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Abstract

Simplicial Reaction Networks and Dynamics on Graphs

by

Rachel Lawrence

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alistair Sinclair, Chair

Reaction networks are a powerful tool for modeling the behavior of a wide variety of real-world
systems, including population dynamics and chemical processes, as well as algorithms for
sampling combinatorial objects. While many such systems have well-understood equilibrium
states, the long-standing conjecture that these states will always be achieved remains open.
This thesis presents the class of simplicial reaction networks, which includes a wide variety
of natural combinatorial examples of use in theoretical computer science. It shows how
simplicial structures can be used to understand and control the equilibrium behavior of the
network as a whole, and discusses related progress towards the Global Attractor Conjecture.
Finally, this thesis presents additional work exploring combinatorial approaches to the Inverse
Eigenvalue Problem on graphs, including the randomized Zero Forcing algorithm and a lower
bound for the Minimum Rank problem.
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Chapter 1

Introduction

My brain is open!

- Paul Erdős, standard greeting

This thesis describes work on two primary topics: the theory of chemical reaction networks
and the minimum rank problem on graphs. In both areas, we bring ideas from theoretical
computer science to bear on problems arising outside the field’s traditional scope. In the case
of chemical reaction networks, we consider their application in a combinatorial context, and
prove that this context guarantees the convergence properties – including a resolution of the
long-standing global attractor conjecture in this setting – necessary for new computational
sampling applications. Similarly, we examine the minimum rank problem on graphs from
a computational perspective, completely characterizing its computational complexity and
also studying a more efficient constraint propagation process which provides bounds on its
value. Of particular focus will be the examination of convergence properties – the question of
whether a given process, over a long enough time, tends towards an equilibrium state – in
graphs that arise from problems of combinatorial and computational significance.

Reaction Network Theory

The subject of Chapters 2 and 3 is reaction network theory, a branch of applied mathematics
inspired by the behavior of real-world biochemical systems. In these systems, changes to the
state are governed by a nonlinear probabilistic process on a graph. Specifically, the system
consists of a probability distribution over different categories of items, akin to chemical
elements or molecules, whose concentrations change over time. These changes adhere to the
law of mass action: molecules react with each other, at a rate determined by the product of
concentrations of all inputs (reactants), to create a new set of output (product) molecules.
The system’s possible reactions are represented by a network structure, where a directed
edge between two sets of molecules signifies their roles as reactants and products in some
reaction. For an audience familiar with computer science, these systems are reminiscent of



CHAPTER 1. INTRODUCTION 2

Markov chains, but with a critical departure from linearity: the change in state is no longer
a linear function of the current state, but rather depends on a product of concentrations of
any molecules participating in each reaction. Even restricted to the quadratic case, involving
only two molecules per reactant and product, these networks prove far more challenging to
analyze than linear systems.

Recent studies have brought to light profound connections between chemical reaction
network theory and computer science, with the full scope of these relationships still emerging.
As Marta Dueñas-Dı́ez and Juan Pérez-Mercader note in [38], “Computation takes place not
only in the myriad of electronic devices we use daily, but also in living systems. . . via chemical
reaction mechanisms.” In this view, natural systems function as automata, performing
computation by transforming initial conditions into steady-state behavior following dynamical
rules. Indeed, chemical reaction networks form the foundation of the biological and chemical
world, and provably give rise to an expressive model of computation. These networks of chain
reactions follow the law of mass action, but the behaviors arising from those simple rules
can model all the complexity of Turing Machines and perform general computation [88, 91,
22, 30]. Harnessing the power of mass action dynamics to perform computation opens the
door to a world of potential next-generation computing paradigms. In the words of Quanta
Magazine’s Charlie Wood, “The universe constantly pulls off tasks far beyond the limits of
computers’ meager bookkeeping abilities”; where simulating a chemical reaction network at
scale could quickly become computationally intractable, the process itself can nonetheless be
observed to play out through countless examples in nature [92].

In order to harness the power of chemical reaction networks, their mathematical under-
pinnings require rigorous analysis. Large systems with complex, interconnected networks
of interactions have typically proved difficult, if not impossible, to pin down with existing
mathematical methods. Even among systems with relatively well understood equilibrium
states, such as complex balancing systems, a proof that they behave as expected – converging
to the single “obvious” equilibrium on the interior of the state space, rather than to some
other collection of boundary states – remains elusive. Without eliminating the possibility
of certain pathological behaviors in the limit, it is hard to argue that these systems form
a sound basis for a computational paradigm. In particular, the central Global Attractor
Conjecture has remained open for more than 50 years, despite a widespread expectation that
it will ultimately be resolved in the positive. In its absence, the field lacks guarantees of
well-controlled limiting behaviors and equilibria for most systems of interest.

This thesis presents a class of chemical reaction networks called simplicial reaction networks,
applicable to a rich class of computational problems, and identifies conditions sufficient to
guarantee they adhere to well-controlled, predictable behaviors. Simplicial reaction networks
are particularly interesting because they model processes on objects familiar to computer
scientists and combinatorialists: spanning trees or matchings in a graph, vector spaces,
matroids, and most generally, abstract simplicial complexes and the polytopes they define.
The resulting reaction networks can thus be used to generate a distribution over large families
of combinatorial objects that would often prove difficult to sample otherwise. In this way,
we establish a method to harness the computational power of reaction networks to directly
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produce a desired distribution, in analogy with well-known Markov chain Monte Carlo
methods.

In Chapter 2, we first present a concise background on chemical reaction networks and
outline the current state of the art, and then build on prior work to generalize the known
convergence results for so-called single linkage [7] and strongly endotactic [50] networks to
a broader class of reaction networks. This improvement is accomplished in part through
the organization of limiting behaviors into a partial order known as tiers. An idea from
measurement theory provides a conceptual link to earlier works, showing that a per-species
rather than per-complex analysis of tiers yields a stronger version of analogous results.
We observe that, while earlier results necessarily fail to apply to reaction networks under
downward closure, the new method presented in this thesis in combination with an invariant-
based linear programming algorithm succeeds in proving convergence results for some such
networks.

Following this, Chapter 3 introduces and establishes the basic properties of simplicial
reaction networks, including the space of linear invariants for all such networks. In particular,
Section 3.5 introduces a geometric method to analyze simplicial reaction networks based on
their associated polytopes, through the observation that points in these polytopes correspond
precisely to different settings of invariants in the underlying reaction network. The chapter
concludes with convergence results and proofs of the Global Attractor Conjecture for matroid,
matching, and spanning tree reaction networks in Sections 3.4, 3.6 and 3.7 respectively.

Minimum Rank and Zero Forcing

The second half of the thesis shifts focus to explore networks from a linear algebraic perspective,
motivated by the minimum rank and inverse eigenvalue problems on graphs. These problems
address the following goal: Given an unweighted graph, determine whether there exists a
weighting of edges consistent with a given structural condition on the graph’s adjacency
matrix. In the case of the minimum rank problem, the structural condition is a particular
matrix rank, and the problem asks whether there exists a choice of edge weights such that
the specified rank is achieved; and furthermore, what the minimum achievable rank is for the
given graph [57]. Minimum rank also provides a bound on the related Inverse Eigenvalue
Problem (or IEP-G), where the structural condition is instead a set of real numbers, and the
IEP-G asks whether there exists an edge-weighting such that this set forms the spectrum of
the graph’s adjacency matrix.

The minimum rank problem is of interest both as a step towards understanding the more
general IEP-G, and also as a question of independent interest. Indeed, finding a minimum rank
matrix with a given sparsity structure can be understood as determining which edge weights
provide the lowest-dimensional explanation for an observed network structure, revealing an
application to matrix completion problems. In Chapter 4, we present minimum rank and
the IEP-G, and derive new results characterizing the computational complexity of minimum
rank via a reduction from the existential theory of the reals. We show that, while finite lists
of forbidden subgraphs are sufficient to identify graphs with minimum rank 2 and below, it is
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impossible for this technique to apply for any higher ranks. We further show that for d = 3
and above, determining whether a real, symmetric matrix has minimum rank at most d is
computationally hard—and, in fact, is equivalent to the problem of solving general polynomial
systems over the reals. Section 4.5 provides the details of this reduction, giving an explicit
construction reducing any polynomial system to a 3-RANK problem. The hardness results
presented in this chapter reveal a departure in the d = 3 case from the efficient algorithms
known for d ≤ 2, as well as from those known for the equivalent problem over finite fields.

In light of this fact, in Chapter 5 we turn our attention to more readily computable
bounds on minimum rank, rather than exact computation. In a return to network dynamics,
this chapter investigates the bound on minimum rank obtained from a graph infection process
known as zero forcing. The zero forcing process can be understood as an initial set of blue
vertices propagating through an otherwise white graph; white vertices turn blue when they are
the only white neighbor of a blue vertex. Whether the process ultimately reaches all vertices
is dependent on the structure of the underlying graph as well as the choice of the initial set
of blue vertices, and the distribution of such initial sets reveals surprising connections to
other properties of the graph. Towards this end, we introduce the problem of randomized
zero forcing, analyzing the probability that a randomly chosen initial set of blue vertices is
zero forcing – that is, whether the infection process starting with this set ultimately colors
the entire graph blue. Our results include a proof that for large n, the probability of selecting
a zero forcing set for any tree is upper bounded by the corresponding probability for a path
graph; additional bounds on this probability based on vertex degrees; and the resolution of a
conjecture due to Boyer et al. [20] regarding the number of zero forcing sets of a given size
that any graph can have.
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Chapter 2

Reaction Networks and the Global
Attractor Conjecture

And the touch of a hand lit the fuse
Of a chain reaction of countermoves

- Taylor Swift, Mastermind

2.1 Introduction to Reaction Network Theory

The study of reaction networks originates in the field of mathematical chemistry, particularly
the foundational work of Horn, Jackson and Feinberg [59, 43, 46, 44], whose research sought
a rigorous understanding of the emergent dynamics of chemical chain reactions. In these
systems, chemical reactions enact changes to a distribution over chemical species, mediated
by the law of mass action: a nonlinear mechanism in which reaction rates are proportional
to the product of the current concentrations of their input species. Of particular interest is
the convergence of these systems (or lack thereof) to stable equilibrium states. From this line
of research, the Global Attractor Conjecture was quickly identified: Any system with the
seemingly natural complex balancing condition should converge to a unique globally-attracting
equilibrium. Yet, despite significant efforts and progress, the conjecture has resisted proof for
over fifty years since its inception [50, 33].

Several classically studied systems were found to fit into the reaction network framework,
including the Boltzmann equation for ideal gases [51, 19] and Hardy-Weinberg population
genetics [55, 2]; as well as the more general context of quadratic dynamical systems [77].
In subsequent years, the theory of reaction networks continued to develop as a model of
independent interest to mathematicians, computer scientists, and biologists alike. Applications
have ranged from models of drug interaction and analysis of biochemical signal transduction
[49, 89, 69] to design of molecular control circuitry [91] to pure mathematical interest in
the context of Petri nets and toric dynamical systems [10, 86]. The expressiveness and
power of this model are further evident from a computability perspective: Certain forms of
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reaction networks have been found to be sufficiently expressive to use as a general-purpose
programming language which, when “compiled” into physical systems obeying the law of mass
action, produce a state that encodes the outcome of an arbitrary computation [88, 91, 22, 30].
Other works build reaction network-based computational schemes while restricting to more
specific domains, including signal processing, machine learning, and computing functions
[71, 3, 23, 80]. Chapter 3 will explore a new direction of computation achievable by reaction
networks, in which a reaction network is designed to carry out a sampling task by generating
a desirable stationary distribution, in analogy to a Markov chain. In contrast to a Markov
chain, however, the introduction of a nonlinear dependence on the current state allows for
an explosive increase in the complexity of possible behaviors – both a feature (allowing for
expressive computation) and a challenge (in proving the convergence properties required to
make such a system useful).

Approaching computational problems using reaction networks is a promising new fron-
tier; yet critical mathematical properties of these networks, and specifically convergence to
equilibrium, remain far from well understood. What conditions are necessary or sufficient to
achieve convergence to a single, stable global attractor? What limiting behaviors are possible,
and how quickly do they occur? Which areas in the state space are off-limits for a given
system, and which might be visited after enough time has passed? Each of these questions is
intimately related to the Global Attractor Conjecture, as well as the question of whether a
given dynamical system’s trajectory stays sufficiently far away from the boundary of the state
space [87, 44]. Using tools spanning nonlinear differential equations, experimental simulation,
algebraic geometry, graph theory, and more, incremental progress on these questions continues;
this chapter and the next present new work toward that goal. In this chapter, we take a
broad view of reaction networks, with the main result providing a sufficient condition for
convergence based on network structure – independent of specific values of parameters such
as rate constants. This follows and expands on other recent work following a dynamical
approach, with some interesting insights applied from the field of measurement theory. The
following chapter takes a new perspective, approaching the problem from a combinatorial
and geometric angle. There, we define the class of simplicial reaction networks to encompass
desirable properties for sampling applications in theoretical computer science, and prove
analogous convergence results in this setting.

In the current chapter: Section 2.2 introduces the formal definitions of a reaction network,
its dynamics, and the trajectory that a system defined by a reaction network follows as
it evolves over time, and introduces some mathematical preliminaries for studying their
behavior, culminating in the statement of the Global Attractor Conjecture in Section 2.3.
Section 2.4 describes the main results of this chapter: a new structural condition based on
equivalence classes of complexes and species which is sufficient to guarantee convergence to
a unique interior equilibrium point, and an algorithm to determine whether this condition
holds. This work both provides a simpler framework for understanding prior results, and
expands the class of networks known to satisfy the Global Attractor Conjecture based purely
on network structure to include certain quadratic dynamical systems which could not be
analyzed with prior techniques.
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2.2 Preliminaries

2.2.1 Reaction Networks

A reaction network is a dynamical system in which the concentrations of different species
evolve over time. The change in concentrations is enacted by reactions: operations taking a
set of “input” (or “reactant”) species, and replacing them with a new set of “output” (or
“product”) species. We typically refer to the elements of species set S with capital letters
A,B,C . . ., and represent reactions with an arrow, evoking the chemical reactions which
initially inspired the model. For example:

A+B
β−−→ C +D

represents a reaction taking the reactant set {A,B} as input, and replacing it with product
set {C,D}. The sets (or, more generally, multi-sets) {A,B} and {C,D}, when used as the
products or reactants of a reaction, are known as complexes. Each reaction is also equipped
with an edge weight β, known as a rate constant, which will later be used to indicate the
relative speed at which the reaction occurs.

Reactions may also have bidirectional arrows, indicating that the reaction can occur
in both the forward and backward directions; and may contain more than one unit of the
same species, as demonstrated in the following chemistry-inspired reaction on species set
{N2, H2, NH3}:

N2 + 3H2 ↔ 2NH3

A reaction network is composed of species, complexes, and reactions, as well as a differential
equation describing the change over time of a state vector x, which describes how much of
each species is currently present in the system. To put this formally:

Definition 2.1 (Reaction Network). Let S be a finite set of species, and C a finite set of
complexes, each of which is a multi-set on ground set S. Let the reaction set R ⊆ C×C define
a set of ordered pairs of complexes. A reaction network is defined by the triple {S, C,R},
along with dynamics ẋ = f(x) for x ∈ R|S|

≥0.

For a given species set S with |S| = N , we index S by [N ], and refer to a species either
by name or by its index. Where clear from context, y ∈ C may also refer to the incidence
vector of species in the complex (in {0, 1}N if each species appears at most once per complex;
or in ZN

≥0 otherwise).
The complexes and reactions of a reaction network can also be viewed as defining the

vertex and edge sets, respectively, of a reaction graph G = (C,R).

For example, Figure 2.1 depicts a reaction graph with three connected components on
species set

S = {A,B,C,D,E, F,G,H, I}
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Figure 2.1: Reaction graph for an example system on nine species and seven complexes.

with complex set

C = {{A,B}, {C,D}, {E,F}, {A,E},
{C,G}, {B,F}, {H, I}}

and reactions

R = {A+B ↔ C +D,

C +D ↔ E + F,

E + F ↔ A+B,

A+ E ↔ C +G,

B + F ↔ H + I}.

For many of the results in this thesis, we will restrict attention to quadratic reaction
networks – that is, networks where each complex is composed of exactly two species, rather
than an arbitrary number – and networks which are reversible1, meaning each edge is
bidirectional. The network in Figure 2.1, for example, is both quadratic and reversible. While
many results discussed in this thesis will be seen to hold in full generality, we will primarily
restrict attention to the reversible, quadratic case, following the work on quadratic dynamical
systems in [77]. Most of the fundamental open questions and complex behaviors of reaction
network theory already appear in this setting, as well as its utility for sampling applications,
so it will provide a useful entry point for thinking about reaction networks.

2.2.2 Mass Action Kinetics

The reactions between complexes in the reaction graph act on a system by changing the
quantity of each species in the system. The state of a reaction network system at any given

1Note that the names reversible and weakly reversible originate from chemical reaction network theory,
and are not exactly analogous to the use of “reversible” in the theory of Markov Chains. Because these terms
are deeply ingrained in the reaction network literature, we use them here as defined above, and will avoid
their use in the Markov Chain context.
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Reversible For every edge (y, y′) ∈ R, the reverse edge (y′, y) ∈ R.

Symmetric For every edge (y, y′) ∈ R, the reverse edge (y′, y) ∈ R, and the
corresponding rate constants βy,y′ = βy′,y.

Weakly Reversible Every edge (y, y′) ∈ R belongs to a strongly connected
component.

Quadratic For every y ∈ C, |y| = 2.

Mass-preserving For some k ∈ N, every y ∈ C has |y| = k.

Table 2.1: Definitions for some common subclasses of reaction graphs

time t is fully described by the following vector x(t):

Definition 2.2 (State). A state is a vector x ∈ RN
≥0 representing the quantity of each species

in S. For a state x, we also call xI the concentration of species I at state x.

The definition of a reaction network is not complete without a choice of dynamics ẋ = f(x)
describing the rate at which such changes occur. But what are the most useful dynamics to
impose on such a system? A natural choice, from the perspectives of both chemistry and
abstract probabilistic models, is that of mass-action kinetics. Under mass-action kinetics,
the rate of each reaction is proportional to the product of concentrations of each of its
reactants; in a network that preserves the total concentration, or mass of the species, this
can be thought of as proportional to the probability of selecting the necessary set of reactants
when the species to include are chosen independently at random from the current probability
distribution x ∈ R|S|

≥0
2. Furthermore, the rate constant of each reaction modifies the overall

reaction rate by a linear factor. Formally, and using the notation xy to represent
∏

I∈y xI
with y ∈ C, x ∈ RN :

Definition 2.3 (Mass-action kinetics). A reaction network has mass-action kinetics if, for
each reaction (y, y′) ∈ R, there exists a constant βy,y′ > 0 such that the rate of the reaction
y → y′ at state x is βy,y′x

y.

A reaction network with this property is also known as a mass-action system, and its
dynamics are given by

ẋ(t) =
∑

(y,y′)∈R

βy,y′x(t)y(y′ − y) (2.1)

In this thesis, unless otherwise stated, all reaction networks will be assumed to use
mass-action kinetics. See Figure 2.2 for a breakdown of the terms in this equation.

2Note the role of mass preservation in this analogy: a network being mass-preserving is equivalent to the
constraint that

∑
i∈S xi is invariant under all reactions, so with the appropriate normalization to

∑
i∈S xi = 1,

a state x can be thought of as a probability distribution over S.
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Each term of the summation corresponds to a single unidirectional reaction (y, y′), and
the contribution of the term depends nonlinearly on the product of the current concentrations
of all reactants in complex y, scaled by the rate constant βy,y′ . A change of precisely
this magnitude is applied to the corresponding reaction vector (y′ − y), which reduces the
concentration of each reactant and increases the concentration of each product by the same
amount.

Figure 2.2: Annotated mass action dynamics for an example system on species set S =
{A,B,C,D,E, F,G}, at state x(t) = [.1, .1, .2, .2, .3, .05, .05], with the reaction A+B → C +D.

In particular, note that for reactions with two species per complex, the corresponding
x(t)y term is quadratic, whereas in a system with only one species in each complex, this term
would become linear, and the overall dynamics would then reduce to that of a continuous-time
Markov chain. In this sense, quadratic and higher-order reaction networks can be thought of
as a nonlinear generalization of a Markov chain.

2.2.3 Autonomous and Non-Autonomous Dynamics

When not otherwise specified, all systems discussed in this thesis are autonomous, meaning
that the edge weights βy,y′ are constant. In some special cases, we may wish to generalize
to the more general class of non-autonomous kinetics, in which the rate coefficient varies
as a function of time. We will restrict this study to only those networks where each rate
coefficient is bounded above and away from zero.

Definition 2.4 (Non-autonomous, bounded-rate mass action system). A reaction network
has non-autonomous, bounded-rate mass-action kinetics if, for each reaction (y, y′) ∈ R, there
is some function βy,y′(t) not dependent on x, and some ϵ > 0 such that ϵ < βy,y′(t) <

1
ϵ

for
all t ≥ 0, and the rate of the reaction (y, y′) at state x(t) is βy,y′(t).

Then the dynamics of the chemical reaction system are given by Equation (2.1) with
βy,y′ replaced by βy,y′(t). Here, bounded-rate refers to the fact that βy,y′(t) is bounded above
and below; non-autonomous refers to the fact that βy,y′ is a function of t. Unless otherwise
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specified, we will assume that all mass action systems are autonomous. If a theorem is
intended to hold even when a reaction network is non-autonomous, it will be explicitly noted.

Where do non-autonomous mass-action systems arise? For our purposes, they may appear
as a result of a technique known as projection, which is used to remove some species from a
mass action system by updating the rate constants to rate functions βy,y′(t) for the remaining
reactions to mimic the behavior of the initial system. This technique makes it possible to
replace an existing autonomous mass action system with a new non-autonomous system on a
strictly smaller species set, possibly creating advantageous graph structures in the process,
without changing the overall behavior of the system; see Section 2.4.5 for more on this point.

2.2.4 The Invariant Class

A reaction network naturally gives rise to a linear subspace describing all the possible linear
combinations of the reaction vectors; we call this the stoichiometric subspace. This subspace
describes all the possible changes that may befall the initial state, regardless of the choice of
dynamics for the reaction network:

Definition 2.5 (Stoichiometric Subspace). The stoichiometric subspace of a reaction network
is defined as

H := span{y′ − y | (y, y′) ∈ R}

Definition 2.6 (Stoichiometric Compatibility Class). Let H be the stoichiometric subspace
of a reaction network. For an initial condition x0, the stoichiometric compatibility class is the
set

SC(x0) := (x0 +H) ∩ RN
≥0

and the positive stoichiometric compatibility class is the set

SC+(x0) := (x0 +H) ∩ RN
>0

It is straightforward to see that a trajectory starting at x0 must always stay in SC(x0).
Moreover, any vector orthogonal to the stoichiometric subspace does not change no matter
which reactions occur, since x · (y′ − y) = 0 for all (y, y′) ∈ R; another way to say this is that
all such vectors lie in the space of linear invariants.

Definition 2.7 (Linear Invariant). A linear invariant of a chemical reaction network is
a linear function q(x) =

∑
I∈S xIαI for some α ∈ RN , such that for any trajectory x(t),

q(x(t)) = q(x(t′)) for all t, t′ > 0.

Definition 2.8 (Invariant Class). The invariant class IC(x0) is the set of points x ∈ RN
≥0

such that for all linear invariant functions q, q(x) = q(x0). The positive invariant class
IC+(x0) is defined analogously for x ∈ RN

>0.
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While IC ⊂ SC, depending on the dynamics of the reaction network, there may be
additional linear invariants arising from the dynamics of a system which cannot be inferred
solely from the stoichiometric subspace. In this case, there are increased restrictions on what
states can be reached along any given trajectory, and IC ⊊ SC.

Example 2.1. We now see an example where IC ≠ SC.

A
1→ C

A
1→ B

C +B
1→ 2A

The stoichiometric subspace SC = span{(B − A), (C − A), 2A − C − B} which clearly
has dimension 2. However, because the first two reactions occur at an identical rate at all

times, they act identically to the single reaction 2A
1→ B + C – just the reverse of the third

reaction. Thus the invariant class IC is spanned by the single vector {2A− C −B}; so IC
has dimension 1, and IC ⊂ SC.

However, upon further investigation, this situation is often impossible. In particular,
(1) IC ⊊ SC cannot be achieved robustly, in the sense that there always exists a small
perturbation of reaction constants after which point IC and SC coincide (see [44]); and (2)
as we will see in Lemma 2.2, SC = IC for all reversible reaction networks (which are the type
of networks of most interest in this thesis).

Lemma 2.2. For a reversible reaction network, the linear invariants are exactly given by{∑
I∈S

xIαI | (y − y′) · α = 0 ∀ (y, y′) ∈ R

}

and accordingly, IC = SC.

Proof. Let q be a linear invariant, such that q =
∑

I∈S xIαI . Then for all x we must have

q̇ =
1

2

∑
(y,y′)∈R s.t.∑

I∈y′ αI≥
∑

J∈y αJ

(∑
I∈y′

αI −
∑
J∈y

αJ

)(
xy

′ − βy,y′

βy′,y
xy
)
βy′,y = 0. (2.2)

Our goal is to show that for some choice of x, q̇(x) > 0 unless (y − y′) · α = 0. Let k be a

constant such that k > ln
(

βy,y′

βy′,y

)
for all (y, y′) ∈ R. Let

m := min
(y,y′)∈R

∣∣∣∣∣∑
I∈y′

αI −
∑
J∈y

αJ

∣∣∣∣∣
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and n > min(1, k
m

). Now for any (y, y′) ∈ R s.t.
∑

I∈y′ αI ≥
∑

J∈y αJ ,

n
∑
I∈y′

αI ≥ mn+ n
∑
J∈y

αJ > k + n
∑
J∈y

αJ .

Letting lnxI := nαI , we have∑
I∈y′

lnxI = n
∑
I∈y′

αI > k + n
∑
J∈y

αJ = k +
∑
J∈y

xJ > ln
βy,y′

βy′,y
+
∑
J∈y

lnxJ

and hence xy
′
> βy,y′βy′,yx

y.

This implies by Equation (2.2) that q̇(x) > 0 unless
∑

I∈y′ αI =
∑

J∈y αJ for all (y, y′) ∈ R
(in which case q̇(x) = 0). Thus, the linear invariants are exactly those q =

∑
I∈S xIαI such

that (y − y′) · α = 0 for all (y, y′) ∈ R.

This theorem implies that the set of invariants is independent of the reaction constants
for all reversible reaction networks. Although the proof method provided here is different,
Lemma 2.2 also follows as a consequence of a more general theorem proved in [45]:

Theorem 2.3 (Feinberg and Horn [45]). For any mass action system in which the underlying
reaction network is weakly reversible, IC = SC.

That is, the class of points reachable from x0 by applying reaction vectors is exactly the
set of points whose invariants match those of x0: All states which are reachable from one
another are also invariant compatible.

The original statement of the above theorem, and the corresponding discussion by its
author in [44], refer to the “kinetic subspace” rather than IC, but upon inspection, the two
describe identical subspaces3.

Corollary 2.4. For any weakly reversible mass action system, the linear invariants are
exactly given by

{∑
I∈S xIαI | (y − y′) · α = 0 ∀ (y, y′) ∈ R

}
In fact, the invariant class IC of a weakly reversible reaction network defines a polyhedron,

known as the invariant polytope; see, for example, [86]. This polytope will be of central
importance in Chapter 3.

3Feinberg [44] defines the kinetic subspace K as the smallest linear subspace of RN containing Im(ẋ).
This is equivalent to our definition of IC, since we take the largest linear subspace not in Im(ẋ) (i.e., the
largest subpace of invariant vectors), and define IC to be the space orthogonal to that.
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2.2.5 Trajectories, Limits, and Equilibria

Like Markov Chains and other dynamical systems, one of the primary questions to ask about
a reaction network is how x(t) changes over time. Does it approach a steady state over
sufficiently long time horizons? If so, which state does it approach? If not, how does it
behave instead: Does it exhibit multistationarity or cyclic behavior? In either case, are
these dynamics the same for all trajectories within the same invariant compatibility class
(asymptotic stability), or are they more sensitive to the choice of initial condition? Answering
these questions is a crucial prerequisite for building systems based on reaction network
dynamics. To describe the question more formally, we use the following definition:

Definition 2.9 (Trajectory). A trajectory x(t) represents the solution of the initial value
problem ẋ = f(x), x0 = x(t0) at any given time t ∈ [t0,∞).

One can think of the trajectory of a reaction network as the sequence of states reached over
time, describing the evolution of the system’s state as reactions occur and the concentrations of
species fluctuate. This trajectory describes a path through the state space RN

≥0, parameterized
by time, noting that all states along a given trajectory exist somewhere within this nonnegative
orthant. It is often meaningful to distinguish between the interior and the boundary of this
space; a state x ∈ RN

≥0 is in the interior if it has full support, and on the boundary otherwise.
With this in mind, one of the critical questions to answer will be: does a particular

trajectory x(t), with an initial condition on the interior of the state space, always remain in
the interior? Could it reach the boundary at some finite time, and even if not, does it have
any limit points on the boundary? We will see in Section 2.3 that for “well-behaved” networks
which converge to a single equilibrium distribution, that point will fall in the interior of the
state space; while other, more “pathological” behaviors (e.g., oscillation or multi-stability)
can only arise on a trajectory which reaches or approaches arbitrarily close to the boundary.
For now, we establish a few definitions to talk about these possible behaviors.

Definition 2.10 (ω-limit point). Given a dynamical system in Rn with initial condition
x0, with trajectory x(t), an ω-limit point is any point z ∈ Rn such that x(tn)→ z for some
sequence of times tn →∞. Similarly, the ω-limit set of a dynamical system for a given initial
condition x0 is the set consisting of all ω-limit points for trajectory ϕ(t, x0).

Definition 2.11 (Stationary point). A point π is stationary, or equivalently, an equilibrium if
π̇ = 0. That is, a trajectory passing through x(t) = π remains at that point at all subsequent
times, so that x(t′) = π for all t′ ≥ t.

A single mass-action system without a specified initial condition may have multiple
equilibria within an invariant class, and a single trajectory governed by a mass-action system
may have multiple ω-limit points. In fact, for a given reaction network and initial conditions,
there may well be stationary points which are not ω-limit points of that particular trajectory
(indeed, this will be the case for all but the most trivial reaction networks). For instance, see
Example 2.5 below. Furthermore, there might be ω-limit points of a trajectory which are
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not stationary. This behavior can be observed in the cyclic limiting behavior exhibited by
Example 2.6.

Example 2.5. The following system, studied in [59, 44], with rate constants β3A,A+2B =
β3B,2A+B = 0.1 and β2A+B,3A = βA+2B,3B = 1, has three stationary points in each invariant
class, and converges to a single one of them in the limit, determined by the initial conditions.
In all cases, two of these equilibria are asymptotically stable, and one is unstable; and all are
in the interior of the state space.

3A A+2B

2A+B 3B

Example 2.6. The following system, known as the Lotka–Volterra predator–prey model [68],

has a single, interior equilibrium point at [xA, xB] =
[

βB,0

βA+B,2B
,

βA,2A

βA+B,2B

]
. However, for any

initial condition other than the equilibrium point itself, the trajectory forms a cycle, which
amounts to a continuum of ω-limit points. Note that ẋ ̸= 0 at all of these points, so they are
not equilibria.

A 2A

A+B 2B

B 0

We also recall the theorem, as stated in [67], which applies to any positive semi-orbit of
a continuous, autonomous, bounded dynamical system ẋ = f(x), and apply it to reaction
networks under autonomous mass-action kinetics:

Theorem 2.7 (Follows from Lebovitz [67]). A set of states S is called permanent if a
trajectory through a point x(t) ∈ S remains in S for all t′ ≥ t. The ω-limit set for any
bounded, autonomous mass-action system is connected, closed, and permanent.

We further reduce the space of possible boundary ω-limit points using a condition called
stationary support4:

4The concept of stationary support has been previously identified in [10] and [9] using the term “semi-
locking set”. A point has stationary support exactly when the complement of its support is a semi-locking
set.
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Definition 2.12 (Stationary Support). A point π in state space ∆N has stationary support
if for all complexes y, y′ ∈ C with βy,y′ > 0,∏

I∈y

πI = 0⇔
∏
J∈y′

πJ = 0

Intuitively, stationary supported boundary points are those x where, if the reaction y → y′

cannot continue because xI = 0 for some I ∈ y, we can guarantee that no reverse reaction
y′ → y occurs to replenish xI . This is formalized in the following theorem, proved by both
Angeli, De Leenheer, and Sontag [10] and Anderson [9]:

Theorem 2.8 (Angeli, De Leenheer, and Sontag [10] and Anderson [9]). For any autonomous
mass-action system, all ω-limit points have stationary support.

2.2.6 Balancing Properties

In addition to simply finding equilibria at the species level (ie., ẋ = 0), are there additional
criteria that produce “balancing” behavior at the reaction or complex level? To answer this
question, this section introduces two classes of reaction networks first investigated by [59, 43,
58], which are defined by their kinetic, rather than structural properties. Structural properties,
such as a reaction network being reversible, symmetric, or quadratic, are determined solely
by the structure of the reaction graph, independent of the rate constants. In contrast, kinetic
properties of a mass action system require the rate constants to satisfy particular relationships,
and these properties are not necessarily preserved for different rate constants on the same
reaction graph.

Two types of balancing – complex balance and detailed balance – will be our primary
objects of study within the landscape of kinetic properties. These properties are derived from
two possible properties of positive equilibrium states. Under detailed balance, the rates of
forward and backward reactions are equal at equilibrium, in analog to the Markov Chain
definition of reversibility. However, a more apt analog is found in complex balance, in which a
similar balancing property holds at the complex level rather than the reaction level: the total
flow of mass in and out of each complex is equal. Note that the total flow of mass in and out
of each species is equal for equilibria in any type of reaction network; detailed and complex
balancing can be viewed as two generalizations of this property.

It is worth noting also that detailed balanced mass action systems are a subset of reversible
networks; and similarly, complex balanced systems are a subset of weakly reversible networks.
This correspondence will take on extra interest in our study of persistence and the Global
Attractor Conjecture in a later section.

We now proceed with the formal definitions:

Definition 2.13 (Detailed balanced state). A state x of a mass action system is detailed
balanced if βy,y′x

y = βy′,yx
y′ for all (y, y′) ∈ R.
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It is immediate from applying this definition to the dynamics of mass-action kinetics that
if detailed balancing obtains at x, then x is an equilibrium.

Detailed balanced reaction networks are exactly those reversible reaction networks for
which, at some positive equilibrium, the rates of forward and reverse reactions are identical.

Definition 2.14 (Detailed balanced network). A reversible mass action system is detailed
balanced if there exists a positive equilibrium at which detailed balancing obtains.

In general, detailed balance is a condition that depends critically on the specific reaction
rates; but if the set of reaction vectors is linearly independent, it is always possible to solve
for a detailed balanced, positive equilibrium:

Theorem 2.9 (Feinberg [44]). Given a mass action system, if the set of reaction vectors
{yi − yj | (yi, yj) ∈ R, i < j} is linearly independent, detailed balancing obtains at every
equilibrium (including any boundary equilibria).

In fact, detailed balanced networks have this property at all positive equilibria, not just
one; this is a fundamental theorem of detailed balance:

Theorem 2.10 (Horn and Jackson [59]). If detailed balancing obtains at one positive equilib-
rium, then it obtains at all positive equilibria of the reaction network.

Our other balancing condition, complex balance, describes a much larger class of reaction
networks, of which detailed balanced networks are a subset. Complex balanced networks
are a subset of weakly reversible reaction networks, not necessarily reversible ones; and in
contrast to detailed balancing, complex balance requires only that the total flows in and out
of a complex are equal, not the necessarily along each individual reaction.

Definition 2.15 (Complex balanced state). A state x of a mass action system is complex
balanced if for all complexes y, ∑

y′∈C

βy′,yx
y′ =

∑
y′∈C

βy,y′x
y

Definition 2.16 (Complex balanced network). A weakly reversible mass action system is
complex balanced if there exists a positive equilibrium at which complex balance obtains.

As with detailed balance, complex balance at a single equilibrium is sufficient to determine
that all equilibria are complex balancing.

Theorem 2.11 (Horn and Jackson [59]). If complex balancing obtains at one positive
equilibrium, then it obtains at all positive equilibria of the reaction network.

Finally, positive complex balanced equilibria are unique within a given invariant compati-
bility class:
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weakly reversible

complex balanced

reversible

detailed balanced

symmetric

Figure 2.3: Relationships between reversibility, balancing, and symmetry under mass action
kinetics

Theorem 2.12 (Birch’s theorem, [59]). For a complex balanced mass action system, there
is exactly one positive equilibrium in each invariant class. Furthermore, this equilibrium
is asymptotically stable and there is no nontrivial cyclic trajectory residing entirely in the
interior of the state space.

Note that this theorem does not preclude the existence of additional equilibria if they
reside on the boundary of the state space; and similarly, there may be cyclic trajectories or
unstable equilibria which intersect the boundary. The question of whether the unique interior
complex balance point is in fact an asymptotically stable global attractor is the subject of
the Global Attractor Conjecture in Section 2.3.

Sufficient conditions for balancing

It is immediate from the definitions that if a mass action system is symmetric, it is detailed
balanced; and if a system is detailed balanced, it is complex balanced; see Figure 2.3 for a
summary of the relationships between some of the reaction network properties defined so far.

