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Abstract

Vision-Based Deep Reinforcement Learning for Autonomous Drone Flight

by

Varun Saran

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Avideh Zakhor, Chair

Autonomous drone flight has emerged as a revolutionary technology with diverse
applications across industries such as search and rescue, infrastructure inspection,
deliveries, defense, and precision agriculture. Drones are packed with various sensor
suites and are tasked to perceive their surroundings, navigate to goal locations, and
detect points of interest, all while dealing with complex, unknown environments.
Classical approaches separate the perception, planning, and control steps. Other
works output trajectories for a Model Predictive Controller to follow.

In this work, we present a deep Reinforcement Learning (RL) approach for an o↵-
the-shelf drone to fly through goal positions and avoid obstacles in unknown outdoor
environments. The agent is given position, orientation, yaw rate, and depth image
information. Given this, it outputs linear velocities and a yaw rate. Privileged learn-
ing is used during training, where full environment information is used beforehand to
pre-compute optimal trajectories. Optimal trajectories provide a supervisory signal
to the RL agent, which is penalized for deviating from the given trajectory. Our work
combines the benefits of pre-computed optimal trajectories with the advantages of
exploration with an RL agent, allowing for flight in previously unseen situations.

This policy transfers well to new hardware platforms with di↵erent dynamics, as
many o↵-the-shelf platforms come with lower level velocity controllers. Real world
experiments show positive results on a DJI Matrice 300 – a di↵erent hardware plat-
form from the one used in simulation – in a simple outdoor environment, where the
policy is applied zero-shot and is able to avoid an obstacle and navigate to desired
goals at 1m/s.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been significant development in autonomous capabilities
for drones. The ability of drones to operate autonomously has the potential to
revolutionize various industries, such as search and rescue, infrastructure inspection,
and precision agriculture. However, achieving true autonomy with drones presents
numerous challenges, including perception, planning, and control in dynamic and
unknown environments. In this work, we propose an approach to address these
challenges and develop a fully autonomous drone system capable of traversing a
simple unknown real-world environments, with one obstacle.

There are many high-level path planners that can plan global paths across long
distances using waypoints. In [1], they optimally traverse a given area while ensuring
all points of interest are visited. [2] and [3] ran a modified A-star search to find a
path to a goal. These could be used for infrastructure inspection, agriculture, and
even aerial deliveries. However, in both cases, the path planners output intermediary
positions as goals, without defining how to actually get the robot to those states, and
without guaranteeing collision-free paths. For this, a lower-level planner is needed
to determine how to follow the given path while avoiding potential obstacles along
the way.

Ground robots may use optimization based planners from [4] and [5] or Rapidly
Exploring Random Trees (RRT) like in [6], but both types of planners require full
knowledge of the environment, which is not the case for many real-world applications.
Additionally, optimization solvers for 3D flight must handle an exponentially larger
search space due to the higher dimensional state and input spaces, so are infeasible
to run in real-time. Empirically, they can take on the order of hours to run, after
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various simplifications are made to reduce the search space.
Classical approaches for safe aerial flight include a step-by-step process that sep-

arates mapping and planning. For example, [7] and [8] first perform Simultaneous
Localization and Mapping (SLAM) to self localize and build a map of the world,
after which [7] uses RRT to path-plan around the environment.

This makes it easier from an engineering perspective, as each problem, i.e. SLAM
and RRT, is well defined and can be worked on in parallel. However, it results in high
latency due to its serial nature, and error propagation as future steps cannot account
for errors from past steps. With the desire for robust and responsive flight, such
approaches become unreliable. More recent approaches such as [9] and [10] include
neural models that take in images and state information and directly output control
commands, without separating the perception and planning aspects. However, they
output thrusts and body rates which do not transfer zero-shot to new platforms.

There is a rise in o↵-the-shelf drones with various payload capabilities. With
such a wide range of drone use-cases, we wish to freely switch between drone plat-
forms based on the payload needed, without re-engineering the entire controller. For
example, if we add a LiDAR sensor to a platform and only have a controller that
outputs thrust and body-rates, the controller cannot be used zero-shot for this new
platform with di↵erent dynamics. It can only be used on a platform with the same
dynamics used during training, so it does not transfer to platforms of di↵erent size
and mass. [11] outputs desired trajectories for the drone to follow, but a Model Pre-
dictive Controller (MPC) is necessary to track those trajectories, and MPC must be
tuned separately for di↵erent hardware platforms. In this work, we aim for a single
controller, that can work as-is without additional engineering, on various drone plat-
forms of di↵erent size and mass, such as an AR Parrot, any drone platform running
the ArduPilot software suite, a DJI Matrice 300, and even a DJI Matrice 600, a
hexacopter. This approach allows for easy deployment on di↵erent platforms.

While some platforms have di↵erent dynamics and cannot track aggressive tra-
jectories as well as others, for most applications we do not need a high speed, highly
agile platform capable of performing aggressive maneuvers. Speed is important in
racing, but for search and rescue missions, environment mapping, drone delivery,
etc., we mainly need a controller to get the drone where it needs to go, without
crashing. This makes a velocity controller a good choice because most o↵-the-shelf
drones, such as the ones listed above, have built-in APIs to track desired velocities.
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1.2 Related Work

In this work, we use the Flightmare [12] quadrotor simulator from ETH Zurich to
simulate quadrotor flight. Many prior works have used Flightmare, as it provides a
flexible platform with accurate dynamics modeling, communication with a photore-
alistic rendering engine, depth image rasterization, and capabilities to add custom
environments. Additionally, it provides a base framework for an Actor-Critic method
for state-based reinforcement learning.

Inspiration for this work was taken from [11], which uses the idea of privileged
learning to learn from ideal reference trajectories in simulation. During their training
process, the full environment is known, and optimal reference trajectories can be
computed. Given a depth image, drone velocity and attitude, and a desired heading
direction, a network is then trained to output the reference trajectories. This work
achieved state-of-the-art results and was able to fly at high speeds in dense real-world
environments such as a forest, showing the power of privileged learning and reference
trajectories. However, since this work outputs trajectories as future positions over
time, it requires a finely tuned MPC controller to follow the desired trajectory. So
while it works well on their highly customized drone platform, it does not transfer
well to o↵-the-shelf drone platforms from DJI or Parrot which do not have publicly
released MPC controllers for their platforms.

In [13], they train a Deep RL policy to output motor thrusts to follow desired
waypoints at extremeley high speeds. Their application is racing, and each waypoint
represents the center of a gate the drone is meant to fly through. Their policy
inputs include the drone state and gate observations, where gate observations are
mathematically calculated using pre-defined gate positions defining the race track.
They successfully achieve high speed flight with minimal collisions, but they require a
known environment with minimal obstacles of known and simple geometry. Collisions
can be tested algebraically by comparing the drone’s position against the known
position of the gate, the drone’s radius, and the gate’s shape. In this work, we build
o↵ of [13] in that we also train our agent using the Proximal Policy Optimization
(PPO) algorithm, but we deal with unknown environments rather than known ones.
To handle such situations, we include a depth image as an input to the policy,
and must compute mesh collisions at every timestep for every agent, to deal with
geometrically complex obstacles of unknown shape. In this way, collision information
can be used as part of the reward function.

The very recent work of [9] also combined RL with imitation learning. They
train a privileged state-based RL agent to output thrusts and body rates, and then
distill the policy via imitation learning onto a vision-based model. We combine their
serial imitation and reinforcement learning steps into one single process, and output
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velocities rather than body rates.
In summary, we aim to train a deep RL policy that outputs velocity controls to

avoid previously unknown obstacles and reach a desired goal position.
The outline of this thesis is as follows. In Chapter 2, we go in-depth into the

methods followed in this approach. In Chapter 3, we summarise the results from
experiments both in simulation and in the real-world. Finally, in Chapter 4.1, we
discuss the implications of this work, its strengths and limitations, and discuss some
future work to expand on this approach.
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Chapter 2

Methods

In this Chapter, we describe in full detail the methods used in this approach. The
outline is as follows. Section 2.1 is a brief overview of the entire approach – the
architecture, training procedure, hardware platform, and how the approach can be
used for short or long-distance flights. Section 2.2 describes the simulator and ren-
dering engine, section 2.3 describes how optimal reference trajectories are generated,
and section 2.4 describes the restricted velocity controller used. Section 2.5 goes
in-depth into the goal of Proximal Policy Optimization (PPO), the full state and
action spaces, the reward function, and feature extraction. Section 2.6 describes our
attempt to bridge the gap between simulation and the real-world, and section 2.10
describes the drone system and mounted sensors on our real-world platform.

