 proceedings.


https://openaccess.thecvf.com/content/ICCV2021/papers/Fan_Multiscale_Vision_Transformers_ICCV_2021_paper.pdf

CHAPTER 4. MULTISCALE VISION TRANSFORMERS 31

SIS
l
l

scalej scaley scales

Figure 4.1: Multiscale Vision Transformers learn a hierarchy from dense (in space) and simple (in
channels) to coarse and complex features. Several resolution-channel scale stages progressively
increase the channel capacity of the intermediate latent sequence while reducing its length and
thereby spatial resolution.

(MLP), which models relations within an element. Intertwining these operations with normalization
[11] and residual connections [112] allows transformers to generalize to a wide variety of tasks.

Recently, transformers have been applied to key computer vision tasks such as image classifica-
tion. In the spirit of architectural universalism, vision transformers [67, 264] approach performance
of convolutional models across a variety of data and compute regimes. By only having a first
layer that ‘patchifies’ the input in spirit of a 2D convolution, followed by a stack of transformer
blocks, the vision transformer aims to showcase the power of the transformer architecture using
little inductive bias.

In this paper, our intention is to connect the seminal idea of multiscale feature hierarchies with
the transformer model. We posit that the fundamental vision principle of resolution and channel
scaling, can be beneficial for transformer models across a variety of visual recognition tasks.

We present Multiscale Vision Transformers (MViT), a transformer architecture for modeling
visual data such as images and videos. Consider an input image as shown in Fig. 5.1. Unlike
conventional transformers, which maintain a constant channel capacity and resolution throughout
the network, Multiscale Transformers have several channel-resolution ‘scale’ stages. Starting
from the image resolution and a small channel dimension, the stages hierarchically expand the
channel capacity while reducing the spatial resolution. This creates a multiscale pyramid of feature
activations inside the transformer network, effectively connecting the principles of transformers
with multi scale feature hierarchies.

Our conceptual idea provides an effective design advantage for vision transformer models. The
early layers of our architecture can operate at high spatial resolution to model simple low-level visual
information, due to the lightweight channel capacity. In turn, the deeper layers can effectively focus
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Figure 4.2: Accuracy/complexity trade-off on Kinetics-400 for varying # of inference clips per
video shown in MViT curves. Concurrent vision-transformer based methods [204, 22, 8] require
over 5x more computation and large-scale external pre-training on ImageNet-21K (IN-21K), to
achieve equivalent MViT accuracy.

on spatially coarse but complex high-level features to model visual semantics. The fundamental
advantage of our multiscale transformer arises from the extremely dense nature of visual signals, a
phenomenon that is even more pronounced for space-time visual signals captured in video.

A noteworthy benefit of our design is the presence of strong implicit temporal bias in video
multiscale models. We show that vision transformer models [67] trained on natural video suffer no
performance decay when tested on videos with shuffled frames. This indicates that these models are
not effectively using the temporal information and instead rely heavily on appearance. In contrast,
when testing our MViT models on shuffled frames, we observe significant accuracy decay, indicating
strong use of temporal information.

Our focus in this paper is video recognition, and we design and evaluate MViT for video tasks
(Kinetics [143, 36], Charades [241], SSv2 [97] and AVA [103]). MVIiT provides a significant
performance gain over concurrent video transformers [204, 22, 8], without any external pre-training
data.

In Fig. A.1 we show the computation/accuracy trade-off for video-level inference, when varying
the number of temporal clips used in MViT. The vertical axis shows accuracy on Kinetics-400 and
the horizontal axis the overall inference cost in FLOPs for different models, MViT and concurrent
ViT [67] video variants: VTN [204], TimeSformer [22], ViViT [8]. To achieve similar accuracy
level as MViT, these models require significant more computation and parameters (e.g. ViViT-L [8]
has 6.8 x higher FLOPs and 8.5x more parameters at equal accuracy, more analysis in §A.2) and
need large-scale external pre-training on ImageNet-21K (which contains around 60x more labels
than Kinetics-400).
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We further apply MViT to ImageNet [58] classification, by simply removing the temporal dimen-
sion of the video architecture, and show significant gains over single-scale vision transformers for
image recognition. Our code and models are available in PySlowFast [72] and PyTorchVideo [73].

4.2 Related Work

Convolutional networks (ConvNets). Incorporating downsampling, shift invariance, and shared
weights, ConvNets are de-facto standard backbones for computer vision tasks for image [157, 152,
243,253, 113,42, 46, 84, 255, 221, 108] and video [242, 76, 34, 219, 172, 293, 266, 77, 287, 88,
75, 326].

Self-attention in ConvNets. Self-attention mechanisms has been used for image understanding
[222, 320, 126, 19], unsupervised object recognition [188] as well as vision and language [191,
166]. Hybrids of self-attention operations and convolutional networks have also been applied to
image understanding [127] and video recognition [277].

Vision Transformers. Much of current enthusiasm in application of Transformers [270] to vision
tasks commences with the Vision Transformer (ViT) [67] and Detection Transformer [33]. We build
directly upon [67] with a staged model allowing channel expansion and resolution downsampling.
DeiT [264] proposes a data efficient approach to training ViT. Our training recipe builds on, and we
compare our image classification models to, DeiT under identical settings.

An emerging thread of work aims at applying transformers to vision tasks such as object
detection [16], semantic segmentation [321, 273], 3D reconstruction [179], pose estimation [304],
generative modeling [45], image retrieval [205], medical image segmentation [43, 268, 313], point
clouds [105], video instance segmentation [280], object re-identification [116], video retrieval [82],
video dialogue [156], video object detection [312] and multi-modal tasks [184, 61, 220, 128, 308].
A separate line of works attempts at modeling visual data with learnt discretized token sequences
[284, 223, 45, 310, 51].

Efficient Transformers. Recent works [274, 149, 50, 258, 55, 48, 168, 18] reduce the quadratic at-
tention complexity to make transformers more efficient for natural language processing applications,
which is complementary to our approach.

Three concurrent works propose a ViT-based architecture for video [204, 22, 8]. However, these
methods rely on pre-training on vast amount of external data such as ImageNet-21K [58], and thus
use the vanilla ViT [67] with minimal adaptations. In contrast, our MViT introduces multiscale
feature hierarchies for transformers, allowing effective modeling of dense visual input without
large-scale external data.

4.3 Multiscale Vision Transformer (MViT)

Our generic Multiscale Transformer architecture builds on the core concept of stages. Each stage
consists of multiple transformer blocks with specific space-time resolution and channel dimension.
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The main idea of Multiscale Transformers is to progressively expand the channel capacity, while
pooling the resolution from input to output of the network.

Multi Head Pooling Attention

We first describe Multi Head Pooling Attention (MHPA), a self attention operator that enables
flexible resolution modeling in a transformer block allowing Multiscale Transformers to operate
at progressively changing spatiotemporal resolution. In contrast to original Multi Head Attention
(MHA) operators [270], where the channel dimension and the spatiotemporal resolution remains
fixed, MHPA pools the sequence of latent tensors to reduce the sequence length (resolution) of the
attended input. Fig. 4.3 shows the concept.

Concretely, consider a D dimensional input tensor X of sequence length L, X € RE*P,
Following MHA [67], MHPA projects the input X into intermediate query tensor Q € REXP key
tensor K € RE*D and value tensor V € RE*? with linear operations

Q=XWy K=XWyx V=XWy

/ with weights Wy, Wi, Wy, of dimensions D x D. The obtained intermediate tensors are then
pooled in sequence length, with a pooling operator P as described below.

Pooling Operator. Before attending the input, the intermediate tensors Q, K , V are pooled with
the pooling operator P(-; ®) which is the cornerstone of our MHPA and, by extension, of our
Multiscale Transformer architecture.

The operator P(-; ®) performs a pooling kernel computation on the input tensor along each
of the dimensions. Unpacking © as © := (k, s, p), the operator employs a pooling kernel k of
dimensions kr X kg X ky, a stride s of corresponding dimensions sy X sy X sy and a padding p of
corresponding dimensions pr X py X pw to reduce an input tensor of dimensions L = 7' x H x W

to L given by,
~ L+2p—-k
S

with the equation applying coordinate-wise. The pooled tensor is flattened again yielding the output
of P(Y;©) € RY*P with reduced sequence length, L = T x H x W.

By default we use overlapping kernels k with shape-preserving padding p in our pooling
attention operators, so that L, the sequence length of the output tensor P(Y; @), experiences an
overall reduction by a factor of spsg sy .

Pooling Attention. The pooling operator P(-; ©) is applied to all the intermediate tensors Q, K
and V independently with chosen pooling kernels k, stride s and padding p. Denoting 6 yielding the
pre-attention vectors Q = P(Q; Og), K = P(K; @) and V = P(V; ®y) with reduced sequence
lengths. Attention is now computed on these shortened vectors, with the operation,

Attention(Q, K, V) = Softmax(QK” /v/D)V.
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Figure 4.3: Pooling Attention is a flexible attention mechanism that (i) allows obtaining the reduced
space-time resolution (THW) of the input (TH W) by pooling the query, () = P(Q ©), and/or
(i1) computes attention on a reduced length (THW) by pooling the key, K = P(K ; O ), and value,
V = P(V;©y), sequences.

Naturally, the operation induces the constraints sy = sy on the pooling operators. In summary,
pooling attention is computed as,

PA(-) = Softmax(P(Q; ©q)P(K; ©)" /Vd)P(V; Oy),

where v/d is normalizing the inner product matrix row-wise. The output of the Pooling attention
operation thus has its sequence length reduced by a stride factor of sTs HsW following the shortening
of the query vector @ in P(-).

Multiple heads. As in [270] the computation can be parallelized by considering i heads where
each head is performing the pooling attention on a non overlapping subset of D /h channels of the
D dimensional input tensor X.

Computational Analysis. Since attention computation scales quadratically w.r.t. the sequence
length, pooling the key, query and value tensors has dramatic benefits on the fundamental compute
and memory requirements of the Multiscale Transformer model. Denoting the sequence length
reduction factors by fo, fx and fy we have,

fj:sgp-s;{@{/v, Vjie{Q K, V}.
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stage operators output sizes
data layer| stride 7x1x1 TxHxW
Ix16x16, D ,
h ’ LW
PACM | tride 1x16x16 | X X16% s
MHA(D) A "W
scales { MLP(1D) ]XA\ DXTXEXTG

Table 4.1: Vision Transformers (ViT) base model starts from a data layer that samples visual input
with rate 7x1x1 to T'x H x W resolution, where 7" is the number of frames H height and 1/ width.
The first layer, patch; projects patches (of shape 1x16x16) to form a sequence, processed by a stack
of NV transformer blocks (stages) at uniform channel dimension (7)) and resolution (7"x % X %)

Considering the input tensor to P(; ©) to have dimensions D x T x H x W, the run-time com-
plexity of MHPA is O(THW D /h(D + THW/ fq fk)) per head and the memory complexity is
O(THWh(D/h+THW/ fofK)).

This trade-off between the number of channels D and sequence length term THW/ fq fr
informs our design choices about architectural parameters such as number of heads and width of
layers. We refer the reader to §A.4 for a detailed analysis and discussions on the runtime-memory
complexity trade-off.

Multiscale Transformer Networks

Building upon Multi Head Pooling Attention (Sec. 4.3), we describe the Multiscale Transformer
model for visual representation learning using exclusively MHPA and MLP layers. First, we present
a brief review of the Vision Transformer Model that informs our design.

Preliminaries: Vision Transformer (ViT). The Vision Transformer (ViT) architecture [67] starts
by dicing the input video of resolution 7'x H x W, where T’ is the number of frames H the height
and W the width, into non-overlapping patches of size 1x16x16 each, followed by point-wise
application of linear layer on the flattened image patches to to project them into the latent dimension,
D, of the transformer. This is equivalent to a convolution with equal kernel size and stride of
1x16x16 and is shown as patch; stage in the model definition in Table 4.1.

Next, a positional embedding E € R“*P is added to each element of the projected sequence of
length L with dimension D to encode the positional information and break permutation invariance.
A learnable class embedding is appended to the projected image patches.

The resulting sequence of length of L 4 1 is then processed sequentially by a stack of N
transformer blocks, each one performing attention (MHA [270]), multi-layer perceptron (MLP)
and layer normalization (LN[12]) operations. Considering X to be the input of the block, the output
of a single transformer block, Block(X') is computed by

X, = MHA(LN(X)) + X
Block(X) = MLP(LN(X})) 4+ X;.
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stages operators output sizes
data layer stride 7x 1 x1 DXTxHxW

wher | gespins | DX
scaley { 11\\/[4??@1(5)) } XNy | Dx % x & x W
scales 1\1/{41];/\(;21)[;) x N5 | 2Dx f—T x % x %
ales NEPAD) XNy | 4Dx Zx B x W
scales 11\\/[/35?3(55)) x N5 | 8Dx % xZLx W

Table 4.2: Multiscale Vision Transformers (MViT) base model. Layer cube,, projects dense space-
time cubes (of shape ¢, x¢,xc,) to DD channels to reduce spatiotemporal resolution to f—[ X % X %
The subsequent stages progressively down-sample this resolution (at beginning of a stage) with
MHPA while simultaneously increasing the channel dimension, in MLP layers, (at the end of a
stage). Each stage consists of /V, transformer blocks, denoted in [brackets].

The resulting sequence after /V consecutive blocks is layer-normalized and the class embedding is
extracted and passed through a linear layer to predict the desired output (e.g. class). By default, the
hidden dimension of the MLP is 4. We refer the reader to[67, 270] for details.

In context of the present paper, it is noteworthy that ViT maintains a constant channel capacity
and spatial resolution throughout all the blocks (see Table 4.1).

Multiscale Vision Transformers (MViT). Our key concept is to progressively grow the channel
resolution (i.e. dimension), while simultaneously reducing the spatiotemporal resolution (i.e. se-
quence length) throughout the network. By design, our MViT architecture has fine spacetime (and
coarse channel) resolution in early layers that is up-/downsampled to a coarse spacetime (and fine
channel) resolution in late layers. MViT is shown in Table 4.2.

Scale stages. A scale stage is defined as a set of /V transformer blocks that operate on the same
scale with identical resolution across channels and space-time dimensions D xT'x H x W . At the
input (cube; in Table 4.2), we project the patches (or cubes if they have a temporal extent) to a
smaller channel dimension (e.g. 8 x smaller than a typical ViT model), but long sequence (e.g. 4 x4
= 16X denser than a typical ViT model; cf. Table 4.1).

At a stage transition (e.g. scale; to scales to in Table 4.2), the channel dimension of the processed
sequence is up-sampled while the length of the sequence is down-sampled. This effectively reduces
the spatiotemporal resolution of the underlying visual data while allowing the network to assimilate
the processed information in more complex features.

Channel expansion. When transitioning from one stage to the next, we expand the channel
dimension by increasing the output of the final MLP layer in the previous stage by a factor that
is relative to the resolution change introduced at the stage. Concretely, if we down-sample the
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stage operators output sizes stage operators output sizes
data stride 8 x1x 1 8x224 %224 data stride 4x 1x1 16x224x224
patchy SLT dle6lx ;?616186 768x8x14x14  cube, Sé :12;1 49X6 , 96X 8x 56X 56
scales &’ISQ%(;%)) 12| 768x8x14x14  scales 1\1\//1[1;%(55)) x1 | 96x8x56x56
scales 1\1/\[/1111?’62516?5) X2 | 192x8x28x28
scales “ﬁ'ﬁg’a(gg)) x11| 384x8x14x 14

scales h&?g@(g;ﬁ)) X2 T68X8XTxT

(a) ViT-B with 179.6G FLOPs, 87.2M param, (b) MViT-B with 70.5G FLOPs, 36.5M param,
16.8G memory, and 68.5% top-1 accuracy. 6.8G memory, and 77.2% top-1 accuracy.

stage operators output sizes
data stride 4 x1x1 16Xx224x224
cube; S3t: d8eX28>; ;igg 128x8x28 %28
scale “;'AHL‘;A(QIZZS;) x3 | 128x8x28x28
scales 11\\44???](5;?)) XT| 256x8x14x14
scales hﬁ?iggig; X6 | 512x8xTx7

(c) MVIT-S with 32.9G FLOPs, 26.1M param,
4.3G memory, and 74.3% top-1 accuracy.

Table 4.3: Comparing ViT-B to two instantiations of MViT with varying complexity, MViT-S in (c)
and MViT-B in (b). MViT-S operates at a lower spatial resolution and lacks a first high-resolution
stage. The top-1 accuracy corresponds to 5-Center view testing on K400. FLOPs correspond to a
single inference clip, and memory is for a training batch of 4 clips. See Table 4.2 for the general
MViT-B structure.

space-time resolution by 4 x, we increase the channel dimension by 2x. For example, scales
to scale, changes resolution from 2D x % X % X % to 4D x % X % X % in Table 4.2. This roughly
preserves the computational complexity across stages, and is similar to ConvNet design principles

[242, 111].

Query pooling. The pooling attention operation affords flexibility not only in the length of key
and value vectors but also in the length of the query, and thereby output, sequence. Pooling the
query vector P(Q; k; p;s) with a kernel s = (S% sg, sg,) leads to sequence reduction by a factor
of 52 . 32 . s%. Since, our intention is to decrease resolution at the beginning of a stage and
then preserve this resolution throughout the stage, only the first pooling attention operator of each

stage operates at non-degenerate query stride s? > 1, with all other operators constrained to
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s@ = (1,1,1).

Key-Value pooling. Unlike Query pooling, changing the sequence length of key K and value V'
tensors, does not change the output sequence length and, hence, the space-time resolution. However,
they play a key role in overall computational requirements of the pooling attention operator.

We decouple the usage of K,V and () pooling, with () pooling being used in the first layer of
each stage and K, V' pooling being employed in all other layers. Since the sequence length of key
and value tensors need to be identical to allow attention weight calculation, the pooling stride used
on K and value V tensors needs to be identical. In our default setting, we constrain all pooling
parameters (k; p; s) to be identical i.e. O = Oy within a stage, but vary s adaptively w.r.t. to the
scale across stages.

SKkip connections. Since the channel dimension and sequence length change inside a residual block,
we pool the skip connection to adapt to the dimension mismatch between its two ends. MHPA
handles this mismatch by adding the query pooling operator P(-; ®() to the residual path. As
shown in Fig. 4.3, instead of directly adding the input X of MHPA to the output, we add the pooled
input X to the output, thereby matching the resolution to attended query Q).

For handling the channel dimension mismatch between stage changes, we employ an extra linear
layer that operates on the layer-normalized output of our MHPA operation. Note that this differs
from the other (resolution-preserving) skip-connections that operate on the un-normalized signal.

Network instantiation details

Table A.1 shows concrete instantiations of the base models for Vision Transformers [67] and our
Multiscale Vision Transformers. ViT-Base [67] (Table A.1b) initially projects the input to patches
of shape 1x16x16 with dimension D = 768, followed by stacking N = 12 transformer blocks.
With an 8x224x224 input the resolution is fixed to 768 x8x 14 x 14 throughout all layers. The
sequence length (spacetime resolution + class token) is 8 - 14 - 14 + 1 = 1569.

Our MViT-Base (Table A.1b) is comprised of 4 scale stages, each having several transformer
blocks of consistent channel dimension. MViT-B initially projects the input to a channel dimension
of D = 96 with overlapping space-time cubes of shape 3x7x7. The resulting sequence of length
8 * 56 x 56 + 1 = 25089 is reduced by a factor of 4 for each additional stage, to a final sequence
length of 8 «x 7% 7+ 1 = 393 at scaley. In tandem, the channel dimension is up-sampled by a
factor of 2 at each stage, increasing to 768 at scale,. Note that all pooling operations, and hence the
resolution down-sampling, is performed only on the data sequence without involving the processed
class token embedding.

We set the number of MHPA heads to & = 1 in the scale; stage and increase the number of
heads with the channel dimension (channels per-head D /h remain consistent at 96).

At each stage transition, the previous stage output MLP dimension is increased by 2x and
MHPA pools on () tensors with s? = (1,2, 2) at the input of the next stage.

We employ K,V pooling in all MHPA blocks, with O = Oy and sV = (1,8, 8) in scale;
and adaptively decay this stride w.r.t. to the scale across stages such that the K, V' tensors have
consistent scale across all blocks.
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4.4 Experiments: Video Recognition

Datasets. We use Kinetics-400 [143] (K400) (~240k training videos in 400 classes) and Kinetics-
600 [36]. We further assess transfer learning performance for on Something-Something-v2 [97],
Charades [241], and AVA [103].

We report top-1 and top-5 classification accuracy (%) on the validation set, computational cost
(in FLOPs) of a single, spatially center-cropped clip and the number of clips used.

Training. By default, all models are trained from random initialization (“from scratch’) on Kinetics,
without using ImageNet [57] or other pre-training. Our training recipe and augmentations follow
[77, 264]. For Kinetics, we train for 200 epochs with 2 repeated augmentation [ 124] repetitions.
We report ViT baselines that are fine-tuned from ImageNet, using a 30-epoch version of the
training recipe in [77].
For the temporal domain, we sample a clip from the full-length video, and the input to the
network are 7" frames with a temporal stride of 7; denoted as 7" x 7 [77].

Inference. We apply two testing strategies following [77, 75]: (i) Temporally, uniformly samples K
clips (e.g. K=5) from a video, scales the shorter spatial side to 256 pixels and takes a 224 x224 center
crop, and (i), the same as (i) temporally, but take 3 crops of 224 x224 to cover the longer spatial
axis. We average the scores for all individual predictions.

All implementation specifics are in §A.S.

Main Results

Kinetics-400. Table 5.2 compares to prior work. From top-to-bottom, it has four sections and we
discuss them in turn.

The first Table 5.2 section shows prior art using ConvNets.

