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Abstract

High-Fidelity 3D Mesh Reconstruction of Humans and Objects

by

Shubham Goel

Doctor of Philosophy in Computer Sciences

University of California, Berkeley

Professor Jitendra Malik, Co-chair

Professor Angjoo Kanazawa, Co-chair

Humans perceive the world through their eyes – where the images formed on the retina are two-
dimensional projections of the underlying three-dimensional world. Akin to human vision, the goal
of computer vision, is to extract information about the 3D world from 2D images. A fundamental
problem in computer vision is to extract the 3D structure underlying such 2D images. Even though
this problem is mathematically ill-posed, the ambiguity can be resolved, either using multiple 2D
views, or using priors about how the world is structured.

In this thesis, I present my work on high-fidelity 3D mesh reconstruction of humans and objects from
2D images. I discuss the more classical setting of optimizing a shape/texture using multiple image
inputs, as well as how we can learn priors that enable mesh reconstruction even from a single image.
Specifically, I first present work on multi-view 3D reconstruction, where we reconstruct meshes
of an object given few images with noisy camera poses. Then, I continue with 3D reconstruction
from single images, enabled by learning category-specific shape priors from natural image datasets.
Finally, I focus on learning single-view 3D human reconstruction using big models and big data.
Such robust 3D reconstruction of humans enables downstream applications like 3D tracking and
action recognition.
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Chapter 1

Introduction

We reside in a complex 3D world, and rely on our senses to perceive and interact with our sur-
roundings. One of the most critical senses, vision, is essentially our ability to interpret the images
formed in our eyes – 2D projections of the underlying 3D world – to richly perceive the environment
around us. This innate capability allows us to navigate and engage with the world effectively. The
field of computer vision is aimed at enabling machines to extract and understand information from
such visual data, which is predominantly in the form of such 2D images. By teaching machines to
interpret and analyze images akin to how humans do, we can equip them to intelligently understand
the world and perform tasks that require visual comprehension.

Computer vision can also be perceived as inverting the image formation process – given a 2D
image, recover the underlying 3D world. In the first-ever Ph.D. thesis in Computer Vision, Lawrence
Roberts [139] tried to lift images of simple block shapes to their 3D structure. Unfortunately, this
task of 3D reconstructing from a single image is under-constrained. Each 2D image can be mapped
to a multitude of 3D structures, introducing significant ambiguity [39, 146].

Classically, Structure from Motion (SfM) [161] mitigates this ambiguity by leveraging multiple
2D images of the same 3D structure. Multiple viewpoints provide additional constraints and with
enough corresponding points across views, the system becomes over-constrained and we can resolve
the ambiguity, enabling extraction of depth and 3D spatial information, up to a scale.

When only a single image is available, the ambiguity remains unresolved. However, note that
not all possible 3D reconstructions of a 2D image are equally plausible. There is an inherent
structure in the world, in both natural and man-made objects. Natural scenes get structure from the
physics of the universe. For example, because of gravity, trees are vertical, the horizon is horizontal,
and mountains are thinner at the top. Similarly, man-made objects have structure, as a result of
intended functionality, aesthetics, and ease of manufacturing. This includes low-level structure
like surfaces being smooth and flat, and high-level structure like all chairs having similar shape
and size. This structure imposes priors on both natural and man-made objects, making some 3D
reconstructions more likely than others. Humans, through experience, develop an intuition for
these priors, which they use to perceive depth and volume from images [149]. Understanding and
effectively incorporating these priors into computational models is a key challenge in learning to
perceive images in 3D.



CHAPTER 1. INTRODUCTION 2

In this thesis, I develop techniques that can lift 2D images to the 3D shapes of the underlying
entities. The work spans two main areas: multi-view and single-view 3D reconstruction. First, I will
delve into the multi-view setting where we leverage multiple images without relying on data-driven
priors. Then, I will transition into exploring single-view 3D reconstruction, focusing on the use
of learned priors to enable 3D reconstruction from single images, for specific categories such as
humans, birds, and objects.