2.1 General Overview

The full pipeline of our proposed approach is summarized in Fig. 2.1, including both
training in simulation with privileged information, as well as deployment on a phys-
ical DJI Matrice 300 drone. Training includes simulating a drone in the Flightmare
simulator, calculating 10-20 meter reference trajectories o✏ine from thousands of
start to goal points in 3D space, and using this information to train an RL agent.
The agent is given an input including a depth image and state information. State
information includes the drone’s position, orientation, and yaw rate. The image is
passed to a feature extractor and the states are normalized, before being passed to
linear layers. The policy finally generates 3 outputs – a forward velocity, a vertical
velocity, and a yaw rate. These outputs are passed to the drone controller, which
accordingly updates the drone’s state after a very short interval of time. The up-
dated state is used to calculate the reward for the action taken, using factors such as
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Figure 2.1: The full training and deployment architecture defined in this work. Train-
ing happens in simulation, with privileged information of the environment. Given a
pointcloud, optimal reference trajectories are created and used in the reward func-
tion calculation. During deployment, a DJI Matrice 300 quadrotor is used, with a
ZED2i camera for sensing and visual odometry. The output velocities are tracked
by Flightmare in simulation, and by DJI’s velocity controller when running on hard-
ware.

the distance to the desired goal, the error distance from the reference trajectory, and
any potential collisions. The new state and corresponding depth image of the envi-
ronment are then passed to get the next policy output. As described in Section 2.5,
we use the Actor-Critic method to train two policies – an actor policy that predicts
the best actions, and a critic policy that predicts the reward of a given state.

The trained actor policy is deployed on hardware – an o↵-the-shelf DJI Matrice
300 drone, with a mounted Jetson Xavier AGX, and ZED2i stereo camera. The
DJI Matrice 300 has an onboard velocity controller that can track desired velocities.
The ZED2i camera captures depth images. Additionally, it runs visual odometry
to perform state estimation. In this way, the hardware platform has access to all
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required policy inputs, and can track policy outputs. The onboard Jetson Xavier
AGX is used for all computation and policy inference.

The policy can be used to control a drone from any initial position, to a goal
position 10-20 meters away. The policy handles both path planning to find a feasible
path to reach the goal and obstacle avoidance to deviate from any potential collisions.
Though its trained to fly 10-20 meter trajectories, it can be extended for use in long-
distance flights, or even for indefinitely long missions. For planners that output
intermittent waypoints, sequential waypoints from the list can be used as the desired
goal position, using the subsequent waypoint once the current one is reached. Goals
further than 20m away can also be reached, by continually setting a temporary goal
by choosing the point 20m away on the line joining the drone’s current position and
the goal position. In this moving-horizon manner, we can create intermediary goals
at similar distances to those the policy is trained on, which eventually allows the
drone to reach far-away goals that it was not trained on.

We now explain each step of the training and deployment process in further detail.

2.2 Flightmare - Quadrotor Simulator and

Rendering Engine

The Flightmare [12] quadrotor simulator comes with a physics and dynamics engine,
and an executable standalone, which performs environment rendering and camera
simulation. The standalone executable communicates with the physics and dynamics
engine using NetMQ, a lightweight networking library. In addition to the publicly
available standalone, some modifications were needed for the purposes of this work.
First, to train a meaningful RL policy, collisions must be detected. Previous RL
based works using Flightmare have been purely state-based, with known positions
of simple obstacles such as spheres or gates. With such obstacles, it is easy to
mathematically check for collisions, such as checking if the distance to the center
of a sphere is less than its radius. For this work, however, we wish to deal with
more complex environments which can not be modeled using simple geometry. So
to detect collisions, Unity must perform mesh collision detection between the entire
environment and the given drone object. If a collision is detected, the drone’s state is
updated, and this information is passed the next time Unity sends a NetMQ message
to Flightmare. During training, an evironment with 25 drones was used to train in
parallel, so minor modifications include ensuring collisions between drones are not
flagged. We do not want to penalize collisions from obstacles that may not be in
the drone’s field of view, and handling dynamic obstacles is outside the scope of this
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work.
Our depth images have resolution 192x108, giving it the same 16:9 aspect ratio

that the physical ZED2i camera uses. Depth values are linearly scaled from a distance
in meters to be in the range [0,1], such that the value 1 represents 100 meters and
0.01 represents 1 meter. An example hyper-realistic forest environment and example
depth image can be seen in Fig. 2.2, showing the high quality environment and
images the simulator is capable of rendering, and detecting collisions within. To
simplify the problem for this work, a simpler environment was used. The environment
consisted of many cylinders randomly generated throughout a terrain, similar to tree
trunks in a forest as shown in Fig. 2.3.

Figure 2.2: The drone flying in a forest environment, running in Unity. On the
left are the RGB and depth images taken by the drone in the current frame. This
shows the hyper-realistic nature of the rendering engine. Fig. 2.3 is the simpler
environment used in this work.

2.3 Trajectory Generation

During training, pre-computed reference trajectories are passed as a supervisory
signal to the RL policy. This helps with computing the reward for a given state,



CHAPTER 2. METHODS 9

Figure 2.3: The simple environment of obstacles used during training. Left, cylin-
ders were randomly generated at various positions with slightly di↵erent height and
radius, and are meant to emulate tree trunks in a forest. Right, the drone flying
through the environment, with an obstacle in front of it.

because we know the desired position of the drone at every timestep. Reference
trajectories were calculated using [14]. The trajectory generation process consists of
a few steps. First, we create a point cloud of an 80m⇥80m section of the environment.
This number was chosen because it balances giving a large area to fly in, while not
taking too much memory for future steps. Unity was used to do this conversion of
the environment mesh into a pointcloud, with a resolution of 0.15m.

Once we have this pointcloud, we randomly sample the space for a point, defined
as the start point. If this point is not within 2 times the drone’s radius of any
point in the pointcloud, it is a safe starting point. We then randomly sampled a
heading direction between 0 and 2⇡, and choose the goal as a point between 5 and
20 meters away from the start point, at this heading. If this point is at least 2
times the radius of the drone away from the closest point in the pointcloud, it is
safe and we set it as the goal point. We now have a start and goal point. Finally,
we use code from [14] to solve for the optimal trajectory between the start and end
points. Fig. 2.4 shows trajectories going through the environment with cylindrical
obstacles. Each trajectory is between 5-15 meters long. The paths are used as part
of the reward function, whereby deviating from them results in lower reward. Note
that these trajectories are merely to help the policy learn how to reach the goal, they
are not meant to be perfectly replicated. Generally, the space of valid trajectories
is multi-modal because many valid solutions exist. For example, you can go to the
left or the right of an obstacle and still reach the goal. Therefore, the final reward
of reaching the goal is much higher than the reward of perfectly following an entire
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given trajectory.

Figure 2.4: Reference trajectories through the pointcloud of the environment. The
environment is mostly flat, and is filled with numerous cylindrical obstacles shown
in blue and topped in purple. The black lines represent unique trajectories, where
each one has its own 3D start and goal point marked in red, and their paths safely
go around the cylindrical obstacles.

2.4 Control Scheme

Since the camera is the only way for the drone to sense the environment and detect
obstacles, we simplified the drone’s dynamics such that it can only fly in the direction
it’s camera is pointing. This means the policy only outputs a forward x velocity, a
vertical z velocity, and a yaw rate, as shown in Fig. 2.5, with no way to control
the lateral y velocity. In order to achieve motion in that direction, the drone first
needs to yaw such that its x-axis now points in the desired direction of motion, and
then a body frame x velocity will result in the desired motion. This takes away from
the main benefit of drone flight, which is the ability to fly in any direction on the
x,y plane regardless of heading, but is important to guarantee safe flight, especially
since the camera has a limited field of view. A simplified but safe dynamics model
is better than a more complex model that is bound to crash due to limited visibility.
In Section 4.2, we describe a 360 degree depth estimation model that could give the
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drone full 360 degree vision, allowing the drone to fly anywhere on the x,y plane with
full vision of the environment.

Figure 2.5: The outputs of the policy. We use a velocity controller, so policy outputs
are a desired forward velocity, an upward velocity, and a yaw rate. The forward
velocity is in the body frame, so in the same direction the camera is pointing.

2.5 Vision-Based RL

The Agile Flight Github repo from [15] contains sample code to train an RL agent
using PPO to perform state-based RL. This means the drone has full information of
its own state and the environment’s, so it always knows how far it is from any and
all obstacles. Therefore, no onboard cameras are necessary.

For this work, we use the state-based RL as a baseline, and implement vision-
based RL on top of it. This includes changing the observation from just a state vector
to also include depth image information. The image is first row-major flattened into
a 1D vector, concatenated with the original states, and then passed as input to the
RL policy shown in Fig. 2.7. The network un-flattens the vector back to 2D and
processes the image and states separately. The inputs, processing, and outputs of
the policy are shown in Fig. 2.7, and is described in more depth in the Feature
Extraction subsection later in this Section.

In the purely state-based example, images were not used during training. This
meant Flightmare could mathematically calculate all quadrotor dynamics, updating
the drone’s state every �t based on the given velocity. Given these new states, it
could algorithmically detect any collisions. This does not require running Unity, the
rendering engine and collision detector. To add vision, we needed Unity to render
the environment, simulate 25 cameras, and perform mesh collision for each drone. It
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also had to stream 192⇥108 = 20, 736 pixel values for each camera to the RL policy.
The Flightmare + Unity communication is shown in Fig. 2.6. Due to this added
computation, the vision-based pipeline is estimated to be over 10x slower than the
default state-based pipeline.