The second section shows concurrent work using Vision Transformers [67] for video clas-
sification [204, 22]. Both approaches rely on ImageNet pre-trained base models. ViT-B-VTN
[204] achieves 75.6% top-1 accuracy, which is boosted by 3% to 78.6% by merely changing the
pre-training from ImageNet-1K to ImageNet-21K. ViT-B-TimeSformer [22] shows another 2.1%
gain on top of VTN, at higher cost of 7140G FLOPs and 121.4M parameters. ViViT improves
accuracy further with an even larger ViT-L model.

The third section in Table 5.2 shows our ViT baselines. We first list our ViT-B, also pre-trained
on the ImageNet-21K, which achieves 79.3%, thereby being 1.4% lower than ViT-B-TimeSformer,
but is with 4.4x fewer FLOPs and 1.4x fewer parameters. This result shows that simply fine-
tuning an off-the-shelf ViT-B model from ImageNet-21K [67] provides a strong baseline on Kinetics.
However, training this model from-scratch with the same fine-tuning recipe will result in 34.3%.
Using our “training-from-scratch” recipe will produce 68.5% for this ViT-B model, using the same
1 x5, spatial x temporal, views for video-level inference.

The final section of Table 5.2 lists our MVIiT results. All our models are trained-from-scratch
using this recipe, without any external pre-training. Our small model, MViT-S produces 76.0%
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model pre-train  |top-1|top-5 |FLOPsx views | Param
Two-Stream 13D [34] - 71.6 1 90.0 216 x NA| 25.0
ip-CSN-152 [266] - 77.8192.8| 109x3x10| 32.8
SlowFast 8x8 +NL [77] - 78.7193.5| 116x3x10| 59.9
SlowFast 16x8 +NL [77] - 79.8193.9 | 234x3x10| 59.9
X3D-M [75] - 76.0192.3| 6.2x3x10| 3.8
X3D-XL [75] - 79.1193.9| 484x3x10| 11.0
ViT-B-VTN [204] ImageNet-1K 4218x1x1| 114.0
ViT-B-VTN [204] ImageNet-21K 4218x1x1| 114.0
ViT-B-TimeSformer [22]|ImageNet-21K 2380x3x1| 121.4
ViT-L-ViViT [8] ImageNet-21K 3992x3x4| 310.8
ViT-B (our baseline) ImageNet-21K 180x1x5] 87.2
ViT-B (our baseline) - 68.5 | 86.9 180x1x5| 87.2
MViT-S - 76.0 | 92.1 329x1x5| 26.1
MYViT-B, 16 x4 - 7841935 70.5x1x5| 36.6
MYViT-B, 323 - 80.2 194.4 170x1x5| 36.6
MVIiT-B, 64x3 - 81.2 | 95.1 455x3x3| 36.6

Table 4.4: Comparison with previous work on Kinetics-400. We report the inference cost with a
single “view" (temporal clip with spatial crop) x the number of views (FLOPs X VieWpace X VIEW/ime ).
Magnitudes are Giga (10%) for FLOPs and Mega (10°) for Param. Accuracy of models trained with
external data is

model pretrain | top-1|top-5 | GFLOPs x views | Param
SlowFast 16 x8 +NL [77] - 81.895.1 234x3x10| 59.9
X3D-M - 78.8 | 94.5 6.2x3x10| 3.8
X3D-XL - 81.9(95.5 48.4x3x10| 11.0
ViT-B-TimeSformer [22]|IN-21K 1703x3x1| 121.4
ViT-L-ViViT [§] IN-21K 3992x3x4| 310.8
MVIT-B, 16 x4 - 82.195.7 70.5x1x5| 36.8
MVIT-B, 32x3 - 83.4196.3 170x1x5| 36.8
MYViT-B-24, 32x3 - 84.1 | 96.5 236x1x5| 529

Table 4.5: Comparison with previous work on Kinetics-600.

while being relatively lightweight with 26.1M param and 32.9 x5=164.5G FLOPs, outperforming
ViT-B by +7.5% at 5.5 less compute in identical train/val setting.

Our base model, MViT-B provides 78.4%, a +9.9% accuracy boost over ViT-B under identical
settings, while having 2.6 x /2.4 x fewer FLOPs /parameters. When changing the frame sampling
from 16x4 to 32 x3 performance increases to 80.2%. Finally, we take this model and fine-tune it
for 5 epochs with longer 64 frame input, after interpolating the temporal positional embedding, to
reach 81.2% top-1 using 3 spatial and 3 temporal views for inference (it is sufficient test with fewer
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model pretrain  |top-1 |top-5 |FLOPsx views |Param
TSM-RGB [178] IN-1K+K400| 63.3 | 88.2 62.4x3x2| 429
MSNet [155] IN-1IK | 64.7 | 89.4 67x1x1| 24.6
TEA [171] IN-1K | 65.1]89.9 70x3x10 -
ViT-B-TimeSformer [22] | IN-21K |62.5| - 1703x3x1| 121.4
ViT-B (our baseline) IN-21K | 63.5|88.3 180x3x1| 87.2
SlowFast R50, 8 x8 [77] 61.9 | 87.0 65.7x3x1| 34.1
SlowFast R101, 8x8 [77] 63.1|87.6 106 x3x1| 53.3
MVIT-B, 16x4 K400 64.7|89.2 70.5x3x1| 36.6
MVIT-B, 32x3 67.1 | 90.8 170x3x1| 36.6
MVIiT-B, 64x3 67.7 | 90.9 455x3x1| 36.6
MVIT-B, 16x4 66.2 | 90.2 70.5x3x1| 36.6
MViT-B, 32x3 K600 67.8|91.3 170x3x1| 36.6
MViT-B-24, 32 x3 68.7 | 91.5 236x3x1| 53.2

Table 4.6: Comparison with previous work on SSv2.

temporal views if a clip has more frames). Further quantitative and qualitative results are in §A.2.

Kinetics-600 [36] is a larger version of Kinetics. Results are in Table 5.3. We train MViT from-
scratch, without any pre-training. MViT-B, 16x4 achieves 82.1% top-1 accuracy. We further train a
deeper 24-layer model with longer sampling, MViT-B-24, 323, to investigate model scale on this
larger dataset. MViT achieves state-of-the-art of 83.4% with 5-clip center crop testing while having
56.0x fewer FLOPs and 8.4 x fewer parameters than ViT-L-ViViT [8] which relies on large-scale
ImageNet-21K pre-training.

Something-Something-v2 (SSv2) [97] is a dataset with videos containing object interactions,
which is known as a ‘temporal modeling* task. Table 4.6 compares our method with the state-of-the-
art. We first report a simple ViT-B (our baseline) that uses ImageNet-21K pre-training. Our MViT-B
with 16 frames has 64.7% top-1 accuracy, which is better than the SlowFast R101 [77] which shares
the same setting (K400 pre-training and 3 x 1 view testing). With more input frames, our MViT-B
achieves 67.7% and the deeper MViT-B-24 achieves 68.7% using our K600 pre-trained model of
above. In general, Table 4.6 verifies the capability of temporal modeling for MViT.

Charades [241] is a dataset with longer range activities. We validate our model in Table 4.7.
With similar FLOPs and parameters, our MViT-B 16x4 achieves better results (+2.0 mAP) than
SlowFast R50 [77]. As shown in the Table, the performance of MViT-B is further improved by
increasing the number of input frames and MViT-B layers and using K600 pre-trained models.

AVA [103] is a dataset with for spatiotemporal-localization of human actions. We validate our
MVIiT on this detection task. Details about the detection architecture of MViT can be found in §A.5.
Table 4.8 shows the results of our MViT models compared with SlowFast [77] and X3D [75]. We
observe that MViT-B can be competitive to SlowFast and X3D using the same pre-training and
testing strategy.
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model pretrain | mAP |FLOPsxviews|Param
Nonlocal [277] 37.5| 544x3x10| 54.3
STRG +NL [276] IN-TK+KA0B0 71 630x3x 10| 583
Timeception [134] 41.1 N/AXN/A| N/A
LFB +NL [287] 42.5| 529x3x10| 122
SlowFast 50, 8x8 [77] 38.0 | 65.7x3x10| 34.0
SlowFast 101+NL, 16x8 [77] K400 425 234x3x10| 599
X3D-XL [75] 434 | 484x3x10| 11.0
MViT-B, 16 x4 40.0 | 70.5x3x10| 36.4
MYViT-B, 32x3 443 | 170x3x10| 36.4
MYViT-B, 64x3 46.3 | 455x3x10| 364
SlowFast R101+NL, 16x8 [77] 452 | 234x3x10| 599
X3D-XL [75] 47.1 | 484x3x10| 11.0
MYVIT-B, 16 x4 K600 [43.9| 70.5x3x10| 36.4
MViT-B, 32x3 47.1 | 170x3x10| 36.4
MViT-B-24, 32x3 47.7 | 236x3x10| 53.0

Table 4.7: Comparison with previous work on Charades.

model pretrain | val mAP | FLOPs | Param
SlowFast, 4x16, R50 [77] 21.9 52.6| 33.7
SlowFast, 8x8, R101 [77] 23.8 138| 53.0
MVIT-B, 16 x4 K400 | 245 70.5| 364
MVIT-B, 32x3 26.8 170| 36.4
MVIT-B, 64x3 27.3 455| 36.4
SlowFast, 8x8 R101+NL [77] 27.1 147 59.2
SlowFast, 16 x8 R101+NL [77] 27.5 296| 59.2
X3D.—XL [75] K600 27.4 484 11.0
MVIT-B, 16 x4 26.1 70.5| 36.3
MVIT-B, 32x3 27.5 170 36.4
MYViT-B-24, 32x3 28.7 236| 52.9

Table 4.8: Comparison with previvous work on AVA v2.2. All methods use single center crop
inference following [75].

Ablations on Kinetics

We carry out ablations on Kinetics-400 (K400) using 5-clip center 224 X224 crop testing. We show
top-1 accuracy (Acc), as well as computational complexity measured in GFLOPs for a single clip
input of spatial size 2242, Inference computational cost is proportional as a fixed number of 5 clips
is used (to roughly cover the inferred videos with 7'x7=16 x4 sampling.) We also report Parameters
in M(10°) and training GPU memory in G(10°) for a batch size of 4. By default all MViT ablations
are with MViT-B, T'x7=16x4 and max-pooling in MHSA.
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model shuffling FLOPs Param Acc
G) M)
MViT-B 77.2
70.5 36.5
MViT-B v 70.1 (-7.1)
ViT-B 68.5
179.6 87.2
ViT-B v ? 68.4 (—0.1)

Table 4.9: Shuffling frames in inference. MViT-B severely drops (—7.1%) for shuffled temporal
input, but ViT-B models appear to ignore temporal information as accuracy remains similar (—0.1%).

Frame shuffling. Table 4.9 shows results for randomly shuffling the input frames in time during
testing. All models are trained without any shuffling and have temporal embeddings. We notice that
our MVIiT-B architecture suffers a significant accuracy drop of -7.1% (77.2 — 70.1) for shuffling
inference frames. By contrast, ViT-B is surprisingly robust for shuffling the temporal order of the
input.

This indicates that a naive application of ViT to video does not model temporal information, and
the temporal positional embedding in ViT-B seems to be fully ignored. We also verified this with
the 79.3% ImageNet-21K pre-trained ViT-B of Table 5.2, which has the same accuracy of 79.3%
for shuffling test frames, suggesting that it implicitly performs bag-of-frames video classification in
Kinetics.

variant [Ny, |[FLOPs (G) Mem (G)|Acc
N2]
ViT-B [12,0]]179.6 16.8 68.5

2-scale ViT-B, @ pool| [6, 6] |111.1 (—68.5) 9.8 (—7.0) |71.0 (+1.5)
ViT-B, K,V pool [12,0]|148.4(-312) 8.9 (79 [69.1 (+0.6)

Table 4.10: Query (scale stage) and Key-Value pooling on ViT-B. Introducing a single extra
resolution stage into ViT-B boosts accuracy by +1.5%. Pooling K,V provides +0.6% accuracy.
Both techniques allow dramatic FLOPs/memory savings.

Two scales in ViT. We provide a simple experiment that ablates the effectiveness of scale-stage
design on ViT-B. For this we add a single scale stage to the ViT-B model. To isolate the effect
of having different scales in ViT, we do not alter the channel dimensionality for this experiment.
We do so by performing Q-Pooling with s@ = (1,2, 2) after 6 Transformer blocks (cf. Table A.1).
Table 4.10 shows the results. Adding a single scale stage to the ViT-B baseline boosts accuracy
by +1.5% while deceasing FLOPs and memory cost by 38% and 41%. Pooling Key-Value tensors
reduces compute and memory cost while slightly increasing accuracy.

Separate space & time embeddings in MViT. In Table 4.11, we ablate using (i) none, (ii) space-
only, (iii) joint space-time, and (iv) a separate space and time (our default), positional embeddings.
We observe that no embedding (i) decays accuracy by -0.9% over using just a spatial one (ii) which
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positional embedding Param Acc

M)
@) none 36.2 75.8
(i1) space-only 36.5 76.7
(iii) joint space-time 38.6 76.5
(iv)  separate in space & time 36.5 77.2

Table 4.11: Effect of separate space-time positional embedding. Backbone: MViT-B, 16x4.
FLOPs are 70.5G for all variants.

is roughly equivalent to a joint spatiotemporal one (iii). Our separate space-time embedding (iv) is
best, and also has 2.1M fewer parameters than a joint spacetime embedding.
T X T|crpXeg Xew| st x sy x sy FLOPsParam| Acc
8x8| 1x4x4 I1x4x4 | 694 365|745
8x8| 1xTx7 1x4x4 69.6 36.5|75.6
8x8| 3xTx7 Ix4x4 | 705 365|759
16x4| 3x7x7 2x4x4 | 70.5 365 | 77.2
32x2| 3xTx7 4x4x4 70.5 365|772
32x2| TxTxT 4x4x4 70.5 36.5 | 77.3

Table 4.12: Input sampling: We vary sampling rate 7" X 7, the size c=cp X cy X cy and stride of
s=sp X sy X sy the cube, layer that projects space-time cubes. Cubes with temporal extent ¢ > 1
are beneficial. Our default setting is underlined.

Input Sampling Rate. Table 4.12 shows results for different cubification kernel size ¢ and sampling
stride s (cf. Table 4.2). We observe that sampling patches, cr = 1, performs worse than sampling
cubes with cp > 1. Further, sampling twice as many frames, 7'= 16, with twice the cube stride,
s7= 2, keeps the cost constant but boosts performance by +1.3% (75.9% — 77.2%). Also, sampling
overlapping input cubes s < c allows better information flow and benefits performance. While
cr > 1 helps, very large temporal kernel size (c; = 7) does not further improve performance.
variant | [Na2, N3, Ny, | FLOPsParam Mem | Acc

Ns]
V1 [2,6,6,2] | 90.2 29.5 11.0 | 76.3
V2 [2,4,6,4] | 869 42.8 10.3 | 75.9
V3 [2,4,8,2] | 883 322 10.5 | 76.6
V4 [2,2,8,4] | 85.0 455 9.7 | 76.7
\'A [1,2,11,2] | 83.6 365 9.1 |771
V6 [2,2,10,2] | 86.4 349 113|769

Table 4.13: Scale blocks: We ablate the stage configuration as the number of blocks NV in stages of
MVIiT-B (i.e. where to pool (). The overall number of transformer blocks is constant with N=16.



CHAPTER 4. MULTISCALE VISION TRANSFORMERS 46

Stage distribution. The ablation in Table 4.13 shows the results for distributing the number of
transformer blocks in each individual scale stage. The overall number of transformer blocks, N=16
is consistent. We observe that having more blocks in early stages increases memory and having
more blocks later stages the parameters of the architecture. Shifting the majority of blocks to the
scale, stage (Variant V5 and V6 in Table 4.13) achieves the best trade-off.

stride s | adaptiveFLOPsMem | Acc

none n/a |130.8 16.3 | 77.6
1x4x4 714 82 | 759
2x4x4 643 6.6 | 74.8
2x4x4| v 83.6 9.1 |77.1
I1x8x8| v | 70,5 6.8 | 772
2x8x8| Vv 63.7 6.3 | 758

b

Table 4.14: Key-Value pooling: Vary stride s = sy X sy X sy, for pooling K and V. “adaptive’
reduces stride w.r.t. stage resolution.

Key-Value pooling. The ablation in Table 4.14 analyzes the pooling stride s = sp X sy X sy, for
pooling K and V' tensors. Here, we compare an “adaptive” pooling that uses a stride w.r.t. stage
resolution, and keeps the K, V' resolution fixed across all stages, against a non-adaptive version that
uses the same stride at every block. First, we compare the baseline which uses no K, V' pooling
with non-adaptive pooling with a fixed stride of 2 x4 x4 across all stages: this drops accuracy from
77.6% to 74.8 (and reduces FLOPs and memory by over 50%). Using an adaptive stride that is
1x8x8 in the scale; stage, 1 x4 x4 in scale,, and 1x2x2 in scales gives the best accuracy of 77.2%
while still preserving most of the efficiency gains in FLOPs and memory.

kernel k| pooling |Param| Acc
func

S max 36.5 | 76.1
2s+1 max 36.5 | 75.5
s+1 max 36.5 | 77.2
s+1 average 365 | 754
s+1 conv 36.6 | 78.3
3x3x3 conv 36.6 | 78.4

Table 4.15: Pooling function: Varying the kernel k as a function of stride s. Functions are average
or max pooling and conv which is a learnable, channel-wise convolution.

Pooling function. The ablation in Table 4.15 looks at the kernel size k w.r.t. the stride s, and the
pooling function (max/average/conv). First, we see that having equivalent kernel and stride k=s
provides 76.1%, increasing the kernel size to k=2s + 1 decays to 75.5%, but using a kernel k=s + 1
gives a clear benefit of 77.2%. This indicates that overlapping pooling is effective, but a too large
overlap (2s + 1) hurts. Second, we investigate average instead of max-pooling and observe that
accuracy decays by from 77.2% to 75.4%.

Third, we use conv-pooling by a learnable, channelwise convolution followed by LN. This
variant has +1.2% over max pooling and is used for all experiments in §4.4 and §4.5.
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model clips/sec | Acc | FLOPsxviews | Param
X3D-M [75] 7.9 | 74.1 4.7x1x5 3.8
SlowFast R50 [77] 52| 75.7 65.7x1x5 34.6
SlowFast R101 [77] 32 | 776 125.9x1x5 62.8
ViT-B [67] 3.6 | 68.5 179.6x1x5 87.2
MViT-S, max-pool 12.3 | 743 32.9x1x5 26.1
MYViT-B, max-pool 63| 772 70.5x1x5 36.5
MVIiT-S, conv-pool 94 | 76.0 329x1x5 26.1
MViT-B, conv-pool 4.8 | 78.4 70.5x1x5 36.6

Table 4.16: Speed-Accuracy tradeoff on Kinetics-400. Training throughput is measured in clips/s.
MVIiT is fast and accurate.

Speed-Accuracy tradeoff. In Table 4.16, we analyze the speed/accuracy trade-off of our MViT
models, along with their counterparts vision transformer (ViT [67]) and ConvNets (SlowFast 8 x8
R50, SlowFast 8x8 R101 [77], & X3D-L [75]). We measure training throughput as the number of
video clips per second on a single M40 GPU.

We observe that both MVIT-S and MViT-B models are not only significantly more accurate
but also much faster than both the ViT-B baseline and convolutional models. Concretely, MViT-S
has 3.4 x higher throughput speed (clips/s), is +5.8% more accurate (Acc), and has 3.3x fewer
parameters (Param) than ViT-B. Using a conv instead of max-pooling in MHSA, we observe a
training speed reduction of ~20% for convolution and additional parameter updates.

4.5 Experiments: Image Recognition

We apply our video models on static image recognition by using them with single frame, 7" = 1, on
ImageNet-1K [57].

Training. Our recipe is identical to DeiT [264] and summarized in §A.5. Training is for 300 epochs
and results improve for training longer [264].

Main Results

For this experiment, we take our models which were designed by ablation studies for video
classification on Kinetics and simply remove the temporal dimension. Then we train and validate
them (“from scratch”) on ImageNet.

Table 5.1 shows the comparison with previous work. From top to bottom, the table contains
RegNet [221] and EfficientNet [255] as ConvNet examples, and DeiT [264], with DeiT-B being
identical to ViT-B [67] but trained with the improved recipe in [264]. Therefore, this is the vision
transformer counterpart we are interested in comparing to.

The bottom section in Table 5.1 shows results for our Multiscale Vision Transformer (MViT)
models.
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model Acc |FLOPs (G) |Param (M)
RegNetZ-4GF [65] 83.1 4.0 28.1
RegNetZ-16GF [65] 84.1 15.9 95.3
EfficientNet-B7 [255] 84.3 37.0 66.0
DeiT-S [264] 79.8 4.6 22.1
DeiT-B [264] 81.8 17.6 86.6
DeiT-B 1 3842 [264] 83.1 55.5 87.0
MViT-B-16, max-pool 82.5 7.8 37.0
MViT-B-24, max-pool 83.1 11.0 53.5
MViT-B-24-wide-3202, max-pool | 84.3 32.7 72.9
MYViT-B-16 83.0 7.8 37.0
MYViT-B-24-wide-3202 84.8 32.7 72.9

Table 4.17: Comparison to prior work on ImageNet. RegNet and EfficientNet are ConvNet exam-
ples that use different training recipes. DeiT/MViT are ViT-based and use identical recipes [264].

We show models of different depth, MViT-B-Depth, (16, 24, and 32), where MViT-B-16 is
our base model and the deeper variants are simply created by repeating the number of blocks /N, in
each scale stage (cf. Table A.1b). “wide” denotes a larger channel dimension of D = 112. All our
models are trained using the identical recipe as DeiT [264].