Whether a given reaction network admits a complex balanced solution can in some cases
be determined by an invariant called the deficiency of the network, which was first defined
and studied by Feinberg [43], Horn [58], and Horn and Jackson [59]. The deficiency of a
reaction network is an integer δ := |C| − l− σ, where |C| is the cardinality of set of complexes,
l represents the number of weakly connected components in the reaction graph, and σ is the
dimension of the stoichiometric subspace H. A deficiency δ = 0 corresponds to a graph with
reaction vectors that are maximally independent given the number of connected components
in the graph, and is a sufficient condition for that network to admit a complex balanced
equilibrium for any choice of rate constants [44].

Craciun et al. [33] further showed that the space of rate constants which support complex
balancing in a given reaction network is a toric variety and characterized its combinatorial
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structure, leading to the alternate name toric dynamical system to refer to complex balanced
reaction networks.

Example 2.13 (From Feinberg [44]). Consider the following reversible network on complex
set C = {A,B,C}:

This example has |C| = 3, l = 1, and σ = 2, and so it has deficiency δ = 0 and is
complex balanced for any choice of nonzero rate constants on each edge. On the other hand,
Example 2.13 is detailed balanced exactly when βA,BβB,CβC,A = βA,CβC,BβB,A. Any other
class of rate constants does not admit any equilibrium state satisfying the detailed balancing
condition.

A note on detailed balanced equilibria

In contrast to the traditional view in reaction network theory – which tends to focus on
the modeling and analysis of small, biological or chemical systems – this thesis takes the
perspective that we are interested in large networks, with arbitrarily many species representing
combinatorial objects, and equipped with a graph structure and dynamics that naturally
arises from the objects that the species represent. Furthermore, in order to use these networks
to sample from a distribution over a large species set, it is of high importance to prove that a
given network converges to a known class of distributions.

The class of reaction networks which best fit this description are detailed balanced
networks. The following theorem characterizes the rate constants required to give rise to
detailed balance:

Theorem 2.14 (Feinberg [44]). A reversible mass action system is detailed balanced if and
only if the rate constants satisfy∏

(y,y′)

(βy,y′)
αθ
y,y′ =

∏
(y,y′)

(βy′,y)
αθ
y,y′

for all θ ∈ 1, 2, . . . , |C| − σ where {α1, . . . , α|C|−σ} are a set of linearly independent solutions
to
∑

(y,y′) αy,y′(y − y′) = 0.

For applications where convergence to a known family of distributions is required, we
typically assume the ability to set the rate constants on each edge in R to ensure that the
desired detailed balanced equilibrium exists.
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2.3 The Global Attractor Conjecture

A major motivation for the study of complex balanced and (weakly) reversible mass action
systems comes in the form of a major unsolved problem in reaction network theory. In its
simplest form, the problem asks: When is it possible for a mass action system to approach a
state where the concentration of one or more species is zero? Even in the case of complex
balancing systems, with their well-behaved reaction rates, this can still be a mystery – while
there is a unique positive equilibrium for a given initial condition, this does not guarantee
that the trajectory always approaches that equilibrium, nor does it rule out the possibility of
boundary limit points. The Global Attractor Conjecture, however, theorizes exactly that:
In the case of complex balancing systems, it posits that convergence to the unique interior
equilibrium is the only possible limiting behavior.

2.3.1 Main Conjectures

Definition 2.17 (Global attractor condition). A mass action system satisfies the global
attractor condition if there exists a unique equilibrium in each positive invariant class, which
is approached in the limit as t→∞ by any trajectory originating in that positive invariant
compatibility class.

Conjecture 2.15 (Global Attractor Conjecture, Feinberg and Horn [46]). Every complex
balanced mass action system satisfies the global attractor condition.

Definition 2.18 (Persistence condition). A mass action system is persistent if, given a start
state in RN

>0, all ω-limit points of the trajectory are in RN
>0.

Conjecture 2.16 (Persistence Conjecture, Feinberg [42]). Every weakly reversible mass
action system is persistent.

In fact, Conjecture 2.16 is strictly stronger than Conjecture 2.15: If a complex balanced
reaction network is persistent, it automatically satisfies the global attractor property as
well. This fact is non-obvious, but follows from the following theorem which clarifies the
relationship between the persistence and global attractor properties in the complex balanced
setting:

Theorem 2.17 (Siegel and MacLean [87]). Any complex balanced reaction network with
a given initial condition has as its ω-limit set either the unique, interior complex balanced
equilibrium point in its invariant class, or some set of boundary complex balanced equilibrium
points.

In other words, the only possible counterexamples to the Global Attractor Conjecture
are boundary equilibria, and – for complex balanced reaction networks – these are mutually
exclusive with convergence to the unique interior equilibrium for a given initial condition.



CHAPTER 2. REACTION NETWORKS AND THE G.A.C. 21

2.3.2 History and Recent Progress

Both the Global Attractor and Persistence Conjectures remain open, despite many attempts
and partial proofs5. Some success has been found in special cases – of particular interest are
structural conditions relating to the number of weakly connected components [7], as well as
more technical conditions such as concordance [85] and strong endotacticity [50], which are
found to be sufficient for the Global Attractor and Persistence Conjectures to hold. These
will be discussed in Section 2.4 alongside a new structural condition which generalizes some
of these results.

2.4 Structural Conditions for Convergence

Because reaction constants are rarely known precisely, and properties based on these constants
may not be robust to small perturbations, theorems that use only structural properties are
highly valuable; and much recent work has targeted expanding the list of structural conditions
which are known to imply persistence.

2.4.1 Tier Methods

The following section highlights a method for analyzing mass action systems by creating an
ordering of complexes for a given convergent subsequence of x(t), based on how quickly each
species’ concentration approaches zero (if at all). The equivalence classes in this ordering will
be known as tiers.

This technique, first introduced by Anderson [7], is sufficient to prove persistence for mass
action systems with particular connectivity properties, notably those which have a single
linkage class. Work original to this thesis, as well as work by Anderson et al. [6], further
extends the technique to the much larger class of systems which possess an edge leaving the
lowest tier, and in doing so, also simplifies an earlier proof of Gopalkrishnan, Miller, and Shiu
[50] for strongly endotatctic systems. In particular, we show here for the first time that a
significant simplification is possible for quadratic reaction networks, and the algebraic tool
used to accomplish this leads to a generalization of the prior results about tiers to the broader
family of systems with realizable orderings (as defined in Section 2.4.2).

The following definitions are adapted from Anderson et al. [6].

Definition 2.19 (Proper tier sequence). A sequence (xn)∞n=0 of positive vectors in R|S|
>0 is a tier

sequence if limn→∞ || ln(xn)||∞ =∞ and for all pairs of complexes y, y′ ∈ S ×S, limn→∞ xy
′−y

n

exists. The tier sequence is a proper tier sequence if additionally, for all n,m ∈ Z≥0, xn − xm
is in the stoichiometric subspace.

5A proof of the Global Attractor Conjecture was initially claimed by Horn and Jackson [59], but was found
to be incomplete; the claim was withdrawn in their later paper [46] which first introduced the conjecture as
an open question. Notably, Craciun [32] also recently claimed a proof of the Global Attractor Conjecture,
which was later determined to be incomplete [31, 44].
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Tiers, then, define a partition of C into subsets with different asymptotic behavior along
a given tier sequence:

Definition 2.20 (Tiers). Given a tier sequence (xn)∞n=0, define the tier ordering ⪰(xn)

such that y ≻(xn) y
′ iff limn→∞ xy−y′

n = 0 and y ∼(xn) y
′ iff limn→∞ xy−y′

n ∈ (0,+∞). The
equivalence classes over the tier ordering form a partition of C: we label the equivalence
classes k + 1 partitions T0, . . . , Tk, such that for any y ∈ Ti, y′ ∈ Tj, y ⪰(xn) y

′ iff i ≥ j.

Note that the tier numbering T0, . . . , Tk matches [6], but the tier ordering ⪰(xn) is exactly
reversed from that paper. The convention in Definition 2.20 will be followed in all places in
this document; thus the tier ordering can be understood as describing a complex’s speed of
approach to zero concentration, with a higher position in the order corresponding to a faster
approach to zero (and the tier with concentrations approaching positive constants, if any, is
labeled T0).

Anderson [7] also presents a more expansive definition of tiers, which allows for arbitrary
finite sets of vectors in RN in place of the complex set C:

Definition 2.21 (Partition along a subsequence). Let C denote any finite set of vectors in
RN . Let xn ∈ RN

>0 denote a sequence of points in the strictly positive orthant. We say that C
is partitioned along the sequence {xn} if there exists a partition T0, · · · , TP of C, called tiers,
and a constant C > 1, such that

1. If yj, yk ∈ Ti for some i ∈ {0, . . . , P}, then for all n,

1

C
xyjn ≤ xykn ≤ Cxyjn , and

2. If yj ∈ Ti and yk ∈ Ti+m for some m ∈ {0, . . . , P − i}, then

x
yj
n

xykn
→∞ as n→∞

Lemma 2.18 (Anderson [7]). Let C denote a finite set of vectors in RN . Let xn be a sequence
of points in RN

>0. Then, there exists a subsequence of {xn} along which C is partitioned.

In particular, defining C+ to contain indicator vectors for not only the complexes of the
system, but also all possible pairs of species, Lemma 2.18 guarantees that there exists a
subsequence x(q) of x(t) along which C+ is partitioned into tiers. This ordering defines a
total order over pairs of species in S × S.

2.4.2 Realizable Orderings for Quadratic Systems

Anderson [8] proved that tiers along a subsequence approaching a boundary limit point
admit a vector that indicates whether two complexes are in the same tier (in that paper’s
terminology, a “conservation relation”):
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Theorem 2.19 (Anderson [8]). Given any proper tier sequence of a reaction network, with
boundary limit point z, then there must exist a vector w ∈ R≥0, such that for y, y′ in the same
tier, w · (y − y′) = 0; and wI > 0 if and only if I /∈ supp(z).

This fact has a useful consequence: w · x is invariant across reactions that exist within a
single tier. This leads to the following observation:

Corollary 2.20. If a trajectory x(t) of the reaction network with positive initial condition
approaches a boundary limit point z along a proper tier sequence, there exists an edge between
two distinct tiers under the corresponding tier ordering.

Proof. Suppose there exists no such edge. Then for all edges y ↔ y′, w · (y− y′) = 0. Because
every reaction is invariant under w, we can write w · dx

dt
= 0. Observe also that w · z = 0, and

that w · x(t0) > 0 (by the assumption that the initial conditions at time t0 satisfy xi(t0) > 0
for every i). This is a contradiction, so some edge between distinct tiers exists.

In the quadratic case, we are able to extend Theorem 2.19 to something significantly
stronger:

Theorem 2.21. Given any proper tier sequence (xn)∞n=1 of a quadratic reaction network,
with boundary limit point z, there exists w ∈ R≥0 such that for all y, y′ ∈ C,

w · y ≥ w · y′ ⇔ y ⪰(xn) y
′

(where ⪰(xn) is the ordering over tiers along (xn)∞n=1); and wI > 0 if and only if I /∈ supp(z).

That is: It is possible to assign each species a ∈ S a real number wa, such that the
tier ordering of two complexes (a, b) and (c, d) ∈ C can be determined simply by comparing
wa + wb to wc + wd. This amounts to measuring the convergence speed of each species along
the trajectory rather than simply ordering the complexes.

To accomplish this, we borrow the idea of a utility function from measurement theory, as
described by, e.g., Scott [84]. Theorem 2.22 below will show that a quadratic reaction structure
makes it possible to quantify each species’ contribution to the tier ordering individually via a
utility function, and thus frees us to work with tiers either on a per-species or a per-complex
basis, interchangeably. The proof of Theorem 2.21 will follow quite easily from this fact.

In what follows, let ⪰ denote the ordering over complexes into tiers along a subsequence
for which the partition is well-defined.

Definition 2.22 (Realizability by a utility function). For a given set S and an ordering
⪰ over S × S, ⪰ is realizable by a utility function ϕ if and only if there exists a function
ϕ : S → R such that, for any pair (a, b) and (c, d) ∈ S × S,

(a, b) ⪰ (c, d)⇔ ϕ(a) + ϕ(b) ≥ ϕ(c) + ϕ(d)
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Naturally, it would be useful if this definition applied to the tier ordering, and indeed it
does:

Theorem 2.22. Given a proper tier sequence (xn)∞n=0 of a quadratic reaction network, the
ordering ⪰(xn) of complexes into tiers along xn is realizable by a utility function.

Proof. The ordering of complexes over tiers can be formulated as a “problem of ordered
differences” as described by Scott [84]. Note that ⪰(xn) is a quaternary relation on S (that is,
⪰(xn) compares y, y′ ∈ S × S). [84] shows that for a quaternary relation ⪰ to be realizable
by a utility function, it is necessary and sufficient for the following three conditions to hold
for all a, b, c, d ∈ S, all sequences a0, . . . an−1, b0, . . . , bn−1 (with ai, bi ∈ S, 0 < n ≤ |S|), and
all permutations π, σ of {0, . . . , n− 1}:

1. (a, b) ⪰ (c, d) or (c, d) ⪰ (a, b)

2. (a, b) ⪰ (c, d)⇒ (b, a) ⪰ (d, c)

3. If (ai, bσ(i)) ⪰ (bi, aπ(i)) for all i such that 0 < i < n, then (aπ(0), b0) ⪰ (bσ(0), a0)

Letting ⪰(xn) be the total ordering by tiers along (xn)∞n=1, all pairs of species are compa-
rable, so condition 1 holds. The complexes (a, b) and (b, a) are equivalent ways to denote the
complex containing species a and b, so we have the commutative property (a, b) ∼(xn) (b, a)
for all complexes (a, b), from which condition 2 follows directly.

It remains to show that condition 3 holds. To see this, consider any sequence of species
a0, . . . an−1, b0, . . . , bn−1 with n > 0, and any permutations π and σ of {0, . . . , n− 1}, where

lim
n→∞

xaixbσ(i)

xaπ(i)
xbi

= ki <∞ for all i such that 0 < i < n.

Suppose that condition 3 is false; that is, for some such construction, it is also the case
that

lim
n→∞

xa0xbσ(0)

xaπ(0)
xb0

= 0.

Then we can consider the product of all the terms:

lim
n→∞

n−1∏
i=0

xaπ(i)
xbi

xaixbσ(i)

= 0 ·
n−1∏
i=1

ki = 0

However, the product on the LHS of the above expression is simply a reordering of

n−1∏
i=0

xaixbi
xaixbi

= 1

which is a contradiction. So condition 3 also holds.
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We now know that ⪰(xn) is realizable by a utility function ϕ : S → R. Intuitively, such a
utility function gives us a way to translate the ordering over pairs of species into a concrete
measure on each individual species. To finish the construction, let m = mins∈S ϕ(s). Then
define ψ(s) = ϕ(s) −m, noting that subtracting a constant preserves the utility function
condition:

ψ(a) + ψ(b) ≥ ψ(c) + ψ(d)

⇔ ϕ(a) + ϕ(b)− 2m ≥ ϕ(c) + ϕ(d)− 2m

⇔ (a, b) ⪰(xn) (c, d)

Thus we may assume without loss of generality that the utility function ψ guaranteed by
Theorem 2.22 satisfies the additional property that ψ(s) ≥ 0 for all s ∈ S with ψ(a) +ψ(b) =
0⇔ ψ(a) = ψ(b) = 0.

Corollary 2.23. If ∃b ∈ S such that limn→∞(xn)b = 0, then for all a ∈ S,

ψ(a) = 0⇔ lim
n→∞

(xn)a ̸= 0

Proof. Let z = limn→∞ xn (recall that the limit exists because xn is tier-preserving). For any
a, b ∈ S such that za, zb > 0, select some c ∈ S such that zc > 0 (there is no requirement for
a, b, or c to be distinct, so this is always possible – see [7] for a discussion of why z = 0⃗ is
not a limit point of any trajectory from an interior starting point).

Then xa(q)xc(q)
xb(q)xc(q)

→ za
zb

= k for some constant 0 < k < ∞. Thus (a, c) ∼(xn) (b, c), and by

the utility function property, ψ(a) +ψ(c) = ψ(b) +ψ(c), so ψ(a) = ψ(b) for any a, b such that
za, zb > 0.

Further, for any a with za > 0, b with zb = 0, and c with zc > 0, limn→∞
xcxb

xcxa
= zb

za
= 0,

and thus ψ(c) + ψ(b) > ψ(c) + ψ(a). So ψ(b) > ψ(a) for any a, b with za > 0, zb = 0.
Recalling that ψ is defined such that it achieves its minimum value of 0 (and that, by

assumption, at least one b ∈ S has limn→∞(xn)b = 0 ), it follows that ψ(a) = 0 ⇔ za > 0
(which is equivalent to za ̸= 0 given that zi ≥ 0 ∀ i).

Theorem 2.21 now follows immediately from Theorem 2.22, letting wi = ψ(i) as defined
in the proof of Corollary 2.23.

Remark 2.24. A similar result to Theorem 2.21 was proved independently by a different
method in [6], Lemma 4.4.

A Generalization of Tiers

Unlike prior methods, the utility function method as described above also allows for a
generalization of Corollary 2.20. Other orderings over the set of complexes may also admit
utility functions S → R≥0, and if those functions are zero for all species in the support of a
limit point z yet not identically zero overall, the same argument holds to show that there is
an edge between some complexes in different equivalence classes under that total order. We
summarize this observation in the following theorem:
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Theorem 2.25 (Realizable orderings). For any boundary limit point z of x(t), and any
total ordering ⪰ on C which is realizable by a utility function ψ : S → R≥0 with ψ ̸= 0⃗ and
ψ(a) = 0 for all a ∈ supp(z), there exists w ∈ R≥0 such that for all y, y′ ∈ C,

w · y ≥ w · y′ ⇔ y ⪰ y′

and there exists a reaction (y, y′) ∈ R such that y ≁ y′.

Examples

In each example below, consider a subsequence (xn)∞n=0 of times such that limn→∞ xy
′−y

n is
well-defined for all (y, y′) ∈ R.

Example 2.26 (Log-tiers). Let

y ⪰L y
′ ⇔ lim

n→∞

log(xyn)

xy
′

n

= 0.

(That is, if y is in a higher equivalence class than y′, xy approaches zero exponentially faster
than xy

′
.) Then ⪰L is realizable by a utility function.

Example 2.27 (Approaching a constant above or below 1). Let My,y′ := limn→∞ xy
′−y

n .

Define ⪰A by:


y ≻A y

′ if My,y′ ∈ (1,∞]

y ≺A y
′ if My,y′ ∈ [0, 1)

y ∼A y
′ if My,y′ = 1.

Then ⪰A is realizable by a utility function.

Example 2.28 (Approaching from the positive or negative side). Take some subsequence
(xm)∞m=0 of (xn)∞n=0 along which, if limm→∞ xy

′−y
m = 1, it approaches 1 from either only

the positive side, only the negative side, or is exactly 1 on the entire subsequence. Denote
Ly,y′ := 1+, 1−, or 1◦ in those cases respectively, and otherwise let Ly,y′ := limm→∞ xy

′−y
m .

Define ⪰S:


(a, b) ≻S (c, d) if Lab,cd ∈ (1,∞] ∪ {1+}
(a, b) ≺S (c, d) if Lab,cd ∈ [0, 1) ∪ {1−}
(a, b) ∼S (c, d) if Lab,cd = 1◦

Then ⪰S is realizable by a utility function.

In each of these examples, applying Theorem 2.25, if the subsequence in question ap-
proaches a boundary limit point, it is either the case that 0⃗ is a utility function for ⪰ (in
which case all pairs of species reside in the same equivalence class under ⪰), or that there
exists a reaction (y, y′) with y ≁ y′. While the following section will make use of the standard
tier definition only, these examples provide a wider family of related results that could be
applied in a similar way.
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2.4.3 ELLT Networks are Persistent

The following approach unifies the previously known global attractor and persistence results
for reversible single linkage and strongly endotactic networks as described in [50], [7], and
[6], with a simpler proof that generalizes the result to the broader class of reversible “ELLT”
networks. We first consolidate some language from the three prior papers.

Definition 2.23 (Transversal tier sequence). A tier sequence is transversal if there exists
at least one reaction (y, y′) ∈ R such that y ∈ Ti, y′ ∈ Tj, and i ̸= j under the tier ordering
⪰(xn).

Definition 2.24 (Tier Descending). Let T ∗ be the set of source complexes which are minimal
among source complexes under the tier ordering ⪰(xn). (Note that for reversible networks, all
complexes are source complexes.) Then the tier sequence (xn)∞n=0 is tier descending if

1. For all y ∈ T ∗ and all (y, y′) ∈ R we have y′ ⪰(xn) y; and

2. There exist y ∈ T ∗ and (y, y′) ∈ R with y′ ≻(xn) y.

A reaction network is tier descending if every transversal tier sequence is tier descending.

With this terminology, Corollary 2.20 can be restated as saying that every proper tier
sequence in a reaction network is transversal. (This is actually the form stated in [6].)

Definition 2.25 (Partition spanning). A reaction network is partition spanning with respect
to T ⊂ C if there exists an edge (y, y′) such that y ∈ T , y′ ∈ C \ T .

With this language, we can now state a simpler sufficient condition for persistence, which
as we will later see, using Theorem 2.25, encompasses both the strongly endotactic and
single-linkage cases for reversible quadratic systems:

Definition 2.26 (ELLT). Let T be the minimal nonempty tier under the tier ordering ⪰(xn).
A proper tier sequence is ELLT (“Edge Leaving the Lowest Tier”) if the reaction network is
partition spanning with respect to T . A reaction network is ELLT if, for every convergent
subsequence q of x(t) that is is a proper tier sequence with limit point on the boundary of
the state space, q is ELLT.

Note that the ELLT condition is only required along tier ordering(s) generated by
convergent subsequences of x(t), not along all vectors in RN . This is in contrast to the
strongly endotactic condition described by Gopalkrishnan, Miller, and Shiu [50], which we
show in Theorem 2.38 requires the ELLT condition on all vectors in RN .

With this definition, we can now state the main result of this section:

Theorem 2.29. Every reversible, mass-preserving ELLT network is persistent; and the
Global Attractor Conjecture holds for all reversible, mass-preserving ELLT networks.
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Proof. Fix a reversible reaction network under mass action kinetics β, with the ELLT property.
Let R̃ = {(yi, yj) ∈ R | i < j}, the set of equivalence classes on reactions up to change of
direction.

We analyze the behavior of x(t) via the function Vµ(t) :=
∑

i=1n xi ln
(

xi

µi

)
, with µ ∈ RN

>0.

When µ is complex balanced, this is the standard Lyapunov function often used in chemical
reaction network theory; see, for example, [7]. However, in this case we proceed without any
such restriction on the value of µ. Observing that

dVµ(x(t))

dt
=
∑

y,y′∈R̃

βy,y′x
y(t)

(
1− βy′,y

βy,y′
xy

′−y(t)

)[
ln
(
xy

′−y(t)
)
− ln

(
µy′−y

)]
,

we begin with a lemma:

Lemma 2.30. Given a reversible ELLT network, suppose that x(t) has no interior limit

points. Then for every µ ∈ RN , there exists t∗ such that for all t > t∗, dVµ(x(t))

dt
< 0.

Proof. For a given proper tier sequence tn, let ȳ be some complex in the lowest tier.
Then, defining my,y′ to be the appropriate summand, we may write:

dVµ(x)

dt
= xȳ

 ∑
y,y′∈R̃

βy,y′x
y−ȳ

(
1− βy′,y

βy,y′
xy

′−y

)[
ln
(
xy

′−y
)
− ln

(
µy′−y

)] = xȳ

 ∑
y,y′∈R̃

my,y′


Note that for any a, c ∈ R with c > 0,

lim
θ→0

(1− cθ)(ln(θ) + a) = −∞

lim
θ→∞

(1− cθ)(ln(θ) + a) = −∞

Let T (y) : C → {T0, · · · , Tk} be the tier number of complex y. Then, analyzing each term
of the summation, in the four possible cases:

1. T (y) = 0 < T (y′):
xy−ȳ → c ∈ R+ as n→∞ and xy

′−y → 0 as n→∞, so

lim
n→∞

my,y′ = βy,y′c

(
1− βy′,y

βy,y′
xy

′−y

)
lim
n→∞

[
ln
(
xy

′−y
)
− ln

(
µy′−y

)]
= −∞.

2. T (y) = T (y′) = 0:
xy−ȳ → c ∈ R+ as n→∞ and xy

′−y → c′ ∈ R+ as n→∞, so

lim
n→∞

my,y′ = βy,y′c

(
1− βy′,y

βy,y′
c′
)[

ln(c′)− ln
(
µy′−y

)]
= c′′ ∈ R.
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3. T (y) = T (y′) > 0:
xy−ȳ → 0 as n→∞ and xy

′−y → c ∈ R+ as n→∞, so

lim
n→∞

my,y′ = βy,y′

(
1− βy′,y

βy,y′
c

)[
ln(c)− ln

(
µy′−y

)]
lim
n→∞

xy−ȳ = 0.

4. T (y) ̸= T (y′), T (y) > 0, T (y′) > 0:
xy−ȳ → 0 as n→∞ and xy

′−y → 0 or +∞ as n→∞, so

lim
n→∞

my,y′ = βy,y′ lim
n→∞

(1− cxy′−y)
[
ln(xy

′−y) + a
]
· lim
n→∞

xy−ȳ ≤ 0.

Thus summing over all terms,

lim
n→∞

∑
y,y′∈R̃

my,y′ = −∞, and lim
n→∞

xȳ = cȳ ∈ R≥0.

Thus there exists some n∗ such that for all n > n∗, dVµ(x(tn))

dt
< 0.

Let us return now to the full sequence x(t). For any subsequence x(tq) of x(t), tq has a
convergent subsequence tr which is a proper tier sequence, and along which we have proven
that Vµ eventually decreases. Thus, there can be no infinite subsequence x(tq) of x(t) such that
dVµ(x(t))

dt
> 0 for all t ∈ tq, and so there is some time t∗ such that for all t > t∗, dVµ(x(t))

dt
< 0.

Returning to the proof of Theorem 2.29, suppose for contradiction that x(t) has no interior
limit points. Then let (xn)∞n=0 be a convergent subsequence of x(t), and let z := limn→∞ xn.
Following a proof strategy from [62], we will construct a vector µ such that, for any given t∗,

some x(t′) with t′ > t∗ has x(t′) and µ satisfying dVµ(x(t′))
dt

≥ 0. In fact we find in Lemma 2.31
that this is the case for any trajectory with at least one boundary limit point.

Lemma 2.31. Suppose a mass-preserving reaction network has a boundary limit point z.
Then for any t∗ > 0, there exists some µ ∈ RN and some time t′ > t∗ such that dVµ(x(t′))

dt
≥ 0.

Proof. Let S := supp(z) and β := min{zi|i ∈ S}. For a given x, let T := {i ∈ S|xi > zi},
and for any δ > 0 define

(µx,δ)i =


zi + 2δ

|T | −
δ
|S| for i ∈ T

zi − 2δ|
|S−T | −

δ
|S| for i ∈ S \ T

δ
|S̄| for i ∈ S̄.

Note that this definition ensures that
∑

i∈S(µx,δ)i = 1. (In fact, the values of (µx,δ)i for i ∈ S̄
need not be identical; the proof proceeds in the same way for any values of these entries
subject to the constraint that

∑
i∈S̄(µx,δ)i = δ.)
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For any γ > 0 and any t∗ > 0, there is some x(t) ∈ (xn)∞n=0 such that t > t∗ and
|xi(t) − zi| < γ for all i ∈ S. Let x∗ be one such state, with γ < β

2
. Set δ < 1

3
β, so that

(µx∗,δ)i ≥ β
6

for all i ∈ S. We will refer to this µx∗,δ by the name µ∗ going forward.

Now define fi(x
∗
i ) = x∗i ln

(
x∗
i

µ∗
i

)
, with the continuous extension to fi(0) = 0. For any i ∈ S

we have

fi(x
∗
i )− fi(zi) = xi ln

(
x∗i
µ∗
i

)
− zi ln

(
x∗i
µ∗
i

)
=

(
1 + ln

zi
µ∗
i

)
(x∗i − zi) +

2

c
(x∗i − zi)2

from the Taylor expansion, with c ∈ [min{x∗i , zi},max{x∗i , zi}]. Note that this implies
c ≤ zi + γ < β + β

2
= 3β

2
.

fi(x
∗
i )− fi(zi) < (x∗i − zi) + ln

(
zi
µ∗
i

)
(x∗i − zi) + 3β|x∗i − zi|2

Noting that (x∗i−zi) and ln
(

zi
µ∗
i

)
have opposite signs for i ∈ S, and letting α := min{

∣∣∣ln zi
µ∗
i

∣∣∣ |i ∈
S}, we have:

fi(x
∗
i )− fi(zi) ≤ (x∗i − zi)− α|x∗i − zi|︸ ︷︷ ︸

A

+ 3β|x∗i − zi|2︸ ︷︷ ︸
B

Note that the above holds for any γ < β
2
, and no other quantities in the definition of µ∗

depend on γ. In particular, for any γ sufficiently small, |A| > |B| so that fi(x
∗
i )− fi(zi) <

(x∗i − zi).
Therefore we have

Vµ∗(x∗)− Vµ∗(z) =
∑
i∈S

[fi(x
∗
i )− fi(zi)] +

∑
i∈S̄

[
x∗i ln

x∗i
µ∗
i

− 0

]

For i ∈ S̄, |x∗i − zi| = x∗i < γ; and for any γ < µ∗
i , it is the case that x∗i /µ

∗
i < 1, so for γ

sufficiently small, we have

Vµ∗(x∗)− Vµ∗(z) <
∑
i∈S

[fi(x
∗
i )− fi(zi)] ≤

∑
i∈S

(x∗i − zi) < 0

with the final step following because x∗i > z∗i for all i ∈ S̄ and
∑

i∈S zi =
∑

i∈S x
∗
i = 1.

And so, for any γ > 0 sufficiently small, Vµ∗(x∗(t)) < Vµ∗(z) for some x∗ = x(t) with t > t∗.

Thus, by continuity of Vµ∗(x(t)), for some t′ ≥ t it must be the case that
dV ∗

µ (x(t′))

dt
≥ 0.
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Observation 2.32. The mass-preserving property is used only in the final step; without this
property, it still holds that for γ sufficiently small,

Vµ∗(x∗)− Vµ∗(z) <
∑
i∈S

[fi(x
∗
i )− fi(zi)] .

If S = ∅, then, Vµ∗(x∗) − Vµ∗(z) < 0, and the remainder of the proof using continuity of
Vµ∗(x(t)) holds. Therefore, Lemma 2.31 also holds in the setting where S = ∅, even if the
reaction network is not mass-preserving.

Corollary 2.33. If trajectory x(t) of a mass-preserving reaction network has a single boundary
limit point z with support S, then for any x ∈ RN sufficiently close to z, there exists some
µ ∈ RN such that Vµ(x) < Vµ(z). Furthermore, there exists some ϵ > 0 such that for any
specified set of values {mi : i ∈ S̄ |

∑
i∈S̄ mi = ϵ}, there is some such µ with µi = mi for all

i ∈ S̄.

For any reversible ELLT system with no interior limit point, Lemma 2.31 directly con-
tradicts our finding from Lemma 2.30. Therefore it is the case that every reversible ELLT
system has at least one interior limit point.

In the complex balanced setting, recalling Theorem 2.17, this is already sufficient to prove
that persistence and the global attractor condition hold. Similarly, in the quadratic setting,
Rabinovich, Sinclair, and Wigderson [77] showed that, given a trajectory x(t) of a quadratic
dynamical system for which some convergent subsequence has limit z with full support, then
z is stationary and moreover, x(t)→ z overall.

Outside of those settings, it is possible that a network could have some combination of
interior and boundary limit points. Corollary 2.34 shows that this is not the case: in fact, a
reversible ELLT system has only a single limit point.

Corollary 2.34. For any reaction network, if there exists some t∗ and some set M :=
{µ1, . . . , µn} ⊂ RN whose differences span RN such that dVµ

dt
< 0 for all t > t∗ and all µ ∈M ,

then x(t) converges to a single limit point.

Proof. Suppose x(t) has distinct limit points z1, z2. Using Lemma 2.30 and continuity of Vµ,

Vµ1(z1)− Vµ1(z2) = Vµ2(z1)− Vµ2(z2) = 0

for any µ1, µ2 ∈ M . This happens if and only if (z1 − z2) · (ln(µ1) − ln(µ2)) = 0. Since
{µ1 − µ2 : µ1, µ2 ∈M} spans RN , z1 = z2.

Finally, we are able to complete the proof of Theorem 2.29. Noting that, in the reversible,
mass-preserving ELLT setting, the conditions of Corollary 2.34 hold for all µ ∈ RN , and
letting M be the standard basis vectors in RN , then x(t) does indeed have a single limit point
z. Thus we conclude that all reversible ELLT networks are in fact persistent.
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Observation 2.35. We further note that the above argument is not unique to autonomous
kinetics; substituting βy,y′(t) for βy,y′, the same argument used to prove Theorem 2.29 also
applies also to (1) reversible, mass-preserving ELLT networks under bounded-rate non-
autonomous kinetics, and (2) reversible, non-mass-preserving ELLT networks under bounded-
rate non-autonomous kinetics for which some limit point z has supp(z) = ∅.

We note that this observation will become important to our treatment of networks under
projection in Section 2.4.5.

2.4.4 Applications of the ELLT Property

The following examples illustrate how Theorem 2.29 can simplify existing proofs of the
persistence and global attractor conjectures for specific classes of networks. We then explore
the case of a specific reaction network which could not be analyzed with these previously
existing methods, and apply Theorem 2.29 to prove that the persistence and global attractor
conditions hold.

Single Linkage Networks

Definition 2.27 (Single linkage). A reversible reaction network is single linkage when the
reaction graph contains exactly one connected component (in the non-reversible case, the
network is single linkage exactly when the reaction graph is weakly connected).

It follows immediately that a single linkage network is partition spanning with respect
to any T ⊂ C; and in particular, every single linkage network is ELLT, rederiving the result
from Anderson [7] in the reversible setting.

Quadratic Endotactic Networks

The strongly endotactic property weakens the above partition spanning condition by asking
it to hold only on certain types of sets T . To form T , we must pick a vector w, and define
T to be the set of source complexes whose inner products with w are maximal. (A source
complex is y ∈ C such that there exists a reaction (y, y′)). Then the corresponding property
is the existence of a reaction (y, y′) such that y ∈ T and y′ /∈ T . The following two definitions
formalize this idea.

Definition 2.28 (w-maximal [6]). For a vector w ∈ R|S|, a complex y ∈ C is w-maximal if
(1) there exists a reaction (y, y′) and (2) for any complex v such that there exists a reaction
(v, v′), then w · y ≤ w · v.

Note that in the case of an undirected reaction graph, this simply means that w ·y ≤ w ·y′
for all y′ ∈ C; in the directed case, we only stipulate that this is true for complexes that are a
source (as opposed to a product) in some reaction.
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Definition 2.29 (Strongly Endotactic [6]). A reaction network is strongly endotactic if every
w ∈ RN not orthogonal to its stoichiometric subspace has the following properties:

1. If y is a w-maximal complex, then for all reactions y → y′, w · y′ ≤ w · y

2. There exists a w-maximal complex y and a reaction y → y′ with w · y′ < w · y.

Note that for a network to be strongly endotactic, this property must hold for all w ∈ RN ,
not just those arising from a tier ordering; so this condition is significantly stricter than the
ELLT condition.

Theorem 2.36 (Anderson et al. [6]). A reaction network is strongly endotactic if and only if
it is tier descending

Theorem 2.37 (Gopalkrishnan, Miller, and Shiu [50]). If a reaction network is weakly
reversible and single linkage, then it is strongly endotactic.

Using the utility function for tiers from Section 2.4.2, we can now observe that, in the
reversible quadratic case, ELLT networks generalize strongly endotactic ones.

Theorem 2.38. Every strongly endotactic (i.e., tier descending), weakly reversible, quadratic
reaction network is ELLT.

Proof. Consider a proper tier sequence with limit point z on the boundary of the state space.
Let w ∈ RN

≥0 such that w ·y ≥ w ·y′ ⇔ y ⪰ y′ and wI > 0⇔ I /∈ supp(z) as per Theorem 2.22.
Define L = miny∈C⟨w, y⟩ and let T be the minimal tier under ⪰. Then ⟨w, y⟩ = L, ⟨w, y′⟩ > L
iff y and y′ are in different tiers and y ∈ T . There are at least 2 nonempty tiers, as per
Corollary 2.20, so some such y′ exists, and w is not orthogonal to the stoichiometric subspace.
Using the strongly endotactic condition, there exists some edge (y, y′) such that ⟨w, y⟩ = L
and ⟨w, y′⟩ > L, which completes the proof.

With this, a direct application of Theorem 2.29 completes a significantly simpler proof of
persistence for strongly endotactic, weakly reversible reaction networks in the quadratic case.

2.4.5 Example: A Persistent, Downward Closed Reaction
Network

This section presents an algorithm applying Theorem 2.29 to check for sufficient conditions
for a given network to satisfy the persistence and global attractor conditions. The algorithm
first obtains a list of candidate stationary supports T containing at least one state compatible
(with respect to linear invariants) with the interior of the state space. Then, for each such T ,
a series of deductions based on a projection technique determine whether the ELLT condition
is necessarily satisfied given a limit point with support T . We illustrate the algorithm on the
following example.
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Example 2.39. Define the set of elements E = {a, b, c, d, e, f}.
Define set

A = {{a, b, c, f}, {b, e, f}, {a, c, e}, {a, b, d}, {b, c, e}, {d, e, f}, {a, b, e}} ,

and define the species set S to be the downward closure of A, containing a total of 32 species,
including the empty set. Define the reaction set R to be all quadratic reactions (y, y′) with
y, y′ ∈ S × S such that

⊎
I∈y
I =

⊎
I∈y′

I (where
⊎

denotes multiset union). Let B := {S, C,R}

under autonomous mass-action kinetics.