Figure 2.6: The Flightmare dynamics modeling engine communicating with the Unity
rendering engine. The dynamics modeling calculates the new state of the quadrotor,
given its current state, velocity command, and �t. This new state is passed to Unity,
which updates the drone’s position in the running game engine, and then captures a
depth image from this new state. The state and depth image are passed to the RL
network, which outputs a velocity for Flightmare to enact, repeating the cycle.
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Proximal Policy Optimization

The Proximal Policy Optimzation (PPO) algorithm [16] is used, by defining a wrap-
per around the stabe baselines 3 implementation for PPO. In PPO, an actor and
critic policy are trained. The actor agent takes in the processed agent state, which
includes state and image information, and outputs 3 floats representing a forward
velocity, a vertical velocity, and an angular yaw rate. This is shown in Fig. 2.7. Over
time it learns to take actions that result in maximal reward. The critic is a policy
that predicts the rewards of a given state. Given the same processed agent state as
the actor, rather than predicting actions, it predicts a singular scalar value repre-
senting how good the given state is. For example, if the agent is bound to crash, it
predicts a reward of -1, and if the drone is very close to the goal, it predicts a reward
of +2. A reward value of -1 depicts a crashed state, and +2 depicts successfully
reaching the goal without crashing.

From [16], the actor minimizes the following surrogate loss, where the first term
encourages actions that lead to higher rewards, and the clipping term helps prevent
excessively large policy updates and stabilizes the training process.:

Lactor(✓) = E [min (rt(✓)At, clip(rt(✓), 1� ✏, 1 + ✏)At)]

where:

✓ : Actor’s parameters

rt(✓) : Probability ratio defined below

At : The advantage function, how much better or worse an action is

compared to the average action in a given state

The probability ratio rt(✓) is the probability of taking action at at state st in the
current policy divided by the previous one. It is computed as:

rt(✓) =
⇡✓(at|st)
⇡old(at|st)

where:

at : Action taken at time t

st : State at time t

⇡✓(at|st) : Probability of taking action at in state st under the current policy

⇡old(at|st) : Probability of taking action at in state st under the old policy
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The critic minimizes the mean squared advantage, the di↵erent between the pre-
dicted and true value function:

Lcritic(✓) = E
⇥
(Vtarget � Vpredicted)

2⇤

where:

Vtarget : Target value, the discounted sum of future rewards from this state

Vpredicted : Predicted value by the critic network for a given state

The final objective function in PPO combines the actor’s policy gradient loss and
the critic’s loss, and adds an entropy bonus to reward exploration:

L(✓) = Lactor(✓)� c1 · Lcritic(✓) + c2 · Entropy(⇡✓)

The Adam optimizer is used while training, with a learning rate of 1e� 4.

Figure 2.7: The inputs and outputs of the RL policy. The most recent depth image
from the drone goes through a custom feature extractor where it is featurized and
then pooled into a 1D vector. State and goal information is normalized and mixed via
linear layers, and then concatenated with the image representation, to be inputted
to a 2-layer MLP. The policy outputs 3 numbers, representing x, z body frame linear
velocity in m/s, and a yaw-rate in rad/s.
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General Architecture

Deep RL agents follow a state-action-reward loop, where the agent measures its
state, follows an action based on that state, and then measures the performance of
that action by checking the corresponding reward. But the raw state is not directly
passed into the network. Fig. 2.7 summarises the processing the input goes through.
The raw states are first passed through a feature extractor – where the robot states
like position and orientation are normalized, and the image is featurized to a lower-
dimensional space with more meaningful, task-specific information. The normalized
state is stacked on top of the image’s feature representation, and then this new 1D
vector is passed to the network. A full description of the feature extraction process
can be found in Subsection 2.5, and in Fig. 2.8.

In the following sections, we discuss the agent’s state space, action space, feature
extraction to better understand state information, and the reward function that
determines how good a given state is.

State Space and Action Space

The agent’s state at any given time is defined as a 1D vector including various robot
position, orientation, and depth image information. The exact state vector is defined
in Table 2.1.

There are 7 state values, all defined in a fixed map frame. The first 3 states
are positional errors, defined as the di↵erence between the goal position and the
current position, along the x,y, and z axes in meters. Then there is the absolute
roll and pitch angles, in radians. Next is a heading error, defined as the di↵erence
between the ideal heading assuming no obstacles, and the actual current heading,
in radians. The ”ideal heading” is assumed to be the heading that makes the drone
face perfectly toward the goal. The final robot state value is the drone’s yaw rate, in
radians per second. Rather than having two separate entries for the current and goal
positions/headings, the di↵erence between the current and goal positions/headings is
used as one quantity. This was done to help the policy generalize to various situations.
For example, in a state-space where current and goal positions are separately passed
in, a current position of (0,0,0) and goal position of (10,0,0) is a whole di↵erent
situation from a current position of (10,0,0) and a goal position of (20,0,0), even
though the general idea – go 20m straight ahead – is the same. By using the error to
combine the current and goal positions into one term, both situations above can be
depicted with an error of (10,0,0), showing a relative goal of +10 along the x axis,
and 0 in y and z. For the heading, this provides two benefits. The first is the same
as the case with positions. Separating current and desired headings would mean a
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State value Unit
goal pos x - curr pos x meters
goal pos y - curr pos y meters
goal pos z - curr pos z meters

roll radians
pitch radians

desired heading - curr heading radians
yaw rate radians/second

depth image pixel row0 col0 meters
depth image pixel row0 col1 meters
depth image pixel row0 col2 meters

... ...

Table 2.1: The state space of the agent. It contains 7 robot states – the positional
error defined as the di↵erence between the goal position and the current position
in x, y, and z, the absolute roll angle of the drone, the absolute pitch of the drone,
the di↵erence between the theoretical heading angle creating a straight line to the
goal and the actual current heading, and the current yaw rate of the drone – and
192 ⇥ 108 pixel values from the depth image. For the states, positional error and
heading error are used instead of separately defining the current position/heading
and goal position/heading, to help generalize over various situations.

current heading of 0 radians and desired heading of 0.5 radians is seen di↵erently
from a current heading of 0.5 radians and desired heading of 1 radian. By using the
di↵erence, in both cases the error is 0.5 radians, and since the policy outputs yaw
rates, all it needs to know is which direction to turn. Additionally, using the di↵erence
simplifies the situation. Since headings are measured in a global coordinate system
rather than a local coordinate system, multiple situations with the goal straight in
front of the drone will have di↵erent ideal headings. For example, going straight
West when already heading West is a di↵erent ideal heading from going straight
North when already heading North because these angles are calculated in the global
coordinate system. But since the policy outputs yaw rates, all it needs to know is
a relative heading to turn left, right, or not at all. By giving a relative heading,
the error is 0 radians in both cases of maintaining a North-bound or West-bound
heading, which means the drone does not need to turn at all. So passing relative
positions and headings help the policy generalize across various situations.

In simulation, all state values come from the Flightmare simulator. In the real
world, the goal position is human defined – and eventually passed in by a higher-level



CHAPTER 2. METHODS 17

planner, as described in Section 4.1). The instantaneous position and body angles
are measured by the ZED2i’s camera running visual odometry. This means GPS is
not required. The yaw rate is given by the drone’s Inertial Measurement Unit (IMU).

In addition to robot state information, the agent’s state includes depth image
information. For this, the two dimensional 192 ⇥ 108 image is flattened to a one
dimensional 192⇥ 108 = 20, 736-vector of row-major pixel values, where each value
represents a depth in meters. In simulation, depth information comes from Unity,
and in the real world, the depth image is retrieved from the ZED2i stereo camera.

The RL agent takes in the latest agent state passed in as a 1D vector as described
in Fig. 2.7. It passes this state through a feature extractor, and then through the
policy network. The final output of the policy defines the action it believes the agent
should take. Since we aim for a transferable controller that can be used across drone
types with varying dynamics, the outputted actions are high-level velocities that the
lower-level drone controllers then needs to follow, as seen in Fig. 2.5. The action
space is defined by 3 values, a forward velocity in the direction the camera is pointing,
an upward z velocity, and a yaw rate for the drone to turn. As described in Section
2.4, we only want the drone to fly in a direction where it has visibility. This means
there is no lateral velocity followed, and if the drone wants to move left, it must first
yaw toward that direction so the camera can see there, and then fly locally forwards.

Reward Function

The reward of a given state is based on many factors, with the total reward being
the sum of all reward terms shown in Table 2.2. Final reward weights were set using
reward shaping and substantial experimentation. Terms were added to influence
specific positive behavior or detract from negative behavior, and trial and error led
to important terms having higher weights and vice versa. The most important term
is the distance to the goal, whereby lower distances result in higher reward as it
shows progress toward reaching the goal. This expression is calculated as (d0id)/d0,
where d0 is the distance to the goal from the starting position and d is the distance
to the goal from the current position. This expression has a reward of 0 at the
starting position, and +1 at the goal position. Next, there is a reward for pointing
in the direction of the goal, set inversely proportional to the heading error ✓e. This
is meant for cases with no obstacles, where the ideal path is to simply fly straight
toward the goal. The detailed expression can be found in Table. 2.2. Next, is a
term that penalizes deviating from the privileged reference trajectory. Then there
is a term that penalizes being too close to an obstacle, based on the center of the
depth image – the area directly in front of the drone. If a depth in this section is
very small, the drone may be bound to crash. The above terms epitomize the desired
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Term Expression Weight
Distance from goal d0�d

d0
6e� 3

Heading e�16✓2e +

(
0.5 if ✓e < 0.26rad,

�4.0 if ✓e > 1.3rad.
5e� 4

Trajectory following e�2dtraj +

(
�0.4dtraj if dtraj > 3m ,

0 otherwise.
d0�d
d0

· 3e� 4

Obstacle Penalty

(
dobstacle � 1 if dobstacle < 1m,

0 otherwise.
�2.5e� 4

Vel toward goal vg 4e� 5
Heading Rate abs(!) 3e� 4

Vertical position error abs(ez)
2 �8e� 5

Table 2.2: The reward terms of a given state, as a function of the initial distance to
the goal d0, the current distance from the goal d, the heading error ✓e, the distance
to the closest point on the reference trajectory dtraj, the closest object in the center
of the image dobstacle, the velocity vg along the axis pointing directly to the goal, the
heading rate !, and error in z position ez. Reward shaping was used to guide the
RL agent toward e↵ective behavior, and substantial trial and error over numerous
trained models led to the final weights.