We make the following observations:

(i) Our lightweight MViT-B-16 achieves 82.5% top-1 accuracy, with only 7.8 GFLOPs, which
outperforms the DeiT-B counterpart by +0.7% with lower computation cost (2.3 xfewer FLOPs and
Parameters). If we use conv instead of max-pooling, this number is increased by +0.5% to 83.0%.

(i1) Our deeper model MVIT-B-24, provides a gain of +0.6% accuracy at slight increase in
computation.

(iii) A larger model, MViT-B-24-wide with input resolution 3202 reaches 84.3%, corresponding
to a +1.2% gain, at 1.7 xfewer FLOPs, over DeiT-B13842. Using convolutional, instead of max-
pooling elevates this to 84.8%.

These results suggest that Multiscale Vision Transformers have an architectural advantage over
Vision Transformers.

4.6 Conclusion

We have presented Multiscale Vision Transformers that aim to connect the fundamental concept of
multiscale feature hierarchies with the transformer model. MViT hierarchically expands the feature
complexity while reducing visual resolution. In empirical evaluation, MViT shows a fundamental
advantage over single-scale vision transformers for video and image recognition. We hope that our
approach will foster further research in visual recognition.
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Chapter 5

Reversible Vision Transformers

5.1 Introduction

The deep learning revolution in computer vision has rested on the bedrock of high performance
hardware accelerators. Fueled by special purpose Al accelerators, the compute requirements
for state-of-the-art models are growing exponentially. However, compute is only half the story.
The other, and often overlooked half, is memory bandwidth bottleneck, which has been difficult
to proportionally scale as compared to peak accelerator FLOPs [212]. In particular, the peak
accelerator FLOPs have been increasing at a rate of ~3.1x every 2 years [87, 251]. However, peak
bandwidth only scales at a rate of ~1.4x every 2 years. This disparity is exacerbated in transformers,
which have been doubling in required compute roughly every three months for the past three years,
resulting in a so-called memory wall [87] where both the overall model performance as well as the
training speed have become tightly memory-bound [135].

As such, for bandwidth bound models, trading compute for memory through re-computation
could actually be more efficient than using work-optimal algorithms [283, 282]. In the case of
training neural network models, this can be achieved by re-computing activations instead of storing
and then loading them from DRAM [125]. Besides training speed, scaling vision transformers in
depth naturally hits the GPU memory capacity, especially in memory starved regimes such as video
recognition where state-of-the-art models are often limited to batch size 1 due to high memory
footprint of intermediate activations.

We propose Reversible Vision Transformers, a family of expressive visual recognition architec-
tures with very favorable activation memory footprints (Figure 5.1) compared to their non-reversible
variants. By trading-off GPU activation caching with efficient on-the-fly activation re-computation,
reversible vision transformers effectively decouple the activation memory growth from the depth of
the model.

This chapter is based on joint work with Haoqi Fan, Chao-Yuan Wu, Bo Xiong, Christoph Feichtenhofer and
Jitendra Malik [197], and is presented as it appeared in the CVPR 2022 proceedings.


https://openaccess.thecvf.com/content/CVPR2022/papers/Mangalam_Reversible_Vision_Transformers_CVPR_2022_paper.pdf
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Figure 5.1: Reversible Vision Transformers are more memory-efficient, yet powerful reversible
counterparts of state-of-the-art Vision Transformer (ViT) [68] and Multiscale Vision Transformer
(MVIT) [71] architectures with varying model complexity. Numbers in parentheses denote top-1
ImageNet performance. ResNet [111] and RegNet [221] are only shown for reference. For detailed
discussion please refer to Sec. 5.4.

While the natural language processing community has performed some early exploration of
reversible transformers for machine translation [149], these techniques focus on longer sequence
lengths rather than depth.

Our experiments show that a straightforward adaptation of vision transformers to reversible
architectures fails to scale for deeper models because of training convergence instabilities due to
internal sub-block residual connections.

In this work, we reconfigure the residual paths in Vision Transformers (ViT) [68] and Multiscale
Vision Transformers (MViT) [71] to overcome this issue. We further find that reversible structures
have stronger inherent regularization and therefore, we use a lighter augmentation recipe (repeated
augmentation, augmentation magnitude and stochastic depth) and lateral connections between
residual blocks.

We benchmark extensively across image recognition tasks such as image classification and object
detection as well as video classification, across all of which, reversible vision transformers have
competitive performance to their non-reversible counterparts suffering negligible to no performance
decay. Moreover, reversible models have extremely favorable per-image memory footprint, saving
15.5x on the ViT-Large model and 4.5x on the MViT-Large model with reversible training.

In summary, our contributions are three-fold.

(i) We propose Reversible Vision Transformer (Rev-ViT) and Reversible Multiscale Vision
Transformers (Rev-MViT), memory efficient reversible adaptations of state-of-the-art visual recog-
nition backbones.
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(if) We observe reversible transformers to have a stronger inherent regularization than vanilla
networks. Hence, we develop new training recipes by adapting the original recipes with different
repeated augmentations, augmentation magnitudes and drop path rate to match the performance of
their non-reversible counterparts.

(iii) We benchmark our models across several tasks: image classification, object detection and
action recognition, across accuracy, memory, maximum training batch size and model complexity.
In particular, at matched complexity (FLOPs/parameters) and final accuracy, Rev-ViT-B and Rev-
ViT-L train with per image memory footprints that are 8.2x and 15.5 x lighter than ViT-B and ViT-L
respectively. Further, we show how deep reversible networks can achieve up to 2-4 x throughput
than their vanilla counterparts.

5.2 Related Work

Transformers are a popular network structure that were first proposed for natural language ap-
plications [270] and now are widely used in all areas of deep learning such as Reinforcement
Learning [44], Speech [167], Music [129], multi-modal learning [137] and recently, in traditional vi-
sion tasks [68] as well. Since their introduction, Vision Transformers have experienced enthusiastic
adoption and have been applied to several visual recognition tasks [68, 262, 263] using priors such
as multi-scale feature hierarchies [71, 99, 187, 275, 310] and local structure modelling [187, 66,
47]. Further, vision transformers have also been generalized for action recognition and detection in
videos [71, 187, 9, 211, 204, 22].

However, a crucial problem with scaling up transformer models is the growth of required GPU
memory with depth. This linear growth in memory is prohibitive to the development of very deep
models since the batch size needs to be reduced considerably to be able to accommodate storing the
intermediate activations on GPU. This problem is exacerbated in video models which process very
large input tensors and are often trained with batch size 1 even for shallower depths. A potential
systems-level solution to scale up conventional transformer architectures is model parallelism [56]
that puts different parts of the model on different GPUs. However in practice, it is quite slow and
requires special high bandwith network infrastructure because of huge across device traffic.

In this work, we use Vision Transformers [68] and Multiscale Vision Transformers [71] as our
base models and propose their reversible transformer version that decouple the memory requirement
from depth of the model. This facilitates saving GPU memory and allows training with much higher
batch size, and consequently, to preserve or even increase training throughput of deep non-reversible
models.

Reversible Architectures are a family of neural network architectures that are based on the
NICE [63, 64] reversible transformation model which are the precursors of the modern day gen-
erative flow based image generation architectures [122, 147]. Based on the NICE invertible
transformations, Gomez et al. [91] propose a Reversible ResNet architecture that employs the
reversible transformation [63] for memory-efficient image classification in ResNets [112]. An
interesting line of work builds upon the Reversible ResNets ideas proposing better reversible CNN
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models using ODE characterizations [41, 162, 237], momentum [162, 237], layer-wise inver-
sion [110], fourier transform based inversion [79] and fixed point iteration based inversion [17,
247]. Reversible CNNs have been applied to several traditional image tasks such as compres-
sion [183], reconstruction [170], retrieval [169], and denoising [131, 185] as well as to compressed
sensing [249], compact resolution [302], image to image translation [208], remote sensing [216],
medical image segmentation [215, 299] and MRI reconstruction [218]. Reversible transformation
have also been adapted to other networks such as RNNs [192], Unet [28, 70], Masked Convolutional
Networks [247] and 1000-layer deep Graph Neural Networks [164]. Some early attempts have also
been made to adapt the reversible transformation to the NLP domain, initiated by Kiatev et al. [149]
and built upon in [323, 324] for machine translation.

However, word-level input partitioning contains much richer semantic content than patch level
image partitioning and NLP transformers tend to be shallower in depth but wider in channel
dimension. For example, Kiatev et al. [149] focus on expanding on the input sequence dimension
rather than model depth and with no benchmarking on maximum batch-size, peak GPU memory
and training throughput.

Our experiments show that a naive adaption of reversible vision transformers performs poorly
for deeper (>8 blocks) models. This work is the first to propose Reversible Vision Transformers,
adapt it to two state-of-the-art transformer networks, namely, ViT and MViT. Furthermore, this
work is the first use of a reversible backbone for object detection and video classification, which
tends to be one the most memory starved domains of visual recognition.

5.3 Approach

We first present a brief overview of the reversible transformation (Sec. 5.3) and its benefits in neural
network training (Sec. 5.3). We then present our proposed Reversible Vision Transformer (Sec. 5.3)
its two residual stream structure (Sec. 5.3 and associated constraints (Sec. 5.3. This is followed by
our proposed Reversible Multiscale Vision Transformer architecture (Sec. 5.3) and its sub-blocks
(Sec. 5.3 and Sec. 5.3) that allow end-to-end reversible training.

Reversible Block Structure

The reversible transformer is composed of a stack of reversible blocks that follow the structure of
the reversible transformation to allow analytic invertibility of outputs.

Reversible Transformation

Consider a transformation 7} that transforms an input tensor / partitioned into two d dimensional
tensors, [/1; I5] into the output tensor O also similarly partitioned into tensors, [O1; Os] with an
arbitrary differentiable function F'(-) : R? — R? as follows:

= 2] = [0 = [ b =0
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Note that the above transformation 7; allows an inverse transformation 77 such that 77 o T is an
identity transform. Also, consider an analogous transposed transformation 75 using the function
G(-) : RT — R? as follows:

. Il Ol o Il‘f—G(IQ) _
- P
Similar to 77, T3 also allows an inverse transform 77. Now consider the composition 7" = T o T}
that transforms both the partitions of the input vector I and is obtained as,

B PSEe e

Naturally, 7" affords the inverse transform 7" = 77 o T} that follows 7"(7'(I)) = I. Note that
the inverse transform 7" queries the functions F' and G exactly once and hence has the same
computational cost as the forward transform 7°.

Vanilla networks require caching activations

Consider the back-propagation mechanism. Given a computation graph node, M, its children nodes
{N;}, and the gradients of the children node with respect to final loss {dcj\/—ﬁ } the back-propagation
algorithm uses the chain rule to calculate the gradient with respect to M as,
ac ( af; )T dr
dM N, oM ) dN;

where f; denotes the function computing node N; from its parents, M being one of them. The
jacobian g—j:jl, requires calculating the partial gradient of the f; output with respect to the current
node M.

Now consider the simplest possible neural network layer f(X) = W7 X, where X is an
intermediate activation inside the network. Applying the above described backpropagation algorithm
to compute the derivative with respect to parent nodes, and using the output Y as the sole child

node, \;, we get,
e [dL\ L dc
aw - (W) X x - Vay

Thus, because of the function jacobian, the backpropagation algorithm requires intermediate
activations during the forward pass to be available in the backward pass to compute the gradients
with respect to the weights.

Typically, this is achieved by caching the intermediate activations on GPU memory for use in
the backward pass. This allows fast gradient computation at the cost of extra memory. Further, the
sequential nature of the network requires the activations for all the layers to be cached in before the
loss gradients are calculated and the cached memory is freed. This dependence significantly affects
the peak memory usage which thus becomes linearly dependent on the network depth D.
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Figure 5.2: Reversible ViT is a two-residual-stream architecture composed of a stack of Reversible
ViT blocks (a) that transforms the inputs /; and [, with the ViT design [68], but in our reversible
fashion. Reversible MViT is a two-residual-stream architecture as well, made up of a stack of two
type of blocks — (b) The stage-transition blocks that act as coupling between the residual streams
as well as perform channel upsampling and resolution downsampling and (c) the stage-preserving
blocks that form the majority of the computational graph and propagate information preserving
input feature dimension.

Learning without caching activations

As noted in Sec. 5.3, an input transformed with the reversible transformation 7" allows recalculating
the input from the output of the transformation. Hence, a network composed of such reversible
transformations does not need to store intermediate activations since they can be recomputed easily
in the backward pass from the output. However the reversible transformation 7" places an important
constraint on the property of the learnt function.

Equidimensional Constraint. As mentioned in Sec. 5.3, the functions F' and GG need to be
equidimensional in input and output spaces. Hence, the feature dimensions need to remain constant
under 7'. While this constraint is an obstruction for other vision architectures such as ResNets
[112] that require a change of feature dimensions, it is easily satisfied in the Vision Transformer
architecture [68] which maintains a constant feature dimension throughout the layers.
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Reversible Vision Transformers
Adapting ViT to Two-Residual-Streams

Fig. 5.2a shows the reversible transformation 7" adapted to the Vision Transformer architecture
[68]. The input consists of two partitioned tensors /; and /5 that are transformed as per the equation
5.3 maintaining reversibility. This leads to a two-residual-stream architecture where each of the
inputs /; and /> maintain their own residual streams while mixing information with each other using
functions F" and G. Following ViT [68], we use the Multi-head attention and the MLP sublocks as
functions F' and G respectively.

Boundary Conditions

As the ViT architecture only uses a single residual stream, the architecture needs to be modified to
support the two-residual-stream design (Sec. 5.3). We propose the following:

1. Initiation. We keep the stem intact and send the patchification output activations to /; and
I5. Note that this design choice is different from [92] which proposes to split in halves along the
channel dimensions.

2. Termination. The two residual paths need to be fused before the final classifier head to preserve
information. We propose to layer-normalize the inputs first, followed by concatenation, to reduce
the fusion computational overhead.

Reconfiguring Residual Connections

Residual connections play a key role for signal propagation in deep networks [112]. The reversible
transform 7" itself also depends crucially on the residual connections between the two streams to
maintain reversibility. Interestingly, we observe a key relationship between the residual connections
and signal propagation in Reversible Vision Transformer.

Note that while it is common practice for neural network blocks to be wrapped around a
residual connection for better gradient flow [112], there is no such connection for either the [y
or I, inputs. Specifically, internal residual connections around the MLP and attention sub-blocks
for both the I; and I, streams are absent. Instead, the residual connections for each residual
stream flows through the other stream, operating through the inherent skip connection present in
the reversible transformation 7" (Sec. 5.3). We find these internal skip connections detrimental to
training convergence for deeper models while bringing no additional gain for shallower models and
choose to omit them entirely for reversible vision transformer blocks.

Reversible Multiscale Vision Transformers

The recently proposed MViT architecture develops a feature hierarchy inside the model by down-
sampling the visual resolution and upsampling the channel dimension. It obtains state-of-the-art
results on both image and video classification benchmarks. To showcase the flexibility of the
reversible design, we adapt the MViT model to Reversible Multiscale Vision Transformers. We
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propose to compose the Reversible MVIT architecture in the same structure as the MViT model but
using two different layers — the Stage Transition and the Stage-Preserving blocks.

Stage-Transition Block

Figure 5.2b depicts the architecture of the proposed stage-transition block. The stage-transition block
closely follows the design of the resolution upsampling blocks in MViT [71] with the following
crucial modifications:

Lateral Connections. The residual streams /; and I, are fused with lateral connections at the start
of the stage-transition block. This allows efficient computation of the resolution downsampling and
feature upsampling without repeat computation in each stream separately.

Feature Upsampling. MViT performs feature upsampling in the last MLP block before the
resolution upsampling block. We propose to move the channel upsampling stage inside the pooling
attention sub-block of the stage-transition block. Specifically, we propose to upsample the Query,
Key and Value vectors in the linear layer following the pooling channel-wise convolutional layers
(Figure 5.2b and 5.2¢). This was the dual benefit of (A) allowing all feature dimension changes
to take place in sync inside the same block and allowing other blocks to keep feature dimensions
intact, a virtue of reversible architectures (Sec. 5.3) and (B) saving additional computation from
being used in the prior MLP and pooling layers. We follow the same boundary conditions at the
stage-transition blocks as in the reversible vision transformer architecture (Sec. 5.3).

Stage-Preserving Block

Figure 5.2c shows the reversible transformation 7' (Sec. 5.3) adapted to the Multiscale Vision
Transformer architecture [71]. The design closely resembles that of the reversible vision transformer
block (Figure 5.2a) with the addition of multi-head pooling attention [71]. Note that even though the
attention uses pooling on key and value tensors, thereby changing the sequence length, the output
dimensions are still preserved. Hence, the stage-preserving block still follows the equidimensional
constraint (Sec. 5.3) and hence can be made fully reversible and learnt without caching activations.

Since each stage-transition block changes the spatiotemporal resolution, they occur only a limited
number of times in the entire MViT network. In other words, the majority of the computation as
well as memory usage is performed within the stage-preserving blocks and is fully reversible. We
follow the same residual connection circuit (Sec. 5.3) as in Reversible Vision Transformer blocks
for both the stage-transition and the stage-preserving blocks.

5.4 Results

Datasets. We benchmark both the Reversible Vision Transformer and the Reversible Multiscale
Vision Transformer architectures extensively across image classification (ImageNet [58]), video
classification (Kinetics 400 [143] & Kinetics 600 [34]) and object detection (MS-COCO [181]).
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Across all the benchmarks, we observe significant memory savings by using the reversible archi-
tecture with negligible to no accuracy change. All presented results and ablations are trained from
random initialization, except for COCO where we initialize from ImageNet weights.

Image Classification

Settings. We benchmark our proposed models on image classification on the ImageNet-1K
dataset [58] with ~1.28M images among 1000 classes. We follow training recipes [72] for both
ViT [68] and MViT [71] models with certain crucial adaptions (Sec. 5.6). All models are trained
from random initialization without EMA for 300 epochs except for ViT-L and Rev-ViT-L which
follow a 200 epoch training recipe. Training details are in Supplementary.

Results. Table 5.1 shows the results for Reversible Vision and Reversible Multiscale Vision
Transformers across different models and FLOP regimes. We benchmark all the models on a single
16 GB V100 GPU under 224 x 224 image size and otherwise identical conditions. The maximum
batch size is obtained as the highest number of images in a batch than can train without running
out of GPU memory. The memory per image is measured as the peak GPU memory each image
occupies during training.

We note that Reversible Vision Transformers match the FLOP and parameter specifications of
their non-reversible counterparts exactly owing to the parsimonious design of the reversible vision
transformer block (Sec. 5.3). The Reversible Multiscale Vision Transformer has slightly higher
FLOPs due to the stage-transition (Sec. 5.3) stages while still being very GPU memory efficient
owing to the stage-preserving (Sec. 5.3) stages.

Increasing memory savings with depth. In Table 5.1, we observe that our Rev-ViT matches the
performance of vanilla ViT to very close fidelity across all model variants (Small, Base and Large)
and FLOP regimes. Since the memory used per image is linearly dependent on the depth of the
model for vanilla networks (Sec. 5.3), the memory gains of the reversible model increases as the
network scales in depth. Notably, while the Reversible ViT-S already enjoys an impressive memory
saving of about 86.8% (equivalent to a 7.6 x reduction) with respect to the vanilla ViT-S model, the
gain increases further to 15.5x or, about 93% memory savings for the Reversible ViT-L model.

Equivalently, the saved memory can be used to increase the training batch size where we observe
a similar trend as well. While reversible ViT-S model achieves a 6.1 x increase in batch size on the
ViT-S model, the effect is more for ViT-L model where the maximum batch size increases by 14.3 x
jumping from a small 24 image per batch to 344 images. This is a very favorable trend, since it is
indeed the deeper models that hit the GPU memory wall [87].

Further, hierarchical vision transformers such as MViT also enjoy a memory saving of about
52.1% without suffering any significant drop in performance. The memory savings in Rev-MViT
are smaller compared to the ViT variants because of the stage-transition blocks in hierarchical
models (Sec. 5.3) that require storing the input activations due to the non-reversible nature of
pooling attention stemming from the feature dimension change [71].
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model Acc (1\1\//[;312?;; h];[:fclznslr;: GFLOPs|Param (M)
ResNet-101 [113] 76.4(118.7 112 7.6 45
ResNet-152 [113] 77.0(165.2 79 11.3 60
RegNetY-4GF [221] {80.0(101.1 136 4.0 21
RegNetY-12GF [221] {80.3(175.2 75 12.1 51.8
RegNetY-32GF [221] {80.9(250.2 46 32.3 32.3
Swin-T [186] 81.3|- - 4.5 29
ViT-S [262] 79.9166.5 207 4.6 22
Rev-ViT-S 79.9(8.8 |7.5% 1232 15.9x 4.6 22
ViT-B [262] 81.8(129.7 95 17.6 87
Rev-ViT-B 81.8/17.0 |7.6x [602 16.3x 17.6 87
RegNetY-8GF [221] |81.7(147.2 91 8.0 39
CSWin-T [66] 82.7|- - 4.3 23
Swin-S [186] 83.0|- - 8.7 50
ViT-L 81.5349.3 26 61.6 305
Rev-ViT-L 81.4|122.6 |15.5x (341 113.1x 61.6 305
MViT-B-16 [71] 82.8/153.6 89 7.8 37
Rev-MViT-B-16 82.5166.8 |2.3x 157 11.8x 8.7 39

Table 5.1: Comparison to prior work on ImageNet-1K classification. All memory and maximum
batch size are on 224 %224 input resolution on a 16G V100 GPU. Rev-ViT and Rev-MViT match
performance across different FLOP regimes at a fraction of the per-input GPU memory cost.

Video Classification

Settings. We also benchmark Rev-MViT-B models on action classification on Kinetics-400 [143]
and Kinetics-600 [34] datasets. All the models are trained from scratch with training recipes adapted
from [71].