Observe that this example is not composed of a single linkage class, nor is it strongly
endotactic (consider, for example, the vector w with wI = |I| for |I| ∈ {0, 1, 2}, and wI = 3
otherwise); as a result, the prior work described in Section 2.4.1 is insufficient to prove
whether or not this network is persistent.

Example 2.39 is also of combinatorial interest as an example of a simplicial reaction
network, which will be the primary subject of study in Chapter 3. In particular, this means
that the species set is downward closed: all species are subsets of a ground set E, and if
I ∈ S and J ⊆ I, then J ∈ S. The algorithm as described below uses this fact in order to
take advantage of additional optimizations; however, the algorithm could easily be adapted
to general reaction networks (with possible losses in computational tractability, depending on
network size).

First Pass: Invariant Compatibility

The first pass of the algorithm eliminates all boundary stationary supports that are incom-
patible (with respect to invariants) with all interior points. That is, after this pass we are
left with only those boundary supports which are stationary and which contain at least one
point that is invariant-compatible with at least one interior point. One procedure to check
this condition is summarized in Algorithm 1. In this algorithm, we use the fact that any set
S with stationary support for a downward closed species set is necessarily upward closed
on S; this and other theorems relating to downward closed species sets can be found in
Section 3.2.3.

Note in Algorithm 1 that for a fixed S, every stationary S ′ ⊃ S with (S ′ ∩ A) = (S ∩ A)
is uniquely defined by E∗ ⊆ E, such that S ′ := S ∪ {I − J |I ∈ S, J ⊂ I, J ⊂ E∗}. For each
candidate support S, this algorithm executes checks to rule out S if it is incompatible with
invariants or lacks stationarity, and similarly for all S ′ ⊂ S as described above.

The subroutine is stationary(S,B) simply checks whether, for each (y, y′) ∈ R with
y ∈ S, it is also the case that y′ ∈ S. The subroutine find invariant uses a linear program
to determine whether B gives rise to any linear invariant incompatible with support S, as
detailed in Appendix A. We refer the interested reader to a detailed analysis in the appendix,
with the conclusion that a single linear program suffices to determine whether each stationary
support S contains any candidate limit points, and a related observation providing a matrix
nullity condition sufficient to guarantee that a trajectory admits only a single limit point.
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Algorithm 1 Find Compatible Supports for a Downward Closed Network

Require: Reaction network B := {S, C,R} such that S is downward closed with element
set E. A← set of maximal species in the system.

1: Ā← all other species in the downward closure of A
2: L← ∅, a list of candidate supports
3: for each nonempty subset S ⊆ A do
4: S̄ ← (A ∪ Ā) \ S
5: if ∃e ∈ E such that e /∈ I for all I ∈ S then continue
6: if not find invariant(S,B) and is stationary(S,B) then
7: L← L ∪ S
8: for E∗ ⊆ E do
9: S ′ ← S ∪ {I − J |I ∈ S, J ⊂ I, J ⊂ E∗}
10: if not find invariant(S ′,B) and is stationary(S ′,B) then
11: L← L ∪ S ′

12: return L

For Example 2.39, Algorithm 1 performs 1403 stationarity checks and 3277 invariant
checks (as performed by the linear program described in Appendix A). It returns a single
boundary support, which happens to be exactly the set A. Note that this system contains
32 species total, and so näıvely checking all possible supports for stationarity and invariant
compatibility would require at least 232 such checks. With the algorithm as stated, we
improve this to a (crude) upper bound of ≤ 2|A| · 2|E| = 213 checks. Preprocessing steps (as
in, for example, the case when ∃e ∈ E with e /∈ I for all I ∈ S), and the fact that we do not
check stationarity if the invariant test does not pass, reduces this further to the observed
number of calls.

Second Pass: Projection

We now know that there exists only a single boundary stationary support that could contain
limit points of the trajectory. This enables the use of a projection argument, similar to that
of [7]. Letting S represent the single candidate stationary support found in the previous pass,
we project the network onto exactly those species in S \ S to obtain a network on a reduced
species set, but with identical dynamics to the original reaction network.

Definition 2.30 (Reduced Network). Given a reaction network B = {S, C,R, β} and a
support S ⊆ S, we define the reduced network B′ := {S ′, C ′,R′, β′(t)} obtained by projecting
B onto S \ S as follows. Let S ′ := S \ S, and let

C ′ := {y′| y′ = y ∩ S ′ for some y ∈ C} \ ∅.

That is, any complex containing no species from S ′ is not included in C ′; all other complexes
from C remain, but with any species not in S ′ removed. Note that there may be some pairs
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of distinct complexes y, y′ ∈ C such that y ∩ S ′ = y′ ∩ S ′; these become the same complex
after projection, and their respective vertices in the reaction graph are accordingly merged.
That is:

R′ := {(y′1, y′2) ∈ C ′ × C ′ | ∃(y1, y2) ∈ R such that y1 ∩ S ′ = y′1 and y2 ∩ S ′ = y′2}.

Finally, we define a specific set of non-autonomous rate functions β′(t) to ensure that reduced
network B′ has identical dynamics to the initial network B. To accomplish this, for any
species I ∈ S, the behavior of xI(t) in B must be included as a factor in the rate function of
any reaction (y, y′) with I ∈ y. That is: for a given reaction (y, y′) ∈ R′, let

β′
y,y′(t) := βy,y′

∏
I∈(y∩S)

xI(t)

where xI(t) is the trajectory of species I in B.

Because S contains only those species I such that xI does not approach zero along any
trajectory, incorporating any such xI(t) into a corresponding rate function βy,y′(t) preserves
the property that βy,y′ is positive and bounded away from zero. Furthermore, the reduced
network remains reversible: a reaction (y, y′) ∈ R remains in R′ if and only if y, y′ ∈ C ′; thus
if (y, y′) ∈ R′, so is (y′, y). While the reduced network is not mass-preserving, it admits only
a single boundary limit point z = 0⃗. Therefore, if the ELLT property holds, the network will
satisfy the conditions of Observation 2.35 to apply Theorem 2.29 and ultimately conclude
that the system is persistent.

Indeed, in Example 2.39, we observe that the reduced network always has an edge leaving
the lowest tier. This is computed by constructing a graph G whose vertices are C ′ along
with an additional vertex v∗, and placing an edge between two complexes if they are either
both in the lowest tier, or both not in the lowest tier, under the assumption there is no edge
leaving the lowest tier. We also add an edge between any complex which cannot reside in the
lowest tier and v∗. The procedure to add these edges is summarized in Algorithm 2. If this
procedure generates a graph with all complexes residing in a single connected component,
then we conclude that either there is only a single tier, or the initial assumption was false
and there is an edge leaving the lowest tier in B′.

Recalling from Corollary 2.20 that all proper tier sequences are transversal, there must
be an edge between complexes from two different tiers, so it is not the case that B′ has
only a single tier. Rather, if G has a single connected component, we conclude that the
reduced network has an edge leaving the lowest tier along every convergent subsequence of
x(t), and so B′ is a reversible ELLT network with bounded-rate non-autonomous mass-action
kinetics. Thus by Theorem 2.29 and Observation 2.35, the system is persistent and, if
complex-balanced, the unique interior equilibrium point for any given initial condition is a
global attractor. In particular, as shown in Figure 2.4, the equivalence graph generated by
Example 2.39 after projection onto S \ S has a single connected component, and we conclude
that the reduced system is persistent.
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Algorithm 2 Construct equivalence class over tiers

Require: Reaction network B′ := {S ′, C ′,R′}.
1: V ← C ′ ∪ v∗
2: E ← ∅
3: for (y, y′) ∈ R′ do
4: E ← E ∪ (y, y′) ▷ No edge leaves the lowest tier, so y is in the lowest tier iff y′ is.

5: for y ∈ C ′ do
6: if y′ ⊂ y for some y′ ∈ C ′ then
7: E ← E ∪ (y, v∗) ▷ y′ is in a lower tier than y, so y is not in the lowest tier.

8: return G

Figure 2.4: (Part of) the graph G generated by applying Algorithm 2 to Example 2.39 after
projection. Vertex 26 represents v∗. Vertices 1 through 25 represent the single-species complexes in
C′, which include ∅ and {I} for every species I ∈ S ′. All other complexes in C′ are not pictured; we
note that each has an edge to v∗ from the second for-loop of Algorithm 2. Note that G has a single
connected component.

Because the systems B and B′ share identical dynamics, persistence of the reduced network
B′ implies that any limit point of B is also supported on S ′. Based on the deductions in the
first pass of the algorithm, the only possible support satisfying this condition is S; that is,
the initial system B is also persistent and, if complex-balanced, satisfies the global attractor
condition.

2.4.6 Edges within the Lowest Tier

Building further on the analysis in Section 2.4.3, we look beyond the class of networks for
which an edge leaving the lowest tier can be guaranteed. In the absence of such an edge, we
ask: Which other reactions dominate the eventual dynamics of the system?
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Theorem 2.40. Given a symmetric, quadratic reaction network, suppose that for any proper
tier sequence such that no edge leaves the lowest tier, there instead exists at least one reaction
(y, y′) with y ∈ T0 such that limn→∞ xy

′−y(tn) ̸= 1. Then the following all hold:

1. There exists some µ ∈ RN and some t∗ such that dVµ

dt
< 0 for all t > t∗.

2. There exists a set {µ1, . . . , µN} spanning RN such that each µi satisfies the above
condition.

3. The trajectory {x(t)} has a single limit point z.

Proof. We begin with a similar analysis to that of Lemma 2.30. For a given proper tier
sequence tn, let ȳ be some complex in tier T0. Again defining my,y′ to be the appropriate
summand, and using the fact that the reaction network is symmetric, we may write:

dVµ(x)

dt
= xȳ

 ∑
y,y′∈R̃

βy,y′x
y−ȳ
(

1− xy′−y
) [

ln
(
xy

′−y
)
− ln

(
µy′−y

)] = xȳ

 ∑
y,y′∈R̃

my,y′

 .
As observed in the proof of Lemma 2.30, for any proper tier sequence tn such that an

edge leaves T0, it holds that dVµ(x)

dt
is eventually decreasing for any choice of µ. It remains to

consider those proper tier sequences without an edge leaving the lowest tier; that is, proper
tier sequences such that all reactions (y, y′) with y ∈ T0 also have y′ ∈ T0. Consider some
such sequence {tn}∞n=0. Let T (y) : C → {T0, · · · , Tk} be the tier number of complex y. Then,
analyzing each term of the summation in each of the three possible cases:

1. T (y) = T (y′) = 0:
Noting that limn→∞ xy

′−y(tn) = c ∈ R+ as n→∞, if c ̸= 1 we have

lim
n→∞

(
1− xy′−y(tn)

)
ln
(
xy

′−y(tn)
)
< 0,

and otherwise the limit approaches 0 from the negative side. Additionally, xy−ȳ → c′ ∈
R+ as n→∞, so for some c′′ ≤ 0 we have

lim
n→∞

my,y′ = βy,y′c
′
[
c′′ − 1 + ln

(
µy′−y

)]
,

with c′′ < 0 strictly for at least one such term.

2. T (y) = T (y′) > 0:
xy−ȳ → 0 as n→∞ and xy

′−y → c ∈ R+ as n→∞, so

lim
n→∞

my,y′ = βy,y′ (1− c)
[
ln(c)− ln

(
µy′−y

)]
· lim
n→∞

xy−ȳ = 0.

3. T (y) ̸= T (y′), T (y) > 0, T (y′) > 0:
xy−ȳ → 0 as n→∞ and xy

′−y → 0 or +∞ as n→∞, so

lim
n→∞

my,y′ = βy,y′ · lim
n→∞

(1− xy′−y)
[
ln(xy

′−y)− ln(µy′−y)
]
· lim
n→∞

xy−ȳ ≤ 0.
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We now consider which µ ∈ RN satisfy Condition 1. Note that if µy′ = µy for a given
(y, y′) ∈ R with T (y) = T (y′) = 0, the corresponding my,y′ = βy,y′c

′c′′ ≤ 0, with strict
inequality if c ̸= 1. Choosing µ such that µy′ = µy for all (y, y′) ∈ R is therefore sufficient to
guarantee at least one term of

∑
y,y′∈R̃my,y′ satisfies limn→∞my,y′ < 0, and all other terms

have limn→∞my,y′ ≤ 0. Thus there exists some n∗ such that for all n > n∗,

xȳ(tn)

 ∑
y,y′∈R̃

my,y′(tn)

 < 0.

Because this argument holds for each proper tier sequence, and because there is some t∗ such
that for any t > t∗, x(t) belongs to one of a finite number of proper tier sequences, it is the
case that dVµ

dt
< 0 for all t > t∗, and Condition 1 holds.

We additionally observe that the requirement that µy′ = µy can be relaxed: It is sufficient
to have | ln(µy′−y)− 1| < c for all (y, y′) ∈ R to achieve the same result. As a result, there
exists some ϵ > 0 such that perturbing µ by up to ϵ in any index leaves | ln(µy′−y)− 1| < c,
and so Condition 2 holds: there exists a set of vectors µ spanning RN such that Condition
1 holds for each. Then by Corollary 2.34, the trajectory {x(t)} has a single limit point
overall.

2.4.7 Excluded Orthants

We next explore an additional restriction arising from a similar argument to the preceding
section, which constrains trajectories approaching boundary limit points for complex balanced
systems. In particular, we find that for a given boundary limit point z, each positive
equilibrium µ will rule out certain directions of approach for any trajectory approaching z.

Definition 2.31 (Orthant). Define an orthant Qz with respect to a point z ∈ R|S| as a
partition of species set S into two groups, T and S \ T , such that a point x ∈ R|S| is in the
orthant (T,S \ T ) with respect to z if for all i ∈ T , xi > zi, and for all i ∈ S \ T , xi ≤ zi.

Theorem 2.41. For a reversible, complex balanced reaction network, an orthant Qz with
respect to a limit point z cannot contain a subsequence of trajectory points x(t) ∈ Qz if Qz

contains any positive equilibria.

To see why this holds, we begin with a fundamental observation, inspired by the derivation
in [44] of positive equilibria for complex balanced systems; here, we adapt it to describe
even boundary equilibria for reversible reaction networks. In what follows, we define R+

x

to be the set {(y, y′) ∈ R | xy > 0}; that is, reactions for which all reactants have positive
concentration at x.

It is instructive to first understand the relationship between distinct equilibria of a given
network. Under both detailed and complex balance, that relationship is characterized by a
property known as normality.
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Definition 2.32 (Normal point). A vector π ∈ RN
>0 is normal with respect to a reaction

network β with reaction set R if, for every reaction (y, y′) ∈ R, πy = πy′ .

It is immediately evident that, for any two equilibria π and σ of a detailed balanced

reaction network, πy

πy′ = σy

σy′ =
βy′,y
βy,y′

, and so
(
π
σ

)y
=
(
π
σ

)y′
for all (y, y′) ∈ R. It turns out that

this condition is both necessary and sufficient for all pairs of equilibria, not only for detailed
balanced reaction networks, but also for complex balanced ones, as shown in the following
theorem.

Lemma 2.42. For a reversible reaction network, x ∈ RN with stationary support, and
π ∈ RN

>0 a point of complex balance, the standard Lyapunov function Vπ satisfies

V ′
π(x) ≤ 0

with equality if and only if
(
x
π

)y
=
(
x
π

)y′
for all (y, y′) ∈ R+

x , and furthermore, x is an
equilibrium if and only if equality holds.

Proof. Define S := supp(x), and let ℓ :=

{
ln xI

πI
I ∈ S

1 I /∈ S
.

Then we have:

V ′
π(x) = ℓ · ẋ =

∑
y→y′∈R

βy→y′x
y(y′ − y) · ℓ.

Now, noting that all terms in R but not R+ have xy = 0, this becomes

=
∑

y→y′∈R+

βy→y′π
y x

y

πy
(y′ · ℓ− y · ℓ)

=
∑

y→y′∈R+

βy→y′π
yey·ln

x
π

(
y′ ln

x

π
− y ln

x

π

)
≤

∑
y→y′∈R+

βy→y′π
y
(
ey

′ ln x
π − ey ln

x
π

)

=
∑
y∈C+

∑
R→y

βy′→yπ
y′ −

∑
Ry→

βy→y′π
y

 ey ln x
π = 0

where in the third line we used ep(p′ − p) ≤ ep
′ − ep for all p, with equality if and only if

p′ = p, and in the final line we used complex balance of π. Thus we have V ′
π(x) ≤ 0, with

equality if and only if y′ ln x
π

= y ln x
π

for all reactions y → y′ ∈ R+; that is, if and only if(
x
π

)y
=
(
x
π

)y′
for all y → y′ ∈ R+. And furthermore, if x is an equilibrium, V ′

π(x) = 0, and so
this equality holds for all equilibria.
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It remains to show that
(
x
π

)y
=
(
x
π

)y′
for all y → y′ ∈ R+ implies that x is an equilibrium.

Suppose that for all (y, y′) ∈ R, ∏
I∈y

xI
πI

=
∏
J∈y′

xI
πJ
.

Then we have, for any y ∈ C such that xy ̸= 0,

∑
R→y

βy′→yx
y′ −

∑
Ry→

βy→y′x
y =

∑
R→y

βy′→yπ
y′ x

y′

πy′
−
∑
Ry→

βy→y′π
y x

y

πy

=
(x
π

)y ∑
R→y

βy′→yπ
y′ −

∑
Ry→

βy→y′π
y

 = 0

and so x is complex balanced. In particular,

ẋ =
∑
y∈C

∑
R→y

βy′→yx
y′ −

∑
Ry→

βy→y′x
y

 y = 0,

and x is an equilibrium.

This in turn implies Theorem 2.11 for reversible reaction networks, as well as its extension
to the boundary of the state space:

Corollary 2.43. All equilibria of a complex balanced, reversible reaction network are complex
balanced.

Returning now to prove Theorem 2.41, we apply Lemma 2.42 and Lemma 2.31 to arrive
at a contradiction.

Proof of Theorem 2.41. Suppose for contradiction that the trajectory {x(t)} continues to
pass through Qz along some subsequence approaching limit point z; that is, for any t > t0,
∃t′ > t such that xi(t

′) > zi for all I ∈ T and xi ≤ zi for all I ∈ S \ T . Suppose in addition
that there exists some positive equilibrium µ ∈ Qz (note that this implies that for all i ∈ S
not in the support of z, i ∈ T ). Using Lemma 2.42, since µ is complex balanced, we should
have V ′

µ(x) ≤ 0 for all x with stationary support.
Fix some γ > 0 such that µi > γ for all i /∈ supp(z). Let x be a point on the trajectory

x(t) with |zi − xi| < γ for all i ∈ S. For γ sufficiently small, and using µ in the place of
µ∗, it follows from an argument identical to Lemma 2.31 that there exists some such x with
Vµ(x) < Vµ(z). This contradicts the fact that Vµ(x) is decreasing for all x with stationary
support (including for all x ∈ RN

>0).

Theorem 2.41 puts strong restrictions on the directions of approach to any boundary
limit point z for complex balanced reaction networks; and, if enough of the orthants Qz
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contain equilibria, may rule out z as a limit point entirely. A natural next question for a
given candidate boundary limit point z is to ask is whether the existing normal points rule
out so many angles of approach to z that it is altogether impossible to approach along any
trajectory; or, if not, whether it meaningfully restricts the space through which the trajectory
moves. An interesting first direction for future study would be an investigation of which
combinations of recurring orthants are compatible with each other along a given trajectory,
and how the positive equilibria of the corresponding system are distributed among those
orthants.
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Chapter 3

Simplicial Reaction Networks

Creativity [...] consists largely of rearranging what we know in order to find out
what we do not know.

- George Kneller, The Art and Science of Creativity

In this chapter, we continue to focus on structural properties; that is, properties of the
reaction graph which hold regardless of the values of the reaction constants on each directed
edge. However, while past structural results have looked at properties which are generally
expected to arise only in very small reaction networks, such as those which might be studied
in a single chemical pathway, in this chapter we take a new approach which considers reaction
networks over combinatorial structures that arise naturally from a given problem domain.
The structure and properties of such networks scale to arbitrarily large problem sizes, and
the problems which they address are of considerable interest in theoretical computer science,
including the problem of sampling faces or facets of an abstract simplicial complex.

Considering first an analogy to real-world chemical reactions, the species of a chemical
reaction network are not arbitrary abstract objects, but rather molecules such as C2H3O6 or
H2O, each with a chemical formula describing which specific multiset of atoms comprise that
species. A given set of molecules cannot simply react to produce any arbitrary set of products
via a chemical reaction: Without resorting to nuclear fusion or fission, the number and type
of atoms making up the molecules in a reaction must remain constant throughout. These
rules give physically realistic chemical reaction networks additional structure not guaranteed
by the most general reaction network model. Similarly, if a reaction network is used to model
other transformations on sets of objects, it is natural to ask what constraints are imposed
by that problem domain. Several combinatorially-inspired problems naturally give rise to
analogous constraints, in which the reaction process redistributes conserved sub-units among
different species.

Simplicial reaction networks make this idea concrete by stipulating that each species of a
reaction network is composed of atomic elements, which can be neither created nor destroyed.
For example, these elements may represent edges in a graph, basis vectors in a vector space,
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or ground-set elements in a matroid. In each case, these elements are recombined by reactions
into new combinatorial objects composed of the same base ingredients; and in particular, for
simplicial reaction networks, a species can always be partitioned by a reaction into any two
complementary subsets.

In the chapter that follows, we introduce simplicial reaction networks for the first time,
and additionally define several specific families of reaction network structures which arise
automatically from working with these combinatorial objects, each of which can be seen
as an instance of a simplicial complex or its basis set. The combinatorial properties of
these networks lead to strong guarantees about their behavior, including convergence to
equilibrium via the persistence and global attractor conditions. These guarantees fulfill a
critical prerequisite to using mass action kinetics in the design of new algorithms, and in
particular, to build new algorithms for random sampling of combinatorial objects.

3.1 Simplicial Reaction Networks

To describe systems with a conserved sub-structure within each species, we coin the term
elemental, referring to the idea that species are composed of elements drawn from a common
ground set:

Definition 3.1 (Elemental). A reaction network is elemental if every species I ∈ S represents
a subset of elements from a finite ground set E, and the reactions satisfy βy,y′ = 0 if⊎

I∈y

I ̸=
⊎
I∈y′

I

(where
⊎

denotes multiset union).

We will choose special species sets for an elemental reaction network, such that useful
combinatorial properties arise in the resulting systems. In particular, we focus on those which
are downward closed under the subset operation, so that S represents the sets of an abstract
simplicial complex. In order to make meaningful use of this condition, we also guarantee
some minimal set of reactions between those species as follows:

Definition 3.2 (Simplicial Reaction Network). An elemental reaction network is simplicial if,
for every I ∈ S and for every J ⊂ I, J ∈ S; and furthermore βy,y′ > 0 for a given y, y′ ∈ S×S
if and only if

⊎
I∈y
I =

⊎
I∈y′

I.

Note that this definition implies immediately that all simplicial reaction networks are
reversible. Also note that this definition restricts attention to the quadratic case, defining the
complex set C := S × S. In Sections 3.2 and 3.7, we will also see relaxations of the nonzero
reaction constant requirement, demonstrating that in certain cases, only a small subset of
these reactions are required in order to guarantee many of the same convergence properties
enjoyed by various families of simplicial reaction networks.
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We observe that, despite the fairly severe structural constraints placed on simplicial
reaction networks, existing tools are apparently insufficient to analyze them in general.
These tools, such as the single linkage [7] and strongly endotactic [50] theorems described in
Chapter 2, tend to rely on strong connectivity properties in the reaction graph, properties
which are not present in simplicial reaction networks. It is straightforward to observe that
simplicial reaction networks have many linkage classes, as a separate linkage class exists for
each unique multiset

⊎
I∈y I for y ∈ C. Furthermore, to see that non-trivial simplicial reaction

networks are not strongly endotactic, consider the vector w with wI = |I| for |I| ∈ {0, 1, 2},
and wI = 3 otherwise. If there exist any species I ∈ S with |I| ≥ 2, then there exists at
least one reaction of the form {a}+ {b} ↔ {a, b}+ ∅ for some a, b ∈ E, and miny∈C w · y = 2.
Note also that there can exist no reaction (y, y′) with w · y = 2 and w · y′ > 2. So for any
such simplicial reaction network, w provides a simple counterexample to strong entotacticity.
The more general tools described in Section 2.4 do provide convergence results for some such
systems, but stop short of a full proof. In particular, an empirical search finds that while the
linear programming method used to analyze Example 2.39 works in many cases, there exist
examples of simplicial reaction networks on which this method, too, is insufficient to show
persistence.

Instead, we take a new approach, and first derive basic properties of all simplicial reaction
networks in Section 3.2, including a full characterization of the invariants of these systems.
We then see a few examples of simplicial reaction networks in Section 3.3, narrowing our focus
to the class of matroid reaction networks in Section 3.4. In the main result of Section 3.4,
we prove that the basis exchange property of matroids together with the invariants of the
network are sufficient to conclude that such networks satisfy persistence and the global
attractor property. Section 3.5 subsequently provides a geometric interpretation of this result,
leading to an alternate proof strategy based on the matroid polytope. We further detail how
to translate between these two views using the example of matchings reaction networks in
Section 3.6. Finally, Section 3.7 investigates a related class to simplicial reaction networks, in
which only the maximal species (or facets) of a simplicial complex are included in S, and
provides a persistence and global attractor result for such networks when the underlying
simplicial complex represents forests in a graph (so that the species in the reaction network
are spanning trees).

3.1.1 Related Work

Examples of simplicial reaction networks can be found in earlier works, particularly in the
symmetric quadratic operators over matchings in graphs as described by Rabinovich, Sinclair,
and Wigderson [77]. Simplicial reaction networks generalize the matchings reaction network
described in [77], removing the symmetry constraint and abstracting from matchings to
other classes of simplicial complexes. As observed in that paper, this paradigm can also
describe genetic algorithms with binary recombination (and without mutation) over any such
combinatorial objects.
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We also note here other definitions, similar to simplicial reaction networks, which can be
found in prior literature; and note the subtle, yet important, properties which differentiate
them from the simplicial reaction networks studied here. Most similar to the elemental
condition described earlier is the primitive atomic condition defined in Doty and Zhu [36].
A reaction is considered primitive atomic if every species I ∈ S represents a nonempty
multiset of elements from a finite ground set E, not necessarily unique, such that βy,y′ = 0
if
⊎
I∈y
I ̸=

⊎
I∈y′

I. However, in contrast to definition Definition 3.1: (1) the empty set is not a

valid element in primitive atomic networks, but is required in simplicial reaction networks;
and (2) species in a primitive atomic network may be multisets over the elements of E, not
just subsets.

Two other, more restrictive definitions from [36] are also comparable to simplicial reaction
networks: subset atomic and reachably atomic reaction networks. Subset atomic reaction
networks are primitive atomic with the additional requirement that for every e ∈ E, the set
{e} is represented by at least one I ∈ S. More restrictively, reachably atomic requires that a
reaction network be subset atomic and additionally, for any I ∈ S, there must be a sequence
of reactions whose input consists of the species I alone, and whose output is the complex
{{e} for each e ∈ I}.

In the primitive and subset atomic settings, whether persistence and other convergence
properties hold remains an open question. In contrast, in the case of reachably atomic
networks, persistence and the global attractor condition are both known to hold, as shown in
[37]. However, the proof of this fact rests heavily on the assumption that every species can
“spontaneously” (without requiring any other species to be present in the complex) decompose
into precisely its constituent elements, which is unrealistic in the combinatorial setting we
explore here. For example, note that no quadratic reaction network can be reachably atomic.

3.2 Properties of Simplicial Networks

In this section, we derive some foundational properties of simplicial reaction networks in
their full generality, with the goal of fully characterizing the invariants of these systems,
and deriving conditions to narrow down the space of possible limit points. These results
are interesting in their own right, but will also be central to the proof of Theorem 3.14 in
Section 3.4, which shows that the global attractor conjecture holds for the class of matroid
reaction networks.

3.2.1 Normal Points

We begin by characterizing the normal states of a network, which we recall from Definition 2.32
are those states in π ∈ RN

>0 such that πy = πy′ for all reactions (y, y′) ∈ R. In the following
theorem, we find a form that all normal points π of a simplicial reaction network must satisfy,
and subsequently use it to construct a convenient basis for the space of invariants. In the
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process, we also prove that the form holds for a larger class of networks which relax some
requirements from the definition of simplicial reaction networks.

Theorem 3.1. For a simplicial reaction network β, a point π with full support is normal with
respect to β if and only if there exist constants λe for each e ∈ E such that πI = π∅

∏
e∈I λe.

Proof. It is easy to check that any point with the specified form is normal. For the other
direction, let π be a normal point on species set S. For each e ∈

⋃
i∈S i, define λe = π{e}/π∅;

note that each such λe is positive, finite, and well-defined when π has full support.
Now we proceed inductively to show that for every I ∈ S, πI = π∅

∏
e∈i λe. The claim is

trivially true for all I such that |I| = 0 or |I| = 1. Suppose the claim is true for all I ∈ S
of size |I| < |J | for a given J with |J | ≥ 2. Then, there exist I,K, L ∈ S of size < |J | such
that β(I,J),(K,L) > 0 and I ⊎ J = K ⊎ L. In particular, this condition is satisfied by I = ∅,
K = J \ j for some j ∈ J , and L = {j}. By normality of π and the inductive hypothesis
applied to I, K, and L,

πIπJ = πKπL = π2
∅

∏
e∈K⊎L

λe = π2
∅

∏
e∈I⊎J

λe = πI

(
π∅
∏
e∈J

λe

)
Since π has full support, πI ≠ 0, and so the claim holds for J , completing the induction.

We see next how to extend Theorem 3.1 to points π on the boundary of the state space.
Noting that any normal π must have stationary support, consider a fixed stationary support
S. This support induces a partition of E in the following way:

Definition 3.3. An element e ∈ E is removable if, for every I ∈ S such that e ∈ I, (I−e) ∈ S.
Conversely, an element e ∈ E is non-removable if, for every I ∈ S such that e ∈ I, (I−e) /∈ S.

We confirm that these terms describe a partition of E with the following lemma:

Lemma 3.2. In a simplicial reaction network, every element e ∈ E is either removable or
non-removable.

Proof. Consider I ∈ S, with e ∈ I. Suppose first that I − e ∈ S. Then for any J ∈ S
with e ∈ J , J + (I − e) ↔ (J − e) + I is a reaction; and because I, J, (I − e) ∈ S, we
have (J − e) ∈ S as well. Similarly, suppose I − e /∈ S. Then for any J ∈ S with e ∈ J ,
J + (I − e)↔ (J − e) + I has species(I − e) /∈ S on the left side of the reaction, and at least
one species on the right side must not be in S; we know this is not the case for I, so it must
be that (J − e) /∈ S.

Remark 3.3. As a result of Lemma 3.2, in a simplicial network we may partition any set of
elements I ⊆ E into its removable elements, denoted RI , and its non-removable elements,
denoted NI .

We are now ready to state the analog of Theorem 3.1 for normal points on the boundary
of the state space.
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Theorem 3.4. For any simplicial reaction network, a state π, possibly without full support,
is normal if and only if the following three conditions hold:

1. π has stationary support S.

2. For all (y, y′) ∈ R such that y and y′ contain only species which are minimal with
respect to set inclusion in S, πy = πy′.

3. There exist λe for all removable e ∈ E, such that for all I ∈ S,

πI = πNI

∏
e∈RI

λe.

Equivalently, for any I ∈ S such that I − e ∈ S, πI = λeπI−e.

Proof. Suppose 1, 2, and 3 hold. Then for any reaction (y, y′) ∈ R,

πy =

 ∏
e∈RI | I∈y

λe

∏
I∈y

πNI
=

 ∏
e∈RJ | J∈y′

λe

∏
J∈y′

πNJ
= πy′ ,

with the second-to-last equality following because y and y′ contain the same )multi-)sets
of removable elements; and because removing those elements from every species containing
them yields a new reaction between minimal species from S.

For the other direction, it is immediate that 1 and 2 are necessary for normality. Suppose
π is normal, and let λe = πe

π∅
for each removable element e ∈ E. For any species I with some

removable element e, consider the reaction

(I − e) + e↔ I + ∅.

For π to be normal, we must have πI−eπe = πIπ∅ and so πI = πI−eπe

π∅
= λeπI−e.

Remark 3.5. In fact, only a subset of the reactions guaranteed by the simplicial property
are required in the proof of Theorem 3.4; specifically, the reactions that represent removing a
single element e from a species and adding it to the empty set.

3.2.2 Invariants

Using the observations about normal points, we will see that the invariants qe(x) =
∑

I∈S|e∈I xI
form a basis for the space of linear invariants of any simplicial reaction network.

Theorem 3.6. For a mass-preserving simplicial reaction network β, the invariants

qe(x) =
∑

I∈S|e∈I

xI

together with the trivial invariant
∑

I∈S xI form a basis for the space of linear invariants of β.
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Proof. From Lemma 2.2, we know that the space of linear invariants is exactly{∑
I∈S

xIαI | (y − y′) · α = 0 ∀ (y, y′) ∈ R

}
.

For a given invariant q(x) =
∑

I∈S xIαI , and letting π = eα , we have q(x) =
∑

I∈S xI ln πI
with (y − y′) · lnπ = 0 for all (y, y′) ∈ R. That is, ln(πy) = ln(πy′) for all (y, y′) ∈ R, and so
q(x) =

∑
I∈S xI lnπI for a normal point π with full support. Applying Theorem 3.1, we have

q(x) =
∑
I∈S

xI ln

(
1

Z

∏
e∈I

λe

)

=
∑
I∈S

(
xI ln

1

Z
+ xI

∑
e∈I

lnλe

)

= ln
1

Z

∑
I∈S

xI +
∑
I∈S

(∑
e∈I

xI lnλe

)

= ln
1

Z

∑
I∈S

xI +
∑
e∈E

lnλe
∑

I∈S|e∈I

xI

= ln
1

Z

∑
I∈S

xI +
∑
e∈E

λeqe(x)

Thus any linear invariant q(x) can be written as a linear combination of {qe(x)}e∈E together
with the trivial invariant

∑
I xI = 1.

Because qe(x) is invariant along each trajectory x(t), when the choice of trajectory is clear
from context, we will refer to this invariant as qe for simplicity.

3.2.3 Stationary Supports and Limit Points

Under the simplicial rule, stationary support sets take a very restricted form, limiting the
space of locations where boundary limit points might be found.

Theorem 3.7 (Stationary Supports for Simplicial Networks). For a simplicial reaction
network, let S be a stationary support. Suppose that, for all e ∈ E, there is some species
K ∈ S with e ∈ K. Then S is upward closed and S is downward closed.

Proof. For any I ∈ S and any J ⊃ I, let b ∈ (J \ I). Then there is some K ∈ S with b ∈ K.
Now we consider the reaction

I +K ↔ (I + b) + (K − b)
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By stationary support of S, I,K ∈ S implies that (I + b), (K − b) ∈ S. Repeating with
successive b1, . . . , bn ∈ (J \ I) yields (I + b1 + . . .+ bn) = J ∈ S. Thus S is upward closed, as
desired. Further, suppose I /∈ S, and J ⊂ I. Then J /∈ S. So equivalently, S is downward
closed.

Remark 3.8. Note that for a limit point z of a trajectory with full-support initial condition,
supp(z) satisfies the condition in the above lemma: That is, z has stationary support and for
any e ∈ E, e ∈ I for some I ∈ supp(z). So supp(z) is upward closed for all such limit points.

Remark 3.9. For any stationary support S ⊂ S, then for any I, J ∈ S with I ∩ J = ∅,
there is no species I ∪ J . To see why, suppose some such species did exist, and consider the
reaction I + J ↔ (I ∪ J) + ∅. Note that ∅ /∈ S, since upward closure of S would then imply
S = S. Furthermore, because ∅ ∈ S̄ and S is a stationary support, then either I or J (or
both) are in S̄, a contradiction.

We next apply Theorem 3.6 to weighted sums over the elements in a species to rule out
certain boundary stationary supports S, as follows:

Theorem 3.10. For a mass-preserving, simplicial mass action system, and a given support
S, suppose ∃w ∈ R|E| such that

1.
∑

e∈I we = m for all I ∈ S and for some constant m;

2.
∑

e∈J we ≤ m for all I ∈ S̄; and

3. ∃ J ′ ∈ S̄ such that
∑

e∈J ′ we < m.

Then S is not the support of a limit point for any trajectory with full-support initial condition.

Proof. Let π be a limit point with support S for the trajectory with initial condition x(t0).∑
e∈E

weqe(x(t0)) =
∑
I∈S

[∑
e∈I

wexI(t0)

]
=
∑
I∈S

[
xI(t0)

∑
e∈I

we

]
= m

∑
I∈S

xI(t0) = m

However, at limit point π we also have

∑
e∈E

weqe(π) =
∑
I∈S

[
πI
∑
e∈I

we

]
=
∑
I∈S

[
πI
∑
e∈I

we

]
+
∑
I /∈S

[
πI
∑
e∈I

we

]
< m

∑
I∈S

πI = m

A contradiction; so S is not the support of any limit point π.