high-level behavior of the RL agent. After experimentation, some lower magnitude
terms were added to guide the learning process of the agent, using the reward shaping
approach. These terms include a reward that encourages higher magnitude velocities
pointing toward the goal, a term to penalize high yaw rates to avoid jittery behavior,
and a term that penalizes errors in the z height of the drone relative to the goal
height. These terms encourage positive behavior and penalize negative behavior in
the beginning of the learning process when the agent is still experimenting with
random actions and the main reward terms are likely to be zero or even negative.
Over time, these terms influence positive behavior, which in turn results in higher
rewards from the main terms. Expressions for all reward terms can be found in Table
2.2, where the total reward is the sum of all individual reward terms. These rewards
are calculated at every time step, and a higher reward means the drone is in a better
state, while a lower reward mean it is in a worse state.

In addition to time step based rewards, there are also terminal rewards. These
rewards are given if the drone is in a terminal state, such as reaching the goal
or crashing into an obstacle, resulting in rewards or penalties with much higher
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Terminal State Terminal Case Reward Value
Reached Goal d < 0.75m +2.0

Crashed Drone collision with any obstacle or terrain -1.0
Timed Out time > 50seconds -0.08

Out of Bounds d > 30m -0.160

Table 2.3: Terminal state rewards given for reaching positive or negative terminal
states. These have much higher magnitude than per time step rewards because they
represent the performance of the policy much better than any random state can.
Like before, d is the distance to the goal.

magnitude. These terminal rewards have much higher magnitude than the individual
time step rewards, because a terminal state signifies the performance of the policy
much better than any other time step possibly can. Terminal rewards can be found
in Table 2.3, where final reward values are chosen after significant trial and error to
limit negative behavior but still encourage exploration. For example, a penalty for
crashing is evidently needed to promote safe flight, but an excessively high penalty
may also lead to non-optimal behavior. For example, the agent may get stuck in a
local maximum where it learns not to crash, but only by flying in small tight circles
until it times out after 30 seconds. Such a local maximum prevents exploration by
excessively penalizing crashing and heavily restricting the learning process.

Terminal rewards are magnitudes of order greater than per timestep rewards
because they signify the overall performance of the agent. While a policy may not
follow the reference trajectory well, if it still reaches the goal, that is still much better
than a policy that mostly follows the reference trajectory, but crashes right before
reaching the goal. Additionally, this balances the two forms of learning in this work.
The supervisory reference trajectories show up in the reward, where following the
reference well results in high reward. Additionally, since other potential solutions still
exist, such as going around the left of an obstacle versus going around the right, both
solutions are rewarded for reaching the goal despite deviating from the reference.

Therefore this work combines traditional Deep Reinforcement Learning, where an
agent interacts with an environment to maximize rewards, with imitation learning,
where an expert supervisor provides the learner with optimal data. In [11], pure
imitation learning is used, as a neural network is trained to strictly match the optimal
trajectories given by the supervisor. There was no idea of an agent in an environment,
any learned dynamics of the world, or any experimentation with policy outputs to
find optimal actions based on rewards. In this work, we keep an optimal supervisor,
but as a part of training a reinforcement learning agent. The supervisory signal is
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part of the reward function, but the agent still interacts with an environment and
performs di↵erent actions over time, learning dynamics. Since following the expert
supervisor’s trajectory results in higher reward, knowledge is distilled down from the
expert supervisor to the learned policy.

Feature extractor and Input Normalization

The full agent’s state is overly complex and image data is hard to understand through
raw pixel values. Therefore, we pass it through a feature extractor, as seen in Fig.
2.8. A feature extractor reduces the dimensionality of an input and converts it to
a better representation for the given task. The state is processed in three steps –
state mixing, image featurization, and then concatenation of the two – as described
below.

Figure 2.8: The architecture of the custom feature extractor. The full 1D state
is separated into the 7 state values and 192 ⇥ 108 image pixel values. Both are
independently processed into 1D feature vectors of size 64 and 10, respectively. They
are then concatenated and passed through fully connected layers for more state
mixing. The final vector of size 256 is passed as input to the RL actor and critic.
This light-weight architecture runs at 10Hz on the physical drone platform.
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State Mixing

The state mixing architecture is shown in the green box of Fig. 2.8. The 7 state values
are first normalized to be in the range [�1, 1]. Distances in meters are normalized
assuming a world size of 80⇥80⇥60, and angles are reduced from [�⇡, ⇡] to [�1, 1].
Normalization is an important step to ensure some values do not have higher weights
than others. For example if distances can be up to 80 meters, but angles can only
be up to 2⇡ radians, then distances will have a higher weight than angles. After
normalizing the 7 states, they are passed through a fully connected linear layer of
output size 64, then a tanh layer, and then another fully connected linear layer of
output size 64. The linear layers are used to mix state values, to find potential
relationships between state values.

Image Featurization

Image featurization is shown in the red box of Fig. 2.8. The image is passed in as a 1D
vector of size 20,736, in row-major order. It is first reshaped back to a 192⇥ 108 2D
image to regain spatial relationships and features such as edges, textures, and shapes.
To reduce the number of weights, it is then min-pooled down to 64⇥36. We choose the
min-pool resize operation in order to keep the lowest values from each image window,
thereby ensuring we always keep track of the closest obstacle from the depth image.
With interpolation, pixels are averaged and therefore the resulting depth values do
not accurately represent real world depths. The 2D image is then passed through
a custom feature extractor. This architecture is adapted from [17], by modifying
the input and output channels to keep our aspect ratio of 16:9 instead of their 4:3.
The output of the feature extractor is a 1D vector of size 10, down from 20,736. We
do not need all 20,736 raw pixel values, but rather a general understanding of the
obstacles around us. The 10 numbers encode a non-human-readable representation
of obstacles, such as distances, angles, and heights. The output length of 10 is
matched from [17], and our empirical results show these 10 features provide enough
environment understanding to avoid obstacles. The image featurization network is
much smaller than popular image classification models because the problem it solves
is also simpler. The network does not need any understanding on classes of objects
in the environment, or even to identify textures or shapes. Rather the obstacle
avoidance problem just needs to identify regions with low pixel values, as low pixel
values represent nearby objects.

We initially used MobileNet for image featurization from [18], as is used in [11].
MobileNet is a pre-trained image classification model meant to be run on low compute
mobile and embedded devices. Despite its lightweight architecture, we achieved a
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maximum frequency of 2Hz on our hardware, which is much too slow for real-time
autonomy. By changing to our custom feature extractor shown in Fig. 2.8, we were
able to run our policy at 10Hz.

Concatenation

After normalizing and featurizing the states and image, we concatenate the 64-vector
representation of state information with the 10-vector representing obstacle data.
This is shown in Fig. 2.8. The resulting vector is then passed through a fully
connected layer of output size 256, then through ReLU, and then another fully
connected layer of output size 256. These linear layers add more mixing between
states and obstacles. For example, the pitch of the drone impacts what region of the
image is most important. When the drone is parallel to the ground, the center of
the image represents the environment ahead of the robot. If the drone pitches down,
however, the center of the image likely contains the ground, and the top of the image
now represents the environment ahead of the robot.

The final vector of size 256 is passed as input to the RL agent, for it to output
actions and predicted rewards.

2.6 Sim 2 Real

To ensure a policy trained in simulation transfers over smoothly to the real world, a
few steps are taken.

The main di↵erence in moving from simulation to real hardware is the quality
of depth images captured. In simulation, Unity returns perfect images with exact
depths. Such perfect data can never be realized in the real-world, so we must process
the simulated images to make them more life-like. This includes adding random
gaussian noise to every pixel depth value, with a mean of 0m and standard deviation
of 0.2m. This adds inaccuracies to depth values, mimicing outputs of a camera in
the real-world. These noisy pixels are maxed with 0 to ensure all depth values are
greater or equal than 0. Additionally, 0.1% of randomly chosen pixels are set to NaN,
representing unknown depth values. Training is done on these processed images, so
the model learns to expect noisy data thereby transferring well to the real-world.
Ideally, we should have added depth-dependent noise, but we found this gaussian
noise with the same µ and � to be reasonable.

Additionally, when deployed on hardware, images from the camera are processed
to make them as clean as possible. This is done by the ZED2i camera’s built-in
neural depth mode to make depth images as accurate and smooth as possible. While
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normal depth images may contain noisy values, neural mode on the ZED2i smoothens
each object with high accuracy. Fig. 2.9 shows the results of applying neural mode,
where noisy unrealistic values are filtered out.

