
Enabling Non-Experts to Develop Distributed Trust

Applications

Nicholas Ngai

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-256

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-256.html

December 1, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Enabling Non-Experts to Develop Distributed Trust Applications

by Nicholas Ngai

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Raluca Ada Popa
Research Advisor

(Date)

* * * * * * *

Professor David Wagner
Second Reader

(Date)

Nicholas Ngai
May 12, 2023

Nicholas Ngai
May 12, 2023

Enabling Non-Experts to Develop Distributed Trust Applications
Nicholas Ngai

nicholas.ngai@berkeley.edu
University of California, Berkeley

Berkeley, California, USA

ABSTRACT
Distributed trust applications provide strong guarantees of secu-
rity, in that they require a set of multiple “trust domains” to be
compromised in order to compromise an entire application, rather
than relying on a central point of attack, which is often the target
of attacks and data breaches. Yet, distributed trust has yet to see
wide-scale adoption despite its plethora of benefits.

The DoTS platform intially proposed and presented by Tan and
Kaviani promises to solve many of these issues by addressing the
practical needs of distributed trust applications as a software de-
velopment kit for developers to build applications with distributed
trust. In this paper, we present mid- and low-level architectural
modifications to the DoTS platform in order to make the platform
and API more accessible to developers, while fulfilling its original
vision.

We demonstrate both that our modifications maintain the sim-
plicity of developing new applications on top of DoTS, with our
secret key recovery and (𝑛, 𝑡)-threshold ECDSA signing applcia-
tions requiring fewer than 500 lines of integration code each, and
we demonstrate that it is equally easy to port existing applications
to utilize the DoTS platform, replacing over 2,600 lines of code in
MP-SPDZ with simple function invocations.

We show that, by leveraging the unique conditions of such appli-
cations typically executing in distinct trust domains in geograph-
ically separated regions, applications utilizing the updated DoTS
design suffer as little as 6.4–9.5% overhead compared to ad hoc,
complex, application-specific network solutions.

1 INTRODUCTION
Distributed trust is a rapidly growing and evolving research space
in computer security literature. At its core, the notion of distributed
trust is simple: Rather than relying on a single, central point of
attack, distribute trust amongst different trust domains such that
a failure condition occurs if and only most or all of these trust
domains are breached or become malicious.

These protocols and systems take many shapes and forms, from
simple, easy-to-understand secret-sharing protocols [41] to large,
complex, heterogenous systems with many moving parts like Bit-
coin [34], certificate transparency [29], and IPFS [44]. Yet, with the
notable exception of cryptocurrencies, many of these distributed
trust systems developed in the academic space have yet to see
adoption by wider communities of individuals, and many of the dis-
tributed trust applications have seen adoption are largely those de-
veloped in-house by large corporations, such as Apple and Google’s
joint venture on privacy-preserving COVID-19 exposure notifi-
cations [1]. Yet, in the aforementioned cryptocurrency space, the
introduction of distributed trust ledgers like Bitcoin and its flexible
cousin Ethereum [5] promising user-programmable smart contracts

have brought an incredible explosion in the the localized ecosys-
tem of distributed trust on distributed ledgers and blockchains.
Ethereum, in particular, promises the ability simply write a smart
contract in the straightforward form of code, and such code is im-
mediately deployable and imbued with all the security guarantees
of executing on the decentralized ledger, and the cryptocurrency
community has quickly utilized this primitive to construct the af-
fectionately named “Web 3.0.”

We can infer from this history that the desire to implement and
deploy distributed trust systems is present, just that the barriers to
develop and deploy distributed trust render distributed trust to be
not yet accessible to the average developer. While companies like
Apple and Google have plenty of resources to develop in-house,
polished, production-ready solutions to be deployed at a global
scale, such resources and expertise aren’t available to the average
individual or even small corporations.

A prime example of this is in Signal’s key recovery. While Sig-
nal offers strong guarantees for the security of locally-stored chat
messages [31–33, 36], its strong levels of protection also mean that
the client device, as the only trusted piece of hardware, is a single
point of failure, and if the client device is damaged or destroyed,
there is no way to recover the secret information stored on the
device. This is a non-ideal property for the end-user of Signal, and
the problem ultimately stems from the fact that Signal, as a single
domain of trust, cannot be individually trusted to store the user’s
chat messages securely. While Signal has explored and deployed
a weaker form of distributed trust in the form of secure enclaves,
which create a trusted execution environment (TEE) that can only
be tampered with or impersonated by the hardware manufacturer
(Intel in the case of Intel SGX [22]), such solutions present scalabil-
ity issues and require proprietary hardware in order to implement.
Distributed trust applications, by contrast, present intuitive solu-
tions which can be implemented with incredibly simple protocols
on just about any hardware, but the ease of access for distributed
trust applications is simply not yet there.

While much work on distributed trust protocols and applications
has focused on the lowering the theoretical barriers to deploying dis-
tributed trust, such as reducing the computational cost or required
network bandwidth to levels that are reasonably implementable,
little work has been done to explore the practical barriers of devel-
oping distributed trust applications. The main efforts in this area
have been Dotme [24], focusing on orthogonal issue of generat-
ing independent trust domains in the first place using on-demand
cloud functions, and the DoTS platform, a proposal to build out
a developer toolkit for developing distributed trust applications.
We focus our efforts on the latter in order to bring performance
and ease-of-use improvements to the developer and performance
improvements to the end-user.

https://orcid.org/0009-0002-4148-8164

University of California, Berkeley, Berkeley, CA Nicholas Ngai

Intel SGX Distributed Trust
Application SGX applications Distributed trust applications

Developer SDK Intel SGX SDK DoTS
Security Primitive SGX hardware instructions Multiple trust domains

Figure 1: The role of DoTS as a bridge between the security “primitive” of trust domains and the high level logic of an application,
with comparisons to Intel SGX.

Due to the human-focused and implementation-focused nature
of this work, this paper will draw both from expertise on the theo-
retical side of distributed trust applications, identifying their needs
and solutions to address those needs, and from practical experience
and observations regarding how developers approach the develop-
ment of other kinds of applications, such as simple web applications
or Intel SGX applications. These such applications all share in com-
mon the existence of libraries that “just work” out of the box for
developers to use, such as Node.js’s Express library [42], Go’s Gin
web framework [43], the Intel SGX SDK [23], and the Open Enclave
SDK [8]. With a these existing, successful frameworks in mind, the
goal of this work is to flesh out and describe design details of an
implementation of the DoTS platform that bring this out-of-the-box
functionality to DoTS.

2 PRELIMINARIES
As the original DoTS prototype our updated design and implemen-
tation both depend on the same ideas and initial vision, we start by
discussing here the core principles and modeling shared by both
designs.

2.1 Guiding Principles
Ourwork in developing the updated DoTS platform has been guided
largely by two principles:

(1) Low barrier to entry. For developers to use a new platform,
it must be easy to begin rapidly developing distributed trust
applications using that platform. In particular, we highlight
language agnosticism, allowing developers to write their ap-
plication in any language rather than forcing a particular
language.

(2) High performance. The performance cost of building ap-
plications must be low compared to “rolling your own in-
frastructure.” We assume that the network is the biggest
bottleneck in distributed trust communications and ensure
that the overhead introduced by relying on the platform
to perform communications is minimal. Additionally, the
platform should provide the ability to support multiple con-
current requests at a high throughput.

Lowering the barrier to entry is, of course, our primary goal
with the platform, and we accept that enabling nicer abstractions
and offloading infrastructure to a third-party platform comes with
performance overheads. However, this trade-off should be minimal
at best in order to respect our performance principle.

2.2 Threat Model
In the world of distributed trust, parties are segregated into separate
trust domains (TDs), and the relationships of the TDs must obey

the property of isolation: No TD is able to influence the decisions
or behavior of other TDs. This is often implemented by choosing
multiple cloud vendors to run distributed trust applications upon or
hosting a single computing node on trusted hardware to establish a
trusted TD, regardless of the behavior of other, potentially malicious
TDs.