In Appendix A, we apply Theorem 3.10 to create a linear program for testing whether
there exist invariants to rule out various limit point supports. The following example further
demonstrates how invariants can be used to prove that a specific simplicial reaction network
is persistent.
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Example 3.11. Suppose the two reactions over species set {∅, a, b, c, d, ab, cd} are:

b+ d↔ bd+ ∅

a+ c↔ ac+ ∅

For a given trajectory x(t), noting that
∑
i∈S

xi(t) is invariant,

∑
i∈S

xi(t)− qc − qd = xa(t) + xb(t) + x∅ is invariant∑
i∈S

xi(t)− qa − qd = xc(t) + xb(t) + x∅ is invariant∑
i∈S

xi(t)− qc − qb = xa(t) + xd(t) + x∅ is invariant∑
i∈S

xi(t)− qa − qb = xc(t) + xd(t) + x∅ is invariant

Now let us examine a candidate limit point support S, for a trajectory with full-support
initial condition. If ∅ /∈ S, then within each set {a, b}, {a, d}, {c, b}, {c, d}, at least one
of the one-element species must be in S in order to maintain the above invariants. It is
straightforward to check that this implies that either a, c ∈ S, or b, d ∈ S. But if either of
these is the case, then stationarity implies that ∅ ∈ S. We have already seen that if ∅ ∈ S, S
has full support. So this reaction network is persistent.

3.3 Classes of Simplicial Reaction Networks

We first define the class of matroid reaction networks βM, acting on the independent sets of
a matroid M. We begin by recalling the definition of a matroid in terms of its independent
sets S [75].

Definition 3.4. A matroidM is an ordered pair (E,S) consisting of a finite set E and a
collection S of subsets of E having the following properties:

1. ∅ ∈ S

2. S is downward closed; so if I ∈ S and I ′ ⊆ I, then I ′ ∈ S

3. S has the matroid exchange property : If I1 and I2 are in S and |I1| < |I2|, then there is
an element e of I2 − I1 such that I1 ∪ e ∈ S.
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It follows that a matroid can be defined in terms of its maximal elements, called bases. In
particular, we recall that for any bases B1 and B2 of matroid M, |B1| = |B2| = r, the rank
of the matroid. Furthermore, all matroids have the basis exchange property: For any bases
B1 and B2 ofM and any x ∈ B1 \B2, there is an element y ∈ B2 \B1 such that (B1 \ x)∪ y
and (B2 \ y)∪ x are both bases ofM. For other equivalent definitions of matroids and useful
theorems from matroid theory, see Oxley [75] and Schrijver [83].

Since matroids are simplicial complexes, it is straightforward to define a simplicial reaction
network based on a matroid, as follows:

Definition 3.5 (Matroid Reaction Network). Let M be a matroid with ground set E and
independent sets I, with |I| = N . Assume without loss of generality that M contains no
self-loops1. Let S := I, C := S × S, and for (y, y′) ∈ C, let (y, y′) ∈ R and βy,y′ > 0 if and
only if

⊎
I∈y I =

⊎
J∈y′ J . Then the reaction network defined by {S, C,R, β} specifies the

matroid reaction network βM on M.

Remark 3.12. Matroid reaction networks are mass-preserving, with |y| = 2 for all y ∈ C;
and so the trajectory x(t) of βM is contained in the simplex

∆N =

{
x ∈ Rn

≥0|
N∑
i=1

xi =
N∑
i=1

xi(t0)

}
.

We will typically consider matroid reaction networks to be normalized with
∑N

i=1 xi(t0) = 1.

Remark 3.13. Note that the exchange properties of matroids create a significant degree
of combinatorial structure in matroid reaction networks. Consider, for example, a matroid
reaction network which contains independent sets {a, b, c} and {c, d, e} ∈ S. The existence of
these species implies (by downward closure) independence of {c}, {a, b}, and {d, e}, among
other species, and thus we have, e.g., the resulting reaction {a, b}+{c, d, e} ↔ {a, b, c}+{d, e}
in R.

The above would be true for any simplicial reaction network; but in the matroid setting,
the matroid exchange property also guarantees that, given independent sets A = {a, b, c} and
B = {d, e} ∈ S, we have B ∪ {a} = {d, e, a} ∈ S. This observation implies the existence of
additional species and reactions in the system, such as {a, b, c}+ {d, e} ↔ {b, c}+ {d, e, a}.

We can also form simplicial reaction networks from other natural simplicial complexes in
a similar way. For a concrete example, we take the case of matchings in a graph:

Definition 3.6 (Matchings Reaction Network). A simplicial reaction network is a matchings
reaction network if the ground set E is the edge set of some graph G = (V,E), the species S
are exactly the matchings in G, and the complex set C := S × S.

1A self-loop in a matroid is a dependent set consisting of a single ground set element. If a self-loop is
present inM, define matroidM′ with ground set E′ := {e ∈ E | e does not participate in a self-loop inM},
and independent sets I. The dynamical systems βM and βM′ are identical.



CHAPTER 3. SIMPLICIAL REACTION NETWORKS 53

For many instances of simplicial complexes, there is significant computational relevance to
developing sampling schemes, understanding the mixing of such processes, and characterizing
their limiting distributions. Proving persistence is an important step towards a new approach
that builds sampling algorithms based on reaction network dynamics, as we will discuss in
Section 3.5.2.

We will see in Section 3.4 how persistence can be resolved in the case of matroid reaction
networks, even under a relaxation of the circumstances under which βy,y′ > 0 is required;
persistence is also known for matchings reaction networks, as discussed in Section 3.6. We
conjecture that an analogous result can be derived for the full class of simplicial reaction
networks; resolving the conjecture remains a major goal for future work in this area.

3.4 A Proof of the Global Attractor Conjecture for

Matroid Reaction Networks

In this section, we prove the following theorem:

Theorem 3.14. Let βM be a matroid reaction network, with x(t0) ∈ RN
>0. Then for any

limit point π of x(t) such that π has stationary support, π ∈ RN
>0.

That is, under βM, any limit point with stationary support also has full support. Recalling
from Section 2.2.5 that all limit points of a reaction network have stationary support, and
applying Theorem 2.17, Theorem 3.14 also implies the following result.

Theorem 3.15. Any matroid reaction network βM with x(t0) ∈ RN
>0 is persistent, and,

if complex balanced, converges to the unique complex balanced equilibrium in its positive
stoichiometric compatibility class.

In other words, the global attractor and persistence conjectures hold for βM.

Remark 3.16. We will actually prove something stronger. For the purposes of proving
Theorems 3.14 and 3.15, a relaxation of the quadratic completeness condition will be sufficient;
we only need those reactions which exchange a single element. Furthermore, we don’t need the
reaction network to be quadratic; we just need it to be mass-preserving (i.e.:

∑
I∈S xI(t) = 1

for all times t). The quadratic condition is one way to achieve this; more generally, it is also
true if all reactions (y, y′) ∈ R have |y| = |y′|.

For the remainder of this section, let x(t0) ∈ RN
>0, and let π ∈ RN be a limit point of x(t)

with stationary support. Define S := supp(π) ⊆ S.
Our primary tool will be a (partial) list of the invariants of x(t). For e ∈ E, let

Se = {I ∈ S|e ∈ I} and recall the marginal qe(x) =
∑

I∈Se
xI(t). Because qe(t) is invariant

for all t, we denote it by the constant qe (which depends on x(t0)). As shown in Theorem 3.6,
{qe}e∈E together with the trivial invariant

∑
i xI = 1 form a basis for the space of invariants

of βM.
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3.4.1 Stationary Supports Not Containing ∅
We first turn our attention to the possibility that ∅ /∈ S. Through Lemmas 3.17 and 3.18, we
identify an invariant that is only consistent with initial conditions on the boundary of the
state space if ∅ /∈ S; in particular, we show that ∅ /∈ S implies that x∅(t0) = 0.

Lemma 3.17. Suppose ∅ /∈ S, and let m = minI∈S |I|. Then there exists some U ⊆ E such
that rank(U) = |U ∩ I| = m for all I ∈ S.

Proof. Let

U :=
⋃

J∈S s.t. |J |=m

J.

It is clear from the definition of U that rank(U) ≥ m. We will now see that equality
holds.

Let A = {a1 . . . am} ∈ S with |A| = m, and suppose there exists some independent set
B = {b1 . . . bn} ⊆ U with |B| = n > m. In particular, for each bi ∈ B there exists at least one
Ji ∈ S such that bi ∈ Ji and |Ji| = m; denote these as J1 . . . Jn respectively (not necessarily
unique).

Then, by basis exchange, we have for some bi ∈ B a reaction

A+B ↔ (A+ bi) + (B − bi).

From this we can deduce the existence of a second reaction

(A+ bi) + (Ji − bi)↔ A+ Ji.

Note that A, Ji ∈ S, and S has stationary support, so (A+ bi) ∈ S and (Ji− bi) ∈ S. But
|Ji − bi| = m− 1, contradicting the assumption that m = minI∈S |I|. Thus, no independent
set B ⊆ U has |B| > m, and so rank(U) = m.

Now we consider |U ∩ I|. For any I ∈ S with |I| > m, pick an arbitrary K ∈ S with
|K| = m. By basis exchange, some reaction exists of the form

I +K ↔ (I − i) + (K + i)

where i is an element of I. Let I ′ := (I − i).
Since I ∈ S and K ∈ S, I ′ ∈ S. Thus, if there exists any I ∈ S with |I| > m, then there

exists some I ′ ⊂ I with I ′ ∈ S and |I ′| = |I| − 1, and proceeding inductively, there exists
some I∗ ⊂ I with I∗ ∈ S and |I∗| = m. It follows that I∗ ⊆ U , and so |I ∩ U | ≥ |I∗| = m.

Furthermore, I is independent, so |I ∩ U | = rank(I ∩ U) ≤ rank(U) = m. Thus
|I ∩ U | = m.

Lemma 3.18. Suppose ∅ /∈ S. Then x∅(t0) = 0.
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Proof. We observe the following expression, invariant for all times t:∑
u∈U

qu =
∑
I∈S

|U ∩ I| · xI(t). (3.1)

Furthermore, note that
∑

u∈U qu counts the population of each species I ∈ S exactly m times,
since by Lemma 3.17 each I ∈ S has exactly m elements in common with U . Hence we have∑

u∈U

qu =
∑
I∈S

m · xI(t) +
∑

J∈S,J /∈S

|U ∩ J | · xJ(t) (3.2)

for all times t ≥ t0. Note that each coefficient |U ∩ J | ≤ m since rank(U) = m. Now at
t = t0, Equation (3.2) gives

∑
u∈U

qu ≤ m ·
∑
I∈S

xI(t0) +m ·

(
1−

∑
I∈S

xI(t0)

)
= m (3.3)

with strict inequality unless xI(t0) = 0 for all I ∈ S such that |U ∩ I| < m.
Also, since π is a limit point, by continuity it must have the same value of the invariant∑

u∈U qu, and thus Equation (3.2) gives
∑

u∈U qu = m. This contradicts Equation (3.3) unless
xI(t0) = 0 for all I ∈ S with |U ∩ I| < m.

3.4.2 Main Convergence Result

Now, we apply the previous result to show that the only stationary support S compatible
with a fully-supported initial condition x(t0) ∈ RN

>0 is S = S.

Theorem 3.19. Exactly one of the following holds:

1. S = S.

2. qe = 0 for some e ∈ E.

3. ∅ /∈ S, qe ̸= 0 for all e ∈ E, and x∅(t0) = 0.

Proof. It is straightforward to see that (1) and (2) are mutually exclusive, since for any
e ∈ E, {e} ∈ S and qe = 0 implies that {e} /∈ S. It is also clear that (2) and (3) are mutually
exclusive, and (1) and (3) are mutually exclusive (since ∅ ∈ S).
We next show that the conditions are exhaustive:

1. If qe = 0 for some e ∈ E, then (2) holds.
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2. If qe ̸= 0 ∀ e ∈ E and additionally ∅ ∈ S, (1) holds.
To see this: If there is any e ∈ E such that {e} /∈ S, then using downward closure
of independent sets of a matroid, there exists a reaction ∅ + I ↔ (I \ {e}) + {e} for
any I ∈ S containing e. Recalling that S has stationary support, I /∈ S for any I ∈ S
containing e. This contradicts the assumption that qe ̸= 0, so {e} ∈ S ∀ e ∈ E.
Note that for any I ∈ S such that I\{e} ∈ S, there exists reaction ∅+I ↔ {e}+(I\{e}).
Since ∅, {e}, (I \ {e}) ∈ S, and S has stationary support, I ∈ S.

Proceeding inductively, we find that I ∈ S for all I ∈ S.

3. If qe ̸= 0 ∀ e ∈ E and additionally ∅ /∈ S, (3) holds.
This is proven in Lemma 3.18: for any I ∈ S such that |U ∩ I| < m, xI(t0) = 0. In
particular, x∅(t0) = 0.

This completes the proof.

We now prove Theorem 3.14, which states that, for a matroid reaction network, if
x(t0) ∈ RN

>0, then any limit point π with stationary support satisfies π ∈ RN
>0.

Proof. Let π be a limit point of x(t) with stationary support S, and suppose the initial
condition x(t0) has full support. Note that qe = 0 implies that the independent set {e} has
concentration 0 for all times t, including t0; so this case is not possible given a full-support
initial condition. Similarly, if x∅(t0) = 0, then x(t0) is not fully supported. This rules out
cases 2 and 3 in Theorem 3.19, so we have S = S.

Our main result, as stated in Theorem 3.15, then follows as a direct application of Theorem
3.14. Applying Theorem 3.14 to Theorem 2.8, all limit points of a matroid reaction network
with initial condition x(t0) ∈ RN

>0 must have support S; and applying the same result to
Theorem 2.17 in the complex balanced setting implies that the global attractor condition
holds for all matroid reaction networks.

Remark 3.20 (Quadratic Exchange Reactions). We note that the results in this section can
be generalized in the following ways. First, it is immediate that the same proof holds for
reaction networks containing complexes of size other than 2, as long as

⊎
I∈y I =

⊎
J∈y′ J (the

elemental condition) and |y| = |y′| (the mass-preserving condition). Moreover, we observe
that the proofs above only made use of reactions of the form

A+B ↔ (A \ {a}) + (B ∪ {a})

such that a ∈ A, |A| > |B|, and A,B, (A \ {a}), (B ∪ {a}) ∈ S. Defining the set of all such
reactions as the quadratic exchange reactions, we therefore conclude that the same global
attractor and persistence results hold as long as all quadratic exchange reactions are present
in R. Any other reactions satisfying the elemental condition, which may have any number of
complexes and may or may not be reversible, can be added or removed without affecting the
persistence result.
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Remark 3.21 (Non-Autonomous Networks). Similarly, we note that Theorem 3.15 still
holds if the rate constants are allowed to vary over time, as long as they are bounded away
from zero and +∞. To see this, we observe that the same invariants qe for all e ∈ E and∑

I∈S xI = 1 hold for non-autonomous matroid reaction networks. Therefore, Theorem 3.19
and Theorem 3.14 still hold: Any limit point with stationary support must have full support.
Next, we observe that βy,y′x

y satisfies Assumption 2.4 from Anderson [9]: it is monotone
increasing in xI for each I ∈ y, equals zero if any such xI = 0, and depends only on species
I ∈ y. Thus, the non-autonomous version of Theorem 2.8 from that paper applies: all limit
points of such networks have stationary support, and so we conclude that the all limit points
of the non-autonomous matroid reaction network have full support.

This generalization highlights an advantage of the method used in the proof of Theo-
rem 3.15: the only properties required are the invariants and the fact that all limit points
have stationary support, eliminating any dependence on the specifics of the reaction rates or
any other information about the equilibrium distribution which might be sensitive to changes
in those rates.

3.5 Connections with the Matroid Polytope

The following section presents an alternate proof path for Theorem 3.15, which provides
an additional layer of geometric intuition based on the matroid polytope. We will see that
this proof enables a natural generalization of the persistence and convergence results to
initial conditions without full support, given a straightforward condition on the system’s
invariants. We are also optimistic that this proof idea may be applicable to a broader class
of combinatorial objects for which a corresponding polytope is well understood; for these
reasons, we present the technique in its entirety despite having already proved the matroid
result.

Consider a trajectory x(t) of any elemental reaction network under which the invariants∑
I∈S: e∈I

xI = qe and
∑
I

xI = 1

hold. We define a mapping ι from the simplex of probability distributions on S ⊆ 2|E| to
R|E|

≥0 such that every point on the trajectory x(t) maps to a single point q, which is a convex
combination of the species incidence vectors sI , defined as follows:

q =
∑
I∈S

xIsI .

The invariant vector q specifies the values of invariants qe for the entire trajectory x(t).
Define the invariants polytope conv(S) as the convex hull of the set of species incidence

vectors sI ∈ R|E|, I ∈ S. Then every trajectory x(t) maps to a single point q ∈ conv(S).
Suppose there exists some f : 2E → R≥0, such that for all q ∈ conv(S) and all U ⊆ E,∑

e∈U

qe ≤ f(U).
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Then for any point x ∈ RN
≥0 and its corresponding invariant vector q = ι(x),∑

e∈U

qe =
∑
I∈S

|U ∩ I|xI ,

and we have ∑
I∈S

|U ∩ I|xI ≤ f(U) =
∑
I∈S

xIf(U).

Now, suppose additionally that there exists some U∗ ̸= ∅, such that for any I with xI > 0,
|U∗ ∩ I| = f(U∗). Then for any x′ with full support, such that ι(x) = ι(x′) = qe,

f(U∗) =
∑

I∈supp(x)

|U∗ ∩ I|xI =
∑

I∈supp(x′)

|U∗ ∩ I|x′I ≤
∑

I∈supp(x′)

f(U∗)x′I = f(U∗).

And so, given f , U∗, x, and x′ as specified, equality holds in the above expression: for all
I ∈ S, |U∗ ∩ I| = f(U∗). Put another way, if |U∗ ∩ I| < f(U∗) for some I ∈ S, then x is not
on the same trajectory as any x′ of full support.

3.5.1 Persistence of Matroid Reaction Networks

Suppose we have a matroid M, and let S be the independent sets of M. The matroid
polytope2 P is defined as the convex hull of the set of incidence vectors of S, identical to our
definition of the invariants polytope. We also define the following notation. For set F ⊆ E
and vector q ∈ R|E|, let q(F ) denote

∑
e∈F qf .

Theorem 3.22 (Edmonds [39]). The matroid polytope P is equivalent to

P =

{
q ∈ R|E| :

qe ≥ 0 ∀ e ∈ E
q(U) ≤ rank(U) ∀ U ⊆ E

}
.

Now, we fix some x on the boundary of the state space. Let f be the rank function ofM.
Then

|I ∩ U | ≤ rank(U) ∀U ⊆ E, I ∈ S.

Theorem 3.23. If x is stationary and does not have full support, then x maps to a point in
a facet of the matroid polytope P .

We will prove the theorem below; first, let us see its immediate consequences. If x maps
to a facet of P , then at least one of the inequalities defining P is tight. If qe = 0 for some

2Also known as the Independent Set Polytope
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e ∈ E, we have already seen that the invariant qe is incompatible with any fully-supported
starting state x(t0). Alternatively, if q(U∗) = rank(U∗) for some U∗ ⊆ E (with U∗ ̸= ∅), then∑

I∈S

|U∗ ∩ I|xI = rank(U∗) =
∑
I∈S

rank(U∗)xI

⇒ |U∗ ∩ I| = rank(U∗) ∀ I ∈ S.

Yet
|∅ ∩ U | = 0 < rank(U) for ∅ ⊊ U ⊆ E.

And so in this case, too, x is not on the same trajectory as any fully-supported x(t0).
Thus, we can conclude that for any x(t0) with full support, no points with the same invariants
as x(t0), including any limit points of the trajectory, map to a facet of the matroid polytope.

Proof of Theorem 3.23

We first refer to a more precise characterization of the matroid polytope and its facets. If P
is full-dimensional (which is the case if and only if M has no self-loops), there is a unique
minimal collection of linear inequalities defining P up to scalar multiplication, and which
correspond precisely to the facets of P .

We define a flat to be a subset U ⊆ E such that U = span(U), and we say a flat U is
inseparable if there exist no flats U1, U2 partitioning U such that rank(U1) + rank(U2) =
rank(U).

Theorem 3.24 (Edmonds [40]). If G has no self-loops, the following is a minimal system
for the matroid polytope of G:

1. qe ≥ 0 for all e ∈ E

2. q(U) ≤ rank(U) for U ⊆ E a nonempty inseparable flat.

Accordingly, for P full-dimensional, q ∈ R|E| is in a facet of P if and only if there is
equality in one or more of the inequalities in this minimal system:

Corollary 3.25. q ∈ R|E| is in a facet of P iff at least one of the following is true:

1. qe = 0 for some e ∈ E

2. q(U) = rank(U) for some U ⊆ E a nonempty inseparable flat.

We restate Theorem 3.23 using this characterization of facets:

Theorem 3.26. Let S ⊆ I be all the independent sets in the support of some stationary
distribution z ∈ R|I| of βM. Let q ∈ R|E| be the edge-distribution of z. Then one or more of
the following hold:
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1. S = I

2. qe = 0; that is, some ground set element e ∈ E is not included in any independent set
in S.

3. q(U) = rank(U) for some U ⊆ E such that U is a nonempty inseparable flat.

Equivalently, for some U ⊆ E such that U is a nonempty inseparable flat, every
independent set F ∈ S has rank(F ∩ U) = rank(U).

Proof. Fist we see that the two formulations of Condition 3 are equivalent. Every point
in P is the convex combination of the edge-incidence vectors vF of some independent sets
F ∈ S. Restricting these vF to v′F containing only those indices corresponding to U ∩ F ,
if
∑

F aFv
′
F (F ) = rank(U) with

∑
F aF = 1 (and aF non-negative, and v′F (F ) ≤ rank(U)),

then v′F (F ) = rank(F ∩ U) = rank(U) for each F .
We next prove that at least one of the conditions must hold. Assume Conditions 1-3

are all false. We also assume without loss of generality that M is connected. (If M is
not connected, it can be written as the direct sum of some nonempty connected matroids
M1, . . .Mm; in that case, we can apply the following analysis independently to each Mi.)
We begin with two basic observations, stated in two lemmas.

Lemma 3.27. There exists some F in S and some e ∈ E such that e /∈ span(F ).

Proof. Note that E is an inseparable flat. So there exists some F ∈ S such that rank(F ) <
rank(E). That is, there is some independent set F ′ ⊆ E such that |F | = rank(F ) <
rank(E) = |F ′|. Thus by the independent set exchange property, there is some e ∈ F ′ \ F
such that (F ∪ {e}) is independent.

Lemma 3.28. Let F, e be defined as in Lemma 3.27. Then for all G ∈ S such that e ∈ G,
(G \ {e}), (F ∪ {e}) ∈ S. Furthermore, some such G exists.

Proof. By assumption that Condition 2 is false, there is some G ∈ S such that e ∈ S,
and G ≠ F . By the hereditary property, (G \ {e}) ∈ S. Furthermore, rank(F ∪ {e}) =
rank(F ) + 1 = |F |+ 1 = |F ∪ {e}|, since e /∈ span(F ). So (F ∪ {e}) ∈ S. Thus βM contains
reaction F +G↔ F ′ +G′, where F ′ := (F ∪ {e}) and G′ := (G \ {e}); and by stationarity
of S, F,G ∈ S implies that F ′, G′ ∈ S.

Returning now to the main proof of Theorem 3.26, for any edge e, let S+
e ⊆ denote those

sets in S that contain e, and S−
e := S \ S+

e . Note that stationarity of S implies that S−
e is

stationary. We will now show that S−
e does not satisfy any of Conditions 1-3 on edge set

E \ {e}. Suppose that it does:

Case 1: S−
e = S−

e , all independent sets on E \ {e}.
If S+

e = ∅ or S \ S = ∅, then S = S trivially (contradicting the assumption that
Condition 1 does not hold for S); so assume neither is nonempty.
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Let G ∈ S \ S (so e ∈ G), and h ∈ S+
e . Then we have the reaction (G \ {e}) + h↔

G+ (h \ {e}). Noting that (G \ {e}) ∈ S and h ∈ S, by stationarity of S, we have
G ∈ S. Contradiction.

Case 2: For some d ∈ (E \ e), there is no h ∈ S−
e such that d ∈ h.

By assumption that S does not satisfy Condition 2, there is some G ∈ S+
e which

does contain d. Then for F as defined earlier, we have reaction (F ∪ {e}) ∈ S and
(G \ {e}) ∈ S. But d ∈ (G \ {e}) ∈ S−

e . Contradiction.

Case 3: There exists U ⊆ (E\{e}) an inseparable flat such that for all h ∈ S−
e , rank(F∩U) =

rank(U).

Then consider arbitrary G ∈ S+
e . By Lemma 3.28, (G\{e}) ∈ S−

e . Then since e /∈ U ,
rank((G \ {e}) ∩ U) = rank(G ∩ U) = rank(U).

Let U ′ = span(U). Then rank(U ′) = rank(U) = rank(G ∩ U) for all G ∈ S+
e .

If U ′ = U , U ′ is inseparable. Else, U ′ = U ∪ {e}. In this case, suppose

rank(U1) + rank(U2) = rank(U ′) = rank(U)

for some partition (U1, U2) of U ′. Then (assuming WLOG that e ∈ U1)

rank(U1 \ {e}) + rank(U2) ≤ rank(U)

and since rank(A) + rank(B) ≥ rank(A ∪B) for any A,B, we have equality in the
above expression, and so (U1 \ {e}, U2) is a separation for U ; contradiction. So U ′ is
an inseparable flat such that for all F ∈ S, rank(F ∩ U) = rank(U ′).

But we assumed that Condition 3 is false for S; contradiction.

We have seen that for any stationary set S ⊆ S, if S satisfies none of Conditions 1-3, then
neither does stationary set S−

e for some e ∈ E. We can repeat the same process until we have
a matroid reaction network defined over the ground set E = {d} for a single d ∈ E. Now any
stationary set S of this reaction network either satisfies Condition 1 (it contains both {d}
and ∅, so S = S), Condition 3 (d appears in no set in S), or Condition 2 (S contains {d}
only, and for inseparable flat U = {d} and for every F ∈ S, rank(F ∩ U) = 1 = rank(U)).
Contradiction.

So at least one of Conditions 1-3 is satisfied for any stationary S, concluding the proof of
Theorem 3.26.

Remark 3.29. Since Theorem 3.26 is just a restatement of Theorem 3.23, we have also
proved the latter.

Corollary 3.30. A stationary population p of βM has full support if and only if ι(p) lies in
the interior of P.
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Proof. Noting that conditions 2 and 3 of Theorem 3.26 are identical to the definition of a
facet of P , Theorem 3.26 immediately implies that for any stationary p without full support,
p lies in a facet of P .

It does not take much extra work to show the converse is also true. First note that if
p has full support, then in particular each independent set consisting of a single element
has nonzero concentration; so, using qe as defined previously, qe > 0 for all e ∈ E. So
Condition 1 of Corollary 3.25 is not satisfied. Similarly, when p has full support, Lemma
3.28 showed that there is some e ∈ E such that for any G ∈ S+

e , G′ = (G \ {e}) ∈ S.
Consider the set U = span(e). It is simple to check that U is an inseparable flat. But
rank(G∩U) > 0 = rank(G′ ∩U). So Condition 2 of Corollary 3.25 does not hold either, and
so for any stationary population p with full support, iota(p) does not lie in a facet of P .

Theorem 3.31. The matroid reaction network βM with any (full-support) initial condition
is persistent.

Proof. First note that for any x ∈ R|S| with full support (whether or not it is stationary),
Conditions 1 and 2 of Corollary 3.25 cannot hold. So in particular, ι(x(t0)) is not in a facet
of P . Furthermore, the entire trajectory of x is mapped to a single point in P , and this point
is not in a facet of P if and only if the stationary population has full support. So if x(t0) has
full support, the stationary population reached from this initial point has full support.

3.5.2 Generating Full-Support Distributions

Traditionally, reaction network theory has been primarily concerned with proving persistence
and convergence results for systems with an initial condition in the interior of the state space,
as we have done in the preceding sections. We ask an additional question here. Suppose
a system, such as a matroid reaction network, has an initial condition x(t0) that does not
have full support, i.e., xI(t0) = 0 for some I ∈ S. Under what conditions does this system
still converge to an equilibrium distribution with full support? This question is of particular
interest in applications to sampling combinatorial objects, such as independent sets or bases
of a matroid, or matchings in a graph, a question studied in much recent work, including
Anari, Oveis Gharan, and Vinzant [5] in the case of matroid bases. In this setting, it is
desirable to create a process which does not require an initial distribution supported on
all the target structures, but rather uses the reactions to generate them from a small but
sufficiently rich initial support. Knowing that such a system converges to a full-support
distribution – and often, as in the case of detailed balanced reaction networks, a distribution
which is easily determined from the initial conditions – provides a mechanism to sample from
that distribution.

The polytope method for proving the results on matroid reaction networks neatly provides
a result in this vein. That is, it provides a condition under which initial distributions without
full support are guaranteed to have full-support limit points and, if complex balanced, are
guaranteed to converge to the unique full-support complex balanced equilibrium consistent
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with that initial condition. Because all stationary points without full support map to points
in the facets of the matroid polytope P , it is sufficient to choose an initial condition which is
not in a facet of P .

Corollary 3.32. For a matroid reaction network βM with any initial condition x(t0), the
image of which under the mapping ι does not lie in a facet of the matroid polytope P , βM
is persistent and, if the system is complex balanced, x(t) converges to the unique positive
complex balanced equilibrium in its stoichiometric compatibility class.

Recalling that x(t0) is in a facet of P exactly when either qe = 0 for some e ∈ E or
q(U) = rank(U) for some U ⊆ E a nonempty inseparable flat ofM, it is now possible to check
in polynomial time whether any given initial condition necessarily generates a full-support
equilibrium.

We note that, while the flats of a matroid can be listed in time polynomial in the output
size, the total number of flats may not be polynomial in |E| [70]. However, assuming the
existence of an oracle for matroid independence or rank, there are nonetheless polynomial
time algorithms for solving polytope membership and most violated inequality problems on
submodular functions, of which the matroid rank function is an example; see, for example,
[34] and [72].

For additional intuition, we note that certain simpler conditions on the invariant vector q
are also sufficient to guarantee that x(t0) is on the interior of P . For example, it is sufficient
for q = ι(x(t0)) to satisfy both qe ≠ 0 for all e ∈ E and x∅(t0) +

∑
e∈E qe =

∑
I∈S xI(t0) = 1.

To see this, suppose x(t0) has support S := {I ∈ S | |I| ≤ 1}. It is immediate that this
state satisfies both of the stated conditions. Furthermore, for any I = {e1, . . . , ek} ∈ S \ S,
there exists a series of reactions generating I starting from only species in S, as follows.

{e1}+ {e2} → {e1, e2}+ ∅
{e1, e2}+ {e3} → {e1, e2, e3}+ ∅

...

{e1, . . . , ek−1}+ {ek} → I + ∅

With an appropriate choice of sufficiently small coefficients αy,y′ for each successive reaction,
there exists a linear combination of reaction vectors r :=

∑
(y,y′)∈R αy,y′(y

′ − y) such that

x(t0) + r ∈ RN
>0. This tells us that there exists some x′ := x(t0) + r in the simplex with full

support and with invariant vector ι(x′) = q; so by Corollary 3.25, q is not in a facet of P .
Thus ι(x(t0)) = q is likewise not in a facet of P .

3.5.3 Other Polytopes

We note here other combinatorial reaction networks on which the invariants polytope is
well-defined, which suggest future work to which the polytope method could apply.
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Matroid Intersection Reaction Networks

For two matroidsM1,M2 on the same set E, with independent sets S1,S2 and rank functions
r1, r2 respectively, let S be the independent sets in S1 ∩ S2. The invariants polytope is then
equivalent to the matroid intersection polytope, defined as

P =
{
q ∈ R|E| | q(U) ≤ min(r1(U), r2(U)) ∀ U ⊆ E and qe ≥ 0 ∀ e ∈ E

}
= conv(S)

Matroid Bases Reaction Networks

For a matroid M on E, let S be the set of bases of M. The invariants polytope is given by
the matroid basis polytope PB, defined as

PB =
{
q ∈ R|E| | q(U) ≤ rank(U) ∀ U ⊆ E, q(E) = rank(M), and qe ≥ 0 ∀e ∈ E

}
= conv(S)

Thus, for any x in a facet of PB, either qe = 0 for some e ∈ E (in which case x is trivially
incompatible with any full-support initial state), or q(U∗) = rank(U∗) for some U∗ ⊆ E.
Assuming the latter, we know that for any basis I ∈ S such that xI > 0, |I ∩U∗| = rank(U∗).
In order to get persistence for the matroid basis reaction network, then, it would be sufficient
to show that, for some other I ′ ∈ S (with I ′ not in the support of x), |I ′ ∩ U∗| < f(U∗).

Polymatroid Reaction Networks

Given a submodular f : 2E → R+, the associated polytope is known as a polymatroid, and is
defined as

Pf =
{
q ∈ RE

+ | q(U) ≤ f(U) ∀ U ⊆ E
}

The polymatroid is a generalized permutahedron, translated to have a vertex at the origin.
Note that a permutahedron is the convex hull of all permutations of the coordinates of a
single vector in RE; the generalized permutahedron can have some deformations applied to
these vertices, while preserving edge direction and orientation. If Pf is the convex hull of
some vectors S, we can define a corresponding simplicial reaction network on S × S.

3.6 Persistence of Matchings using Invariants

One natural and important example of matroid intersection is bipartite matching. The
persistence of the matchings reaction network was already shown via a polytope method in
an unpublished manuscript of Rabinovich, Sinclair, and Wigderson [76]; this section shows
how to construct a set of invariants which witness that fact, using our new understanding of
the two complementary proof paths.

In [76] it is shown that for any stationary support S corresponding to a limit point z⃗ of
βmatch, at least one of the following is the case:

1. For some e ∈ E, e /∈ I for all I ∈ S
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2. For some vertex v, v is in some edge of every matching I in S.

3. There exists some odd subset U ⊆ V such that every matching in S has |U |−1
2

edges
with both endpoints in U

4. S = S

For each of conditions 1-3, we can provide an invariant showing that for any fully-supported
initial condition, S does not satisfy the condition.

1. qe where e /∈ I for all I ∈ S

2.
∑
e∈A

qe where A is the set of edges adjacent to v

3.
∑

e∈EU

qe where EU is the set of edges with both vertices in U

In case 1, for any I ∈ S containing e, xI(t0) > 0, and so qe(x(t0)) > 0. Yet qe(z) = 0, a
contradiction.

Note that cases 2 and 3 both correspond to finding a nonempty set U such that for all
J ∈ S, |U ∩ J | = maxI∈S |U ∩ I|. Then we have

∑
u∈U

qu(z) =
∑
I∈S

xI(z) · |U ∩ I| = max
I∈S
|U ∩ I|

while

∑
u∈U

qu(x(t0)) =
∑
I∈S

xI(t0) · |U ∩ I| < max
I∈S
|U ∩ I|

This again yields a contradiction, since
∑

u∈U qu is invariant. So case 4 must hold: S = S.
Given that there is always some limit point of βmatch with stationary support, then βmatch is
persistent. □

3.7 Persistence of Spanning Tree Reaction Networks

A related class of networks modifies a matroid reaction network to only include those species
which are maximal with respect to set inclusion. The species set, then, is exactly the set of
bases of the matroid. Despite the lack of downward closure on the species set, we find that
such networks are persistent in the case of graphic matroids, in which the matroid bases are
spanning trees in a graph G.
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Definition 3.7 (Spanning tree reaction network). Define a spanning tree reaction network
for a graph G to be the network with species set S := {all spanning trees of G}, complex set
C := S × S, and with βy,y′ > 0 for y, y′ ∈ C iff

⊎
I∈y I =

⊎
J∈y′ J .

Theorem 3.33. Every spanning tree reaction network is persistent and, if complex balanced,
satisfies the global attractor condition.

Remark 3.34. It is sufficient to prove Theorem 3.33 in the setting where M is a connected
matroid; that is, not the direct sum of any other two matroids. (IfM is in fact the direct sum
of two matroids M1 and M2, it can be analyzed as two separate matroid reaction networks
βM1 and βM2 instead.) For a graphic matroid, this is equivalent to the underlying graph G
being 2-connected; that is, having at least two distinct paths between any pair of vertices.

To prove Theorem 3.33, we consider the possible stationary supports T for limit points
of a spanning tree reaction network with basis set B, generated by graph G = {V,E}. We
consider three conditions which this support T might satisfy:

1. First facet condition: Some edge e ∈ E satisfies e /∈ I for all I ∈ T

2. Second facet condition: There exists some U ⊂ E such that |I ∩ U | = |V (U)| − 1 for
all I ∈ T . We say that U is saturated for all I ∈ T when this condition holds.

3. Full support: T = B

Our goal will be to show that these three conditions are exhaustive; that is, if the facet
conditions (1) and (2) are not met for a given stationary support T , then T must have full
support.

We begin with a few lemmas.

Lemma 3.35. Suppose stationary support T has neither of the above two facet conditions,
and fix g = (g1, g2) ∈ E. Then there exists a tree Lg ∈ T with g1 as a leaf.

Proof. Note that because T has no facet condition, some tree I ∈ T exists with g ∈ I.
Removing edge g from I generates two connected components; let UI be the component
containing vertex g1. Select I ∈ T to be a spanning tree with g ∈ I which minimizes |V (UI)|.

If |V (UI)| = 1 then g1 is a leaf in I and we are done. So suppose |V (UI)| ≥ 2. Because
T has no facet condition, there exists some J ∈ T with V (UI) not saturated in J . Then
the following sequence of reactions (which exist by the basis exchange property) reduce the
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difference between I ∩ UI and J ∩ UI until UI is no longer saturated in I:

I + J ↔ (I \ i1 ∪ j1)︸ ︷︷ ︸
I2

+ (J \ j1 ∪ i1)︸ ︷︷ ︸ (with i1 ∈ E(UI) ∩ (I \ J))

I2 + J ↔ (I2 \ i2 ∪ j2)︸ ︷︷ ︸
I2

+ (J \ j2 ∪ i2)︸ ︷︷ ︸ (with i2 ∈ E(UI) ∩ (I2 \ J))

...

