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Abstract

Recent Developments in Robust Statistics

by

Yeshwanth Cherapanamjeri

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Peter Bartlett, Chair

The design of statistical estimators robust to outliers has been a mainstay of statistical
research through the past six decades. These techniques are even more prescient in the con-
temporary landscape where large-scale machine learning systems are deployed in increasingly
noisy and adaptive environments. In this thesis, we consider the task of building such an
estimator for arguably the simplest possible statistical estimation problem – that of mean
estimation. There is surprisingly little understanding of the computational and statistical
limits of estimation and the trade-offs incurred even for this relatively simple setting. We
make progress on this problem along three complementary axes.

Our first contribution is a simple algorithmic framework for constructing robust estimators.
Our framework allows for a significant speed-up over prior approaches for mean estimation
while also allowing for easy extensibility to other statistical estimation tasks where it achieves
state-of-the-art performance.

Secondly, we investigate the statistical boundaries of mean estimation where we demonstrate
the necessary statistical degradation incurred in extremely heavy-tailed scenarios. While
prior work showed that estimation could be performed as well as if one had access to Guassian
data, we establish that this is no longer true when the data possesses heavier tails. We provide
lower bounds which exhibit this degradation and an (efficient) algorithm matching them.

Lastly, we consider the stability of these estimators to natural transformations of the data.
Inspired by the empirical mean, classical work constructed estimators equivariant to affine
transformations. These works, however, lacked the strong quantitative performance of more
recent approaches. We demonstrate that such trade-offs are in fact necessary by constructing
novel lower bounds for affine-equivariant estimators. We then show that classical estimators
are quantitatively deficient even in this restricted class and devise an estimator based on a
novel notion of a high-dimensional median which matches the lower bound.
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Chapter 1

Introduction

Procedures for statistical estimation and analysis play a central role in the modern sciences
and the functioning of large scale industries. Indeed, with the recent introduction and wide
dissemination of computing technology, we have witnessed an explosion both in the amount
of data available for such enterprises but also in the range of statistical methodology that
aims to make use of such data. While this expansion opens up a wealth of new opportunities
for technological advancement, it also presents significant challenges. One unfortunate con-
sequence is that maintaining data quality quickly becomes impractical due to the scale and
breadth of domains from which it is collected. Such data often contains extreme amounts of
noise making accurate statistical inference challenging.

In this thesis, we specifically focus on the task of learning with outliers. Informally, these
are points in a dataset whose behavior deviates from what is typically expected. Outliers
are encountered in a range of domains from quantitative finance to operations research and
network monitoring. The source of such data is also similarly varied. These points while
typically comprising a small fraction of available data often have a devastating impact on
the performance of typical algorithms employed in statistical analysis. For an illustration of
such effects, consider Fig. 1.1 which shows the impact of outliers on the popular ordinary
least squares (OLS) estimator. As we can see, even a small amount of outliers have a drastic
impact on the OLS estimator. This detrimental effects are present in other estimation tasks
as well. We will focus on arguably the simplest statistical estimation problem form of this
type: mean estimation. We investigate the statistical and algorithmic limits of estimation
in this setting and observe that in some cases, outliers do not have a significant impact on
the recovery error while in others they do. The nature of this impact will be clear in the
following chapters. Through the rest of the chapter, we will formally describe the problem
and prior work in Section 1.1 before presenting our contributions in Section 1.3.
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Figure 1.1: The results of using ordinary least squares on data with outliers. The green points
represent the typical non-outlier data points while the red ones denote outlier data points
which deviate from typical behavior. The green line is the desired least squares estimate
obtained from running OLS on only on the green points while using the whole dataset results
in the drastically different red line.

1.1 Problem Definition

The high-dimensional mean estimation problem without outliers is described below where
∥x∥ denotes the Euclidean norm of a vector x ∈ Rd.

Problem 1.1.1. Given n independent and identically distributed (iid) random vectors X =
{Xi}ni=1 drawn from a distribution D over Rd with mean µ, design an estimator, µ̂, satisfying:

Pr {∥µ̂(X)− µ∥ ⩽ rδ} ⩾ 1− δ

which minimizes rδ for a target failure probability δ.

Note that the above problem statement imposes no constraints on the distribution (be-
yond possessing a mean) due to which no non-trivial recovery guarantees are possible. In
our results, we will impose restrictions on the moments (for instance, the variance) of the
distribution enabling stronger recovery guarantees. We defer a formal description of such
assumptions to subsequent chapters.

More relevant to the previous discussion is that the problem statement also does not
provide a formal description of how outliers are generated. Here, we will focus on two outlier
models: the adversarial and heavy-tailed models which have been intensely investigated over
the past 60 years and much is known of their statistical and computational properties.

Adverarial Corruption Model: This outlier model, which traces back to early work
by Huber [35], allows an adversary to inspect the dataset, X, and arbitrarily change an η
fraction of them for some η ∈ [0, 1]. Here, the performance of an estimation procedure is



CHAPTER 1. INTRODUCTION 3

measured in terms of the fraction of corruption, η, it may reliably tolerate without incur-
ring arbitrarily poor performance. More recent work, however, has focused on obtaining
quantitative finite sample guarantees. We defer an in-depth discussion to Section 1.2.

Heavy-tailed Corruption Model: In this setting, outliers occur naturally as part of the
data by loosening the assumptions on the data generating distribution D. For instance,
when milder assumptions are made about D such as merely the existence of a variance as
opposed stronger assumptions like sub-Gaussianity, outliers are more likely to be present
in the dataset due to the increased likelihood of tail events. The performance of a robust
estimator is measured in a statistical sense through the dependence of rδ on the number
of datapoints, n, the dimension, d, and the failure probability, δ. This setting has been
extensively studied in more recent work [52, 36, 2, 48]. We provide more context for these
developments in Section 1.2.

As we will see, the algorithmic contributions presented in this thesis apply to both cor-
ruption models while the lower bounds are proved for each setting individually.

1.2 Prior Work

As alluded to in Section 1.1, there is much work on each of the outlier models previously
discussed. We will start with the Adversarial Corruption Model.

Adversarial Corruption Model

We present classical work on the topic before proceeding to more recent developments.

Classical Work. The adversarial corruption model may be traced back to the early work
of Huber [35] in response to a question raised by Tukey [60]. This work considered the
one-dimensional setting and noted the extreme brittleness of the empirical mean to outliers
in the data while also observing that alternative estimators such as the median and the
Winsorized mean are more robust. In addition, the asymptotic normality of some of these
estimators was established. An extension to higher dimensions was first formulated by Tukey
[61] who proposed the Tukey median which generalizes the median in higher dimensions. In
this and subsequent early work [49, 34, 57, 23, 54, 55, 56, 63, 14, 25, 45, 24, 40, 43, 42], the
performance of these estimators was evaluated in terms of its breakdown point (see [22]):

γ(X) = sup

{
η : sup

{∥∥∥∥∥µ̂(Y )− 1

n

∑
x∈X

x

∥∥∥∥∥ : |Y | = |X| and |Y ∩X| ⩾ (1− η)|X|

}
<∞

}

which measures the largest amount of corruption that can estimator can tolerate before its
error can be made arbitrarily bad. Note that the only requirement of an estimator to have
high breakdown point is that it achieves finite error. Thus, this notion is necessarily coarse
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Figure 1.2: An illustration of the affine equivariant requirement. Here, the result of an
estimator µ̂ run on the transformation of the square to the tilted parallelogram is required
to coincide with the transformation of the estimate obtained when run on the square itself.

in that it does not allow for a quantitative evaluation of these methods which has been the
focus of more recent work.

Somewhat complementary to more recent developments, prior work also focused exten-
sively on the stability properties of these estimators where the estimator is required to be
stable to natural transformations of the data. Inspired by the empirical mean, one such prop-
erty that received significant attention was the affine equivariance of the estimators being
considered. Formally, this is the property that an estimator, µ̂, is equivariant with respect to
any invertible affine transformation, f ; i.e f(µ̂(X)) = µ̂(f(X)). This property is illustrated
in Fig. 1.2. Indeed, several estimators based on the aforementioned Tukey median [61], the
Stahel-Donoho depth [57, 23], simplicial volume [54], minimum volume ellipsoid [56], and
the simplicial depth [41] are affine-equivariant and attempt to simultaneously achieve high
breakdown point with affine-equivariance. In addition, the robustness [49, 63, 14, 25, 45,
24, 40, 43, 42] and consistency properties [64, 65] of these affine-equivariant estimators have
been well studied.

Recent Developments. On the other hand, recent work in this setting has developed
along two complementary axes. Firstly, there is increased emphasis on the computational
aspects of these estimators and secondly, the quantitative properties of these estimators have
received greater attention. On the computational side, these novel estimators are computable
in polynomial (and subsequently, near-linear) time while quantitatively achieving optimal
recovery guarantees in terms of the corruption fraction η. The first efficient estimator with
near-optimal recovery guarantees (in terms of the corruption fraction η) was proposed in
a breakthrough result of Diakonikolas, Kamath, Kane, Li, Moitra, and Stewart [18]. Since
then, the statistical and computational complexity has been substantially improved in follow-
up works [9, 21] resulting in estimators with near-optimal statistical and computational
performance. For instance, in the setting of finite variance, these estimators run in near-
linear time and achieve recovery error of O(

√
η) with d/η samples with high probability both
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of which are known to be optimal. These ideas have since been extended to numerous other
settings which remain out of the scope of this thesis and we direct the interested reader to
the excellent survey by Diakonikolas and Kane [19] for an expanded discussion on the topic.

Note that while these estimators are computationally and statistically efficient, in con-
trast to prior work, they sacrifice the stability properties possessed by the estimators dis-
cussed previously. Next, we move on to the heavy-tailed corruption model.

Heavy-tailed Corruption Model

As previously discussed, an alternative statistical model for outliers is the heavy-tailed cor-
ruption model. In this setting, minimal assumptions are made about the data generating
distribution (for instance, the covariance of the data-generating distribution exists as op-
posed to stronger ones such as Gaussianity) and hence, outliers occur naturally as part of
the data. This in contrast to an adversary maliciously corrupting the datapoints in the ad-
versarial setting. Here, estimators such as the empirical mean remain consistent but suffer
from poor statistical performance and the emphasis is on designing estimators which avoid
this degradation. The performance of these estimators is evaluated based on the dependence
of rδ on the number of data points n, dimension d, and the failure probability δ. For instance,
the empirical mean, achieves the following disappointing rate in the finite variance setting:

rδ = O

(√
d

nδ

)

via Chebyshev’s inequality which is unfortunately tight for the empirical mean.
In one dimension, optimal estimators based on the median-of-means framework were

devised (and independently discovered) in a series of classical works [52, 36, 2]. In the
one-dimensional setting, these estimators achieved the following:

rδ = O

(√
log(1/δ)

n

)

which is known to be optimal. On the other hand, the high-dimensional setting remained
open till the pioneering work of Lugosi and Mendelson [48] whose estimator achieves the
optimal sub-Gaussian rate. That is, they proposed an estimator which satisfies:

rδ = O

(√
d+ log(1/δ)

n

)
.

Surprisingly, this is the rate obtained by using the empirical mean on Gaussian data which is
also known to be statistically optimal. This is despite making no higher-order assumptions
about the data distribution. Unfortunately, this estimator is not known to be computable
efficiently. A computationally efficient version by Hopkins [30] with the same guarantees
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followed shortly after along with alternative approaches [47] achieving the same guarantees.
Since then, these ideas have been improved and extended to numerous other settings lead-
ing to estimators with strong statistical and computational performance [10, 16, 39, 51].
Interestingly, some recent works have also focused on the strong connections between the
heavy-tailed and adversarially robust settings yielding estimators simultaneously robust to
both corruption models [16, 47, 33, 20]. An alternative line work has also incorporated
privacy guarantees into these estimators [44, 31, 37, 32].

Interestingly, some recent work in this line has sought to restore the affine-equivariant
properties of these robust estimators emphasized in classical work. We draw attention to
three recently developed estimators: the work of Depersin and Lecue [15], the setting con-
sidered by Duchi, Haque, and Kuditipudi [26] and Brown, Hopkins, and Smith [7] which in
turn build upon approaches by Brown, Gaboardi, Smith, Ullman, and Zakynthinou [6], and
the recent result of Lugosi and Mendelson [46]. Depersin and Lecué [15] consider the Stahel-
Donoho estimator and show that it achieves sub-Gaussian statistical performance. On the
other hand, in [6], the authors construct affine-equivariant estimators with sub-Gaussian
error and strong privacy guarantees with subsequent work [26, 7] achieving computational
efficiency. Finally, sub-Gaussian estimators with direction-dependent accuracy are developed
in [46]. Unfortunately, all these estimators require stronger assumptions on the distribution
(beyond a minimal assumption of the existence of a variance) ranging from the estimability
of the covariance matrix [15] to higher order moment assumptions [46, 6, 7]. Furthermore,
these bounds in [46] scale with the expected Euclidean deviation of a sample from its mean
which when evaluated in an isotropic transformation of the data could be arbitrarily large.

1.3 Our Contributions

In the context of the discussion in Section 1.2, we now describe our contributions to the
computational and statistical understanding of mean estimation. The work described in this
thesis marks developments along three central facets:

Algorithmic Framework [10]. Our first contribution describes an efficient algorithmic
framework for heavy-tailed estimation. As noted previously, the estimator proposed by
Hopkins [30] is computationally efficient. However, its technical complexity leads both to
poor theoretical runtimes and difficulties in extending it to other settings limiting its practical
application. We propose a simple algorithmic framework which significantly reduces the
runtime of this estimator while also being easily extensible to other estimation problems
[11]. This work is described in Chapter 2.

Statistical Frontiers [12]. Next, we consider the statistical limits of robust estimation.
Lugosi and Mendelson [48] showed that when the variance exists, the mean is estimable as
well as would be possible if one had Gaussian data. However, in application domains such
as quantitative finance and operations research, even this assumption may not hold true.
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We formally investigate the impact that these large noise environments have on statistical
performance in Chapter 3 where we show that the optimal sub-Gaussian rate is no longer
possible. We provide a tight characterization of the optimal rates in this setting with a
computationally efficient estimator (building on Chapter 2) and present novel lower bounds
witnessing the rate.

Necessary Compromises [8]. Finally, in recent work, we attempt to restore the stability
properties of classical estimators to the current wave of quantitatively optimal estimators.
Modern estimators while possessing strong quantitative guarantees lack the strong stability
guarantees enjoyed by classical estimators. Meanwhile, classical estimators do not possess
strong quantitative performance guarantees. Strikingly, we show that there exists a necessary
trade-off between these two desiderata in both the heavy-tailed and adversarial corruption
scenarios. We show that any affine-equivariant estimator can only achieve the following rate:

rδ = Ω̃

(√
d log(1/δ)

n
+
√
dη

)

a drastic degradation from the sub-Gaussian rate previously encountered. Furthermore, the
dependence on the corruption factor also degrades by a factor of

√
d. We develop a novel

high-dimensional median which achieves this rate and prove statistical lower bounds for
the specific class of affine-equivariant estimators. Our estimator addresses the quantitative
deficiencies of classical work while also enjoying their natural stability properties. This work
is presented in Chapter 4.
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Chapter 2

Algorithmic Framework

In this chapter, we present a simple algorithmic framework for heavy-tailed estimation,
specialized to the problem of heavy-tailed mean estimation1. In this setting, an assumption
of finite variance is imposed on the data generating distribution:

Assumption 2.0.1. The distribution, P , satisfies:

E
X∼P

[
(X − µ)(X − µ)⊤

]
= Σ.

Note that no additional assumptions are imposed on P and specifically, avoid those on
its higher order moments which allows for modeling of heavy-tailed behavior in the data. As
discussed in Chapter 1, Lugosi and Mendelson [48] devised an estimator which achieves the
optimal sub-Gaussian rate of:

rδ = O

(√
Tr(Σ) + ∥Σ∥ log(1/δ)

n

)

while Hopkins [30] proposed the first computationally efficient variant. However, the es-
timator in [48] is not known to be efficiently computable while that in [30] is technically
complicated and hence, incurs exorbitantly large runtimes while also being challenging to
extend to other settings. Our framework allows for simpler constructions of efficient estima-
tors and is extensible to other estimation problems.

Through the remainder of the chapter, we overview the one-dimensional setting and
provde intuition for the median-of-means framework in Section 2.1, we then discuss some
high-dimensional extensions in Section 2.2 before presenting a simplified (but computation-
ally inefficient) version of our estimator in Section 2.3. We formally describe our estimator
and establish its runtime and accuracy guarantees in Section 2.4 and finally, Section 2.5
contains concentration results used in our proof.

1However, the framework has been employed to construct efficient algorithms for other estimation prob-
lems such as linear regression and covariance estimation [11]. Furthermore, an observation of Depersin and
Lecué [16] implies that this algorithm is also adversarially robust.
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2.1 One-dimensional Setting

Here, we will present a proof of the result for the one-dimensional setting which will help
illustrate the median-of-means framework for heavy-tailed estimation. Note that Assump-
tion 2.0.1 simplifies to the following:

E
X∼P

[
(X − µ)2

]
= σ2

and the optimal achievable rate is characterized in the following theorem:

Theorem 2.1.1 ([52, 36, 2]). Let X = X1, . . . , Xn be iid random variables with mean µ and
variance σ2. There exist absolute constants C, c > 0 and an estimator which, when given
inputs X and a target confidence δ satisfying log(1/δ) < cn, returns a point x∗ with:

|x∗ − µ| ⩽ Cσ

√
log(1/δ)

n
,

with probability at least 1− δ.

Proof. This proof and all of the results presented in this thesis utilize the median-of-means
framework illustrated in Fig. 2.1. The data is first split into k equally sized batches, the em-
pirical mean is computed within each batch, and the k estimates thus obtained are combined
through an appropriate aggregation function, f . Here, we will simply use the one-dimensional
median.

We have by a simple application of Chebyshev’s inequality:

∀i ∈ [k] : Pr

{
|µ̂i − µ| ⩽ 4σ

√
k

n

}
⩾

9

10
.

Now setting k = C log(1/δ), an application of Hoeffding’s inequality (Theorem A.1.1), now
yields:

Pr

{
k∑

i=1

1

{
|µ̂i − µ| ⩽ 4σ

√
k

n

}
⩾

3k

4

}
⩾ 1− δ.