Results. Table 5.2 and 5.3 present the results on action recognition task on the Kinetics-400 [143]
and Kinetics-600 [34] respectively. For action recognition, we benchmark our adapted Reversible
MViT model and report top-1 and top-5 performance for both datasets. Similar to the image
classification benchmark, we observe that the Reversible MViT models closely match the accuracy
for their non reversible counterparts at a fraction of the memory cost.

Increasing video model batch sizes. We note that our adapted Reversible MViT forms a very
competitive video recognition model. Specifically, for both Kinetics-400 (Table 5.2) and Kinetics-
600 (Table 5.3) the reversible models match the overall accuracy very closely at only 51.5% and
37.2% of the memory cost respectively.

This allows a batch size increase of 2x on the 16 layer, 70.5 GFLOPs Kinetics-400 MViT-B-16
model and of 3.5 on the 24 layer, 236 GFLOPs Kinetics-600 MViT-B-24 model, a very beneficial
result for large video models which are often severely memory limited and trained with very small
batch sizes (Table 5.3). Moreover, due to the more efficient design of stage-transition blocks in
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Mem Max | GFLOPsx

model top-1 (GB) BS views Param
Two-Stream 13D [34] 71.6| - - 216 x NA| 25.0
R(2+1)D [265] 720| - - 152x115| 63.6
Two-Stream R(2+1)D [265]| 73.9 - - 304 x 115] 127.2
Oct-13D + NL [46] 757 - - |28.9x3x10| 33.6
ip-CSN-152 [266] 77.8| - - 109x3x10| 32.8
SlowFast 4x16, R50 [77] |75.6| - - 36.1 x 30| 344
SlowFast 8x8, R101 [77] |77.9| - - 106 x 30| 53.7
SlowFast 8x8 +NL [77] 787 | - - 116x3x10| 59.9
ViT-B-VTN-IN-1K [204] - - 4218x1x1| 114.0
ViT-B-VTN-IN-21K [204] - - 4218x1x1| 114.0
MViT-B-16 , 16 x4 784 | 1.27 10 | 70.5x1x5| 36.6
Rev-MViT-B-16, 16 x4 78.5| 0.64 20 64x1x5| 34.9

Table 5.2: Comparison to prior work on Kinetics-400 video classification. Single view inference
cost is reported along with used number of views (FLOPs X vieWpace X ViEW(ime). Memory (Mem)
reported in Gigabytes per input clip. Maximum Batch Size (Max BS) measured as the maximum
possible single GPU batch size. All measurements are performed on a single 16G V100 GPU.

model top-1 Mem  Max GFLOPs Param
(GB) BS views

SlowFast 16x8 +NL [77] 81.8 - - 234x3x10| 59.9
X3D-XL 81.9 - - |48.4x3x10| 11.0
ViT-B-TimeSformer-IN-21K [22]| 82.4 - - 1703x3x1| 121.4
ViT-L-ViViT-IN-21K [9] 83.0 - - 3992x3x4| 310.8
MVIT-B-16, 16 x4 81.3 - - 70.3x1x5| 36.6
MViT-B-16, 32x3 83.4 - - 170x1x5| 36.8
MViT-B-24, 32x3 83.8 | 4.40 2 236x1x5| 529
Rev-MViT-B-24, 32x3 83.7 | 1.64 7 223x1x5| 51.8

Table 5.3: Comparison to prior work on Kinetics-600 video classification. Results under same
settings as Kinetics-400 in Table 5.2.

Rev-MVIT (Sec. 5.3), i.e. bringing the dimension upsampling operation inside the pooling attention
instead of being performed in the prior MLP stage [71], the Rev-MViT are also slightly more
parameter and FLOP efficient on both Kinetics.

Object Detection

We benchmark the proposed Rev-ViT-B and Rev-MViT-B models on object detection on MS-
COCO [181] as well. All the models are trained on 118K training images and evaluated on the
5K validation images. We take the ViT-B and MViT-B backbones pre-trained on IN and use the
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Model APP* AP™k | Memory(GB) GFLOPs Param (M)
Res50 [111] 41.0 37.1 - 260 44
Res101[111] | 42.8 38.5 - 336 63
X101-64 [292]| 44.4 39.7 - 493 101
PVT-L[275] 445 40.7 - 364 81
MViT-B 48.2 439 18.9 668 57
Rev-MVIiT-B | 48.0 43.5 10.9 683 58

Table 5.4: Comparison on MS-COCO object detection. Rev-MViT achieves competitive perfor-
mance to MVIiT across all metrics at 1.7 x lower memory footprint.
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Figure 5.3: Ablation Experiments. (a): We observe that (1) Learning without activation caching
does not hurt reversible accuracy for Rev-ViT-B of varying depths and (2) Internal residual connec-
tions train well for shallow models but the training diverges for deeper models. (b): Rev-MViT has
higher throughput for higher input resolution and deeper MViT models increasing up to 2.3 at
224 resolution for 80 layers. (c): We benchmark the maximum batch size for Rev-ViT Base (B),
Large (L) and Huge (H) and their non-reversible counterparts.

standard Mask R-CNN [114] as the detection framework. All models are trained with a standard 3 x
schedule (36 epochs). For MViT, we integrate the multi-scale backbone with the feature pyramid
network [180]. Referring to Table 5.4 we observe that, the Rev-MViT-B model closely matches the
AP performance on MViT-B at only 54.8% of the memory cost.

Ablations

Stronger Inherent Regularization. Across different models and datasets, we find that at the same
FLOP and parameter specifications, the reversible models tend to have stronger inherent regulariza-
tion than their non-reversible counterparts. Hence, training recipes for reversible vision transformers
have lighter repeated augmentations, smaller augmentation magnitudes and consequently, higher
weight decay. Table 5.5 shows the effects of these recipe changes on Rev-ViT-B. We also observe
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Training Improvement Train Acc|Top-1 ImageNet Acc
Naive Rev-ViT-B 15.3 12.1
+ Re-configuring residual streams 82.1 77.2
+ Repeated Augmentation 84.9 80.6
+ Lighter Augmentation magnitude| 93.2 81.0
+ Stronger Stochastic Depth 92.0 81.4
+ Higher weight decay 91.0 81.8
Rev-ViT-B 91.0 81.8

Table 5.5: Rev-ViT-B Training Recipe. We observe that reversible transformers tend to have a
stronger inherent regularization and require a lighter augmented training recipe for peak perfor-
mance.

Stage-Tr.a nsition Termination Fusion Train Acc|Top-1 Acc
Fusion
Max Norm — Concat 78.1 81.7
Concat Norm — Concat 79.1 82.0
2x-MLP Norm — 2x-MLP 80.2 81.8
2x-MLP + 0.2 dp [Norm — 2x-MLP — 0.5dp| 77.1 81.2
2x-MLP Norm — 1-layer 53.6 82.1
2x-MLP Norm — 1-layer — 0.2dp 64.0 824
Norm — 2x-MLP [Norm — Concat 79.4 82.3
Norm — 2x-MLp|Norm — I-layer = 78.3 82.3
0.2dp — Norm
4x-MLP Norm — Concat 80.4 82.3
2x-MLP Concat —Norm 80.5 82.2
2x-MLP Norm — Concat 80.1 82.5

Table 5.6: Lateral Fusion Strategies. Residual streams /; and /5 are fused in state-transition blocks
(Sec. 5.3) as well as on termination (Sec. 5.3) before the network head. We find fusion strategy
to play a key role for ReV-MViT performance. Rev-MViT-B uses a 2-layer MLP with 2x hidden
dimensions in stage-transition blocks (gray). Please see Section 5.4 for details.

similar effects on other Rev-ViT and Rev-MViT models where a modified training recipe with
lighter augmentations and higher weight decay play a crucial role in matching performance.

Lateral Fusion Strategies. The stage-transition blocks employ residual stream fusion blocks for
mixing information between /; and I, (Sec. 5.3). We explore several fusion strategies in Table 5.6
using a combination of: (A) nx-MLP: Two layer perceptrons with n times the hidden dimension
and GELU activations. (B) 0.n dp: n x 10 percent dropout on output activations. (C) Simple
operators such as channel-wise maximum of /; and [, activations, and channel-wise concatenation
of tensor.

Lateral connections in stage-transition stages allows effective information mixing between the
residual streams and hence increases network capacity. For example, compared to concatenation,
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2x-MLP increases to training accuracy by 1% and also the top-1 performance by 0.5%. However
an even heavier strategy, such as 4 x-MLP widens the generalization gap and promotes over-fitting.
Note that the training accuracy is often lower than the top-1 performance because of training data
augmentations.

Re-configuring residual connections. As discussed in Sec. 5.3, the reversible vision transformer
design removes the skip connections that are commonly used inside the Attention and MLP blocks
(Figure 5.2). Specifically, for all of the reversible blocks in Rev-MViT and Rev-ViT, the inputs [;
and /, do not have residual connections that allow residual signal propagation by directly skipping
their respective functions (MLP for /5 and Attention for /). Instead their residuals are performed
via the other residual stream operating through the reversible transform 7" (Sec. 5.3).

We ablate this design choice for the ViT architecture in Figure 5.3a. We vary the model depth
without changing any other model dimensions and observe the performance of the two reversible
variants i.e., with and without internal skip connections. We note that while the naive version with
internal skip connections trains stably for shallow models, for deeper models the accuracy drops
significantly. On the other hand, Rev-MViT scales well with depth, just as accurate as the other
variant at shallower depths but significantly better with deeper models.

Effect of learning without caching activations. Figure 5.3a also compares the image classification
performance of the Rev-ViT-B architecture trained with and without caching activations. This
allows us to disentangle the effect of the proposed residual configurations necessary for reversible
vision transformer from any artefacts that might result from learning without caching activations.
However, for all depths we notice the Rev-ViT-B performance trained without caching activations
to closely track the performance of the same architecture trained with caching. The slight difference
at depth 12 results might stem from the training recipe being adapted for the actual Rev-ViT-B
architecture trained without activations.

Model size and Input Resolution vs. Throughput. Figure 5.3b shows the training throughput
comparisons for different models sizes at 224 and 320 input resolutions. We note that while for
smaller models such as, MViT-B with a depth 12 layers, Rev-MViT-B has a slightly smaller training
throughput (98.5 vs. 86.0), the additional re-computation burden of intermediate activations is
easily overcome at both higher resolution training as well as for deeper models. In particular, at
224 resolution, the 24-layer and 48-layer Rev-MViT models have similar throughput as the MViT
models increasing upto to 2.1 x higher throughput at 384 resolution and 2.3 x higher throughput
at 384 resolution for the 80 layer depth models. Further, the rate of memory increase for deeper
models is much lower for reversible variants than vanilla networks, allowing scaling to much deeper
models without any additional training infrastructure burden or memory requirement like with
gradient checkpointing or model parallelism.

Maximum batch-size. We benchmark the maximum possible batch size for Rev-ViT Base (B),
Large (L) and Huge (H) and their non-reversible counterparts in Fig.5.3c. We extrapolate the
trend (denoted by ) to larger models by scaling ViT-L and ViT-H in depth (keeping other model
dimensions constant) and benchmark the maximum batch size for their reversible counterparts.
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Model size vs. GPU memory footprint. Figure 5.1 plots the GPU Memory footprint for both
Rev-VIT and Rev-MVIiT family of models as well as for several other prior networks such as
MVIT [71], ViT [68], ResNets and RegNetY [221]. We note that at fixed GFLOPs, reversible
variants are extremely memory efficient going upto 4.5 x for MViT and 15.5 x for ViT surpassing
prior convolutional variants by orders of magnitude.

5.5 Conclusion

We present Reversible Vision Transformers, memory-efficient reversible architectural adaptations
of ViT and MViT models. We benchmark across several tasks, such as image classification,
object detection and video classification and across several metrics, such as model complexity,
throughput, accuracy and memory usage. Given any specification, our Rev-ViT and Rev-MViT
match the accuracy of non-reversible variants at a tiny fraction of the memory cost while maintaining
similar training throughput for smaller models and up to 2.3 x higher throughput for larger models.
Specifically, we observe that the Rev-ViT and the Rev-MViT models achieve upto 15.5x and
4.5x lighter memory footprint than ViT and MViT models respectively.

Follow-Up Work

Chen et al. [318] apply the proposed Reversible Vision Transformer architecture design for Re-
versible Swin Transformers and apply the model for memory-efficient temporal action localization.
Temporal action localization involves detecting precise temporal frame positions for the start and
end boundaries of an action and hence needs to be performed at on a densely sampled video.
Dense frame sampling causes GPU memory overheads during training that prohibit finetuning the
backbone end-to-end on the temporal action localization task (TAL). Reversible backbone alleviate
the memory overhead and allow efficient end-to-end TAL training, thereby providing significant
localization performance boost.

Concurrently, [327] proposes a training procedure for reversible transformers that allows speed-
ing up training while ensuring exact replication of the original computation. In particular, [327]
proposes to stagger the activation re-computation one transformer block ahead of the gradient
computation using the recomputed activations of the previous block. This allows the activations
to be available for gradient calculation of the next block, as soon as the previous block finishes.
Hence, the gradient calculation step does not need to wait for activation recomputation, effectively
hiding the latency of the burden of re-computation behind latency of graident calculations, thus
effectively speeding up training. This requires maintaining separate cuda work-streams that process
the above two steps asynchronously. Depending on the hardware and computation size, there can be
significant speedups from such operator parallelization.



64

Chapter 6

EgoSchema: A Diagnostic Benchmark for
Very Long-form Video Language
Understanding

6.1 Introduction

We introduce EgoSchema, a diagnostic benchmark for assessing very long-form video-language
understanding capabilities of modern multimodal systems. Understanding long natural videos
requires a host of interconnected abilities such as action and scene understanding, perceiving
and tracking object states, long-term visual memory, abstract reasoning, hierarchical information
aggregation, and more. Shown in Fig. 6.1 is an exemplar of the curated EgoSchema dataset.
Consider the visual cognitive faculties involved in answering the question: ‘What is the
overarching behavior of C and the man in the wvideo?’. First, is the spatial
recognition capabilities for disambiguating the referred character *C’ (camera wearer) and ‘the
man’ as well as the present objects such as ‘cards’, ‘notebook’, deck as so on. Next is
short-term temporal recognition capabilities of understanding the atomic actions and movement
of the characters such as ‘playing’, ‘taking notes’, ‘shuffling’ etc. Built upon
these are the capabilities for visually understanding the mental states such ‘distracted’,
‘attention’ and social dynamics such as ‘teaching’, ‘showing’. Next are medium-
term actions such as ‘organizing the deck’ or ‘keeping track’. Finally, long-term
reasoning capabilities need to be employed for abstracting the ‘overarching behavior’
of the video from all the low-level signals to be able to rule out all the other wrong options and
conclude option 3 to be correct. Note that even for humans, it is impossible to answer the illustrated
questions with only the shown 9 uniformly sampled frames from the three-minute video (Fig. 6.1).

This chapter is based on joint work with Raiymbek Akshulakov and Jitendra Malik [193], and is presented as it
appeared in the Neurips 2023 Benchmark and Dataset proceedings.
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What is the overarching behavior of C
and the man in the video?

° C teaches the man game rules but the man
seems distracted and is not paying attention

The man teaches C how to play the card game
while organizing the deck for future games

e C and the man are playing a card game while
keeping track of it in a notebook

C shows the man how to properly shuffle
cards while the man plays them

e The man shows C a new card game while LR
C takes notes for future reference i ='1208 | ERVI

g N
Full Video Link: youtu.be/DlyyVccQPbg Full Video Link: youtu.be/Tp4q5GeHVMY

a5

Observe the video in terms of characters'
0 actions and interactions. How do these
shifts contribute to the overall narrative?

The video displays a profound sense of conflict
and tension arising between the characters

The man is showing C the issues that need
fixing in the apartment in a professional manner

Both the characters display an increasingly
urgent need to solve an issue in the apartment

C and the man admire and interact with several
objects in the apartment that look beautiful.

Actions and interactions are casual and
relaxed, reflecting a comfortable environment.

Figure 6.1: The EgoSchema dataset contains over 5000 very long-form video language under-
standing questions spanning over 250 hours of real, diverse, and high-quality egocentric video data.
Each question requires choosing the correct answer out of five choices based on a three minute long
video clip. The questions are manually curated to require very long temporal certificates (Sec. 6.3).
EgoSchema median certificate length is about 100 seconds, which is 5x longer than the closest
second dataset and 10x to 100x longer (Fig. 6.3) than any other video understanding dataset. State-
of-the-Art video-language models consisting of billion of parameters achieve very low accuracy (<
33%) in Zero-shot evaluation (random is 20%) while humans achieve about 76%. ‘C’ refers to the
camera wearer. Visualized clips are available at egoschema.github.io/explorer.

While there have been some prior attempts to formulate long-form video tasks [286, 245],
they broadly tend to fall into two failure modes. The first failure mode stems from the difficulty
of capturing the explosive diversity of human behavior in narrow pre-defined label spaces that
leading unduly narrow and oddly specific tasks, such as like ratio or relationship prediction [286].
Hence, we propose to probe video systems capturing the rich complexity of long-form video with
something just as rich and complex — natural language. However, natural language outputs are
notoriously difficult to evaluate with popular metrics such as BLEU [210] and ROUGE [176]
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having well-known shortcomings [31]. Hence, we propose to evaluate language understanding as
a multiple-choice question-answering task, thereby using the well-defined benchmark metric of
overall question-answering accuracy.

The second failure mode for a long-term video task is that the proposed task happens to actually
be a short-term one - only disguised as a long-term task. To measure the intrinsic "long-term"
nature of a video understanding task, we propose the notion of temporal certificate length [10].
Intuitively, certificate length (Sec. 6.3) is the length of the video a human verifier needs to observe
to be convinced of the veracity of the marked annotation. The idea of temporal certificates is
not limited only to question-answering or vision-language tasks but is applicable to several video
understanding tasks, including pure vision tasks such as action classification, detection, or even
temporal action localization.

Based on the length of the temporal certificate, we propose the following temporal understanding
taxonomy for video tasks: Datasets with certificate length in the order of 1 second are termed short
video tasks. Next, we name datasets with certificate length in the order of 10 seconds as, long-form
video tasks. Finally, datasets with certificate length in the order of 100 seconds are termed as, very
long-form video tasks. Fig. 6.3 presents estimates of the certificate lengths for a variety of datasets
plotted against the temporal length of the video clip. We observe that the temporal certificate length
is quite weakly correlated with the length of the video clip. This is due to the intentional design
choice in defining the certificate set, which decouples the task of searching or retrieving the relevant
sub-clip from a bigger clip from the task of visually understanding the retrieved sub-clip. And in this
manner, using temporal certificate length as a metric for measuring the intrinsic temporal hardness
of a dataset, avoids the failure mode of formulating an implicitly short-term task disguised as a
long-term one. Section 6.3 details precise operationalizations for estimating the temporal certificate
sets.

In summary, our contributions are three-fold. First, we propose the notion of temporal cer-
tificates, a broadly applicable notion that measures the intrinsic temporal hardness of clips in a
video understanding dataset. We estimate temporal certificate lengths for a broad variety of existing
datasets and show that EgoSchema has a median temporal certificate of about 100 seconds, which is
5x longer than the dataset with the second longest certificate length [286], and 25X to 100x longer
than all other existing video understanding datasets (with or without language). Second, building
upon the notion of temporal certificates, we introduce EgoSchema, a diagnostic benchmark for
assessing the very long-form video understanding capability of multimodal video-language sys-
tems. Third, we benchmark both state-of-the-art video-language systems and humans in Zero-shot
settings on EgoSchema to find that even the most advanced current video-language understanding
systems consisting of billion of parameters achieve very low accuracy in long-from multiple-choice
question-answering (< 33%) while humans achieve about 76% accuracy in the unconstrained setting.

6.2 Related Works

Video Question-Answering Datasets. Visual Question-Answering [5] is a popular video-language
task with several large internet-scale datasets for video-language pre-training such as Ego4D [100],
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Figure 6.2: We introduce the notion of a tem- Figure 6.3: Certificate Length across video

poral certificate set (top, Sec. 6.3), a tool to
measure the intrinsic temporal length of a
benchmark and show the EgoSchema certifi-
cate length distribution (bottom, Sec. 6.4) for
randomly chosen 100 clips.

datasets for a broad spectrum of tasks such
as action classification, detection, relation-
ship classification, concept classification,
video classification, and multiple choice
question-answering. Sec. 6.4 details the pre-

cise operationalizations.

HowTo100M [200] and HowToVQA69M [182]. However, as the scope and size of pre-training
datasets and models soar, it becomes critical to construct evaluations for assessing the model
capabilities on various axes. Hence, many smaller datasets have been proposed for evaluating differ-
ent aspects of video-language understanding such as compositional reasoning [102, 101], causal
and common scene comprehension [290], instruction understanding [182, 300], video description
ability [295], dynamic environments understanding [83], complex web video understanding [309],
situated reasoning [285], spatiotemporal reasoning [ 138], social intelligence [316], dynamic neuro-
symbolic reasoning [307], external knowledge-based reasoning [85] and many more [203, 306, 235,
38, 40, 74, 246, 296, 159, 160, 39, 314, 49, 163, 303, 322, 288, 107]. How2VQAG69M [182] and
1iVQA [182] have leveraged HowTo100M [200] ASR text for generating questions. However, unlike
Ego4D narrations that are used in EgoSchema, ASR text does not necessarily describe the visual
elements in the scene. Hence, questions can suffer from biases where a key required information is
visually absent. Additionally, generated question-answers also have quite short certificate lengths
(iVQA in Fig. 6.2) due to the local nature of the ASR text.
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Figure 6.4: EgoSchema data pipeline. Stage I filters the suitable Ego4D RGB videos and narrations
for question-answer generation (Sec. 6.3). Stage II uses narrations in a chained LLM prompting

(Sec. 6.3) procedure to generate multiple Q. AWV triplets per three-minute video clip (Sec. 6.3).
Stage III performs pre-filtering with rule-based and LLM-based logic (Sec. 6.3). Finally, Stage
IV involves two rounds of human curation on filtered Q. AW for selecting very long-form video-
language understanding data (Sec. 6.3). The stage width ratios are indicative of the filter selection
ratios.