Establishing true isolation between TDs is a complex principle to
analyze due to the human nature of business relationships between
entities, we but consider these human factors out of scope and
focus only on technical isolation for our purposes. Without loss of
generality, we model each trust domain as consisting of a single
host server running the DoTS platform and any number of DoTS
applications. For this host server to be an isolated trust domain,
it must be independent from the host servers of all other trust
domains, and we assume no information is communicated between
host servers except through the standard communication channels.
To obey technical isolation, instances of the DoTS platform running
on different TDs must not trust each other, and the compromise of
one server instance must not lead to the compromise of others.

Additionally, we also provide for the option for multiple, un-
trusting applications to share the same DoTS network. Thus, we
assume that all applications running on the platform may be mali-
cious and may collude, including across trust domains. As a result,
applications must also be isolated from one another, such that the
malicious compromise of a set of applications does not affect the
correct behavior and security of other, honest distributed trust
applications running on the same network. Due to the potential
multi-tenant nature of applications on the DoTS platform, there is a
possibility of side-channel leakage of information from one app to
another. While there is a long line of research in both the execution
of and defense against such side channels [21, 27, 28, 30, 45, 46, 49],
we do not consider these in scope for our design and consider only
the direct attacks an application could perform against the platform
itself.

Finally, single points of trust may extend beneath the DoTS
platform to software and hardware such as the underlying operating
system or networking hardware. A simple example of this is the
Linux kernel: If two TDs’ host servers both execute the Linux kernel
as part of their operating systems, this means that a vulnerability in
or a compromise of the Linux kernel source tree would lead to both
TDs being compromised, simultaneously. Attacks on the software
supply chain pose a real threat to underlying software points of
attack, such as in the notorious SolarWinds hack [40].

While it is ultimately up to the TDs to ensure their hardware
and software resources are as isolated as possible from other TDs
(perhaps by minimizing the shared base of hardware and software
resources), the DoTS platform must account for this by ensuring
that its functionality isn’t bound to specific third-party resources,

Enabling Non-Experts to Develop Distributed Trust Applications University of California, Berkeley, Berkeley, CA

so that these resources may be swapped out integerchangably. We
discuss our computing model more extensively in §2.4.

2.3 Networking Model
We assume that all servers within a DoTS networkmay directly com-
municate with one another over some form of network link. Since
servers in different trust domains will almost certainly communi-
cate over the wider Internet, this is equivalent to the assumption
that all servers within a DoTS network are directly reachable over
the Internet. Similarly, a DoTS client must be able to communicate
directly with all servers within the network in order to execute
a request. Several techniques are available which allow network
traffic to be tunneled to an otherwise unreachable destination, from
direct proxying techniques to onion services hosted over the Tor
network [12]. We do not consider or evaluate these techniques as
part of this paper, though proxying work may be the subject of
future work.

2.4 Computing Model
The DoTS platform is designed to be run on a variety of hardware,
rather than being compiled and targeted for a single instruction set
architecture such as x86-64 or ARM to reduce the centralization of
trust on these specific hardware vendors. All protocols and software
are designed and written to be compatible between hosts running
on different platforms.

Analogously, our server application relies extensively on a POSIX-
compliant environment in order to provide basic functionality such
as inter-process communication (IPC) and process isolation. It is
tempting to use more Linux-specific features of the operating sys-
tem to provide improved performance, and we recognize that Linux
is the most widely used POSIX-compatible operating system in the
server environment, but this leads the Linux kernel source tree
to be a potential single point of attack. As a result, we constrain
ourselves to the POSIX programming model rather than relying on
specific features provided by the Linux kernel.

With hardware- and OS-independence, the ideal situation would
be for independent TDs to run the DoTS platform on completely
separate hardware architectures and operating systems, to reduce
the base of trusted code that must be shared between all TDs.

Finally, the DoTS platform itself is compiled with reproducible
build techniques in order to ensure that the path from source code
(which can be verified by independent review) to compiled binary
is reproducible. Techniques to mitigate attacks on source code dis-
tribution by means of distributed trust are discussed extensively in
[10].

2.5 Application Model
We model a distributed trust application in two halves: the appli-
cation client and the application servers. The client is trusted by
the user, and each TD has exactly one instance of the application
server. Application servers expose a set of possible RPC functions
calls, typically with one function corresponding with an action the
application client can take, analogous to the client and server model
in HTTP.

A request in a distributed trust application as a set of unary
function calls, one to each the host server in each TD, in the DoTS

network. Each server handles a single function call, does some
distributed processing, potentially involving communication with
other servers in other TDs, and returns a single response.

For example, the application server in a simple semi-honest dis-
tributed trust file storage application would provide the following
functions:

• Store(id, shard): Store shard under the ID id. Perform MPC
with the other servers to ensure that the set of all shards
received by all servers are shards of a valid file.

• Load(id): Return the shard for ID id to the client.

This is a general model of distributed trust applications that is
able to account for a large number of applications, though it requires
a set of several, sequential unary application calls in order to model
distributed trust applications where the client must be an online
participant in the protocol with several rounds of communication
between the client and the servers. Bidirectional streaming RPCs
supported by gRPC [20] may be a future method of implementing
these protocols with online clients, thoughwe reserve this for future
work.

3 DOTS’S INITIAL PROTOTYPE
In order to gain an understanding of the base system we aim to
improve, we now describe briefly the original prototype designed
by Tan and Kaviani.

3.1 Clients and Servers
The DoTS prototype utilizes a gRPC [20] client and server to com-
municate. To execute an application, the client invokes an Exec
gRPC call to express which application hosted by the DoTS server it
wishes to execute, along with the name of the function it wishes to
invoke. In order to provide input and output, the client may choose
to upload and retrieve “blobs” to and from the server’s filesystem,
and file descriptors to these input and output files are passed to the
application when the client specifies it.

3.2 Application Invocation
Applications in the DoTS prototype are modeled as stateless, de-
terministic functions in the form of one-shot application binaries
which are executed, using the input FDs as input and outputting its
results to the output FDs. Since an application may comprise several
functions, the function name is additionally passed to the applica-
tion, which would is read by the application binary to determine
what function it should perform.

In order to provide server-to-server communication, each in-
vocation of an application begins with a process of establishing
TCP connections to all other servers in the DoTS network before
executing the application binary. Once the connections have been
formed, the application binary is executed and passed, in addition
to the input and output FDs, FDs corresponding to the TCP sock-
ets themselves. The application may use low-level send and recv
system calls in order to communicate with other servers, which
provides efficiency equivalent to if the application had established
the TCP connections itself.

University of California, Berkeley, Berkeley, CA Nicholas Ngai

3.3 Design Issues and Roadmap for
Improvement

With this initial prototype design, we identify three primary areas
for improving both the usability and the performance of a the DoTS
platform:

The UploadBlob-Exec-RetrieveBlob paradigm results in high la-
tency in function calls and race conditions. Because the original
prototype did not allow for arguments in the Exec gRPC call, the
only way to provide transient inputs for an application function
(i.e. function arguments) was to specify those arguments as blobs
uploaded in a previous UploadBlob gRPC call. While persistent
storage is a key issue that the DoTS platform should address, its
use as function arguments and outputs means that a minimum of
3 RTTs are required in order to execute any function with inputs
and outputs. Additionally, no atomicity guarantees are provided for
these inputs and outputs, resulting in potential race conditions for
two clients attempting to invoke the same function at the same time,
using the same filenames for their input/output blobs. A simple
way to address these issues is to provide a mechanism to specify
function inputs and retrieve function outputs within the Exec gRPC
call itself.

The socket-passing communication mechanism provides a non-
intuitive server-to-server communication primitive, lack of flexibility
in transport protocols, and lack of scalability. While TCP sockets
and stream sockets in general are a powerful primitive for ensuring
that a stream of data is sent and received correctly, it is less use-
ful in developing distributed trust applications. The most popular
distributed communications interface today is a message-passing
interface titled as such [17], which allows callers to send and re-
ceive individual messages across different servers in the network,
with the message received depending on the “tag” specified in the
receive call, which must match an accompanying send call’s tag.
Because messages within an given tag are ordered, MPI effectively
multiplexes multiple ordered streams of messages onto a single
TCP connection stream, which is work that the application devel-
oper would have to implement themselves in order with the basic
TCP-socket-passing interface.

The socket-passing interface presents other issues. Because sock-
ets are merely a networking abstraction of TCP provided by the
operating system, there no way to pass an equivalent “TLS socket”
to the application without considerable and unnecessary effort on
behalf of the platform. Additionally, because the original design re-
quired invocation of application to perform its own TCP handshake
and maintain its own TCP connection, the system would fail to
maintain more applications invocations than the number of ports
available on the system, typically around 16,384.