Continuing analogously creates I2, . . . , Ik (each in T by stationarity of the support) until
the first reaction for which jk /∈ E(UI); since each reaction strictly decreases |(UI∩Ik)\(UI∩J)|,
and |UI ∩ J | < |UI ∩ I|, this must happen at some step k. Removing edge g from Ik
yields two connected components, one of which (call it UIk) contains g1 and has vertex set
V (UIk) ⊊ V (UI). This contradicts the earlier assumption that |V (UI | was minimal among all
I ∈ T with g ∈ I.

Figure 3.1: Illustration of the procedure removing an edge i from UI and replacing it with an
edge j from J in the proof of Lemma 3.35. (a) shows the selection of edge i from UI , (b) shows the
removal of that edge creating two connected components, and (c) and (d) depict the two possible
cases for the new edge j: either j ∈ E(UI), and the procedure continues to the next iteration, or
j /∈ E(UI), leaving V (UIk) ⊊ V (UI)

We conclude that |V (UI)| = 1; in other words, V (UI) = {g1}, and g1 is a leaf in I.

We see in the next lemma that, in fact, a stationary support T with no facet conditions
must contain an even larger family of trees.

Lemma 3.36. Suppose stationary support T has neither of the two facet conditions. For any
path P = {v1 . . . vn} in I ∈ T , if there exists an edge (v1, vn) ∈ E(G) completing the cycle,
then for any vi, vi+1 ∈ P , we also have (I ∪ (v1, vn) \ (vi, vi+1)) ∈ T .

Proof. We prove this via repeated reactions modifying the initial tree I, by adding leaf edges
from trees guaranteed to exist by Lemma 3.35. For any edge (u, v) ∈ E(G), let Lu,v represent
a tree in T containing this edge, such that u is a leaf. The following sequence of reactions
exchanges edges around the cycle P ∪ (v1, vn):
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I + Lv1,vn ↔ [I ∪ (v1, vn) \ (v1, v2)]︸ ︷︷ ︸
I2

+ [Lv1,vn \ (v1, vn) ∪ (v1, v2)]

I2 + Lv2,v1 ↔ [I2 ∪ (v1, v2) \ (v2, v3)]︸ ︷︷ ︸
I3

+ [Lv2,v1 \ (v1, v2) ∪ (v2, v3)]

...

Observing that, since I and all the Lvi,vj are in T , the same holds for all the Ij, so it follows
in particular that

Ii+1 = (I ∪ (v1, vn) \ (vi, vi+1)) ∈ T.

Lemma 3.36 tells us that, when T has no facet condition, for any cycle created by adding
a single edge d to I ∈ T , removing any other edge e in that cycle leaves (I \ d ∪ e) ∈ T . We
finish the proof of Theorem 3.33 by observing that this property is strong enough to conclude
that T in fact contains all spanning trees of G.

Proof of Theorem 3.33. We first observe that facet conditions (1) and (2) are incompatible
with any full-support initial condition by a straightforward invariant argument, analogous to
those in the proof of Theorem 3.15.

For the first facet condition, qe(x) :=
∑

I∋e xI is invariant for each e ∈ E, and qe(x) > 0 for
all e ∈ E for any initial condition with full support. Similarly,

∑
u∈U qU (x) =

∑
I∈S |U∩I|·xI(t)

is invariant, and if the second facet condition held, we would have
∑

u∈U qU (x) = |V (U)| − 1.
Given an initial condition with full support, this can only occur if |U ∩ I| = |V (U)| − 1 for
every I ∈ B. However, because B is the basis set of a connected matroid, there exists no such
U ⊂ E.

Suppose next that T ≠ B is a stationary support with neither of the two facet conditions.
Consider any pair of spanning trees with J /∈ T , I ∈ T . For any j ∈ J \ I, (I ∪ j) contains
some cycle C, and furthermore there is some i ∈ C with i /∈ J . Then I2 := (I ∪ j1 \ i) ∈ T by
Lemma 3.36, and |I2△J | < |I△J |. Repeating this procedure generates I3, . . . , Ik ∈ T until,
for some k, |Ik△J | = 0 and Ik = J . Thus Ik = J ∈ T for some k, contradicting the initial
assumption that there exists some J ∈ B \ T .

Therefore we conclude that the only stationary support admitted by a full-support starting
condition is B.

Convergence properties are not yet known for the more general class of matroid basis
reaction networks, but we conjecture that the persistence and global attractor properties
hold in this additional generality as well. In particular, networks based on binary matroids
provide a natural next step for future work, as the circuits and co-circuits in these networks
provide a natural analog to the partitions in the graphic matroid used in the above proof.
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Chapter 4

Hardness of Minimum Rank 3

The most natural thing in the world is complexity.

- Hank Green, Vlogbrothers

This chapter is based on the paper in preparation “Minimum Rank 3 of Graphs is Complete
for the Existential Theory of the Reals”, which is joint work with Kevin Grace, H. Tracy Hall,
and Alathea Jensen.

4.1 Introduction

Consider the problem of recovering the adjacency matrix of a graph with a known set of
edges, but unknown edge weights. There are infinitely many symmetric matrices which could
fit the required sparsity structure – yet some may provide a “simpler” explanation for the
observed edge set than others. Suppose, for example, the graph describes a social network,
with edges representing an acquaintance between two individuals. If we were to observe an
edge (u, v), with individuals u and v sharing a large fraction of their neighbors, a relatively
high edge weight (indicating a close relationship) could be considered a simpler explanation
for the correlation than if the two were distant acquaintances.

This problem of finding a set of edge weights which best explain an observed sparsity
structure is a common goal of matrix completion problems, including the well-studied “Netflix
problem” [21, 61]. In particular, when the true adjacency matrix is known to be sufficiently
low-rank, it is often possible to reconstruct a matrix exactly from a sparse set of observations
[26]. In this setting, the rank of the output matrix can be seen as a measure of the complexity
of a given data set – the lower the rank, the “simpler” the explanation for the observed
structure. Yet the general problem of finding the lowest rank matrix fitting a given sparsity
structure is known to be NP-hard, and all known algorithms require exponential time [29,
78]. We consider, instead, the following sub-problem: without necessarily finding the matrix,
determine the minimum achievable rank for a given sparsity structure. This is the objective
of the minimum rank problem, and the subject of the present chapter.
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4.1.1 Overview

Concretely, the minimum rank problem for a graph takes as input a simple graph G = (V,E),
whose vertices are identified with the index set {1, . . . , |V |}, and asks for the lowest possible
rank among a class of |V | × |V | matrices related to the graph by their pattern of nonzero
off-diagonal entries. Minimum rank is a subproblem of the more difficult Inverse Eigenvalue
Problem for a Graph (IEP-G), which asks for complete knowledge of spectral restrictions
arising from the sparsity pattern of G, but already the subproblem exhibits a richness of
difficulty that has led to an extensive literature, as surveyed, for example, in the recent
monograph by Hogben, Lin, and Shader [56]. In the most-studied case, which will be assumed
unless otherwise specified, the matrix is taken to be real symmetric, but the question can be
asked for matrices over any field F. When F is a subfield of the complex numbers C, then
the matrix is taken to be Hermitian (which includes real symmetric matrices as a special
case). Otherwise the matrix is taken to be symmetric over F. Precise definitions are given in
Section 4.2.

The purpose of this chapter is to precisely quantify the difficulty of the minimum rank
problem, showing in particular that over real symmetric matrices it is equivalent to a
complexity class known as the existential theory of the reals, abbreviated ∃R. We will
consider two classes of problems. On the one hand, in the context of graph theory (or more
particularly combinatorial matrix theory), we are given an arbitrary simple graph G and the
problem asks whether the minimum rank of G over some infinite field F is equal to 3. On
the other hand, in the context of algebraic geometry (and especially real algebraic geometry,
when F = R), we are given an arbitrary system of multivariable polynomial equations with
integer coefficients, and the problem asks whether the equations have a simultaneous solution
over F.

We will show that these two problem classes are equivalent in difficulty. More specifically,
we show how to transform an arbitrary instance of either problem to an instance of the
other with only a polynomial overhead. The second problem class, with F taken to be R,
is known to be complete for ∃R, as shown in [82], and so the equivalence of the two sides
over R gives the result claimed in the title. The minimum rank problem thus joins the ranks
of problems which are complete for ∃R, which is known to be in PSPACE and NP-hard,
and for which other known hard problems include training neural networks [1], recognizing
intersection graphs of convex sets in the plane [17], and the algorithmic Steinitz problem [81].
We additionally show in Section 4.6 that, while a finite list of forbidden induced subgraphs
is sufficient to characterize those graphs with minimum rank less than or equal to 2, and
similarly some such list exists for any minium rank d over finite fields, no such finite list is
sufficient to characterize graphs of minimum rank 3 over the reals or over any infinite field.
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4.2 Preliminaries

For a Hermitian n× n matrix A over F, let G(A) be the graph with vertex set {1, 2, . . . , n}
and edge set {{i, j} : i ̸= j and aij ̸= 0}. For a graph G, let S(G) consist of all real symmetric
matrices A such that G = G(A).

Definition 4.1 (Minimum rank). The minimum rank of a graph G, denoted by mr(G), is
the smallest integer k such that there is a matrix of rank k in S(G). The minimum rank of
G over F for a field other than the reals is defined analogously.

In order to situate these problems within complexity theory, we formulate them as decision
problems as detailed below, letting d represent the target rank, or dimension of the column
space of the matrix.

Decision problem: RANK

• Input: a target rank d, given as a binary-encoded nonnegative integer, together with a
simple graph G = (V,E), given as the |V |(|V | − 1)/2 bits that specify its adjacency
matrix.

• Output: YES if and only if there exists a real symmetric matrix of size |V | × |V |, the
positions of whose nonzero off-diagonal entries correspond exactly to the edges of G,
and whose rank is at most d.

Decision problem: F-RANK (for a particular field F)

• Input: a target rank d together with the adjacency matrix of a simple graph G = (V,E).

• Output: YES if and only if there exists a conforming matrix whose rank is at most d.
Regardless of F, a conforming matrix must have entries in F and must have its nonzero
off-diagonal entries given exactly by the edges of G. In the case that F is a subfield of
the complex numbers, a conforming matrix must be Hermitian. (In particular, when F
is a subfield of the reals, a conforming matrix must be symmetric.) For all other fields,
a conforming matrix must be symmetric.

Decision problem: d-RANK (for a particular non-negative dimension d)

• Input: a simple graph G = (V,E), given as an adjacency matrix.

• Output: YES if and only if the answer to RANK is YES for graph G and target rank d.

Decision problem: F-d-RANK (for a particular field and dimension)

• Input: a simple graph G = (V,E), given as an adjacency matrix.
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• Output: YES if and only if the answer to F-RANK is YES for graph G and target rank
d.

It is common in graph theory to denote the number of vertices |V | by n, but here we
instead follow the convention of letting n denote size of the problem—concretely, the number
of bits required to specify an instance of a particular decision problem. Since an adjacency
matrix requiring |V |(|V | − 1)/2 bits makes up the bulk of the input to each of the decision
problems defined above, |V | scales as

√
n, meaning for example that an algorithm running in

time O(|V |4) would be a solution of time complexity O(n2).

4.3 Outline of Main Results

Over any infinite field F, the decision problems F-0-RANK, F-1-RANK, and F-2-RANK can
each be solved in time that is polynomial in the size of the input, because for each of those
cases there is a known finite list of forbidden induced subgraphs [14]. In particular, where F is
R, the decision problems 0-RANK, 1-RANK, and 2-RANK have only polynomial complexity.
For 3-RANK, however, and more generally for F-3-RANK over any infinite field F, we show
in Section 4.6 that no such list of forbidden induced subgraphs exists.

Theorem 4.1. There is no finite list of forbidden induced subgraphs for minimum rank 3.

Theorem 4.2. Given two distinct number fields K and L, there exists a graph G such that
the Hermitian minimum rank of G over K is 3 but the Hermitian minimum rank of G over
L is strictly greater than 3.

This result hints that something may be fundamentally more difficult about d-RANK for
d ≥ 3 (and therefore more difficult for RANK overall). We make this observation concrete in
Section 4.5 by showing that, over the reals, the complexity class of 3-RANK is equivalent to
the existential theory of the reals, or ∃R. ∃R is the problem of deciding whether a given
polynomial system (in multiple variables with integer coefficients) has a common solution
over the reals; that is, the set of all true sentences of the form

∃X1 · · · ∃XnF (X1, · · · , Xn)

where the Xi are variables with real number values, and F is a quantifier-free polynomial
system. The corresponding decision problem is known to be NP-hard and in PSPACE [27].

The primary result of this paper provides a polynomial time reduction from ∃R to 3-
RANK which, along with the (trivial) reverse direction, yields the following theorems (where
≡ denotes polynomial time equivalence).

Theorem 4.3. 3-RANK ≡ ∃R

Corollary 4.4. RANK ≡ ∃R

Furthermore, we show that the same results extend analogously for F-3-RANK over any
infinite field F.
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4.3.1 Proof Roadmap

This section provides an overview of the proof of our main result, Theorem 4.3. One direction
of the equivalence is straightforward to show. A symmetric matrix A of rank at most d has a
rank factorization A = MTDM for which D is a diagonal matrix of size d× d, and by letting
x be a collection of indeterminates covering the diagonal entries of D and all entries of M , the
existence of such a matrix A is reduced to a system of integer-coefficient equations pi(x) = 0
(coming from the non-edges of G) and non-equations pi(x) ̸= 0 (coming from the edges of G).
The existential theory of the reals is defined in terms only of solving equations, but it is well
understood how to transform a question involving also non-equations and inequalities into a
system of equations; for example, each non-equation pi(x) ̸= 0 can be handled by introducing
a new, otherwise unused variable yi and requiring yipi(x) = 1.

The more difficult direction, which requires the construction of some machinery, is reducing
an arbitrary system of polynomial equations S into a particular minimum rank 3 instance.
The geometric idea employed is an equivalence between minimum rank 3 for a certain class
of graphs (complements of bipartite graphs, as described in Section 4.4) and the existence
of a certain point-line incidence structure within the projective plane over F (or within an
affine representation of it, which over R is the familiar Cartesian plane).

We make the simplifying assumption that the polynomials in the system of equations S
consist only of elementary additions of the form qi = qj + qk and elementary multiplications
of the form qi = qj · qk. For systems which do not have this form, a pre-processing step to
transform an arbitrary system of equations S into a compliant system T over an expanded set
of variables Q = {qi} is provided in the appendix (Section 4.7.1). This step decomposes each
of the full polynomial equations into a collection of elementary equations, each one involving
a single binary operation of addition or multiplication, including building up constants for
each positive or negative integer coefficient according to the binary representation of its
absolute value, starting from the single constant 1. From here, the complete set of elementary
addition and multiplication equations must be encoded into projective geometry, as described
in Section 4.5. The gadgets employed for this reduction include:

• a small base structure of points and lines;

• for each qi, a set of four associated lines and three associated points;

• for each elementary addition qi = qj + qk, a single point that is incident to three
particular lines associated respectively to qi, qj, and qk; and similarly

• for each elementary multiplication qi = qj · qk, a single point that is incident to three
particular lines associated respectively to qi, qj, and qk.

The original basis for the geometric technique is attributed to Marshall Hall [53, 54].
These collections of point-line incidence relations in the projective plane in turn become

the edges of a bipartite graph, one side of the partition representing points and the other side
representing lines. A rank-3 realization of the complement of this bipartite graph will have
an entry equal to zero corresponding to each such point-line incidence, implying that the



CHAPTER 4. HARDNESS OF MINIMUM RANK 3 74

individual additions and multiplications are consistent on the expanded set of variables, which
implies further that the original system of polynomial equations has a simultaneous solution.
That is, the procedure as described above produces a graph G from a set of equations S with
the following properties:

1. As explained in Section 4.5.5, every rank-3 representation of G over F gives a concrete
set of numbers in F that satisfies the equations in S.

2. As explained in Section 4.5.4, every solution to S over F produces a concrete set of
points and lines that are incident in FP2 wherever required by the construction. The
matrix of inner products between points and lines thus has a zero entry wherever the
lack of an edge in G requires it.

However, this result does not yet suffice to construct the desired graph GS. The implication
that every rank-3 realization of the complement of the bipartite graph yields a solution to the
system S is only one direction of the desired equivalence. The reverse implication will also
hold at least in part: Any solution to the system S will indeed produce a symmetric matrix
of rank 3 with a zero entry for each of the prescribed point-line incidences. The difficulty is
that minimum rank 3 not only requires certain equations to be satisfied (where the lack of an
edge in the graph produces a 0 in the matrix), but also requires many equations not to be
satisfied (where an edge in the graph must correspond to a nonzero entry in the matrix).

To address this possibility, we add a second pre-processing pass, described in detail in
Section 4.7.2, to guarantee that for all indices i ≠ j, we have qi ̸= 0, qi ≠ qj, and qi + qj ̸= 1.
We show that these additional conditions ensure that no solutions to the polynomials produce,
when translated to the projective geometry, additional point-line incidences that are not
required by the construction, and therefore the overall construction results in a matrix no
sparser than the pattern required by G.

The result is a complete, non-provisional equivalence between solutions to the original
polynomial equations and rank-3 representations of an exactly specified larger graph G′. In
the other direction, any rank-3 representation of G′ yields a concrete set of values both for
the variables in the original equations and for all of the slack variables.

4.4 Rectangular Minimum Rank and Bipartite Graph

Complements

The decision problems of Section 4.2 concern the minimum rank of symmetric (or Hermitian)
matrices with a pattern governed by a simple graph. The graphs that will be produced from
any system of equations will all take the special form of the complement of a bipartite graph,
for which the minimum rank problem reduces to the simpler problem of rectangular minimum
rank.

Definition 4.2. A rectangular pattern Y = [yij] is a matrix with entries from the set {0, ∗}.
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Definition 4.3. A pattern Y is said to be reduced if every row of Y contains at least one ∗
entry, and every column of Y contains at least one ∗ entry.

Definition 4.4. For a rectangular pattern Y and a given field F, the minimum rank of Y
over F, denoted mrF(Y ), or mr(Y ) in the case where F = R, is the smallest possible rank of
a matrix A = [aij] over F with the same dimensions as Y such that aij = 0 if and only if
yij = 0.

Note that any rectangular minimum rank problem can be reduced to mrF(Y ) for Y a
reduced pattern, because deleting a row or column of all zeros does not change the rank of a
matrix.

Suppose that G is a simple graph whose complement is bipartite with bipartition V (Gc) =
R ⊔ C = V (G), with R called the row vertices and C called the column vertices of G. Order
the vertices of G so that row vertices precede column vertices, let F be an infinite field, and
let A be a matrix over F that is symmetric (or Hermitian when F is a subfield of C), whose
pattern of off-diagonal nonzero entries is given exactly by G and whose diagonal entries are
nonzero. Then A is partitioned naturally as

A =

[
A11 A12

AT
12 A22

]
with pattern

[
∗ Y
Y T ∗

]
for some rectangular pattern Y . We call the pattern Y the rectangular part of G. The
rectangular part of G is reduced if and only if every row vertex of G is adjacent to at least
one column vertex of G and every column vertex of G is adjacent to at least one row vertex
of G. Equivalently, the rectangular part of G is reduced if and only if, in the bipartite graph
Gc, no row vertex dominates the set of column vertices and no column vertex dominates the
set of row vertices.

Remark 4.5. A non-zero entry is generic, but each zero in the rectangular part of G imposes
a constraint. These constraints come from the non-edges of G, or from the edges of the
bipartite complement of G.1

Theorem 4.6 (Theorem 3.1 from [11]). Let G be a simple graph whose complement is
bipartite and whose rectangular part Y is reduced, and let F be an infinite field. Then the
minimum rank of G over F is equal to the rectangular minimum rank of Y over F.

The case of particular interest, mr(G) (i.e., mrF(G) for F = R), is a case in which F is a
subfield of the complex numbers and A is taken to be Hermitian. Over Hermitian matrices,
questions about rank can be refined to questions about inertia, and there is a stronger version
of Theorem 4.6 that takes this into account.

1Whether it is edges or non-edges that impose constraints can sometimes be a source of confusion. We
find, for example, a typographical error in the publication [64], where Proposition 2.1 (or Proposition 1 in

the eprint, version 2) contains the following expression twice: v⟨i⟩w⟨j⟩T = 0. This should be replaced by “
̸= 0” (or omitted entirely, in the second instance) to match the statement actually proven and later used.
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Definition 4.5. The triple of integers expressing the number of positive, negative, and zero
eigenvalues of a complex Hermitian matrix A is called the inertia of A.

Definition 4.6. Let G be a simple graph on n vertices, let F be a subfield of the complex
numbers, and let k be the minimum rank of G taken over Hermitian matrices with entries in
F. Then there are k+ 1 possible inertias of rank k, from (0, k, n− k) to (k, 0, n− k) inclusive.
In the case that every one of these inertias is realized by some Hermitian matrix over F with
pattern G, we say that G is inertially arbitrary over F.

The stronger version of Theorem 4.6 that we will prove is the following:

Theorem 4.7. Let G be a simple graph whose complement is bipartite and whose rectangular
part Y is reduced, and let F be a subfield of C. Then G is inertially arbitrary over F, with
minimum rank equal to the rectangular minimum rank of Y over F.

Proof. We follow the original proof of Theorem 4.6 given in [11, Theorem 3.1], but making
allowance for arbitrary inertia. Let F be a subfield of the complex numbers (hence infinite
with Q ⊆ F ⊆ C), let d be the minimum rectangular rank of Y , and let (d− ν, ν, |V | − d) be
the desired inertia.

In the easy direction, the rank of A is at least d because it has A12 as a submatrix, whose
pattern is Y. Suppose then that a rectangular matrix A12 is given that has reduced pattern Y,
rank d, and entries in F. It suffices to show that A12 (or some nonzero multiple of A12) can
be extended to a Hermitian matrix A that

• has the correct pattern G;

• has inertia (d− ν, ν, |V | − d); and

• has all entries in F.

There exists a rank decomposition expressing A12 as a product of a matrix R with d
columns and a matrix C with d rows,

A12 = RC,

where the rows of R are row vectors ri ∈ Fd and the columns of C are column vectors ci ∈ Fd.
Let D be a d×d diagonal matrix with d−ν diagonal entries equal to 1 and ν diagonal entries
equal to −1, satisfying D2 = Id. Our goal is to find a matrix M of size d× |V | such that

A = M∗DM

has all the desired properties. We have a candidate M0 =
[
DR∗ C

]
that produces a matrix

A0 = M∗
0DM0 =

[
RD
C∗

]
D
[
DR∗ C

]
=

[
RDR∗ A12

A∗
12 C∗DC

]
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that has the correct inertia (by Sylvester’s Law of Inertia [90]) and that has the correct
pattern Y in the block A12. But A0 may have unwanted zeros in the off-diagonal entries of its
diagonal blocks, whereas the desired pattern G for all of A is the complement of a bipartite
graph. Fortunately, enough degrees of freedom are available to make the diagonal blocks of A
generically nonzero. For any invertible d× d matrix Q, we have another rank decomposition

A12 = (RQ)(Q−1C),

that gives us another candidate for M , namely[
D(RQ)∗ Q−1C

]
=
[
DQ∗R Q−1C

]
.

Let the d × d matrix Q = [qij] consist entirely of rational-valued indeterminates q =
(q11, q12, . . . , qdd) ∈ Qd2 . Since Q is real, Q∗ = QT . The invertibility of Q is equivalent to the
nonvanishing of a polynomial

p(q) := det(Q).

Rather than using the inverse Q−1 to define the candidate matrix M , we use the adjugate
matrix P = adj(Q), which has entries that are also polynomials in the indeterminates q, and
which satisfies

PQ = QP = p(q)Id.

The adjusted rank decomposition becomes

(RQ)(PC) = p(q)A12,

giving us the candidate for M :

Mq =
[
D(RQ)∗ PC

]
=
[
DQTR∗ PC

]
;

and the candidate for A:

Aq = M∗
qDMq =

[
RQD
C∗P T

]
D
[
DQTR∗ PC

]
=

[
RQDQTR∗ p(q)A12

p(q)A∗
12 C∗P TDPC

]
,

all of whose entries are polynomials in the indeterminates qij. Whenever p(q) ̸= 0, Aq has
the correct pattern Y in the off-diagonal block, the correct inertia, and all entries are in F. It
remains only to take care of the diagonal blocks—i.e., to establish that for some assignment
of the indeterminates qij, every entry of the matrices

A11 = RQDQTR∗ and A22 = C∗P TDPC

is nonzero while Q is nonsingular. Every entry of A11 is a polynomial aij(q) with rational
indeterminates but possibly complex coefficients, namely

aij(q) = riQDQ
T r∗j
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for some pair (not necessarily distinct) of row vectors ri, rj ∈ Fd. Similarly, every entry of
A22 is a polynomial

bij(q) = c∗iP
TDPcj

for a pair of column vectors ci, cj ∈ Fd. We now recall the fact that the pattern Y is reduced,
which implies that every row vector ri participates in a nonzero dot product and is therefore
not the zero vector, and similarly that no column vector ci is the zero vector. It follows that
none of the polynomials aij(q) or bij(q) is identically the zero polynomial2, as is also the
case for the polynomial p(q), which implies that there exists a choice of q for which all the
polynomials evaluate simultaneously to nonzero numbers in F.

4.5 Construction: Graphs from Equations

In this section, we describe a process for taking any system S of polynomial equations with
integer coefficients and constructing a simple graph GS on which 3-RANK answers YES if
and only if the system S has a simultaneous solution over the real numbers. This process
runs in polynomial time in the size of S.

Throughout this section, we assume that the polynomial system is triangulated in the
sense of Section 4.7.1; that is, all equations are either of the form qi = qj + qk or the form
qi = qjqk with i, j, k not necessarily distinct. Section 4.7.1 contains a procedure to transform
the set of polynomial equations S on variables x into a set of equations T on variables q
which are triangulated.

4.5.1 Base Graph and Base Matrix

Rather than constructing GS directly, we instead construct its complement, which we will
call G for simplicity’s sake. We first form the base of G, as shown in Figure 4.1. The base
graph is bipartite, and we use the convention that one side of the bipartition has vertices
with upper-case names and the other side has vertices with lower-case names.

We also construct a matrix M that represents the base graph. The rows correspond to
upper-case vertices and the columns to lower-case vertices, as shown below. A zero entry
appears in row r and column c if and only if the corresponding vertices are adjacent in the
graph. M can be factorized into M = RC, where R is a 3-column matrix where each row
corresponds to an upper-case vertex, and C is a 3-row matrix where each column corresponds

2This is trivial for d = 1. For d ≥ 2, it suffices to consider one-parameter families Q = Id + tEkℓ (giving
P = Id − tEkℓ) where k ̸= ℓ are chosen appropriately depending on where the nonzero vectors ri and rj (or
ci and cj) have nonzero entries.
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V

H x

y
I

sD

z

Figure 4.1: The eight vertices of the base graph.

to a lower-case vertex.

M =

x y z s


V 1 0 −1 1
H 0 1 0 1
I 0 0 1 0
D −1 1 0 0

=




V 1 0 −1
H 0 1 0
I 0 0 1
D −1 1 0

x y z s[ ]1 0 0 1
0 1 0 1
0 0 1 0

Working over the reals, we may think of each row in R as representing a plane in R3 or
a line in the projective plane. The projective plane interpretation is useful in this context
because it only matters whether the rows of R and columns of C have a zero or non-zero dot
product, so the scaling of each row or column is unimportant.

More specifically, given a nonzero row
[
a b c

]
in R, we can think of it as the plane

{(x, y, z) ∈ R3 : ax + by + cz = 0} or as the corresponding line in the projective plane.
Likewise, we may think of each column in C as representing the span of a vector in R3

or a point in the projective plane. More specifically, we think of a nonzero column vector[
a b c

]⊤
in C as its span, the line {(at, bt, ct) ∈ R3 : t ∈ R}, or as the corresponding point

in the projective plane. In this manner, we may think of the graph as representing line-plane
incidences in R3 or point-line incidences in the projective plane.

Figure 4.2 illustrates the eight vertices of the base graph as planes and lines in R3, which
intersect an affine plane P (a copy of the Cartesian plane given by z = 1) to give, respectively,
lines and points in P or its extension to a projective plane, shown in Figure 4.3. The four
planes are as follows:

1. V (“Vertical”): The plane 1x+ 0y − 1z = 0 intersects P in the line x = 1.

2. H (“Horizontal”): The plane 0x+ 1y + 0z = 0 intersects P in the line y = 0.

3. I (“Infinity”): The plane 0x + 0y + 1z = 0 is parallel to P and does not intersect it
except in the “line at infinity”.
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D

y

I

z

s

V

H
x

Figure 4.2: The eight vertices of the base graph represented as lines and planes in R3, also
illustrating where they intersect the affine plane z = 1 or its extension to a projective plane.

4. D (“Diagonal”): The plane −1x+ 1y + 0z = 0 intersects P in the line y = x.

The four points are as follows:

1. x: The line spanned by
[
1 0 0

]T
does not intersect P except as a “point at infinity”

in the x-direction (1, 0).

2. y: The line spanned by
[
0 1 0

]T
does not intersect P except as a “point at infinity”

in the y-direction (0, 1).

3. z: The line spanned by
[
0 0 1

]T
intersects P at the origin of P , the point (0, 0).

4. s (“slant”): The line spanned by
[
1 1 0

]
does not intersect P except as a “point at

infinity” in the slanted direction (1, 1).

4.5.2 Adding Variables

The next step in constructing G involves the equations T on variables q. For each variable qi
in q, we add seven new vertices to graph G, named Zi, vi, Xi, di, Yi, hi, Si. They should be
connected to the base graph and to each other in the manner shown in Figure 4.4.

Correspondingly, we also add rows for Zi, Xi, Yi, Si to matrix R and columns for vi, di, hi
to matrix C, in the manner shown below. This will cause the correct zero pattern (matching



CHAPTER 4. HARDNESS OF MINIMUM RANK 3 81

Point z

at (0, 0)

Line H has

formula y = 0

Line V has

formula x = 1

Line D has

formula y = x

y

x

s

Line I is the

line at infinity

Point x at infinity

in the direction (1, 0)

Point s at infinity

in the direction (1, 1)

Point y at infinity

in the direction (0, 1)

Figure 4.3: The eight vertices of the base graph represented as points and lines in the affine plane
z = 1 and its extension to the projective plane.

the adjacency structure of G) to appear in matrix M . Recall that a row and column whose
dot product is zero correspond to a pair of vertices that are adjacent in G.

V

H x

y
I

sD

z

Xi di Yi hi SiZi vi

Figure 4.4: The base graph with the seven new vertices representing the variable qi.
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M = RC =





V 1 0 −1
H 0 1 0
I 0 0 1
D −1 1 0
Zi qi −1 0
Xi 0 1 −qi
Yi 1 0 −qi
Si −1 1 qi

x y z s vi di hi[ ]1 0 0 1 1 qi qi
0 1 0 1 qi qi 0
0 0 1 0 1 1 1

z

H

V
D

vi = (1, qi)

di = (qi, qi)

hi = (qi, 0)

Y
i

=
{x

=
q i
}

Xi = {y = qi}

S i
=
{y

=
x
−
q i
}

Z
i

=
{y

=
q i
x
}

Figure 4.5: The eight starting vertices are depicted in gray as points and lines in the affine
plane z = 1. Lines and points at infinity are not pictured. The seven points (lowercase) and lines
(uppercase) associated with the named variable qi are depicted in black, along with their coordinates
or equations.

Just as with the base matrix and base graph, we may also think of each row in R as
representing a plane in R3 and each column in C as representing a line in R3. Figure 4.5
depicts the intersection of these planes and lines with the affine plane P (z = 1), which can
be extended to the projective plane. In this manner, we may again think of the graph G as
representing point-line incidences in the projective plane. For example, the line Xi is incident
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with the point vi; this corresponds to the dot product of row Xi and column vi being zero in
the matrix, and the vertices Xi and vi being adjacent in the graph.

The careful reader may have noticed a problem that can arise at this point in the construc-
tion. Our description of the graph makes it clear that none of the vertices Za, va, Xa, da, Ya, ha, Sa

should be adjacent to any of the vertices Zb, vb, Xb, db, Yb, hb, Sb when a ̸= b. However, if we
are not careful, it is possible that some of the rows Za, Xa, Ya, Sa may have a dot product of
zero with the columns vb, db, hb for a ̸= b. Equivalently, it is possible that some of the lines
and points associated with qa may be incident on those associated with qb. We will list below
a set of additional constraints on the values of the variables qa and qb which are sufficient
to ensure that this does not happen, and call a set of values sufficiently generic when these
constraints are satisfied for every pair qa and qb. These constraints are not satisfied in general
for all solutions to a set S of equations, but a second pass at the construction, described
in Section 4.7, will produce a larger graph and new variables for which the constraints are
all satisfied. The twelve possible interactions, between the four lines of one variable qa and
the three points of another variable qb, produce one constraint each (with some constraints
repeated) as follows:

• The line Za does not contain

– the point vb from subspace Zb if and only if qa ̸= qb;

– the point db from subspace D, if and only if qa ̸= 1;

– or the point hb from subspace H, if and only if qa ̸= 0.

• The horizontal line Xa does not contain

– the point vb from parallel Xb, if and only if qa ̸= qb;

– the point db from parallel Xb, if and only if qa ̸= qb;

– or the point hb from parallel H, if and only if qa ̸= 0.

• The vertical line Ya does not contain

– the point vb from parallel V , if and only if qa ̸= 1;

– the point db from parallel Yb, if and only if qa ̸= qb;

– or the point hb from parallel Yb, if and only if qa ̸= qb.

• The line Sa, of slope 1 and equation x = a+ y, does not contain

– the point vb = (1, b) if and only if qa + qb ̸= 1;

– the point db from parallel D, if and only if qa ̸= 0;

– or the point hb from parallel Sb, if and only if qa ̸= qb.
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These twelve interactions produce only the following four constraints: qa ̸= 1, qa ̸= qb, qa ̸= 0,
and qa + qb ̸= 1.

When working with a specific set of equations S and aiming to generate a small and
explicitly described graph GS, it may be preferable to allow pairs qa and qb that explicitly
sum to 1, and then analyze the cases where these four constraints must be violated and add
edges to the bipartite graph accordingly. However, for the general case, we instead add the
additional pre-processing step described in Section 4.7, which constructs a larger graph using
slack variables, and in doing so guarantees the satisfaction of all four constraints without
requiring case-by-case analysis.

4.5.3 Adding Enforcing Equations

Now, to enforce the equations in T described at the beginning of Section 4.5, we need only
add one new trivalent vertex per equation to the graph G, as detailed below.

For each equation of the type qi = qjqk, we add a vertex e to the graph, with edges from

e to Yi, Xj, and Zk, and correspondingly we add the column
[
1 qk 1/qj

]⊤
to the matrix

C. The product of the new column with the rows Xi, Yj, and Zk in R then produces entries
in M equal, respectively, to qk − qi/qj, 0, and 0. For any assignment of qi, qj, qk satisfying
qi = qjqk, the entry qk − qi/qj will equal 0 as well. These three zero entries in M correspond
to the three new graph edges.

Likewise, for each equation of the type qi = qj + qk, we add a vertex e to the graph, with

edges from e to Yi, Xj, and Sk, and correspondingly we add the column
[
qi qj 1

]⊤
to the

matrix C. The product of the new column with the rows Yi, Xj, and Sk in R then produces
entries in M equal, respectively, to 0, 0, and −qi + qj + qk. For any assignment of qi, qj, qk
satisfying qi = qj + qk, the entry −qi + qj + qk will equal 0 as well. These three zero entries in
M correspond to the three new graph edges.

Furthermore, for a new column of either type, the product with all other rows of R will
be nonzero if and only if the constraints on variables listed in the last section are fulfilled
(that is, for all indices a ̸= b, we must have qa ̸= qb, qa ̸= 0, and 1 ̸= qa + qb).

Figure 4.6 shows the subgraph of G corresponding to variables qi, qj, qk, with vertices e1
and e2 added. Vertex e1 corresponds to the equation qi = qjqk, and vertex e2 corresponds to
the equation qi = qj + qk.

Hence, if we are able to find a simultaneous solution to all the equations T , then we can
construct R and C so that M = RC, and for all entries Mij of M , Mij = 0 if and only if
vertices i and j are adjacent in the graph.

4.5.4 Final Construction

In this section, we define GS in terms of G and show that if S (or, equivalently, T ) has a
solution, then GS has minimum rank 3.
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dk Yk hk SkXkvkZk

dj Yj hj SjXjvjZj

di Yi hi SiXiviZi

e1 e2

Figure 4.6: The equation vertex e1 enforces qi = qjqk; vertex e2 enforces qi = qj + qk.

First, we establish that the matrix M as constructed in the previous sections has rank
3. It should be clear from the first three rows and columns of R and C, as given in Section
4.5.1, that R and C are both of rank 3. To conclude that M = RC is also of rank 3, we have
the following lemma.

Lemma 4.8. For an n×m matrix M , rank(M) = 3 if and only if M can be factored into
RC where R is n× 3, C is 3×m, and rank(R) = rank(C) = 3.

Proof. Let M be a matrix of rank 3 over a field F. Consider the 3-dimensional vector space
over F spanned by the rows of M . Let v1, v2, and v3 be a basis for this space, and let C be
the 3×m matrix whose rows are v1, v2, and v3.