In addition to using the neural depth setting, we also use fill mode, which does
its best to fill in areas of low confidence. With a stereo camera, it is sometimes
mathematically impossible to find depth, such as at the edges of objects where there
is occlusion. Only one of the two cameras can see some sections of an edge so depth
cannot be calculated, and normally these areas are set to NaN. With fill mode,
these areas are filled in with the best estimate that can be made. Empirically, these
values are quite accurate, and are essentially set to the background’s depth. Fig.
2.9 compares the depth image with various amounts of processing. (a) shows the
original depth image without fill mode or neural mode. It is extremely noisy. (b)
shows the same environment, using fill mode and neural mode, and is much smoother.
However, it still has some obstruction from the drone’s propellers, so the mask from
(c) is applied to filter out the remaining noise. (d) is the masked, downsampled
image that is passed to the feature extractor. Overall, the resulting image is much
cleaner than the initial raw image captured. In this way, we reduce the gap between
simulation and the real-world and images at deployment similarly match those seen
during training.

Regarding drone dynamics, we simply follow a zero-shot transfer approach. If we
were operating at the level of body rates or thrusts, a policy trained on one platform
would have to be re-trained to be used on a new platform. However, since we use
a velocity controller, we can mostly ignore the di↵erences in dynamics, and rely on
each drone controller to convert desired velocities into motor thrusts. The drone
used in simulation has di↵erent dynamics than the physical one used, but our results
show the controls were not an issue, as discussed in Section 3.2. One downside of
this approach, however, is that velocities are not tracked in a closed-loop manner.
[11] outputs trajectories that an MPC controller tracks, meaning disturbances from
external factors like wind and model inaccuracies can be accounted for in future time
steps. The velocity control is applied for a single timestep, and if a desired velocity is
not closely followed there is no closed loop control to correct for it. The subsequent
policy output is responsible for a corrective output. Additionally, by controlling
velocities instead of body rates or thrusts, the platform loses some agility, but for
the purposes of this work we are not focusing on complex maneuvers.
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Figure 2.9: Comparing the depth image with di↵erent amounts of processing. (a) is
the raw noisy unfiltered image, (b) is the same image with ZED2i’s built-in neural
and fill modes. (c) is the mask used to get rid of noise from the propelers. (d) is
the masked downsampled image that is passed to the feature extractor. The scale of
pixel values in the final image is very large, so the ground loses its humanly visible
gradient, even though the actual values are correctly varied.
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2.7 Physical Platform

The entire platform with all sensors mounted can be seen in Fig. 2.10. It includes a
DJI Matrice 300 drone, ZED2i stereo camera, and Jetson Xavier AGX. All compo-
nents are described in further detail in the following sections.

Figure 2.10: The physical platform, inlcuding a DJI Matrice 300 drone, ZED2i cam-
era, and Jetson Xavier AGX.

DJI Matrice 300

We use the o↵-the-shelf DJI Matrice 300 as our drone platform. DJI provides an On-
board Software Development Kit (OSDK) with ROS integration, to send and receive
important information. It streams high frequency values such as attitude, IMU, and
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accelerometer data, and accepts control commands such as waypoint positions or de-
sired velocities. In this way we use ROS to subscribe to important state information,
and make ROS service calls with our policy outputs to control the drone. It also has
onboard cameras and sensing, but these are explicitly turned o↵. The default sensing
capabilities include detecting the presence of an obstacle and accordingly stopping
before colliding with it. While this is a valuable safety feature for a human operated
system, it does not solve the path planning problem for an autonomous system to
figure out how to go around an obstacle and get to a goal location. Again, these
features were disable during all flight tests.

ZED2i Camera

The ZED2i camera is an o↵-the-shelf stereo camera. It provides high quality depth
images and performs visual odometry for pose tracking. Both of these are important
because the drone needs to know where it is within the environment and what the
environment around it consists of. The ZED2i uses a stereoscopic camera to estimate
depth and track its position and orientation as it moves.

We mount the ZED2i to the gimbal under the DJI Matrice 300. The gimbal has
dampers acting as shock absorbers that drastically reduce vibrations and oscillations.
This results in smoother and more stable camera motion, despite any erratic drone
flight.

As described in Section 2.6, the camera is running in Neural depth mode to get
accurate and smooth depth values, and in fill mode to reduce the number of NaNs.
We query images at 20Hz with both processes running onboard the Jetson. Images
are 720 ⇥ 1280, with a 16:9 aspect ratio similar to those used in simulation. We
downsample the image to be 192 ⇥ 108 using bilinear interpolation, so it has the
same resolution as those used during training. The Zed2i also has the Ultra depth
mode, which smoothens depth values. While it runs at a higher frame rate than the
Neural depth mode, we choose to use Neural for its higher quality resulting image.

The ZED Python API is a wrapper around the ZED SDK, which is highly opti-
mized C++ code. It allows us to query images, position, and orientation, which we
publish via ROS at 20 Hz.

The field of view of the camera includes the spinning propellers, as shown in
Fig. 2.11. This results in very noisy depth images, as the ZED2i’s onboard depth
calculation gets confused by the rapidly moving propellers. To solve this, we simply
mask out part of the image to remove this noise. Fig. 2.9 compares the depth image
at various processing levels.
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Figure 2.11: Propellers block the camera’s field of view, resulting in noisy depth
images. Left, an RGB image from the camera showing propellers jutting out from
both sides of the image. Right, the depth image showing noise values where the
propellers are rapidly spinning. This section is masked out before being passed to
the policy.

Jetson Xavier AGX

We use the Jetson Xavier AGX as an onboard computer running all compuation
necessary for this work. It queries raw images from the ZED2i, runs the image
smoothing neural networks for neural mode, obtains position information using the
ZED Python API, and streams everything via ROS. It then takes in these inputs,
featurizes them, and passes the resulting feature vector through our RL policy. Fi-
nally, it sends the resulting output command through a ROS Service call to the DJI
ROS OSDK node, also running on the Jetson. The Jetson communicates with the
DJI Matrice 300 via an expansion module that mounts to the drone. Two cables are
needed for this. The first is a USB-A to USB-C cable, with the USB-A side plugging
into the Jetson and USB-C plugging into the OSDK port on the drone. Additionally,
a USB-TTL cable is needed, where the USB-A side again plugs into the Jetson, and
the TTL serial side plugs into the expansion module’s ports, as shown in Appendix
A.

Coordinate Frames

Every sensor has its own coordinate frame, so we must be careful to properly convert
between each one and stay consistent in their notation. The policy outputs velocities
in the drone’s FLU frame, where x,y,z refers to Forward, Left, and Up from the drone,
as seen in Fig. 2.13. The ZED2i is also in the FLU frame, but at a slight o↵set. It
is centered on the y-axis, but 0.2159m ahead in x, and 0.1778m below in z from the
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drone’s center, as seen in Fig. 2.12. This means when sending the drone’s position
to the policy, we must perform a slight translation upwards and backwards, so the
policy gets the position of the center of the drone rather than the camera.

Figure 2.12: The ZED2i camera is mounted slightly below and in front of the drone’s
center.

The DJI OSDK uses a di↵erent coordinate frame as seen in Fig. 2.13. The
velocity controller accepts velocities in the global NED frame, where x is North, y is
East, and z is Down. Since the policy outputs body frame velocities, we must convert
these from FLU to NED by rotating the forward velocity by the drone’s heading and
negating the desired yaw rate. We must negate the yaw rate because it is an angular
rotation about the z-axis, and NED’s z-axis points Down while FLU’s z-axis points
up. The global frame velocity is calculated with the following:

vNorth = cos ( ) ⇤ vF

vEast = � sin ( ) ⇤ vF
where:

vF : the forward velocity in the FLU frame

 : the heading angle relative to North
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The drone’s heading  comes from the drone’s internal compass, and allows us
to convert between the global NED and local FLU coordinate frames.

Figure 2.13: The global NED and local FLU coordinate systems. The NED frame’s
axes point North, East, and Down, while FLU points locally Forward, Left, and Up.
The heading angle ✓ determines the rotation between the two coordinate systems,
and is measured by the drone’s compass.

Interference Issues

With all devices and sensors running onboard the drone, there is a great deal of data
and therefore current, being passed through the various cables. This resulted in the
drone detecting signal interference, preventing us from taking o↵. To get around
this, we covered all wires with Electromagnetic Interference (EMI) shielding copper
tape, which reduces the electromagnetic interference and noise created by current
traveling through wires. This reduced the signal interference.
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Chapter 3

Evaluation and Experiments

In this Chapter, we describe the results seen upon deploying our trained RL policy.
In Section 3.1, we go over results from experiments in simulation, and in Section 3.2,
we go over the physical test location, safety procedures, results, and sensor analysis
to characterize the performance of our policy.

3.1 Simulation Results

In simulation, the drone performs well at reaching the goal. Fig 3.1 shows how
the policy learns over time. Initially, it takes random actions, resulting in negative
reward from crashing. In roughly 300 iterations it converges to a policy that averages
a reward of roughly 2.0, which is the reward for reaching the goal. As the model
learns, it first learns to fly close to the goal. Earlier iterations try to maximize the
reward by staying close to the obstacle without getting the terminal state of reaching
within 0.25m of the goal. This resulted in the drone simply circling around the goal
as seen in Fig. 3.2, which collects many small rewards for being close to the goal.
Eventually, it learns that the terminal reward of reaching the goal as soon as possible
is better than multiple small rewards for being close to the goal. Reward tuning was
important to ensure the terminal state is reached as fast as possible. Reward tuning
is discussed in Chapter 2.5.
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Figure 3.1: The reward per drone per iteration, averaged over a 25 drone training
environment. It converges in roughly 300 iterations.

