
A Deserialization Architecture for GC Languages

Ethan Wu
Viansa Schmulbach

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-268

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-268.html

December 12, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thank you to Sagar Karandikar who provided invaluable ideas and
guidance on this project. Additionally, this project was submitted as part of
CS264. Thank you to Professor Sen and Shangyin Tan, who gave very
helpful advice on this project.

A Deserialization Architecture for GC Languages
Ethan Wu

ethanwu10@berkeley.edu
University of California, Berkeley

USA

Viansa Schmulbach

ansa@berkeley.edu
University of California, Berkeley

USA

Abstract
Numerous works have tackled the problem of offloading

deserialization workloads to specialized hardware acceler-

ators, however few target interoperability with “managed”

languages which employ a garbage collector and other ad-

vanced runtime features. We develop a deserialization ac-

celerator that can directly create “native” Java objects that

have no additional software overhead for Java code to in-

teract with, as if they had been created by Java code. In the

process, we explore how a hardware accelerator’s memory

allocation and object creation functionality can be integrated

with the HotSpot Java Virtual Machine, without sacrificing

accelerator performance.

CCS Concepts: • Hardware → Hardware accelerators; •
Software and its engineering → Garbage collection.

Keywords: deserialization, warehouse-scale computing, garbage

collection

ACM Reference Format:
Ethan Wu and Viansa Schmulbach. 2023. A Deserialization Archi-

tecture for GC Languages. In Proceedings of Programming Language
Design and Implementation (PLDI ’24). ACM, New York, NY, USA,

7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
1.1 Motivation
The rise of warehouse scale compute has sparked interest

in the discussion of datacenter-specific costs, dubbed the

“datacenter tax” [7] which includes serialization/deserializa-

tion, RPCs, and compression. In Google’s Warehouse Scale

Computers, an estimated 5% of cycles were spent serializing

and deserializing objects. This provided the motivation for

Karandikar et. al.’s accelerator for Protobuf [8], Google’s se-

rialization framework. This accelerator offloads cycles from

the CPU by directly serializing and deserializing C++ objects

in hardware and placing the result in an accelerator-owned

arena. The deserialization accelerator was shown to have

a 6.9x increase in performance over the Xeon-based sys-

tem, and the serialization accelerator had a 4.5x increase

in performance over the Xeon. However, the accelerator is

limited to only working with C++ objects. We would like

to extend support of this accelerator to a garbage-collected

language, specifically Java, while maintaining comparable

PLDI ’24, June 03–05, 2018, Woodstock, NY
2023. ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

performance, as well as performance for C++. That is, we

would like for the hardware to write the native object to

be used by the software directly into memory, without the

software needing to perform further manipulation of the de-

serialized objects. Additionally, we would like the accelerator

to remain interoperable with existing software such that ap-

plications using the accelerator can talk to other applications

using the standard software Protobuf implementation.

1.2 Background
1.2.1 TheGarbage-First GarbageCollector. TheHotSpot
Java VirtualMachine implementation containsmany garbage

collectors.We target the current default, Garbage First (G1GC),

which is a parallel, generational, concurrent-marking garbage

collector [2]. Like all other garbage collectors in HotSpot,

G1GC compacts the heap by moving live objects into a “sur-

vivor region” when performing a collection—this process is

called evacuation. As a result, HotSpot serves the majority

of its allocations via a simple bump allocator, since the due

to compaction the heap has large contiguous chunks of free

space from which to allocate. Thus, the hardware accelerator

can also use a bump allocator instead of needing to under-

stand more complex structures like freelists. Additionally,

G1GC performs its evacuation step in a stop-the-world pause,

not concurrently; this fact greatly simplifies integration with

the hardware accelerator’s allocations.

Internally, G1GC partitions the heap into multiple regions,

each of which can be designated as Eden (new objects), Sur-

vivor (young generation), and Old. Collections evacuate en-

tire regions at a time into new regions of either Survivor or

Old type; the original regions are then freed.