Long-form Video Understanding Datasets have been very sparsely explored in prior works. [286]
posits a long-form video understanding benchmark but the proposed tasks are unduly narrow and
specific, such as the ‘like’ ratio and view count prediction. Also, [286] average certificate length is
about 5.7 x smaller than EgoSchema.

[202] proposes a dataset for benchmarking efficient video inference consisting of frame-wise
object mask annotations from Mask-RCNN [115] but without any long-term annotations. [240]
introduces a dataset of about 111 hours of video sourced from Kinetics-400 [35] for generic event
boundary detection. While the task itself requires comprehensive understanding, the video clip
length is only 10 seconds long, with temporal certificates (Sec. 6.3) being much shorter. [256]
proposes a question-answering dataset based on long movie clips but due to the open-ended nature
of questions, successful approaches tend to neglect the visual data and are biased purely with
approaches using additional text such as story lines. [245] proposes MAD, a language grounding
dataset with an average clip of 110 minutes. However, the length of the retrieved clip is quite short
(average 4.1 seconds) thereby resulting in a temporal certificate (Sec. 6.3) only a few seconds long.
Further, MAD [245] and several other movie-based datasets [132, 272, 294] do not release any
video data because of copyright issues. In contrast, EgoSchema has an average certificate length of
about 100 seconds. Further, EgoSchema will be publicly released under the Ego4D license, which
allows direct public use of the video and text data for both research and commercial purposes.
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Figure 6.5: An abridged example of the generation and filtering prompts used in the EgoSchema
data generation pipeline (Sec. 6.3). Full versions are provided in the supplementary.

6.3 Collecting EgoSchema

Collecting video and language datasets, even without a focus on very long-form video is quite
challenging. Manually collecting, observing, and annotating videos with free-form language, in
contrast to using images and pre-defined label categories, is both labor-intensive and time-consuming
and thereby quite expensive. In addition to burgeoning cost, ensuring visual data diversity and
minimizing visual and linguistic bias while ensuring high quality of marked annotations also
contribute to the overall difficulty. All these factors get severely more challenging for long-form
videos.

In this work, we propose a staged data collection pipeline (Fig. 6.4) utilizing existing large-scale
but short-term video datasets, rule-based filtering procedures, and exciting new capabilities afforded
by LLMs to significantly lighten the burden on human annotators. We use the proposed pipeline for
curating EgoSchema, a high-quality and diverse very long-form video question-answering dataset.
Associated datasheets [86] and data cards [217] for EgoSchema are provided in the supplementary.

EgoSchema Pipeline
Stage I: Raw Data Filtering

Ego4D [100] has over 3670 hours of RGB video spread consisting of over 3.85 million narration
instances covering over 1,772 unique verbs (activities) and 4,336 unique nouns (objects) [100]. The
narrators are instructed to continuously pause and describe everything that the camera wearer (*C’ )
does. This creates dense and precise narrations that accurately describe the visuals.

Naturally, the collected video has non-uniform length and narration density. Since we would like
to standardize the clip length for evaluation and have sufficiently rich narrations to allow interesting
question-answer pairs to form in later stages, we filter the data based on the length and narration
density. We choose to filter for non-overlapping three-minute clips each with at least 30 human
annotated narrations (each narration is a timestamped sentence) to build EgoSchema. Detailed
statistic of the number of viable clips for different possible length and narration density choices is
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discussed in supplementary.

Stage II: Question Answer Generation

The filtered narrations are processed with a capable LLM to generate /N Question-Answer triplets
(QAW), each consisting of the question Q, the correct answer A, and M wrong answers W, per
clip. To achieve this, we experimented with several LLM inference call chaining procedures with
trade-offs between quality and cost of generation that are briefly described next.

One-shot is the simplest prompting procedure to prompt for all N instances of Q.4 in one infer-
ence call. This is the most cost-efficient option but we found the generations to be of significantly
low quality. The generated Q often are very similar to each other and the generated .4}V have a
very high false positive rate for the correct answers as well as a false negative rate for the wrong
answers.

N-shot is the next natural prompting procedure where we generate one Q.A)YV per LLM inference
call. This significantly improves the false positive and false negative rates but since the generated Q
are independent and generated with the same prompt, they still tend to be very similar (comparable
to one-shot), even at higher sampling temperatures. Further, the cost of generation also scales with
N.

QAW-shot generates each of the NV questions Q in one inference call, followed by another inference
call for generating N correct answer 4|Q and finally, N x M wrong answers, W|Q, A. Since
each of the N Q is generated jointly, they can be forced to be distinct with appropriate prompting.
Similarly, the generated .4 and V can also be made distinct. However, this requires 3 chained LLM
inference calls, and generation failures in earlier calls cascade steeply.

Q(AW)-shot generates each of the N questions Q in one inference call, followed by a final inference
call for generating all the N correct and N x M incorrect answers in one go .4, W|Q. It enjoys
the same uniqueness properties as QAW-shot while having just two chained calls, making it both
30% cheaper and less prone to generation failure cascading. Further, between Q(AW)-shot and
QAW-shot, we observe Q(AW)-shot to have a higher generated .4 quality, perhaps since LLM
can jointly model W while generating .A. We choose this to be our main method of choice for
generating QAW .

Prompt for imputing narrations into the LLM has a tremendous effect on the quality of generated
QAW. We experiment with several seed prompts for each of which we inspect the quality of the N
generated QAW for 10 clips. Based on this we iteratively improve the seed prompts manually in a
zeroth order optimization fashion. In total, we experiment with a total of about 85 prompts in this
fashion to arrive at our final EgoSchema prompts — Pg for generating N x Q questions and P 4y
for generating all remaining options (AW)|Q. While we fix the Pg prompt, we use multiple P 4y
prompts so as to avoid any unintended bias in the options. Fig. 6.5 shows an abridged example of
Po and P 4y, full versions available in supplementary material.
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Choice of LLM is extremely crucial for obtaining interesting long-form Q and generating hard
negatives for WW. With weaker LLMs, the Q diversity across video clips remains narrow, and
W tends to be either obviously wrong or, too similar to A and thus a false negative. While we
experimented with both GPT-3 [26] and ChatGPT [206] but only found good quality generated
QAW at a high enough rate with GPT-4 [207], Bard [95], and Claude [4]. For details please see
supplementary.

We generate N = 3 questions per three-minute clip as well as M = 4 wrong answers to every
question in addition to the correct answer. We observe that larger NV or M tends to generate similar
questions and wrong answers putting unnecessary pressure on Stages III and IV for filtering.

Stage III: Generated Question Answer Filtering

While Stage II produces several high-quality Q.4)V, even the best LLM generations are prone to
output format aberrations, hallucinations, and sometimes plain false outputs. Further, despite specific
pinpointed prompts (Fig. 6.5), LLMs can fail to comply. Since, we want to ensure EgoSchema to be
extremely high-quality and accurate, we set up several filtering rounds to ensure the correctness and
high difficulty of questions.

Rule-based filtering. Keywords from the prompts such as ‘long-term’, ‘narrations’,
‘timestamp’ etc. can sometimes bleed into the generated Q.A)V which are then discarded. The
output generations can also fail to parse according to a specified format and are also then discarded
and the concerned Q. AWV is regenerated.

LLM-based filtering. While rule-based filtering weeds out logic errors, we would like to further
enrich Q. AV before employing human labor. For example, we aim to ensure EgoSchema requires
grounded visual reasoning to solve, and hence questions should not be answerable ungrounded,
without carefully observing the video. Hence, we develop a "blind" baseline.

Blind filtering baseline employs LLM to guess the correct answer based on the question, without
having access to the video narrations conditioned on the shown filtering prompt (Fig. 6.5). All such
ungrounded questions that can be answered blindly are filtered out. This also ensures that generated
W are indeed relevant and plausible answers to Q, since otherwise, the LLM would be able to
guess A based only on the setting of Q. Note that this is overly restrictive since it is possible that
a question is guessed correctly through chance and is not necessarily ungrounded. However, we
choose to optimize precision over recall since the amount of filtered QAW is still large enough.
No-Q baseline. We also experimented with a No-Q baseline, where the LLM is prompted to guess
the correct answer using the narrations but without the question Q. This ensures that the wrong
answers are relevant and plausible to the video clip. However, we found this baseline to have near
random accuracy (~ 20%), highlighting the efficacy of Stage II. Hence, we decided to not use this
filter in the final pipeline. Additional details including the full prompt are in supplementary.

Stage I'V: Manual 9.4}V Curation

While LLM filtering ensures that the generated Q.A relates to the video content, it’s also necessary
to ensure the veracity and a long temporal certificate length for every generated Q.AW. This is
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achieved through a two-step manual curation process.

In the first round of curation, annotators are tasked with three primary responsibilities: (A) First,
they verify that Q is well-formed and A is indeed the correct answer to Q. (B) Next, they confirm
that all the M distractors, W, are indeed wrong answers to Q. (C) Finally, they ensure that the
temporal certificate length for answering Q is at least 30 seconds.

A QAW is discarded if any of these three conditions are not met. This reduces the number of
admissible questions by a factor of about 4x to 5x within the first round itself. Next is a second
round of re-curation, to reinforce the conditions and guarantee data of the highest quality. We find
that more than 97% of the questions that pass the first round also pass the second round, speaking
to the efficacy of the curation process. A crucial aspect of ensuring that the question assesses
very long-form video-language understanding capabilities is the notion of temporal certificate
length (condition (C) above), which we describe next. The detailed procedures for onboarding and
training the human annotators, as well as the instructions for the curation process are provided in
the supplementary.

Temporal Certificates

We define the temporal certificate of a given video in a video understanding task to be the minimum
set of subclips of the video that are both necessary and sufficient to convince a human verifier that
the marked annotation for that data (such as timestamps in temporal activity localization, class
label in activity recognition or, the correct option in multiple-choice question-answering) is indeed
correct, without having to watch the rest of the clip outside of the certificate set (Fig. 6.2). Naturally,
we define certificate length to be the sum of the temporal lengths of the sub-clips present in the
certificate set.

Meta-rules

Datasets often have implicit rules that apply uniformly across the entire dataset. We call these
conventions meta-rules and allow the human verifier to be well aware of them. For example, in
temporal action localization datasets [139], an implicit assumption is that the action to be localized
in a contiguous sub-clip and hence can be uniquely determined by the start and end timestamps.
Since this rule is valid for all data, we consider it to be a meta-rule.

A comprehensive understanding of meta-rules of a dataset is necessary for accurate estimation
of the certificate set, and hence the certificate length. Otherwise, a spuriously long certificate might
be necessary to ensure the veracity of the marked annotations. For example, consider the task of
action classification on Kinetics-400. A valid meta-rule to be made available to the human verifier
in this case is the mutual exclusivity of action classes i.e., each data point can belong only to one
of the 400 classes present in Kinetics-400. Without this understanding, given, say a 10-second
clip of a human skiing, the certificate set needs to necessarily encompass the entire 10 seconds
since otherwise the human verifier might not be convinced that all of the other 399 actions are not
occurring in the clip. However, with the knowledge of the label exclusivity meta-rule, the certificate
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length will be drastically reduced to just a fraction of a second since just observing the action
of skiing in a few frames is sufficient for the human verifier to out-rule all other action classes.

Figure 6.6: Benchmarking Zero-shot QA on EgoSchema

Certificate

Conventions Model Release Inference Evalu.atlon QA
) Params Setting Acc

For small certificate - -

lengths, it is difficult Choosing the correct A uniformly at random \ 20.0%

for humans to estimate ) 10 frames | 26.4%
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75 frames | 19.6%
Hence, we choose to
have a minimum length 1 frame | 27.0%
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In cases where a fact
needs to be verified at
several places through-
out the video, we let the annotator make a reasonable judgment for the length of the certificate to be
included as long as it follows the above conditions.

6.4 Benchmarking EgoSchema

Evaluating Certificate Lengths

Fig. 6.3 presents certificate lengths for a spectrum of tasks spread across 15 different datasets
such as, action classification (Kinetics [35], Something-Something [98], UCF101 [248], HVU-
Action [62]), detection (AVA [104]), relationship classification (LVU [286]), concept classification
(HVU-Concept [62]), video classification (Youtube-8M [1]), Question-Answering (NextQA [290],
AGQA [101], NextQA [290], IVQA [182], MSRVTT [295], ActivityNet-QA [309], EgoSchema).
For EgoSchema we benchmark the certificate length for 5 hours of video data (100Q.AYV) chosen
randomly. For each other dataset, we ensure that (A) each annotated label class (if applicable) has at
least 1 data sample evaluated and, (B) at least two hours of human effort is applied. Fig. 6.2 shows
the histogram of estimated EgoSchema temporal certificate lengths for the 100 clips.
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Fig. 6.3 plots the certificate length against the actual clip length. We observe that EgoSchema
has temporal certificate length 5.7 longer than the second longest certificate length dataset, and
10x to 100x longer than all other video understanding datasets.

Evaluating Multiple-choice Question Answering on EgoSchema

In Table 6.6, We benchmark several state-of-the-art video-language models, with the intention
of adding more models in the future, in a Zero-shot question-answering setting on EgoSchema.
We evaluate each model in at least two settings. First is the conventional inference setting, where
the model is assessed based on the same number of frames it was trained with. And second is a
less challenging setting, where the model is tested on the maximum number of frames possible to
execute inference with, using an 80G A100, without exceeding the GPU memory capacity. In both
settings, frames are sampled uniformly from the input video clip.

FrozenBiLLM [301] adapts frozen multi-modal encoders trained on web-scale data for the task of
question answering and achieves state-of-the-art zero-shot QA accuracy across 8 video question-
answering datasets. We choose the How2QA FrozenBilM model under both 10 and 90 frames.
VIOLET [80] a masked token modeling-based video language transformer that performs competi-
tively on a variety of video-language tasks. We evaluate four of the best VIOLET models that are
finetuned on different tasks for both 5 and 75 frames and choose the model with the best overall
accuracy. More details are in supplementary.

mPLUG-Owl [305] proposes a training strategy to add image & video modality to pretrained
large language models. We adapt mPLUG to facilitate the multiple choice QA by prompting the
model with each of the options individually in the format: ‘Given question <question text>,
is answer <answer text> correct?’ along with the video frames. Then, we choose the option
with the highest softmax score of the token ‘Yes’ in the output text. We observe accuracy to be
non-monotonic in frame length, and report results in 1 to 30 frames in Table 6.6.

InternVideo [279] proposes training video-language models jointly with masked video modeling
and contrastive learning objectives. By default, InternVideo does not directly support multiple-
choice video QA. We adapt the MSRVTT finetuned InternVideo model, which performs zero-
shot multiple-choice tasks, by incorporating the question with each answer choice in the format:
’Question: <question text>?Isit<answer text>’. Then, we choose the option with the
highest output score as the prediction. We report results spanning 10 to 90 input frames in Table 6.6.
We observe that performance is monotonic with the number of frames but the gain saturates around
just 30 frames.

Human Benchmarking

We also benchmark human performance on multiple-choice question answering task on EgoSchema
in Table 6.7. First, are time pressure settings where the annotators are asked to choose the correct
answer under one (*In <1 min’) and three (*In <3 min’) minutes. Humans can already
achieve an impressive 67.0% accuracy, in under 1 minute! Interestingly, this only slightly increases
(+1.0%) when allowed three minutes. We believe that this can inform about performance on
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EgoSchema in limited model inference capacities. We believe this could inform about the frame
rate needed for long-form video understanding in future models. Second, we also benchmark human
performance using only 1 fps video (1180 frames’). Surprisingly, we observe that just with 1
fps humans can achieve an impressive 67.2%.

Third, we evaluate human performance in a restrictive setting where the annotator is forced to first
watch the video without reading the text, and then answer the question without re-watching the video
(‘Video — Text’). Curiously, this achieves better accuracy than the *No constraint’
setting where the annotators are asked to simply answer without any constraints (76.2% vs. 75.0%).
A possible hypothesis is that watching the video without text allows the annotator to focus more
closely on the video, thereby benefiting performance than the setting where the attention is somewhat
divided between the text and video. We believe this will help us understand the performance trade-
offs in the early vs. late fusion of video and text modalities for long-form video-language models.
Accuracy for ‘No constraint’ setting is estimated over 9 hours of video. All other accuracies
are estimated over 5 hours of video.

6.5 Conclusion

We present EgoSchema, a novel diagnostic
benchmark designed for assessing very long-
form video-language understanding capabilities
of modern multimodal models. We also intro- Evaluation Setting ‘ QA Accuracy

Figure 6.7: Human Accuracy on EgoSchema

duce the notion of a temporal certificate set, a 180 frames ‘ 67.2%
probe that can be applied to a wide array of video

tasks and benchmarks for understanding their in- In <1 min 67.0%
trinsic temporal lengths. We estimate temporal In <3 min 68.0%
certificates of 15 varied datasets and demonstrate No constraint 75.0%
EgoSchema to exhibit temporal certificate length Video — Text 76.2%

approximately 5.7 longer than the next longest
dataset and 25X to 100x longer than all other video understanding datasets. We also benchmark
several state-of-the-art models on EgoSchema and find their Zero-shot question-answering accuracy
to be less than 33% while humans achieve 76%. We believe that EgoSchema will play a key role in
the development and evaluation of future very long-form video-language models.
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Chapter 7

Conclusion

In this thesis, I presented at a multifaceted approach to develop techniques that enable development
of video models for perceiving people over long periods. This endeavor addressed the crucial gaps in
contemporary computer vision systems, particularly in long-term human perception. The work was
grounded on the synergy of algorithms, architectures, and datasets, with substantial contributions
presented in each area.

In Chapter 2 and Chapter 3, I presented techniques in the realm of algorithms, where we
tackled the challenge of long-term human motion forecasting. I presented models, PECNet and
Y-net, that significantly pushed the boundaries of trajectory forecasting capabilities of the then
prevalent motion forecasting models and deeply influence even the current state-of-the-art models
that have adopted the presented endpoint and waypoint design. PECNet proposed a novel approach
by focusing on trajectory endpoints to model long-term agent intent. Building on this, Y-net
extended these concepts to scene-aware motion forecasting, enabling minute-long forecasts with
enhanced interpretability through local distribution heat maps. These models represent a leap
forward in understanding human motion and intent over longer time horizons and their central
tenets of endpoint and waypoint conditioning are adopted in even the current state-of-the-art motion
forecasting models.

In terms of architectures, we introduced Multiscale Vision Transformers (MViT) in Chapter 4
and Reversible Vision Transformers in Chapter 5. MVIiT brings in a new perspective to visual
inputs processing in transformers, integrating hierarchical visual priors into the transformer deisng
and achieves remarkable FLOP efficiency across several video tasks and with a simple extension
to image tasks as well. Reversible Vision Transformers further advance vision transformers by
drastically reducing the memory footprint required for training, enabling deeper and more complex
transformer architectures. These architectural innovations are not only pivotal for long-term video
understanding but also have broader implications across various efficiency improvements in vision-
related applications.

Lastly, In Chapter 6, I presented EgoSchema, the first truly long-form video-lagunage under-
standing benchmark. I present the notion of temporal certificates and an LLLM based generation,
filtering and curation pipeline for collecting EgoSchema. EgoSchema stands as a robust tool for
evaluating and advancing the state-of-the-art in long-term video understanding. The benchmarking
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results using EgoSchema have highligh the existing performance gap between current models and
human-level understanding, setting a clear direction for future research in the area of long-form
video understanding.

In conclusion, this thesis presents a holistic approach to improving the perception of people over
long periods by video models. The advancements in algorithms, architectures, and datasets not only
address existing limitations but also open new avenues for research and application. While we have
made significant strides, long-form video understanding continues to be one of the last-standing
grand challenges of computer vision and the journey towards truly achieving it is still ongoing. The
insights and tools developed in this thesis lay a strong foundation for future explorations in this
exciting and ever-evolving field of study.
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Appendix A

Chapter 4 Supplementary Material

A.1 Appendix

In this appendix, §A.2 contains further ablations for Kinetics (§A.2) & ImageNet (§A.2), §A.4
contains an analysis on computational complexity of MHPA, and §A.3 qualitative observations in
MVIiT and ViT models. §A.5 contains additional implementation details for: Kinetics (§A.5), AVA
(§A.5), Charades (§A.5), SSv2 (§A.5), and ImageNet (§A.5).

A.2 Additional Results

Results: Kinetics-700 Classification

model pretrain |top-1 |top-5 | GFLOPs x views | Param
SlowFast 16x8 +NL [78]| K600 | 71.0 | 89.6 234x3x10| 59.9
MViT-B, 16 x4 - 71.2190.0 70.5x1x5| 36.8
MViT-B-24, 32x3 - 74.0 | 91.7 236x1x5| 529

Table A.1: Comparison with previous work on Kinetics-700.

Kinetics-700 [37] is the largest version of Kinetics with 522k training videos. Results are in
Table A.1. We train MViT from-scratch, without any pre-training. MViT-B, 16 x4 achieves 71.2%
top-1 accuracy already outperforming the best previous SlowFast [78] model. We further train
a deeper 24-layer model with longer sampling, MViT-B-24, 32x3, which achieves 74.0% top-1
accuracy.