Figure 3.2: Midway through the training process, the policy learned to stay close
to the goal without actually reaching the terminal state, resulting in it circling the
goal. Reward tuning is important to encourage the drone to go directly to the goal
as soon as possible.

It took roughly 3 hours and 10 minutes to train on an NVIDIA Quadro RTX
8000 graphics card with 48GB memory. This policy is tested in a new, unseen test
environment, where every trajectory was forced to avoid an obstacle. The drone
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safely reaches the goal in 500/500 cases. Training and testing are both done at
1m/s.

Fig. 3.3 shows a top down view of some of these drone trajectories, where the
drone starts at the yellow point and reaches within 0.2m of the green goal point,
while avoiding the red obstacles. The plots showcase the RL agent’s ability to fly
around obstacles and reach desired goal locations.

Figure 3.3: Top down view of example test trajectories. Starting at the initial point
(yellow), the drone reaches within 0.2m of the goal point (green), and avoids obstacles
(red). All units are in meters.

3.2 Real-World Tests

Test Location and Setup

All physical flights were done at the Cesar Chavez Park in Berkeley, CA, and were
logged and approved by the Risk and Safety Solutions Platform for UC Berkeley.
We flew in an open, mostly flat section of the park, and installed a foam man-made
”obstacle” to mimic a tree trunk.
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The test field and obstacle setup can be seen in Fig. 3.4. The foam obstacle was
carefully crafted out of soft pool noodles that would not risk damage to the drone,
and a�xed to the ground using wooden and rubber stakes. The drone platform and
sensors cost over $10,000 so a safe test field was of utmost importance. While we do
not want the drone to crash, we must prepare for such an event. Additional safety
precautions are described below.

Figure 3.4: The Cesar Chavez park in Berkeley, CA, where physical flight tests
were conducted. The black cylindrical object is the ”obstacle” used in our tests,
constructed using pool noodles.

Validation and Safety

Various measures were taken to ensure we are in full control of the drone at all times.
First, we made sure policy outputs were properly converted from the drone FLU
frame to the world NED frame by creating a manual keyboard controller. Pressing
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the ’w’ key would take a locally forward velocity at 1m/s, convert it to NED, and
send it to the drone for 0.1 seconds, making the drone move slightly forward. The ’q’
and ’e’ keys would similarly send positive and negative yaw rates to rotate the drone.
A ”locally forward” velocity means the drone always moves in the direction it and
its camera are facing. After yawing in any direction, pressing ’w’ again would result
in motion in a di↵erent direction in the world frame. This manual validation ensured
that when policy outputs are correctly converted from the FLU to NED frame, as
discussed in Section 2.7.

Additionally, a few safety features were added to ensure safe testing even if the
policy sent erroneous outputs. At all times, there was a human pilot watching the
drone ready to take away SDK control and fly the drone manually if needed, by
flicking a switch out of ’P’ to the ’T’ or ’S’ mode on the remote controller. These
modes represent Positioning mode, Sport mode, and Tripod mode. The drone can
only be programmatically controlled in the ’P’ mode, so switching modes takes away
OSDK control and gives full control to the human pilot.

Moreover, if the drone flew over 30m away from the given goal, it would im-
mediately stop running the policy and force the drone to hover in place, returning
full control to a human pilot. This ensured the drone could not fly out of the safe
bounds of the test site. Additionally, at all times, the user could press the ’r’ key to
release DJI OSDK authority, meaning the OSDK could no longer control the drone
programmatically, forcing the drone to hover in place and only follow the human pi-
lot’s commands. In these ways, we ensured all tests were safe and under full human
control in case something unexpected happened.

Real World Results

Various real-world tests were conducted to test the e↵ectiveness and robustness of the
system. All results are summarised in Table 3.1. All tests began by manually taking
o↵, hovering in place, setting a goal 20m away, and then giving the RL policy full
control to reach the goal. The policy was trained at a maximum speed of 1m/s. In
the real world we tried three di↵erent maximum speeds – 0.5m/s, 1m/s, and 1.5m/s.
These speeds were applied by scaling the policy’s output by the desired maximum
speed. In all cases, the policy was running at 8Hz.

First, we ensured the drone could reach the given goal in the absence of any
obstacles. 2/2 tests succeeded in reaching the goal. Next, we added a single obstacle
roughly halfway between the drone and the goal position, requiring the drone to
maneuver around the obstacle to avoid a crash. At 0.5 m/s, it reached the goal 4/5
times, and at 1 m/s it reached the goal 9/12 times. In each case, the drone was set
at di↵erent distances from the obstacle, and at di↵erent real-world angles relative to
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# Obstacles Speed Initial Heading Success Rate
0 0.5 m/s 0° 2/2
1 0.5 m/s 0° 4/5
1 1 m/s 0° 9/12
1 1.5 m/s 0° 0/1
1 0.5 m/s 180° 1/1
3 0.5 m/s 0° 0/1

Table 3.1: Results from real world flight tests. The model was trained at 1m/s, with
0 or 1 obstacles in each trajectory. These situations performed very well. Increasing
the number of obstacles to 3, or speed to 1.5m/s resulted in bad performance where
a human pilot had to take over control. Starting at the wrong initial heading also
worked, showing the policy’s learned knowledge of path planning in cases where the
goal may be in any direction.

the obstacle. This was done to ensure the policy can generalize to avoid obstacles
at di↵erent distances and with di↵erent backgrounds. Backgrounds included flat
ground, small nearby hills, the distant Berkeley hills, and the San Francisco Bay.

While the drone is flying, we can visualize policy inputs and outputs in real-time.
Fig 3.5 shows two example policy outputs, visualized in RViz. In each case, there
are two grayscale images to the left. The top image of the two is the raw depth
image from the ZEDi, and under it is the lower resolution masked depth image that
is passed in to the policy. The green path shows the drone’s trajectory based on the
ZED2i’s position estimate, and at the end of the trajectory is an arrow, showing the
policy’s desired output velocity. The small green sphere is the goal. In the top image
of Fig. 3.5, the drone is in front of an obstacle and outputs a velocity to go left to
avoid the obstacle. Once it is passed the obstacle as seen in the bottom image, it
outputs an opposite velocity to head back toward the goal. The cylindrical obstacle
in this image was added as a post-processing step for visualization purposes, as RViz
has no positional or structural information of the real obstacle.

Fig 3.6 is a screenshot of a video comparing real-world footage of the drone flight
to the RViz visualization. Similar to before, RViz data includes the starting position,
current position estimated by ZED2i using visual odometry, processed depth image,
real-time policy outputs, and the goal location. The full video comparing the entire
flight with the real-time visualization can be found here, where the video is at 2x
speed. Fig 3.7 shows a successful test at 0.5m/s, showing the drone goes around the
obstacle and then reaches the desired goal. Fig. 3.8 shows a few more trajectories
where the drone successfully goes around an obstacle and reaches the goal.

https://youtu.be/SbB5CXB3Zls
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Figure 3.5: Policy outputs visualized. Top, the drone is directly in front of the red
obstacle, so the policy directs the drone to fly left and around the obstacle. Bottom,
the drone has passed the obstacle, so the policy outputs a velocity to head back
toward the green goal. The trajectory is formed by the ZED2i’s real-time position
estimation.
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Figure 3.6: Comparing real-world footage to the real-time visualization. On the left
is the RViz visualization with the latest image and drone position according to the
ZED2i. On the right is the real world video, showing the drone to the left of the
obstacle. The full video can be found here, at 2x speed.

https://youtu.be/SbB5CXB3Zls
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Figure 3.7: The full trajectory of a real-world flight test based on the ZED2i’s position
estimation, visualized in RViz.

Figure 3.8: Some of the successful trajectories where the drone flies around an ob-
stacles and reaches the desired goal.



CHAPTER 3. EVALUATION AND EXPERIMENTS 39

We also wanted to test the policy’s ability to navigate, so instead of giving it
a simple goal straight ahead, we gave it a goal that was directly behind the drone.
Such a trajectory was not included in the training set, and showcases the benefits
of using an RL agent, which really understands the dynamics of the world and can
interpret errors in positions and orientations. The drone immediately did a u-turn
as shown in Fig. 3.9, and then went to the goal, showcasing its ability to generalize
to new types of trajectories.

Figure 3.9: A physical test where the goal was set behind the drone. The drone did
a u-turn and then went toward the goal, highlighting the policy’s ability to adapt to
trajectories that were not seen in the training set.

The results are generally positive, but we must discuss the reasons for failure.
Trajectories from failed tests can be seen in Fig. 3.10, where the drone gets too
close to an obstacle. The first failed attempt came at 0.5m/s with one obstacle.
In this test, we noticed the propellers blocking the camera’s field of view, resulting
in the image seen in (b) from Fig. 2.9. The drone flew too close to the obstacle
and a human operator took over control. After applying the mask seen in (c), the
remaining tests at 0.5m/s worked successfully 4/4 times and the mask was used for
all future tests.
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Figure 3.10: The failed trajectories where the drone flew too close to an obstacle.
Reasons for failure include high gusts of wind limiting the drone’s desired movement,
and a lack of temporal and spatial memory in the policy.