Multi-View 3D Reconstruction First, in Chapter 2, we consider the classical setting where
multiple views of the same 3D shape are available. Classical SfM [141] works in this setting but
often requires hundreds of views in practice, which have excessive visual overlap across them,
leading to a lot of redundancy in the input information. We explore how to operate with a very
limited number of images without any data-driven priors. We propose Differentiable Stereopsis
(DS), a multi-view stereo approach that reconstructs shape and texture from few input views
and noisy cameras. DS pairs traditional stereopsis and modern differentiable rendering to build
an end-to-end approach that optimizes and extracts textured 3D meshes of objects with varying
topologies and shape. The key ingredient of the approach is to compare images using underlying
shape and camera estimates. We optimize shape and cameras to minimize a texture loss associated
with un-projecting one image onto the shape and re-rendering from another viewpoint. We show
compelling reconstructions on challenging real-world scenes and for an abundance of object types
with complex shape, topology and texture.

Shape optimization is typically slow and we cannot always have multiple images of a scene. For
example, there are many dynamic entities in our world like humans and animals, and their shape
changes every time they move. The only way to capture multiple images of the same underlying
shape is synchronized multi-view capture. This is possible in a limited lab setting [66], but not in
the wild. Therefore, we need to develop methods that quickly reconstruct 3D structures from single
images.

Single-View 3D Reconstruction In Chapters 3 and 4, we show how to use data to learn priors that
enable reconstructing shape from single images. In Chapter 3, we learn category-specific priors by
leveraging an image collection of a particular category. Since different instances across the category
have similar shape, the shape deformations lie on a low-dimensional manifold [154, 12]. We exploit
this to learn to recover the 3D shape, pose, and texture from a single image. Notably, we do so
without any ground truth 3D shape, multi-view, camera viewpoints, or keypoint supervision, which
makes scaling to new categories easier. Our particular contribution in this work is a representation of
the distribution over cameras, which we call “camera-multiplex". Instead of picking a point estimate,
we maintain a set of camera hypotheses that are optimized during training to best explain the image
given the current shape and texture. We call our approach Unsupervised Category-Specific Mesh
Reconstruction (U-CMR), and show results on multiple categories like birds, cars, motorcycles,
shoes, etc. Our state-of-the-art results show that we can learn to predict diverse shapes and textures
across objects using an image collection without any keypoint annotations or 3D ground truth.
Followup work in the community [2] shows that our approach can be scaled to 150+ categories.



CHAPTER 1. INTRODUCTION 3

Even though U-CMR allows building shape models for many categories, some categories are
special. For example, for humans, we already have shape models available [100, 125]. These
models have been built painstakingly in a lab setting by recording humans from multiple viewpoints,
often by placing markers on the body. These models of 3D shape and articulation are parametric,
and model the full mesh using pose parameters (akin to a skeleton), and shape parameters.

Finally, in Chapter 4, I discuss how to leverage existing parametric human shape models to
learn to 3D reconstruct humans in images and track them over video. At the core of our approach,
we propose a fully “transformerized” version of a network for human mesh recovery – i.e. single-
view 3D reconstruction of human shape and pose. To train this network, we scale up dataset size
by an order of magnitude using unlabelled image and video datasets, and find pseudo-ground
truth via an optimization process involving off-the-shelf 2D keypoint predictors. This model,
HMR 2.0, advances the state of the art on reconstructing humans from single images. To analyze
video, we use 3D reconstructions from HMR 2.0 as input to a tracking system that operates in
3D. This enables us to deal with multiple people and maintain identities through occlusion events.
Our complete approach, 4DHumans, achieves state-of-the-art results for tracking people from
monocular video. Furthermore, we demonstrate the effectiveness of HMR 2.0 on the downstream
task of action recognition, achieving significant improvements over previous pose-based action
recognition approaches.

This thesis makes significant strides in the 3D reconstruction of different entities in the world
around us, but a lot of open problems remain to be tackled. For example, even though we know how
to learn priors for certain sets of object categories, we still do not know how to learn 3D priors over
the entire world. In the concluding Chapter 5, I discuss the current state of affairs in 3D computer
vision, and how the ideas presented in this thesis might be used for tackling open problems.
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Chapter 2

Differentiable Stereopsis: Meshes from
Multiple Views

2.1 Introduction
Binocular stereopsis [169], and its multi-view cousin, Structure from Motion [52, 152], has tradi-
tionally been formulated as a two stage process:

1. Find corresponding 2D points across views, which are the 2D projections of the same 3D
scene point.

2. Recover relative orientations of cameras, and the depths of these points by triangulation.

In this work, we bypass the first stage of finding point correspondences across images and directly
estimate 3D shape and cameras given multiple 2D views with noisy cameras. We formulate this as
an optimization problem that we solve using newly developed differentiable rendering tools. We
name our approach Differentiable Stereopsis.