To solve these issues, we elect to provide a message-passing
interface directly to the application communicated through a single
control socket to the DoTS platform, exposed with a thin wrapper
around low-level operations on this control socket. This enables
the platform to maintain a single set of connections with other
platform instances on other servers while handling any number
of application invocations at once due to a flexible multiplexing
protocol.

4 SYSTEM OVERVIEW
A distributed trust application running atop the DoTS platform is
composed of three primary components:

• The platform server. This is a daemon that runs on sev-
eral nodes, which directly communicate with each other
to provide core functionality to applications such as node
communication and synchronization.

• The application server. This is a daemon running on the
same node as the platform server, written by the application
developer and integrated with the platform server using a
low-level protocol or dedicated library.

• The application client. This is a client that communicates
with the application server by issuing gRPC [20] calls through
the platform server.

We note that we do not currently include an analogous platform
client library. We believe that providing the protocol buffer defini-
tions and their associated gRPC function definitions is sufficient
to develop a client application, since gRPC stubs can be created
automatically using code generation available with protocol buffer
compilers, and the work needed to implement a gRPC client that
makes several concurrent calls to several gRPC servers is minimal
enough and dynamic enough depending on the application that we
consider it sufficient to offload that work to the developer.

The key aspect of this DoTS platform design is the separation
between the platform server and the application server, which
serves two purposes. First, it offloads key tasks such as message
passing, request handling, and output buffering off to the platform
server, rather than relying on the developer to correctly design and
implement these functionalities on their own. Second, it allows for
the modularity of application and platform server code, allowing
multiple different applications to share the same networking stack
and the same hardware across multiple trust domains, which makes
it easier for distributed trust app developers to deploy their apps to
multiple, pre-existing trust domains rather than requiring them to
set it up from scratch.

For the platform server and application server to communicate,
they set up a Unix-domain socket known as the control socket in
order to pass control messages back and forth. The protocol used
to communicate through the control socket is described in detail in
§6.

A typical client-server DoTS platform request follows the fol-
lowing steps:

(1) The application client makes a unary gRPC call to each server
part of a DoTS network, including the application it wants
to call, the function it wishes to invoke, and any arguments
to be passed to the application server function.

(2) The platform server receives this gRPC call and forwards
the function name, arguments, and client details to the ap-
plication server through a UNIX-domain socket.

(3) The application server handles the client’s request. As needed,
it calls into the platform server through the control socket
socket in order to perform communication between other
nodes’ application servers and other miscellaneous tasks.

(4) The application server provides its output to the platform
server through the control socket.

Enabling Non-Experts to Develop Distributed Trust Applications University of California, Berkeley, Berkeley, CA

(6)

Client

TD1

TD2

TD3

Platform Server

Platform Server

Platform Server

App 1

App 2

App 3

App 1

App 2

App 3

App 1

App 2

App 3

(1)

(1)

(1)

(2)

(2)

(2)

(3)

(3)

(3)

(3)

(3)

(4)

(4)

(4)

(5)

(5)

(5)

Figure 2: A walkthrough of the steps involved in a DoTS
request and response. (1) The application client makes a
request to all servers in the DoTS network. (2) The platform
server forwards the request to the appropriate application
server. (3) The application server may make various calls
the platform server in order to perform communication or
other platform functions. (4) The application server provides
its output to the platform server. (5) The platform server
forwards the results back to the client. (6) The client performs
local computation from the servers’ responses to produce
the final result.

(5) Once the application server signals that it is finished process-
ing its task, the platform server returns the gRPC response
back to the client containing the application server’s result
code and output.

(6) Once the client receives all gRPC responses from the plat-
form servers, it performs any final local computation in order
to produce the final result.

An illustration of these steps is provided in Figure 2.

5 PLATFORM SERVER ARCHITECTURE
We now describe in detail the design and construction of our DoTS
platform server.

−−−
pee r_b ind_add r :
p e e r _po r t : 51000
p e e r _ s e c u r i t y : t l s

g rpc_b ind_addr :
g r p c_po r t : 50050
g r p c _ s e c u r i t y : t l s
g r p c _ t l s _ c e r t _ f i l e : s n ak eo i l − c e r t . pem
g r p c _ t l s _ c e r t _ k e y _ f i l e : s n ak eo i l −key . pem

f i l e _ s t o r a g e _ d i r : . / f i l e s

l i m i t s :
app_msg_buf fe r_megabytes : 1024
a pp _ r e s t a r t _ t imeou t _ s e c ond s : 1
app_max_ r e s t a r t s : 10

nodes :
sky :

addr : sky . c s . b e r k e l e y . edu : 5 1 0 0 0
r i s e :

addr : r i s e . c s . b e r k e l e y . edU : 5 1 0 0 0
p e e r _ t l s _ c e r t _ f i l e : r i s e − c e r t . pem

apps :
s k r e cove ry :

path : . / a p p l i c a t i o n s / s k r e cove ry / a . out
s i g n i n g :

path : . / a p p l i c a t i o n s / s i g n i n g / a . out

Figure 3: A sample configuration file for the DoTS platform
server, written in YAML.

5.1 Configuration and Initialization
The behavior of the platform server is principally governed using
a configuration file, an example of which is given in Figure 3. The
configuration defines the peer nodes in the network that it should
establish connections with, configuration parameters for the con-
nections themselves, and definitions for the application servers it
should spawn and manage.

Upon initialization, the application server establishes TCP con-
nections with other nodes present in its configuration file. All nodes
within a network are expected to be configured with the same
peers, so other nodes will be establishing such connections with all
other nodes in the network to form a complete graph of pairwise
connections. The use of these connections is detailed in §5.2, and
establishing security over these connections via TLS is described
in §5.3. Since a node acting as a TCP listener may not be able to
identify several TCP clients connecting at the same time, the first
message the client sends to a TCP listener is its gob [19]-encoded
node ID, which the server uses to identify the client at the other
end of an incoming connection.

This initialization routine additionally includes spawning the
application servers and establishing connections with them using

University of California, Berkeley, Berkeley, CA Nicholas Ngai

control sockets. The platform server additionally automatically
waits on the spawned application processes as its children waiting
on them to reap them if they crash due to an application bug or
malicious behavior and restarting them as needed. A configurable
restart count and restart delay is available to administrators in order
to prevent a malicious application from immediately crashing and
and being restarted in order to consume resources.

5.2 Message-Passing Over TCP
The stream abstraction provided by the established connections
is used to execute a simple message-passing protocol used by ap-
plications and various aspects of the platform itself. The design
we borrow from is heavily inspired by the Message Passing Inter-
face [17], a standardized interface used to implement distributed
systems using message-passing techniques. For now, we implement
only basic point-to-point communication with Send and Recv, anal-
ogous to MPI’s MPI_Send and MPI_Recv, and messages may be
sent and received in any order by attaching a tag to each sent mes-
sage, with each corresponding receive specifying the tag for which
it wants to receive a corresponding message.

We implement this basic point-to-point communication by seri-
alizing the stream of messages along the established connection,
which are subsequently deserialized and handled by the receiving
platform server. As of now, all servers are implemented using the
same programming language, Go, so we utilize the gob serialization
and deserialization protocol [19] in order to implement this stream
of messages. We leave to future work to construct a more general
protocol that works across languages to enable the prospect of
multiple independent implementations.

Because servers located in different TDs likely communicate
with each other over the wider Internet, where network latency
is likely to dominate over additional latency imposed by excess
memory copies or communicating the received data through IPC
to application servers, so we choose to implement full buffering of
messages on the receiving end rather than imposing the “ready send”
mechanism of traditional MPI, where the send may block until the
receive has posted. This makes the development of platform server
features easier and provides a more programmer-friendly API for
application developers, as both application may simply execute a
Send followed by a Recv.

In order to prevent a malicious application or malicious platform
server peer from consuming an unbounded amount of memory by
posting many Send operations without a corresponding Recv, mes-
sages are separated into one or more communicators, where each
communicator provides the Send and Recv interface to its caller.
The platform server itself uses a single communicator (the plat-
form communicator) for exchanging messages between the platform
servers themselves, and each application server is allocated a single
communicator (the application communicator) for its application-
specific communication.