Failures at 1m/s with 1 obstacle happened for a couple reasons. In one case, the
ZED2i’s state estimation mistracked its position, so we stopped the run prematurely.
In the other two failed attempts the drone visibly rotated away from the obstacle,
indicating an attempt to avoid the obstacle, but the drone barely moved forward in
that direction. These trajectories are seen in (b) and (c) of Fig. 3.10, and in both
cases minimal lateral movement is seen near the obstacle. We believe this happened
due to strong wind, where the drone’s attempt to fly was thwarted by the wind
gusting at around 15 mph. Since we constrain the drone to fly in the direction it is
facing as described in Section 2.4, when the drone rotated away from the obstacle, it
should have flown in that direction past the obstacle. However, the wind stopped it
from going past the obstacle and it remained in front of the obstacle. Moreover, since
the drone rotated away, it could no longer see the obstacle in its field of view. This
meant subsequent policy outputs wanted it to turn back toward the goal, which took
it into the obstacle. Discussion of how to fix this issue is in Section 4.2, including
using an LSTM to remember recent images and obstacles that may not currently be
in the field of view of the camera.

Finally, we tested the drone’s ability to navigate through three obstacles, where
it was meant to veer out of the way multiple times to get to the goal. It had a
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success rate of 0/1 due to its low speed and lack of temporal and spatial memory.
The trajectory is in (d) in Fig. 3.10. The drone saw the first obstacle and turned left
to go around it. After turning left, this obstacle was no longer in the camera’s field
of view. Before the drone fully passed the first obstacle, it saw the second obstacle
and turned right to avoid it. However, turning right made it veer back into the path
of the first obstacle, which it could not see due to its limited field of view. After
turning right, the first obstacle again became visible and it again turned left to avoid
it. This process was repeated a few times as seen in (d) of Fig. 3.10 until one of the
right turns took it too close to the first obstacle and a pilot had to manually take over
control of the drone. Discussion of potential solutions for this issue are in Section
4.2, including using a 360 degree camera to know the whereabouts of all obstacles
in all directions, and incorporating an LSTM with a sequence of past images, so the
model remembers obstacles it saw in its recent history.

3.3 Further Analysis

A few metrics are calculated to analyze the performance of the policy in the Flight-
mare simulator and in the real world, to characterize sensor performance and compare
the e↵ectiveness of the velocity controller at following policy outputs.

Since the policy is trained to output velocities, which we leave to a lower level
controller to follow to the best of its capabilities, we first compare the desired pol-
icy’s outputs to the actual trajectory flown. For policy outputs, we plot a theoretical
trajectory that assumes all velocities are perfectly and immediately tracked. To cal-
culate the trajectory flown, we use the simulated position of the drone in Flightmare,
and GPS data in the real-world.Fig. 3.11 shows these results in simulation. On the
left is the theoretical trajectory formed by the output velocities, where each velocity
is applied for exactly 0.125s. On the right is the trajectory flown by the drone, where
Flightmare’s simulated controller follows the given velocities from the policy. Since
its in simulation, the two trajectories are nearly identical, and the drone reached
within 0.25m of the green goal. Both trajectories are a top-down view.

Fig. 3.12 shows this same comparison for a real world flight at 1m/s, comparing
the output velocities to the GPS trajectory.

The overall path flown between the two images is somewhat similar, but the two
are not nearly as well aligned as in simulation. There are a few reasons for this.
First, there is a slight delay between when the policy sends an output and when the
controller actually enacts it. This is noticeable when the first turn to the right hap-
pens slightly later in the real path than on the theoretical path. Unfortunately this
delay cannot be quantified because we do not have access to the internal DJI velocity
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Figure 3.11: Comparing policy outputs versus the trajectory flown in simulation.
Left, the theoretical trajectory assuming all policy output velocities are perfectly
and immediately tracked. Right, the path flown from start (yellow) to goal (green),
while avoiding the obstacle (red). Both trajectories are extremely closely aligned, as
is expected from an ideal simulation environment.

controller. Next, the controller cannot perfectly track desired velocities. This hap-
pens for a few reasons: consecutive velocities are not continuous and the controller
may struggle to counteract external forces such as wind gusts. Discontinuous veloci-
ties cannot feasibly be tracked because of acceleration and jerk constraints, requiring
some amount of time to transition between two desired velocities. Additionally, ex-
ternal forced are challenging to counteract and dependent on drone dynamics and the
internal velocity controller. We noticed gusts of 15mph during our tests, and sudden
high speed gusts would prevent the drone from flying in its desired direction. The
main conclusion from this comparison, however, is that the policy outputs tended to
be noisy – rather than a smooth path around the obstacle as seen in simulation, the
policy kept switching between turning left and right. This likely happened because
when the drone would turn to the left to avoid an obstacle, it could then no longer
see the obstacle, and therefore would turn to the right to go back toward the goal.
Discussion of how to fix this issue is seen in Section 4.1.

Next, we want to characterize the ZED2i’s state estimation accuracy. Our ar-
chitecture relies on the stereo camera’s visual odometry to estimate position and
orientation which are passed to the policy. GPS is not used, meaning our system
can be used in more complex GPS denied environments. However, visual odometry
is less accurate than GPS. Since positional data during training is perfect, we want
to compare our physical state estimation against GPS data. Fig. 3.13 compares vi-
sual odometry’s computed trajectory against the GPS trajectory for one of the test
flights at 1m/s with one obstacle. While GPS data is also noisy and imperfect, since
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Figure 3.12: Comparing policy outputs versus the GPS trajectory flown in the real
world. Left, the theoretical trajectory assuming all output velocities are perfectly
and immediately tracked. Middle, the path flown according to GPS data. The first
right turn comes later in the GPS trajectory than the policy outputs, showing a
delay between when outputs are sent and when they are applied. Right, an attempt
to align the two trajectories to show the controller achieves reasonable performance
at matching corresponding turns. Errors come from the controller’s inability to
perfectly track desired velocities. Additionally, since velocities are naively integrated
to form the theoretical trajectory, errors propagate. These reasons lead to the two
paths not being as well aligned as in simulation.

we cannot set up a proper motion tracking system outdoors, GPS is used as ground
truth for this analysis. GPS data was measured at 50Hz, and state estimation was
run at 20Hz. Results show that on average, visual odometry position data is similar
to GPS position. However, it occasionally sees slight jumps in position, which are
corrected for shortly. For example, in the right half of Fig. 3.13 which corresponds
to the ZED2i’s estimated trajectory, there is an initial jump to the right just before
the drone starts to move forward. This jump is not seen in GPS data, which simply
goes straight forward. During this jump, the policy’s input position would have some
error. Soon after, however, the ZED2i corrects for that positional error by jumping
back to the left, and returning close to the GPS position. Subsequent input posi-
tions have lower error. This shows the ZED2i is somewhat capable of accounting for
discrepencies and correcting errors from previous timesteps.
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Figure 3.13: Comparing GPS data (left) against the ZED2i’s visual odometry based
state estimation (right) to evaluate the stereo camera’s performance. Overall, trajec-
tories are similar, but visual odometry su↵ers from some noise. Notably, a jump to
the right is seen initially when the drone starts flying forward. This jump is quickly
corrected for with an opposite leftward jump briefly after the drone flies forward.

According to GPS, the total displacement between the start and the goal positions
in this flight was 19.24m. Visual odometry’s displacement shows 19.78m, resulting in
an error of 2.8%. The total distance traveled during the trajectory is calculated by
adding the di↵erences in position between every timestep, aggregating many small
steps taken over time. Since GPS data is noisy, its positions were smoothened with
a window size of 5 to reduce high frequency noise. Using this method, GPS data
showed a trajectory distance of 25.14m, while visual odometry showed 24.96m. An
error of 0.7% shows that on average errors in visual odometry’s position estimates
are low.

Finally, the ZED2i’s orientation estimate is compared against the drone’s IMU.
Fig. 3.14 shows the two are extremely well aligned.
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Figure 3.14: Comparing heading angles over time between the ZED2i (green) and
the drone’s IMU (blue). Heading from the ZED2i aligns well with the drone’s IMU.

The policy we tested in the real world is trained at a max speed of 1m/s and
tested at max speeds of 0.5m/s, 1m/s, and 1.5m/s. It works well at both 0.5 and
1m/s as seen in Table. 3.1, but at 1.5m/s, it is very jittery. This is likely because
the policy sends discontinuous velocities at high frequency, resulting in high jerk on
the platform. We did not save velocity, acceleration, or jerk data, but the positional
trajectory can be seen in (e) of Fig. 3.10. After seeing this, we trained a new policy
in simulation to see if higher velocities can be flown and we analyze the e↵ects of
testing a model at a di↵erent speed than during training. Table. 3.2 summarises
the results for simulated flight at 1m/s and 3m/s, with a sample size of 5,000 used
to evaluate each policy. Velocities were increased by scaling policy outputs by the
desired maximum speed. Policy outputs are e↵ectively percentages of the maximum
speed. A model trained at 3m/s does well when being evaluated at both 3m/s and
1m/s, and a model trained at 1m/s does well when evaluated at 1m/s but poorly
when flying at 3m/s.