Our approach is linked to old work in multi-view geometry, and in particular model-based
stereopsis which was explored by Debevec et al. [26] and related ideas in plane plus parallax by
Irani et al. [60]. The key observation in model-based stereo is simple: two images of the same scene
which appear different become similar after projection onto an approximate 3D model of the scene.
Projecting the texture from one image onto the 3D model produces a warped version of that view
which when transformed from a second view is directly comparable to the second image. Initially,
the 3D model and the estimated relative camera orientation are inaccurate. But as shape and camera
predictions improve, the two images will start to look more similar and will eventually become
identical – in the idealized case of Lambertian surfaces and no imaging noise. Upon convergence,
the shape is expected to be an accurate representation of the scene.

This chapter is based on joint work with Georgia Gkioxari and Jitendra Malik [46], and is presented much as it
appeared in the CVPR 2022 proceedings.

https://arxiv.org/abs/2110.05472
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Figure 2.1: Reconstructions with Differentiable Stereopsis (DS) from few input views and noisy
cameras. We show input views (left) and novel views (right) of reconstructions for two instances.

Algorithm 1: Differentiable Stereopsis (2-view)
1 Input: I1,2, π1,2;
2 S ← Sphere();
3 while not converged do
4 points← rasterize(S, π1);
5 texels← sample(I2, π2(points));
6 Ir1 ← blend(texels);
7 loss← compute_loss(Ir1 , I1);
8 S, π1,2← S, π1,2− lr * gradient(loss);
9 end

10 Outputs S, π1,2

An important step in traditional stereopsis is finding 2D correspondences across views. We
bypass this and directly recover shape and cameras using modern optimization techniques. We
frame stereopsis as an optimization problem by minimizing a differentiable objective with respect
to shape and cameras. To this end, we exploit advances in differentiable rendering [101, 75,
98, 18, 135] to project shape and texture onto image planes which we compare to scene views.
We update shape and cameras via gradient descent. Algorithm 1 illustrates our proposed Differen-
tiable Stereopsis (DS) for the case of 2 views. We rely on (i) object masks to isolate and refine object
topology; and (ii) noisy camera pose initializations, which may still come from a correspondence
matching algorithm. Fig. 2.1 shows shape reconstructions with DS when noisily posed views are
given as input.

At the core of our approach is a novel and differentiable texture transfer method which pairs
rendering with the key insight of texture warping via 3D unprojections. Our texture transfer learns
to sample texture from the input views based on the shape estimate and noisy cameras. To allow
for differentiation, it composites the final texture in a soft manner by weighing texture samples
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proportionally to their visibility and direction from each view.
We test our approach on challenging datasets and on a large variety of objects with complex and

varying shapes. Unlike prior works that assume several dozens of object views, our experimental
settings follow real-world practical scenarios where only a few views are available. For example,
Amazon, eBay or Facebook Marketplace only contain a handful of views for each listed item, and
any 3D reconstruction has to originate from 10 views or less. We emphasize on this harder, yet
more realistic, setting and show empirical results with real product images from Amazon [24]. On
Google’s Scanned Objects [137] we perform an extensive quantitative and qualitative analysis and
compare to competing approaches under settings similar to ours. We also show results on Tanks
and Temples [79] which contains RGB views of complex scenes, as shown on the right in Fig. 2.1.

2.2 Related Work
Extracting 3D structure from 2D views of a scene is a long standing goal of computer vision.
Classical multi-view stereo methods and Structure from Motion techniques [52, 152, 26, 40, 60]
find correspondences across images and triangulate them into points in 3D space. The resulting
point clouds, if dense enough, can be meshed into surfaces [10, 77]. The culmination of a long line
of classical SfM and stereo approaches is COLMAP [141, 142] – a widely used tool for estimating
camera poses and reconstructing dense point clouds from 2D input views. All aforementioned
techniques assume calibrated and accurate cameras and thus are not very robust to camera noise.

Finding point correspondences, the first stage of stereopsis, is challenging especially in the
case of sparse widely-separated views. Debevec et al. [26] tackle this by proposing model-based
stereopsis wherein a coarse scene geometry allows views to be placed in a common reference frame,
making the correspondence problem easier. We draw inspiration from this work and pair it with
new learning tools to reconstruct textured 3D meshes from sparse views. We frame stereopsis as an
optimization problem and minimize a differentiable objective which allows both shape and cameras
to self-correct. This increases robustness to camera noise, in antithesis to classical techniques.