We condition on the above event and the theorem follows as on the above event:

|µ̂− µ| ⩽ 4σ

√
k

n
.

We observe that the parameter k represents a trade-off between accuracy and reliability
with larger values of k leading to more reliable but less accurate estimates and vice versa.
The proof which is relatively simple in the one-dimensional case is challenging to extend
to the high-dimensional setting due to the lack of a obvious notion of a high-dimensional
median. We discuss several candidates in the subsequent section.
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X1

X2

...

Xn/k

Xn/k+1

Xn/k+2

...

X2n/k

· · ·

X1

X2

...

Xn/k

µ̂1 µ̂2 µ̂k· · ·

µ̂ = f(µ̂1, . . . , µ̂k)

Figure 2.1: The median-of-means framework for robust estimation. The data is first split
into k equally sized batches, the empirical mean is computed in each batch, and the estimates
are finally combined with an appropriate aggregation function, f . f is typically chosen to
correspond to some notion of a median.

2.2 High-dimensional Setting

Unfortunately, generalizing the standard one-dimensional median to higher dimensions is not
straightforward. Here, we will describe a few proposals and the general principles underlying
them. This generality will allow for easy comparison of these different estimators in later
chapters. One of the first high-dimensional generalizations to find use in robust statistics
was the Tukey median [61]. Amongst its other appealing properties, the Tukey median is
also affine-equivariant. The starting point in describing the Tukey median is the concept of
a depth function. This function measures how close to the center a point is with respect to a
set of points. For instance, the depth function corresponding to the Tukey median is defined
as follows for Y = {yi}ni=1 ⊂ R:

D1
τ (y;Y ) = min (|{i : yi ⩾ y}|, |{i : yi ⩽ y}|) .

The Tukey Median of a set of points X = {xi}ni=1 ⊂ Rd is now defined below:

µ̂τ (X) = argmaxDd
τ (x;X) where Dd

τ (x;X) = min
∥u∥=1

D1
τ (⟨u, x⟩; {⟨u, x⟩}

n
i=1) .

When d = 1, note that this reduces to the standard one-dimensional Median. In addition,
the breakdown properties of the Tukey Median and other affine-equivariant estimators have
been closely investigated by Maronna [49] and Huber [34]. These works concluded that
the breakdown point [22] these well-known affine equivariant estimates is at most 1/(d + 1)
without any additional assumptions on the point set such as symmetricity. This somewhat
disappointing discovery led to the search for estimators with improved breakdown properties.
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One of the first such approaches was the Stahel-Donoho estimator independently discovered
by Stahel [57] and Donoho [23]. Here, one utilizes an alternative notion of outlyingness where
Med(Y ) denotes the median of Y :

D1
SD(y;Y ) =

|y −Med(Y )|
MAD(Y )

where MAD(Y ) = Med ({|yi −Med(Y )|}ni=1) .

The Stahel-Donoho estimate is a point with minimum outlyingness:

µ̂SD(X) = argminDd
SD(x;X) where Dd

SD(x;X) = max
∥u∥=1

D1
SD (⟨u, x⟩; {⟨u, xi⟩}ni=1)

This estimator is known to have a breakdown point approaching 1/2. However, all these
approaches suffer from the following drawbacks:

1. There are no quantitative bounds on their performance.

2. Furthermore, attainable bounds depend on the non-degeneracy of the dataset with
error bounds growing arbitrarily large as the dataset approaches degeneracy.

Since the Stahel-Donoho estimator, numerous alternative approaches with differing notions
of depth have been proposed: these include estimators based on the simplicial volume [54], S-
estimation [55], the minimum volume ellipsoid [56] and the simplicial depth [41]. In addition,
the robustness [49, 63, 14, 25, 45, 24, 40, 43, 42] and consistency properties [64, 65] of these
estimators have been studied. However, despite this interest, there exist no quantitative
accuracy guarantees in terms of the number of data points n, dimension d, failure probability
δ, and corruption fraction η exist for these estimators.

The appropriate generalization, utilized in the statistically optimal estimator constructed
by Lugosi and Mendelson [48] which also achieves the optimal breakdown point of 1/2, is
based on a notion of outlyingness closely related to the Stahel-Donoho estimator with the
main difference being the lack of the scale based normalization in the denominator:

D1
LM(y;Y ) =

|y −Med(Y )|
�����
MAD(Y )

.

And the corresponding high-dimensional median is defined as follows:

µ̂τ (X) = argminDd
LM(y;X) where Dd

LM(x;X) = min
∥u∥=1

D1
LM (⟨u, x⟩; {⟨u, xi⟩}ni=1) .

While the corresponding median is no longer affine-equivariant, this subtle change now allows
for an estimator with quantitatively optimal performance. Furthermore, as we will see, a
suitable approximation of this median is efficiently computable as opposed to the alternative
notions discussed here.

Finally, we briefly describe the geometric insight underlying the analysis of Lugosi and
Mendelson. They establish that for all directions, v, projections of most of the bucketed
means, {µ̂i}i∈[k], lie close to the projections of the true mean µ along v. However, the precise
set that satisfy this may differ with the direction considered. This property is illustrated in
Fig. 2.2. Formally, they establish the following lemma:
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Lemma 2.2.1 ([48]). There exist absolute constants c, C1, C2 > 0 such that the following
holds. Let X = X1, . . . , Xn be n iid random vectors with mean µ and covariance Σ. For
δ ∈ (0, 1) with log(1/δ) < cn, k = C1 log(1/δ) and bucketed means µ̂1, . . . , µ̂k produced from
X, we have:

∀∥v∥ = 1 :
n∑

i=1

1

{
|⟨v, µ̂i⟩ − ⟨v, µ⟩| ⩽ C2

√
Tr(Σ) + ∥Σ∥ log(1/δ)

n

}
⩾ 0.95k

with probability at least 1− δ.

We will not prove this result here but it will be implied by a stronger result that will be
required in subsequent analysis. For now, observe that this implies a point exists with at
outlyingness at most:

C

√
Tr(Σ) + ∥Σ∥ log(1/δ)

n

and furthermore, a simple analysis shows that any such point must be close to the true mean
µ. The approach of Hopkins [30] uses a semi-definite relaxation of the Lugos-Mendelson me-
dian; i.e. it relaxes the problem of directly finding the median point. We take an alternative
approach while leads to a simpler algorithm with much smaller runtimes. In subsequent
sections, we abstract out the geometric concentration property in Lemma 2.2.1 and describe
how we use it to construct efficient algorithms.

µ

v

rδ

Figure 2.2: Illustration of the geometric property established in the analysis of Lugosi and
Mendelson [48]. Formally, for every unit vector v, at least 0.9k are within a distance of rδ of
µ when projected onto v. Note, however, that the precise subset that satisfy this may differ
across v.

2.3 Testing-to-estimation Warm Up

We present in this section a simple descent based algorithm. This algorithm is computa-
tionally intractable but is simple to analyze and much of the intuition behind its analysis
transfers to the computationally efficient version as well. The main driving principle behind
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the framework is that for many robust estimation problems, testing whether a given candi-
date point x is close to the mean is often significantly easier than directly finding an accurate
estimate. The key insight of our approach is that the solutions to these testing problems
also contain information about how to improve the current estimate. While they do not
immediately yield an optimal solution, a small number of iterations of this procedure suffice
to establish our optimal guarantees. Furthermore, the simplicity of the testing procedure
leads to substantial improvements to computational efficiency over prior work.

Intuition

x µ∆

v

Figure 2.3: The direction v solution to MTE is well aligned with the vector joining the
current estimate x to the true mean µ.

We provide some intuition for our procedure specialized to mean estimation and present the
testing problem utilized here. Drawing inspiration from Lugosi and Mendelson [48], who
show that along any direction, most of the bucketed means, henceforth referred to as Zi, are
close to the mean, µ. Thus, to test whether a point, x, is far from the mean, it is sufficient
to check whether there exists a direction where most of the Zi are far away from x along
that direction. This is formally expressed in the following polynomial optimization problem:

max
k∑

i=1

bi

b2i = bi

∥v∥2 = 1

bi⟨v, Zi − x⟩ ⩾ b2i r ∀i ∈ [k] (MTE)

This polynomial problem over the set of variables b1, . . . , bk and v1, . . . , vd is parameterized
by r > 0, the current estimate x ∈ Rd and the bucketed means Z ∈ Rk×d. Its polynomial
constraints are encoding the number of Zi beyond a distance r from x when projected along
a direction v. Intuitively, this program tries to find a direction v so as to maximize the
number of Zi beyond a distance r from x along that direction. Observe from [48] that for an
appropriate choice of r, along all directions v, a large fraction of the Zi are close to the mean.
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Formally, for all directions v, |{i : |⟨Zi − µ, v⟩| ⩽ r}| ⩾ 0.9k (see Lemma 2.2.1). Therefore
this optimization problem has a large value when x is far from the mean and ∆, the unit
vector along µ− x (see Fig. 2.3), can be used to certify this.

Strikingly, the direction v returned by the solution of the above problem also contains
information about the location of the mean when r is chosen appropriately, which enables
improvement of the quality of the current estimate. As illustrated in Fig. 2.3, the direction
returned by this optimization problem is strongly correlated with the vector joining the
current point x to the mean µ.

Therefore, moving a small distance along the vector v should intuitively take us closer to
the mean. Given solutions to the polynomial optimization problemMTE, we may iteratively
improve our estimate until no further change is necessary.

Algorithm 1 Mean Estimation

1: Input: Data Points X ∈ Rn×d, Target Confidence δ
2: x† ← Initial Mean Estimate(X), T ← C log(n), k ← C log(1/δ)

3: Split data into k bins, Bi consisting of {X(i−1)n
k
+j}n/kj=1

4: Zi ← Mean(Bi) ∀ i ∈ [k] and Z ← (Z1, . . . , Zk)
5: x∗ = Gradient Descent(Z, x†, T )
6: Return: x∗

Algorithm 2 Gradient Descent

1: Input: Bucket Means Z ∈ Rk×d, Initialization x†, Number of Iterations T
2: x∗, x0 ← x† and D∗, D0 ←∞
3: for t = 0 : T do
4: Dt ← Distance Estimation(Z, xt)
5: gt ← Gradient Estimation(Z, xt)
6: if Dt < D∗ then
7: x∗ ← xt
8: D∗ ← Dt

9: end if
10: xt+1 ← xt +

1
20
Dtgt

11: end for
12: Return: x∗

Algorithm 3 Distance Estimation

1: Input: Data Points Z ∈ Rk×d, Current point x
2: D∗ = max{r > 0 : MTE(x, r,Z) ⩾ 0.9k}
3: Return: D∗
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Algorithm 4 Gradient Estimation

1: Input: Data Points Z ∈ Rk×d, Current point x
2: D∗ = Distance Estimation(Z, x)
3: (b, g) = MTE(x,D∗,Z)
4: Return: g

Algorithm 5 Initial Mean Estimate

1: Input: Set of data points X = {Xi}ni=1

2: µ̂← argminXi∈X min
{
r > 0 :

∑n
j=1 1 {∥Xj −Xi∥ ⩽ r} ⩾ 0.6n

}
3: Return: µ̂

Algorithm

In this section we put the intuition provided previously into practice and propose a procedure
that estimates the mean in the ideal situation whereMTE can be exactly solved (the method
is formally described in Algorithm 1):

1. First, following the median of means framework, the samples Xi are divided into
k buckets and the mean of the samples within each bucket is computed as Zi =
k
n

∑in/k+1
j=(i−1)n/kXj.

2. Second, the estimate of the mean is iteratively updated using a descent-based approach,
using the solution to MTE. As mentioned in Section 2.3, we need to run MTE with
an appropriate choice of r for the solution v to be correlated with the direction x− µ.
In the Distance Estimation step of our algorithm, we estimate a suitable choice of r
(see Algorithm 3). This value of r is subsequently used in the Gradient Estimation
step, to obtain an appropriate descent direction g (see Algorithm 4).

From this point on, we refer to the solution of MTE as (b, v) = MTE(x, r,Z).

Analysis warm-up

In this simplified setting, we provide an analysis of our method and show that it obtains the
optimal sub-Gaussian rate. This is formally expressed in the following theorem.

Theorem 2.3.1. There exist constants c, C > 0 such that the following hold. Let X =
(X1, . . . , Xn) ∈ Rn×d be n i.i.d. random vectors with mean µ and covariance Σ. Then
Algorithms 1 and 2 when instantiated with Algorithms 3 and 4 and run with inputs X and
target confidence δ with log(1/δ) ⩽ cn returns x∗ satisfying:

∥x∗ − µ∥ ⩽ C

√
Tr(Σ) + ∥Σ∥ log(1/δ)

n
,
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with probability at least 1− δ.

The main step of the proof is in the analysis of the gradient descent algorithm, Algo-
rithm 2. Algorithm 1 pre-processes the dataset, X, to produce the bucketed estimates, Z,
an initialization x† and iteration count T for Algorithm 2. The guarantees of Algorithm 5
(see Lemma A.2.1 for a simple proof) ensure that the initialization is within O(

√
Tr(Σ)) of

the true mean. Hence, the bulk of the proof is in the analysis of Algorithm 2, the main steps
of which we outline below:

1. Distance Estimation: We show that when the current estimate x is far from µ,
Algorithm 3 accurately estimates the distance of x to µ. See Lemma 2.3.4.

2. Gradient Estimation: Next, we show that when x is far away from the mean µ,
the vector g obtained by solving MTE in Algorithm 4 is well aligned with the vector
joining the current point x to the mean µ. See Lemma 2.3.5.

3. Gradient Descent: Combining the previous two steps, we prove that we eventually
converge to a good approximation to the mean.

In the proofs for the correctness of Algorithm 2, we make use of the following assumptions2

which formalize the insight of Lugosi and Mendelson [48].

Assumption 2.3.2. Let Z = (Z1, . . . , Zk) satisfy for some µ̃ ∈ Rd and r∗ > 0:

∀v ∈ Rd, ∥v∥ = 1 : |{i : ⟨Zi − µ̃, v⟩ ⩾ r∗}| ⩽ 0.05k.

Furthermore, we assume that the initialization x† satisfies for D > 0:

∥x† − µ̃∥ ⩽ D.

We now present our main technical theorem on the correctness of Algorithm 2.

Theorem 2.3.3. There exist constants C1, C2 > 0 such that the following holds. Let
Z = (Z1, . . . , Zk) and µ̃ satisfy Assumption 2.3.2 for some r∗, D > 0 and suppose T ⩾
C1 log(D/r

∗). Then, Algorithm 2 when instantiated with Algorithms 3 and 4 and when input
Z, x†, and T , outputs x∗ satisfying:

∥x∗ − µ̃∥ ⩽ C2r
∗.

Before establishing Theorem 2.3.3, we first prove that the Distance Estimation (Al-
gorithm 3) and Gradient Estimation (Algorithm 4) steps are correct. We start with
Algorithm 3.

2Note that we analyze Algorithm 2 in slightly greater generality in anticipation of its eventual application
in subsequent chapters.
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Lemma 2.3.4. Let Assumption 2.3.2 hold for Z for some µ̃ ∈ Rd, r∗ > 0. Now, for any
x ∈ Rd, Algorithm 3 on input Z and x returns a distance estimate D∗ which satisfies:

|D∗ − ∥x− µ̃∥| ⩽ r∗.

Proof. We first prove the lower bound ∥x− µ̃∥−r∗ ⩽ D∗. We may assume that ∥x− µ̃∥ > r∗,
as the alternate case is trivially true. For r = ∥x − µ̃∥ − r∗, we can simply pick the vector
v = ∆ where ∆ is the unit vector along µ̃− x. Under Assumption 2.3.2, we have that for at
least 0.95k points:

⟨Zi − x, v⟩ = ⟨Zi − µ̃, v⟩+ ⟨µ̃− x, v⟩ ⩾ ∥x− µ̃∥ − r∗ = r.

This implies the lower bound holds when ∥x− µ̃∥ > r∗.
For the upper bound D∗ ⩽ ∥x − µ̃∥ + r∗, suppose, for the sake of contradiction, there

is a value of r > ∥x− µ̃∥ + r∗ for which the optimal value of MTE(x, r,Z) is greater than
0.9k. Let v be the solution of MTE(x, r,Z). This means that for 0.9k of the Zi, we have:

⟨Zi − µ̃, v⟩ = ⟨Zi − x, v⟩+ ⟨x− µ̃, v⟩ ⩾ r − ∥x− µ̃∥ > r∗.

This contradicts Assumption 2.3.2, proving the upper bound.

Next, we move on to the Gradient Estimation step (Algorithm 4).

Lemma 2.3.5. Let Assumption 2.3.2 hold for Z for some µ̃ ∈ Rd, r∗ > 0. Now, let x ∈ Rd

satisfying:
∥x− µ̃∥ ⩾ 4r∗. (2.1)

Then, letting ∆ denote the unit vector along µ̃− x, Algorithm 4 on input Z and x, returns
a gradient estimate g satisfying:

⟨g,∆⟩ ⩾ 1

2
.

Proof. We have, from the definition of D∗ in Algorithms 3 and 4, that for 0.9k of the Zi,
⟨Zi − x, g⟩ ⩾ D∗. We also have, from Assumption 2.3.2, that ⟨Zi − µ̃, g⟩ ⩽ r∗ for 0.95k
of the Zi. Let Zj satisfy both those inequalities. Therefore, for Zj, the lower bound from
Lemma 2.3.4 implies

∥µ̃− x∥ − r∗ ⩽ D∗ ⩽ ⟨Zj − x, g⟩ = ⟨Zj − µ̃, g⟩+ ⟨µ̃− x, g⟩ ⩽ r∗ + ∥µ̃− x∥⟨∆, g⟩.

By rearranging the above inequality and using the assumption on ∥µ̃ − x∥ in Eq. (2.1), we
get the required conclusion.

We now use Lemmas 2.3.4 and 2.3.5 to establish Theorem 2.3.3.