We expect this to be because a model trained at a low speed learns to react
slowly because it has more time to avoid an obstacle. Testing it at a higher speed
means the drone does not realize it needs to react more quickly. Similarly, training
at high speeds will still do well at low speeds, because its reaction time is faster and
better than it is used to. By passing the current velocity to the network, the policy
could learn to adapt on the go and optimize its actions based on its current velocity.
However, for this work, velocity is not part of the state space.

Next, we increased the frequency of running the policy to see how well it can
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Trained @ 1m/s Trained @ 3m/s

Tested @ 1m/s
Reached Goal: 100.0% Reached Goal: 99.2%

Crashed: 0% Crashed: 0.08%
Out of Bounds: 0% Out of Bounds: 0.72%

Tested @ 3m/s
Reached Goal: 7.6% Reached Goal: 90.6%
Crashed: 10.6% Crashed: 2.5%

Out of Bounds: 81.8% Out of Bounds: 6.9%

Table 3.2: Training models flying at 1m/s and 3m/s, and evaluating them at both
1m/s and 3m/s to compare performances, all in simulation. Results show good
performance is achieved when evaluating at the same or lower speed as training, and
poor results stem from training at high speeds but evaluating at lower speeds. A
sample size of 5,000 was used when evaluating all models.

do in simulation if it has extremely fast reaction times. The physical platform was
run at 8Hz and 1m/s, but running at higher frequency should allow flight at higher
speeds. Table. 3.3 summarises these results. Increasing the frequency at a fixed
velocity performs poorly. This is hypothesized to be because it is harder for an RL
policy to converge when the di↵erences in state between timesteps are small, and
every action taken has a very small e↵ect. Increasing both the speed and frequency
performs better, and would potentially improve with some reward function tuning.
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Speed Frequency Results

1 m/s 10Hz
Reached Goal: 100%
Crashed: 0%
Out of Bounds: 0%

1 m/s 20Hz
Reached Goal: 0%
Crashed: 0.8%
Out of Bounds: 99.2%

2 m/s 20Hz
Reached Goal: 83.4%
Crashed: 16.6%
Out of Bounds: 0%

Table 3.3: Results at di↵erent flight speeds and policy frequencies in simulation. A
model was optimized to fly at 1m/s at 10Hz in simulation, reaching the goal every
time. A new policy was then trained at 20Hz, which learned to avoid crashes but not
reach the goal. Doubling the flight speed to 2m/s resulted in reasonable performance.
This pattern shows that simply increasing the frequency may not improve results.
We hypothesize this to be because at low speeds and very small timesteps, all actions
have a similar e↵ect – only after multiple timesteps does it become clear that an agent
is turning left rather than going straight. Increasing the speed to 2m/s countered
this increase in frequency, so each action again has more distinct e↵ects. Again,
maximum speeds were increased by scaling policy outputs by the desired maximum
speed. Note that reward function and hyperparameter tuning was only done for 1m/s
and 10Hz, so more tuning should be done with the other speeds and frequencies.
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Chapter 4

Conclusion

In Section 4.1, we discuss the benefits and drawbacks of our approach, and in Section
4.2, we describe some future avenues to improve this work in various ways.

4.1 Discussion

In this work, we presented a deep Reinforcement Learning policy that takes in a
depth image, drone state information, and a goal position, and outputs x and z
linear velocities and a yaw rate to reach the given goal while avoiding obstacles.
Simulation results prove very e↵ective at safely reaching goal positions in a simple
environment. In the real world, we see similarly positive results in an environment
with a single obstacle. The drone is able to reach goal locations while avoiding the
obstacle. Fail cases come during moments of 15mph wind gusts, where the drone
visibly attempts to fly away from the obstacle, but cannot overcome the force of the
wind.

This approach works due its 2 part approach combining imitation learning from a
reference teacher and reinforcement learning to explore various actions given various
inputs. It combines the best of two worlds. The reference teacher distills optimal
trajectories by incorporating it into the reward function, and the agent’s exploration
lets it understand the dynamics of the world.

With pure imitation learning on optimal trajectories, the dataset is of utmost
importance. The multi-modal nature of viable trajectories must be dealt with, or
the model will be confused between multiple options that are equally viable – for
example, going left or right around a tree. Moreover, there is a distribution of
trajectories that are all viable that are hard to di↵erentiate between. [11] predicts
trajectory costs and then follows the minimum cost trajectory. In this work, the
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”optimal” trajectory is merely used as reference – large deviations result in large
penalties, but deviations are still allowed – and reaching the goal by any means still
results in a large reward. This inherently creates a distribution of valid trajectories as
each of them results in similarly high reward from reaching the goal without crashing,
without forcing a specific trajectory as exceptionally better than others.

Additionally, with imitation learning the policy does not learn real-world dynam-
ics. This means its training dataset must include a comprehensive set of trajectories,
and it is important to note that di↵erent types of missions will have di↵erent naviga-
tion scenarios. For search and exploration applications, a goal ahead of the drone is
usually passed in, assuming the drone has already explored the region directly behind
it. However, for missions where previously explored regions must be revisited, there
may be times when a u-turn is needed to get back to the right path. Such u-turns
may not be a big part of a dataset meant for exploration or infinite-horizon missions,
and pure imitation learning approaches may get confused if the goal is suddenly be-
hind it. With an RL agent however, many types of states are explored, and world
dynamics are learned. This means the RL agent can generalize to new navigation
tasks not included in the training dataset, such as the u-turn discussed above.

Unlike [11], this work does not focus on highly agile flight or complex maneuvers.
In this work, desired velocities are sent at 8Hz, wherein every 0.125 seconds the drone
follows a fixed velocity. With trajectory tracking in [11], new trajectories are output
at 24.7 Hz, and new desired thrust and body rates are sent at 100 Hz. Complex flight
maneuvers are possible, and multi-timestep trajectories mean flightpaths are smooth
rather than jittery. In the next section we dicuss how this work can be improved
to have similary smooth paths and plan for longer-term complex maneuevers rather
than single-timestep discontinuous velocities.

4.2 Future Work

There are various avenues this work could improve on in the future. The most im-
mediate path forward focuses on using the same hardware and software architecture,
but re-training the policy in more realistic and complex environments to ensure the
existing system can be run in dense forests, mountains, and near buildings at higher
speeds. Once the policy works well in complex environments, there are many paths
this work could follow, each with di↵erent focuses. To focus on running this work on
more types of platforms with less payload and compute capabilities, a switch from
a stereo camera to a cheap RGB camera could be made. To perform more complex
flight maneuvers, a 360 degree camera could be added to give the drone full vision of
its surroundings. To deal with more complex environments, an LSTM can be added
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to give the policy memory of nearby obstacles, even if they are not in view. Each of
these avenues is now discussed further.

The main next step would be to re-train the existing policy in multiple envi-
ronments with more visual features. The current algorithm is trained in a simple
environment with cylinders, and tested on a similarly simple environment with cylin-
drical obstacles made out of pool noodles. Since testing with multiple obstacles has
mixed results due to flight speeds and wind, the natural next step would be to re-
train in more complex and realistic environments such as forests or outdoor areas
with buildings. Positive results in a real forest would prove the worth of this work, as
it would showcase real-world flight in a complex environment requiring flight along
all three dimensions, and weaving through dense forest would prove that this could
compete with expert human pilots.

Additionally, another next step would be to replace the stereo ZED2i camera
with a lightweight RGB camera, and use regular RGB images for state estimation.
A simple learning based depth estimation model could be run on these RGB images
to estimate relative depth, and those predicted depth images passed to the RL agent.
RGB cameras are cheaper and lighter weight than a stereo camera, and require much
less computation. By reducing compute and weight requirements, we can then run
the algorithm on smaller drones with lower payload capacities.

Next, since this work constrains the drone to only fly in the direction the camera is
pointing, by replacing the existing camera that has a limited field of view with a 360
degree camera, we can achieve full 360 degree non-planar flight. A 360 degree depth
prediction model such as 360 MonoDepth [19] can be used to convert 360 degree
RGB to depth, and this can be used to give the drone a full view of the environment
around it. Now, we no longer need to constrain the quadrotor’s dynamics to only fly
forward, and can take full advantage of the drone’s 3D flying capabilities. This would
allow the system to do more complex maneuvers in complex environments, and fly
at much higher speeds. Currently, the platform must yaw to turn, which greatly
impacts the maximum speed it can fly, because it cannot see to the left, right, or
behind the platform. However, with a 360 degree field of view, the drone can fly at
high speeds in all directions, without worrying about obstacles unexpectedly showing
up.

Other potential improvements include adding an LSTM. The current setup relies
on using the latest depth image and state information, with no memory of any past
information. The benefit of this is that there are no memory requirements, but a
major drawback is that the agent does not remember the layout of obstacles nearby.
As soon as an obstacle goes out of view, even if it is right next to the drone, the
policy outputs act as if there is nothing there. Using a 360 degree camera could help
with this, but another solution would be to incorporate an LSTM, where the agent
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may have some local memory of nearby objects.
In general, this work proves the usefulness of combining an exploratory deep RL

agent with a privileged supervisor, leading to optimistic results in a simple environ-
ments. There are countless opportunities of improvement that are not in the scope
of this work, but that have exciting promise.
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Chapter 5

Appendix A: Additional Figures

Figure 5.1: The ports on the DJI Expansion Module. Use a USB-TTL cable to
connect the Jetson to the expansion board.
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