Recent work on multi-view stereo [182, 179] train deep neural nets (DNNs) with depth super-
vision. As expected, these methods outperform COLMAP for point cloud reconstruction but are
limited as they need ground truth. We rely solely on image re-projection losses and no true depth
information.

Work on unsupervised depth prediction [198, 92, 186, 196] estimate depth via DNNs trained on
monocular videos and without ground truth depth. They exploit photometric and depth consistency
across multiple views, much like classical stereo. However, they focus on forward-facing scenes
like KITTI [42] and do not reconstruct high-fidelity shape.

There is extensive work on recovering shape from images using differentiable rendering [75, 101,
98, 18, 135, 71, 47, 90, 158, 86, 185]. These approaches focus on extracting object priors by training
on large datasets and test on images of seen categories. We also use differentiable rendering [75,
101, 98, 18, 135] to frame stereopsis as a differentiable optimization problem. Differentiating with
respect to shape and camera allows for both to self-correct during optimization.
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Most relevant to our work are methods that learn shape by fitting to a set of images. Early work
on extracting shape from silhouettes used a visual hull [88]. Gadelha et al. [41] reconstruct voxels
from silhouettes and noisy camera poses via differentiable projection but don’t use any texture
information. However, shape details such as concavities cannot be captured by silhouettes. We
show in Fig. 2.5 in our experiments (Sec. 2.4) that optimizing for shape without texture information
fails to reconstruct creases in shape. Some variational approaches for MVS [36, 130, 56, 28] exploit
photometric consistency to refine shape via gradient descent but they require many images, initial
shapes or accurate cameras. Recently, IDR [183] and DVR [115] recover shape from multiple posed
images and masks using implicit volumetric representations. IDR shows superior results to DVR
and claims to work with few input views and slightly noisy camera poses; a setting similar to ours.
We compare to IDR in Sec. 2.4.

Recent novel-view-synthesis approaches [197, 99, 110] encode volumetric occupancy infor-
mation in their internal representations for the task of image synthesis from novel viewpoints.
While they don’t explicitly learn shape, their representation can be processed to extract geometry.
NeRF [110] is one such approach which takes posed multiple views as input and encodes occupancy
and color for points in 3D space as an implicit function. In Sec. 2.4, we compare to NeRF and extend
it with a variant that optimizes for noisy cameras by enabling backpropagation to its parameters.

2.3 Approach
We tackle the problem of stereopsis using modern differentiable rendering techniques. Our approach
takes N image views I1..N of an object with corresponding masks A1..N and noisy camera poses
π1..N as input, and outputs the shape of the object as a textured mesh. We frame stereopsis as an
optimization problem, outlined in Fig. 2.2. We iteratively render a shape estimate from multiple
cameras using differentiable textured rendering and update the shape and cameras by minimizing
image reprojection losses.

We first provide some background on differentiable rendering and then describe our approach in
detail.

Background
We define a textured mesh M = (V, F, T ) as a set of vertices V , faces F and a texture map T . Under
a camera viewpoint π, mesh M is rendered to image Ir = RT (M,π) and mask Ar = RS(M,π),
where RT denotes textured rendering and RS silhouette rendering.

Both RS and RT perform mesh rasterization. Rasterization computes which parts of the mesh
are projected to a pixel on the image plane. For each pixel p, we find the K nearest faces that
intersect with a ray originated at p [135].

In the case of silhouette rendering RS , rasterization is followed by a soft silhouette shader. This
shader assigns each pixel an occupancy probability by blending the euclidean distance of the pixel
to each of the K faces [98, 135].
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Figure 2.2: Overview of Differentiable Stereopsis (DS). The shape estimate is textured using source
views, rendered from a target view’s camera and compared against the target view. The loss is
backpropagated to update shape and cameras.

For textured rendering RT , we use a texture shader which computes the RGB color for each
pixel p in the image. This shader blends the colors from the top K faces for each pixel, as computed
by the rasterizer. For the k-th face, the color ck = T (x) is computed by sampling the texture map T
at the point of intersection x of the ray originating at p and the k-th face. The set of colors c1..K ,
also known as texels, are composited to get the final color for the pixel.

Texture Transfer
The goal of our approach is to find M = (V, F, T ) that represents the object as seen from the noisily
posed input views. For each shape hypothesis (V, F ) we need to find the optimal texture T . We
introduce a novel texture shader which relies on texture transfer from the inputs I1...N .