Communicators are responsible for the accounting of how much
data has been buffered at a given time, implemented using atomic
add and subtract operators when buffering a received message
and removing a received message from the buffer. If the buffered

message size increases past a configurable value, the communicator
is destroyed, and any users of the communicator are terminated.1

5.3 Server-to-Server TLS
In order to secure platform and application communications against
a malicious network fabric, we provide a configuration option to
use TLS with mutual authentication [37] over the existing TCP
connections established during the initialization phase. In a mutu-
ally authenticated TLS connection both parties present their TLS
certificates as part of the TLS handshake, rather than simply au-
thenticating the server in standard TLS.

By default, the TLS authentication mechanism uses standard
DNS-based authentication described in [39] and authenticates by
establishing a chain of trust to the root certificate authority (CA)
pool present by default onmost systems. Asmentioned in §5.1, since
the TLS listener may not be able to identify the client until after
the handshake completes, so the TLS client will verify the listener’s
TLS certificate during the TLS handshake, and the TLS listener
will verify the client’s TLS certificate only after the client has sent
its node ID, with which the server can look up the configured
hostname for that node ID. If verification fails, the listener aborts
the connection.

We recognize, however, that this scheme establishes CAs as a
central point of attack, since they may accidentally or maliciously
issue false certificates used to conduct a MITM attack on the these
TLS connection. Techniques to provide certificate transparency
and auditing and reduce the burden of CAs as a central point of
attack are a subject of extensive research [29], and we leave this as
future work for now. As a stop-gap measure, we provide a mecha-
nism to pin the certificates used to establish these TLS connections
rather than relying on certificates signed by central authorities,
and operators of the DoTS platform server instance may choose to
communicate these pinned certificates out of band if they choose.

5.4 Client-to-Server TLS
Analogously to the server-server connection security in the previ-
ous section, we also provide a configurable option to secure gRPC
requests using TLS. gRPC supports server authentication using TLS
natively [20], and we simply expose that as a configurable option
to server operators. It is up to the application developer to decide
how to authenticate these TLS certificates on the client, since these
authentication mechanisms can vary greatly, and we provide no
client library beyond those automatically generated from the gRPC
definitions, which expose all necessary functionality automatically.

6 APPLICATION ARCHITECTURE
Applications within the DoTS platform are written by application
developers building on top of resources provided the DoTS platform
and project itself. These applications are generally composed of 2
parts: the application client and the application server. Analogously,
developers using the DoTS platform are provided two main reposi-
tories of material to build upon: the application client gRPC library,
1In the future, in the case of a malicious platform server instance sending many
messages in order to consume a large amount of memory, we would like to simply
disconnect this node from the network and inform applications of the updated network
topology. This is not supported as of now, and the platform server itself will simply be
terminated. This is fine since we rely on other platform servers for availability.

Enabling Non-Experts to Develop Distributed Trust Applications University of California, Berkeley, Berkeley, CA

s e r v i c e DecExec {
rpc Exec (App) r e t u r n s (R e s u l t) { }

}

message UUID {
f i x e d 6 4 h i = 1 ;
f i x e d 6 4 l o = 2 ;

}

message App {
UUID r e q u e s t _ i d = 7 ;
s t r i n g app_name = 1 ;
s t r i n g func_name = 3 ;
r e p e a t e d by t e s a r g s = 8 ;

}

message R e s u l t {
i n t 3 2 code = 3 ;
by t e s ou tpu t = 2 ;

}

Figure 4: The Protocol Buffers gRPC definition for the Exec
RPC.

called dotspb [14], to execute requests to the platform servers and
the application server library, called libdots [15], for the application
server to interact with the platform server. We go into the design
of the client dotspb library in §6.1, the design of the server libdots
library communication which exposes platform functions and com-
munication functions in §6.3, and the low-level protocol used by
libdots to communicate directly with the platform server in §6.3.

6.1 Client gRPC Library: dotspb
dotspb (short for DoTS Protocol Buffer) is the repository that exposes
Protocol Buffer and gRPC definitions to application developers. De-
velopers are expected to use these definitions in order to construct
application clients using these gRPC definitions, and we currently
provide vendored versions of these generated gRPC clients and
servers for Go, using Google’s own protoc-gen-go [4], and for
Rust, using tonic [7].

The main RPC call that we expose is the Exec call, taking as
input an App containing the request ID, app name, function name,
and function arguments and returning the bytes in the output. The
schema definition in the proto3 format is given in Figure 4. The
design of these input arguments and outputs was chosen to mirror
the development of a standard command-line application, which
typically takes as input a number of command-line parameters in
the form of strings (the argv arguments to the main function in a
standard C program) and outputs a stream of bytes to the standard
output of the application, so that application developers are familiar
with this input/output interface. Application clients that want the
ability to control the structure of their inputs more precisely may
use any validation and structuring of their inputs as they desire
(for example, using their own protobuf definition and deserializing
the string of bytes immediately upon receipt of the request).

6.2 High-Level Server Application Library:
libdots

libdots is a librarywhich the application server uses to communicate
with the platform server, in order to provide core functionalities
needed by many distributed trust applications. It is difficult to
altogether avoid code that must be written, compiled, and loaded
into the application server binary itself, so in order to come as close
as possible to maintaining our goal of language-agnosticism, we
set the following objectives:

(1) Constrain libdots to be as small as possible, preferring to
offload any functionality to the platform server itself where
possible.

(2) Write the libdots library in C in order to be as portable as
possible. Compiled C code can often simply be imported into
many languages using foreign function interfaces (FFI).

(3) Establish a well-documented protocol which libdoes uses to
communicate with the platform server through the control
socket so that a native version of libdots may be easily im-
plemented in other languages. This is the reference given in
§6.3.

The job of the application-platform interface is to provide three
key functionalities: environment initialization and deinitialization,
request handling, and communication of application servers across
different servers/TDs. Our interface, is, in turn, broken down into
three main parts: the environment API, the request handling API,
and the communications API. We now describe in detail the design
of these APIs in the C language.

6.2.1 Initialize Runtime.

in t d o t s _ i n i t (void) ;

This function must be the first function called by the applica-
tion in order to initialize the libdots runtime retrieve the startup
environment for the application server. Currently, the environment
consists of two values: The number of servers in the DoTS network
(the “world size”) and the index of the current server (the “world
rank”) between 0 (inclusive) and the world size (exclusive).

After this is called, all other libdots functions may be called.
It returns 0 upon success and a negative error value upon failure.

6.2.2 Get Environment Parameters.

s i z e _ t do t s _ge t _wor l d_ r ank (void) ;
s i z e _ t d o t s _ g e t _wo r l d _ s i z e (void) ;

These functions return the rank of the current DoTS node (be-
tween 0 and the world size minus 1) and the total number of nodes
in the DoTS network, respectively.

6.2.3 Deinitialize Environment.

void d o t s _ f i n a l i z e (void) ;

This function should be called immediately before the program
exits. It frees memory allocated by dots_init and indicates to the
platform server that the application is about to shut down cleanly.

University of California, Berkeley, Berkeley, CA Nicholas Ngai

6.2.4 Accept Request.

in t d o t s _ r e q u e s t _ a c c e p t (d o t s _ r e q u e s t _ t ∗ req) ;

This function blocks until a request is received from a client. It
populates the request information in req.

The fields of the dots_request_t struct are directly accessible
and provide to callers the values of the request ID, the called func-
tion name, and the function arguments. These function arguments
are provided in terms of pointer-length pairs to represent the raw
bytes passed by the clients.

The bytestring arguments are additionally guaranteed to be fol-
lowed by a NULL byte, one byte past the end of the length of the
buffer. This means that an application that wishes to use its argu-
ments as NULL-terminated string arguments can directly use these
arguments without having to copy them to a new buffer and man-
ually NULL-terminate them. Because it length of the arguments
themselves aren’t affected, arguments in the form of raw bytes are
not affected by this optimization.

It returns 0 upon success and a negative error value upon failure.

6.2.5 Output Bytes.

in t do t s _ou t pu t (d o t s _ r e q u e s t _ t ∗ req ,
const unsigned char ∗ data ,
s i z e _ t d a t a _ l e n) ;

This function outputs data_len bytes starting from data to the
output stream of the request req.