Ablations: Kinetics-400 Classification

Inference cost. In the spirit of [75] we aim to provide further ablations for the effect of using fewer
testing clips for efficient video-level inference. In Fig. A.1 we analyze the trade-off for the full
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Figure A.1: Accuracy/complexity trade-off on K400-val for varying # of inference clips per
video. The top-1 accuracy (vertical axis) is obtained by /. -Center clip testing where the number of
temporal clips /= € { } is shown in each curve. The horizontal axis measures the full
inference cost per video. The left-sided plots show a linear and the right plots a logarithmic (log)
scale.

inference of a video, when varying the number of temporal clips used. The vertical axis shows
the top-1 accuracy on K400-val and the horizontal axis the overall inference cost in FLOPs for
different model families: MViT, X3D [75], SlowFast [77], and concurrent ViT models, VTN [204]
ViT-B-TimeSformer [22] ViT-L-ViViT [8], pre-trained on ImageNet-21K.

We first compare MViT with concurrent Transformer-based methods in the left plot in Fig. A.1.
All these methods, VTN [204], TimeSformer [22] and ViViT [8], pre-train on ImageNet-21K and
use the ViT [67] model with modifications on top of it. The inference FLOPs of these methods are
around 5-10xhigher than MViT models with equivalent performance; for example, ViT-L-ViViT [§]
uses 4 clips of 1446G FLOPs (i.e. 5.78 TFLOPs) each to produce 80.3% accuracy while MViT-B,
32x3 uses 5 clips of 170G FLOPs (i.e. 0.85 TFLOPs) to produce 80.2% accuracy. Therefore,
MVIiT-L can provide similar accuracy at 6.8 x lower FLOPs (and 8.5 x lower parameters), than
concurrent ViViT-L [8]. More importantly, the MViT result is achieved without external data.
All concurrent Transformer based works [204, 22, 8] require the huge scale ImageNet-21K to be
competitive, and the performance degrades significantly (-3% accuracy, see IN-1K in Fig. A.1 for
VTN [204]). These works further report failure of training without ImageNet initialization.

The plot in Fig. A.1 right shows this same plot with a logarithmic scale applied to the FLOPs
axis. Using this scaling it is clearer to observe that smaller models convolutional models (X3D-S
and X3D-M) can still provide more efficient inference in terms of multiply-add operations and
MVIiT-B compute/accuracy trade-off is similar to X3D-XL.

Ablations on skip-connections. Recall that, at each scale-stage transition in MViT, we expand the
channel dimension by increasing the output dimension of the previous stages’ MLP layer; therefore,
it is not possible to directly apply the original skip-connection design [67], because the input channel
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dimension (D;,) differs from the output channel dimension (D,,). We ablate three strategies for
this:

(a) First normalize the input with layer normalization and then expand its channel dimension to
match the output dimension with a linear layer (Fig. A.2a); this is our default.

(b) Directly expand the channel dimension of the input by using a linear layer to match the
dimension (Fig. A.2b).

(c) No skip-connection for stage-transitions (Fig. A.2c).

THW x D, X THW x Dy, THW x Dy,
Norm Norm Norm
\ 4 A 4 v
MLP MLP LD
. Linear (Din Dout)
THW x Dy Linear (Din, Dout) THW X Dy -
THW x D, out
v
(a) normalized skip-connection (b) unnormalized skip-connection (c) no skip-connection

Figure A.2: SKip-connections at stage-transitions. Three skip-connection variants for expanding
channel dimensions: (a) first normalize the input with layer normalization (Norm) and then expand
its channel dimension; (b) directly expand the channel dimension of the input; (c) no skip-connection
at stage-transitions.

method ‘ top-1 ‘ top-5
(a)  normalized skip-connection 77.2 93.1
(b)  unnormalized skip-connection 74.6 91.3
(c) no skip-connection 74.7 91.8

Table A.2: Skip-connections at stage-transitions on K400. We use our base model, MViT-B
16x4. Normalizing the skip-connection at channel expansion is essential for good performance.

Table A.2 shows the Kinetics-400 ablations for all 3 variants. Our default of using a normalized
skip-connection (a) obtains the best results with 77.2% top-1 accuracy, while using an un-normalized
skip-connection after channel expansion (b) decays significantly to 74.6% and using no skip-
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connection for all stage-transitions (c) has a similar result. We hypothesize that for expanding the
channel dimension, normalizing the signal is essential to foster optimization, and use this design as
our default in all other experiments.

backbone recipe Acc
SlowFast R50, 8x8 [77] 77.0
SlowFast R50, 8x8 MViT 67.4
SlowFast R101, 8x8 [77] 78.0
SlowFast R101, 8x8 | MViT 61.6

Table A.3: SlowFast models with MViT recipe on Kinetics-400. The default recipe is using the
recipe from the original paper. Accuracy is evaluated on 10x3 views.

SlowFast with MViT recipe. To investigate if our training recipe can benefit ConvNet models,
we apply the same augmentations and training recipe as for MViT to SlowFast in Table A.3. The
results suggest that SlowFast models do not benefit from the MViT recipe directly and more studies
are required to understand the effect of applying our training-from-scratch recipe to ConvNets, as it
seems higher capacity ConvNets (R101) perform worse when using our recipe.

Ablations: ImageNet Image Classification

We carry out ablations on ImageNet with the MViT-B-16 model with 16 layers, and show top-1 ac-
curacy (Acc) as well as computational complexity measured in GFLOPs (floating-point operations).
We also report Parameters in M(10°) and training GPU memory in G(10?) for a batch size of 512.
stride s ‘ FLOPS‘ Mem ‘ Acc
8x8 7.2 9.0 | 81.6
4x4 7.8 | 11.9 | 82.5

2%x2 90 | 13.2 | 81.8
none 104 | 17.3 | 82.3

Table A.4: ImageNet: Key-Value pooling: We vary stride sy x sy, for pooling K and V. We use
“adaptive” pooling that reduces stride w.r.t. stage resolution.

Key-Value pooling for image classification. The ablation in Table A.4 analyzes the pooling stride
S = sy X s, for pooling K and V' tensors. Here, we use our default ‘adaptive’ pooling that uses a
stride w.r.t. stage resolution, and keeps the K, V' resolution fixed across all stages.

First, we compare the baseline which uses pooling with a fixed stride of 4 x4 with a model has a
stride of 8 x8: this drops accuracy from 82.5% to 81.6%, and reduces FLOPs and memory by 0.6G
and 2.9G.

Second, we reduce the stride to 2x2, which increases FLOPs and memory significantly but
performs 0.7% worse than our default stride of 4 x4.

Third, we remove the K,V pooling completely which increases FLOPs by 33% and memory
consumption by 45%, while providing lower accuracy than our default.
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Figure A.3: Mean attention distance across layers at initialization/convergence for Vision Trans-
former (a)/(c) & Multiscale Vision Transformers (b)/(d). Each point shows the normalized average
attention distance (weighted by the attention scores, with 1.0 being maximum possible distance) for
each head in a layer. MViT attends close and distant features throughout the network hierarchy.

Overall, the results show that our K, V' pooling is an effective technique to increase accuracy
and decrease cost (FLOPs/memory) for image classification.
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A.3 Qualitative Experiments: Kinetics

In Figure A.3, we plot the mean attention distance for all heads across all the layers of our Multiscale
Transformer model and its Vision Transformer counterpart, at initialization with random weights,
and at convergence after training. Each head represents a point in the plots (ViT-B has more heads).
Both the models use the exact same weight initialization scheme and the difference in the attention
signature stems purely from the multiscale skeleton in MViT. We observe that the dynamic range of
attention distance is about 4 x larger in the MViT model than ViT at initialization itself (A.3a vs.
A.3b). This signals the strong inductive bias stemming from the multiscale design of MViT. Also
note that while at initialization, every layer in ViT has roughly the same mean attention distance,
the MVIT layers have strikingly different mean attention signatures indicating distinct predilections
towards global and local features.

The bottom row of Fig. A.3 shows the same plot for a converged Vision Transformer (A.3c) and
Multiscale Vision Transformer (A.3d) model.

We notice very different trends between the two models after training. While the ViT model
(A.3c) has a consistent increase in attention distance across layers, the MViT model (A.3d) is not
monotonic at all. Further, the intra-head variation in the ViT model decreases as the depth saturates,
while, for MViT, different heads are still focusing on different features even in the higher layers.
This suggests that some of the capacity in the ViT model might indeed be wasted with redundant
computation while the lean MViT heads are more judiciously utilizing their compute. Noticeable is
further a larger delta (between initialization in Fig. A.3a and convergence in A.3c) in the overall
attention distance signature in the ViT model, compared to MViT’s location distribution.

A.4 Computational Analysis

Since attention is quadratic in compute and memory complexity, pooling the key, query and value
vectors have direct benefits on the fundamental compute and memory requirements of the pooling
operator and by extension, on the complete Multiscale Transformer model. Consider an input tensor
of dimensions 7' x H x W and corresponding sequence length L = T"- H - W. Further, assume
the key, query and value strides to be s*, s? and sV'. As described in Sec. 3.1 in main paper, each
of the vectors would experience a spatiotemporal resolution downsampling by a factor of their
corresponding strides. Equivalently, the sequence length of query, key and value vectors would be
reduced by a factor of 9, ¥ and f" respectively, where,

fr= sy sy s, ¥ €{Q, K V]
Computational complexity. Using these shorter sequences yields a corresponding reduction in
space and runtime complexities for the pooling attention operator. Considering key, query and value
vectors to have sequence lengths L/ f, L/ f, and L/ f, after pooling, the overall runtime complexity
of computing the key, query and value embeddings is O(T HW D?/h) per head, where h is the
number of heads in MHPA. Further, the runtime complexity for calculating the full attention matrix
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and the weighed sum of value vectors with reduced sequence lengths is O(T*H?*W?2D/ f, f»h) per
head. Computational complexity for pooling is

T(P(-©)) =0 (THW-D-M>,

STSWSH
which is negligible compared to the quadratic complexity of the attention computation and

hence can be ignored in asymptotic notation. Thus, the final runtime complexity of MHPA is
O(THWD(D+THW/f,fr)).

Memory complexity. The space complexity for storing the sequence itself and other tensors of
similar sizes is O(T HW D). Complexity for storing the full attention matrix is O(T? H*W?2h/ f, fx).
Thus the total space complexity of MHPA is O(THWh(D/h +THW/ f,fx)).

Design choice. Note the trade-off between the number of channels D and the sequence length term
THW/ f, fx in both space and runtime complexity. This tradeoff in multi head pooling attention
informs two critical design choices of Multiscale Transformer architecture.

First, as the effective spatiotemporal resolution decreases with layers because of diminishing
THW/ f,fx, the channel capacity is increased to keep the computational time spent (FLOPs)
roughly the same for each stage.

Second, for a fixed channel dimension, D, higher number of heads & cause a prohibitively larger
memory requirement because of the (D + h « THW/ f, f;;) term. Hence, Multiscale Transformer
starts with a small number of heads which is increased as the resolution factor T HW/ f, fi. decreases,
to hold the effect of (D + h x THW/ f, fi) roughly constant.

A.5 Additional Implementation Details

We implement our model with PySlowFast [72]. Code and models are available at: https://github.
com/facebookresearch/SlowFast.

Details: Kinetics Action Classification

Architecture details. As in original ViT [67], we use residual connections [111] and Layer
Normalization (LN) [11] in the pre-normalization configuration that applies LN at the beginning of
the residual function, and our MLPs consist of two linear layers with GELU activation [119], where
the first layer expands the dimension from D to 4D, and the second restores the input dimension D,
except at the end of a scale-stage, where we increase this channel dimensions to match the input of
the next scale-stage. At such stage-transitions, our skip connections receive an extra linear layer
that takes as input the layer-normalized signal which is also fed into the MLP. In case of ()-pooling
at scale-stage transitions, we correspondingly pool the skip-connection signal.


https://github.com/facebookresearch/SlowFast
https://github.com/facebookresearch/SlowFast
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Optimization details. We use the truncated normal distribution initialization in [109] and adopt
synchronized AdamW [189] training on 128 GPUs following the recipe in [264, 77]. For Kinetics,
we train for 200 epochs with 2 repeated augmentation [124] repetitions. The mini-batch size is 4
clips per GPU (so the overall batchsize is 512).

We adopt a half-period cosine schedule [190] of learning rate decaying: the learning rate at
the n-th iteration is 7 - 0.5[cos(;;"~7) + 1], where Ny is the maximum training iterations and the
base learning rate 7 is set as 1.6 - 1073. We linearly scale the base learning rate w.r.t. the overall
batch-size, n = 1.6-10‘3%, and use a linear warm-up strategy in the first 30 epochs [96]. The
cosine schedule is completed when reaching a final learning rate of 1.6 - 1075, We extract the class
token after the last stage and use it as the input to the final linear layer to predict the output classes.
For Kinetics-600 all hyper-parameters are identical to K400.

Regularization details. We use weight decay of 5-102, a dropout [120] of 0.5 before the final
classifier, label-smoothing [254] of 0.1 and use stochastic depth [130] (i.e. drop-connect) with rate
0.2.

Our data augmentation is performed on input clips by applying the same transformation across
all frames. To each clip, we apply a random horizontal flip, Mixup [317] with o = 0.8 to half of the
clips in a batch and CutMix [315] to the other half, Random Erasing [325] with probability 0.25,
and Rand Augment [54] with probability of 0.5 for 4 layers of maximum magnitude 7.

For the temporal domain, we randomly sample a clip from the full-length video, and the input
to the network are 7' frames with a temporal stride of 7; denoted as T" x 7 [77]. For the spatial
domain, we use Inception-style [252] cropping that randomly resizes the input area between a [min,
max|, scale of [0.08, 1.00], and jitters aspect ratio between 3/4 to 4/3, before taking an H x W =
224 %224 crop.

Fine-tuning from ImageNet. To fine-tune our ViT-B baseline, we extend it to take a video clip of
T = 8 frames as input and initialize the model weights from the ViT-B model [67] pre-trained on
ImageNet-21K dataset. The positional embedding is duplicated for each frame. We fine-tune the
model for 30 epochs with SGD using the recipe in [77]. The mini-batch size is 2 clips per GPU and
a half-period cosine learning rate decay is used. We linearly scale the base learning rate w.r.t. the
overall batch-size, n = 1073 22<hse Wejght decay is set to 107

Details: AVA Action Detection

Dataset. The AVA dataset [103] has bounding box annotations for spatiotemporal localization of
(possibly multiple) human actions. It has 211k training and 57k validation video segments. We
follow the standard protocol reporting mean Average Precision (mAP) on 60 classes [103] on AVA
v2.2.

Detection architecture. We follow the detection architecture in [77] to allow direct comparison of
MVIiT against SlowFast networks as a backbone.

First, we reinterpret our transformer spacetime cube outputs from MViT as a spatial-temporal
feature map by concatenating them according to the corresponding temporal and spatial location.
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Second, we employ a the detector similar to Faster R-CNN [226] with minimal modifications
adapted for video. Region-of-interest (Rol) features [89] are extracted at the generated feature map
from MViT by extending a 2D proposal at a frame into a 3D Rol by replicating it along the temporal
axis, similar as done in previous work [103, 250, 140], followed by application of frame-wise
RolAlign [114] and temporal global average pooling. The Rol features are then max-pooled and
fed to a per-class, sigmoid classifier for prediction.

Training. We initialize the network weights from the Kinetics models and adopt synchronized
SGD training on 64 GPUs. We use 8 clips per GPU as the mini-batch size and a half-period cosine
schedule of learning rate decaying. The base learning rate is set as 0.6. We train for 30 epochs with
linear warm-up [96] for the first 5 epochs and use a weight decay of 10~8 and stochastic depth [130]
with rate 0.4. Ground-truth boxes, and proposals overlapping with ground-truth boxes by IoU > 0.9,
are used as the samples for training. The region proposals are identical to the ones used in [77].

Inference. We perform inference on a single clip with 7" frames sampled with stride 7 centered at
the frame that is to be evaluated.

Details: Charades Action Classification

Dataset. Charades [241] has ~9.8k training videos and 1.8k validation videos in 157 classes in a
multi-label classification setting of longer activities spanning ~30 seconds on average. Performance
is measured in mean Average Precision (mAP).

Training. We fine-tune our MViT models from the Kinetics models. A per-class sigmoid output is
used to account for the multi-class nature. We train with SGD on 32 GPUs for 200 epochs using 8
clips per GPU. The base learning rate is set as 0.6 with half-period cosine decay. We use weight
decay of 10”7 and stochastic depth [130] with rate 0.45. We perform the same data augmentation
schemes as for Kinetics in §A.5, except of using Mixup.

Inference. To infer the actions over a single video, we spatiotemporally max-pool prediction scores
from multiple clips in testing [77].

Details: Something-Something V2 (SSv2)

Dataset. The Something-Something V2 dataset [97] contains 169k training, and 25k validation
videos. The videos show human-object interactions to be classified into 174 classes. We report
accuracy on the validation set.

Training. We fine-tune the pre-trained Kinetics models. We train for 100 epochs using 64 GPUs
with 8 clips per GPU and a base learning rate of 0.02 with half-period cosine decay [190]. Weight
decay is set to 10~* and stochastic depth rate [130] is 0.4. Our training augmentation is the same
as in §A.5, but as SSv2 requires distinguishing between directions, we disable random flipping in
training. We use segment-based input frame sampling [177] that splits each video into segments,
and from each of them, we sample one frame to form a clip.
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Inference. We take single clip with 3 spatial crops to form predictions over a single video in testing.

Details: ImageNet

Datasets. For image classification experiments, we perform our experiments on ImageNet-1K [57]
dataset that has ~1.28M images in 1000 classes. We train models on the train set and report top-1
and top-5 classification accuracy (%) on the val set. Inference cost (in FLOPs) is measured from a
single center-crop with resolution of 2242 if the input resolution was not specifically mentioned.

Training. We use the training recipe of DeiT [264] and summarize it here for completeness.
We train for 100 epochs with 3 repeated augmentation [124] repetitions (overall computation
equals 300 epochs), using a batch size of 4096 in 64 GPUs. We use truncated normal distribution
initialization [109] and adopt synchronized AdamW [189] optimization with a base learning rate of
0.0005 per 512 batch-size that is warmed up and decayed as half-period cosine, as in [264]. We use
a weight decay of 0.05, label-smoothing [254] of 0.1. Stochastic depth [130] (i.e. drop-connect) is
also used with rate 0.1 for model with depth of 16 (MViT-B-16), and rate 0.3 for deeper models
(MViT-B-24). Mixup [317] with a = 0.8 to half of the clips in a batch and CutMix [315] to the
other half, Random Erasing [325] with probability 0.25, and Rand Augment [54] with maximum
magnitude 9 and probability of 0.5 for 4 layers (for max-pooling) or 6 layers (for conv-pooling).
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B.1 Architecture Details

Reversible Vision Transformers Table A.1 shows the architectures for all the Reversible Vision
Transformer Models. All models closely follow the original ViT architectures [68] in matched
performance, parameters, FLOPs and much lower memory footprint (Table 5.1). Output sizes
denote the tensor shapes of the two residual streams at the end of each reversible Vision Transformer
block. Note that even though the intermediate activations are twice the non-reversible variant, the
actual memory needed is much lower because of memory reuse in reversible training. Further, the
FLOPs are matched since each layer is performed only one of the two streams.

Reversible Multiscale Vision Transformers Table A.2 shows the architecture for the Rev-MViT-B
model for image classification. The backbone is made-up of two stages — Stage-transition blocks that
increase the channel capacity and down-sample the resolution and the reversible Stage-preserving
blocks that perform the majority of computation without changing feature dimensions. Similar
to Rev-ViT, the output sizes of both the streams are denoted. Fusion blocks operate on Y; and Y,
together, hence operate with computationally light operations (Table 5.6).

B.2 Training Settings

ImageNet. Table A.3 shows the training recipes for ViT-L and Rev-ViT-L models presented in
Table 5.1. Note that ViT-L is quite heavy with 61.6 GFLOPs and hence we adopt a shorter 200
epochs recipe for faster experiment cycle for developing Rev-ViT-L. Smaller ViT models — ViT-S
and ViT-B — are trained according to the Data efficient transformers [262] and are all trained for 300
epochs. Hence, the accuracy difference between ViT-L which achieves 81.5% while ViT-B achieves
81.8% overall. MViT-B model follows the 300 epochs recipe as well proposed in [71].

Kinetics-400 & Kinetics-600. We follow the recipes proposed in [71] to train the Rev-MViT-B
architecture (Table A.2) following crucial modifications shown in Table 5.5.
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stage| operators |output sizes stage| operators |output sizes
data | | 82242241 data | | 82242241
aeh|  1X16x16,384 384814142 1x16x16,768  |768814142
P stride 1x16x 16 patchl i ide 1x16x 16

MHA(384) 3841414 MHA(768) 7681414
rev H MLP(1536) }“2‘ v || mLpGo72) | X12

(a) Rev-ViT-S with 4.6G FLOPs, 22M (b) Rev-ViT-B with 17.6G FLOPs, 87TM
param, 8.8MB/img memory, and 79.9% param, 17MB/img memory, and 81.8%

top-1 accuracy. top-1 accuracy.
stage‘ operators ‘ output sizes
data \ \ 82242241
atch 1x16x16, 1024  [1024814142
P stride 1 x16x16

. ‘ { MHA(1024) 10241414

MLP(4096)
(c) Rev-ViT-L with 61.6G FLOPs, 305M
param, 22.6MB/img memory, and 81.4%
top-1 accuracy.

L<24‘

Table A.1: Reversible Vision Transformer Architectures: Rev-ViT are reversible adaption of ViT
with exactly matched FLOPs, parameters and accuracy under identical conditions but with much
lower GPU memory footprints.