1.2.2 The Protobuf Wire Format. Protocol buffers are a
structured serialization format, where each field is encoded

on the wire as a field identifier containing type informa-

tion, followed by the actual field data. The Protobuf wire

encoding heavily uses the varint encoding for integers,

which uses fewer bytes for smaller integers [3]. This format

is particularly amenable to hardware acceleration, since it

is significantly slower to decode on CPU compared to other

field data types such as bytes (which simply places the raw

bytes as-is, and is decoded with a memcpy) [8].

1.2.3 JavaObject Format. Each Java object in theHotSpot
JVM contains a header (usually 12 bytes) at the beginning of

the object that contains metadata that must be populated for

the object to be correctly recognized by the JVM. On 64-bit

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

PLDI ’24, June 03–05, 2018, Woodstock, NY Ethan Wu and Viansa Schmulbach

systems, the first 8 bytes are amark word containing generic

metadata and GC state—for freshly-created objects, this is

always a constant bit-pattern. The next 4 bytes contain the

klass word, which identifies the type of the object (analagous

to a vtable pointer in C++). For each object type, the klass

word is a constant value for the lifetime of the JVM.

Fields within a Java object are laid out as the JVM sees

fit, and are often rearranged from their declared order; the

JVM packs them to reduce waste due to alignment as much

as possible. The layout may not be stable between different

invocations of the JVM (depending on VM parameters), how-

ever fields are never rearranged while the JVM is running.

1.3 Prior Work
Karandikar et. al. [8] describe the original Protobuf accelera-

tor which is to be extended during this project. As explained

in the background section, the accelerator in this project only

supported C++ as a host language. We would like to extend

this accelerator to support multiple languages, including

garbage collected languages.

The Cereal paper [5] describes a hardware accelerator for

serialization which implements a specialized serialization

format for Java objects, but does not explain how the GC

becomes aware of the objects created by the accelerator.

Additionally, the paper does not publish any artifacts, so

it is hard to determine if the paper edited the GC. Finally,

the paper only supports one language, while our proposed

design will support multiple target languages.

The Skyway paper [10] discusses how to share heap data

between multiple machines without undergoing deserial-

ization and serialization, thus solving a similar problem of

objects “appearing” on the heap without software knowledge.

This project targets moving objects around a distributed sys-

tem, without regard to interoperability with existing formats;

it also tackles the problem with pure software, without in-

vestigating hardware offload. Skyway modifies the JVM and

garbage collector, updating GC data structures whenever a

new object is allocated so that the object is reachable by the

GC. Additionally, Skyway targets sharing static data, which

is a very different role from Protobuf messages, which are

used for active communication. Thus, some of the design

decisions (such as allocating into the old generation) are

unsuitable for warehouse-scale workloads.

The Breakfast of Champions paper [11] uses an NIC based

accelerator which implements a zero-copy serialization tech-

nique. However, it does not address deserialization and the

garbage collector and allocator integration it entails, but

calls this out as future work. Their accelerator also does not

work with multiple languages. In addition, they generate

custom types for Protobuf messages that do not match those

generated by the standard C++ Protobuf compiler.

1.4 Contributions
For the native language, we chose to focus on Java for a few

reasons: (1) Java is commonly used by the users of Protobuf,

ie. there is more demand for a Java deserialization accelerator

(2) the complexity of the JVM and HotSpot and lack of point-

ers make Java likely the most challenging target language,

and thus raises some interesting research questions and (3)

the compacting garbage collector (as compared to Go, which

uses free lists) allows us to reserve a large chunk of memory

and have our objects be naturally adopted by the JVM when

they are collected and moved outside of our region.

To the best of our knowledge, no other work has created

a deserialization accelerator in a mainstream serialization

format such as Protobuf (ie. not custom format) which also

allows for GC language support, and is the only paper im-

plementing a deserialization accelerator which explicitly ad-

dresses garbage collection support. Additionally, this work

will propose the first hardware deserialization architecture

which supports multiple languages with a standardized wire

format.

2 Software Stack and Integration with VM
In order to interface with the accelerator, we used the Java

Native Interface (JNI), which allows for “native” C++ meth-

ods to be called from Java code, which can then call into the

JVM through a special JNIEnv* object passed to the method.

2.1 Background: The Java Native Interface
All JNI methods are passed in as arguments the JNIEnv*,
which facilitates calling into the JVM, as well as the jobject,
a reference to the current object calling the native method.