Proof of Theorem 2.3.3. Let r̃ = 4r∗. To start with, define G = {x : ∥x− µ̃∥ ⩽ r̃}. We now
consider two cases:
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Case 1: None of the iterates xt lie in G. In this case, note that by Lemma 2.3.4 and
the definition of r̃, we have:

3

4
∥xt − µ̃∥ ⩽ Dt ⩽

5

4
∥xt − µ̃∥. (2.2)

Moreover, we have by the definition of the update rule of xt in Algorithm 1:

∥xt+1 − µ̃∥2 = ∥xt − µ̃∥2 +
1

10
Dt⟨xt − µ̃, gt⟩+

D2
t

400
⩽ ∥xt − µ̃∥2 −

Dt∥xt − µ̃∥
20

+
D2

t

400

⩽ ∥xt − µ̃∥2 −
3

80
∥xt − µ̃∥2 +

1

320
∥xt − µ̃∥2 ⩽

39

40
∥xt − µ̃∥2,

where we use Lemma 2.3.5 for the first inequality and the inequalities in Eq. (2.2) for
the second. An iterative application of the above inequality establishes Theorem 2.3.3
in this case.

Case 2: At least one of the iterates xt lies in G. We have from Lemma 2.3.4:

Dt ⩽ 5r∗.

At the completion of the algorithm, we have from another application of Lemma 2.3.4:

∥x∗ − µ̃∥ − r∗ ⩽ D∗ ⩽ Dt ⩽ 5r∗.

Re-arranging the above inequality proves Theorem 2.3.3 in this case as well.

The above two cases conclude the proof of the theorem.

Finally, Theorem 2.3.1 follows from conditioning on events in Lemmas 2.2.1 and A.2.1
and a subsequent application of Theorem 2.3.3 for the correctness of Algorithm 2 with our
setting of T and x† in Algorithm 1.

While Theorem 2.3.1 guarantees a sub-Gaussian rate, the algorithm is not efficient due
to the non-convexity of MTE. In the next section, we consider a semi-definite relaxation
which is efficiently solvable while also providing the same optimal guarantees.

2.4 Testing-to-estimation Efficient Variant

In this section, we define a semi-definite programming relaxation of the polynomial opti-
mization problem MTE. We then design new Distance Estimation and Gradient Estimation
algorithms that use the tractable solutions to the relaxation instead of the original polyno-
mial optimization problem. We then use these solutions to update our mean estimate along
the same lines as Section 2.3, albeit with some added technical difficulty.
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The Semi-Definite Relaxation of MTE

Here, we propose a semidefinite programming relaxation ofMTE, a variant of the Threshold-
SDP from [30]. We first define a semidefinite matrix X ∈ R(k+d+1)×(k+d+1) symbolically
indexed by 1, the variables bi and vj and denote by the vector vbi := (Xbi,v1 , . . . , Xbi,vd):

max
k∑

i=1

X1,bi

X1,bi = Xbi,bi

X1,1 = 1

d∑
j=1

Xvj ,vj = 1

⟨vbi , Zi − x⟩ ⩾ Xbi,bir ∀i ∈ [k]

X ≽ 0 (MT)

Similar to the polynomial optimization MTE, this optimization problem is also parameter-
ized by a vector x ∈ Rd, r > 0 and a dataset Z. We refer to solutions of this program as
(X,m) = MT(x, r,Z) with m denoting the optimal value and X the optimal solution.

Algorithm 6 Distance Estimation

1: Input: Data Points Z ∈ Rk×d, Current point x
2: D∗ = max{r > 0 : MT(x, r,Z) ⩾ 0.9k}
3: Return: D∗

Algorithm 7 Gradient Estimation

1: Input: Data Points Z ∈ Rk×d, Current point x
2: D∗ = Distance Estimation(Z, x)
3: (X,m) = MT(x,D∗,Z)
4: Xv = Submatrix of X corresponding to the indices vi
5: g = Top singular vector of Xv

6: H = {i : ⟨Zi − x, g⟩ ⩾ 0}
7: if |H| ⩾ 0.9k then
8: Return: g
9: else
10: Return: −g
11: end if

The main contribution of our paper is in showing that the solutions to the relaxationMT
can be used to improve the estimate similarly to those of MTE. We redefine the Distance
and Gradient Estimation steps in Algorithms 1 and 2 using MT in Algorithms 6 and 7.
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Algorithm

To efficiently estimate the mean, we instantiate Algorithms 1 and 2 to use solutions of MT
instead of MTE. The new Distance Estimation and Gradient Estimation procedures are
desribed in Algorithms 6 and 7.

As opposed to the polynomial optimization problem, solutions to the relaxation may not
necessarily return a single vector v but rather a semidefinite matrix which corresponds to the
relaxation of v. This matrix may not uniquely determine a descent direction. We, therefore,
round the solution to a provably good descent direction which we use to iteratively improve
our estimate. It is noteworthy that the singular value decomposition does not provide a sign
direction. Thankfully the correct orientation is easily determined from the data points.

To analyze the runtime of Algorithms 1 and 2 with Algorithms 6 and 7, we first note
that the semidefinite relaxation has O(k2+d2) variables. However, by projecting all the data
down to a subspace containing the k bucket means, we may effectively reduce the number of
variables to O(k2) with an O(k2d) time pre-processing step. Therefore, we are now left with
O(k2) variables. The runtime of interior point methods for solving semidefinite programs
with O(k2) variables and O(k) constraints is O(k3.5) [1]. Furthermore, a single call of the

Distance Estimation procedure can be efficiently implemented using Õ(1) rounds of binary

search on the parameter r. Therefore, the total cost of a single call to Algorithm 6 is Õ(k3.5).

Similarly, the total cost of a call to Algorithm 7 is Õ(k3.5). Since the cost of each iteration

is dominated by a single call of Algorithms 6 and 7, the total cost per iteration is Õ(k3.5).

Since, we only run Õ(1) iterations, the total cost of the Algorithms 1 and 2 instantiated with

Algorithms 6 and 7 is Õ(k3.5 + k2d+ nd).

Analysis

We proceed primarily as in the previous section, but with the added technical difficulties
arising from the use of the semi-definite relaxation. Here, we establish the following efficient
analogue of Theorem 2.3.1:

Theorem 2.4.1. There exist absolute constants C, c > 0 such that the following hold. Let
X = (X1, . . . , Xn) ∈ Rn×d be n i.i.d. random vectors with mean µ and covariance Σ. Then
Algorithms 1 and 2 when instantiated with Algorithms 6 and 7 and run with inputs X and
target confidence δ ∈ (0, 1/2) with log(1/δ) ⩽ cn returns x∗ satisfying:

∥x∗ − µ∥ ⩽ C

√
Tr(Σ) + ∥Σ∥ log(1/δ)

n
,

with probability at least 1 − δ. Furthermore, the procedure has runtime Õ((log(1/δ))3.5 +
d(log(1/δ))2 + nd).

As before, we have three main steps in analyzing Algorithm 2
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1. Distance Estimation: We show that the Distance Estimation step in Algorithm 6
provides an accurate estimate of the distance of the current point from the mean. See
Section 2.4.

2. Gradient Estimation: Next, we show that when x is far away from the mean µ,
the vector g output by Algorithm 7 is well aligned with the vector joining the current
point x to the mean µ. See Section 2.4.

3. Gradient Descent: Combining the previous two steps, we prove that we eventually
converge to a good approximation to the mean. See Section 2.4.

We now present the analogue of Assumption 2.3.2 used to analyze the relaxed variant:

Assumption 2.4.2. Let Z = (Z1, . . . , Zk) satisfy for some µ̃ ∈ Rd, r∗ > 0:

max
X∈Sr

k∑
i=1

Xbi,bi ⩽
k

20
.

for all r ⩾ r∗ where Sr denotes the set of feasible solutions for MT(µ̃, r,Z). Furthermore,
we assume that the initialization x† satisfies for D > 0:

∥x† − µ̃∥ ⩽ D.

The above assumption is a strengthening of Assumption 2.3.2 for the case where we use
MT instead of MTE. We use the following fact at several points in the subsequent analysis:

Remark 2.4.3. Note that Assumption 2.4.2 implies Assumption 2.3.2.

We prove that Assumption 2.4.2 holds with high probability in Section 2.5 (Lemma 2.5.1).
The analysis uses standard techniques from empirical process theory and follows similar
analyses from [48, 30]. Here, we restrict ourselves to the analysis of the gradient descent
step where we establish the following analogue of Theorem 2.3.3.

Theorem 2.4.4. There exists absolute constants C1, C2 > 0 such that the following holds.
Let Z = (Z1, . . . , Zk) and µ̃ satisfy Assumption 2.4.2 for some r∗, D > 0 and suppose
T ⩾ C1 log(D/r

∗). Then, Algorithm 2 when instantiated with Algorithms 6 and 7 and when
input Z, x†, and T , outputs x∗ satisfying:

∥x∗ − µ̃∥ ⩽ C2r
∗.

We now proceed to establish that the Distance and Gradient Estimation steps in Algo-
rithms 6 and 7 function as expected in the next two subsections before proving Theorem 2.4.4.
We start with Distance Estimation.
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Distance Estimation Step

Here, we analyze Algorithm 6. We show that an accurate estimate of the distance of the
current point from the mean can be found. We begin with a lemma which shows that a
feasible solution for MT(x, r,Z) can be converted to a feasible solution for MT(µ̃, r∗,Z)
with a reduction in optimal value.

Lemma 2.4.5. Let us assume Assumption 2.4.2. Let X ∈ R(k+d+1)×(k+d+1) be a positive
semi-definite matrix, symbolically indexed by 1 and the variables bi and vj. Moreover, suppose
that X satisfies:

X1,1 = 1, Xbi,bi = X1,bi ,
d∑

j=1

Xvj ,vj = 1,
k∑

i=1

Xbi,bi ⩾ 0.9k.

Then, there is a set of at least 0.85k indices T such that for all i ∈ T :

⟨Zi − µ̃, vbi⟩ < Xbi,bir
∗,

and a set of at least k/3 indices R such that for all j ∈ R, we have Xbj ,bj ⩾ 0.85.

Proof. We prove the first claim by contradiction. Firstly, note that X is infeasible for
MT(µ̃, r∗,Z) as the optimal value for MT(µ̃, r∗,Z) is less than k/20 (Assumption 2.4.2)
and that the only constraints of MT(µ̃, r∗,Z) violated by X are constraints of the form:

⟨Zi − µ̃, vbi⟩ < Xbi,bir
∗.

Now, let T denote the set of indices for which the above inequality is violated. We can
convert X to a feasible solution for MT(µ̃, r∗,Z) by setting to 0 the rows and columns
corresponding to the indices in T . Let X ′ be the matrix obtained by the above operation.
We have from Assumption 2.4.2:

0.05k ⩾
k∑

i=1

X ′
bi,bi

=
k∑

i=1

Xbi,bi −
∑
i∈T

Xbi,bi ⩾ 0.9k − |T |,

where the last inequality follows from the fact that Xbi,bi ⩽ 1. By rearranging the above
inequality, we get the first claim of the lemma.

For the second claim, let R denote the set of indices j satisfying Xbj ,bj ⩾ 0.85. We have:

0.9k ⩽
k∑

j=1

Xbj ,bj =
∑
j∈R

Xbj ,bj +
∑
j /∈R

Xbj ,bj ⩽ |R|+ 0.85k − 0.85|R| =⇒ k

3
⩽ |R|.

This establishes the second claim of the lemma.

The following lemma shows the correctness of Algorithm 6 when the distance between µ̃
and a point x is small.
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Lemma 2.4.6. Assume Assumption 2.4.2. Suppose x ∈ Rd satisfies ∥x− µ̃∥ ⩽ 20r∗. Then,
Algorithm 6 on input Z and x, returns a value D∗ satisfying

D∗ ⩽ 25r∗.

Proof. Let r′ = 25r∗. Suppose that the optimal value of MT(x, r′,Z) is greater than 0.9k
and let an optimal solution be X. Let R and T denote the two sets from Lemma 2.4.5 and
j ∈ R ∩ T . We have:

0.85r′ ⩽ ⟨Zj − x, vbj⟩ = ⟨Zj − µ̃, vbj⟩+ ⟨µ̃− x, vbj⟩ < r∗ + ∥x− µ̃∥,

where the first inequality follows from the fact that j ∈ R and the fact that X is feasible for
MT(x, r′,Z) and the last inequality follows from the inclusion of j in T and Cauchy-Schwarz.

By plugging in the bounds on r′, we get:

∥x− µ̃∥ > 0.85r′ − r∗ > 20r∗

which is a contradiction and proves the lemma.

The next lemma analyzes the case where the candidate point x is far from µ̃ and concludes
the analysis of Algorithm 6.

Lemma 2.4.7. Assume Assumption 2.4.2. Suppose x ∈ Rd satisfies ∥x− µ̃∥ ⩾ 20r∗. Then,
Algorithm 6 on input Z and x, returns a value D∗ satisfying

0.95∥x− µ̃∥ ⩽ D∗ ⩽ 1.25∥x− µ̃∥.

Proof. Define ∆ to be the unit vector in the direction of x − µ̃. From Assumption 2.3.2
(which is implied by Assumption 2.4.2), the number of Zi satisfying ⟨Zi − µ̃,∆⟩ ⩾ r∗ is less
than k/20. Therefore, we have that for at least 0.95k points:

⟨Zi − x,−∆⟩ = ⟨x− µ̃+ µ̃− Zi,∆⟩ = ∥x− µ̃∥ − r∗ ⩾ 0.95∥x− µ̃∥.

With the monotonicity (Lemma A.2.2) of MT(x, r,Z) in r, this implies the lower bound.
For the upper bound, we show that the optimal value of MT(x, 1.25∥x − µ̃∥,Z) is less

than 0.9k. For the sake of contradiction, assume the contrary and let X be a feasible solution
that achieves 0.9k. Let R and T be the two sets from Lemma 2.4.5 and j ∈ R ∩ T . We
have for j:

0.85(1.25∥x− µ̃∥) ⩽ Xbj ,bj1.25∥x− µ̃∥ ⩽ ⟨Zj − x, vbj⟩ = ⟨Zj − µ̃, vbj⟩+ ⟨µ̃− x, vbj⟩
< Xbj ,bjr

∗ + ∥µ̃− x∥

where the first inequality follows from j ∈ R and the last from j ∈ T and Cauchy-Schwarz.
By re-arranging the above inequality, we get:

Xbj ,bj > (1.0625∥x− µ̃∥ − ∥x− µ̃∥)(r∗)−1 > 1,

which is a contradiction. Therefore, we get from the monotonicity of MT(x, r,Z) (see
Lemma A.2.2), that D∗ ⩽ 1.25∥x− µ̃∥, concluding the proof of the lemma.
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Gradient Estimation Step

Next, we analyze the Gradient Estimation step of the algorithm. We show that an approxi-
mate gradient can be found as long as x is not too close to the mean µ̃. The following lemma
shows that we obtain a non-trivial estimate of the gradient in Algorithm 7.

Lemma 2.4.8. Assume Assumption 2.4.2. Suppose x ∈ Rd satisfies ∥x− µ̃∥ ⩾ 20r∗ and let
∆ be the unit vector along µ̃− x. Algorithm 7 returns a g satisfying:

⟨g,∆⟩ ⩾ 1

15
.

Proof. In the running of Algorithm 7, let X denote the solution of MT(x,D∗,Z). We begin
by factorizing the solution X into UU⊤ with the rows of U denoted by u1, ub1 , . . . , ubk and
uv1 , . . . , uvd . We also define the matrix Uv=(uv1 , . . . , uvd) in R(k+d+1)×d. From the constraints
in MT, we have:

Xbi,bi = ∥ubi∥2 ⩽ 1 =⇒ ∥ubi∥ ⩽ 1,
d∑

j=1

Xvj ,vj =
d∑

j=1

∥uvj∥2 = ∥Uv∥2F = 1 =⇒ ∥Uv∥F = 1.

Let R and T denote the sets from Lemma 2.4.5 and j ∈ T ∩R. By noting that vbj = u⊤bjUv,
we have for j:

0.85D∗ ⩽ ⟨Zj − µ̃, vbj⟩+ ⟨µ̃− x, vbj⟩ ⩽ Xbj ,bjr
∗ + u⊤bjUv(µ̃− x),

where the first inequality follows from j ∈ R and the second from j ∈ T . We get by
rearranging the above equation and using our bound on D∗ from Lemma 2.4.7:

0.80∥µ̃− x∥ ⩽ 0.85D∗ ⩽ Xbj ,bjr
∗ + u⊤bjUv(µ̃− x). (2.3)

By rearranging Eq. (2.3), using Cauchy-Schwarz, ∥ubi∥ ⩽ 1 and the assumption on ∥x− µ̃∥:

∥Uv(µ̃− x)∥ ⩾ u⊤bjUv(µ̃− x) ⩾ 0.75∥µ̃− x∥.

We finally get that:
∥Uv∆∥ ⩾ 0.75.

Now, we have:

1 = ∥Uv∥2F = ∥UvP∆∥2F + ∥UvP⊥
∆∥2F ⩾ ∥UvP⊥

∆∥2F + (0.75)2 =⇒ ∥UvP⊥
∆∥F ⩽ 0.67.

Let y be the top singular vector of Xv. Note that Xv = U⊤
v Uv and y is also the top right

singular vector of Uv. We have that:

0.75 ⩽ ∥Uvy∥ ⩽ ∥UvP∆y∥+ ∥UvP⊥
∆y∥ ⩽ ∥P∆y∥+ ∥UvP⊥

∆∥F ⩽ ∥P∆y∥+ 0.67.
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Hence, we have:

|⟨y,∆⟩| ⩾ 1

15
.

Note that the algorithm returns either y or −y. Firstly, consider the case where ⟨y,∆⟩ > 0.
From Assumption 2.3.2 (implied by Assumption 2.4.2), we have for at least 0.95k points:

⟨Zi − µ̃, y⟩ ⩽ r∗.

Therefore, we have for these 0.95k points:

⟨Zi − x, y⟩ = ⟨Zi − µ̃, y⟩+ ⟨µ̃− x, y⟩ ⩾ −r∗ +
20r∗

15
> 0.

Therefore, when ⟨y,∆⟩ > 0, we return y which satisfies ⟨µ̃ − x, y⟩ > 0. This implies the
lemma in this case. The alternative where ⟨y,∆⟩ < 0 is similar with −y used instead of y.
This concludes the proof of the lemma.

Gradient Descent Step

Finally, we establish Theorem 2.4.4, the analogue of Theorem 2.3.3 for the relaxation. The
proof follows along the lines of that of Theorem 2.3.3 with some minor modifications.