Let w1, w2, . . . , wn be the row vectors of M . Then there exist αi,1, αi,2, αi,3 such that
wi = αi,1v1 +αi,2v2 +αi,3v3. Let R be the n× 3 matrix such that Ri,j = αi,j . Then M = RC.
It is well-known that the rank of a product of matrices is at most the rank of each factor.
Therefore, rank(R) ≥ rank(M) = 3. Since R has only three columns, rank(R) = 3. Similarly,
rank(C) = 3.

Conversely, suppose there are rank-3 matrices R and C such that R is n×3 and C is 3×m.
We will show that M = RC has rank 3. We know that rank(M) ≤ min{rank(R), rank(C)} =
3. Thus, we need only show that rank(M) ≥ 3. Since R and C both have rank 3, they have
3× 3 nonsingular submatrices (up to reordering of rows and columns). The product of these
matrices is a 3× 3 nonsingular submatrix of M , implying that M also has rank 3.

We take the matrix M and expand it into A in the following manner, where ∗ indicates
block matrices of the appropriate size with all nonzero entries.

A =

[
∗ M
MT ∗

]
Now, we let GS = G, that is, GS is defined as the complement of the graph G that we

have constructed in the previous sections.
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From the discussion in Section 4.4, we observe that the zero-nonzero pattern of M is the
rectangular part of GS. Then, from Theorem 4.6, we know that the minimum rank of GS is
equal to the minimum rank of the pattern of M , and thus, mr(GS) ≤ rank(M). Therefore, if
we are able to find a simultaneous solution to the system of triangulated equations, T , we
can construct M of rank 3, and we have mr(GS) ≤ 3.

Now it only remains to show that mr(GS) > 2. From [14], we know that if GS has a
path on 4 vertices as an induced subgraph, then mr(GS) > 2. Since a path on 4 vertices
is self-complementary, this condition is equivalent to G having a path on 4 vertices as an
induced subgraph. G has multiple induced subgraphs of this type in the base graph alone, as
can be seen in Figure 4.1.

In conclusion, if we are able to find a simultaneous solution to the system of triangulated
equations T , then mr(GS) = 3.

4.5.5 Minimum Rank 3 Implies a Solution to the Polynomials

For a given set of polynomial equations S ⊆ Z[x1, x2, ..., xk], GS is formed in the fashion
described in the previous sections. To summarize the process, first, we triangulate and
pre-process S to obtain T , a set of triangulated polynomial equations in Z[q1, q2, · · · , qm],
whose solutions are in one-to-one correspondence with those of S. Then we build the graph
G beginning with the core of eight vertices, add seven vertices for each variable qi, and finally
add a trivalent vertex for every equation in T . GS is then defined as G. We have seen that,
if T has a solution, then mr(GS) = 3.

It remains to show that if GS has min rank 3, then S has a solution. Suppose GS does
have minimum rank 3. Then there is some matrix A with rank 3 such that Ai,j = 0 if and only
if G contains the edge {i, j}. Since G is bipartite, its vertices can be partitioned into two sets
VR and VC . Without loss of generality, we will designate the vertices corresponding to lines in
the projective plane as VR and the vertices corresponding to points in the projective plane as
VC , and by appropriate rearrangement of the rows and columns of A, we can decompose A as

A =

[
∗ M
MT ∗

]
,

where the rows of M correspond to VR and the columns of M correspond to VC , and ∗
indicates a submatrix whose entries are all nonzero.

By Theorem 4.7, we know that the minimum rank of the pattern of A is equal to the
minimum rank of the pattern of M . Furthermore, since M is rank 3, there exists a |VR| × 3
matrix R and a 3× |VC | matrix C such that M = RC. Then we have that a particular row
in R and column in C have a zero product if and only if their corresponding vertices are
connected in G. In this sense, there is a one-to-one correspondence between vertices of VR
and the rows of R, and between the vertices of VC and the columns of C.

By a suitable rearrangement of rows and columns of A, we can furthermore ensure that
the first four rows of R correspond to the vertices V,H, I,D, and the first four columns of C
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correspond to the vertices x, y, z, s. Furthermore, we can ensure that after the first four rows,
each successive block of four rows in R corresponds to Zi, Xi, Yi, Si, and each block of three
columns in C corresponds to vi, di, hi, for i = 1, . . . ,m (the indices of the variables qi in T ).
This characterizes all the rows in R. As for C, we will rearrange columns suitably so that
after the columns corresponding to the variables of T , we have the columns corresponding to
the additive and multiplicative equations of T .

With this ordering, we have that the top left corner of M is

x y z s


V ∗ 0 ∗ ∗
H 0 ∗ 0 ∗
I 0 0 ∗ 0
D ∗ ∗ 0 0

.

Since M = RC, any row operations we perform on R are equivalent to performing the
same row operations on M , and any column operations we perform on C are equivalent to
performing the same column operations on M . So long as our row and column operations
preserve the rank and the zero structure of M , we will obtain another matrix of rank 3 which
still corresponds to the graph GS.

We begin by scaling the first two rows of M so that the top two entries in column s are
1. Then we scale the first three columns of M so as to make the first nonzero entry in each
column become 1, 1, and −1 respectively. We then scale the third row of M so that its third
entry is 1. The result is

x y z s


V 1 0 −1 1
H 0 1 0 1
I 0 0 1 0
D ∗ ∗ 0 0

.

Note that since the top left 3× 3 submatrix of M is non-singular, this tells us that the
top three rows of R and the left three columns of C are also non-singular submatrices. Now,
since M = RC, we also have that for any invertible 3× 3 matrix P , M = (RP−1)(PC). Thus
we can choose P to be the inverse of the first three columns of C, and then replace R with
RP−1 and C with PC, so that the first three columns of C are the identity matrix.

This implies that R is identical to the first three columns of M . Furthermore, we can
scale each row of M after the first three by any non-zero value, so as to control the value of
one non-zero entry per row. Hence, R has the form below, where zeros correspond to edges
in the graph G between the two vertices corresponding to the column and row of the entry in
R. The reason for the particular entries chosen to be 1 or −1 will be clear later.

Note that in the representation of R below, we use the notation M∼,∼ to stand for non-zero
entries from the M matrix. Furthermore, it should be understood that the index i is the



CHAPTER 4. HARDNESS OF MINIMUM RANK 3 88

index of the variables qi in T , so that R actually contains rows Z1, X1, Y1, S1 followed by
Z2, X2, Y2, S2, and so on. We may therefore write

R =





V 1 0 −1
H 0 1 0
I 0 0 1
D −1 MD,y 0
Zi MZi,x −1 0
Xi 0 1 MXi,z

Yi 1 0 MYi,z

Si −1 MSi,y MSi,z

.

Now, turning our attention back to M , we can scale every column after the first three
by any non-zero scalar, which allows us to choose one nonzero entry per column to be 1.
Thus we force the first three rows of M to be as shown below, where ei,j,k are the vertices
corresponding to multiplication equations in T and fi,j,k are the vertices corresponding to
addition equations in T . The reason for choosing these particular entries to be 1 will be clear
later. As in the case of R above, it should be understood that by columns vi, di, hi we really
mean repeated blocks of three columns beginning with v1, d1, h1, then v2, d2, h2, and so on.
Similarly, we use ei,j,k to stand for any column corresponding to a multiplicative equation
qi = qjqk in T and fi,j,k to stand for any column corresponding to an additive equation
qi = qj + qk in T .

M =

x y z s vi di hi ei,j,k fi,j,k


V 1 0 −1 1 0 ∗ ∗ 1 ∗
H 0 1 0 1 ∗ ∗ 0 ∗ ∗
I 0 0 1 0 1 1 1 ∗ 1
...

...
...

...
...

...
...

...
...

...

Just as we determined R from the first three columns of C, we can also determine C from
the first three rows of R. The first three rows of R are1 0 −1

0 1 0
0 0 1


which tells us that the second and third rows of C will be identical to those of M , whereas
the first row of C will be the sum of the first and third rows of M . Hence, we can write C in
the following form, where M∼,∼ again denotes nonzero entries from the M matrix.
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C =

x y z s vi di hi ei,j,k fi,j,k[ ]1 0 0 1 1 MV,di + 1 MV,hi
+ 1 MI,ei,j,k + 1 MV,fi,j,k + 1

0 1 0 1 MH,vi MH,di 0 MH,ei,j,k MH,fi,j,k

0 0 1 0 1 1 1 MI,ei,j,k 1

We will use the notation R∼ for the row labeled ∼ in R and the notation C∼ for the column
labeled ∼ in C. Recall that when vertices A,B are connected in the graph G, RACB = 0.
Hence, consulting Figure 4.4, we have the following. Below, i ranges over the indices of the
variables qi of the polynomials in T .

RDCs = 0⇒MD,y = 1

RDCdi = 0⇒MV,di = MD,yMH,di − 1

RSi
Cs = 0⇒MSi,y = 1

RZi
Cvi = 0⇒MZi,x = MH,vi

RXi
Cvi = 0⇒MH,vi = −MXi,z

RXi
Cdi = 0⇒MH,di = −MXi,z

RYi
Cdi = 0⇒MV,di = −MYi,z − 1

RYi
Chi

= 0⇒MV,hi
= −MYi,z − 1

RSi
Chi

= 0⇒MSi,z = MV,hi
+ 1

If we rename the entry MH,di by the name qi, the above equations yield:

MD,y = 1 MZi,x = qi MXi,z = −qi MYi,z = −qi
MSi,y = 1 MSi,z = qi MV,s = 1 MH,vi = qi
MV,di = qi − 1 MH,di = qi MV,hi

= qi − 1

Hence, our R and C matrices are as shown below:

R =





V 1 0 −1
H 0 1 0
I 0 0 1
D −1 1 0
Zi qi −1 0
Xi 0 1 −qi
Yi 1 0 −qi
Si −1 1 qi
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C =

x y z s vi di hi ei,j,k fi,j,k[ ]1 0 0 1 1 qi qi MI,ei,j,k + 1 MV,fi,j,k + 1
0 1 0 1 qi qi 0 MH,ei,j,k MH,fi,j,k

0 0 1 0 1 1 1 MI,ei,j,k 1

Now we turn our attention to the columns ei,j,k and fi,j,k in C, corresponding respectively
to the multiplication equation qi = qjqk and the addition equation qi = qj +qk in T . As shown
in Figure 4.6, the vertex corresponding to a multiplication equation qi = qjqk is connected to
exactly three vertices, Xi, Yj , and Zk. Hence, we have the following. For every multiplication
equation of the form qi = qjqk in T ,

RXi
Cei,j,k = 0⇒MH,ei,j,k = qiMI,ei,j,k

RYj
Cei,j,k = 0⇒MI,ei,j,k + 1 = qjMI,ei,j,k

RZk
Cei,j,k = 0⇒ qk(MI,ei,j,k + 1) = MH,ei,j,k

After substitution, these equations yield qiMI,ei,j,k = qjqkMI,ei,j,k , and since MI,ei,j,k is a
nonzero entry of M , we recover the equation qi = qjqk.

Likewise, the vertex corresponding to an addition equation qi = qj + qk is connected
to exactly three vertices, Xj, Yi, and Sk. Hence, for every addition equation of the form
qi = qj + qk in T ,

RXj
Cfi,j,k = 0⇒MH,fi,j,k = qj

RYi
Cfi,j,k = 0⇒MV,fi,j,k + 1 = qi

RSk
Cfi,j,k = 0⇒MH,fi,j,k + qk = MV,fi,j,k + 1

After substitution, these yield the equation qi = qj + qk.
Thus, we have shown that if GS has minimum rank 3, then T has a solution, which implies

that S has a solution, proving Theorem 4.3.

4.6 Examples and Minimal Obstructions

In this section we construct some examples to illustrate the technique, including, as promised
by Theorem 4.1, an explicit infinite list of minimal obstructions to 3-RANK and to F-3-RANK
for any infinite field F. For context, we start with a summary of known results for lower
ranks, or for finite fields.



CHAPTER 4. HARDNESS OF MINIMUM RANK 3 91

4.6.1 Ranks 0, 1, and 2

The only matrix of rank 0 is the zero matrix, corresponding to a graph with no edges, from
which it follows that, over any field, the unique obstruction to rank 0 is the induced subgraph
K2.

Every matrix of rank 1 can be factored as an outer product xTx, and so the pattern of
such a matrix is a complete graph of some size (corresponding to the non-zero entries of
x) together with isolated vertices (corresponding to the zero entries of x). Such graphs are
characterized by having at most one connected component with any edges, within which
component the maximum distance is 1. From this it follows that the only obstructions to
rank 1, over any field, are the disjoint union of two edges 2K2 and the path on three vertices
P3.

A complete description of graphs with minimal rank 2 over any infinite field F is given
in [14], in terms of a finite list of forbidden induced subgraphs. The same is done for finite
fields in [15]. It follows, for any given field F, that F-2-RANK belongs to P, the class of
decision problems solvable in time that is polynomial in the size of the input. This includes
R-2-RANK, which is to say 2-RANK. For example, because the largest obstruction to rank 2
for a real symmetric matrix is the 9-vertex graph K3,3,3, a brute-force search for obstructions
gives an algorithm of complexity O(n9/2) for resolving 2-RANK (and a faster search for K3,3,3

in particular would improve the running time). The infinite families that we are about to
construct show that minimum rank 3 has no such finite list of obstructions.

4.6.2 Finite Fields

For finite fields more generally, the rank problem is known to be fixed-parameter tractable:
If F is finite and d is specified, then F-d-RANK belongs to P. This follows from the work of
[35] that gives explicit bounds, in terms of |F| and d, on the number and size of a sufficient
set of matrices, whose ranks can be individually checked to produce a complete finite list of
obstructions. These explicit bounds are not practical, even for very small fields and small
ranks, for finding all the obstructions for F-d-RANK. The special case of |F| = 2 and rank 3 is
covered by [13], which gives an explicit list of all 62 obstructions, involving at most 8 vertices,
whereas using only the bounds from [35] would require checking the ranks of all binary
symmetric matrices of size up to 25× 25—more than 1065 matrices, even up to symmetry. A
brute-force search for all 62 obstructions would give an algorithm of running time O(n4) for
GF (2)-3-RANK, which is probably far from optimal. The field GF (2) is particularly friendly
to graph-theoretic questions: Since there is only one non-zero element, the pattern alone
tells you every non-diagonal entry. The remaining |V | undetermined diagonal entries mean
that GF (2)-RANK can be determined, even näıvely, by computing a set of O(2

√
n) binary

matrix ranks, and with a bit more sophistication it would not be surprising to learn that
the problem is tractable even in its non-fixed-parameter version. For a finite field F with 3
elements or more, on the other hand, it seems likely that with the parameter d no longer
fixed, the problem F-RANK becomes intractable.
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4.6.3 The Tetrahub Wheels

This leaves the question of minimal obstructions to minimum rank 3 over infinite fields, which
will include graphs from two infinite families.

Given m ≥ 2, the tetrahub wheel number m, or mth tetrahub, which will be denoted by
THm, is a graph on 4m+ 4 vertices containing an induced cycle on 4m vertices. The vertices
of the cycle are labeled c0, c1, c2, . . . , c4m−1 in cyclic order, and the additional four “hub”
vertices are labeled h0, h1, h2, and h3. The cycle vertices are partitioned into four residue
classes modulo 4, and each cycle vertex in residue class k is connected to the appropriate
hub vertex hk.3 Figure 4.7 depicts TH5.

Figure 4.7: The fifth tetrahub, TH5

Given m ≥ 2, the tetrahub wheel number m with axle, or mth tetrahub with axle, which
will be denoted THAm, is a graph on 4m+ 6 vertices which has THm as an induced subgraph.
The additional two vertices a0 and a1, which form the “axle” of the wheel, are connected to
each other and to the hubs of the same parity by the five edges

{a0, a1}, {a0, h0}, {a0, h2}, {a1, h1}, and {a1, h3}.

Figure 4.8 depicts THA6.

Remark 4.9 (Symmetries and special cases). The cycle vertices of a tetrahub, with or
without axle, all have degree 3, as do the axle vertices of a tetrahub with axle. The hub
vertices of THm have degree m, and the hub vertices of THAm have degree m + 1. The

3According to this nomenclature, the ordinary wheel graphs would be called “monohub” wheels.
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Figure 4.8: The sixth tetrahub with axle, THA6

symmetry group of the graph must include at least the dihedral group of order 8m acting on
the cycle, and since symmetries preserve degree, it is not hard to see that these are all possible
symmetries for THm with m ̸= 3 or for THAm with m ̸= 2. The special case THA2 turns out
to have additional symmetries, and indeed, THA2 is the Heawood graph whose symmetry
group of order 336 = (21)(8m) is transitive on its vertices. The special case TH3 also turns
out to have additional symmetries: TH3 is the Möbius-Kantor graph whose symmetry group
of order 96 = (4)(8m) is also transitive on its vertices. The Heawood graph was the starting
point in constructing these families. It is the incidence graph of the Fano plane or projective
plane of order 2, which is well-known (see [75], for example) to be a minimal rank-3 matroid
that cannot be realized by independence relations of vectors in R3 or C3 (since the deletion of
any point from the Fano plane can be realized in this way). Marking each point-line incidence
by a 0 in the corresponding row and column thus gives a pattern Y with mr(Y ) > 3, and Y
proves to be locally minimal (with respect to row or column deletion) for that property. It
is natural to next examine the projective plane of order 3, which similarly gives a pattern
Y with mr(Y ) > 3. In this case, however, the pattern Y is far from locally minimal; it
suffices to use 8 of the 13 points and 8 of the 13 lines, leaving the well-studied Möbius-Kantor
configuration, which can be represented in C3 but not in R3. Examination of these two cases,
and in particular of the sequence of algebraic identities that forces mr(Y ) > 3, led to the
generalizations THm and THAm.

We will use the fact that THm and THAm are bipartite, and also the fact that in each
case, taking a matrix with the pattern of the complement graph and examining the off-
diagonal block yields a rectangular pattern Y that is reduced. The graphs are bipartite by
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construction, with one side of the partition taking in the even-numbered cycle vertices, then
the odd-numbered hub vertices, then possibly the even-numbered axle vertices. The pattern
Y from the complement is a reduced rectangular pattern because no vertex in the bipartite
graph is adjacent to every vertex on the other side of the partition. In fact, every vertex is
non-adjacent to at least two vertices on the other side of the partition, from which we can
deduce the same two facts for every single-vertex deletion of THm or of THAm.

The following lemma summarizes the necessary facts about minimum ranks of the com-
plements of these graphs and their single-vertex deletions.

Lemma 4.10. Given an infinite field F and an integer m ≥ 2,

• let G be the complement of THm,

• let G′ be any single-vertex deletion of G,

• let H be the complement of THAm, and

• let H ′ be any single-vertex deletion of H,

and consider the following cases:

1. The characteristic of F is m.

2. The characteristic of F is other than m, and the field F contains an mth root of unity.

3. The characteristic of F is other than m, and the field F does not contain an mth root of
unity.

Then the following statements all hold:

• In Case 1 and Case 2, the minimum rank of G over F is 3.

• In Case 3, the minimum rank of G over F is 4.

• In Case 3, the minimum rank of G′ over F is 3.

• In Case 1, the minimum rank of H over F is 3.

• In Case 2, the minimum rank of H over F is 4.

• In Case 2, the minimum rank of H ′ over F is 3.

In particular, for an infinite field F not of characteristic m and not containing a primitive
mth root of unity, the complement of THm is a minimal obstruction to minimum rank 3, and
for an infinite field F not of characteristic m and containing a primitive mth root of unity,
the complement of THAm is a minimal obstruction to minimum rank 3. This will suffice,
once Lemma 4.10 is proven, to give the main results of this section.

Theorem 4.11. Over any infinite field F, there is no finite list of graphs such that a graph
has minimum rank 3 over F if and only if it has no induced subgraph from the list.



CHAPTER 4. HARDNESS OF MINIMUM RANK 3 95

Proof. For any infinite field F, we exhibit, supported by Lemma 4.10, an infinite sequence of
minimal obstructions Om to minimum rank 4, indexed by an infinite collection of positive
integers m ≥ 2.

In those cases where the characteristic p of F is positive, we leave Om undefined for m
equal to p. Otherwise, we take Om to be the complement of THm in the case that F does not
contain a primitive mth root of unity, and otherwise we take Om to be complement of THAm.
In particular:

• For F = R we have the infinite sequence THA2,TH3,TH4, . . . .

• For F = C we have the infinite sequence THA2,THA3,THA4, . . . .

Proof of Lemma 4.10. Suppose that a value x exists which is a primitive mth root of unity,
and let a be any number. Then we have

a = xma.

Letting this single equation be the system S, we construct the graph GS corresponding to
the triangulation q0 = x, q1 = a, and

q2 = q0 · q1 = xa

q3 = q0 · q2 = x2a

q4 = q0 · q3 = x3a

...
...

...

qm = q0 · qm−1 = xm−1a

a = q1 = q0 · qm = xma.

Now let F be any infinite field. For each integer i > 1, let Bi = TH2i+2 if F has no
primitive root of unity of order 2i+ 2, and let Bi = THA2i+2 otherwise.

We form a sequence of graphs indexed by the even integers m starting at m = 4, and for
each such m, we select the 4-hub m-wheel if F has no primitive mth root of unity, and the
4-hub m-wheel with axle otherwise.

Since no field has even characteristic greater than 2, each Bi will have constraint rank 4
over F. Similarly, every single-vertex deletion of every graph in the list will have constraint
rank 3 over F. The theorem thus holds for every infinite field F.

4.6.4 Concluding Remarks

With the proofs of Theorem 4.3 and Theorem 4.11, we have shown that, unlike the 0-RANK,
1-RANK, and 2-RANK problems, which can be solved in polynomial time by checking a
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finite list of forbidden subgraphs, the complexity class of the 3-RANK problem is equivalent
to ∃R, which is NP-hard and in PSPACE. This confirms a long-held intuition amongst those
who have worked on the minimum rank problem: that the d-RANK problem is fundamentally
different for d ≤ 2 than for d ≥ 3. In the course of proving our results, we have also
established a concrete method for interpreting any system of equations in the context of
projective geometry.

These hardness results indicate that, for large instances, it is computationally intractable
to solve d-RANK exactly for d ≥ 3; however, it does not spell the end of applications for
minimum rank and related matrix completion problems. Rather, it indicates a need for
approximate algorithms and methods (like those found in Chapter 5) to bound the minimum
rank of large graphs.

4.7 Appendix: Triangulation and Slack Variables

We now provide an explicit description of the two pre-processing steps described in Sec-
tion 4.3.1. In Section 4.7.1, we detail a procedure to transform the set of polynomial equations
S on variables x into a set of equations T on variables q, where all equations in T are either
of the form qi = qj + qk or the form qi = qjqk (with i, j, k not necessarily distinct). In Section
4.7.2, we describe further procedures, involving the creation of auxiliary and slack variables,
which ensure that we may assume the variables q are generic with respect to a set of specific
constraints, namely that for all indices i ̸= j, we have qi ̸= 0, qi ̸= qj, and qi + qj ̸= 1.

All procedures in Sections 4.7.1 and 4.7.2 can be done in time that is polynomial in
the size of the input, where the input is a binary string that encodes the set of polynomial
equations according to some standard format—including, for example, binary encoding of
any integers that appear as coefficients or as exponents. Each of the base variables and slack
variables is given a label q1, q2, . . . , and further labels are given to every intermediate stage
of the calculation.

4.7.1 First Pass

A set of polynomial equations with integer coefficients is triangulated if the variables are
q1, q2, . . . , qk and if every equation takes either the form qi = qj + qk or the form qi = qjqk for
three indices i, j, k ≥ 1, not necessarily distinct. We begin by detailing a polynomial time
procedure to triangulate S. Our goal is to use simple substitutions and reversible algebraic
manipulations to transform S into a set T of triangulated equations whose solutions are in
one-to-one correspondence with those of S. This may involve the addition of a small number
of slack variables whose particular value is a new degree of freedom that plays no role in
the original equations and is taken to be nonzero. (The second pass will introduce a large
number of slack variables entirely replacing the original variables.) It will also involve the
addition of new labels for every intermediate stage of computation.
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In order to satisfy the claim of polynomial overhead while also accomodating, if desired,
the possibility of parenthesized expressions in the input, a first stage can be employed that
replaces all parenthesized expressions in terms of new variables, beginning with innermost
expressions. For example, the single equation

(a+ b)200 = (c+ d)200

would be transformed to the three equations

x = a+ b

y = c+ d

x200 = y200

where x and y are new variables. This is iterated recursively until all parentheses are
eliminated, with only polynomial overhead.

The second stage is to move all monomials to the left or right side of every equation in
such a way as to eliminate all negative coefficients; for example, the equation 3ab2−2b+5 = 0
would become 3ab2 + 5 = 2b. We wish to avoid the situation where one side or the other of
an equation is zero. This can be accomplished by adding a slack variable to both sides; for
example, a+ b = 0 would become a+ b+ t = t where t ≠ 0 is a new variable not appearing
elsewhere in the equations. We also wish to avoid having any constant terms. This can
be accomplished by multiplying both sides of an equation by a slack variable; for example,
3ab2 + 5 = 2b would become 3ab2s+ 5s = 2bs where s ̸= 0 is a new variable not appearing
elsewhere in the equations.

It is now time to allocate labels q1, q2, . . . , first to the base variables and then to all
intermediate stages of computation on both sides of every equation. Any positive integer
power of a variable is calculated by repeated multiplication, including repeated squaring when
the exponent is large, since the input is expressed in binary notation and we have promised
only polynomial-sized overhead. Similarly, any positive integer coefficient is calculated as
a multiple of its monomial by repeated addition, including repeated doubling when the
coefficient is large. An example will illustrate.

Example 4.12. We encode the single equation

2a26 = 17bc2

by first assigning q1 = a, q2 = b, and q3 = c. Then, on both sides of the equation, we
allocate new labels to intermediate stages of the calculation, using the binary representations
26 = 110102 and 17 = 100012, as
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q4 = q1 · q1 (= a2) q11 = q3 · q3 (= c2)

q5 = q4 · q4 (= a4) q12 = q2 · q11 (= bc2)

q6 = q5 · q5 (= a8) q13 = q12 + q12 (= 2bc2)

q7 = q6 · q6 (= a16) q14 = q13 + q13 (= 4bc2)

q8 = q7 · q5 (= a24) q15 = q14 + q14 (= 8bc2)

q9 = q8 · q4 (= a26) q16 = q15 + q15 (= 16bc2)

q10 = q9 + q9 (= 2a26) q10 = q16 + q12 (= 17bc2)

Since the common label q10 terminates both calculations, this encodes the desired equation
2a26 = 17bc2.

If it happens that the same intermediate expression occurs in different equations (or in
different parts of the same equation), then the already-determined labels for that subexpression
should be used rather than repeating any of the steps leading up to the shared subexpression.

4.7.2 Second Pass

For a given set of elementary equations in variables q1, q2, q3, . . . , the reduction to point-line
incidences in the projective plane produces a bipartite graph whose complement G has the
property such that G has minimum rank 3 if and only if there exists an assignment of the
variables satisfying two sets of conditions: Firstly, all the elementary equations must be
satisfied; and secondly, for i ̸= j, we must have qi ̸= 0, qi ̸= qj, and qi + qj ̸= 1. We wish to
remove the latter set of restrictions, which we do by way of a second pass that produces a new,
larger set of variables, and a new set of elementary equations, such that even non-interesting
solutions of S will correspond, for some generic choice of the slack variables, to an interesting
solution in the higher-dimensional space of auxiliary and slack variables.

We do require a pre-processing stage between the first pass and the second pass that
eliminates certain redundancies. The pre-processing stage examines all pairs of elementary
additions and all pairs of elementary multiplications looking for certain patterns of repeated
variables, and either eliminates a redundant equation or identifies a pair of variables qi
and qℓ that must be equal, in which case qℓ is eliminated and replaced everywhere by qi.
This substitution may in turn produce new examples of patterns of repeated variables, and
so the process is run recursively until no examples remain. The patterns flagged by the
pre-processing stage are listed below. When an elementary equation such as qi = qj + qk
is listed, the intention is for the preprocessor to scan both for that equation and for the
elementary equation qi = qk + qj, which is mathematically equivalent but distinct as an
elementary equation, and similarly for qi = qj · qk and its mathematical equivalent qi = qk · qj .

• qi = qj + qk and qi = qj + qk. The second equation is redundant and can be removed.
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• qi = qj +qk and qℓ = qj +qk. This pair of elementary additions implies the mathematical
relationship qℓ = qi. The preprocessor should remove the variable qℓ, replacing it by qi
in every elementary equation where it occurs. The second equation becomes redundant
as a result and is also eliminated.

• qi = qj · qk and qi = qj · qk. Eliminate the redundant second elementary multiplication.

• qi = qj · qk and qℓ = qj · qk. Eliminate qℓ, replacing it everywhere by qi, and then
eliminate the second redundant equation.

• qi = qi + qj and qj = qi + qi. The first equation implies that the numerical value of
qj must be 0, after which the second equation implies that 2qi = 0. Over any field
of characteristic other than 2 (in particular, in the case of most interest F = R), we
can conclude that qi = 0 and in particular that qj = qi, meaning that the preprocessor
should replace qj by qi and eliminate the second redundant equation. In the special
case where F has characteristic 2, we do not eliminate a variable, but in that case the
two equations are equivalent and the second, redundant elementary addition should be
eliminated.

• qi = qj + qk and qj = qi + qk. Substituting the second equation into the first yields
the mathematical relationship qi = qi + 2qk, which in characteristic other than 2 yields
qk = 0 and therefore qj = qi, meaning that the preprocessor should replace qj by qi and
eliminate a redundant equation. In characteristic 2, no variable is eliminated, but the
second equation is redundant and is eliminated.

At the end of the pre-processing phase, there will remain no pair of elementary additions
and no pair of elementary multiplications that fit any of these patterns of repeated variables.

We are now ready for the second pass. A few slack variables may have been introduced in
the first pass, each of which is supposed to take a generic value that in particular is nonzero,
and each of which was assigned a name qi for some value of i. These we set aside to keep
unchanged. For all other original variables qi, we introduce an auxiliary variable pi and a
slack variable si. The relation pi = qi + si is not quite sufficient, because in the case of a
solution of S for which qi was equal to 0, we would have pi = si and thus two named variables
with equal values, which is among the unwanted coincidences that we must avoid. We thus
employ an additional universal slack variable named t. The original named variables and
elementary equations will be expressed in terms of auxiliary variables and slack variables
using the following relation:

pi = qi + si + t or qi = pi − si − t.

Note that under this choice we must avoid ever giving a name to any quantity si + t, since it
could, when qi happens to equal 0, be forced to the same value as the named quantity pi.

The original addition and multiplication equations must be re-written in such a way
that the original variables qi are never mentioned, which will produce longer equations that
themselves must be decomposed in terms of additional intermediate variables. We tackle the
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easier case of addition first. An elementary addition equation takes the form qi = qj + qk.
We have

qi = qj + qk

⇐⇒ pi − si − t = pj − sj − t+ pk − sk − t
⇐⇒ pi + sj + sk + t = pj + pk + si.

This must be decomposed into elementary addition equations with new named variables
a1(i, j, k), . . . , each of which can be expressed in terms of the old variables qi and the slack
variables si and t. Care must be taken to ensure that no new variable is the sum of a single
slack variable si with the universal slack variable named t. Concretely, we decompose the
equations as follows:

a1(i, j, k) = sj + sk = sj + sk

a2(i, j, k) = pi + a1(i, j, k) = qi + si + sj + sk + t

a3(i, j, k) = pj + pk = qj + qk + sj + sk + 2t

a4(i, j, k) = a2(i, j, k) + t = qi + si + sj + sk + 2t

a4(i, j, k) = a3(i, j, k) + si = qj + qk + si + sj + sk + 2t

Note that the new variable named a4(i, j, k) occurs on the left hand side of two equations.
This gives it two different expanded expressions in terms of old registers and slack variables,
and those two expressions differ only by the identity qi = qj + qk.

Now we rewrite an elementary multiplication equation, which starts in the form qi = qj ·qk.
We will find that some of the intermediate named quantities reoccur in other multiplication
equations, and so we begin by defining the following named new variables for any j such
that qj ever occurs as a factor (i.e., on the right-hand side) in an elementary multiplication
equation:

p′j = pj · t = qjt+ sjt+ t2

s′j = sj · t = sjt.

We also define two universal new named variables

t′ = t · t = t2

t′′ = t+ t′ = t+ t2.

We have

qi = qj · qk

⇐⇒ pi − si − t = (pj − sj − t)(pk − sk − t)

⇐⇒ pi + pksj + pjsk + pjt+ pkt = pjpk + si + sjsk + t+ sjt+ skt+ t2

⇐⇒ pi + (pk · sj) + (pj · sk) + p′j + p′k = (pj · pk) + si + (sj · sk) + s′j + s′k + t′′
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which concretely, in the case j ̸= k, we decompose as

m1(i, j, k) = pj · sk = qjsk + sjsk + skt

m2(i, j, k) = pk · sj = qksj + sjsk + sjt

m3(i, j, k) = pj · pk = qjqk + qksj + qjsk + sjsk + qjt+ qkt+ sjt+ skt+ t2

m4(i, j, k) = sj · sk = sjsk

m5(i, j, k) = pi +m1(i, j, k) = qi + si + qjsk + sjsk + t+ skt

m6(i, j, k) = m5(i, j, k) +m2(i, j, k) = qi + si + qksj + qjsk + 2sjsk + t+ sjt+ skt

m7(i, j, k) = m6(i, j, k) + p′j = qi + si + qksj + qjsk + 2sjsk + t+ qjt+ 2sjt+ skt+ t2

m8(i, j, k) = m3(i, j, k) + si = qjqk + si + qksj + qjsk + sjsk + qjt+ qkt+ sjt+ skt+ t2

m9(i, j, k) = m8(i, j, k) +m4(i, j, k) = qjqk + si + qksj + qjsk + 2sjsk + qjt+ qkt+ sjt+ skt+ t2

m10(i, j, k) = m9(i, j, k) + s′j = qjqk + si + qksj + qjsk + 2sjsk + qjt+ qkt+ 2sjt+ skt+ t2

m11(i, j, k) = m10(i, j, k) + s′k = qjqk + si + qksj + qjsk + 2sjsk + qjt+ qkt+ 2sjt+ 2skt+ t2

m12(i, j, k) = m7(i, j, k) + p′k = qi + si + qksj + qjsk + 2sjsk + t+ qjt+ qkt+ 2sjt+ 2skt+ 2t2

m12(i, j, k) = m11(i, j, k) + t′′ = qjqk + si + qksj + qjsk + 2sjsk + t+ qjt+ qkt+ 2sjt+ 2skt+ 2t2

Note that the final new named variable m12(i, j, k) occurs on the left hand side of two
equations. This gives it two different expanded expressions in terms of the qi and slack
variables, and those two expressions differ only by the identity qi = qjqk.

The case of an elementary multiplication in which j = k, that is to say qi = qj · qj, is
decomposed identically except that no variable m2(i, j, j) is defined; in its place the variable
m1(i, j, j) with identical value is used. (The effect is the same as though m2(i, j, j) were
defined as above, followed by an additional pass of the pre-processing phase that eliminates
redundant variables.)

The complete set of new variables yi allocated in the second pass is thus as follows:

• A global slack variable t and two new named variables t′ and t′′ derived from it.

• For each of the old variables qi, an auxiliary variable pi and a slack variable si.

• For each of the old variables qj that ever occurs as a factor in an elementary multiplication
equation qi = qj · qk, new named variables p′j and s′j.

• Four new intermediate quantities a (i, j, k) for each of the original elementary additions
qi = qj + qk.

• Twelve (or in some cases eleven) new intermediate quantities m (i, j, k) for each of the
original elementary multiplications qi = qj · qk.

Theorem 4.13. Given a set S of polynomial equations in multiple variables with integer
coefficients, perform the first pass to produce a system of elementary addition equations and
elementary multiplication equations together with a list of variables named qi. Perform the
pre-processing to remove obvious redundancies, and then perform the second pass to produce
a second list of new variables named yi.
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Suppose that x is a solution of the system S of polynomial equations with integer coefficients,
and let q be the uniquely determined set of values for the set of first-pass variables qi. Let the
slack variable t and the slack variables si be indeterminates. Let y = {yi} denote the complete
set of new variables from the second pass, each value of which depends only on q and a choice
of values for the indeterminates t and si, and thus depends only on the particular solution x
of S and the indeterminates. Then, for a generic choice of the indeterminates t and si, and
in particular for at least one choice of these values, there will be no instance of

1. a second-pass variable yi taking the value 0,

2. a second-pass variable yi taking the value 1,

3. a pair of distinct second-pass variables yi and yj taking the same value, or

4. second-pass variables yi and yj (not necessarily distinct) such that yi + yj = 1.

Proof. The setup of the claim can be interpreted as a game in which an adversary (“Player
1”) selects the values for all qi variables, and the other player (“Player 2”) must find values
for the si and slack variables t, t′ to prevent any of the four listed conditions from holding.

In particular, there is a finite set of equations to check to ensure there are sufficient degrees
of freedom in the qi and slack variables. Player 1 succeeds with a choice that always satisfies
one of these equations. For each such equation, consider the monomials in si variables, and
check each for the presence of one or more qi variables; Player 1 fails if there exists some
monomial with no qi factors. We describe an algorithm to check this condition.

• For each individual expression defining a mi or ai variable: check each monomial in
si variables for the presence of one or more qi term. If all monomials have at least
one such term, continue; else return false. This corresponds to checking Condition
1 in Theorem 4.13: if there is at least one qi factor in each monomial, then for any
choice of si variables, there exists some assignment of qi and slack variables such that
the expression is not identically zero. Condition 2 follows identically from the same
property.