For instance, the JNI Function header for the the deserialize

method is as follows:

JNIEXPORT jobject JNICALL Protoacc_deserialize
(JNIEnv *, jobject , jclass , jbyteArray);

In addition to the JNIEnv* and jobject, our deserialize func-
tion requires a reference to the class which is being deseri-

alized into, as well as a byte array which holds the bytes of

the serialized object.

Of important note is the fact that the jobject is not a

direct pointer to a Java object, but rather a pointer to a “han-

dle” which contains a pointer to the Java object. In addition

to requiring all objects to be wrapped in a JNI handle, this

also means that Java will update the JNI handles of objects

whenever they are moved by garbage collection.

2.2 Generations and Barrier Interaction
Since Protobuf is often used forworkloads like RPC (via gRPC

[4]) where deserialized objects are short-lived, we allocate

objects into the young generation of the heap, where objects

are cheap to create and expected to mostly die young.

A Deserialization Architecture for GC Languages PLDI ’24, June 03–05, 2018, Woodstock, NY

To keep the young generation fast, in G1GC, there are no

barriers present in reading or writing to young-generation

objects except during concurrent marking. The concurrent

marking write barrier serves to ensure that during marking,

a mutator cannot remove an object from the graph visible to

the marking process [2]. However, a deserialization acceler-

ator will never overwrite pointers to existing objects since it

will only create new objects; thus, this write barrier can be

safely ignored.

The second barrier present in G1GC is the remembered set

write barrier, triggered when writing a pointer to the young

generation into an old generation object [2]. However, since

the accelerator never writes to any objects other than the

ones it creates, it does not interact with this barrier either.

2.3 Allocating Java Heap Memory
In order to implement a zero-copy accelerator, our acceler-

ator place objects directly on the Java heap, as the GC will

reject any object placed outside the Java heap. However, if

we simply pass a pointer on the Java heap to the accelera-

tor, the JVM will write over the objects created as that heap

space is unallocated according to the JVM. Because there

is not a straightforward method of requesting a portion of

heap space in Java, we accomplished this by requesting a

Java byte array through the JVM, so that the JVM would

reserve the space inside the array. Then, we pass a pointer

from within our newly-allocated array to the accelerator,

which then allocates the object within the array. Once the

accelerator completes, a new JNI Handle for the deserialized

object is created in C++; a pointer to this handle is then

returned to the Java caller.

Figure 1 shows the Java heap after the accelerator has

deserialized an object. On the left, the accelerator has newly

deserialized the object into the Java byte buffer. The JVM

considers all JNI handles to be roots when marking live ob-

jects during a garbage collection cycle. Thus, when the GC is

evacuating a region for collection, it will find the accelerator-

created objects via the JNI handle pointing to the root mes-

sage object, and proceed to copy the entire object hierarchy

out into a survivor region. After this collection (shown on

the right of Figure 1), the newly-allocated objects are exactly

the same as any other object on the Java heap.

As an optimization, we opt to not retain a JNI handle to the

byte array, and instead make a handle to a sentinel object at

the beginning of the array. This way, the Java heap remains

parseable from the perspective of the JVM (which assumes

the heap is packed with contiguous objects), but the byte

array does not need to get unnecessarily copied.We detect an

evacuation of the region the byte array was in by observing

when the sentinel object moves; when this happens, we must

obtain a new byte array to allocate into. This also ensures

that our allocation remains in an Eden heap region, and does

not get moved to old space.

Figure 1. Java Heap, Before and After GC

2.4 Pausing the Garbage Collector
If garbage collection occurswhile the accelerator is deserializ-

ing the object, this could result in the byte array being moved

in memory and the accelerator writing into newly freed

space. Therefore, while the accelerator is in the process of de-

serializing, garbage collectionmust be paused. To accomplish

this, we add a new JNImethod, ForceThreadSafepointUnsafe
to pause garbage collection.