Proof of Theorem 2.4.4. Let G = {x : ∥x− µ̃∥ ⩽ 20r∗}. We prove the theorem in two cases:

Case 1: None of the iterates xt fall into G. In this case, we have from Lemma 2.4.7:

0.95∥xt − µ̃∥ ⩽ Dt ⩽ 1.25∥xt − µ̃∥ (2.4)

and we get:

∥xt+1 − µ̃∥2 = ∥xt − µ̃∥2 − 2
Dt

20
⟨gt, µ̃− xt⟩+

D2
t

400
⩽ ∥xt − µ̃∥2 −

Dt∥µ̃− xt∥
150

+
D2

t

400

⩽ ∥xt − µ̃∥2 −Dt

(
∥µ̃− xt∥

150
− Dt

400

)
⩽

(
1− 1

500

)
∥xt − µ̃∥2.

where the first inequality follows from Lemma 2.4.8 and the last inequality follows by
substituting the lower bound on Dt in the first term and the upper bound on Dt in
the second term (Eq. (2.4)). An iterated application of the above inequality yields the
theorem in this case.

Case 2: One of the iterates xt falls into G. If the algorithm returns an element from
G, the theorem is trivially true. From Lemma 2.4.6, we have for the iterate xt ∈ G:

Dt ⩽ 25r∗.

Therefore, we have at the completion of the algorithm a value D∗ ⩽ 25r∗ together with
x∗ lying outside G. Thus, we have from Lemma 2.4.7:

0.95∥x∗ − µ̃∥ ⩽ 25r∗ =⇒ ∥x∗ − µ̃∥ ⩽ 30r∗.

The previous two cases conclude the proof of the theorem.
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Wrapping up - Proof of Theorem 2.4.1

To conclude the proof of Theorem 2.4.1, note that the runtime guarantees follow from the
analysis in Section 2.4. Therefore, the only remaining step is to verify that Assumption 2.4.2
holds with high probability. This follows from an application of Lemma A.2.1 to the random
vectors X1, . . . , Xn and Lemma 2.5.1 to the bucketed means Z. This concludes the proof of
Theorem 2.4.1.

2.5 Statistical Analysis

We show, here, that Assumption 2.4.2 holds with high probability. The main technical result
of this section is the following lemma. The proof of the lemma relies on standard results
from empirical process theory and is similar to previous analyses from [48, 30].

Lemma 2.5.1. There exist absolute constants C1, C2 such that the following holds. Let
δ ∈ (0, 1) and Y = (Y1, . . . , Yk) ∈ Rk×d be k i.i.d.random vectors with mean µ and covariance
Λ with k ⩾ C1 log(1/δ). Then, we have:

∀r ⩾ C2

(√
TrΛ

k
+
√
∥Λ∥

)
: max
X∈Sr

k∑
i=1

Xbi,bi ⩽
k

20
,

with probability at least 1− δ where Sr denotes the feasible solutions of MT(µ, r,Y ).

The proof is carried out in two stages:

1. In the first, we show that the random variable in the conclusion of the lemma satisfies
the bounded differences condition and hence, concentrates around its expectation.

2. Second, we bound the expectation of the variable and show that it is small.

We establish the bounded differences condition below.

Lemma 2.5.2. Let Y = (Y1, . . . , Yk) be any set of k vectors in Rd, r > 0, and x ∈ Rd.
Now, let Y ′ = (Y1, . . . , Y

′
i , . . . , Yk) be the same set of k vectors with the ith vector replaced

by Y ′
i ∈ Rd. If m and m′ are the optimal values of MT(x, r,Y ) and MT(x, r,Y ′), we have:

|m−m′| ⩽ 1

Proof. Firstly, assume that X is a feasible solution to MT(x, r,Y ). Now, define X ′ as:

X ′
i,j =

{
Xi,j if i, j ̸= bi

0 otherwise

That is X ′ is equal to X except with the row and column corresponding to bi being set to
0. We see that X ′ forms a feasible solution to MT(x, r,Y ′). Therefore, we have that:
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k∑
j=1

Xbj ,bj =
k∑

j=1,j ̸=i

X ′
bj ,bj

+Xbi,bi ⩽
k∑

j=1,j ̸=i

X ′
bj ,bj

+ 1 ⩽ m′ + 1

where the bound Xbi,bi ⩽ 1 follows from the fact that the 2 × 2 sub-matrix of X formed
by the rows and columns indexed by 1 and bi is positive semidefinite and the constraint
that Xbi,bi = X1,bi . Since the above series of equalities holds for all feasible solutions X of
MT(x, r,Y ), we get:

m ⩽ m′ + 1.

Through a similar argument, we also conclude that m′ ⩽ m + 1. Putting the above two
inequalities together, we get the desired conclusion.

For the next few lemmas, we are concerned with the case where x = µ and we verify
that the expectation is small. As a first step, we define the 2-to-1 norm of a matrix M .

Definition 2.5.3. The 2-to-1 norm of M ∈ Rn×d is defined as

∥M∥2→1 = max
∥v∥=1

σi∈{±1}

σ⊤Mv = max
∥v∥=1
∥Mv∥1

We consider the classical semidefinite programming relaxation of the 2-to-1 norm. To
start with, we will define a matrix X ∈ R(n+d+1)×(n+d+1) with the rows and columns indexed
by 1 and the elements σi and vj. The semidefinite programming relaxation is defined as
follows:

max
∑
i,j

Mi,jXσi,vj

X1,1 = 1

d∑
j=1

Xvj ,vj = 1

Xσi,σi
= 1

X ≽ 0 (TOR)

We now state a theorem of Nesterov as stated in [30]:

Theorem 2.5.4. ([53]) There is a constant K2→1 =
√
π/2 ⩽ 2 such that the optimal value,

m, of the semidefinite programming relaxation TOR satisfies:

m ⩽ K2→1∥M∥2→1.

In the next step, we will bound the expected 2-to-1 norm of Z.
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Lemma 2.5.5. Let Y = (Y1, . . . , Yn) ∈ Rn×d be a set of n i.i.d. random vectors such that
E[Yi] = 0 and E[YiY ⊤

i ] = Λ. Then, we have:

E∥Y ∥2→1 ⩽ 4
√
nTrΛ + n max

∥v∥=1
E[|⟨v, Y ⟩|].

Proof. Denoting by Y and Y ′
i random vectors that are independently and identically dis-

tributed as Yi and by σi independent Rademacher random variables, we have:

E[∥Y ∥2→1] = E

[
max
∥v∥=1

n∑
i=1

|⟨Yi, v⟩|

]
= E

[
max
∥v∥=1

n∑
i=1

|⟨Yi, v⟩|+ E|⟨v, Yi⟩| − E|⟨v, Yi⟩|

]

⩽ E

[
max
∥v∥=1

n∑
i=1

|⟨Yi, v⟩| − E|⟨Y ′
i , v⟩|

]
+ n max

∥v∥=1
E[|⟨v, Y ⟩|]

⩽ E

[
max
∥v∥=1

n∑
i=1

σi(|⟨Yi, v⟩| − |⟨Y ′
i , v⟩|)

]
+ n max

∥v∥=1
E [|⟨v, Y ⟩|] .

For the first term, we get via a standard symmetrization argument:

E

[
max
∥v∥=1

n∑
i=1

σi(|⟨Yi, v⟩| − |⟨Y ′
i , v⟩|)

]
⩽ E

[
max
∥v∥=1

n∑
i=1

σi|⟨Yi, v⟩|

]
+ E

[
max
∥v∥=1

n∑
i=1

−σi|⟨Y ′
i , v⟩|

]

= 2E

[
max
∥v∥=1

n∑
i=1

σi|⟨v, Yi⟩|

]
⩽ 4E

[
max
∥v∥=1

n∑
i=1

σi⟨v, Yi⟩

]

= 4E

[∥∥∥∥∥
n∑

i=1

σiYi

∥∥∥∥∥
]
⩽ 4

E

∥∥∥∥∥
n∑

i=1

σiYi

∥∥∥∥∥
2
1/2

= 4

(
E
∑

1⩽i,j⩽n

σiσj⟨Yi, Yj⟩

)1/2

= 4
√
nTrΛ,

where the second inequality follows from the Ledoux-Talagrand Contraction Theorem (Corol-
lary A.1.9 of Theorem A.1.8).

We now bound the expected value of MT(µ, r,Y ) by relating it to ∥Y ∥2→1.

Lemma 2.5.6. Let r > 0 and Y = (Y1, . . . , Yk) ∈ Rk×d be k i.i.d. random vectors with mean
µ and covariance Λ. Denoting by S the feasible solutions for MT(µ, r,Y ), we have:

Emax
x∈S

k∑
i=1

X1,bi ⩽
1

r

(
5
√
kTrΛ + k max

∥v∥=1
E[|⟨v, Y ⟩|]

)
.
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Proof. Firstly, let X be a feasible solution for MT(µ, r,Y ). We construct a new, symmetric
matrix W which is indexed by σi and vj as opposed to bi and vj for X:

Wσi,σj
= 4Xbi,bj − 2X1,bi − 2X1,bj + 1, Wvi,vj = Xvi,vj , W1,1 = 1,

W1,vi = X1,vi , W1,σi
= 2X1,bi − 1, Wvi,σj

= 2Xvi,bj −X1,vi .

We prove that W is a feasible solution to the SDP relaxation TOR of Y − µ. We see that:

Wσi,σi
= 1 and

d∑
i=1

Wvi,vi = 1.

Then, we simply need to verify that W is PSD. Let w ∈ Rk+d+1 indexed by 1, σi and vj. We
construct from w a new vector w′, indexed by 1, bi and vj and defined as follows:

w′
1 = w1 −

k∑
i=1

wσi
, w′

bi
= 2wσi

, w′
vj
= wvj .

With w′ defined as above, we have the following equality:

w⊤Ww = (w′)⊤Xw′ ⩾ 0.

Since the above condition holds for all w ∈ Rk+d+1, we get that W ≽ 0. Therefore, we
conclude that W is a feasible solution to the SDP relaxation TOR of Y − µ.

We bound the expected value of MT(µ, r,Y ) as follows, denoting by vbi the vector
(Xbi,v1 , . . . , Xbi,vd) and by v the vector (X1,v1 , . . . , X1,vd):

Emax
X∈S

k∑
i=1

X1,bi = Emax
X∈S

k∑
i=1

Xbi,bi ⩽
1

r
Emax

X∈S

k∑
i=1

⟨vbi , Yi − µ⟩

=
1

2r
Emax

X∈S

[ k∑
i=1

⟨2vbi − v, Yi − µ⟩+
k∑

i=1

⟨v, Yi − µ⟩
]

⩽
1

2r

(
Emax

X∈S

k∑
i=1

⟨2vbi − v, Yi − µ⟩+ Emax
X∈S

k∑
i=1

⟨v, Yi − µ⟩

)
.

Noting that X is PSD and specifically, the 2× 2 submatrix indexed by vi and bj, we have:

X2
vi,bj

⩽ Xvi,viXbj ,bj ⩽ Xvi,vi =⇒ ∥vbj∥2 =
d∑

i=1

X2
vi,bj

⩽
d∑

i=1

Xvi,vi = 1.

Therefore, we get for the second term in the above equation:

Emax
X∈S

k∑
i=1

⟨v, Yi − µ⟩ ⩽ E

∥∥∥∥∥
k∑

i=1

Yi − µ

∥∥∥∥∥ ⩽

E

∥∥∥∥∥
k∑

i=1

Yi − µ

∥∥∥∥∥
2
1/2

= (kTrΛ)1/2.
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We bound the first term using the following series of inequalities where W is constructed
from X as described above:

Emax
X∈S

k∑
i=1

⟨2vbi − v, Yi − µ⟩ = Emax
X∈S

k∑
i=1

d∑
j=1

(Yi − µ)jWσi,vj

= Emax
X∈S

k∑
i=1

d∑
j=1

(Yi,j − µj)Wσi,vj ⩽ 2E∥Y − 1µ⊤∥2→1,

where the inequality follows from Theorem 2.5.4. With Lemma 2.5.5, the previous two
bounds conclude the proof of the lemma.

We are now able to prove Lemma 2.5.1.

Proof of Lemma 2.5.1. From Lemma 2.5.6 and the fact that:

max
∥v∥=1

E [|⟨v, Y ⟩|] ⩽ max
∥v∥=1

√
E [⟨v, Y ⟩2] ⩽

√
∥Λ∥

for a mean-zero random vector Y with covariance Λ, we get:

Emax
X∈S

k∑
i=1

Xbi,bi ⩽
k

40
.

Now from Lemma 2.5.2 and an application of the bounded difference inequality (Theo-
rem A.1.2), with probability at least 1− δ:

max
X∈S

k∑
i=1

Xbi,bi ⩽
k

20

concluding the proof of the lemma.
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Chapter 3

Statistical Frontiers

In the previous chapter, we considered the problem of heavy-tailed mean estimation in the
setting of bounded variance. We described a simple general algorithmic framework and
instantiated it for mean estimation to construct an efficient algorithm which obtains the
optimal sub-Gaussian rate. That is, the rate that one would have obtained if one had access
to Gaussian data. Strikingly, no penalty is paid for the lack of more stringent requirements
on the distribution. For example, there are no restrictions on the higher-order moments of
the distribution which allow for strong concentration properties for simple estimators like the
empirical mean which was saw is substantially sub-optimal both in terms of its dependence
on the failure probability, δ, and in its multiplicative interaction with the dimension.

In this chapter, we will investigate the impact of noise on the best achievable statistical
performance of an estimator in settings where even the variance of the distribution doesn’t
exist. These scenarios are ubiquitous in important application domains such as quantitative
finance and operations research. Here, as before, the empirical mean is brittle to noise.
However, its vulnerability is further exacerbated in these heavier-tailed settings. While
the empirical mean is far from optimal, we will see that the best achievable rate for any
estimator degrades sharply in this setting with the sub-Gaussian rate no longer possible. We
will characterize the effect of this noise by establishing statistical lower bounds and design
an efficient algorithm whose performance matches the lower bound. In fact, we will largely
rely on the algorithmic framework developed in Chapter 2.

Formally, we will assume that P satisfies for some known α ∈ [0, 1]:

∀∥v∥ = 1 : E
X∼P

[
|⟨v,X − µ⟩|1+α

]
⩽ 1. (MC)

Note that when α = 0, this captures distributions for which the largest moment that exists is
the population mean while α = 1 corresponds to the finite variance setting. For intermediate
values of α, this condition allows for smooth interpolation between these two extremes.
Our main algorithmic result is an estimator whose guarantees are detailed in the following
theorem.
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Theorem 3.0.1. There exist absolute constants C, c such that the following holds. Let
X = X1, . . . , Xn be iid random vectors with mean µ, satisfying the weak moment assumption
MC for some known α ∈ [0, 1]. There is a polynomial-time algorithm which, when given
inputs X and a target confidence δ with log(1/δ) < cn, returns a point x∗ satisfying:

∥x∗ − µ∥ ⩽ C

(√
d

n
+

(
d

n

) α
1+α

+

(
log(1/δ)

n

) α
1+α

)

with probability at least 1− δ.

Complementary to the upper bound, we present the following matching lower bound
which shows that the performance of the estimator is optimal.

Theorem 3.0.2. There exist an absolute constant C such that the following holds. Let
n, d > C and δ ∈

(
e−

n
4 , 1

4

)
. Then, there exists a set of distributions over Rd, F such that

each D ∈ F satisfies MC and the following holds for any estimator µ̂:

PD∈F

{
∥µ̂(X)− µ(D)∥ ⩾ 1

24
·max

((
d

n

) α
1+α

,

√
d

n
,

(
log(2/δ)

n

) α
1+α

)}
⩾ δ,

where X = X1, . . . , Xn are generated iid from D and µ(D) denotes the mean of D.

Together, Theorems 3.0.1 and 3.0.2 have the following implications:

• In the setting where δ is a constant, our upper and lower bounds simplify to O(
√
d/n+

(d/n)α/(1+α)). Interestingly, Theorem 3.0.1 and Theorem 3.0.2 reveal the existence of a
phase transition in the estimation rate when n ≍ d—the estimation rate is dominated
by
√
d/n when n ≲ d and (d/n)α/(1+α) when n ≳ d where performance is degraded by

the weak moment assumption.

• While it is established in [17] that it is impossible to obtain subgaussian rates in
this setting even in one dimension, our results reveal a decoupling between the terms
depending on the failure probability and the dimension that parallels the behavior
observed in the finite-variance setting (where α = 1).

• Finally, our results also extend to the more general problem of mean estimation under
adversarial corruption. We recover the mean up to an error of O(ηα/(1+α)) which is
information-theoretically optimal (Theorem A.3.1). Furthermore, our sample complex-
ity of (d/η) from Theorem 3.0.1 is optimal as a consequence of Theorem 3.0.2.

Theorem 3.0.1 is established with a simple two-stage estimation procedure. In the first
step, X is truncated to discard samples that are too far from the true mean by using a coarse
initial estimate as a proxy. The second step utilizes the remaining samples in the testing-
to-estimation framework of Chapter 2 to construct an efficient descent based algorithm.
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The main technical challenge is in verifying the assumptions needed by the gradient descent
procedure (Assumption 2.4.2 and Theorem 2.4.4) in this heavier tailed scenario. Concretely,
the analysis in Chapter 2 makes critical use of the decomposition of the variance of sums
of independent random variables which does not hold here. This allows tight control of the
second moments of

∑m
i=1Xi and ∥X − µ∥, crucial to the previous analysis. Despite the lack

of such decompositions for weak moments, we establish tight control over the appropriate
quantities allowing us to establish our optimal recovery guarantees.

Similarly, the presence of weak moments also complicates the task of establishing a
matching lower bound with tight dependence on the dimension d. The main difficulty is in
proving the optimality of the dimension-dependent term, (d/n)α/(1+α). For the specific case
where α = 1, the lower bound may be proved within the estimation-to-testing framework for
proving minimax rates (see, for example, [62, Chapter 15]) by utilizing a distribution over
a collection of isotropic Gaussian distributions with well-separated means. However, this
approach fails for the weak-moment mean estimation problem; indeed, hypercontractivity
properties of Gaussian distributions ensure a bounded variance leading to a lower bound
that scales as 1/

√
n as opposed to the slower rate n−α/(1+α). We, instead, use a collec-

tion of carefully chosen distributions with discrete supports whose means are separated by
O((d/n)α/(1+α)). Further challenges arise at this point—if we follow the standard path of
bounding the complexity of the testing problem in terms of pairwise f -divergences between
distributions in the hypothesis set, we obtain vacuous bounds. We instead directly analyze
the posterior distribution obtained from the framework and show that random independent
samples from the posterior tend to be well separated, yielding our tight lower bound.