It returns 0 upon success and a negative error value upon failure.

6.2.6 Output Formatted String.

in t d o t s _ o u t p u t f (d o t s _ r e q u e s t _ t ∗ req ,
const char ∗ fmt , . . .) ;

This function evaluates the format string given by fmt with
the additional arguments passed to the function and writes the
resulting string to the output stream of the request req, excluding
the terminating NULL byte.

While this function isn’t strictly necessary and thus violates
our principle of minimizing the size of libdots as much as possible,
it provides an extremely convenient abstraction to programmers
looking to program an application server in C.

It returns 0 upon success and a negative error value upon failure.

6.2.7 Finish Request.

in t d o t s _ r e q u e s t _ f i n i s h (d o t s _ r e q u e s t _ t ∗ req ,
in t code) ;

This function indicates to the platform server that the request
has finished processing the request req and may return any out-
put, along with the provided result code. This function does not
deallocate any resources, and req may still be accessed after this
function is called. The reason for this separation is that we do not
want deallocation to happen in a function that can potential return
an error.

It returns 0 upon success and a negative error value upon failure.

6.2.8 Deallocate Request.

in t d o t s _ r e q u e s t _ f i n a l i z e (d o t s _ r e q u e s t _ t ∗ req) ;

This function deallocates resources allocated by dots_request_accept
in the request req. Note that this function does not automatically
call dots_request_finish, and both functions must be called for
the correct handling of a request.

6.2.9 Send Message.

in t dots_msg_send (d o t s _ r e q u e s t _ t ∗ req ,
const void ∗ buf , s i z e _ t len ,
s i z e _ t r e c i p i e n t , in t t ag) ;

This function sends len bytes starting from buf from the current
application instance to the recipient with the given rank recipient
and message tag tag. If req is non-NULL, the message is associated
with the given request and can be received with dots_msg_recv
calls associated with the same request. Else, if req is NULL, the
message is sent independent of any request and can be received
with dots_msg_recv calls also passed a NULL request.

If multiple messages are sent with the same req and tag, these
messages will be strictly ordered, such that the first sent message
will always be received before the second sent message.

Unlike the familiar MPI_Send that programmers might be fa-
miliar with, this is a fully buffered send that returns immediately
without blocking. Details of this buffering are described in detail in
§5.2, since this is the underlying message passing mechanism on
the platform server.

This function returns 0 upon success and a negative error value
upon failure.

6.2.10 Receive Message.

in t dots_msg_send (d o t s _ r e q u e s t _ t ∗ req ,
const void ∗ buf , s i z e _ t len ,
s i z e _ t r e c i p i e n t , in t tag ,
s i z e _ t ∗ r e c v _ l e n) ;

This function receives a maximum of len bytes into a buffer
starting at buf from the sender with rank sender and message tag
tag. The actual number of bytes received is written to recv_len.

See §6.2.9 for more details about the corresponding send API,
which also describes how messages are received.

This function returns 0 upon success and a negative error value
upon failure.

6.3 Low-Level Application-Platform Server
Protocol Design

We now describe the low-level protocol used to communicate con-
trol messages between the application server and the platform
server, through the Unix-domain control socket.

The general structure of these control messages is given in Fig-
ure 5. All integers are in big-endian to ensure portabilty across
platforms and to ensure independence of the protocol from the
platform itself. In general, the message is broken into 3 main parts:

• A 64-byte, structured header containing values that must be
present in every message type.

Enabling Non-Experts to Develop Distributed Trust Applications University of California, Berkeley, Berkeley, CA

Byte 0 2 4 6
0 Message ID
8 Response Message ID
16 Type Payload Length
24 Request ID
32
40
48
56
64

Body

72
80
88
96
104
112
120

Figure 5: Layout of a control message read from and written
to the control socket by the platform and application servers.

• A 64-byte body whose structure depends on the type of the
message.

• A variable-length payload whose length is defined by a value
in the header and whose interpretation also depends on the
type of the message.

The reason for the distinction between a message body and
a message payload is two-fold. First, ensuring that a relatively
large, pre-allocated space for bits that can be interpreted differently
depending on the message type means that, for most message types,
only a single recv system call needs to be made, rather than forcing
the usage of two distinct recv calls for every single message in order
to receive a payload containing type-specific information. Second,
including the message payload as a “first-class” member of request
keeps the critical path between reading the fixed-sized portion of
the message (the header and body) as short as possible, rather than
requiring relatively expensive logic to parse out the payload length
before the bytes of the payload can be received. Because reading
the message header and body and reading the payload must happen
in a single, atomic action requiring a lock, keeping this critical path
as short as possible is ideal in a multi-threaded environment.

Table 1 lists the valid control message types as well as interpre-
tations of the message body and payload in those specific message
types. The name of the message type is given, integer value of the
type encoded in the type field of the message header and interpre-
tation of the bits in the message body and payload.

For messages marked as triggering a response, we refer to the ini-
tial message as the trigger message, and we refer to the message sent
in response (the message type suffixed with _RESP) as the response
message. This response message will have the trigger message’s
message ID in the Response message ID field of the message in
order to identify which message it is in response to.

For each trigger message, at most one response message will
ever be sent. In single-threaded contexts where at most one trigger
message will be sent at a time, it is sufficient to expect that the
next received message will be the response message when receiv-
ing from the control socket. However, in multi-threaded contexts,

where multiple trigger messages may be sent at once before re-
sponses are received, response messages may not necessarily be
received in the same order as the corresponding trigger messages
are sent. Because at most one thread should receive from the control
socket at a time, the control message receive handler must imple-
ment a simple buffering mechanism to buffer response messages
intended for other threads. This buffer need not be any larger than
the larger possible number of outstanding trigger messages await-
ing a response, typically equal to the number of program threads
in the application.

7 IMPLEMENTATION
Our implementation of the DoTS platform is separated into 3 repos-
itories: dots-server [16] containing the platform server implmen-
tation, libdots [15] containing the application server library (§6.2),
and dotspb [14] containing the client application protos and ven-
dored Go and Rust generated clients and servers.

Our server consists of ∼1.6k source lines of code (SLOC) in Go,
and our libdots implementation consists of ∼670 SLOC in C, as
counted by CLOC [9]. We describe the implementation of several
distributed trust apps in detail in §8.1, as we consider ease of im-
plementation as a core evaluation metric of this project.

8 EVALUATION
In this section, we answer the following questions to evaluate
whether our redesign of the DoTS platform satisfies the two objec-
tives posed in §2.1: 1) Does the DoTS platform improve the relative
ease of programming distributed trust applications?, and 2) Does
the DoTS platform provide a level of performance comparable to
that of designing an ad-hoc networking stack and encryption layer?

To answer both of these questions, we implemented two dis-
tributed trust applications, semi-honest secret key recovery using
Shamir’s secret sharing [41] and (𝑡, 𝑛)-threshold ECDSA signatures
based on the Gennaro & Goldfeder (CCS ’20) [6], both in Rust. For
the former, we implemented the protocol from scratch using ellip-
tic curve primitives provided by the elliptic-curve crate [2] to
evaluate the effort needed to implement a small-scale distributed
application from scratch, and for the latter, we pulled an off-the-
shelf GG20 implementation [47] to evaluate the effort needed to
connect an existing MPC library as a DoTS server application.

Finally, to evaluate the complexity of porting an existing, large-
scale MPC library with a large, pre-existing networking codebase
to the DoTS platform, we additionally ported the MP-SPDZ frame-
work [25] to be implemented as a DoTS application server and ran
the default tutorial MP-SPDZ application as well as the more
complex aes and hmac applications.

8.1 Ease of Use
We aim to answer the first question by counting source lines of
code (SLOC) needed to produce each of the three resulting DoTS
applications. To do this, we use CLOC [9] to count the lines of code
needed to implement the secret key recovery and (𝑛, 𝑡)-threshold
ECDSA applications, which counts lines of code without including
blank lines or comments. For MP-SPDZ, we use a combination of
CLOC and the functionality provided by git diff in order to count
the number of lines of code changed needed to port MP-SPDZ to

University of California, Berkeley, Berkeley, CA Nicholas Ngai

Name Numeric Type Sender Body Values Payload Contents Triggers Response?