In G1GC, all threads must be at a safepoint before the

evacuation phase of garbage collection can occur. However,

all native threads are considered to be at a safepoint until

they call into the JVM, as it is assumed that native threads

are not editing Java objects, and therefore their execution

will not interfere with the JVM. We add an additional bit

to each Java thread’s state to indicate whether an acceler-

ator is currently deserializing in that thread. Additionally,

we update the safepoint checking mechanism to check this

field, and return false if this thread currently has a hard-

ware deserialization in progress. The implementation of

ForceThreadSafepointUnsafe therefore simply sets this

bit in the current thread.

3 Accelerator Design
3.1 Software Stack
3.1.1 Background: Protobuf Generated Java Object
Format. The Java object graph for the Protobuf in-memory

representation contains many common Java classes (such

as java.util.List) and singleton objects. For instance, in-

teger repeated fields are deserialized into IntArrayList, a
custom Protobuf implementation of the java.util.List
interface. The object layout of an IntArrayList is shown in

Figure 2. Additionally, each user-defined message contains

some internal fields which need initializing, such as mem-

oized values that must be set to -1, and an unknownFields
object which must point to a singleton empty list. Further-

more, the object contains a bitfield (referred to as the “hasbits”

field) which holds information about which of the fields in

the message are populated. The object layout of a Protobuf

Java message CustomMessage is shown in Figure 2.

PLDI ’24, June 03–05, 2018, Woodstock, NY Ethan Wu and Viansa Schmulbach

class IntArrayList extends AbstractList {
boolean isMutable;
int size;
int[] array;

}
class CustomMessage {

int memoizedSize = -1;
int bitField0_;
UnknownFieldSet unknownFields;
byte memoizedIsInitialized = -1;
/* Other fields here */

}

Figure 2. Object structures of types involved in Protobuf

messages

3.1.2 Accelerator Descriptor Table. In order for our ac-

celerator to be able to deserialize a message object, it needs

some additional information about the layout of the object

in Java. To implement this, we generate an Accelerator De-
scriptor Table for each type of message sent, expanding upon

the ADT developed by Karandikar, et al [8]. Our deserialize

method constructs the ADT lazily the first time a deserial-

ization of this message type is requested, and is reused on

subsequent deserializations.

Figure 3 shows all the fields in the ADT (labeled

DescriptorTable), all of which are constant throughout the
execution of the Java program. These fields include (1) the

Java klass_word of the object (2) the offset of multiple fields,

as discussed in 3.1.1 (3) the size of the current object, so the

accelerator knows the amount of space to allocate, and (4)

the minimum field number used (used to look up items in

the descriptor table).

Additionally, for each field, there is an entry in the descrip-

tor table (labeled DescriptorTableFieldEntry in Figure 3)

which includes the offset of that field in bytes within the

Java object, (2) the Java type of this field, (3) whether or not

this field is repeated, and (4) if this field is a submessage, a

pointer to the ADT of that message.

3.1.3 Custom Accelerator Instructions. Since the accel-
erator is located near the core [8], software interfaces with

the accelerator through custom instructions, implemented

using the RoCC interface of the Rocket Chip framework [1].

The accelerator contains a set of new instructions for man-

aging information about the current JVM’s runtime environ-

ment that is used during deserialization. Since the classes and

singleton instances are not specific to any particular message,

information about these objects is stored on registers within

the accelerator. This reduces the number of memory reads

that need to be performed during deserialization. This data

(klass words for the classes and object instance addresses for

singletons) is loaded into the accelerator via a set of RoCC

instructions. In particular, since singletons may move upon

struct DescriptorTableFieldEntry {
uint64_t offset : 58;
uint64_t type : 5;
uint64_t is_repeated : 1;
DescriptorTable *nested_descriptor;

};

struct DescriptorTable {
uint32_t klass_word;
uint16_t unknown_fields_offset;
uint16_t memoized_size_offset;
uint32_t object_size;
uint32_t memoized_is_initialized_offset;
uint64_t hasbits_offset;
uint32_t min_field_num;

DescriptorTableFieldEntry entries [];
};

Figure 3. Accelerator Descriptor Table Fields

GC, the addresses of singleton objects is sent to the accel-

erator before each deserialization operation after garbage

collection has been paused; since these are implemented as

custom instructions, these operations complete very quickly.