The rest of the chapter is organized as follows. We describe our estimator which is
essentially the one discussed in Chapter 2 with minor modifications and prove Theorem 3.0.1
in Section 3.1. The main technical contribution, here, is showing that the appropriate
statistical concentration results still hold even in this weak moment setting. We then present
our statistical lower bounds, Theorem 3.0.2, proving the optimality of Theorem 3.0.1 in
Section 3.2.

3.1 An Efficient Estimator

In this section, we prove Theorem 3.0.1 by verifying the conditions required for the success
of the gradient-descent approach from Chapter 2 (Assumption 2.4.2 and Theorem 2.4.4). As
alluded to previously, this is made technically challenging due to the lack of decomposition
properties enjoyed by the variance. The weaker moment conditions also require modifications
to the algorithm itself which we describe subsequently.

Algorithm

Our estimator is defined in Algorithms 8 to 10. Note that, in addition to the bucketing and
gradient descent steps, we have an additional pre-processing step which prunes data points
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provably far from the true mean (Algorithm 10) before the bucketing step. This is required
to control the variance of the bucketed means which allows establishing Assumption 2.4.2
with the right parameters. At the same time, the truncation must not be too aggressive to
significantly distort the mean of the data points used to construct the bucketed means.

Algorithm 8 Mean Estimation

1: Input: Data Points X ∈ Rn×d, Target Confidence δ
2: x† ← Initial Mean Estimate({X1, . . . , Xn/2}) (Algorithm 5)
3: Z ← Produce Bucket Estimates(

{
Xn/2+1, . . . , Xn

}
, x†, δ)

4: T ← C log(n)
5: x∗ = Gradient Descent(Z, x†, T ) (Algorithm 2)
6: Return: x∗

Algorithm 9 Produce Bucket Estimates

1: Input: Data Points X ∈ Rn×d, Mean Estimate x†, Target Confidence δ
2: Y ← Prune Data(X, x†)
3: m← |Y |
4: k ← C log(1/δ)
5: Split data points into k buckets with bucket Bi = {Y(i−1)m

k
+1, . . . , Yim

k
}

6: Zi ← Mean(Bi) ∀ i ∈ [k] and Z ← (Z1, . . . , Zk)
7: Return: Z

Algorithm 10 Prune Data

1: Input: Set of data points X = {Xi}ni=1, Mean Estimate x†

2: τ ← Cmax
(
n

1
1+αd−

(1−α)
2(1+α) ,

√
d
)

3: C ← {Xi : ∥Xi − x†∥ ⩽ τ}
4: Return: C

Analysis

Here, we formally establish Theorem 3.0.1. We will do so by verifying the conditions of
Theorem 2.4.4 (Assumption 2.4.2) with the correct parameters for the dataset returned by
Algorithm 9. Throughout, we will assume that the estimate x† used in Algorithm 8 satisfies
∥x† − µ∥ ⩽ 60

√
d from Lemma A.2.1. We will analyze the algorithm in two steps:

1. First, we analyze the truncation step (Algorithm 10) and establish bounds on the vari-
ances of the points returned and the distortion of the means incurred by the truncation.



CHAPTER 3. STATISTICAL FRONTIERS 35

2. Secondly, we analyze the bucketing step (Algorithm 9) where we bound the values
of the mean testing problem MT similarly to Lemma 2.5.1. From Lemmas 2.5.5
and 2.5.6, this requires control of the (trace of the) variance of the points returned by
the truncation step and also the directional moments of the bucketed means.

We now analyze the truncation step.

Analyzing Algorithm 10

We will need the following key lemma which bounds the (1 + α)th moment of the length of
a random vector satisfying MC.

Lemma 3.1.1. Let X be a zero-mean random vector satisfying MC for α ∈ [0, 1]. We have:

E[∥X∥1+α] ⩽
π

2
· d

1+α
2 .

Proof. The argument hinges on a Gaussian projection trick which introduces g ∼ N (0, I) to
rewrite the norm. From the concavity of f(x) = |x|(1+α)/2 when x ⩾ 0, we have:

E[∥X∥1+α] = EX

[(√
π

2
Eg|⟨X, g⟩|

)1+α
]
⩽
π

2
EXEg

[
|⟨X, g⟩|1+α

]
=
π

2
Eg∥g∥1+αEX

[∣∣∣∣〈X, g

∥g∥

〉∣∣∣∣1+α
]
⩽
π

2
Eg[∥g∥1+α] ⩽

π

2
· d

1+α
2 .

Our next lemma bounds the deviation in the means and the blow up in the weak moments
when the distribution is truncated to a general set (and not just an Euclidean ball as in
Algorithm 10). Here, we cannot establish variance control as the set could potentially be
unbounded. We will bound the variance in a later result.

Lemma 3.1.2. Let ν be a mean-zero distribution over Rd satisfying MC for α ∈ [0, 1].
Furthermore, let A ⊂ Rd be such that ν(A) = δ ⩽ 1

2
. Let νS() be the conditional distribution

of ν conditioned on the set S. Then we have for Y ∼ ν(Ac):

Claim 1: ∥µ(νAc)∥ ⩽ 2δ
α

1+α , Claim 2: ∀∥v∥ = 1, E
[
|⟨v, Y − µ(νAc)⟩|1+α

]
⩽ 20.

Proof. Letting pA = P {X ∈ A}, we have ν = pAνA + pAcνAc . Then,

∥µ(νAc)∥ = max
∥v∥=1
⟨v, µ(νAc)⟩.

So for any ∥v∥ = 1:

⟨v, µ(νAc)⟩ = ⟨v, µ(νAc)− pAµ(νA)− pAcµ(νAc)⟩
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= ⟨v, pAµ(νAc)− pAµ(νA)⟩ = pA⟨v, µ(νAc)− µ(νA)⟩.

Since µ(ν) = 0, we have pAµ(νA) = −pAcµ(νAc). We now get:

pA⟨v, µ(νA)− µ(νAc)⟩ = pA

〈
v, µ(νA) +

pA
pAc

µ(νA)

〉
=

(
1 +

pA
pAc

)
⟨v, pAµ(νA)⟩.

Finally,

⟨v, pAµ(νA)⟩ = EX∼µ [1 {X ∈ A} ⟨X, v⟩]

⩽
(
E
[
(1 {X ∈ A})

1+α
α

]) α
1+α ·

(
E
[
|⟨X, v⟩|1+α

]) 1
1+α = p

α
1+α

A

where the inequality follows by Hölder’s inequality. We get the first claim as:

max
∥v∥=1
⟨v, µ(νAc)⟩ = max

∥v∥=1

(
1 +

pA
pAc

)
⟨v, pAµ(νAc)⟩ ⩽ max

∥v∥=1

(
1 +

pA
pAc

)
p

α
1+α

A ⩽ 2δ
α

1+α ,

where the final inequality follows from the fact that pAc ⩾ pA.
For the second claim, let Y ∼ νAc and µY = E[Y ]. We decompose the term as:

E
[
|⟨Y − µY , v⟩|1+α] ⩽ 21+α · E

[
|⟨µY , v⟩|1+α + |⟨Y, v⟩|1+α] .

For the second term, we have with Z ∼ νA:

E
[
|⟨Y, v⟩|1+α

]
= p−1

Ac

(
E
[
|⟨X, v⟩|1+α

]
− pAE

[
|⟨Z, v⟩|1+α

])
⩽ 2.

Therefore, we finally have:

E
[
|⟨Y − µY , v⟩|1+α

]
⩽ 8 + 21+α · 21+α · δα ⩽ 16,

which proves the second claim.

Next, a simple lemma used to bound the variance of points returned by Algorithm 10.

Lemma 3.1.3. Let X ∼ ν be a mean-zero random vector satisfying the weak-moment con-
dition for some 0 ⩽ α ⩽ 1. Then, we have for any τ > 0:

E
[
∥X∥2 · 1 {∥X∥ ⩽ τ}

]
⩽
π

2
d

1+α
2 τ 1−α.

Proof. The proof of the lemma proceeds as follows:

E
[
∥X∥2 · 1 {∥X∥ ⩽ τ}

]
⩽ τ 1−αE

[
∥X∥1+α1 {∥X∥ ⩽ τ}

]
⩽ τ 1−αE

[
∥X∥1+α

]
⩽
π

2
d

1+α
2 τ 1−α,

where the last inequality follows from Lemma 3.1.1.

Finally, we analyze Algorithm 10 in the following lemma.
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Lemma 3.1.4. There exist absolute constants C1, C2, c > 0 such that the following holds.
Let X = {Xi}ni=1 be iid zero-mean random vectors distributed according to ν satisfying MC
for α ∈ [0, 1]. Furthermore, let x† satisfy ∥x†∥ ⩽ 60

√
d. Then, the output Y of Algorithm 10

with input X and x† are iid with mean µ̃ and covariance Σ̃. Furthermore, they satisfy:

Claim 1: P
{
|Y | ⩾ 3n

4

}
⩾ 1− e−cn, Claim 2: ∥µ̃∥ ⩽ 2

(
d

n

) α
1+α

Claim 3: ∀∥v∥ = 1 : E
[
|⟨Yi − µ̃, v⟩|1+α] ⩽ C1, Claim 4: Tr Σ̃ ⩽ C2max

(
n

1−α
1+αd

2α
(1+α) , d

)
.

Proof. First, consider the set A = {x : ∥x− x†∥ ⩽ τ} as defined in Algorithm 10. Note that
{x : ∥x∥ ⩽ 0.75τ} ⊆ A. We have by Markov’s inequality and Lemma 3.1.1:

P {Xi ∈ A} ⩾ 1−min

(
d

n
,
1

25

)
.

By Hoeffding’s inequality (Theorem A.1.1), the definition of Yi, we have with probability at
least 1− e−cn:

|Y | ⩾ 3n

4
,

proving the first claim of the lemma. For the next two claims, note that each of the Yi
are iid according to νA. Again, we get from the bound on P {Xi ∈ A} by an application of
Lemma 3.1.2, the next two claims of the lemma:

Claim 2: ∥µ̃∥ ⩽ 2

(
d

n

) α
1+α

, Claim 3: ∀∥v∥ = 1 : E
[
|⟨Yi − µ̃, v⟩|1+α] ⩽ 20.

For the final claim, note that as ∥x†∥ ⩽ 60
√
d, we have A ⊆ B := {x : ∥x∥ ⩽ 1.25τ}.

Therefore, we have by the property of the mean that:

Tr Σ̃ = E
[
∥Yi − µ̃∥2

]
⩽ E

[
∥Yi∥2

]
=

1

ν(A)
E
[
∥Xj∥21{Xj ∈ A}

]
⩽ 2E

[
∥Xj∥21{Xj ∈ B}

]
⩽ Cmax

(
n

1−α
1+αd

2α
(1+α) , d

)
,

where the final inequality follows from Lemma 3.1.3 and the definition of τ .

Now, we move onto the bucketing step (Algorithm 9).

Analyzing Algorithm 9

Here, we require the following key technical result bounding the weak moment of sums
of independent random variables. Note that weak moments do not satisfy the variance
decomposition property where the variance of a sum of independent random variables is the
sum of their variances. However, the next lemma shows that an approximate version of this
property continues to hold.
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Lemma 3.1.5. Let X1, . . . , Xn be n mean-zero i.i.d. random variables satisfying for some
α ∈ [0, 1]:

E[|Xi|1+α] ⩽ 1. (3.1)

Then, we have:

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
1+α
 ⩽ 2n. (3.2)

Proof. We first need the following claim.

Claim 3.1.6. Let g(x) = sgn(x)|x|α for some 0 < α ⩽ 1. Then we have for any h ⩾ 0:

max
x

g(x+ h)− g(x) = 2g

(
h

2

)
.

Proof. Consider the function l(x) = g(x+h)−g(x). We see that l is differentiable everywhere
except at x = 0 and x = −h. As long as x ̸= 0,−h, we have:

l′(x) = g′(x+ h)− g′(x) = α(|x+ h|α−1 − |x|α−1)

Since, we have α ⩽ 1, x = −h
2
is a local maxima for l(x). Furthermore, note that l′(x) ⩾ 0

for x ∈ (−∞,−h
2
) \ {−h} and l′(x) ⩽ 0 for x ∈ (−h

2
,∞) \ {0}. Therefore, we get from the

continuity of l that x = −h
2
is a global maxima for l(x). Substituting yields the claim.

The case where α = 0 is trivial. When α > 0, we start by defining:

Si =
i∑

j=1

Xj, S0 = 0, f(x) = |x|1+α, f ′(x) = (1 + α) sgn(x)|x|α.

Therefore, we have from an application of Claim 3.1.6:

E [f(Sn)] = E

[
n∑

i=1

f(Si)− f(Si−1)

]
=

n∑
i=1

E [f(Si)− f(Si−1)]

=
n∑

i=1

E
[∫ Si

Si−1

f ′(x)dx

]
=

n∑
i=1

E
[
Xif

′(Si−1) +

∫ Si

Si−1

f ′(x)− f ′(Si−1)dx

]

=
n∑

i=1

E
[∫ Si

Si−1

f ′(x)− f ′(Si−1)dx

]
⩽ 2

n∑
i=1

E

[∫ |Xi|

0

f ′
(
t

2

)
dt

]

= 2
n∑

i=1

E

[∫ |Xi|/2

0

2f ′ (s) ds

]
= 4

n∑
i=1

E
[
f

(
|Xi|
2

)]
⩽ 2n.
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We are now finally, ready to analyze Algorithm 9 in the following lemma. The main
result of this section is the following high probability guarantee on the set of points output
by Algorithm 9.

Lemma 3.1.7. There exist absolute constants c, C > 0 such that the following hold. Let
X = {Xi}ni=1 be iid random vectors with mean µ, satisfying MC for α ∈ [0, 1] and δ ∈ (0, 1)
be such that log(1/δ) < cn. Furthermore, suppose that x† satisfies ∥x† − µ∥ ⩽ 60

√
d. Let

Z = {Zi}ki=1 denote the set of vectors output by Algorithm 9 with inputs X, x† and δ. Then,
there exists a point µ̃ such that for all r satisfying:

r ⩾ C

(√
d

n
+

(
d

n

) α
1+α

+

(
log(1/δ)

n

) α
1+α

)
,

we have

∥µ̃− µ∥ ⩽ 2

(
d

n

) α
1+α

and max
X∈S

k∑
i=1

Xbi,bi ⩽
k

20
,

with probability at least 1− δ/2 where S denotes the set of feasible solutions of MT(µ̃, r,Z).

Proof. Note that it is sufficient to prove the lemma for µ = 0. We may now assume each of
the Yi are iid random variables satisfying the conclusions of Lemma 3.1.4. Therefore, Zi are
iid random vectors with mean µ̃ and covariance Σ̃ satisfying:

∥µ̃∥ ⩽ 2

(
d

n

) α
1+α

Tr Σ̃ ⩽ C ′

(
kmax

{
d

n
,

(
d

n

) 2α
1+α

})
.

Furthermore, we have by an application of Lemma 3.1.5 that:

∀∥v∥ = 1 : E
[
|⟨v, Zi − µ̃⟩|

α
1+α

]
⩽ C†

(
k

n

)α

.

From Lemma 2.5.6 and the fact that:

max
∥v∥=1

E [|⟨v, Zi − µ̃⟩|] ⩽ max
∥v∥=1

(
E
[
⟨v, Zi − µ̃⟩1+α

])1+α
⩽ C†

(
k

n

) α
1+α

,

we get:

Emax
X∈S

k∑
i=1

Xbi,bi ⩽
k

40
.

Now from Lemma 2.5.2 and an application of the bounded difference inequality (Theo-
rem A.1.2), with probability at least 1− δ:

max
X∈S

k∑
i=1

Xbi,bi ⩽
k

20

concluding the proof of the lemma.
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Wrapping up - Proof of Theorem 3.0.1

To conclude the proof of Theorem 3.0.1, we union bound over the events in Lemmas 3.1.7
and A.2.1. The theorem now follows from Theorem 2.4.4 as Assumption 2.4.2 is satisfied for
µ̃ and r from Lemma 3.1.7 and the bound on ∥µ̃− µ∥.

3.2 A Matching Lower Bound

We will now show that the performance guarantees of Theorem 3.0.1 are tight. As discussed,
the proof of our lower bound bypasses standard information theoretic techniques such as
Fano’s inequality and we instead perform an explicit analysis of the posterior distribution in
the classic Bayesian estimation-to-testing framework for proving minimax lower bounds. We
will first prove the bound in the easier bounded covariance setting (α = 1) where Gaussians
witness the lower bound before considering the general setting. We require both bounds as
for the bounded covariance setting, the lower bound holds for any n, d while for the general
setting, they are specific to n ≳ d.

The Bounded Covariance Setting

Here, MC relaxes to the following:

E
X∼P

[
(X − µ)(X − µ)⊤

]
≼ I.

And we will now consider datasets generated according to the following process:

1. First, draw µ ∼ N (0, I).

2. Then, draw X = X1, . . . , Xn iid from N (µ, I).

Lemma 3.2.1. Let n, d > 50 and µ and X be generated according to the above process.
Then, we have for any estimator, µ̂(·):

Prµ,X

{
∥µ̂(X)− µ∥ ⩾ 1

2

√
d

n

}
⩾

1

2
.

Proof. We first consider the posterior density of µ given X. First define:

X = n−1

n∑
i=1

Xi X̃ =
n

n+ 1
X.

We now have the posterior density of µ, f(· |X):

f(µ |X) ∝ exp

{
−∥µ∥

2

2

}
exp

{
−

n∑
i=1

∥Xi − µ∥2

2

}
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∝ exp

{
−(n+ 1)∥µ− X̃∥2

2

}
.