MS-COCO. For object detection experiments, we adopt the Mask R-CNN [114] object detection
framework in Detectron2 [289]. We follow the same training settings from [186], AdamW opti-
mizer [189] (51, B2 = 0.9,0.999, base learning rate 1.6—4 for base size of 64, and weight decay of
0.1), and 3x schedule (36 epochs). The drop path rate is set as 0.4. We use PyTorch’s automatic
mixed precision during training.
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stage operators |output sizes
data |162242241
cubification 7x7,96 96856562
stride 4 x4
Q 96
Stage-Preserving [ 11\\44];1};?3(;2)) } 1 963636
1927681 192828283
Stage-Transition
Stage-Preserving { 1\1/\[/11—}4};;\(%16%) } 1 1022828
38415361 384814143
Stage-Transition
Stage-Preserving { DBCIIEE(AI(;?(?)) :|><10 salals
76830721 7688773
Stage-Transition
Stage-Preserving { 1\1\//1125?2((3765)) wxl 10877
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Table A.2: Rev-MViT-B with 8.7G FLOPs, 39M param, 66.8MB/img memory, and 82.5% top-1
accuracy is reversible adaption of MViT-B architecture [68].

Training Hyperparameter

ViT-B  Rev-ViT-B

Learning Rate

Random augment Repeats (N)
Random augment Magnitude (M)
Optimizer Momentum

le-4 Te-5
1 2
9 7

(0.9, 0.95) (0.9, 0.999)

Weight Decay 0.3 0.3
Batch Size 4096 4096
Epochs 200 200
Label Smoothing 0.1 0.1
Drop Path Rate 0.2 0.2
Mixup 0.8 0.8
Cutmix 1.0 1.0

Table A.3: Training Recipe for ViT-L and Rev-ViT-L



110

Appendix C

Chapter 6 Supplementary Material

EgoSchema Datasheet

| Motivation |

For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.

EgoSchema is a diagnostic benchmark for assessing very long-form video-language understanding
capabilities of modern multimodal systems. While some prior works have proposed video datasets
with long clip lengths, we posit that merely the length of the video clip does not truly capture the
temporal difficulty of the video task that is being considered. To remedy this, we introduce temporal
certificate sets, a general notion for capturing the intrinsic temporal understanding length associated
with a broad range of video understanding tasks & datasets. Please see Section 6.3 in the main
paper for more details.

Who created this dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

The authors created the dataset within the Malik Group at Berkeley Al Research, UC Berkeley.
The authors created it for the public at large without reference to any particular organization or
institution.
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Composition

What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and
ratings; people and interactions between them; nodes and edges)? Please provide a
description.

Each instance in the dataset represents a 3-minute video and text that contains a question and five
answer options.

How many instances are there in total (of each type, if appropriate)?
EgoSchema has a total of 5063 instances each containing one video, one question, and five answer
options. You can see further statistics on the whole data on our website egoschema.github.io.

Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? |If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set (e.g., geographic coverage)?
If so, please describe how this representativeness was validated/verified. If it is not
representative of the larger set, please describe why not (e.g., to cover a more diverse
range of instances, because instances were withheld or unavailable).

The video component of our dataset derives from the broader Ego4D dataset. For our research,
we selectively extracted non-overlapping three-minute segments from the Ego4D video data, each
segment consisting of a minimum of 30 human-annotated narrations (where each narration refers to
a timestamped sentence). Detailed statistic of the number of viable clips for different possible length
and narration density choices is discussed in Supplementary Section C.1. The selected subset is very
diverse in human behavior as can be seen by the activity statistics presented on egoschema.github.io.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please provide a description.

Each instance in our dataset comprises raw mp4 video data, captured at a rate of 30 frames per
second and with a high resolution. Accompanying this video data, there are six text elements - one
question and five corresponding answer options one of which is marked as the correct answer to the
question.

Is there a label or target associated with each instance? If so, please provide a
description.

Each instance is associated with a label ranging from 1 to 5 that indicates which of the five answer
options is correct.

Is any information missing from individual instances? If so, please provide a descrip-
tion, explaining why this information is missing (e.g. because it was unavailable). This
does not include intentionally removed information but might include, e.g., redacted text.
All instances are complete.


https://egoschema.github.io
https://egoschema.github.io
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Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? If so, please describe how these relationships are made
explicit.

Some instances may have the same video but different questions and answers. It will be indicated
by a clip unique identifier in the final dataset.

Are there recommended data splits (e.g., training, development/validation, testing)?
If so, please provide a description of these splits, explaining the rationale behind them.
EgoSchema is designed specifically for zero-shot testing. Its primary purpose is to be able to asses
the out of the box long-term video-language understanding capabilities of modern multimodal
models.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.

The dataset was very carefully manually curated to mitigate any incidence of errors within the
questions and answers. Although different questions may be posed for the same clip, it is ensured
that there is no overlap between any two distinct clips. Further related details are also discussed in
the limitations section in the main paper.

Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources,
a) are there guarantees that they will exist, and remain constant, over time; b) are there
official archival versions of the complete dataset (i.e., including the external resources
as they existed at the time the dataset was created); c) are there any restrictions (e.g.,
licenses, fees) associated with any of the external resources that might apply to a future
user? Please provide descriptions of all external resources and any restrictions associated
with them, as well as links or other access points, as appropriate.

Entirety of the dataset will be made publicly available at our project website egoschema.github.io.
We will also provide a download tool for preprocessing all the videos such as cutting clips, associ-
ating the question/answer text etc. Text will be released in a JSON format, hosted on our github
repository. EgoSchema will be publicly released under the Ego4D license, which allows public use
of the video and text data for both research and commercial purposes.

Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor-patient confidentiality, data that
includes the content of individuals non-public communications)? If so, please provide
a description.

No

Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.
No

Does the dataset relate to people? If not, you may skip the remaining questions in this
section.


https://egoschema.github.io
https://github.com/egoschema/EgoSchema
https://github.com/egoschema/EgoSchema
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Some videos do contain people. However, the Ego4D authors employed an array of de-identification
procedures primarily centered on ensuring a controlled environment with informed consent from all
participants, and, where applicable, in public spaces with faces and other personally identifiable
information suitably obscured. We strictly import all RGB information from Ego4D without any
addition of our own.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please de-
scribe how these subpopulations are identified and provide a description of their respective
distributions within the dataset.

No

Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? If so, please
describe how.

No, Ego4D has employed an array of deidentification procedures in order to obscure any personally
identifiable information such as people’s faces.

Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins, sexual orientations, religious beliefs,
political opinions or union memberships, or locations; financial or health data;
biometric or genetic data; forms of government identification, such as social security
numbers; criminal history)? If so, please provide a description.

No
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| Collection Process |

How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

The video data, which is directly observable, was procured from the publicly accessible Ego4D
dataset. In contrast, the text data was generated through the use of Large Language Models (LLMs)
including GPT4, BARD, and Claude. These LLMs employed visual narrations from each video
within the Ego4D dataset to generate the corresponding text.

What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?
How were these mechanisms or procedures validated?

The video and narration data were downloaded in accordance with the official Ego4D guidelines
for data access: https://ego4d-data.org/docs/start-here. For the generation of the text data within
our dataset, we utilized API access for GPT4 via OpenAl, for BARD via Google, and for Claude
via Anthropic. This allowed us to generate three distinct questions for each video clip sampled
from the Ego4D dataset. Upon the generation of these questions for each sampled video clip, we
implemented a series of filtering procedures including Rule-based filtering, Blind filtering, and
Manual curation. See Section 3.1.2 in the main paper for a more detailed explanation.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

The video component of our dataset derives from the broader Ego4D dataset. For our research,
we selectively extracted non-overlapping three-minute segments from the Ego4D video data, each
segment consisting of a minimum of 30 human-annotated narrations (where each narration refers
to a timestamped sentence). Detailed statistic of the number of viable clips for different possible
length and narration density choices is discussed in Supplementary Section C.1.

Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdworkers
paid)?

Our research utilized the services of Quantigo, a specialized data labelling company. The teams
of Quantigo employees that were based in Bangladesh were compensated at a rate of 5 dollars per
hour, at a wage significantly higher than the market hourly rate in Bangladesh. This was done to
ensure fair compensation for the complex tasks performed while also contributing to the highest
quality of the work delivered. It’s important to note that our collaboration with Quantigo followed
ethical guidelines, with the fair treatment of all employees involved and the appropriate respect for
their expertise and labor. For exact instructions for human curation, see Supplementary Section C.2.


https://ego4d-data.org/docs/start-here/
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Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

The original videos within the Ego4D dataset were collected across various occasions spanning
from 2019 to 2021. As for the EgoSchema, the textual information was collected over several
sprints during the first half of 2023 based on the Ego4D narrations.

Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as
well as a link or other access point to any supporting documentation.

No

Does the dataset relate to people? If not, you may skip the remaining questions in this
section.
Yes

Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?

The video and narration data were acquired in accordance with the official Ego4D guidelines for
data access: https://ego4d-data.org/docs/start-here/. The Ego4D authors had in turn ensured consent
of the people involved.

Were the individuals in question notified about the data collection? If so, please
describe (or show with screenshots or other information) how notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of the
notification itself.

Ego4d paper followed several procedures to ensure the preservation of privacy and the upholding
of ethical standards. Notably, these procedures included obtaining informed consent from those
wearing the cameras and adhering to de-identification requirements for personally identifiable
information (PII). Given that the video collection was conducted by Ego4D, we are not in a position
to provide specific instructions that were given to the camera wearers. The Ego4D privacy statement
is available at https://ego4d-data.org/pdfs/Ego4D-Privacy-and-ethics-consortium-statement.pdf

Did the individuals in question consent to the collection and use of their data? If
S0, please describe (or show with screenshots or other information) how consent was
requested and provided, and provide a link or other access point to, or otherwise reproduce,
the exact language to which the individuals consented.

Ego4d paper privacy procedures have included obtaining informed consent from those wearing
the cameras. Given that the video collection was conducted by Ego4D, we are not in a position to
provide specific instructions that were given to the camera wearers. See Ego4D privacy statement.

If consent was obtained, were the consenting individuals provided with a mechanism
to revoke their consent in the future or for certain uses? If so, please provide a
description, as well as a link or other access point to the mechanism (if appropriate).


https://ego4d-data.org/docs/start-here/
https://ego4d-data.org/pdfs/Ego4D-Privacy-and-ethics-consortium-statement.pdf
https://ego4d-data.org/pdfs/Ego4D-Privacy-and-ethics-consortium-statement.pdf
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Ego4d paper privacy procedures have included allowing camera users to ask questions and withdraw
at any time. Additionally, they were free to review and redact their own video. Given that the
video collection was conducted by Ego4D, we are not in a position to provide specific instructions
that were given to the camera wearers. You can find the Ego4D privacy statement at https://ego4d-
data.org/pdfs/Ego4D-Privacy-and-ethics-consortium-statement.pdf.

Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted? If so, please provide a
description of this analysis, including the outcomes, as well as a link or other access point
to any supporting documentation.

While we recognize the importance of this topic, we would, once more, refer to the Ego4D paper for
an in-depth discussion. Ego4D acknowledges the potential privacy risks associated with the use of
wearable devices in data collection and has taken several steps such as depersonalizing any sensitive
information, blurring out faces and bodies, etc. towards maintaining privacy. The same carries over
to the video data in EgoSchema as well. Broadly, very long-form video understanding is a core
capability for agents that are to perceive the natural visual world. Hence, developing datasets such
as EgoSchema will be critical to unlocking this key Al capability. Additionally, according to Ego4D
privacy statement, all videos from Ego4D were reviewed by an approved member of one of the
participant’s universities or institutes to identify and assess potential privacy concerns.


https://ego4d-data.org/pdfs/Ego4D-Privacy-and-ethics-consortium-statement.pdf
https://ego4d-data.org/pdfs/Ego4D-Privacy-and-ethics-consortium-statement.pdf
https://ego4d-data.org/pdfs/Ego4D-Privacy-and-ethics-consortium-statement.pdf
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Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)? If so, please provide a description. If not,
you may skip the remainder of the questions in this section.

The set of generated questions and answers from output was filtered by those LLMs and finally
curated by humans. A detailed description can be found in Section 3. There was no preprocessing
done on the video clips sampled from Ego4D.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? If so, please provide a link or other access point
to the “raw” data.

Human curation was employed to rectify errors in the question-answer sets, particularly cases where
the identified correct answer was wrong or a wrong answer was actually correct. Given the crucial
role of this step in ensuring the accuracy of our dataset, we do not find it necessary to release a
version of the dataset prior to human curation. However, all the discarded "raw" data is indeed also
saved.

Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point.

The APIs for the Large Language Models (LLMs) are publicly accessible. The prompts for filtering
and instructions for human curation are provided in Supplementary Section C and Supplementary
Section C.2 respectively. Additionally all necessary code for generation, filtering etc. is provided in
the supplementary materials.
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\ Distribution ‘

Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.

The dataset will be made publicly available and can be used for both research and commercial
purposes under the Ego4D license.

How will the dataset be distributed (e.g., tarball on website, API, GitHub) Does the
dataset have a digital object identifier (DOI)?

The dataset will be distributed as a JSON file describing the unique identifier for each clip, the
associated question, the five answer options, the label, and additional clip information that facilitates
the tracing of the clip back to the original Ego4D data, such as the Ego4D video identification of
the clip’s source video, among other details. In addition, download tools to acquire and pre-process
the video RGB data will also be provided on our website.

When will the dataset be distributed?
The full dataset will be made available upon the acceptance of the paper before the camera-ready
deadline.

Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.

EgoSchema will be publicly released under the Ego4D license, which allows direct public use of
the video and text data for both research and commercial purposes.

Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.

No

Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.

No
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\ Maintenance

Who will be supporting/hosting/maintaining the dataset?

The authors of the paper will be maintaining the dataset, pointers to which will be hosted on github
repo https://github.com/egoschema/EgoSchema along with the code for download and preprocessing
tool, with the actual data hosted either on Amazon AWS as an S3 bucket or as a google drive folder.

How can the owner/curator/manager of the dataset be contacted (e.g., email ad-
dress)?

We will post the contact information on our website. We will be available through github issues as
well as through email.

Is there an erratum? If so, please provide a link or other access point.
We will host an erratum on the Github repo in the future, to host any approved errata suggested by
the authors or the video research community.

Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?

Yes, we plan to host an erratum publicly. There are no specific plans for a v2 version, but there does
seem plenty oppurtunities for exciting future dataset work based on EgoSchema.

If the dataset relates to people, are there applicable limits on the retention of the
data associated with the instances (e.g., were individuals in question told that their
data would be retained for a fixed period of time and then deleted)? If so, please
describe these limits and explain how they will be enforced.

No.

Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated
to users.

N/A There are no older versions at the current moment. All updates regarding the current version
will be communicated via our website.

If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to other users? If so, please provide a
description.

Contributions will be made possible using standard open-source tools, submitted as pull requests to
the relevant GitHub repository. Moreover, we will provide information on how to trace sampled
clips back to their original source within the Ego4D dataset. This will enable users to access
additional Ego4D data, such as narrations, summaries, and object detections, as applicable.


https://github.com/egoschema/EgoSchema
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Full Prompts

Here are some of the prompts we developed for generating EgoSchema.

Set A

Question prompt

Input:

I want you to act as a teacher in the class called "Long-term video
understanding”. I will provide video action narrations and their
timestamps and you will generate three highly difficult and diverse
questions for your students about the high-level details in the
video. You want to test students’ following abilities:

Ability 1: Students’ ability to summarize and compare long parts of the
video
Ability 2: Students’ ability to compress information from the video
rather than just listing the actions that happened in the video.
Ability 3: Students’ ability to identify the most important parts of
the video.

Your questions should not mention any particular timestamps or
narrations. Remember to make sure the correct answers to your
questions do not list information from the narrations but compress
them in a concise conclusion.

Examples of good and difficult questions:
"What is the main action of the wvideo?"

"Why did C do action ...?2"

AVOID the following types of questions:

"When ...?2"
"How many ...?2"
"How much ...?2"

When announcing the question please label each question as "Question
1,2,3: [full question]"

Timestamps and narrations:

0 — C stares at the lamp

1 - C looks around the apartment
3 - C talks to a man
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6 — C walks around the apartment

10 - C talks to a man

11 - C looks around the apartment

14 - a man plays the guitar

20 - a man walks around the apartment
21 - a man plays the guitar

21 - C walks around the apartment

22 — C stares at the window

24 - C looks around the apartment

27 — C talks to a man

29 - C picks chips from the table

32 — C looks around the apartment

36 — C stares at a man

36 — a man plays the guitar

37 - C walks around the apartment

41 - C sits on the sofa

43 - C stares at a man

44 - a man plays the guitar

49 - a man climbs up the sofa

50 - a man plays the guitar

62 - a man climbs down the sofa

63 — a man walks around the apartment
64 - a man plays the guitar

93 - C stares at the table

96 - a man plays a guitar

111 - C stares at the table

112 - a man walks around the apartment
114 - C stares at a man

115 - a man 1lifts the guitar

118 - a man walks around the apartment
120 - a man places guitar on the sofa
122 - a man walks around the apartment
125 - C stands up

126 - C walks around the apartment
131 - a man picks a coffee maker jug
132 - a man pours coffee in a cup

134 - C stares at a man

140 - C stares at the window

142 - C stares at a man

144 - a man drinks coffee

145 - C looks around the apartment
150 - C walks around the apartment
152 = C talks to a man

156 - C stares at a bench

121
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C looks around the apartment
C stares at a man
a man talks to C
167 — C looks around the apartment
C follows a man

a man points at the window

C looks around the bedroom

Output:

Question 1: What can you deduce about the relationship between C and
the man, based on their interactions and behaviors throughout the
video?

Question 2: Identify the primary activity in the apartment and discuss
its importance/significance. How does it influence the actions and
atmosphere of the video?

Question 3: Observe the dynamics of the video in terms of changes in
characters’ actions, interactions, and spatial movement. How do
these shifts contribute to the overall narrative?
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Answer prompt

Input:

I want you to act as a teacher in the class called "Long-term wvideo
understanding." I will provide video action narrations and their
timestamps and three highly difficult and diverse questions for your

students about the high-level details in the video. I want you to
test students’ following abilities:

Ability 1: Students’ ability to summarize and compare long parts of the
video

Ability 2: Students’ ability to compress information from the video
rather than Jjust listing the actions that happened in the wvideo.

Ability 3: Students’ ability to identify the most important parts of
the video.

I want you to create a difficult multiple-choice exam that tests above

student abilities based on the three questions I just provided. Each
question should have five similar open—-ended but short answers, but

only one should be correct. Make it very difficult for students to
find the correct answer among all the wrong answers. All answers
should be closely related to what happens in the video. Make wrong
answers significantly longer than correct answers. Ensure all of the
correct answers compress information from narrations them into a
concise conclusion. Your answers should not mention any particular
timestamps or narrations.

Do not use letters for the answer choices

Print each correct answer exactly as "Correct answer: [full answer]"

Please print each wrong answer on a new line and print each wrong
answer as "Wrong answer 1,2,3,4: [full answer]"

Timestamps and narrations:

0 - C stares at the lamp

1 - C looks around the apartment

3 - C talks to a man
C

6 - walks around the apartment

10 - C talks to a man

11 - C looks around the apartment

14 - a man plays the guitar

20 - a man walks around the apartment
21 - a man plays the guitar

21 - C walks around the apartment
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22
24
27
29
32
36
36
37
41
43
44
49
50
62
63
64
93
96
111
112
114
115
118
120
122
125
126
131
132
134
140
142
144
145
150
152
156
158
164
164
167
171
174
175
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stares at the window
looks around the apartment
talks to a man
picks chips from the table
looks around the apartment
Stares at a man
man plays the guitar
walks around the apartment
sits on the sofa
Stares at a man
man plays the guitar
man climbs up the sofa
man plays the guitar
man climbs down the sofa
man walks around the apartment
man plays the guitar
stares at the table
man plays a guitar
stares at the table
man walks around the apartment
Stares at a man
man lifts the guitar
man walks around the apartment
man places guitar on the sofa
man walks around the apartment
stands up
walks around the apartment
man picks a coffee maker jug
man pours coffee in a cup
Stares at a man
stares at the window
Stares at a man
man drinks coffee
looks around the apartment
walks around the apartment
talks to a man
stares at a bench
looks around the apartment
stares at a man
man talks to C
looks around the apartment
follows a man
man points at the window
looks around the bedroom

124
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Questions:

Question: what can you deduce about the relationship between c and the
man, based on their interactions and behaviors throughout the video?

Question: identify the primary activity in the apartment and discuss
its importance/significance. how does it influence the actions and
atmosphere of the video?

Question: Observe the dynamics of the video in terms of changes in
characters’ actions, interactions, and spatial movement. how do
these shifts contribute to the overall narrative?

Output:

Question 1: What can you deduce about the relationship between C and
the man, based on their interactions and behaviors throughout the
video?

Correct answer: They have a casual, friendly relationship.

Wrong answer 1l: C and the man are complete strangers and never
interacted before.

Wrong answer 2: C is deeply in love with the man, and the man
reciprocates those feelings.

Wrong answer 3: They are business associates discussing a financial
transaction.

Wrong answer 4: C is an intruder in the man’s apartment, and the man is
trying to get C to leave.

Question 2: Identify the primary activity in the apartment and discuss
its importance/significance. How does it influence the actions and
atmosphere of the video?

Correct answer: The primary activity is the man playing the guitar,
which sets a relaxed environment.

Wrong answer 1: The main activity is C staring at different objects,
indicating a deep curiosity.

Wrong answer 2: The primary activity is a heated argument between C and
the man that escalates over time.

Wrong answer 3: The main activity is the man anxiously pacing around
the apartment, creating a tense atmosphere.

Wrong answer 4: The primary activity is C and the man planning to
commit a crime together.
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Question 3: Observe the dynamics of the video in terms of changes in
characters’ actions, interactions, and spatial movement. How do
these shifts contribute to the overall narrative?

Correct Answer: Actions and interactions are casual and relaxed,
reflecting a comfortable environment.

Wrong Answer A : The video displays a profound sense of conflict and
tension arising between the characters.

Wrong Answer B : The man is showing C the issues that need fixing in
the apartment in a professional manner.