3.2 Hardware Updates
The Protobuf accelerator RTL implemented by Karandikar

et. al. was fairly language-agnostic. We aimed to reuse as

much RTL as possible between the two accelerators for a few

reasons: (1) to cut down on area and power consumption,

(2) to show that the accelerator could be easily expanded to

multiple languages with a similar object format beyond Java

and C++, and (3) ease of engineering.

3.2.1 Background: C++ Accelerator. In Karandikar et.

al’s Protobuf accelerator implementation, there are two allo-

cation arenas passed to the accelerator via RoCC instructions:

a flexible arena, where arrays are allocated, and a fixed arena,

where all other objects are allocated. This is due to the fact

that the size of array objects are not known up front, so the

hardware must therefore continue writing to this array in

the flexible arena while allocating objects in the fixed arena

until the array is closed out.

Field handling logic is rather language specific. Scalar

fields (i.e. those with Java primitive types) are handled ex-

actly the same in C++ and Java, however more complex types

such as strings and nested messages are represented differ-

ently between the two languages, as C++ tends to place more

data inline within objects while Java places every object be-

hind a pointer.

3.2.2 Strings, Byte Buffers, and Nested Objects. For
representing string and bytes types, the Protobuf Java

library uses a ByteString object which contains a byte
array. These objects have fixed layouts and known-upfront

sizes, and thus are populated with memory writes as fast

A Deserialization Architecture for GC Languages PLDI ’24, June 03–05, 2018, Woodstock, NY

message Sample {
message Sub {

// fields ...
}
optional Sub field1;
repeated Sub field2;

}

Figure 4. Message with repeated nested submessage

as the data-cache can accept them—all header values are

retrieved from internal registers (3.1.3).

Nested objects are allocated and populated in a similar

fashion to C++, except with more fields to populate. Since

the layout and klass word depends on the message, nested

messages require loading data from the descriptor table and

result in more, smaller scattered writes.

3.2.3 Repeated Fields. Repeated fields are backed by an

array containing the elements of the field. Since the length

of this array is not known up front, it is allocated into the

flexible region, where new elements are written as they are

encountered. Additionally, Java has strongly-typed arrays,

and does not support polymorphism over primitive types.

As a result, for a repeated field of each primitive type, the

Protobuf Java library utilizes a different type of primitive

array and wrapper ArrayList object. Thus, the field type

dictates which of the klasses (stored in local registers) is

used for the created objects.

Since most of the objects involved in creating the list for

a repeated field include length fields, the length fields of

the objects are all written (in separate requests) once the

repeated field is closed, either by the end of message or by

the start of a new repeated field; when possible, additional

fields are initialized at the same time as this final write to

save a write operation.

4 Evaluation
4.1 Correctness
Since the majority of the correctness tests are architecture-

agnostic and do not depend on exact accelerator details, these

were implemented through JNI code performing memory

accesses like an accelerator would. They were run against

the modified JVM on ARM64, and also verified on RISC-V

under QEMU emulation—the results are identical.

4.1.1 Verify JVM Object Adoption. To verify that our

approach of allocating new objects into an existing byte

array on the Java heap does not cause unforeseen problems,

we created a test that allocates large numbers of objects and

verifies that their internal structure is still valid. On each

iteration, the test fills an array with newly allocated objects,

and then reads the fields of all of these objects after the

array is populated. Thus, we verify that the messages are

not corrupted by the GC and are still usable later during

program execution. Finally, the amount of data allocated

by this test loop far exceeds the maximum heap size that

the JVM is allowed to use, forcing all the created objects to

be garbage-collected. If the newly created objects were not

properly being collected, we would see that the JVM would

run out of memory. Since this test completes successfully,

we see that the objects are properly being integrated with

the JVM’s heap.

4.1.2 VerifyingGCPause. To confirm the effectiveness of

the safepointing implementation, we implemented a simple

test where one thread marks itself as not at a safepoint and

sleeps, while another thread triggers garbage collection. By

enabling garbage-collection and safepoint logs in the JVM,

we can observe that the JVM does not reach a safepoint until

after the sleeping thread wakes up again and clears our safe-

point override bit. Similarly, from the logs we observe that

the GC evacuation does not occur until after the safepoint is

reached, confirming the validity of our approach.