MSG_SEND 2 Application recipient (32), tag (32) Message data
MSG_RECV 3 Application sender (32), tag (32) *
MSG_RECV_RESP 4 Platform Message data
OUTPUT 5 Application Output data
REQ_ACCEPT 6 Application code (32) *
REQ_ACCEPT_RESP 7 Platform Request data
REQ_FINISH 8 Application

Table 1: Table of control message types used by libdots to implement communication with the platform server. The Sender
column indicates whether the control message is sent from the application to the platform or from the platform to the
application, the Body Values column indicates any values present in the fixed-size message body, the Payload Contents indicates
the interpretation of the data stored in the message payload, and the Triggers Response? column indicates whether this kind of
message triggers the other party to send a corresponding message of same type suffixed with the _RESP suffix.

use DoTS as a transport mechanism.transport mechanism. The MP-
SPDZ source tree includes a Networking folder which we estimate
could be eliminated entirely in favor of a simple networking ab-
straction that underlyingly uses DoTS messages and calls to libdots,
so we estimate that all lines of code could be eliminated from this
folder, which we count using CLOC. Due to the way the MP-SPDZ
framework was written, it be too difficult for us to fully go through
and replace all instances of the ad-hoc networking functionality
with libdots wrappers, which is why we rely on these estimation
techniques for MP-SPDZ.

These results are given in Table 2. Overall, these data show
that the it is relatively easy to both implement new distrubted
trust applications and port existing distributed trust libraries and
frameworks to use the DoTS platform. Of the two applications
that we wrote from scratch, both were easily written in under 500
lines of code with only two source files (one for the client and
one for the server). For our porting of MP-SPDZ, the task was
more difficult with almost 500 lines of code across 44 files, but we
estimate that, had the MP-SPDZ source code implemented better
abstraction boundaries between networking and cryptographic
code, this number could have been far fewer, as few as a single file
modification and deleted extraneous files.

8.2 Performance Evaluation
We expect that using the DoTS platformwill introduce some amount
of overhead compared to ad-hoc networking code, since messages
must travel through two additional layers of IPC and an additional
layer of buffering on the receiving end in order for a message to
be passed from client to server. In order to measure the impact
of this additional overhead, we run MP-SPDZ’s implementation
of MASCOT [26] in both unmodified MP-SPDZ with its ad-hoc
networking and our port of MP-SPDZ as a DoTS application server.
These MP-SPDZ applications are run in two settings:

2This line count was generated using git diff --stat in order to count the number
of lines changed to the source code of the repository to integrate the DoTS platform
communication functionality.
3This line count was generated as the SLOC of the Networking folder, which we
estimate could be eliminated entirely when integratingMP-SPDZ as a DoTS application
server.

• A “low-latency” setting where 4 servers are located on the
same machine. The aim of this setting is to is to get a quan-
titative measurement of the absolute amount of overhead
added by the DoTS over ad-hoc networking. Here, we utilize
standard TCP connections the localhost sockets to remove
the cryptographic overhead imposed by using TLS to better
isolate the DoTS networking overhead itself.

• A “realistic” setting where 2 servers are located in geograph-
ically distinct locations. The aim this setting is to show how
much of a performance impact the DoTS platform imposes in
a close-to real-world application deployment scenario with
the introduction of latency introduced by the wider Internet.
Here, we enable TLS on the DoTS platform server connec-
tions to provide anc confideniality for the traffic flowing
across the Internet.

The software, hardware, and network link information used in
our evaluation is given in Table 3. For both settings, we compiled
and ran three of the MPC programs provided in theMP-SPDZ repos-
itory, aes [35], dijkstra_example [11], and htmac-1-1-10 [38].

Figure 6 shows the total running time of our applications on
in the low-latency setting. Even in this extreme case of removing
the inherent networking latency of the Internet entirely (a fairly
unrealistic setting given that different trust domains must almost
always be in geographically separate locations), the DoTS platform
adds only ∼47% overhead over the ad-hoc networking setup of MP-
SPDZ. Cryptographic protocols that are less sensitive to latency due
to fewer rounds of commuincation, like Yao’s garbled circuits [48]
would likely fare even better in this setting, since the throughput
of local communication is high for any form of local computation.

Figure 7 shows the running time of applications in the realistic
setting. These data show that while the DoTS platform does in-
deed add additional overhead to communication between servers,
this overhead is largely imperceptible when running distributed
trust protocols in a realistic setting, with geographically separated
servers. The difference between MP-SPDZ’s ad hoc networking
and the DoTS platform in these data is as little as 6.4% in the AES
benchmark and a 9.5% difference on average, with the positive
trade-off being that the application developer enjoys a much easier

4This is an AWS t3a.xlarge EC2 instance hosted in region us-west-1b.

Enabling Non-Experts to Develop Distributed Trust Applications University of California, Berkeley, Berkeley, CA

Application Language Lines Added Lines Removed Files Changed

Secret Key Recovery Rust 485 — 2
(𝑛, 𝑡)-Threshold ECDSA Rust 435 — 2
MP-SPDZ C++ 4892 2,6113 44

Table 2: Lines of code needed to implement and/or port distributed trust applications to an application server on the DoTS
platform. The Files Changed column counts only source files, not including metadata files such as dependency management or
version control files.

ID Processor Memory OS Downlink (Mbps) Uplink (Mbps) RTT - Server 0 (ms) RTT - Server 1 (ms)

0 AMD Ryzen 5 5600X 64 GB Debian 11 513.40 362.98 — 8.478
1 AMD EPYC 75714 16 GB Ubuntu 22.04 605.70 373.63 8.478 —

Table 3: Evaluation hardware, software, and network setup.

aes dijkstrahtmac-1-1-10
0

2

4

6

Ex
ec
ut
io
n
Ti
m
e
(s
)

Ad Hoc networking
DoTS application

Figure 6: Running time, in the low-latency, local setting, of
MP-SPDZ applications as a standalone binary using its own
ad hoc networking library as a DoTS server application.

development and deployment experience as shown in the previous
section.

We note that our realistic testing methodology still provides a
quite liberal estimate of the overall incurred overhead of the DoTS
platform, since the two servers used in our testing are geographi-
cally close (one in Berkeley and one in Northern California) with a
relatively low RTT. A higher RTT between the two servers would
likely decrease the perceivable effect of the overhead incurred by
the DoTS platform even further.

9 RELATEDWORK
While the line of distributed trust research and spans many differ-
ent fields of study from distributed systems design to theoretical

aes dijkstrahtmac-1-1-10
0

5

10

15

Ex
ec
ut
io
n
Ti
m
e
(s
)

Ad Hoc networking
DoTS application

Figure 7: Running time, in the geographically separated, real-
istic setting, of MP-SPDZ applications as a standalone binary
using its own ad hoc networking library as a DoTS server
application.

research on protocols, the research space investigating the practi-
cality of implementing distributed trust protocols is a lot smaller,
though several parallel lines of work exist with the same aim of
making distributed trust easier to deploy in the real world.

9.1 Dotme
Perhaps the most immediately adjacent work in this line of research
is Dotme, which aims to provide an easier method of deploying mul-
tiple independent trust domains for service providers to leverage
the properties of distributed trust. A traditional distributed trust
deployment relies on an application developer developing business
relationships with other third parties to execute their distributed

University of California, Berkeley, Berkeley, CA Nicholas Ngai

trust protocols without giving the application developer access to
the third party’s servers (effectively deploying their app while main-
taining their independence as a trust domain). DotMe proposes the
use of on-demand VM allocation on cloud providers by the user
in order to establish these trust domains, service provider auto-
matically begins federating with these completely separate trust
domains (cloud VMs which the service provider exerts no control
over) in order to deploy distributed trust.

While DoTS does not attempt to solve the difficult issue of deploy-
ing multiple, separate trust domains, it shares with it the common
goal of lowering the barrier to entry to the development of dis-
tributed trust applications.5 In addition, Dotme provides a “server-
less” model, where distributed trust apps run on cloud providers
effectively as cloud functions, automatically allocating and deallo-
cating on-demand without any persistent state on the server-side.
This makes the implementation of some distributed apps requir-
ing server-side secret state more difficult in the Dotme framework,
while server-side state comes for free in DoTS due to the persistent
nature of the platform and application server daemons.