Wrong Answer C : Both the characters display an increasingly urgent
need to solve an issue in the apartment.

Wrong Answer D : C and the man admire and interact with several objects

in the apartment that look beautiful.

Set B

Question and answer prompt

Input:
I want you to act as a teacher in the class called "Long-term video
understanding”. I will provide video action narrations and their

timestamps and you will generate three highly difficult and diverse
questions for your students about the high-level details in the
video. You want to test students’ following abilities:

Ability 1: Students’ ability to summarize and compare long parts of the
video
Ability 2: Students’ ability to compress information from the video
rather than just listing the actions that happened in the video.
Ability 3: Students’ ability to identify the most important parts of
the video.

Your questions should not mention any particular timestamps or
narrations. Remember to make sure the correct answers to your
questions do not list information from the narrations but compress
them in a concise conclusion.

Examples of good and difficult questions:
"What is the main action of the video?"
"Why did C do action ...?2"

AVOID the following types of questions:
"When ...?2"
"How many ...2"
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"How much ...?2"
When announcing the question please label each question as "Question

1,2,3: [full gquestion]"

Timestamps and narrations:
3 - C holds the cloth in his right hand.

5 - the woman picks a carton from the grocery bag on the floor with her
right hand.

6 — the woman drops the carton in a cabinet with her left hand.

7 — the woman dips both hands into the grocery bag.

9 - the woman drops a green carton on the floor with her right hand.

12 - C drops the green carton in the cabinet with his right hand.
13 - the woman holds a pack bag in her right hand.
16 — C opens a kitchen cabinet with his left hand.

18 - C removes a cereal pack from the kitchen cabinet with his left
hand.

19 - C puts the green carton into the kitchen cabinet with his right
hand.

21 - C closes the kitchen cabinet with his left hand.

24 - the woman removes a plastic from the grocery bag with her right
hand.

25 - the woman drops the plastic on the floor with her right hand.
33 - C closes a wardrobe with his left hand.

38 — the woman puts a pack into the cabinet with her right hand.
43 - a dog lies down on a bed.

54 - C picks a cloth from the floor with his right hand.

58 - C adjusts the cloth with both hands.

66 — C hangs the cloth on the wall with both hands.

74 - the woman holds a grocery bag in her right hand.

82 - the woman touches her hair with her right hand.

92 - the woman talks with C.

99 C holds two piece of cloths in both hands.

100 - the woman picks piece of clothes from a bag with both hands.

100 - C adjusts a camera on his head with his right hand.

103 - C drops the two piece of cloths on a couch with his left hand.
109 - C opens a door with his right hand.

110 - C walks into a toilet.

114 - C holds a red towel in his right hand.

116 — the woman talks with C.

118 - the woman scratches her back with her right hand.

118 - the dog walks into the toilet.

120 - C hangs the red towel on the wall with his right hand.
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C holds a towel in his left hand.

129 - the woman holds the towel in her left hand.

129 - the dog walks out of the toilet.

132 = C holds the door with his left hand.

133 - the woman touches her face with her right hand.

148 - C adjusts the camera on his head with his left hand.
149 - C touches his face with his right hand.

150 - the woman holds a bin with both hands.

160 - C opens the door with his right hand.

161 - C walks into the toilet.

163 - the woman walks into the toilet.

166 - the woman drops the bin on the floor with both hands.
168 - the woman adjusts the bin on the floor with both hands.

Output:

Question 1: Can you provide a concise summary of the primary activities
taking place in the wvideo, highlighting similarities between the
actions of C and the woman?

Question 2: Based on the video, what task seems to be the central focus
of both C and the woman’s actions, and how do they contribute to
the accomplishment of this task?

Question 3: Identify the three most important segments of the video and
explain the significance of each in the overall context of the
actions taking place.

Input:

Students are done with the questions. It is time to reveal the correct
answers. Correctly provide short one-sentence answers to the
questions you created, and additionally generate 4 very similar but
wrong answers. Make sure that it will be hard to find the correct
answer when combined with the wrong ones. Also, ensure that all the
answers are concise and very close to an actual answer in length.
Mainly make sure your correct answers do not list information from
the narrations but compress them in a concise conclusion.

Do not use letters for the answer choices

Print each correct answer exactly as "Correct answer: [full answer]"

Please print each wrong answer on a new line and print each wrong
answer as "Wrong answer 1,2,3,4: [full answer]"

Output:

Question 1:
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Correct answer: C and the woman both interact with various objects to
organize the space, including placing grocery items and hanging
cloths.

Wrong answer 1:

Wrong answer 2:

Wrong answer 3:

Wrong answer 4:

Output disregarded
Output disregarded
Output disregarded
Output disregarded

— — — —

]
]
]
]

Question 2:
Correct answer: The central focus is organizing and tidying up the
space, with C and the woman putting items in their respective places.

Output disregarded
Output disregarded
Output disregarded
Output disregarded

Wrong answer
Wrong answer
Wrong answer
Wrong answer

[ ]
[ ]
[ ]
( ]

W N

Question 3:
Correct answer: Key segments include organizing groceries, adjusting
household items (e.g., cloths, bins), and interacting with a dog.
Wrong answer 1: [Output disregarded]
Wrong answer 2: [Output disregarded]
Wrong answer 3: [Output disregarded]
4: [ ]

Wrong answer Output disregarded
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Wrong answer prompt

Input:
I want you to act as a teacher in the class called "Long-term wvideo
understanding." I will provide video action narrations and their

timestamps and three highly difficult and diverse questions for your

students about the high-level details in the video. I will also
show the correct answers to the questions. I want you to test
students’ following abilities:

Ability 1: Students’ ability to summarize and compare long parts of the
video

Ability 2: Students’ ability to compress information from the wvideo
rather than Jjust listing the actions that happened in the wvideo.

Ability 3: Students’ ability to identify the most important parts of
the video.

I want you to create a difficult multiple-choice exam that tests above
student abilities based on the three questions and their correct
answers I just provided. Each question should have five similar open
—ended but short answers, but only one should be correct. Make it
very difficult for students to find the correct answer among all the

wrong answers. All answers should be closely related to what
happens in the video. Make wrong answers significantly longer than
correct answers. Ensure all of the correct answers compress
information from narrations them into a concise conclusion. Your
answers should not mention any particular timestamps or narrations.

Do not use letters for the answer choices

Please print each wrong answer on a new line and print each wrong
answer as "Wrong answer 1,2,3,4: [full answer]"

Timestamps and narrations:

3 - C holds the cloth in his right hand.

5 - the woman picks a carton from the grocery bag on the floor with her
right hand.

6 — the woman drops the carton in a cabinet with her left hand.

7 — the woman dips both hands into the grocery bag.

9 - the woman drops a green carton on the floor with her right hand.

12 - C drops the green carton in the cabinet with his right hand.

13 - the woman holds a pack bag in her right hand.
16 C opens a kitchen cabinet with his left hand.
18 - C removes a cereal pack from the kitchen cabinet with his left
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hand.

19 - C puts the green carton into the kitchen cabinet with his right
hand.

21 - C closes the kitchen cabinet with his left hand.

24 - the woman removes a plastic from the grocery bag with her right
hand.

25 - the woman drops the plastic on the floor with her right hand.

33 - C closes a wardrobe with his left hand.

38 - the woman puts a pack into the cabinet with her right hand.

43 - a dog lies down on a bed.

54 - C picks a cloth from the floor with his right hand.

58 - C adjusts the cloth with both hands.

66 — C hangs the cloth on the wall with both hands.

74 - the woman holds a grocery bag in her right hand.

82 - the woman touches her hair with her right hand.

92 - the woman talks with C.

99 - C holds two piece of cloths in both hands.

100 - the woman picks piece of clothes from a bag with both hands.

100 — C adjusts a camera on his head with his right hand.

103 - C drops the two piece of cloths on a couch with his left hand.

109 - C opens a door with his right hand.

110 - C walks into a toilet.

114 - C holds a red towel in his right hand.

116 - the woman talks with C.

118 - the woman scratches her back with her right hand.

118 - the dog walks into the toilet.

120 - C hangs the red towel on the wall with his right hand.

121 - C holds a towel in his left hand.

129 - the woman holds the towel in her left hand.

129 - the dog walks out of the toilet.

132 - C holds the door with his left hand.

133 - the woman touches her face with her right hand.

148 - C adjusts the camera on his head with his left hand.

149 - C touches his face with his right hand.

150 - the woman holds a bin with both hands.

160 — C opens the door with his right hand.

161 - C walks into the toilet.

163 - the woman walks into the toilet.

166 - the woman drops the bin on the floor with both hands.

168 - the woman adjusts the bin on the floor with both hands.

Questions:

Question: Can you provide a concise summary of the primary activities
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taking place in the video, highlighting similarities between the
actions of ¢ and the woman?

Correct answer: c¢ and the woman both interact with various objects to
organize the space, including placing grocery items and hanging
cloths.

Question: Based on the wvideo, what task seems to be the central focus
of both ¢ and the woman’s actions, and how do they contribute to the
accomplishment of this task?
Correct answer: the central focus is organizing and tidying up the
space, with ¢ and the woman putting items in their respective places.

Question: Identify the three most important segments of the video and
explain the significance of each in the overall context of the
actions taking place?

Correct answer: key segments include organizing groceries, adjusting
household items (e.g., cloths, bins), and interacting with a dog.

Output:

Question 1: Can you provide a concise summary of the primary activities
taking place in the wvideo, highlighting similarities between the
actions of ¢ and the woman?

Correct answer: C and the woman both interact with various objects to
organize the space, including placing grocery items and hanging
cloths.

Wrong answer 1l: C and the woman engage in lengthy conversations about
their day while occasionally placing groceries in cabinets and
adjusting cloths on walls.

Wrong answer 2: C and the woman focus on preparing an elaborate dinner,

flipping through recipe books and chopping vegetables.

Wrong answer 3: Both C and the woman predominantly pay attention to the
dog’s well-being, providing it with food and water and playing with
it.

Wrong answer 4: The video revolves around C and the woman working on a

DIY project, with tools scattered around the room.

Question 2: Based on the video, what task seems to be the central focus
of both ¢ and the woman’s actions, and how do they contribute to
the accomplishment of this task?

Correct answer: The central focus is organizing and tidying up the
space, with C and the woman putting items in their respective places.
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Wrong answer 1: C and the woman are preoccupied with an ongoing debate,

their actions aimlessly directed towards unrelated tasks.

Wrong answer 2: They are both primarily absorbed in their individual
tasks, occasionally interacting with each other but with no clear
common goal.

Wrong answer 3: The central focus of their actions is providing care
and attention to the dog, and their actions revolve around its needs.

Wrong answer 4: The video primarily depicts a disagreement between C
and the woman, with actions centered around this conflict.

Question 3: Identify the three most important segments of the video and
explain the significance of each in the overall context of the
actions taking place?

Correct answer: Key segments include organizing groceries, adjusting
household items (e.g., cloths, bins), and interacting with a dog.
Wrong answer 1: The main segments involve discussing a movie, checking
on an overheating stove, and attempting to catch a rodent in the

room.
Wrong answer 2: The most important segments consist of C and the woman
eating a meal, participating in a board game, and reading books.
Wrong answer 3: Three primary segments include C and the woman debating
household chores, searching for lost items, and tending to a crying
baby.

Wrong answer 4: Key segments include discussing an upcoming event,
taking turns answering a phone call, and checking updates from an
ongoing sports game.



APPENDIX C. CHAPTER 6 SUPPLEMENTARY MATERIAL 134

C.1 Our clip length and narration density choice
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Figure A.1: Heatmap of number of viable clips over a range of clip length and narration density.
There are only a few viable options that offer some degree of balance between the number of clips and
the number of narration in the clip. One potential selection is to utilize 3-minute clips with a density of 5
narrations per minute, although this choice bears the significant disadvantage of potentially including clips
with an insufficient volume of narration data to generate high-quality results. Another possible choice is to
use 1-minute clips with a density of 20 narrations per minute, yet this option carries the drawback of the
clips being too brief for the dataset to be very long-term. Hence, we choose 3-minute clips with a narration
density of 10 narrations per minute as it offers a satisfactory balance between the number of narrations and
clip length for generating EgoSchema.

C.2 Human curation
Our research utilized the services of a third part company (not MTurk), for specifically training

annotators to ensure quality. The process involved two distinct annotation procedures: data curation
and human accuracy testing.
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Curation

Generated data curation was performed by Quantigo employees. These curators were responsible
for ensuring that the released EgoSchema dataset is tge highest high quality possible. Here is the
exact instructions that was provided to annotators:

The annotation we need is to say that the Question-correct answer-wrong
answer set (the whole set) is good if all these three conditions
pass:

(Condition A) Question is Answerable: The question can be answered from
the video and requires more than just a second of video to answer (
so, if the answer is not present in the video or, if the answer can
be formed with just a few frames (less than say, a second) then it
fails this condition).

(Condition B) The Marked Correct Answer is correct: The ""correct
answer"" is more the correct answer to the question

(Condition C) The Marked Wrong Answers are wrong: All 4 ""wrong answers
"" are less correct than the ""correct answer"" (So for example, if
a wrong answer is not completely false, but simply does not contain
all the information that the ""correct answer"" does, then it is
still a fine ""wrong answer"") IF even one of the marked answer is

correct, the set should be labeled as bad.

(Condition D) The question is actually long-term: This is a very very
important condition. We want the certificate for the question to be
at least 30 seconds minimum. If the certificate is non-contiguous (
ie. 5 seconds at one place, 20 seconds at another, and 15 more
seconds at a third place) the sum of lengths of all the sub-
certificates together should be more than 30 seconds. Another
example is, if a question can be answered simply from a few frames
of the video, the certificate is small (and less than 30 seconds)
and hence would fail this condition. Additional detials on how to
handle certificate edge cases are provided in the annotator training

through examples.

(Condition E) Avoid Boring Questions: Questions that ask about the
frequency of something ("How many times..") fail this condition.

If any of these five conditions fail we want the whole set (Question /
Correct Answer / Wrong Answer) marked bad.

Optional:
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Since GOOD sets are so rare, in cases where it seems that a set is good
but a small part of the above five conditions is not being met or,
if one/two words were different this can be a good set, please label
as MAYBE and we will fix it in the second round. We expect, Good/
Bad to be about 97% of data and Maybe to be not more than 3%.

Extended notes:

1. In our experience, the wrong answers are made such that they differ
from the correct answer in small but crucially meaningful ways.
There are many cases where a careless reading of the wrong answer
might make it seem that it is correct but upon careful inspection,
it will become clear that something about the wrong answer indeed
makes it wrong. While this is common, there are indeed cases where
the wrong answer is also just as correct as the correct answer. In
such cases, the wrong answer fails condition C, and the set is bad.

2. Roughly speaking, we expect about 20-25% of the questions that we
have provided to be found as good. However, this is not necessary
and the %age can be smaller or larger depending on each three-minute

clip.

Edge Cases:

1. If the asked question has multiple answers and at least one of them
aligns with the correct answer while none of them align with any of
the other wrong answers, then provided that the top 5 conditions are

met, we can mark the set as good.

2. If two questions are very similar (even within different clips) and
both are GOOD, only choose one as GOOD and reject the other one with

a comment mentioning this. We do not expect this to happen more
than 1 or 2 times in a 100.

3. There might be more such edge cases, please feel free to contact me

in such cases and we can expland.

C.3 Benchmarking details

Violet

Violet is a video language model comprised of a visual encoder, text encoder, and multimodal
transformer pretrained on a variety of masked visual modeling tasks ranging from simple ones
such as RBG pixel values up to more high levels ones such as spatially focussed image features.
It performs competitively on a variety of video-language tasks such as Video-QA and Video-Text
Retrieval. We evaluate one pre-trained model and 3 models finetuned on Ismdc-mc, msrvtt-qa, and
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msrvtt-retrieval. We evaluate using both 5 frames and 75 frames and choose the model with the best
overall accuracy.

mPLUG-Owl

By default, mPLUG-OwI does not possess inherent capabilities for direct video question answering.
As such, we undertook several experiments to adapt it to our required format. One approach
involved inputting all answer choices in the form of a shuffled test. However, this resulted in a
bias towards selecting the first option in most cases. For another approach, FrozenBiLLM offered a
methodology for frozen zero-shot models to operate in the context of multiple-choice video question
answering, which inspired us to adapt this methodology for mPLUG-Owl. As mPLUG-Ow] utilizes
word-level tokenization, we could extract the confidence score for each generated token, particularly
the "Yes’ token. We recorded the *Yes’ token confidence score for each answer option. In instances
where the *Yes’ token was absent, we assigned the confidence score as zero, though empirically, in
most cases, the model output was positive and contained the *Yes’ token. Ultimately, we selected
the answer option with the highest *Yes’ confidence score as the model output given the question.
In scenarios where multiple options scored the same highest confidence for the ’Yes’ token, we
randomly selected the answer from these top-scoring options. It should be noted that mPlug-Owl
was originally trained to process a single image, and its capacity to handle additional frames is an
emergent ability that has not been thoroughly tested to date."

InternVideo

The two most closely aligned formats supported by InternVideo are open-ended Video Question
Answering and Zero-shot Multiple Choice tasks. In the case of open-ended Video Question
Answering, the task is to predict the answer to a question posed within a video. However, due to
the restricted vocabulary of open-ended answers in open-ended Video Questions Answering, we
decided to formulate EgoSchema within the context of a Zero-shot Multiple Choice task. This task
aims to identify the correct answer from a set of given options, without the inclusion of a question.
InternVideo has provided finetuned weights for two datasets: MSRVTT and LSMDC. We selected
the model finetuned on MSRVTT because it shares greater contextual similarity with EgoSchema.

Human

To conduct human benchmarking, we engaged a distinct team of ten employees within the same
data annotation company to carry out human benchmarking on our dataset. The answers were
randomized and presented in the form of a test. The following are the precise instructions provided
to the annotators:

— Setting 1: Unlimited setting —-- The goal is to get answers as
accurately as possible without worrying about time.



APPENDIX C. CHAPTER 6 SUPPLEMENTARY MATERIAL 138

- Setting 2: 1 minute timed setting —-- In this case, the test taker (
annotator) has only 1 minute to spend per question (including
watching video/reading text/everything). If they do not have the
answer, Jjust guess the best based on their intuition and move on.

— Setting 3: 3 minutes timed setting-- Same as above but with 3 min
instead of just one.

— Setting 4: Video —-> Text setting —-- In this case, the taker is not
allowed to read the text before looking at the video and at the
video after reading the text. In other words, the test taker can
spend as much time as they want to look at the video first and then
must move on to answering the question. They cannot go back to the
video once they start reading the text. This is an untimed setting
—— they can take as much time as they want per question.

— Setting 5: 180 frames setting ——- This is the same as the untimed
setting except the annotator has access to only 1 frame per second (
ie the video feels like a GIF with one frame per second instead of
the usual 30 frames per second) —-- each video is still 3 minutes
long, but it feels more jittery. All instructions remain the same as

in an untimed setting.



APPENDIX C. CHAPTER 6 SUPPLEMENTARY MATERIAL

using e
peromed] mntn wanagng _ewes oo ook another _impsct_ g e
like  sEwoman cuing. [ one cexplain., ot -cleaning
T e e focused Zpiece Taimga et grtirg change 2
., BIDAS S1EPS LT draing gt iy picking  walkig b
R e thi L actiéh  floor o plcking walkng L Cl peeg i
main:= e 2 Leet Woed “PA, o proper uges comper POOK iy
gl ﬁ o= Gaching PAMS snayze o e = et o] =new
et ....%;—"'—'ﬁ! B8m times T e e o B Lo e SR G
e o oW etail art—_.: o _ N e
va o S Semes  hands do s brh Gl
bag = _swrech  groung iU ta GIVtial person = ovpiee ehmiads
“overall~
ot
Clips By Narration Density
3500 3,401
3000
2500
2
S 2000
5
]
E
5
2
1500
1,151
1000
500
325
119
0 21 36 5
30-60 60-90 90-120 120-150 150-180 180-210 210-240
Word Count Distribution Across Question,
Correct Answer and Distractor Answers
Bin
2 1 | |
4 . | ]
6 I I I
8 I —— I
10 - = I
1211 I » OO
7y | I
16 I I I
15 [ | — s |
20 [ I I |
= I . e ——— I
2 I I I
2 I . e I
2 [ u I I
30 [ | |
3 [ 1 | ]
3+ I 1 | ]
36+ | | | | |
o 50 100 150 200/0 50 100 150 |0 50 100 150/0 50 100
Question Correct Answer Distractor 1 Distractor 2
Truncated Word Frequency Distribution for Question,
Correct Answer and Distractor Answers
Word Word
using | actions
man [ identify N
cleaning NN throughout N
items I process [N
cutting I main I
adjusting overall I
preparing N explain N
actions primary [N
focus N key N
paint N based
organizing [N purpose NN
painting N goa! NN
cards | performed NN
main I describe
cooking [N objective [N
woman NN considering
process N summarize [N
primarily [N steps I
pieces NN interactions I
phone [N moments N
0 20 40 60 80 100 0 100 200 300 400 500 600 700
Count

Count

139

=
300-330
| |
] u
. .
I I
I I
I
I
I ]
I ——
I I
I I
I I
I I
I I
I
.

. |
| |
0 50 100 0 50 100

Distractor 3 Distractor 4

Word

man I
various I
using (I
actions
process [N
tools [N
items I
different N
woman I
tasks [N
around
cleaning
adjusting
itchen (I
painting I
hand I
cutting [
paint I
throughout [N
focus N
0 50 100 150 200 250 300

350 400

Count

Figure A.2: Interactive Version of these statistics visualizations can be found at the statistics page

on our website.


https://public.tableau.com/views/EgoSchema/EGOSchema?:showVizHome=no
https://egoschema.github.io/
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