Therefore, the posterior distribution of µ is N (X̃, I/(n + 1)); i.e. a Gaussian distribution

with mean X̃ and variance I/(n+ 1). Now, for any estimator µ̂, we get for any t > 0:

Pr {∥µ̂(X)− µ∥ ⩾ t |X} ⩾ Pr
{
∥P⊥

∆(µ̂(X)− µ)∥ ⩾ t |X
}

where ∆ is the unit vector along µ̂(X)− X̃. And noting that ∥P⊥
∆(µ̂(X)−µ)∥ is distributed

according to ∥g∥ where g is a (d− 1)-dimensional Gaussian random vector with mean 0 and
variance I/(n + 1). And hence, we get from the above inequality, our bounds on n, d and
the concentration of lengths of Gaussian random vectors (Lemma A.1.5):

Pr

{
∥µ̂(X)− µ∥ ⩾ 1

2

√
d

n

∣∣∣∣∣X
}

⩾ Pr

{
∥g∥ ⩾ 1

2

√
d

n

∣∣∣∣∣X
}

⩾
1

2
.

Averaging the above equation with respect to X, we get:

Pr

{
∥µ̂(X)− µ∥ ⩾ 1

2

√
d

n

}
⩾

1

2

concluding the proof.

The General Setting

Here, we prove a lower bound for the general α ∈ [0, 1] setting. As opposed to the bounded
covariance setting where Gaussians were used in the lower bound constructions, both the
class of distributions and the analysis of the posterior is made more complex.

For a given dimension d, and sample size n ⩾ 8d, we will consider a family of distributions
parameterized by size d/2 subsets of [d]. That is, we will consider a family of distributions
F = {DS : S ⊂ [d] and |S| = d/2}. Now, for each particular distribution DS, we have
X ∼ DS as follows:

X =

{
0, with probability 1− d

8n

n
1

1+α · d−
(1−α)
2(1+α) · ei, for i ∈ S with probability 1

4n
.

Defining, µS = µ(DS), we will first show that each DS satisfies MC.

Lemma 3.2.2. Let X ∼ DS for some S ⊂ [d] such that |S| = d/2. Then, X satisfies:

∀v : ∥v∥ = 1 : E
[
|⟨v,X − µS⟩|1+α

]
⩽ 1.
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Proof. We first note that:

(µS)i =

0, for i /∈ S
n
− α

1+α ·d
− (1−α)

2(1+α)

4
, otherwise.

Let v satisfy ∥v∥ = 1. We have by the convexity of f(x) = |x|1+α and Jensen’s inequality:

E
[
|⟨v,X − µS⟩|1+α

]
⩽ 2E

[
|⟨v,X⟩|1+α + |⟨v, µS⟩|1+α

]
⩽ 4E

[
|⟨v,X⟩|1+α

]
.

We now have by Hölder’s inequality:

E
[
|⟨v,X⟩|1+α

]
=
∑
i∈S

1

4n
|vi|1+α · nd−

1−α
2 =

1

4

∑
i∈S

|vi|1+αd−
1−α
2

⩽
1

4

(∑
i∈S

v2i

) 1+α
2
(∑

i∈S

d−1

) 1−α
2

⩽
1

4
,

concluding the proof of the lemma.

We now prove a lemma that establishes the lower bound when n ≳ d in the constant
probability regime. We use the following generative process for the data X = X1, . . . , Xn:

1. Randomly pick a subset S uniformly from the set {T ⊂ [d] : |T | = d/2}.

2. Generate X1, . . . , Xn iid from the distribution, DS.

Lemma 3.2.3. There exist absolute constants C1, C2 > 0 such that the following holds. Let
d ⩾ C1, n ⩾ C2d and (S,X) be generated according to the above process. We have, for any
estimator µ̂,

PrS,X

{
∥µ̂(X)− µS∥ ⩾

1

24
·
(
d

n

) α
1+α

}
⩾

1

4
.

Proof. We first define the random variable Y :=
∑n

i=1 1 {Xi ̸= 0}. From the definition of
the distributions DS we have:

E [Y ] =
d

8

Therefore, we have that Y ⩽ d/4 with probability at least 1/2, by Markov’s inequality. We
now define the following random set: T := {i ∈ [d] : ∃j ∈ [n] such that (Xj)i ̸= 0}. We see
from the definition of T and Y that |T | ⩽ Y . We have with probability at least 1/2 that
|T | ⩽ d/4. Let X be an outcome for which |T | = k ⩽ d/4. We have by the symmetry of the
distribution that:

Pr {S|X} =

{
1

( d−k
d/2−k)

, if T ⊂ S and |S| = d/2

0, otherwise.
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For given X, define Zi = 1 {i ∈ S} for i /∈ T (For i ∈ T , Zi is 1). We have for Zi and Zj for
distinct i, j /∈ T :

E [Zi|X] = E [Zj|X] =
d− 2k

2(d− k)
.

Furthermore, we have:

Cov(Zi, Zj|X) =
(d− 2k)(d− 2k − 2)(d− k)− (d− 2k)2(d− k − 1)

4(d− k)2(d− k − 1)

=
(d− 2k)((d− 2k)(d− k)− 2(d− k)− (d− 2k)(d− k) + (d− 2k))

4(d− k)2(d− k − 1)

=
−d(d− 2k)

4(d− k)2(d− k − 1)
< 0.

Now, consider some R ⊂ [d] such that |R| = d/2 and T ⊂ R. Let Q = R \ T . For Q, we
have |Q| = d/2− k. We have for S:

|S ∩R| = k +
∑
i∈Q

Zi.

This means that:

Var (|S ∩R| |X) = Var

(∑
i∈Q

Zi |X

)
⩽
∑
i∈Q

(
d− 2k

2(d− k)

)2

⩽
|Q|
4

⩽
d

8
.

Furthermore, we have that:

E (|S ∩R| |X) = k +

(
d

2
− k
)
· (d− 2k)

2(d− k)
⩽
d

4
+
d

4
· d

4(3d/4)
=
d

4
+

d

12
=
d

3
.

Therefore, we have by Chebyshev’s inequality that:

Pr

{
|S ∩R| ⩾ 5d

12

}
⩽

1

2
.

Note that for any S1, S2 such that |Si| = d
2
and |S1 ∩ S2| ⩽ 5d

12
, we have:

∥µS1 − µS2∥ ⩾

√√√√2 · d
12
·

(
n− α

1+α · d−
1−α

2(1+α)

4

)2

⩾
1

12
·
(
d

n

) α
1+α

.

Consider any estimator µ̂. Suppose there exists R such that T ⊂ R, |R| = d/2 and ∥µ̂(X)−
µR∥ ⩽ 1

24
·
(
d
n

) α
1+α . Then, we have by the triangle inequality:

Pr

{
∥µ̂(X)− µS∥ ⩾

1

24
·
(
d

n

) α
1+α

∣∣∣∣∣X
}

⩾
1

2
.
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In the alternate case where ∥µ̂(X)− µR∥ ⩾ 1
24
·
(
d
n

) α
1+α for all such R, the same conclusion

holds trivially. From these two cases, we obtain:

Pr

{
∥µ̂(X)− µS∥ ⩾

1

24
·
(
d

n

) α
1+α

∣∣∣∣∣X
}

⩾
1

2
.

Since such an X occurs with probability at least 1/2, we arrive at our result:

Pr

{
∥µ̂(X)− µS∥ ⩾

1

24
·
(
d

n

) α
1+α

}
⩾

1

4
.

As part of our proof, we use the following one-dimensional lower bound from [17].

Theorem 3.2.4. For any n, δ ∈
(
2−

n
4 , 1

2

)
, there exists a set of distributions G such that any

D ∈ G satisfies the weak-moment condition for some α > 0 and for any estimator µ̂:

PrD∈G

{
|µ̂(X)− µ(D)| ⩾

(
log(2/δ)

n

) α
1+α

}
⩾ δ

where X = X1, . . . , Xn are drawn iid from D.

Finally, we have the proof of Theorem 3.0.2:

Proof of Theorem 3.0.2. When n > 8d, the bound follows from Lemma 3.2.3 and Theo-
rem 3.2.4. When n ⩽ 8d, the bound follows from the bounded-covariance (α = 1) setting in
Lemma 3.2.1.
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Chapter 4

Necessary Compromises

In this chapter, we study the statistical performance of stable estimators and derive informa-
tion theoretic lower bounds on their performance. In Chapters 2 and 3, we constructed an
efficient algorithmic framework for robust estimation and observed that the statistical perfor-
mance of these estimators is optimal even in extremely noisy settings where the sub-Gassian
rate is no longer possible. However, these estimators lack the natural affine-equivariant prop-
erties of previous estimators such as the Tukey Median [61] and the Stahel-Donoho estimator
[57, 23]. On the other hand, these classical estimators lack the strong quantitative guarantees
of more recent work. They either lack quantitative guarantees entirely or are sub-optimal.

We investigate this behavior under the two outlier models described in Chapter 1: the
heavy-tailed and adversarial contamination models. We find that in both these settings,
statistical degradation is necessary for affine-equivariant estimators with optimal rates de-
grading by a factor of

√
d. However, classical estimators are sub-optimal even within this

restricted class. To remedy this, we design a novel affine-equivariant estimator with near-
optimal statistical performance and robustness. Our estimator is based on a novel notion of
a high-dimensional median which may be of independent interest.

Formally, we study the robust mean estimation problem where we are given n inde-
pendent and identically distributed (i.i.d) data points X = {Xi}ni=1 ⊂ Rd drawn from a
distribution, D, with mean µ and variance Σ along with a target failure probability δ. Fur-
thermore, an arbitrarily chosen η fraction of the data points may be corrupted in a possibly
adversarial way. The goal, now, is to design an estimator µ̂ with the smallest rδ satisfying:

P {∥µ̂(X)− µ∥Σ ⩽ rδ} ⩾ 1− δ where ∥x∥Σ :=
√
x⊤Σ−1x.

The above notion of error, commonly referred to as the Mahalanobis Distance, is a nat-
ural affine-equivariant metric. Equivalently, the Mahalanobis distance may be viewed as
measuring the Euclidean distance under the affine transformation that renders the distribu-
tion isotropic. Hence, for affine-equivariant estimators, our results characterize the optimal
achievable Euclidean error for distributions with Σ ≼ I1. We present our results in the

1Note that without any restriction on Σ, no uniform error bound is possible.
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Mahalanobis norm as our bounds hold for any estimator whose performance is measured in
this norm. Furthermore, note that, as before, we make no other assumptions on the data
distribution beyond the existence of a mean and variance, hence, allowing for heavy-tailed
scenarios where higher moments might not even exist and Σ might not even be estimable
from the given samples.

As a point of comparison, recall from Chapter 1, that in the Euclidean setting where error
is measured in the Euclidean norm, we have the following characterization of the optimal
rate:

rδ = O

(√
Tr(Σ) + ∥Σ∥ log(1/δ)

n

)
.

When η = 0, this rate, referred to as the sub-gaussian rate, is known to be optimal for
Gaussians and hence, cannot be improved upon in general. Note that when Σ ≼ I, the
above rate simplifies to:

rδ = O

(√
d+ log(1/δ)

n
+
√
η

)
.

However, for the Mahalanobis norm, all known estimators require stronger assumptions to
establish quantitative guarantees. Often, these results require the additional property that
a multiplicative approximation to Σ is estimable from the samples.

Our upper bound remedying these difficulties is presented in the following theorem:

Theorem 4.0.1. There exist absolute constants C1, C2 > 0 such that the following hold.
Let n, d ∈ N, δ ∈ (0, 1) and η ∈ [0, 1/(6d)]. Suppose X = {Xi}ni=1 are generated iid from
a distribution D with mean µ and covariance Σ. Then, there exists an affine-equivariant
estimator, µ̂, which when given any η-corrupted version of X satisfies:

∥µ̂(X)− µ∥Σ ⩽ C1

(√
d log(1/δ)

n
+
√
dη

)
with probability at least 1− δ over X when n ⩾ C2d log(2/δ).

Furthermore, we exhibit lower bounds establishing that the above rate and restrictions
on η are essentially tight. Our lower bounds are proved separately for the heavy-tailed
and adversarial settings and hence, our upper bound which hold for both these settings
simultaneously is optimal. Our first is for the heavy-tailed setting where Σ(D) denotes the
covariance matrix of D.

Theorem 4.0.2. There exist absolute constants, C1, C2, c > 0 such that the following holds.
Let n, d ∈ N and δ ∈ (0, 1) be such that n ⩾ C1d log(1/δ) and log(1/δ) ⩾ C2 log(2d). Then,
there exists a family of distributions D such that for any estimator µ̂:

max
D∈D

PrX∼Dn

{
∥µ̂(X)− µ(D)∥Σ(D) ⩾ c

√
d log(1/δ)

n log(d)

}
⩾ δ.
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Next, we present our lower bounds for the adversarial corruption model. Furthermore,
our lower bounds hold for the weaker Huber contamination model where an adversary is only
allowed to add corrupted points to the dataset as opposed to corrupting existing points. In
the first, we show that the error is unbounded if the corruption fraction exceeds 1/(d + 1)
for estimators that are eventually (as n→∞) even approximately consistent.

Theorem 4.0.3. For any d > 3 and r > 1, there exists a family of distributions, D, and a
distribution D0 ∈ D such that for any D ∈ D, there exists distribution P satisfying:

D0 =
d

d+ 1
D +

1

d+ 1
P.

Furthermore, we have for any estimator, µ̂, and any n ∈ N:

sup
D∈D

PrX∼Dn
0

{
∥µ̂(X)− µ(D)∥Σ(D) ⩾ r

}
⩾

1

d+ 1
.

Next, we show that the dependence on the corruption fraction when η < 1/d in Theo-
rem 4.0.1 is tight.

Theorem 4.0.4. For any d > 3 and η < 1/(d+1), there exists a family of distributions, D,
and a distribution D0 ∈ D such that for any D ∈ D, there exists distribution P satisfying:

D0 = (1− η)D + ηP.

Furthermore, we have for any estimator, µ̂, and any n ∈ N:

sup
D∈D

PrX∼Dn
0

{
∥µ̂(X)− µ(D)∥Σ(D) ⩾

1

2

√
dη

1− dη

}
⩾

1

d+ 1
.

Taken together, our bounds imply a marked departure from the Euclidean setting. The
breakdown point and the dependence of the recovery guarantees on the failure probability
and corruption factor all decay by a factor of d. In the Euclidean setting, the optimal
recovery guarantees essentially match what one would achieve when working with Gaussian
data. However, in the affine equivariant setting, a significant cost is incurred when weaker
assumptions are placed on the data distribution.

Our estimator is based on a novel notion of a high-dimensional median, inspired by
the well-known Tukey median [61] and the Stahel-Donoho estimator [57, 23] and may be of
independent interest. We aim to find a point whose distance to the mean along any direction
is small with respect to (a robust notion of) the variance along that direction. However, the
main difficulty in analyzing the estimator is establishing that such a point always exists. We
define an appropriate proxy for the variance which guarantees the existence of such a median
while allowing for optimal recovery guarantees. Interestingly, our analysis, similar to that of
the Tukey Median, relies strongly on Helly’s Theorem, a central result in convex geometry.
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The key challenge in proving our lower bounds is establishing the correct dependency
on the failure probability in the heavy-tailed setting. Our lower bound construction uses a
family of distributions with different covariances in a standard Bayesian estimation-to-testing
framework for proving minimax lower bounds (see, for example, [62]). In the typical heavy-
tailed setting, two lower bounds are established separately, one for the failure probability
and another for the dimension, and then subsequently combined to obtain the final bound.
However, in our case, these two elements are intimately coupled making the application of
standard techniques challenging. To overcome this, we perform an explicit analysis of the
posterior over the set of candidate distributions once the data points have been generated,
but only for a carefully chosen set of observations. We show that when such samples are
obtained, the posterior is well-spread and that any proposed estimate performs poorly on at
least some distributions in the support of the posterior. Here, the differences in the covariance
matrices across the distributions in the family play a critical role and the sensitivity of the
Mahalanobis norm to such differences yield our lower bound.

In this final chapter, we discuss the failure of two classical estimators, the Tukey Median
[61] and the Stahel-Donoho estimator [57, 23], in Section 4.1 where we will see that they each
fail in complementary ways. We then present our high-dimensional median in Section 4.2 in
relation to these two classical notions. Our estimator based on this high-dimensional median
is described in Section 4.3 and finally, Section 4.4 contains lower bounds which prove the
near-optimality of our estimator.

4.1 Failure of Classical Estimators

In this section, we provide some intuition for our estimator. We analyze the performance
of two prominent affine equivariant estimators: the Tukey Median and the Stahel-Donoho
estimator. We consider a simple setting where both these estimators perform poorly. We then
informally describe how our estimator addresses the shortcomings of these two approaches.
We defer the rigorous definition and analysis of our estimator to subsequent sections.

For now, recall the Tukey Median [61] and its associated depth function from Chapter 1

D1
τ (y;Y ) = min (|{i : yi ⩾ y}|, |{i : yi ⩽ y}|)

µ̂τ (X) = argmaxDd
τ (x;X) where Dd

τ (x;X) = min
∥u∥=1

D1
τ (⟨u, x⟩; {⟨u, xi⟩}

n
i=1) .

And the Stahel-Donoho estimator [57, 23] utilizes an alternative notion of outlyingness :

D1
SD(y;Y ) =

|y −Med(Y )|
MAD(Y )

where MAD(Y ) = Med ({|yi −Med(Y )|}ni=1)

µ̂SD(X) = argminDd
SD(x;X) where Dd

SD(x;X) = max
∥u∥=1

D1
SD (⟨u, x⟩; {⟨u, xi⟩}ni=1)

Our hard example will essentially be the simple uniform distribution over the simplex
and the origin. However, we will assume one of the standard basis vectors (say e1) is mildly
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Figure 4.1: Illustration of hard distribution. The red dot on e1 denotes higher probability.

•

•

•

•

more likely to be observed. Formally, the distribution is defined for parameter ν as follows:

PrX∼Dν {X = x} =

{
1

d+1
+ ν if x = e1

1
d+1
− ν

d
otherwise

.

The example is illustrated in 3 dimensions in Fig. 4.1.
We also assume for the sake of simplicity that the estimators are run directly on the

distribution itself as opposed to samples from the distribution where Med and MAD are
replaced by their population counterparts. We start with the Tukey median and establish
that e1 is the unique point with largest Tukey depth. Notice that the depth of e1 is 1/(d+
1) + ν. Let the support of the distribution be S. For any point not in the convex hull of
S, the separating hyperplane theorem ensures that they have Tukey depth 0. Now, consider
the case where x belongs to the convex hull and x ̸= e1. We consider the two possibilities
x ∈ T where T = {ei}di=2 ∪ {0} and x /∈ T separately. First, let x ∈ T and consider the
vector v = x− 1

d

∑
y∈S\x y. We have ⟨x, v⟩ > ⟨y, v⟩ for all y ∈ S \ x. Hence, the depth of x

is at most 1/(d+ 1)− ν
d
. Secondly, consider the alternative case when x /∈ S (but lies in its

convex hull). We must have:

x =
∑
y∈S

wyy where wy ⩾ 0 and
∑
y∈S

wy = 1.