• For each pair of expressions p1 and p2 defining mi or ai variables, there are three variable
indices (i, j, and k) per expression, some subsets of which may be equal (indicating
repeated variables).

Some sets of repeated variables, however, do not occur due to the pre-processing step;
in particular, there are no repetitions that lead to two identical qi variables. For
example, for a pair of elementary addition equations qi1 = qj + qk and qi2 = qk + qj , the
pre-processing step would consolidate qi1 and qi2 into one variable. This situation also
arises if the indices {i, j, k} used in the first elementary equation are a permutation
of the indices used in the second. Therefore, we remove from consideration any such
combination of variables.

For each remaining configuration of the variable indices, consider the polynomial
expressions p1 − p2 (corresponding to Condition 3 in Theorem 4.13) and p1 + p2 − 1
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(corresponding to Condition 4). Again check each monomial in si variables for the
presence of one or more qi factor. If all monomials have at least one such factor, continue.
Otherwise, return that Player 1 wins.

Upon reaching the end of the algorithm, indicating that all pairs satisfy the monomial
condition, return that Player 2 wins, indicating that the conditions of the theorem hold.

We verify that the condition on monomial terms holds for all of the above expressions via
computer algebra in SageMath; see [65] and the corresponding implementation in Appendix B.
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Chapter 5

Zero Forcing with Random Sets

Into the white [...]
Change will surely come.

- Caligula’s Horse, Into the White

This chapter is based on the work in Curtis, Gan, Haddock, Lawrence, and Spiro [66], which
is under submission and available on arXiv.

5.1 Introduction

While Chapter 4 showed that determining the exact minimum rank of a graph is compu-
tationally hard over the reals, a natural next question is whether it is possible to instead
bound the minimum rank with some easier-to-compute quantity. The zero forcing process,
first introduced by Burgarth and Giovannetti [24], provides one such lower bound.

To define the zero forcing process, first let G be a graph with vertex set V (G), with each
vertex initially colored either blue or white. If u is a blue vertex of G and the neighborhood
NG(u) of u contains exactly one white vertex v, then we may change the color of v to blue.
This iterated procedure for coloring a graph is called “zero forcing”. A zero forcing set B is a
subset of vertices of G such that, if G initially has all of the vertices of B colored blue, then
the zero forcing process may eventually color all of V (G) blue. We let ZFS(G) denote the set
of all zero forcing sets of G. The zero forcing number Z(G) is the minimum cardinality of a
zero forcing set in G; that is, Z(G) = minB∈ZFS(G) |B|.

The zero forcing number Z(G) was found by an AIM research group [52] to be a bound
for the maximum nullity of a graph G; or equivalently, a lower bound on the minimum rank
of G. In this context, the zero forcing process can be interpreted as a series of deductions
about constraints on null vectors of the adjacency matrix of G.

In addition to its independent mathematical interest and use as a tool for studying
minimum rank, zero forcing has subsequently found many real-world applications, including
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(a) (b) (c)

Figure 5.1: An example of zero forcing on a graph.

models of rumor spreading [41] and power grid domination [93], and as a result, zero forcing
and many variants thereof have become an active area of research in recent years.

5.1.1 Zero Forcing with Randomness

In this chapter, we consider a randomized version of the zero forcing process. There are
seemingly two natural ways to define such a random process: one can either use a deterministic
set of blue vertices B together with forces that occur randomly, or one can use a random set of
vertices B together with deterministic forces. The process known as probabilistic zero forcing,
which was introduced by Kang and Yi [63], is of the former type and is by now well studied,
see for example [28, 48, 73, 41, 60]. In this chapter we introduce a process of the latter
type which we call random set zero forcing. This version of zero forcing can be interpreted
as investigating the distribution of zero forcing sets among all subsets of the vertices in a
graph. For example, in the application of power grid domination, random set zero forcing
analyzes the random initialization scenario: if phase measurement units (PMUs) are placed
on n randomly chosen nodes of an electric power network, determine the probability that the
entire graph is monitored.

5.1.2 Main Results

Given a graph G and real number 0 ≤ p ≤ 1, we define the random set Bp(G) ⊆ V (G) by
including each vertex of G independently and with probability p. For example, B1(G) = V (G),
B0(G) = ∅, and B1/2(G) is equally likely to be any subset of V (G).

The central question we wish to ask is: Given G and p, what is (approximately) the
probability that Bp(G) is a zero forcing set of G? For example, one general bound we can
prove is the following.

Proposition 5.1. Let G be an n-vertex graph with minimum degree at least δ ≥ 1. For all p,
we have

Pr[Bp(G) ∈ ZFS(G)] ≤ δnpδ.
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In fact, we prove a slightly stronger version of this theorem that holds for graphs with
“few” vertices of degree less than δ; see Theorem 5.13. Proposition 5.1 can be viewed as a
probabilistic analog of the basic fact that Z(G) ≥ δ if G is a graph with minimum degree δ.

For many graphs G, it will happen that there exists a p such that Bp′(G) is very unlikely
to be a zero forcing set if p′ is much smaller than p, and that Bp′(G) is very likely to be
zero forcing if p′ is much larger than p; see for example Figure 5.2. This line of inquiry is
motivated by the study of thresholds in random graphs, which is one of the fundamental
topics in probabilistic combinatorics (see, for example, [47]). In fact, recalling that whether
an initial vertex set B is zero forcing is a nontrivial monotone property on subsets of V ,
it follows from the foundational work of Bollobás and Thomason [18] that a threshold
function for the zero forcing property in any given graph exists. With this in mind, we
define the threshold probability p(G) for an individual graph G to be the unique p such that
Pr[Bp(G) ∈ ZFS(G)] = 1

2
.

Many other results from classical zero forcing also have probabilistic analogs for random
set zero forcing. For example, it is straightforward to show that if G is an n-vertex graph,
then Z(G) ≤ Z(Kn) = n with equality if and only if G = Kn. In the random setting, it is
also easy to show the analogous result that for all n-vertex graphs G and 0 ≤ p ≤ 1, we have

Pr[Bp(G) ∈ ZFS(G)] ≥ Pr[Bp(Kn) ∈ ZFS(Kn)] = pn,

with equality holding if and only if either p ∈ {0, 1} or G = Kn. In fact, we can use Obser-
vation 5.2 stated below to give the exact result p(Kn) = 2−1/n. Moreover, Observation 5.2
allows us to reduce our focus to connected graphs.

Observation 5.2. Let G be the disjoint union of the graphs G1 and G2. Then

Pr[Bp(G) ∈ ZFS(G)] = Pr[Bp(G1) ∈ ZFS(G1)] · Pr[Bp(G2) ∈ ZFS(G2)].

Let G be a graph on n ≥ 2 vertices with no isolated vertices. It is well known that every
subset of V (G) of size n− 1 is a zero forcing set of G, and that Z(G) = n− 1 if and only if
G = Kn, the complete graph on n vertices (see, for example, [57]). With these observations
it is not difficult to prove the following proposition (see Appendix 5.6).

Proposition 5.3. If G is a graph on n vertices with no isolated vertices, then p(G) ≤ p(Kn).
Moreover, p(Kn) = 1−Θ(n−1).

While it is straightforward to determine the graphs with the largest threshold probabilities,
the analogous problem for smallest thresholds appears much harder. Intuitively, the path
graph Pn is a natural candidate for the minimizer, since it is known that Pn is the unique
n-vertex graph with zero forcing number 1. A proof of the following basic result can be found
in Appendix 5.6.

Proposition 5.4. The threshold probability of the path on n vertices satisfies

p(Pn) = Θ(n−1/2).
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In the classical setting, it is well known that amongst n-vertex graphs, the path Pn is the
unique graph with the smallest zero forcing number. We conjecture that an analog of this
result holds in the random setting.

Conjecture 5.5. If G is an n-vertex graph and 0 ≤ p ≤ 1, then

Pr[Bp(G) ∈ ZFS(G)] ≤ Pr[Bp(Pn) ∈ ZFS(Pn)],

with equality holding if and only if either p ∈ {0, 1} or G = Pn.

While we do not prove this conjecture in full, we provide some partial results; in particular,
we prove the conjecture when restricted to trees and with n sufficiently large.

Theorem 5.6. If T is an n-vertex tree with n sufficiently large, then for all 0 ≤ p ≤ 1,

Pr[Bp(T ) ∈ ZFS(T )] ≤ Pr[Bp(Pn) ∈ ZFS(Pn)],

with equality holding if and only if either p ∈ {0, 1} or T = Pn.
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Figure 5.2: Exact (left) and Monte Carlo estimates (right) of Pr[Bp(G) ∈ ZFS(G)] for the path,
square grid, hypercube, and left-complete binary tree graphs on 16 and 256 vertices respectively.

We note that if Conjecture 5.5 were true, then in particular we would have p(G) > p(Pn)
for all n-vertex graphs G ̸= Pn; we subsequently prove that this is true up to a constant
factor.

Theorem 5.7. If G is an n-vertex graph, then

p(G) = Ω(p(Pn)) = Ω(n−1/2).
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In essence this result says that, for sufficiently large n, a random set of significantly less
than n1/2 vertices of any n-vertex graph G is very unlikely to be a zero forcing set.

Conjecture 5.5 can be viewed as a weakened version of a conjecture involving the number
of zero forcing sets of a given size. To this end, we observe that if G is an n-vertex graph
and z(G; k) is the number of zero forcing sets of G of size k, then

Pr[Bp(G) ∈ ZFS(G)] =
n∑

k=1

z(G; k)pk(1− p)n−k. (5.1)

The notation z(G; k) follows that of Boyer et al. in [20] who introduced the study of zero
forcing polynomials and found many explicit formulas for z(G; k), including:

z(Pn; k) =

(
n

k

)
−
(
n− k − 1

k

)
. (5.2)

Observe that, by (5.1), Conjecture 5.5 is a weakened version of the following conjecture.

Conjecture 5.8 ([20]). If G is an n-vertex graph, then for all k,

z(G; k) ≤ z(Pn; k) =

(
n

k

)
−
(
n− k − 1

k

)
.

It was shown in [20] that Conjecture 5.8 holds whenever G contains a Hamiltonian path,
but other than this very little is known. By extending our proof of Proposition 5.1, we prove
Conjecture 5.8 whenever k is sufficiently small, as a function of the minimum degree of G.

Proposition 5.9. If G is an n-vertex graph with minimum degree δ ≥ 3, then for all
k ≤ (2δ)−1/δn1−1/δ we have z(G; k) ≤ z(Pn; k).

We additionally show that this implies Conjecture 5.8 whenever G has sufficiently large
minimum degree.

Corollary 5.10. If G is an n-vertex graph with minimum degree δ ≥ log2(n) + 2 log2 log2(n),
then z(G; k) ≤ z(Pn; k) for all k.

5.1.3 Organization and Notation

The remainder of this chapter is organized as follows. In Section 5.2, we provide a general
bound on the probability that Bp(G) is zero forcing given the minimum degree. In Section 5.3,
we prove that the threshold probability for an n-vertex graph G is Ω(n−1/2). In Section 5.4,
we prove Theorem 5.6, that amongst trees on sufficiently many vertices, paths have the
largest probability of Bp(G) being a zero forcing set. We conclude with some remarks and
open questions in Section 5.5.



CHAPTER 5. ZERO FORCING WITH RANDOM SETS 109

5.2 Bounds Using Degrees

In this warmup section, we give bounds on the probability that Bp(G) is a zero forcing set
in terms of the degree sequence of G. Our most general bound of this form is the following,
where here and throughout d(v) denotes the degree of v in the graph G.

Lemma 5.11. Let G be an n-vertex graph with at least one edge and p ∈ [0, 1]. Then

Pr[Bp(G) ∈ ZFS(G)] ≤
∑

v∈V (G)

d(v)pd(v).

Proof. Let A be the event that Bp(G) = V (G). For any v ∈ V (G), let Fv be the event that
v and exactly d(v)− 1 of its neighbors are in Bp(G). We claim that for Bp(G) to be a zero
forcing set, either A or Fv for some v must occur. Indeed, if Bp(G) ̸= V (G) and Bp(G) is a
zero forcing set, then there must be some blue vertex v in Bp(G) that forces a white vertex to
be blue. In particular, if v is the first vertex which performs such a force, then it and exactly
d(v)− 1 of its neighbors must be in Bp(G). This proves our claim. Thus by the union bound
we have

Pr[Bp(G) ∈ ZFS(G)] ≤ Pr[A ∪
⋃

Fv] ≤ Pr[A] +
∑

v∈V (G)

Pr[Fv].

As each vertex is included in Bp(G) independently and with probability p, we have

Pr[Fv] = p ·
(

d(v)

d(v)− 1

)
pd(v)−1(1− p) = d(v)pd(v)(1− p).

Plugging this into the bound above and using Pr[A] = pn gives

Pr[Bp(G) ∈ ZFS(G)] ≤ pn +
∑

v∈V (G)

d(v)pd(v)(1− p). (5.3)

By assumption, G contains a vertex u with d(u) ≥ 1. For this vertex we have

d(u)pd(u)(1− p) = d(u)pd(u) − d(u)pd(u)+1 ≤ d(u)pd(u) − pn,

where this last step used d(u) ≥ 1 and d(u) + 1 ≤ n (which always holds for n-vertex graphs).
Plugging this bound into (5.3), and using the bound d(v)pd(v)(1 − p) ≤ d(v)pd(v) for every
other term of the sum gives the desired result.

We also make use of the following, which can be proven using calculus.

Observation 5.12. If d is a positive integer and p ≤ e−1/d, then

xpx ≤ dpd ∀ x ≥ d.

This result quickly gives Proposition 5.1, which we restate below.
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Proposition 5.1. Let G be an n-vertex graph with minimum degree at least δ ≥ 1. For all p,
we have

Pr[Bp(G) ∈ ZFS(G)] ≤ δnpδ.

Proof. When G = K2 the theorem is equivalent to 2p(1− p) + p2 ≤ 2p, i.e. that −p2 ≤ 0, so
the result holds. From now on we assume G has at least 3 vertices. For all p and n ≥ 3, we
have

Pr[Bp(G) ∈ ZFS(G)] ≤ e−1δn

since e−1δn ≥ 1. This implies the result when p ≥ e−1/δ.
Observation 5.12 together with Lemma 5.11 and the fact that d(v) ≥ δ for all v gives

Pr[Bp(G) ∈ ZFS(G)] ≤
∑

v∈V (G)

d(v)pd(v) ≤ δnpδ.

We next prove a slightly stronger version of this result which holds for graphs with “few”
vertices of degree less than a given degree d. Proposition 5.1 can also be seen as a corollary
of the following theorem.

Theorem 5.13. Let G be an n-vertex graph without isolated vertices. Suppose that there
exist integers 1 ≤ d ≤ n and N ≥ 0 such that G contains at most Nk vertices of degree k for
all 1 ≤ k < d. Then for all p ≤ e−1/d, we have

Pr[Bp(G) ∈ ZFS(G)] ≤ 4pN + dnpd.

Proof. The result is trivial if pN > 1
2
, so we can assume pN ≤ 1

2
. Using Observation 5.12

together with Lemma 5.11 and the assumptions on G, we find

Pr[Bp(G) ∈ ZFS(G)] ≤
∑

v∈V (G)

d(v)pd(v) ≤
∑

v∈V (G)
d(v)<d

d(v)pd(v) +
∑

v∈V (G)
d(v)≥d

dpd

≤
d−1∑
k=1

k(pN)k + dnpd ≤
∞∑
k=1

k(pN)k + dnpd.

Note that in general we have
∑∞

k=1 kc
k = c

(1−c)2
provided |c| < 1. Applying this with

c = pN ≤ 1
2

gives the desired result.

Recall that z(G; k) is the number of zero forcing sets of G of size k. We now prove analogs
of these results for z(G; k).

Lemma 5.14. Let G be an n-vertex graph with at least one edge. Then for all non-negative
integers k,

z(G; k) ≤
∑

v∈V (G)

d(v)

(
n− d(v)

k − d(v)

)
.
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Proof. The result is trivial if k = n. For k < n, every zero forcing set S must contain some
vertex v of positive degree and exactly d(v) − 1 of its neighbors in order to have a vertex
force. Thus every zero forcing set of size k can be constructed by first including a vertex v,
then including exactly d(v)− 1 of its neighbors, then arbitrarily including k− d(v) additional
vertices. In total the number of ways to construct such a set is∑

v∈V (G)

(
d(v)

d(v)− 1

)(
n− d(v)

k − d(v)

)
=
∑

v∈V (G)

d(v)

(
n− d(v)

k − d(v)

)
,

so G has at most this many zero forcing sets of size k.

We next need the following lower bound on z(Pn; k).

Lemma 5.15. For all non-negative integers k we have

z(Pn; k) ≥ k2

n+ k2

(
n

k

)
.

Proof. Recall from (5.2) that z(Pn; k) =
(
n
k

)
−
(
n−k−1

k

)
for all k. Observe that(

n−k−1
k

)(
n
k

) =
(n− k − 1)(n− k − 2) · · · (n− 2k)

n(n− 1) · · · (n− k + 1)
=

k−1∏
i=0

(
1− k + 1

n− i

)
≤
(

1− k

n

)k

≤ 1

1 + k2/n
=

n

n+ k2
,

where the last inequality follows from the Bernoulli inequality: (1− x)n < 1
(1+x)n

< 1
1+nx

for

x ∈ (0, 1) and n > 0, where x in this case is k
n
. This implies

z(Pn; k) =

(
n

k

)
−
(
n− k − 1

k

)
≥
(

1− n

n+ k2

)(
n

k

)
=

k2

n+ k2

(
n

k

)
.

We now prove Proposition 5.9, which we restate below.

Proposition 5.9. Let G be an n-vertex graph with minimum degree δ ≥ 3 and k ≤
(2δ)−1/δn1−1/δ. Then z(G; k) ≤ z(Pn; k).

Proof. By (5.2), for k ≥ n/2 we have z(Pn; k) =
(
n
k

)
. Thus we may assume throughout that

k ≤ n/2.
Observe that for all t,(

n− t
k − t

)
/

(
n

k

)
=
k(k − 1) · · · (k − t+ 1)

n(n− 1) · · · (n− t+ 1)
≤ (k/n)t,
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with this last step using the fact that (k − i)/(n − i) ≤ k/n for i ≥ 1 if and only if k ≤ n.
Using this and Lemma 5.14 gives

z(G; k) ≤
∑
v

d(v)(k/n)d(v)
(
n

k

)
.

Because δ ≥ 3, we have k ≤ e−1/δn, so by Observation 5.12 we have

z(G; k) ≤ δn(k/n)δ
(
n

k

)
. (5.4)

First consider the case k ≤
√
n. By (5.4) and Lemma 5.15, to prove z(G; k) ≤ z(Pn; k),

it suffices to have δn(k/n)δ ≤ k2/2n, or equivalently n/k ≥ (2δ)1/(δ−2). Since k ≤
√
n, it

suffices to prove n ≥ (2δ)2/(δ−2), and this is true for 3 ≤ δ ≤ n and n ≥ 5. Thus we may
assume k ≥

√
n. In this case (5.4) and Lemma 5.15 imply z(G; k) ≤ z(Pn; k) provided

δn(k/n)δ ≤ 1

2
,

and this holds precisely when k ≤ (2δ)−1/δn1−1/δ.

With Proposition 5.9 we can prove Corollary 5.10, which we restate below.

Corollary 5.10. Let G be an n-vertex graph with minimum degree δ ≥ log2(n)+2 log2 log2(n).
Then z(G; k) ≤ z(Pn; k) for all k.

Proof. The result trivially holds for k ≥ n/2, so it suffices to prove the result for k ≤ n/2.
By Proposition 5.1, it suffices to show

n/2 ≤ (2δ)−1/δn1−1/δ,

or equivalently n ≤ 2δ(2δ)−1. And indeed, for n ≥ 9 the minimum degree condition implies

2δ(2δ)−1 ≥ n
(log2(n))2

2(log2(n) + 2 log2 log2(n))
≥ n.

For n ≤ 8 one can check that ⌈log2(n) + 2 log2 log2(n)⌉ ≥ n − 1, so our hypothesis on δ
implies G is complete and the result is immediate. In either case we conclude the result.

5.3 Bounds on Threshold Probabilities

In this section we prove that for any n-vertex graph G, the threshold probability p(G) is
asymptotically at least that of Pn, i.e. p(G) = Ω(n−1/2). At a high level, our proof revolves
around finding a graph G̃ which has minimum degree 2 and p(G̃) ≈ p(G). Because G̃ has
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minimum degree 2, Proposition 5.1 implies p(G) ≈ p(G̃) = Ω(n−1/2). We begin with a
preliminary result regarding graphs containing pendant paths.

We say that a path v1 · · · vk in a graph G is a pendant path1 provided k ≥ 2, dG(v1) = 1,
dG(vi) = 2 for 1 < i < k, and dG(vk) > 2 (where dG(v) is the degree of v in G). We refer to
the vertex v1, the vertex of degree one, as the pendant vertex, and to vk, the vertex of degree
at least 3, as the anchor vertex. Observe that the only tree that does not contain a pendant
path is the path graph.

Lemma 5.16. Let G be an n-vertex graph. If there exists a vertex w ∈ V (G) that is the
anchor of two distinct pendant paths in G, then p(G) = Ω(n−1/2).

Proof. Let w ∈ V (G) and assume that w is the anchor of two distinct pendant paths in G,
i.e., there exist distinct pendant paths u1 · · ·ukw and uk+1 · · ·uℓw in G. Let

I = {j ∈ Z : 1 < j < k or k + 1 < j < ℓ}

and for each i ∈ I, let Ai be the event that ui, ui+1 ∈ Bp(G). Let A′ be the event that
Bp(G) ∩ {u1, uk, uk+1, uℓ} ≠ ∅. Observe that if Bp(G) ∈ ZFS(G), then A′ or some Ai event
occurs. Thus,

Pr[Bp(G) ∈ ZFS(G)] ≤ Pr
[⋃
i∈I

Ai ∪ A′
]
≤ Pr[A′] +

∑
i∈I

Pr[Ai] ≤ 4p+ np2.

Thus to have Pr[Bp(G) ∈ ZFS(G)] = 1
2
, we must have np2 + 4p ≥ 1

2
, which implies p =

Ω(n−1/2).

With this lemma, we see that when proving Theorem 5.7 we may assume each vertex is
the anchor of at most one pendant path. The next lemma allows us to assume that none
of these paths are too long (unless G consists of a single path). In order to prove the next
lemma, we recall various definitions and notation related to forcing chains which can be
found, for example, in [12].

Let G be a graph and B ⊆ V (G). Using B as the initial set of blue vertices, apply
the color change rule and record the forces. If a vertex v forces u we write v → u. The
chronological list of forces F is the ordered list of forces, written in the order they were
performed, that produces the final coloring generated by B in G. We shall sometimes use F
to denote the set of forces that produces the final coloring generated by B in G. A forcing
chain of F is a sequence of vertices (v1, . . . , vk) such that vi → vi+1 for 1 ≤ i ≤ k − 1. A
maximal forcing chain of F is a forcing chain that is not a proper subsequence of another
forcing chain of F . The reversal of B for F is the set of all vertices that do not perform a
force, i.e., the set of all vertices that are the last element in a maximal forcing chain of F .

1Most authors do not impose any conditions on the degree of vk in the definition of a pendant path, but
this formulation will be more useful to us.
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Lemma 5.17. Let G be an n-vertex graph and let {v1, . . . , vM} denote a set of vertices of
degree 1 in G. Let G̃ be the graph obtained from G by adding a clique on {v1, . . . , vM}. Then

Pr[Bp(G) ∈ ZFS(G)] ≤ Pr[Bp(G̃) ∈ ZFS(G̃)] + pM.

Proof. We begin by showing that if B ∈ ZFS(G) and B /∈ ZFS(G̃), then vi ∈ B for some
i = 1, . . . ,M . Let B ⊆ V (G) and suppose that vi /∈ B for all i. Assume that B ∈ ZFS(G)
and let F be the set of forces for B in G. Since each vi is a pendant vertex in G and each
vi /∈ B, the set {v1, . . . , vM} is contained in the reversal of B for F . This, and the fact that
the neighborhood of each vertex in V (G) \ {v1, . . . , vM} is unchanged by adding a clique to
{v1, . . . , vM}, implies F is a set of forces for B in G̃. Thus, B ∈ ZFS(G̃) and hence we have
shown that if B ∈ ZFS(G) and B /∈ ZFS(G̃), then vi ∈ B for some i = 1, . . . ,M .

Let Ai be the event that vi ∈ Bp(G). By the preceding argument and the union bound,

Pr[Bp(G) ∈ ZFS(G) ∧Bp(G) /∈ ZFS(G̃)] ≤ Pr
[
∪Mi=1Ai

]
≤ pM.

We also have

Pr[Bp(G) ∈ ZFS(G) ∧Bp(G) /∈ ZFS(G̃)]

= Pr[Bp(G) ∈ ZFS(G)]− Pr[Bp(G) ∈ ZFS(G) ∧Bp(G) ∈ ZFS(G̃)]

≥Pr[Bp(G) ∈ ZFS(G)]− Pr[Bp(G) ∈ ZFS(G̃)].

Combining both inequalities gives the result.

The 2-core of a graph G, denoted C2(G), is obtained from G by repeatedly removing all
isolated vertices and all vertices of degree 1 from G until no further removals are possible.
See [16] for basic facts about 2-cores. We say that T is a pendant tree of a graph G if T is a
maximal induced subgraph of G such that T is a tree, and if there exists a unique vertex
w ∈ V (T ) contained in C2(G). The vertex w is called the anchor vertex of T . It is known
that a vertex v is in C2(G) if and only if v is contained in a cycle or a path between cycles.
Thus, the 2-core of G can be obtained by removing all non-anchor vertices of each pendant
tree and all components of G that are trees.

Let G be a graph and B ⊆ V (G). We define C2(B,G) to be the set of vertices that are
either contained in B ∩C2(G) or are anchor vertices of a pendant tree T such that B ∩ V (T )
is a zero forcing set of T . When G is clear from context we simply write C2(B). These
definitions are illustrated in Figure 5.3. The motivation for these definitions is found in
Lemma 5.19.

Before proving our next lemma, we note the following observation about zero forcing on
graphs with a cut vertex. Observation 5.18 follows from some of the concepts introduced in
[79]. We write G[S] to denote the induced subgraph of the graph G on S ⊆ V (G).

Observation 5.18. Let G be a graph with cut vertex w, and let W1∪W2∪{w} be a partition
of V (G) such that W1 and W2 are the disjoint union of connected components of G − w.
Let Gi = G

[
V (Wi) ∪ {w}

]
for i = 1, 2 . Then B ∩ V (Gi) ∈ ZFS(Gi) for some index i, and

B ∩ V (Gi) ∪ {w} is a zero forcing set of Gi for each i = 1, 2.
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(a) (b)

Figure 5.3: (a) Graph G with zero forcing set B colored blue. (b) Graph C2(G) with zero forcing
set C2(B) colored blue.

Lemma 5.19. Let G be a graph and B ⊆ V (G). If B is a zero forcing set of G, then C2(B)
is a zero forcing set of C2(G).

Proof. Assume for contradiction that there exists a pair (B,G) such that B is a zero forcing set
of G and C2(B) is not a zero forcing set of C2(G). Moreover, choose a minimal counterexample
(B,G) such that G has as few vertices as possible.

We begin with a few observations to simplify the proof. The 2-core of G is the disjoint
union of the 2-cores of each connected component of G. If C2(G) is the null graph, then it is
vacuously true that C2(B) is a zero forcing set of C2(G). If C2(G) = G, then C2(B) = B and
hence C2(B) is a zero forcing set of C2(G). We may therefore assume that G is connected
and that G contains a pendant tree.

Let T be a pendant tree of G with anchor vertex w, and let GT be the induced subgraph
of G on (V (G) \ V (T )) ∪ {w}. Let

BT =

{
B ∩ V (GT ) if B ∩ V (T ) /∈ ZFS(T )

(B ∩ V (GT )) ∪ {w} if B ∩ V (T ) ∈ ZFS(T ).

Since w is a cut vertex, Observation 5.18 implies that BT is a zero forcing set of GT . By
our assumption of (B,G) being a vertex minimal counterexample, we have that C2(BT , GT )
is a zero forcing set of C2(GT ) since GT has strictly fewer vertices than G. Observing that
C2(GT ) = C2(G) and C2(BT , GT ) = C2(B,G), we have that C2(B,G) is a zero forcing set of
C2(G). This gives a contradiction, proving the result.

We can now prove the main result of this section, which we restate below.

Theorem 5.7. If G is an n-vertex graph, then

p(G) = Ω(p(Pn)) = Ω(n−1/2).

Proof. Observe that if H is a connected component of G, then p(G) ≥ p(H). Also, by Lemma
5.16, if G is a tree that is not a path, or if G has a pendant tree that is not a pendant path,
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then p(G) = Ω(n−1/2). We may therefore assume that G is connected, G contains a cycle,
and every pendant tree of G is a pendant path. Note that the definition of pendant trees
implies every vertex v is the anchor of at most one pendant path in G, and that every anchor
vertex is contained in C2(G). Let p = cn−1/2, where c < 1 is a positive constant which we
specify later.

Let {P1, . . . , PM} be the set of all pendant paths in G on at least 100n1/2 + 1 vertices,
and let vi ∈ Pi denote the vertex of Pi of degree 1. Let G̃ be the graph obtained from G by
adding a clique on {v1, . . . , vM}. Observe that M(100n1/2 + 1) ≤ n, and hence M < n1/2/100.
Thus by Lemma 5.17,

Pr[Bp(G) ∈ ZFS(G)] < Pr[Bp(G̃) ∈ ZFS(G̃)] + .01.

Observe that C2(G̃) is nonempty since G contains a cycle, and by Lemma 5.19,

Pr[Bp(G̃) ∈ ZFS(G̃)] ≤ Pr[C2(Bp(G̃)) ∈ ZFS(C2(G̃))].

Thus it suffices to prove Pr[C2(Bp(G̃)) ∈ ZFS(C2(G̃))] < 0.49 for n sufficiently large.
For v ∈ V (C2(G̃)), let Av denote the event that v ∈ C2(Bp(G̃)). We claim that

Pr[Av] ≤ 2p+ (100n1/2)p2 = (2c+ 100c2)n−1/2 := q. (5.5)

Indeed, Pr[Av] = p if v is not the anchor of some pendant path. If v is the anchor of the
pendant path P , then for Av to occur, either an endpoint of P or two consecutive vertices of
P must be in Bp(G̃), and a union bound gives the result since P is assumed to have length
at most 100n1/2 + 1.

Because the Av events are independent of each other, our bound above implies that

Pr[C2(Bp(G̃)) ∈ ZFS(C2(G̃))] ≤ Pr[Bq(G̃) ∈ ZFS(C2(G̃))].

Since C2(G̃) has at most n vertices and minimum degree at least 2, Proposition 5.1 implies

Pr[Bq(G̃) ∈ ZFS(C2(G̃))] ≤ 2nq2.

Taking c = 1/17 and recalling the definition of q in (5.5) gives the desired result.

5.4 Bounds for Trees

In this section we prove Pr[Bp(T ) ∈ ZFS(T )] ≤ Pr[Bp(Pn) ∈ ZFS(Pn)] whenever T is an
n-vertex tree with n sufficiently large. We will break our proof into two cases, namely when
p = Ω(n−1) and p = O(n−1). The intuition for this choice is that when p ≪ n−1, the
probability that Bp(Pn) is zero forcing is roughly the probability of choosing an endpoint,
while for p≫ n−1 it is roughly the probability of choosing two consecutive vertices. Therefore,
we will need two different arguments for these two regimes.
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5.4.1 Large p

The following provides a concrete statement agreeing with the intuition outlined above.

Lemma 5.20. Let v1, . . . , vn be vertices of a graph G. If 4
n−2

< p < 1 and n ≥ 11, then

Pr[v1 ∈ Bp(G) ∨ vn ∈ Bp(G)] < Pr[vi, vi+1 ∈ Bp(G) for some i].

Proof. Define
pe := Pr[v1 ∈ Bp(G) ∨ vn ∈ Bp(G)] = 1− (1− p)2,

pm := Pr[vi, vi+1 ∈ Bp(G) for some i] ≥ 1− (1− p2)⌊
n−1
2

⌋,

where this last inequality holds because pm is strictly more than the probability of having at
least one of the pairs (vi, vi+1) with i odd in Bp(G); see the proof of Proposition 5.4 for a
more formal argument. Thus it is sufficient to show that

(1− p2)k < (1− p)2, (5.6)

where k := ⌊n−1
2
⌋, for n ≥ 18. Using the standard bounds, x

1+x
< ln(1 + x) < x for |x| < 1,

and so

−k ln(1− p2) > kp2 and
2p

(1− p)
> −2 ln(1− p).

Thus, Equation (5.6) follows if kp2 > p
1−p

, or equivalently, if kp3 − kp2 + p < 0. Since this

polynomial has roots at p = 0 and p =
k±
√

k(k−4)

2k
, we have that kp3−kp2 +p < 0 in the range

p ∈
(
2
k
, 1− 2

k

)
, and thus, for p ∈

(
4

n−2
, 1− 4

n−2

)
if n ≥ 10. Finally, we can check directly that

for n ≥ 11, (1− p2)n−2
2 < (1− p)2 for all p ∈ (0.55, 1), and this range includes (1− 4

n−2
, 1)

for all n ≥ 11.

Analogous to Proposition 5.16, we can show that graphs with a vertex at the end of two
short pendant paths are harder to zero force than paths.

Lemma 5.21. Let G be an n-vertex graph that has a vertex w which is the endpoint of two
pendant paths u1 · · ·usw and v1 · · · vtw. If p ≥ 8/(n− s− t) and n− s− t ≥ 14, then

Pr[Bp(G) ∈ ZFS(G)] < Pr[Bp(Pn) ∈ ZFS(Pn)].

Proof. Let w1, . . . , wr be an arbitrary ordering of V (G) \ {u1, . . . , us, v1, . . . , vt}. Relabel
the vertices of Pn so that its vertices along the path are u1 · · ·usw1 · · ·wrvt · · · v1. Because
V (G) = V (Pn), we can couple our random variables so that Bp := Bp(G) = Bp(Pn). Let
F = Bp∩{u1, . . . , us−1, v1, . . . , vt−1}. It suffices to show for all S ⊆ {u1, . . . , us−1, v1, . . . , vt−1}
that

Pr[Bp(G) ∈ ZFS(G)|F = S] ≤ Pr[Bp(Pn) ∈ ZFS(Pn)|F = S], (5.7)
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with strict inequality for at least one such set. If S contains two consecutive vertices ui and
ui+1, two consecutive vertices vj and vj+1, or u1 or v1, then Bp ∈ ZFS(Pn) so Equation (5.7)
holds trivially. Thus from now on we can assume this is not the case.

With this assumption, the vertex us in G can only be colored blue by Bp if at least one of
us or vt is in Bp (this is because us is adjacent to us−1, which does not enact any forces by
assumption on S, and to w, which can only enact a force if at least one of us, vt are colored
blue at some point). On the other hand, Bp will be a zero forcing set for Pn provided Bp

contains two consecutive vertices from {us, w1, · · · , wr, vt}.
By applying Lemma 5.20 to the vertex set {us, w1, . . . , wr, vt}, we see that if p > 8

n−s−t+2

and n− s− t+ 2 ≥ 16, then

Pr[Bp contains us or vt] < Pr[Bp contains a consecutive pair from {us, w1, · · · , wr, vt}].

As these two events are independent given the random set F , we conclude that for p ≥
8/(n− s− t) > 8/(n− s− t+ 2) and n− s− t+ 2 ≥ 16,

Pr[Bp(G) ∈ ZFS(G)|F = S] < Pr[Bp(Pn) ∈ ZFS(Pn)|F = S],

and from this we conclude the result.

With this we can prove Theorem 5.6 for the case p = Ω(n−1).

Proposition 5.22. If T ̸= Pn is an n-vertex tree with n ≥ 42, and if 24
n
< p < 1, then

Pr[Bp(T ) ∈ ZFS(T )] < Pr[Bp(Pn) ∈ ZFS(Pn)].

Proof. Let u, v be any two leaves of T which are at a shortest distance from each other.
Observe that the path between u, v consists of two pendant paths, say uu2, · · ·usw and
vv2, · · · vtw. Because T is not a path, there either exists exactly one leaf ℓ ̸= u, v, or at least
two leaves i, j ̸= u, v.

Suppose for contradiction that s+ t > 2n
3

. If T has exactly three leaves, then

d(ℓ, u) = d(ℓ, w) + s < n/3 + s,

where this inequality used the fact that none of the internal vertices along the path from ℓ to
w use any of the vertices along the path from u to v, of which there are more than 2n/3 + 1.
By a symmetric argument we have d(ℓ, v) < n/3 + t. In particular, we must have

d(ℓ, u) + d(ℓ, v) < 2n/3 + s+ t < 2(s+ t) = 2d(u, v),

and hence at least one of d(ℓ, u), d(ℓ, v) is smaller than d(u, v), a contradiction to our choice of
u, v. Similarly if T has at least four leaves, then d(i, j) < n

3
, which again gives a contradiction.

Thus we can assume s + t ≤ 2n/3. With this, our hypothesis implies p ≥ 8
n−s−t

and
n− s− t+ 2 ≥ 16, so we can apply Lemma 5.21 to give the desired result.
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5.4.2 Small p

We will prove our result for small p by upper bounding z(T ; k), which we recall is the number
of zero forcing sets of T of size k.