4.1.3 Benchmarking Stress Tests. Finally, ourmain bench-

marks (described in detail in the next section) also serve as

a stress-test for general robustness. The benchmarking har-

ness loads and executes code from many other classes before

and after benchmarking runs, and from multiple threads.

Thus, during certain phases of the benchmark, the accelera-

tor will operate alongside other activity in the JVM; also, the

benchmark runner creates heap pressure as many objects

are allocated as fast as possible.

4.2 Benchmarking
4.2.1 Setup. To benchmark accelerator performance, we

leveraged HyperProtoBench, a set of benchmarks containing

messages that are representative of those seen in workloads

at Google [8]. We ported these benchmarks to Java by ex-

porting serialized data from the original C++ benchmarks,

and then loading and deserializing them in Java. The bench-

mark runs measure only the time spent in deserialization,

however the JVM also outputs additional debugging infor-

mation about GC events such as pause times. Each message

from the benchmarks in HyperProtoBench are measured

independently because the variation in individual message

composition provides interesting performance insight. The

measurements are performed using OpenJDK’s JMH harness

[6], configured to run 5 iterations of measurement lasting

5 seconds each. For each test, the accelerator is compared

against the pure Java Protobuf library implementation, run-

ning on the same CPU and system.

The tests are run on HotSpot JVM 21 Server for RISC-V,

using G1GC, and with pointer compression disabled and a

maximum heap of 512MB. The heap size was chosen to be

artificially small to bring out the impact of the accelerator

PLDI ’24, June 03–05, 2018, Woodstock, NY Ethan Wu and Viansa Schmulbach

Th
ro

ug
hp

ut
 (G

bp
s)

0

25

50

75

100

125

150

175

0.M25 0.M1 0.M48

Java Accel

Figure 5. Accelerator throughput

architecture on garbage collection performance. To evaluate

the hardware design, we employ FireSim [9], a cycle-accurate

simulator with accurately modeled memory timings, booting

Linux to run the Java workloads. The accelerator is attached

to a BOOMv3 core, an OoO superscalar RISC-V core compa-

rable to ARM A72-like cores [12]; the core runs at 3.0GHz.

Due to the cycle-accurate simulated nature of the system

and low noise within Linux (since the image was based on

buildroot with no other significant userspace processes run-

ning), benchmark timings are extremely stable—all standard

deviations were measured to be less than 2% of the measured

average value.

4.2.2 Throughput Results. Unlike in the pure Java de-

serialization baselines, with the hardware accelerator, we

observe deserialization times that correlate very strongly

with message size, showing that the hardware accelerator

is much closer to being completely bottlenecked by system

memory bandwidth. In terms of peak performance, we see

that the accelerator is between 20 and 35 times faster in

comparison to the pure Java baseline measurements.

Observing the scatter plot of time against message size as

seen in Figure 6, we can see that the time for a 0-bytemessage

approximately extrapolates to around 1 µs; this roughly lines

up (within error) with our measured overhead of approxi-

mately 500 ns when performing all of the setup but not any

actual deserialization. This overhead originates from Java

code calling into JNI, which then calls back into the JVM;

these state transitions have a more significant impact on time

than the JVM operations actually being performed. However,

compared to the deserialization time for most messages from

Java code, this shows that the message size threshold at

which accelerated deserialization saves time is quite small.

4.2.3 Pause Times. Pause times during benchmarks were

measured to be in the 10ms range, well above the time nec-

essary to perform a deserialization. Thus, in terms of overall

impact on pause time, the behavior of pausing GC until a

deserialization has completed has minimal impact on overall

responsiveness. However, pauses were infrequent enough

Size (bytes)

Ti
m

e
(n

s)

0

2000

4000

6000

8000

80000 90000 100000 110000

Figure 6. Accelerator deserialization time vs. message size

and deserialization times short enough that we were un-

able to directly observe the impact of the GC requesting a

stop-the-world pause while a deserialization operation is

running—this demonstrates that even under heavy synthetic

load, the hardware accelerated deserialization is highly un-

likely to impact pause times at all.

5 Conclusion and Future Work
In conclusion, we have demonstrated that hardware accel-

eration of deserialization workloads can be extremely ef-

fective in a managed language runtime such as Java. We

have validated a method for interoperating with a current

production-grade garbage collector (G1).