Furthermore, since x /∈ S, there exists y ∈ S with y ̸= e1 and 0 < wy < 1. Consider such a
vector y and the vector v = y − 1

d

∑
z∈S\y z. We now get:

∀z ∈ S \ y : ⟨v, y⟩ > ⟨v, x⟩ > ⟨v, z⟩.

Since y ̸= e1, the depth of x is also at most 1/(d+ 1)− ν
d
. The previous two cases establish

that e1 is the unique point of maximum Tukey depth. Unfortunately, the error of e1 is rather
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Figure 4.2: One-dimensional projection onto e1.

e1•
0

•
1

1
(d+1)

+ νd
(d+1)

− ν

Figure 4.3: One-dimensional projections onto ei for i ̸= 1 and 1.

ei•
0

d
d+1

+ ν
d •

1

1
d+1
− ν

d
1•

0

1
d+1
− ν

d •
1

d
d+1

+ ν
d

large. Consider the one-dimensional projection of the distribution onto e1:

PrY ∼D1
ν
{Y = y} =

{
1

d+1
+ ν if y = 1

d
d+1
− ν if y = 0

.

By considering the error along e1, we get for µν = µ(Dν) for ν ⩽ 1/(10d):

∥e1 − µν∥Σ(Dν) ⩾
d/(d+ 1)− ν√

(1/(d+ 1) + ν) (d/(d+ 1)− ν)
=

√
d/(d+ 1)− ν
1/(d+ 1) + ν

⩾

√
d

2
.

As we will see later, this error is larger than optimal by a
√
d factor. The main drawback

of the Tukey median is that it remains insensitive to the variance along different directions.
As illustrated in Fig. 4.2, the true mean (along e1) lies at

1
(d+1)

+ ν while the Tukey estimate

projects to 1. The variance along e1 is also at most E[⟨e1, X⟩2] = 1
(d+1)

+ν. Therefore, incor-
porating variance information into the estimator can help mitigate some of this degradation.
Note, however, that the Tukey median exists for any set of data points.

The Stahel-Donoho estimator attempts to incorporate such variance information. How-
ever, analyzing the estimator requires non-degeneracy assumptions on the data and even after
making these assumptions, they do not provide any quantifiable bounds on its performance.
For our example, the Stahel-Donoho estimator is not even defined. Consider the projection
of the distribution onto the standard basis vectors ei and the all-ones 1 direction. From the
one-dimensional projections in Fig. 4.3, we have the following straightforward observations:

Med(D1
v) =

{
0 if v = ei

1 if v = 1
and ∀v ∈ {ei}di=1 ∪ {1} : MAD(D1

v) = 0.

Consequently, for an estimate x to have finite Stahel-Donoho outlyingness, it must satisfy
⟨x, ei⟩ = 0 for all i and ⟨x,1⟩ = 1 which is a contradiction.

Our previous discussion shows that the Tukey median and the Stahel-Donoho estimator
fail in two complementary ways. The Tukey median is always defined for any set of data
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points but its failure to incorporate directional variances into its estimation procedure lead
to large error. On the other hand, the variance estimates used in the Stahel-Donoho estima-
tor may not allow for a well-defined estimate in certain settings and even when it is defined,
existing analyses do not yield quantitative bounds on its performance. As we will see subse-
quently, our estimator simultaneously addresses the shortcomings of both the Tukey median
and the Stahel-Donoho estimator. Our median estimator accounts for directional variances
like the Stahel-Donoho median but at the same time, is defined for any collection for data
points like the Tukey median.

4.2 A High-dimensional Median

In this section, we formally present our high-dimensional median. We demonstrate how it
addresses the shortcomings of the Tukey median and the Stahel-Donoho estimator by simul-
taneously, being well-defined for all point sets and accounting for directional variances. Our
estimator is inspired by the Stahel-Donoho estimator but differs in how the robust location
and scale parameters are estimated. Recall, the one-dimensional outlyingness function used
by the Stahel-Donoho estimator:

D1
SD(y;Y ) =

|y −Med(Y )|
MAD(Y )

where MAD(Y ) = Med ({|yi −Med(Y )|}ni=1) .

The location parameter is robustly estimated by the median and the scale by the median-
absolute deviation (MAD) of the one-dimensional point set. The key point of difference
between our median and the Stahel-Donoho estimator is a pair of novel location and scale
estimation procedures. Defining for a subset S ⊆ [n]:

µS(Y ) :=
1

|S|
∑
i∈S

yi and σ1,S(Y ) :=
1

|S|
∑
i∈S

|yi − µS(Y )|,

our location and scale estimates are obtained as follows where ν = 1/(3d):

1. First, find S satisfying |S| ⩾ (1− ν)n that minimizes σ1,S(Y ).

2. Second, define location estimate µ̃(Y ) := µS(Y ) and scale estimate σ̃(Y ) := σ1,S(Y ).

With these one-dimensional location and scale estimates, our median is defined below:

D1
Ours(y;Y ) =

|y − µ̃(Y )|
σ̃(Y )

µ̂Ours(X) = argminDd
Ours(x;X) where Dd

Ours(x;X) := max
∥v∥=1

D1
Ours (⟨x, v⟩; {⟨xi, v⟩}ni=1)

We show that with these definitions, our estimate always exists for any dataset with finite
outlyingness. In fact, we establish the following strengthening of this statement:
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1. Firstly, we show that the estimate always has constant outlyingness. This allows us to
prove sharp quantitative bounds in our setting of interest.

2. Secondly, while our definition technically requires choosing S to minimize the direc-
tional scale estimate, we show that there exists an estimate with finite depth for all
choices of S satisfying the size constraints.

This estimator is defined in Algorithm 11 where Conv(T ) denotes the convex hull of
T and the proof of its existence is provided in Theorem 4.2.1. The proof relies on Helly’s
Theorem (Theorem A.1.6), a fundamental result in convex geometry.

Algorithm 11 High-dimensional Median

1: Input: Point set X = {xi}ki=1 ⊂ Rd

2: Let ν = 1/(3d) and S = {S ⊂ [k] : |S| ⩾ (1− ν)k}
3: Define for all v ∈ Sd−1, S ∈ S:

µv,S = µ
(
{⟨xi, v⟩}i∈S

)
σv,S = σ1

(
{⟨xi, v⟩}i∈S

)
4: Define convex compact sets:

Tv,S =
{
x ∈ Rd : |⟨x, v⟩ − µv,S| ⩽ 2σv,s

}
∩ Conv(Y )

5: Let T = ∩v∈Sd−1,S∈STv,S
6: Return: µ(T )

For a point set X = {xi}ki=1 ⊂ Rd, let µ̂(X) denote the output of Algorithm 11. The
main result of this section establishes the existence and affine-equivariance of µ̂(·).

Theorem 4.2.1. For any k ∈ N and X = {xi}ki=1 ⊂ Rd, µ̂(X) exists and is well defined.
Furthermore, µ̂(·) is affine-equivariant.

Proof. We tackle the two claims of the theorem in turn.

Existence of µ̂: We first show that T is non-empty, convex, and compact implying the
first claim. Note that T is the intersection of compact convex sets and is hence, convex and
compact. To establish the non-emptiness of T , an application of Helly’s Theorem (Theo-
rem A.1.6) allows us to restrict to finite intersections of the sets Tv,S. Consider any d + 1
sized collection H = {vj, Sj}j∈[d+1]. We have:

R := ∩j∈[d+1]Sj, |R| ⩾ (1− (d+ 1)ν)k ⩾
k

2
.
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Defining:

µR =
1

|R|
·
∑
i∈R

xi,

we will show that µR lies in ∩(v,S)∈HTv,S. For any (v, S) ∈ H, we have:

|⟨µR, v⟩ − µv,S| =

∣∣∣∣∣ 1

|R|
∑
i∈R

(⟨xi, v⟩ − µv,S)

∣∣∣∣∣ ⩽ 1

|R|
·
∑
i∈R

|⟨xi, v⟩ − µv,S| ⩽
|S|
|R|

σv,S ⩽ 2σv,S.

An application of Helly’s theorem now establishes that T is non-empty proving the claim.

Affine-equivariance of µ̂: Let X = {xi}ki=1 ⊂ Rd and f(x) = Ax+ b with A ∈ Rd×d, b ∈
Rd and A be non-singular. Hence, f is an invertible affine transformation. Furthermore, let
X ′ = f(X) = {x′i = f(xi)}ki=1 and T be the set obtained in Algorithm 11 on input X and
T ′ be the corresponding set on X ′. We will show T ′ = f(T ) proving the second claim.

First, let x ∈ T and we prove f(x) ∈ T ′. Observe for any v ∈ Sd−1, i ∈ [k]:

⟨v, x′i⟩ = ⟨v, f(xi)⟩ = ⟨v, Axi⟩+ ⟨v, b⟩ = ⟨A⊤v, xi⟩+ ⟨v, b⟩ = ∥A⊤v∥
〈

A⊤v

∥A⊤v∥
, xi

〉
+ ⟨v, b⟩.

We have by defining v′ = A⊤v
∥A⊤v∥ for any S ⊂ [k] with |S| ⩾ (1− ν)k:

µ ({⟨v, x′i⟩}i∈S) = ∥A⊤v∥ · µ ({⟨v′, xi⟩}i∈S) + ⟨v, b⟩
σ1 ({⟨v, x′i⟩}i∈S) = ∥A⊤v∥ · σ1 ({⟨v′, xi⟩}i∈S) .

As a consequence, we get that for f(x) = Ax+ b:

|⟨v, Ax+ b⟩ − µ ({⟨v, x′i⟩}i∈S)| = ∥A⊤v∥ · |⟨v′, x⟩ − µ ({⟨v′, xi⟩}i∈S)|
⩽ 2 · ∥A⊤v∥ · σ1 ({⟨v′, xi⟩}i∈S) = 2σ1 ({⟨v, x′i⟩}i∈S)

where the inequality follows from x ∈ T . Since, the above inequality holds for all x ∈ T, v ∈
Sd−1, S ⊂ [k] with |S| ⩾ (1− ν)k, we get that f(T ) ⊆ T ′. By repeating the above argument
for f−1(z) = A−1z−A−1b, we get that f−1(T ′) ⊆ T which implies T ′ ⊆ f(T ) concluding the
proof of the theorem.

4.3 Our Estimator

Here, we prove Theorem 4.0.1 using the high-dimensional median described in the previous
section. Our estimator achieving the guarantees of Theorem 4.0.1 is defined in Algorithm 12.
Note that since our high-dimensional median is affine-equivariant (Theorem 4.2.1), so is
Algorithm 12. Hence, it suffices to establish Theorem 4.0.1 in the setting µ = 0 and Σ = I.
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Algorithm 12 Affine-equivariant Estimator

1: Input: Point set X = {Xi}ni=1 ⊂ Rd, Confidence Parameter δ
2: k ← max(6ηdn, Cd log(1/δ))
3: Partition X into k equally sized buckets {Bi}i∈[k]
4: Compute µ̂i = µ(Bi)
5: µ̂ = High-dimensional Median({µ̂i}i∈[k])
6: Return: µ̂

We first prove the following technical lemma which we will use to establish the required
concentration properties on the bucketed means, µ̂i. Before we proceed, we define the thresh-
olding operator for a threshold τ ⩾ 0 as follows:

ψτ (x) =

{
x if |x| ⩽ τ

sgn(x)τ otherwise
.

Lemma 4.3.1. There exists an absolute constant C > 0 such that the following holds. Let
Y1, . . . , Yk be k iid random vectors drawn from a distribution D with mean µ and variance
σ2I and δ ∈ (0, 1). Then, we have for τ = 24σd:

max
∥v∥=1

1

k

k∑
i=1

|ψτ (⟨v, Yi⟩)| ⩽ 2σ

with probability at least 1− δ when k ⩾ Cd log(2/δ).

Proof. We have with Y being an independent copy from D:

Z = max
v∈Sd−1

1

k

k∑
i=1

|ψτ (⟨Yi, v⟩)| − E [|ψτ (⟨Y, v⟩)|] .

We first bound E [Z] where Y ′
i are independent draws from D and γi are independent

Rademacher random variables. The third inequality follows from the Ledoux-Talagrand
contraction inequality (Corollary A.1.9) and the observation that |ψτ (·)| is 1-Lipschitz:

E[Z] ⩽ E

[
max
v∈Sd−1

∣∣∣∣∣1k
k∑

i=1

|ψτ (⟨Yi, v⟩)| − E [|ψτ (⟨Y, v⟩)|]

∣∣∣∣∣
]

= E

[
max
v∈Sd−1

∣∣∣∣∣1k
k∑

i=1

|ψτ (⟨Yi, v⟩)| − |ψτ (⟨Y ′
i , v⟩)|

∣∣∣∣∣
]

= E

[
max
v∈Sd−1

∣∣∣∣∣1k
k∑

i=1

γi (|ψτ (⟨Yi, v⟩)| − |ψτ (⟨Y ′
i , v⟩)|)

∣∣∣∣∣
]
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⩽ 2E

[
max
v∈Sd−1

∣∣∣∣∣1k
k∑

i=1

γi|ψτ (⟨Yi, v⟩)|

∣∣∣∣∣
]
⩽ 4E

[
max
v∈Sd−1

∣∣∣∣∣1k
k∑

i=1

γi⟨Yi, v⟩

∣∣∣∣∣
]

=
4

k
E

[∥∥∥∥∥
k∑

i=1

γiYi

∥∥∥∥∥
]
⩽

4

k

√√√√√E

∥∥∥∥∥
k∑

i=1

γiYi

∥∥∥∥∥
2
 = 4

√
d

k
σ.

Additionally, noting that ψτ (x) ⩽ τ for all x ∈ R:

Yi,v :=
1

τ
(|ψτ (⟨Yi, v⟩)| − E[|ψτ (⟨Y, v⟩)|]) ⩽ 1.

Furthermore, we have for all v ∈ Sd−1:

k∑
i=1

E[Y 2
i,v] ⩽

1

τ 2

k∑
i=1

E
[
ψτ (⟨Yi, v⟩)2

]
⩽

1

τ 2

k∑
i=1

E
[
⟨Yi, v⟩2

]
=
kσ2

τ 2
.

Hence, we get by an application of Bousquet’s inequality (Theorem A.1.7):

Pr {Z ⩾ E[Z] + t} ⩽ exp

(
−
(
k

τ

)2

· t2

2(v + kt/(3τ))

)
where v =

8σ
√
kd

τ
+
kσ2

τ 2
.

Setting t = σ
2
and from our setting of τ and k, we get:

Z ⩽ E[Z] +
σ

2
⩽ σ

with probability at least 1− δ. The lemma now follows as:

∀∥v∥ = 1 : E [|ψτ (⟨Y, v⟩)|] ⩽ E [|⟨Y, v⟩|] ⩽
√

E [⟨Y, v⟩2] = σ.

We now proceed to the proof of Theorem 4.0.1. For the sake of analysis let µ̃i denote
the uncorrupted versions of the bucketed means µ̂i. For these, we have:

E[µ̃i] = 0 and E[µ̃iµ̃
⊤
i ] =

k

n
I.

Hence, we get by Lemma 4.3.1 and the setting of k in Algorithm 12:

∀∥v∥ = 1 :
1

k

k∑
i=1

|ψτ (⟨v, µ̃i⟩)| ⩽ 2σ̃ where σ̃ =

√
k

n
and τ = 24σ̃d
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with probability at least 1 − δ. We condition on this event in the remainder of the proof.
Note, furthermore, that there are at most ηn many corrupted points in X. Therefore, we
have for |{i : µ̃i = µ̂i}| ⩾ (1− 1/(6d))k, again from the setting of k in Algorithm 12, that:

∀∥v∥ = 1 :
1

k

k∑
i=1

1 {|⟨v, µ̃i⟩| ⩾ τ} ⩽ 1

τ
· 1
k

k∑
i=1

|ψτ (⟨v, µ̃i⟩)| ⩽
1

12d
.

Therefore, we get from the previous two observations that:

∀∥v∥ = 1 : |Gv| ⩾
(
1− 1

4d

)
k where Gv = {i : µ̃i = µ̂i and ψτ (⟨v, µ̃i⟩) = ⟨v, µ̃i⟩} .

Now, let v ∈ Sd−1. We have for Gv from Algorithm 11 and Theorem 4.2.1:

|⟨v, µ̂⟩ − µ({⟨v, µ̂i⟩}i∈Gv)| ⩽ 2σ1({⟨v, µ̂i⟩}i∈Gv).

For the mean term, we get:

|µ({⟨v, µ̂i⟩}i∈Gv)| ⩽ µ({|⟨v, µ̂i⟩|}i∈Gv) ⩽
1

(1− 1/(4d))
µ({|ψτ (⟨v, µ̃i⟩)|}i∈[k]) ⩽ 3σ̃.

For the deviation term, we get:

σ1({⟨v, µ̂i⟩}i∈Gv) = µ({|⟨v, µ̂i⟩ − µ({⟨v, µ̂i⟩}i∈Gv)|}i∈Gv) ⩽ µ({|⟨v, µ̂i⟩|}i∈Gv) + 3σ̃ ⩽ 6σ̃.

The above two bounds imply:

∀v ∈ Sd−1 : |⟨v, µ̂⟩| ⩽ 15σ̃ = 15

√
k

n

establishing the theorem.

4.4 Lower Bounds

Here, we present the proofs of Theorems 4.0.2 to 4.0.4 which show that the guarantees of
Theorem 4.0.1 are nearly tight. For the heavy-tailed setting with no adversarial corruption
(i.e η = 0), Theorem 4.0.2 shows that the recovery error of our estimator is optimal up
to a

√
log(d) factor and for the adversarial corruption model, Theorem 4.0.3 establishes

that no affinely-equivariant estimator can achieve breakdown point greater than 1/(d + 1)
while Theorem 4.0.4 shows that

√
dη is the best achievable recovery error for any affinely-

equivariant estimator.
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Heavy-tailed Lower Bound - Proof of Theorem 4.0.2

To define our class of distributions, let:

ε =
1

4

√
d log(1/(dδ))

n log(d)
.