Lemma 5.23. If T ̸= Pn is an n-vertex tree, then

z(T ; k) ≤ 13k4

n2

(
n

k

)
.

Proof. Let ∆ denote the maximum degree of T and ℓ the number of leaves of T . Observe
that the zero forcing number of a graph is always at least the minimum number of paths
needed to cover the vertices of the graph. In particular, every zero forcing set for the tree T
has size at least ℓ/2. It is also known (see for example [74]) that every zero forcing set for
a tree T has size at least ∆ − 1. Thus for k < max{∆ − 1, ℓ/2}, we have z(T ; k) = 0 and
the bound trivially holds. From now on we assume max{∆− 1, ℓ/2} ≤ k. The bound is also
trivial when k = n, so we may assume k < n. Lastly, we may also assume ∆ ≥ 3 since T is
not a path.

We first count the number of sets S of size k which have two pairs of vertices u, v and
x, y with u ∼ v, x ∼ y and {u, v} ∩ {x, y} = ∅ (where ∼ denotes vertex adjacency). In this
case the number of sets S is at most

(n− 1)2
(
n− 4

k − 4

)
,

since one can choose each pair (which is just an edge in T ) in at most n− 1 ways.
We next count the number of sets S of size k which contain three vertices u, v, w with

u ∼ v ∼ w. The number of such S is at most

(n− 1)(2∆− 2)

(
n− 3

k − 3

)
,

since one can first choose two adjacent vertices in n− 1 ways, then a third vertex which is
adjacent to at least one of these in at most 2∆− 2 ways, and then the remaining vertices in(
n−3
k−3

)
ways.

We next count the number of zero forcing sets S that contain no two adjacent vertices.
Because k < n and S is a zero forcing set, at least one vertex of S must be able to force.
Because S contains no adjacent vertices, this is only possible if S contains a leaf. Choose
such a leaf u1 to include in S, which can be done in ℓ ways. Let u1u2 · · ·us be the unique
path in T with deg(ui) = 2 for 1 < i < s and deg(us) ̸= 2.

Claim 5.24. The set S either contains a leaf v ̸= u1, or a neighbor of us other than us−1.

Proof. Assume this were not the case. Because S contains no two adjacent vertices, no
additional leaves, and no other neighbor of us, it is not difficult to see that the only
vertices that will be colored blue by S are S ∪ {u2, . . . , us}. Because S is a zero forcing
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set, we must have V (T ) = S ∪ {u2, . . . , us}. However, by assumption the only leaves that
could be in S ∪ {u2, . . . , us} are u1 and us, but T ̸= Pn contains at least three leaves, so
V (T ) ̸= S ∪ {u2, . . . , us}, giving the desired contradiction.

In total then, we see that the number of choices for such a set S is at most

ℓ(ℓ+ ∆− 1)

(
n− 2

k − 2

)
,

where the terms in the expression above count the number of choices for u1, followed by
the number of choices for some additional leaf or neighbor of us, followed by the number of
arbitrary sets of k − 2 vertices.

It remains to count S that have exactly one pair of adjacent vertices. One can first choose
the adjacent pair u1, v1 ∈ S in at most n− 1 ways. If deg(u1) = 2, then let u1 · · ·us be the
unique path from u1 with u2 the neighbor of u1 not equal to v1, and with deg(ui) = 2 for
all i < s and deg(us) ̸= 2. If deg(u1) ̸= 2, then we simply consider the 1-vertex path u1.
Analogously define the path v1 · · · vt. As in the previous case, because S contains no other
pair of adjacent vertices, it must contain at least one leaf or one neighbor of either us or vt
that is not us−1 or vt−1. In total then the number of choices for such an S is at most

(n− 1)(ℓ+ 2∆− 2)

(
n− 3

k − 3

)
.

Putting together all the above cases, wee see that in total, z(T ; k) is at most

(n− 1)2
(
n− 4

k − 4

)
+ (n− 1)(2∆− 2)

(
n− 3

k − 3

)
+ ℓ(ℓ+∆− 1)

(
n− 2

k − 2

)
+ (n− 1)(ℓ+ 2∆− 2)

(
n− 3

k − 3

)
≤ n2 · k

4

n4

(
n

k

)
+ n(2∆− 2) · k

3

n3

(
n

k

)
+ ℓ(ℓ+∆− 1) · k

2

n2

(
n

k

)
+ n(ℓ+ 2∆− 2) · k

3

n3

(
n

k

)
,

where this last inequality used the fact that n − 1 ≤ n and that
(
n−t
k−t

)
≤ (k/n)t

(
n
k

)
for all

integers t ≥ 0. Using our assumptions ∆ − 1 ≤ k and ℓ ≤ 2k, we find that the above
expression is at most (1 + 2 + 6 + 4) k4

n2

(
n
k

)
as desired.

With this we can prove the following.

Proposition 5.25. For every C > 0, there exists an integer n0 such that for all n ≥ n0, if
T ̸= Pn is an n-vertex tree and 0 < p ≤ C

n
, then

Pr[Bp(T ) ∈ ZFS(T )] < Pr[Bp(Pn) ∈ ZFS(Pn)].

Proof. By the previous lemma and the trivial bound
(
n
k

)
≤ nk/k!, we have

Pr[Bp(T ) ∈ ZFS(T )] ≤
∑
k

z(T ; k)pk ≤
∑
k

13k4nk−2

k!
pk ≤ p · 13Cn−1

∑
k

k4Ck−2

k!
.
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The above sum is convergent, so for n sufficiently large we find

Pr[Bp(T ) ∈ ZFS(T )] ≤ 1

2
p ≤ Pr[Bp(Pn) ∈ ZFS(Pn)],

where this latter inequality is strict provided p > 0.

With Propositions 5.22 and 5.25 we can prove Theorem 5.6, which we restate below.

Theorem 5.6. If T is an n-vertex tree with n sufficiently large, then for all 0 ≤ p ≤ 1,

Pr[Bp(T ) ∈ ZFS(T )] ≤ Pr[Bp(Pn) ∈ ZFS(Pn)],

with equality holding if and only if either p ∈ {0, 1} or T = Pn.

Proof. The equality of the result trivially holds for either p ∈ {0, 1} or T = Pn. If T ̸= Pn

with n sufficiently large, by Proposition 5.22, the result holds for 24/n < p < 1, and by
Proposition 5.25 the result holds for 0 < p ≤ 24/n.

5.5 Concluding Remarks

Our work described above suggests several open problems regarding the threshold probability
p(G), which we recall is the unique p ∈ [0, 1] such that Pr[Bp(G) ∈ ZFS(G)] = 1

2
. For

example, we conjecture the following refinement of Theorem 5.7.

Conjecture 5.26. If G is an n-vertex graph which contains a clique of size k, then

p(G) = Ω(
√
k/n).

This conjecture can be viewed as a probabilistic analog of the classical result that Z(G) ≥ k
if G has a clique of size k, which was proved by Butler and Young [25]. The motivation for the
bound Ω(

√
k/n) comes from considering a graph G which consists of a clique on k vertices,

with each of these vertices attached to a path of length roughly n/k. For this graph, a given
vertex of the clique will be forced by the path it is connected to with probability roughly
1− e−p2n/k, so if p is much smaller than

√
k/n, then almost none of the clique vertices in G

will be colored blue. Thus p(G) = Ω(
√
k/n) in this case2.

Another natural problem is to compute p(G) for various natural families of graphs. For
example, Table 5.1 summarizes the order of magnitude of p(G) for many such families.
However, one case for which we do not understand p(G) is when G is the n-dimensional
hypercube Qn.

2In fact, a sharper analysis shows that p(G) = Ω(
√
k log(k)/n) for k not too large in terms of n. We

suspect that Conjecture 5.26 can be strengthened to include this log(k) term, but for ease of presentation we
have written the conjecture as is.
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Table 5.1: Thresholds for graph families.

Family Description Threshold Probability
Kn Complete graph on n vertices 1−Θ(n−1)
nK1 Graph on n isolated vertices 2−1/n

Kn1,··· ,nk
Complete multipartite graph 1−Θk(mini{n−1

i })
Pn Path on n vertices Θ(n−1/2)
Cn Cycle on n vertices Θ(n−1/2)
Wn Wheel on n vertices Θ(n−1/3)

Problem 5.27. Does there exist a constant c such that p(Qn) ∼ c? If so, what is this
constant?

Because Z(Qn) = 2n−1, we must have c ≥ .5 if it exists, but beyond this we know nothing
about c. The empirical plot in Figure 5.2 of the probability that Bp(Q8) is zero forcing
suggests that c might be at least .58. Another family of graphs whose zero forcing properties
we do not understand are grid graphs.

Problem 5.28. Determine the order of magnitude of p(Pm□Pn), where Pm□Pn denotes the
m× n grid graph.

Assuming 2 ≤ m ≤ n, we can apply Theorem 5.13 with d = 4 and N ≈ n1/3 to
show p(Pm□Pn) = Ω(min{n−1/3, (mn)−1/4}). The best general upper bound we have is
p(Pm□Pn) = O(n−1/2m), since at this point it is fairly likely that Bp(Pm□Pn) contains two
consecutive Pm paths, which forces the entire graph. For small m we suspect that our upper
bound is closer to the truth than our lower bound, but for large m the situation is unclear.

Another natural problem is to study how graph operations affect the threshold probability
of a graph. It is perhaps intuitive that p(Cn) ≈ p(Pn) since Cn can be formed from Pn by
adding a single edge. In fact, it is easily verified that p(Cn) = Θ(n−1/2) by using an argument
similar to the proofs in Appendix 5.6. However, there are examples where this intuition fails.
Indeed, let v1, . . . , vn be the vertices of Pn, and let Rn denote the graph obtained from Pn by
adding the edge v1v3 (see Figure 5.4).

v1 v2 v3 v4 v5

Figure 5.4: The triangle with pendant path on five vertices, R5.
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Observe that any zero forcing set of Rn must contain either v1 or v2. Thus,

Pr [Bp(Rn) ∈ ZFS(Rn)] ≤ Pr [v1 ∈ Bp(Rn) ∨ v2 ∈ Bp(Rn)] ≤ 2p.

This implies p(Rn) ∈ [1/4, 1], and hence p(Rn) = Θ(1).
In the deterministic setting, it is well known that the zero forcing number Z(G) of a graph

G changes by at most one if a single edge or vertex is removed from G. This is far from true
for p(G). Indeed, recall that p(Pn) = Θ(n−1/2). Let P ′

n be obtained by deleting the edge v1v2.
Since P ′

n has K1 as a connected component, by Observation 5.2 we have p(P ′
n) ≥ p(K1) = 1

2
.

A similar result holds if one deletes v2.
Similarly, deleting edges or vertices can dramatically decrease p(G). Consider the triangle

with pendant path Rn, which has p(Rn) = Θ(1). If one deletes v1, then the resulting graph is
Pn−1, which has p(Pn−1) = Θ(n−1/2). If one deletes the edge v1v3, then the resulting graph is
Pn, which has p(Pn) = Θ(n−1/2).

Lastly, one could consider randomized versions of variants of the classical zero forcing
number. For example, under so-called “skew zero forcing” (which was originally introduced
in [4]), one can easily generalize Proposition 5.1 to give an upper bound of roughly δnpδ−1 on
the probability that a random starting set Bp(G) is a skew zero forcing set for G. It would
also be interesting to consider probabilistic zero forcing with a random set of vertices initially
colored blue.

5.6 Appendix: Threshold Probability Calculations

In this Appendix we provide proofs of Propositions 5.3 and 5.4. We make use of the following
inequalities. Recall that

1− x ≤ e−x (5.8)

for all real values x, and (
1− c

n

)n
≥ 1− c (5.9)

for |c| ≤ n and n ≥ 1.

Proposition 5.3. If G is a graph on n vertices with no isolated vertices, then p(G) ≤ p(Kn).
Moreover, p(Kn) = 1−Θ(n−1).

Proof. The result is immediate for n = 1, so assume n ≥ 2. Define

f(p) = n(1− p)pn−1 + pn,

which is the probability that Bp(G) contains at least n− 1 vertices. Since every subset of
V (G) of size n− 1 is a zero forcing set, we have for p ∈ [0, 1],

Pr [Bp(G) ∈ ZFS(G)] ≥ f(p) = Pr [Bp(Kn) ∈ ZFS(Kn)] ,
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where this equality used the fact that a set S is a zero forcing set of Kn if and only if
|S| ≥ n− 1. Since Pr [Bp(G) ∈ ZFS(G)] and Pr [Bp(Kn) ∈ ZFS(Kn)] are increasing functions
of p, we conclude that p(G) ≤ p(Kn).

We now prove the asymptotic result. Let p = 1− c/n, where c ≤ n is positive. By (5.9),

f(p) ≥ pn ≥ 1− c,

which implies f(p) > 1/2 if p > 1− 1
2n

. Similarly, by (5.8),

f(p) = c(1− c/n)n−1 + (1− c/n)n ≤ ce−c+c/n + e−c ≤ ce−c/2 + e−c,

where the last inequality holds since n ≥ 2. Thus f(p) < 1/2 for n ≥ 5 and p < 1− 5
n
. We

conclude p(Kn) = 1−Θ(n−1).

Proposition 5.4. The threshold probability of the path on n vertices satisfies

p(Pn) = Θ(n−1/2).

Proof. Let v1, . . . , vn denote the vertices of Pn. By convention, we assume the vertices
v1, . . . , vn of Pn are in path order, i.e., the edges of Pn are vivi+1 for 1 ≤ i ≤ n − 1. Note
that S ⊆ V (Pn) is a zero forcing set if and only if S contains an endpoint or S contains two
consecutive vertices (see Figure 5.5).

Figure 5.5: Three zero forcing sets for P5

Define the random variable X to be the number of indices i ∈ {1, 2, · · · , n− 1} such that
vi, vi+1 ∈ Bp(Pn). Markov’s inequality yields

Pr [X ≥ 1] ≤ E[X] = (n− 1)p2.

Since Bp(Pn) ∈ ZFS(Pn) if and only if either X ≥ 1 or at least one of v1, vn ∈ Bp(Pn), a
union bound now implies

Pr [Bp(Pn) ∈ ZFS(Pn)] ≤ (n− 1)p2 + 2p.

This quantity is less than 1/2 provided p = cn−1/2 for any c < 1/4. Thus p(Pn) = Ω(n−1/2).
Next, for i ∈ {1, 2, . . . , n − 1}, let Ai be the event that vi, vi+1 ∈ Bp(Pn), and define

A =
⋃
i odd

Ai. Then,

Pr [Bp(Pn) ∈ ZFS(Pn)] ≥ Pr [A] = 1−
∏
i odd

(1− Pr [Ai])

= 1− (1− p2)⌊(n−1)/2⌋ ≥ 1− e−p2⌊(n−1)/2⌋,

where the first equality follows from the fact that these events are independent, and the last
step uses (5.8). This probability will be greater than 1/2 for p = Cn−1/2 with C sufficiently
large. We conclude that p(Pn) = Θ(n−1/2).
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Appendix A

A Linear Program for Invariants

Suppose we are given a mass-preserving, simplicial mass action system with a full-support
initial condition. Is there an efficient method to determine which supports may contain limit
points for the trajectory, and which are ruled out by invariants? Building on Theorem 3.10,
we present a linear programming approach to determine whether a linear invariant exists to
rule out a given support S for any limit points of the trajectory.

We begin with a seemingly simpler problem: Suppose we wish to show that, for a trajectory
with start state x0 ∈ RN

+ and for a specific candidate limit point z, x0 and z are inconsistent
with respect to some invariant; that is, that the value of some linear invariant ι(x) takes
on different values at ι(x0) and ι(z). The existence of any such ι for a given (x0, z) pair is
captured by asking whether ∆ := z − x0 satisfies the following system.

M∆ = 0

∆I < 0 for all I ∈ S∑
I∈S

∆I = 0

where S := support(z), S̄ := S\S, and M ∈ R|E|×|S∪S̄| has rows me representing the incidence
of element e ∈ E in each species I ∈ S ∪ S̄. To see why, recall that an invariant ι(x) is a
linear combination

∑
e beqe(x), where qe(x) is the marginal distribution for e ∈ E at point

x. There exists an invariant ruling out (x0, z) when qe(x0) ̸= qe(z) for one or more e ∈ E.
Then, (Mx)e = me · z =

∑
I(me)IzI = qe(x). So if z is consistent with all invariants of the

trajectory, we have
Mz = Mx0

That is, we can rule out (x0, z) when M(z − x0) ̸= 0. In order to show there exists no initial
condition x0 consistent with limit point z, it is sufficient to show that there is no x0 satisfying
the above equation. Letting ∆ = z − x0, this condition becomes:

M∆ = 0 has no solutions ∆
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Finally, we add additional conditions to restrict to the case where z lies on the boundary
of the state space, with support S, and x0 on the interior of the state space, so for I ∈ S̄,
zI = 0 and x0 > 0; so we can require that

∆I < 0 for all I ∈ S̄

Furthermore, the total quantity of species is conserved across all reactions, so we require∑
I zI =

∑
I x0. That is, ∑

I

∆I = 0

Restated, we seek some ∆ ∈ R|S∪S̄|+1 to satisfy the following (noting the additional entry,
used for minimization, which we index as ∆ϵ) :

minimize [0, . . . , 0,−1] ·∆

subject to:

 M
0
...

1 . . . 1 0

∆ = 0


0S̄×S IS̄×S̄

0
...

0S̄×S IS̄×S̄

1
...

∆ ≤ 0

The first matrix incorporates both equality constraints, and the top half of the second
matrix encodes a relaxed constraint ∆I ≤ 0 for I ∈ S̄. The bottom half of the second matrix
puts constraints on ∆ϵ:

∆ϵ + ∆I ≤ 0 for all I ∈ S̄

Note that ∆I ≤ 0 for all I ∈ S̄, so this constraint enforces ∆ϵ ≤ |∆I |. Specifically, because
the system minimizes −∆ϵ, if ∆I = 0 for some I ∈ S̄, then ∆ϵ = 0. Otherwise, the optimal
∆ will have ∆ϵ as large as possible without exceeding the constraint bound.

Dual Formulation

For a complementary perspective, we can also solve the dual linear program: Minimize over
vectors w ∈ R|E|+2|S̄|+1, the indices of which will be denoted we for e ∈ E, w1, wI for I ∈ S̄,
and wI′ for the second occurrences of I ∈ S̄ (in that order). Define AS and AS̄ to be the
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rows of M⊤ corresponding to S and S̄ respectively, so that M⊤ =

[
AS

AS̄

]
. Then the dual is:

minimize 0

subject to: wI ≥ 0 for I ∈ S̄
wI′ ≥ 0 forI ∈ S̄

AS

1
...

0S×S̄ 0S×S̄

AS̄

...
1

I|S̄|×|S̄| I|S̄|×|S̄|

0 · · · 0 0 0 · · · 0 1 · · · 1

w = c

Lemma A.1. The primal linear program is feasible.

Proof. ∆ = 0⃗ is a solution.

Lemma A.2. If the primal linear program is bounded, its optimal objective value is 0.

Proof. Notice that, for ∆ a feasible solution to the primal, c∆ is also a feasible solution for
all c > 0. Therefore, if there exists a feasible ∆ with nonzero objective value v < 0, then for
any value v′ < 0 we can find c > 0 such that c∆ is feasible with objective value v′, and so
the objective value is unbounded. Note from the fact that ∆ = 0⃗ is a feasible solution, that
the objective value is ≤ 0, always. Thus, the only way to have a bounded objective is when
the objective value is 0.

Lemma A.3. The dual linear program is either bounded feasible, or infeasible. In particular,
the dual is feasible if and only if the primal is bounded.

Proof. The objective of the dual is 0 for all w, so it is never unbounded. The dual is bounded
feasible if and only if the primal is bounded feasible; we already know the dual is bounded
and the primal is feasible, so the lemma follows.

With this understanding, it is straightforward to implement the linear programming
solution to determine whether there exists a full-support x0 ∈ RN

>0 which is compatible (with
respect to invariants) with the given candidate limit point z. We will see next that if z is
not compatible with any such x0, the dual in fact finds a vector w of the form specified in
Theorem 3.10; and therefore, the invariant rules out not only z, but also all other candidate
limit points with support S.

To see this, we first assume that for any e ∈ I ∈ S̄, there is some J ∈ S with e ∈ J ; if
not, the invariant qe trivially rules out any limit point with support S. Now observe that a
feasible solution w must have

[
AS 1⃗

]
w⃗E = 0 (where w⃗E is w restricted to just the entries

corresponding to e ∈ E and w1). First consider the trivial solution we = 0 for all e ∈ E and
for e = 1. The earlier assumption implies that

[
AS 1⃗

]
wE = 0. Noting that any solution
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must also satisfy
[
AS 1⃗ IS̄ IS̄

]
w = 0, with wI ≥ 0 for all I ∈ S̄, we must also have

wI = 0, wI′ for all I ∈ S̄. But this contradicts the final equality constraint:
∑

I∈S̄ wI′ = 1.

So any construction with we = 0 for all e ∈ E and for e = 1 is not feasible. So if
[
AS 1⃗

]
has

a trivial nullspace, the dual is infeasible.
Suppose conversely that there is some nontrivial solution space to

[
AS 1⃗

]
wE = 0. Again

using the earlier assumption, this solution fully defines
[
AS̄ 1⃗

]
wE. Now, we consider the

signs of entries of
[
AS̄ 1⃗

]
wE.

Lemma A.4. If for some wE satisfying
[
AS 1⃗

]
wE = 0, the signs of entries of

[
AS̄ 1⃗

]
wE

are either all non-negative, or all non-positive, and additionally at least one entry is nonzero,
then the dual is feasible.

Proof. First, normalize wE by some constant c0 such that∑
I∈S̄

[(AS̄)I , 1] · (c0wE) = −1

(where (AS̄)I is the row of AS̄ corresponding to species I). Note that c0 may be negative or
positive, depending on the values in wE. Then set

wI′ := [(AS̄)I , 1] · (−c0wE) ≥ 0

wI := 0

It follows that for each I,

c0 ([(AS̄)I , 1] · wE) + wI + w′
I = 0,[

AS 1⃗
]
c0wE = 0,

and
∑
I∈S̄

wI′ = 1.

Lemma A.5. If there is no wE satisfying
[
AS 1⃗

]
wE = 0 such that the signs of entries of[

AS̄ 1⃗
]
wE are either all non-negative or all non-positive, with at least one nonzero, then

the dual is infeasible.

Proof. Suppose that for all wE such that
[
AS 1⃗

]
wE = 0, then

[
AS̄ 1⃗

]
wE has mixed signs

or is all zero. Then for any such wE, in order to satisfy
[
AS̄ 1⃗ IS̄ IS̄

]
w = 0, there will be

at least one row constraint which has [(AS̄)I , 1] · wE ≥ 0 and thus requires

[(AS̄)I , 1] · wE + wI + wI′ = 0

⇒ wI + wI′ ≤ 0

This is impossible due to the nonnegativity constraints on both wI and wI′ , and the fact that∑
I∈S̄ wI′ = 1, so at least one wI′ is strictly positive.
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This confirms that the primal linear program is bounded if and only if there exists an
invariant of the exact form specified in Theorem 3.10. In other words, if it is possible to
rule out all possible interior initial conditions x0 for the candidate limit point z via invariant
compatibility constraints, there is in fact a single invariant which rules out not only z, but
also any z′ with supp(z′) = S := supp(z).

This method can be used, as in Example 2.39, to empirically determine whether there
are any stationary supports S which contain candidate limit points. For potential stationary
support S, simply check whether the primal is bounded (or equivalently, whether the dual is
feasible), and rule out S in any case which receives a positive answer.

Taking this method one step further, all limit points of a trajectory must form a connected
set which are all LP-compatible in the following sense:

Definition A.1 (LP-compatible). Points z1 and z2 are LP-compatible if[
M

1 . . . 1

]
(z2 − z1) = 0⃗

Supports S1 and S2 are LP-compatible if there exists some z1, z2 such that supp(z1) = S1 and
supp(z2) = S2 and [

M
1 . . . 1

]
(z2 − z1) = 0⃗

For some stationary supports S, it may be the case that dim null(

[
MS

1 . . . 1

]
) = 0, from

which we can conclude that there is at most one limit point with this support (or supported
on any subset of this support). By the connectedness of limit points, this means that if there
exists a limit point with support ⊆ S, then it is the only limit point of the trajectory.
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Appendix B

Code for Minimum Rank Proof

This appendix exhibits a Jupyter notebook implementing the algorithm discussed in the
proof of Theorem 4.13. The code can also be found on Github in [65].

Input: A polynomial in two classes of variables, s0 . . . sns−1 and q0 . . . qnq−1. The s-variables
are controlled by Player 2 and the q-variables are controlled by Player 1.

Overview: As specified in the proof of Theorem 4.13: Check the coefficent for all different
monomials in s-variables that occur in the polynomial. If at any point a monomial with a
coefficient that doesn’t use any q-variables is found, report it and return. (Note that any term
in the coefficient which has a factor of an s-variable should be ignored in this accounting,
since it is part of a different monomial.) If the algorithm finds such a monomial, Player 2 wins.
Else, Player 1 can force p to be the zero polynomial by choosing values for the q-variables.

[12]: def check_monomial_coefficient(coeff, q, s, debug=False):

found_q_free_term = 0

if coeff.operator() is not sage.symbolic.operators.add_vararg:

operands = [coeff]

else:

operands = coeff.operands()

if debug:

print("Coefficient terms: " + str(operands))

for coeff_term in operands: # each term in the coefficient sum

s_free = 1

q_free = 1
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for q_var in q:

if coeff_term.degree(q_var) > 0:

q_free = 0

break

for s_var in s:

if coeff_term.degree(s_var) > 0:

s_free = 0

break

if q_free == 0 and s_free == 1:

# there is a true q-term in the coefficient,

# so P2 doesn’t win with this monomial

return False

if q_free == 1:

found_q_free_term = 1

if found_q_free_term == 0:

return False

return True

[13]: # Step 1: Cycle through all monomials; that is, all combinations of

# the t and s variables that appear in the polynomial.

# Step 2: For each one: Check the coefficient. Ignore terms with

# both q’s AND s/t’s. If what remains has no q’s, P2 wins.

def check_P2_win(p, q, s, debug=False):

if type(p) is not sage.symbolic.expression.Expression:

print("Warning: Input isn’t a symbolic expression type")

return (p != 0)

if p.operator() is not sage.symbolic.operators.add_vararg:

summands = [p]

else:

summands = p.expand().operands()

if debug:

print("Polynomial: " + str(p))

print("Polynomial terms: " + str(summands))
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for term in summands:

if debug:

print()

print("Current term: " + str(term))

monomial = term

# remove all the q factors

for q_var in q:

if monomial.degree(q_var) > 0:

monomial = monomial.coefficient(q_var,

monomial.degree(q_var))

if monomial.operands() and \

monomial.operator() is sage.symbolic.operators.mul_vararg:

for operand in monomial.operands():

if operand.is_constant():

monomial = monomial / operand

coeff = p.coefficient(monomial)

if debug:

print("with monomial: " + str(monomial))

print("which has coefficient: " + str(coeff))

if coeff == 0: # no s variables, just a constant coefficient

continue

if check_monomial_coefficient(coeff, q, s, debug=debug):

if debug:

print("P2 wins with monomial " + str(monomial) +

" and coefficient (" + str(coeff) +")")

return True

return False

[14]: # Set up an arbitrary instance for testing.

# s are the slack variables

# q are the adversarial "constants" chosen by P1

n_s = 5

s = list(var(’s%d’ % i) for i in range(n_s))
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n_q = 3

q = list(var(’q%d’ % i) for i in range(n_q))

p = s[0]*q[0] + s[0]*q[1] + s[0]*s[1]*q[2] + \

s[2]*s[2]*s[0]*q[1] + s[2]^2 + 1

[5]: # Test case

# Returns True and exhibits the steps used to determine it

check_P2_win(p, q, s, debug=True)

Polynomial: q1*s0*s2^2 + q2*s0*s1 + q0*s0 + q1*s0 + s2^2 + 1

Polynomial terms: [q1*s0*s2^2, q2*s0*s1, q0*s0, q1*s0, s2^2, 1]

Current term: q1*s0*s2^2

with monomial: s0*s2^2

which has coefficient: q1

Coefficient terms: [q1]

Current term: q2*s0*s1

with monomial: s0*s1

which has coefficient: q2

Coefficient terms: [q2]

Current term: q0*s0

with monomial: s0

which has coefficient: q1*s2^2 + q2*s1 + q0 + q1

Coefficient terms: [q1*s2^2, q2*s1, q0, q1]

Current term: q1*s0

with monomial: s0

which has coefficient: q1*s2^2 + q2*s1 + q0 + q1

Coefficient terms: [q1*s2^2, q2*s1, q0, q1]

Current term: s2^2

with monomial: s2^2

which has coefficient: q1*s0 + 1

Coefficient terms: [q1*s0, 1]

P2 wins with monomial s2^2 and coefficient (q1*s0 + 1)

[5]: True
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[15]: # Set up polynomials used in the proof

def make_polynomials(s, q):

return {

"a1": s[1] + s[2],

"a2": q[0] + s[0] + s[1] + s[2] + s[3],

"a3": q[1] + q[2] + s[1] + s[2] + 2*s[3],

"a4": q[0] + s[0] + s[1] + s[2] + 2*s[3],

"a4_2": q[1] + q[2] + s[0] +s[1] + s[2] + 2*s[3],

"pj_prime": q[1]*s[3] + s[1]*s[3] + s[3]^2,

"sj_prime": s[1]*s[3],

"t_prime": s[3]^2,

"t_dblprime": s[3] + s[3]^2,

"m1": q[1]*s[2] + s[1]*s[2] + s[2]*s[3],

"m2": q[2]*s[1] + s[1]*s[2] + s[1]*t,

"m3": q[1]*q[2] + q[2]*s[1] + q[1]*s[2] + s[1]*s[2] \

+ q[1]*t +q[2]*t + s[1]*t + s[2]*t + t^2,

"m4": s[1]*s[2],

"m5": q[0] + s[0] + q[1]*s[2] + s[1]*s[2] + t + s[2]*t,

"m6": q[0] + s[0] + q[2]*s[1] + q[1]*s[2] + \

2*s[1]*s[2] + t + s[1]*t + s[2]*t,

"m7": q[0] + s[0] + q[2]*s[1] + q[1]*s[2] + 2*s[1]*s[2] \

+ t + q[1]*t + 2*s[1]*t + s[2]*t + t^2,

"m8": q[1]*q[2] + s[0] + q[2]*s[1] + q[1]*s[2] + \

s[1]*s[2] + q[1]*t + q[2]*t + s[1]*t + s[2]*t + t^2,

"m9": q[1]*q[2] + s[0] + q[2]*s[1] + q[1]*s[2] + \

2*s[1]*s[2] + q[1]*t + q[2]*t + s[1]*t + s[2]*t + t^2,

"m10": q[1]*q[2] + s[0] + q[2]*s[1] + q[1]*s[2] + \

2*s[1]*s[2] + q[1]*t + q[2]*t + 2*s[1]*t + \

s[2]*t + t^2,

"m11": q[1]*q[2] + s[0] + q[2]*s[1] + q[1]*s[2] + \

2*s[1]*s[2] + q[1]*t + q[2]*t + 2*s[1]*t + \

2*s[2]*t + t^2,

"m12": q[0] + s[0] + q[2]*s[1] + q[1]*s[2] + 2*s[1]*s[2] \

+ t + q[1]*t + q[2]*t + 2*s[1]*t + 2*s[2]*t + 2*t^2,

"m12_2": q[1]*q[2] + s[0] + q[2]*s[1] + q[1]*s[2] + \

2*s[1]*s[2] + t + q[1]*t + q[2]*t + 2*s[1]*t + \

2*s[2]*t + 2*t^2

}

[16]: s_letters = ["si", "sj", "sk", "si2", "sj2", "sk2", "t"]

s = list(var(s_letters[i]) for i in range(len(s_letters)))
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q_letters = ["qi", "qj", "qk", "qi2", "qj2", "qk2"]

q = list(var(q_letters[i]) for i in range(len(q_letters)))

[17]: # Print the setup for producing equations

# For easy verification that they match as stated in the paper

s1 = [si, sj, sk, t]

q1 = [qi, qj, qk]

polys1 = make_polynomials(s1, q1)

for key, value in polys1.items():

print(key + ": " + str(value))

# sanity check that none of the individual polynomials

# can be forced to = identically 0

for name, p in polys1.items():

if not check_P2_win(p, q, s, debug=False):

print("Error: The polynomial " + name)

a1: sj + sk

a2: qi + si + sj + sk + t

a3: qj + qk + sj + sk + 2*t

a4: qi + si + sj + sk + 2*t

a4 2: qj + qk + si + sj + sk + 2*t

pj prime: qj*t + sj*t + t^2

sj prime: sj*t

t prime: t^2

t dblprime: t^2 + t

m1: qj*sk + sj*sk + sk*t

m2: qk*sj + sj*sk + sj*t

m3: qj*qk + qk*sj + qj*sk + sj*sk + qj*t + qk*t + sj*t + sk*t + t^2

m4: sj*sk

m5: qj*sk + sj*sk + sk*t + qi + si + t

m6: qk*sj + qj*sk + 2*sj*sk + sj*t + sk*t + qi + si + t

m7: qk*sj + qj*sk + 2*sj*sk + qj*t + 2*sj*t + sk*t + t^2 + qi + si + t

m8: qj*qk + qk*sj + qj*sk + sj*sk + qj*t + qk*t + sj*t + sk*t + t^2 + si

m9: qj*qk + qk*sj + qj*sk + 2*sj*sk + qj*t + qk*t + sj*t + sk*t + t^2 + si

m10: qj*qk + qk*sj + qj*sk + 2*sj*sk + qj*t + qk*t + 2*sj*t + sk*t + t^2 +

↪→si

m11: qj*qk + qk*sj + qj*sk + 2*sj*sk + qj*t + qk*t + 2*sj*t + 2*sk*t + t^2

↪→+ si
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m12: qk*sj + qj*sk + 2*sj*sk + qj*t + qk*t + 2*sj*t + 2*sk*t + 2*t^2 + qi +

↪→si + t

m12 2: qj*qk + qk*sj + qj*sk + 2*sj*sk + qj*t + qk*t + 2*sj*t + 2*sk*t +

↪→2*t^2 + si + t

[11]: # Main Theorem Step:

# Check each of the pairs of equations for the conditions from

# the theorem. Some of the variables within an equation may be

# equal; and similarly across equations.

# Consider all combinations, with the exception of those which

# force all variables = 0 or repeated identical q variables.

import itertools

errors = False

counter = 0

# First decide which variables for the first equation are equal

# There are 3 variables (i, j, and k) any of which may be equal

# options_1 encodes these: eg. [0,0,1] indicates i = j =/= k.

options_1 = [[0,0,0], [0,0,1], [0,1,0], [0,1,1], [0,1,2]]

for o1 in options_1:

# Now decide which variables for the second equation are equal

# They may equal each other and/or the variables from options_1

# Reuse variables from options_1 and/or use up to 3 new vars

# All the possible ways to select three of those

# (with replacement)

options_2 = itertools.product(list(set(o1)) + [3,4,5], repeat=3)

# For simplicity of implementation, options_2 does contain

# some isomorphic options, eg. [0,0,3] and [0,0,4].

# If implementation needs to be more efficient,

# remove duplicates.

for o2 in options_2:

# Total iterations inside the nested loops: 655

counter = counter + 1

# Skip variable settings that create two distict equations

# which both represent the same basic add/multiply operation

# (The preprocessing step prevents these from occurring.)

if o1[1] == o2[1] and o2[2] == o2[2]:
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continue

if o1[2] == o2[1] and o1[1] == o2[2]:

continue

if o1[0] == o1[2] and o2[1] == o2[2] and o1[0] == o2[1] \

and o1[1] == o2[0]:

continue

if o2[0] == o2[2] and o1[1] == o1[2] and o2[0] == o1[1] \

and o2[1] == o1[0]:

continue

if o1[0] == o2[1] and o1[1] == o2[0] and o1[2] == o2[2]:

continue

if o1[0] == o2[2] and o1[1] == o2[0] and o1[2] == o2[1]:

continue

if o1[0] == o2[1] and o1[1] == o2[2] and o1[2] == o2[0]:

continue

# Set up the polynomials

s1 = [s[o1[0]], s[o1[1]], s[o1[2]], t]

q1 = [q[o1[0]], q[o1[1]], q[o1[2]]]

s2 = [s[o2[0]], s[o2[1]], s[o2[2]], t]

q2 = [q[o2[0]], q[o2[1]], q[o2[2]]]

polys1 = make_polynomials(s1, q1)

polys2 = make_polynomials(s2, q2)

# Check the pair of polynomials and record any pair for

# which the theorem conditions are not met.

for name1, p1 in polys1.items():

for name2, p2 in polys2.items():

if name2 in ["t_prime", "t_dblprime"]:

continue # these don’t have any ijk-indexed

# variables so we don’t need a second copy

if name2 in ["pj_prime", "sj_prime"] and \

name1 == name2 and q1[1] == q2[1]:

continue # these two only have j variables.

#Only one generated per unique j.

if not check_P2_win(p1 - p2, q, s, debug=False):
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print("Error (p1 - p2): The polynomials " + \

name1 + " and " + name2 + \

" with variables " + str([s1, s2]))

errors = True

if not check_P2_win(p1 + p2 - 1, q, s, debug=False):

print("Error (p1 + p2 - 1): The polynomials "\

+ name1 + " and " + name2 + \

" with variables " + str([s1, s2]))

errors = True

print(errors)

False

The program returns False; that is, as claimed in the proof of Theorem 4.13, Player 2 wins
for all the necessary pairs of polynomials.
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