9.2 MPCAuth
As authentication is a mechanism that is required by many dis-
tributed trust applications, a protocol to implement scalable authen-
tication to a large number of distributed trust nodes simultaneously
greatly improves the barrier to entry. MPCAuth (formerly known
as N-for-1 Auth) is a protocol that allows for the authentication of a
client to an arbitrary number of servers with only a constant amount
ofwork required by the user, both using traditional, password-based
authentication and more authentication protocols such as multi-
factor authentication via email or U2F.

Analogously to DoTS, it is a protocol that is able to replace
the ad-hoc authentication mechanisms developed for distributed
applications, allowing application developers to focus more time
on writing application logic and the core of the distributed trust
application itself, rather than on infrastructural issues such as au-
thentication.

10 FUTUREWORK
In many previous sections of the paper, we have identified many po-
tential areas of future work with regards to the DoTS platform. We
use those remarks and several other potential areas of development
in order to guide future work and research into the DoTS platform
and other mechanisms to ease the development of distributed trust
applications.

10.1 Global-Scale and BFT Applications
Work on Tor [12] and other protocols requiring global-scale com-
munication such as Bitcoin [34] and IPFS [44] has led to the estab-
lishment of protocols where large numbers of parties across the
Internet must communicate with one another to implement dis-
tributed trust applications. Byzantine fault tolerance, is generally a
property shared by these applications, such that the application still
makes forward progress despite the failure or malicious behavior
of one or more nodes. In many cases, there is no current method

5Indeed, the two projects share a common heritage, and the authors of both projects
collaborated closely on these projects.

to easily translate those applications into a DoTS application, and
much of the work in optimizing these communications protocols
for the global scale may be useful to integrate into DoTS.

10.2 Practical DoTS Platform and Application
Deployment

While much of the core DoTS platform and some key applications
has been written and can be run on commodity hardware, deploy-
ment is not yet a streamlined process. Further, the coordinated and
manual editing of configuration files in order to deploy applica-
tions means that application developers must still develop business
relationships with providers (runners of DoTS platform instances)
in order to deploy their applications, which has been identified
as a source of difficulty in the deployment of distributed trust ap-
plications [24]. Technologies like Docker [13] and Kubernetes [3]
have found much of their success due to the streamlined packaging,
distribution, and deployment of applications onto physical compute
hardware, and the notion of a “publicly available DoTS network”
onto which developers could deploy arbitrary distributed trust ap-
plications (perhaps for a small fee) would mean that a independent
developers could easily deploy distributed trust applications with
strong guarantees of security with minimal barrier to entry.

As a stepping stone to this goal, removing the infrastructural
guarantee that all DoTS nodes must be publicly accessible would
additionally aid the deployment of DoTS platform instances in the
first place. As mentioned in §2.3, a simple way to achieve this would
be a publicly available relay to tunnel platform traffic behind a
firewall or NAT, or DoTS nodes could be set up to act in a secondary
capacity as a relay.

10.3 Interactive Client Applications
§2.5 discussed the application model, in which the client provides
a single unary input and receives a single set of outputs from the
application servers. This model, while general, does not encompass
protocols where the client must be an active participant in the
protocol and can currently only implement such protocols as a
sequence of chained unary calls, which is cumbersome and non-
intuitive. gRPC allows for bidirectional streaming RPC in addition
to unary ones [20], which seems to be a natural solution to this
issue.

10.4 Securing Server-to-Server Communication
using Distributed Trust

Simply using TLS to secure sever-to-server and client-to-server
communications ultimately leaves much to be desired, leaving CAs
as a central point of attack for a network attacker to compormise
the system. Technologies like certificate transparency [29] provide
some mitigation against these forms of attack in the form of au-
diting, but there is currently no integration of these TLS-related
distributed trust mechanisms into DoTS.

10.5 Secure Enclaves
Secure enclaves provide a useful mechanism of compiling and ex-
ecuting code in a manner such that a remote client can ensure
that the software is executing unmodified on a remote host via

Enabling Non-Experts to Develop Distributed Trust Applications University of California, Berkeley, Berkeley, CA

attestation and that a malicious host operating system can’t ob-
serve or tamper with the memory contents of the enclave. Using a
combination of secure enclaves like Intel SGX [22] and oblivious
computation techniques like ORAM [18], it is possible to construct
a local trust domain whose security is connected to that of the
hardware enclave manufacturer, rather than that of the host, such
as is proposed in [10]. The ability to embed key functions of the
DoTS platform server (or application servers) into a secure enclave
would bolster the security guarantees of the DoTS network and
provide applications developers with an easy way to leverage such
technologies.

11 CONCLUSION
Many of the barriers to writing distributed trust applications are in-
frastructural, rather than theoretical. Many of these infrastructural
needs can be addressed with DoTS, though its original prototype
implementation left many potential ares of improvement. With the
modifications and updated design presented in this paper, DoTS
is able to provide a single, out-of-the-box solution for developing
distributed trust applications. We discussed our updated design
design and implementation details of the DoTS platform, which
ultimately exposes a simple, general, and flexible programmer inter-
face which supports a wide range of distributed trust applications.
We showed that the core focus of DoTS is maintained, showing
that applications are simple to write, requiring less than 500 lines
of integration code to implement common protocols such as secret
sharing or (𝑛, 𝑡)-threshold ECDSA. We also showed that our inter-
face is general enough to support the porting of existing distributed
trust applications like MP-SPDZ into the DoTS platform, simply
replacing its ad hoc networking with calls out to the DoTS platform.
Finally, we showed that while the improved design of the DoTS
platform introduces a nominal amount of overhead, this overhead
is quickly dominated by the latency of network traffic going across
the Internet, upper bounded by 9.5% in our most generous realistic
testing model.

Ultimately, the usability of the DoTS platformwill depend largely
on the future work of the platform.While networking is a core issue
that we addressed in the course of this paper, other features like
application storage and rapid deployment to shared trust domains
will be likely be needed before our platform will be deployable in
the real world.

Yet, we expect that the world of widespread distributed trust
adoption is not too far off. The computer security research commu-
nity has already solved most of the theoretical barriers to deploying
distributed trust. What remains is the solutions to the practical
barriers to distributed trust deployment, and the DoTS platform
presents a viable, extensible, and rapidly developing solution to
address these practical needs of developers.

ACKNOWLEDGMENTS
This project would not be possible without the collaboration of
many of my peers in the Sky Lab at UC Berkeley:

• My peers Sijun Tan and Darya Kaviani collaborated closely
with me in discussing and executing many of the updated
design decisions to the DoTS paltform as we worked to find
the best API to suit the needs of distributed trust apps.

• Emma Dauterman, Mayank Rathee, Katerina Sotiraki, Sam
Kumar, and Sijun Tan were the originators of the DoTS plat-
form idea. They provided the high-level vision of making
distributed trust accessible to non-expert application devel-
opers.

• Mayank Rathee, Katerina Sotiraki, and Sijun Tan were the
initial designers and developers of the DoTS platform proto-
type.

• Allison Li, Yuwen Zhang, and Michael Ren are primarily
responsible for the implementation of the secret key recovery
DoTS application, under the guidance of Emma Dauterman.

• Darya Kaviani is primarily responsible for the implementa-
tion of the (𝑛, 𝑡)-threshold ECDSA signing DoTS application.

• Many of the ideas we had came from our collaboration with
the students of CS 294-163 in the Fall 2022 semester, taught
by Raluca Ada Popa and Emma Dauterman and assisted by
Mayank Rathee. While much of their work was ultimately
deprecated as we continued to iterate upon the core platform,
all of the ideas generated from those projects were incredibly
helpful.

Finally, I’d also like to thankmy advisor, Raluca Ada Popa, for her
guidance both in academic understanding of notions of distributed
trust and in practical mentorship in the life of a graduate student.
My friends in Cal Christian Fellowship and my family, too, have
also been a huge part in keeping me sane during the writing of this
thesis. Thank you to all of you!