Our hard class will contain d distributions with support over the standard basis vectors and
the origin, i.e., {ei}di=1 ∪ {0}. Each distribution puts a smaller mass at one of the standard
basis vectors. More formally, we have D = {Di}di=1 with:

PrX∼Di
{X = ej} =

{
ε2

d
if i ̸= j

ε2

d2
if i = j

,

and

PrX∼Di
{X = 0} = 1− d− 1

d
ε2 − ε2

d2
.

By a straightforward calculation, we have:

Σ(Di) ≼M i where M i
jk =


0 if j ̸= k
ε2

d
if j = k and j ̸= i

ε2

d2
if j = k = i

.

Now consider the following procedure of generating the data X:

1. Sample a random integer I from the index set {1, 2, . . . , d}.

2. Given I = i, draw n i.i.d samples X = {X1, X2, . . . , Xn} from Di.

Next, it suffices to show that for any estimator µ̂(·), we have

Pr

{
∥µ̂(X)− µ(DI)∥Σ(DI) ⩾

1

4
ε

}
⩾ δ.

For each distribution Di, consider a set of instances

Si =

{
X = (X1, . . . , Xn) : mi(X) ⩾

4ε2n

d
and

d∑
j=1

1

{
mj(X) <

4ε2n

d

}
⩾
d

2

}

where mj(X) :=
n∑

k=1

1 {Xk = ej} .

Next, consider S := ∪Si. Now for any X ∈ S, let

J :=

{
j : mj(X) <

4ε2n

d

}
and z := µ̂(X).
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Suppose zj ⩽ ε2

2d
for any j ∈ J , by considering the cumulative error on J we have

∥µ̂(X)− µ(Dk)∥2Σ(Dk)
⩾

(
d

2
− 1

)
(ε2/2d)

2

ε2/d
⩾

1

16
ε2

for any Dk.
On the other hand, suppose there exists j ∈ J such that zj >

ε2

2d
. If I = j is the sampled

index, then by considering the error on ej we have

∥µ̂(X)− µ(Dj)∥Σ(Dj) ⩾
|ε2/2d− ε2/d2|√

ε2/d2
⩾

1

4
ε.

By the definition of X, let i be the index such that mi(X) ⩾ 4ε2n
d

, then we have the
posterior probability of I = j is at least that of I = i. So

Pr

{
∥µ̂(X)− µ(DI)∥Σ(DI) ⩾

1

4
ε

∣∣∣∣X} ⩾ Pr {I = j|X} ⩾ Pr {I = i|X} .

Putting pieces together, we have

Pr

{
∥µ̂(X)− µ(DI)∥Σ(DI) ⩾

1

4
ε

}
⩾
∑
X∈Si

Pr

{
∥µ̂(X)− µ(DI)∥Σ(DI) ⩾

1

4
ε

∣∣∣∣X}Pr {X}

⩾
∑
X∈Si

Pr {I = i|X}Pr {X} =
∑
X∈Si

Pr {I = i,X}

=
∑
X∈Si

Pr {X|I = i}Pr {I = i} .

It remains to prove that Pr {Si|I = i} ⩾ dδ. For the simplicity of notations, denote Pri
as the conditional distribution of X under I = i. Define events:

A =

{
X = (X1, . . . , Xn) : mi(X) ⩾

4ε2n

d

}
B =

{
X = (X1, . . . , Xn) :

d∑
j=1,j ̸=i

1

{
mj(X) <

4ε2n

d

}
⩾
d

2

}

C =
{
X = (X1, . . . , Xn) : m0(X) ⩾ (1− 2ε2)n

}
where m0(X) :=

n∑
k=1

1 {Xk = 0} .

Note that Pri {Si} = Pri {A ∩B} and C ⊆ B. So, we have

Pri(A ∩B) = Pri(B|A)Pri(A) ⩾ Pri(B)Pri(A) ⩾ Pri(C)Pri(A).

We first use a Binomial tail lower bound to bound Pri(A) (see e.g., [3]):
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Pri {B(n, p) ⩾ k} ⩾ 1√
8n k

n

(
1− k

n

) exp(−nD(kn
∥∥∥∥ p)) ,

where B(n, p) denotes a Binomial random variable and D(a ∥ p) = a log a
p
+ (1− a) log 1−a

1−p

denotes the KL divergence.
Plugging in k = 4dnp and p = ε2/d2 we obtain that

Pri(A) ⩾
1√

32ndp
exp (−4ndp log (4d)) ⩾ 2dδ.

Finally, note that Pr(C) ⩾ 1/2 since n−m0(X) is positive with E[n−m0(X)] ⩽ ε2n.
Therefore, we have Pri(Si) ⩾ dδ concluding the proof.

Adversarial Contamination - Proofs of Theorems 4.0.3 and 4.0.4

We start with Theorem 4.0.3 which establishes an upper bound on the breakdown point.

Proof of Theorem 4.0.3 . Let r > 0 and S = {ei}di=1 ∪ {0}. First define the family

D̃ = {D̃i}d+1
i=0 with D̃0 and D̃d+1 denoting the uniform distributions over S and S \ {0}

respectively and for i ∈ [d], D̃i is defined as follows:

PrX∼D̃i
{X = x} =

{
0 if x = ei
1
d

if x ∈ S \ {ei}
.

Now, our hard family of distributions D = {Di}d+1
i=0 is defined in the following way:

1. First, generate X̃ ∼ D̃i

2. Independently, generate Z ∼ Unif({±1}d)

3. Observe X = X̃ + Z
(2dr)3

.

Note, that Σ(Di) is non-singular for each i and D0 may be written as a mixture of Di and
the distribution with all its mass on ei for every i. Now, suppose µ̂ is an estimator that
satisfies for some n ∈ N:

∀D ∈ D : PrX∼Dn
0

{
∥µ̂(X)− µ(D)∥Σ(D) ⩾ r

}
<

1

d+ 1
.

Then, by the union bound, there must exist a sample X in the support of Dn
0 such that:

∀D ∈ D \ {D0} : ∥µ̂(X)− µ(D)∥Σ(D) ⩽ r.
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Then, letting µ̂ = µ̂(X), we must have for any i ∈ [d]:

r ⩾ ∥µ̂− µ(Di)∥Σ(Di) ⩾ (dr)3|µ̂i|.

This implies:

|µ̂i| ⩽
1

d3r2
=⇒

d∑
i=1

|µ̂i| ⩽
1

(dr)2
.

However, note that we have for the direction 1/
√
d and the distribution Dd+1:

r ⩾ ∥µ̂− µ(Dd+1)∥Σ(Dd+1) ⩾ (dr)3 ·
(

1√
d
− 1

d2.5

)
⩾ (dr)2

which is a contradiction thus establishing the theorem.
We now move on to Theorem 4.0.4.

Proof of Theorem 4.0.4. As before, we will construct a hard family of distributions.
For support set S = {ei}di=1 ∪ {1/d}, define the set of distributions D̃ = {D̃i}di=0 defined as
follows:

∀i ∈ [d] : PrX∼D̃i
(X = x) =


0 if x = ei
d

d−1
η if x = ej for j ̸= i

1− dη if x = 1
d

and

PrX∼D̃0
(X = x) =

{
η if x = ej for any j ∈ [d]

1− dη if x = 1
d

.

Let σ = ((η(1− dη))/8d)4 and the hard family of distributions is defined as follows:

1. First, generate X̃ ∼ D̃i

2. Independently, generate Z ∼ Unif({±1}d)

3. Observe X = X̃ + σZ.

Note that Σ(Di) is non-singular for each i and D0 may be written as a mixture of Di and the
distribution with all its mass on ei for every i. Now, suppose µ̂ is an estimator that satisfies
for some n ∈ N:

∀D ∈ D : PrX∼Dn
0

{
∥µ̂(X)− µ(D)∥Σ(D) ⩾

1

2

√
dη

1− dη

}
<

1

d+ 1
.

Then, by the union bound, there must exist a sample X in the support of Dn
0 such that:

∀D ∈ D : ∥µ̂(X)− µ(D)∥Σ(D) ⩽
1

2

√
dη

1− dη
.
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Letting µ̂ = µ̂(X), we have for the direction 1/
√
d:

1

2

√
dη

1− dη
⩾ ∥µ̂− µ(D0)∥Σ(D0) ⩾

1√
dσ

∣∣∣∣∣
d∑

i=1

µ̂i − 1

∣∣∣∣∣.
This implies for our setting of σ that:

d∑
i=1

µ̂i ⩾ 1− η2

4
.

Therefore, there exists i ∈ [d] with:

µ̂i ⩾
4− η2

4d
.

For this i, we have:

∥µ̂− µ(Di)∥Σ(Di) ⩾
d√

dη(1− dη) + σ
·
∣∣∣∣4− η24d

− (1− dη)1
d

∣∣∣∣ > 1

2

√
dη

1− dη

which is a contradiction concluding the proof of the theorem.
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Appendix A

Auxiliary Material

A.1 Empirical Processes and Concentration Results

Here, we collect results from empirical process theory, concentration inequalities, and convex
analysis that we use in our proofs. The first is Hoeffding’s Inequality [29] as stated in [4]:

Theorem A.1.1 ([29, 4]). Let X1, . . . Xn be independent random variables such that Xi

takes its values in [ai, bi] almost surely for all i ⩽ n. Let

S =
n∑

i=1

(Xi − EXi).

Then, for every t > 0,

Pr {S ⩾ t} ⩽ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

We also require McDiarmid’s bounded differences inequality [50].

Theorem A.1.2 ([50, 4]). Let n ∈ N, X denote some domain and assume that f : X n → R
satisfies for some constants c1, . . . , cn:

∀i ∈ [n] : sup
x1,...,xn

x′
i∈X

|f(x1, . . . , xn)− f(x1, . . . , x′i, . . . , xn)| ⩽ ci.

Now, denote:

ν =
1

4

n∑
i=1

c2i .

Let Z = f(X1, . . . , Xn) where the Xi are independent. Then

Pr {Z − EZ ⩾ t} ⩽ e−t2/(2ν).
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Next, we have the concentration of Lipschitz functions of Gaussians [13].

Theorem A.1.3 ([13, 4]). Let X = (X1, . . . , Xn) be a vector of n independent standard
normal variables. Let f : Rn → R denote an L-Lipschitz function. Then, for all t ⩾ 0,

Pr {f(X)− E f(X) ⩾ t} ⩽ e−t2/(2L2).

We also need the Gaussian Poincare Inequality from [4].

Theorem A.1.4. Let X = (X1, . . . , Xn) be a vector of n i.i.d standard Gaussian variables.
Let f : Rn → R be any continuously differentiable function. Then, we have:

Var(f(X)) ⩽ E
[
∥∇f(X)∥2

]
.

We reprove the following simple lemma.

Lemma A.1.5. Let X ∼ N (0, In). Then, we have for all δ ∈ (0, 1):

Pr
{√

n− 1−
√

2 log(2/δ) ⩽ ∥X∥ ⩽
√
n+

√
2 log(2/δ)

}
⩽ δ.

Proof. Consider f(X) = ∥X∥. Note that f(·) is 1-Lipschitz. Hence, we may apply Theo-
rem A.1.3. It remains to bound E[f(X)]. For the upper bound, we have:

E[∥X∥] ⩽
√

E [∥X∥2] ⩽
√
n.

For the lower bound, consider fγ(X) = gγ(f(X)) for 0 ⩽ γ ⩽ 1 where:

gγ(x) =

{
x2

2γ
if |x| ⩽ γ

|x| − γ
2

o.w
.

Note that fγ(·) is differentiable everywhere and ∥∇fγ(·)∥ ⩽ 1. Hence, we get by the Gaussian
Poincare Inequality (Theorem A.1.4):

Var(fγ(X)) ⩽ E
[
∥∇fγ(X)∥2

]
= E

[
∥∇fγ(X)∥21 {∥X∥ ⩾ γ}

]
+ E

[
∥∇fγ(X)∥21 {∥X∥ < γ}

]
⩽ 1 +Pr {∥X∥ ⩽ γ} .

By taking γ → 0, we get:

Var(f(X)) = lim
γ→0

Var(fγ(X)) ⩽ 1.

Hence, we get:
E[f(X)] ⩾

√
E[f 2(X)]− Var(f(X)) ⩾

√
d− 1.
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We now recall Helly’s celebrated theorem [28] on convex intersections as stated in [27,
Theorem 1.1, Chapter 2.1].

Theorem A.1.6 ([28, 27]). Let K be a family of convex sets in Rd, and suppose K is finite
or each member of K is compact. If every d + 1 or fewer members of K have a common
point, then there is a point common to all members of K.

Next, we present Bousquet’s inequality on the suprema of empirical processes [5] which
builds on prior results by Talagrand [59, 58].

Theorem A.1.7 ([5, 4]). Let X1, . . . , Xn be independent identically distributed random vec-
tors indexed by an index set T . Assume that E[Xi,s] = 0, and Xi,s ⩽ 1 for all s ∈ T . Let
Z = sups∈T

∑n
i=1Xi,s, ν = 2EZ + σ2 where σ2 = sups∈T

∑n
i=1 EX2

i,s is the wimpy variance.
Let ϕ(u) = eu − u− 1 and h(u) = (1 + u) log(1 + u)− u, for u ⩾ −1. Then for all λ ⩾ 0,

logE eλ(Z−EZ) ⩽ νϕ(λ).

Also, for all t ⩾ 0,

P {Z ⩾ EZ + t} ⩽ e−νh(t/ν) ⩽ exp

(
− t2

2(ν + t/3)

)
.

We also require the Ledoux-Talagrand contraction inequality [38] (again as stated in [4]).

Theorem A.1.8 ([38, 4]). Let x1, . . . , xn be vectors whose real-valued components are indexed
by T , that is, xi = (xi,s)s∈T . For each i = 1, . . . , n, let ϕi : R→ R be a 1-Lipschitz function
such that ϕi(0) = 0. Let ε1, . . . , εn be independent Rademacher random variables, and let
Ψ : [0,∞)→ R be a non-decreasing convex function. Then,

E

[
Ψ

(
sup
s∈T

n∑
i=1

εiϕi(xi,s)

)]
⩽ E

[
Ψ

(
sup
s∈T

n∑
i=1

εixi,s

)]

and

E

[
Ψ

(
1

2
sup
s∈T

∣∣∣∣∣
n∑

i=1

εiϕi(xi,s)

∣∣∣∣∣
)]

⩽ E

[
Ψ

(
sup
s∈T

∣∣∣∣∣
n∑

i=1

εixi,s

∣∣∣∣∣
)]

.

We will use the following simple corollary of the second conclusion in our proofs.

Corollary A.1.9. Assume the setting of Theorem A.1.8. Then,

E

[
sup
s∈T

∣∣∣∣∣
n∑

i=1

εiϕi(xi,s)

∣∣∣∣∣
]
⩽ 2E

[
sup
s∈T

∣∣∣∣∣
n∑

i=1

εixi,s

∣∣∣∣∣
]
.
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A.2 Auxiliary Results from Chapter 2

Lemma A.2.1. There exist absolute constants c, C > 0 such that the following holds. Let
X = X1, . . . , Xn be n i.i.d random vectors drawn from a distribution P with mean µ satis-
fying:

E
X∼P

[∥X − µ∥] ⩽ σ.

Then, Algorithm 5 on input X, returns an estimate x̂ satisfying:

∥x̂− µ∥ ⩽ 30σ

with probability at least 1− e−cn.

Proof. We have for any i ∈ [n]:

Pr {∥Xi − µ∥ ⩽ 10σ} ⩾ 9

10
.

Hence, we get by Hoeffding’s (Theorem A.1.1) inequality:

n∑
i=1

1 {∥Xi − µ∥ ⩽ 10σ} ⩾ 0.75n

with probability at least 1−e−cn. Condition on this event and let G = {Xi : ∥Xi − µ∥ ⩽ 10σ}.
We get for any x ∈ G by the triangle inequality:

n∑
i=1

1 {∥Xi − x∥ ⩽ 20σ} ⩾ 0.75n.

Therefore, we get for the solution x̂ returned by Algorithm 5:

min

{
r > 0 :

n∑
i=1

1 {∥Xi − x̂∥ ⩽ r} ⩾ 0.6n

}
⩽ 20σ.

Furthermore, for Ĝ = {Xi : ∥Xi − x̂∥ ⩽ 20σ}, we have G ∩ Ĝ ̸= ϕ and hence, for y ∈ G ∩ Ĝ:

∥x̂− µ∥ ⩽ ∥x̂− y∥+ ∥y − µ∥ ⩽ 30σ

concluding the proof.

Lemma A.2.2. For any Z ∈ Rk×d and x ∈ Rd, the optimal value of MT(x, r,Z) is mono-
tonically non-increasing in r.

Proof. The lemma follows trivially from the fact that a feasible solution X of MT(x, r,Z)
is also a feasible solution for MT(x, r′,Z) for r′ ⩽ r.
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A.3 Auxiliary Results from Chapter 3

In this section, we establish a lower bound for robust mean estimation under weak moments.
The lower bound will be a consequence of the following theorem:

Theorem A.3.1. Given η, α ∈ (0, 1), there exist two distributions D1 and D2 over R with
means µ1 and µ2, respectively, satisfying:

1. dTV (D1,D2) ⩽
η
4

2. |µ1 − µ2| ⩾ 1
4
· ηα/(1+α)

3. EX∼D1 [|X − µ1|1+α],EX∼D2 [|X − µ2|1+α] ⩽ 1.

Proof. We prove the theorem by explicit construction. Let D1 be a δ-distribution on 0:
PX∼D1(X = 0) = 1. We have µ1 = 0 and the weak moment condition holds trivially for D1.
Now, for D2, we have:

PX∼D2(X = x) =


1− η

4
, when x = 0

η
4
, when x =

(
1
η

)1/(1+α)

0, otherwise.

.

From the definitions of D1 and D2, we obtain the first conclusion. By direct computation,
we have µ1 = 0 and µ2 = 1

4
· ηα/(1+α) establishing the second. Finally, we verify the weak

moment condition on D2 using the convexity of the function f(x) = |x|1+α:

EX∼D2 [|X − µ2|1+α] ⩽ 2α · E[|X|1+α + |µ2|1+α] ⩽ 2α
(
1

4
+

ηα

4(1+α)

)
⩽ 1.

This concludes the proof of the theorem.
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