Future work to be done includes extending the hardware

design further to support reconfiguring language-specific

parameters (such as the structure of the object graph for

a particular Protobuf field type) at runtime, so that new

languages can be supportedwithout changes to the hardware.

In particular, a model must be developed for describing the

object graph and fields to initialize in a way that can be

processed without needing excessive memory reads while

deserializing.

An additional avenue of improvement is obtaining tighter

integration with the JVM; significant portions of the over-

head in our approach are due to the JNI interface and the

necessary book-keeping for transitioning between “native”

and “VM”. If the accelerator were to be directly integrated

in the core JVM, much of this can be skipped.

References
[1] Krste Asanovic et al. 2016. The rocket chip generator. EECS Depart-

ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,
4, 6–2.

[2] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004.

Garbage-first garbage collection. In Proceedings of the 4th Interna-
tional Symposium on Memory Management (ISMM ’04). Association

for Computing Machinery, Vancouver, BC, Canada, 37–48. isbn:

1581139454. doi: 10.1145/1029873.1029879.
[3] [n. d.] Encoding | protocol buffers documentation. (). https://protob

uf.dev/programming-guides/encoding/.

https://doi.org/10.1145/1029873.1029879
https://protobuf.dev/programming-guides/encoding/
https://protobuf.dev/programming-guides/encoding/

A Deserialization Architecture for GC Languages PLDI ’24, June 03–05, 2018, Woodstock, NY

[4] [n. d.] gRPC. (). https://grpc.io.
[5] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo, Hoon Shin,

Tae Jun Ham, and Jae W. Lee. 2020. A specialized architecture for

object serialization with applications to big data analytics. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), 322–334. doi: 10.1109/ISCA45697.2020.00036.

[6] [n. d.] Jmh. (). https://openjdk.org/projects/code-tools/jmh/.
[7] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy

Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015.

Profiling a warehouse-scale computer. SIGARCH Comput. Archit.
News, 43, 3S, (June 2015), 158–169. doi: 10.1145/2872887.2750392.

[8] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh

Parimi, Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ran-

ganathan. 2021. A hardware accelerator for protocol buffers. In

MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO ’21). Association for Computing Machinery,

Virtual Event, Greece, 462–478. isbn: 9781450385572. doi: 10.1145/3
466752.3480051.

[9] Sagar Karandikar et al. 2018. Firesim: fpga-accelerated cycle-exact

scale-out system simulation in the public cloud. In 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA),
29–42. doi: 10.1109/ISCA.2018.00014.

[10] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian

Demsky, and Shan Lu. 2018. Skyway: connecting managed heaps in

distributed big data systems. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’18). Association for Comput-

ing Machinery, Williamsburg, VA, USA, 56–69. isbn: 9781450349116.

doi: 10.1145/3173162.3173200.
[11] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang. 2021.

Breakfast of champions: towards zero-copy serialization with nic

scatter-gather. In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems (HotOS ’21). Association for Computing Machinery,

Ann Arbor, Michigan, 199–205. isbn: 9781450384384. doi: 10.1145/3
458336.3465287.

[12] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.

2020. Sonicboom: the 3rd generation berkeley out-of-order machine,

(May 2020).

https://grpc.io
https://doi.org/10.1109/ISCA45697.2020.00036
https://openjdk.org/projects/code-tools/jmh/
https://doi.org/10.1145/2872887.2750392
https://doi.org/10.1145/3466752.3480051
https://doi.org/10.1145/3466752.3480051
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/3173162.3173200
https://doi.org/10.1145/3458336.3465287
https://doi.org/10.1145/3458336.3465287

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Prior Work
	1.4 Contributions

	2 Software Stack and Integration with VM
	2.1 Background: The Java Native Interface
	2.2 Generations and Barrier Interaction
	2.3 Allocating Java Heap Memory
	2.4 Pausing the Garbage Collector

	3 Accelerator Design
	3.1 Software Stack
	3.2 Hardware Updates

	4 Evaluation
	4.1 Correctness
	4.2 Benchmarking

	5 Conclusion and Future Work