REFERENCES
[1] Apple and Google. 2021. Exposure Notification Privacy-preserving

Analytics (ENPA) White Paper. Technical Report. Apple. https:
//covid19-static.cdn-apple.com/applications/covid19/current/static/contact-
tracing/pdf/ENPA_White_Paper.pdf

[2] Tony Arcieri. 2023. https://docs.rs/elliptic-curve
[3] The Kubernetes Authors. 2023. https://kubernetes.io/
[4] Protocol Buffers. 2023. https://github.com/protocolbuffers/protobuf-go
[5] Vitalik Buterin. 2014. Ethereum: A Next-Generation Smart Contract and Decen-

tralized Application Platform. Technical Report. Ethereum Foundation.
[6] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi

Peled. 2020. UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable
Aborts. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security (Virtual Event, USA) (CCS ’20). Association for Computing
Machinery, New York, NY, USA, 1769–1787. https://doi.org/10.1145/3372297.
3423367

[7] carllerche and LucioFranco. 2023. https://docs.rs/tonic
[8] Open Enclave contributors. 2023. Open Enclave SDK. https://github.com/

openenclave/openenclave
[9] Al Danial. 2023. https://github.com/AlDanial/cloc
[10] Emma Dauterman, Vivian Fang, Natacha Crooks, and Raluca Ada Popa. 2022. Re-

flections on Trusting Distributed Trust. In Proceedings of the 21st ACM Workshop
on Hot Topics in Networks (Austin, Texas) (HotNets ’22). Association for Computing
Machinery, New York, NY, USA, 38–45. https://doi.org/10.1145/3563766.3564089

[11] E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer.
Math. 1, 1 (01 Dec 1959), 269–271. https://doi.org/10.1007/BF01386390

[12] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The
Second-Generation Onion Router. In 13th USENIX Security Symposium
(USENIX Security 04). USENIX Association, San Diego, CA, 18 pages.
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-
second-generation-onion-router

[13] Docker, Inc. 2023. https://www.docker.com/
[14] Sky DoTS. 2023. https://github.com/dtrust-project/dotspb
[15] Sky DoTS. 2023. https://github.com/dtrust-project/libdots
[16] Sky DoTS. 2023. https://github.com/dtrust-project/dots-server
[17] Message Passing Interface Forum. 2021. MPI: A Message-Passing Interface

Standard, Version 4.0. Technical Report. Message Passing Interface Forum.
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[18] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM 43, 3 (may 1996), 431–473. https://doi.org/10.1145/

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://docs.rs/elliptic-curve
https://kubernetes.io/
https://github.com/protocolbuffers/protobuf-go
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://docs.rs/tonic
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://github.com/AlDanial/cloc
https://doi.org/10.1145/3563766.3564089
https://doi.org/10.1007/BF01386390
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.docker.com/
https://github.com/dtrust-project/dotspb
https://github.com/dtrust-project/libdots
https://github.com/dtrust-project/dots-server
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553

University of California, Berkeley, Berkeley, CA Nicholas Ngai

233551.233553
[19] Google. 2023. gob. https://pkg.go.dev/encoding/gob
[20] gRPC Authors. 2023. https://grpc.io/
[21] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,

and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In Engineering Se-
cure Software and Systems, Eric Bodden, Mathias Payer, and Elias Athanasopoulos
(Eds.). Springer International Publishing, Cham, 161–176.

[22] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using Innovative Instructions to Create Trustworthy Soft-
ware Solutions. In Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy (Tel-Aviv, Israel) (HASP ’13).
Association for Computing Machinery, New York, NY, USA, Article 11, 1 pages.
https://doi.org/10.1145/2487726.2488370

[23] Intel. 2023. Intel Software Guard Extensions for Linux* OS. https://github.com/
intel/linux-sgx

[24] Darya Kaviani, Sijun Tan, and Raluca Ada Popa. 2023. Don’t Trust Me: A Platform
for Deploying On-Demand Distributed Trust. Technical Report. University of
California, Berkeley.

[25] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Com-
putation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS ’20). Association for Comput-
ing Machinery, New York, NY, USA, 1575–1590. https://doi.org/10.1145/3372297.
3417872

[26] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster
Malicious Arithmetic Secure Computation with Oblivious Transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York,
NY, USA, 830–842. https://doi.org/10.1145/2976749.2978357

[27] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2020. Spectre Attacks: Exploiting Speculative Execu-
tion. Commun. ACM 63, 7 (jun 2020), 93–101. https://doi.org/10.1145/3399742

[28] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. Tag-
Bleed: Breaking KASLR on the Isolated Kernel Address Space using Tagged
TLBs. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
Virtual Event, Europe, 309–321. https://doi.org/10.1109/EuroSP48549.2020.00027

[29] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.
RFC 6962. https://doi.org/10.17487/RFC6962

[30] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-
ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User Space.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 973–990. https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp

[31] Moxie Marlinspike and Trevor Perrin. 2016. The Double Ratchet Algorithm.
Technical Report. Signal.

[32] Moxie Marlinspike and Trevor Perrin. 2016. The X3DH Key Agreement Protocol.
Technical Report. Signal.

[33] Moxie Marlinspike and Trevor Perrin. 2017. The Sesame Algorithm: Session
Management for Asynchronous Message Encryption. Technical Report. Signal.

[34] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Technical
Report. Bitcoin Project. https://bitcoin.org/bitcoin.pdf

[35] National Institute of Standards and Technology. 2001. Advanced Encryption
Standard (AES). Technical Report. National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.FIPS.197-upd1

[36] Trevor Perrin. 2016. The XEdDSA and VXEdDSA Signature Schemes. Technical
Report. Signal.

[37] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. https://doi.org/10.17487/RFC8446

[38] Dragos Rotaru, Nigel P. Smart, and Martijn Stam. 2017. Modes of Operation
Suitable for Computing on Encrypted Data. IACR Transactions on Symmetric
Cryptology 2017, 3 (Sep. 2017), 294–324. https://doi.org/10.13154/tosc.v2017.i3.
294-324

[39] Peter Saint-Andre and Jeff Hodges. 2011. Representation and Verification of
Domain-Based Application Service Identity within Internet Public Key Infrastruc-
ture Using X.509 (PKIX) Certificates in the Context of Transport Layer Security
(TLS). RFC 6125. https://doi.org/10.17487/RFC6125

[40] Congressional Research Service. 2021. SolarWinds Attack—No Easy Fix. Technical
Report. Congressional Research Service.

[41] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (nov 1979),
612–613. https://doi.org/10.1145/359168.359176

[42] StrongLoop, IBM, et al. 2017. Express. https://expressjs.com/
[43] Gin Team. 2022. Gin Web Framework. https://gin-gonic.com/
[44] Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro, Will Scott,

Moritz Schubotz, Bela Gipp, and Yiannis Psaras. 2022. Design and Evalua-
tion of IPFS: A Storage Layer for the Decentralized Web. In Proceedings of
the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIGCOMM
’22). Association for Computing Machinery, New York, NY, USA, 739–752.

https://doi.org/10.1145/3544216.3544232
[45] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael

Swift. 2015. A Placement Vulnerability Study in Multi-Tenant Public Clouds. In
Proceedings of the 24th USENIX Conference on Security Symposium (Washington,
D.C.) (SEC’15). USENIX Association, USA, 913–928.

[46] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning
Power Side-Channel Attacks Into Remote Timing Attacks on x86. In 31st USENIX
Security Symposium (USENIX Security 22). USENIX Association, Boston, MA, 679–
697. https://www.usenix.org/conference/usenixsecurity22/presentation/wang-
yingchen

[47] ZenGo X. 2023. https://github.com/ZenGo-X/multi-party-ecdsa
[48] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th

Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, Toronto,
ON, Canada, 162–167. https://doi.org/10.1109/SFCS.1986.25

[49] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (Scottsdale, Ari-
zona, USA) (CCS ’14). Association for Computing Machinery, New York, NY, USA,
990–1003. https://doi.org/10.1145/2660267.2660356

https://doi.org/10.1145/233551.233553
https://pkg.go.dev/encoding/gob
https://grpc.io/
https://doi.org/10.1145/2487726.2488370
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/3399742
https://doi.org/10.1109/EuroSP48549.2020.00027
https://doi.org/10.17487/RFC6962
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.17487/RFC8446
https://doi.org/10.13154/tosc.v2017.i3.294-324
https://doi.org/10.13154/tosc.v2017.i3.294-324
https://doi.org/10.17487/RFC6125
https://doi.org/10.1145/359168.359176
https://expressjs.com/
https://gin-gonic.com/
https://doi.org/10.1145/3544216.3544232
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://github.com/ZenGo-X/multi-party-ecdsa
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1145/2660267.2660356