Our shader computes the texture map T as a function of the shape hypothesis (V, F ) and the
posed input views I1...N . The texture map T : x → (r, g, b) assigns an RGB color for each point
x on the mesh surface. The color is directly sampled from one or more input views. We build
on a key insight: for a correct shape (V, F ) and correct cameras π1...N , there exists one (or many)
view i in which x is unoccluded, or in other words, there is a clear line-of-sight to x. For all such
views, the projections πi(x) in the images correspond to the same 3D point x and for Lambertian
surfaces, all these points will share the same color Ii(πi(x)). The color T (x) assigned to point x
is composited from the colors Ii(πi(x)) for all views with a clear line-of-sight to x. Formally, we
define the texture transfer as follows:

T (x) =
∑
i

wiIi(πi(x)) (2.1)
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where weights are unit-normalized and defined as wi = σiγi.
σ encodes whether x has a clear line-of-sight from the corresponding view. Formally, we

compare the z-distance of the camera transformed point πi(x) to the rendered depth map Di at πi(x)
as follows

σi = exp(−(πi(x)z −Di(πi(x)))/τvis) (2.2)

If there is a clear line-of-sight to x, then πi(x)z ≈ Di(πi(x)) and thus σi ≈ 1.0. If x is obstructed
by other parts of the shape, then πi(x)z > Di(πi(x)) and σi < 1.0. We set the temperature τvis to
10−4.

γ is a heuristic that favours views that look at x fronto-parallel with minimal foreshortening. If
n̂i(x) is the outward surface-normal at x in i-th view coordinates, then

γi = 1[n̂i(x)z < 0] exp(−(1 + n̂i(x)z)/τcos) (2.3)

γi is highest when the normal points opposite the camera’s z-axis, or n̂i(x)z = −1. γi decreases
exponentially as n̂i(x)z increases. We set the temperature τcos to 0.1. In addition, we cull backward-
facing normals (n̂i(x)z > 0) to correctly sample texture in thin surfaces where σ fails to capture
visibility information of points on the two sides of the surface.

Texture Rendering We described how to sample texture for a point x on the mesh surface. To
render the texture under a viewpoint π, for each pixel p we sample texels c1..K for all points x1..K

with ck = T (xk), where xk is the point on the k-th face that intersects the ray originating at p. We
use softmax blending [98] to composite the final color at p.

Optimization
We have explained how to define the texture map T for an object shape (V, F ) given posed input
views I1..N and we have described how to render M = (V, F, T ) to images and silhouettes. We now
describe our objective and how we optimize it w.r.t. vertices V and cameras π1..N .

Parametrization We parametrize a camera π = (r, t, f) as rotation via an axis-angle representation
r ∈ R3 (magnitude |r| is angle, normalization r/|r| is axis), translation as t ∈ R3 and focal length
f as half field-of-view.

We parametrize geometry as V = V0 + ∆V where ∆V ∈ R|V |×3 is the deformation being
optimized and V0 are initial mesh vertices which remain constant.

Objective Given a shape hypothesis M = (V, F, T ), cameras π1..N and input views I1..N , we render
silhouette Ar

i = RS(M,πi) and image Iri = RT (M,πi) for each view i = 1, ..., N . We define our
total loss to be

Ltotal = Ltex + Lmask + Ledge + Llap (2.4)

The texture reconstructions loss Ltex is defined as the sum of an L1 loss and perceptual distance
metric Lperc [194]:

Ltex =
∑
i

|Iri − Ii|+ Lperc(I
r
i , Ii) (2.5)
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The mask reconstruction loss combines an MSE loss and a bi-directional distance transform loss
(see details in Appendix).

Lmask =
∑
i

||Ar
i − Ai||22 + Lbi-dt(A

r
i , Ai) (2.6)

In addition to reprojection losses in Eq. 2.5 & 2.6, we employ smoothness reguralizers on the mesh:
Ledge = ||E − l||22 is an MSE loss penalizing edge lengths that deviate from the mean initial edge
length l, while Llap = ||LcotV ||2 is a cotangent-laplacian loss that minimizes mean curvature [113].

Initialization and Warmup We initialize cameras with the noisy input cameras, V0 with an ico-
sphere and ∆V with zeros. During an initial warmup phase of 500 iterations, we freeze cameras and
optimize shape without the texture loss. We start with a very low-resolution sphere and subdivide it
twice during warmup, at 100 and 300 iterations respectively.

Texture Sampling We compute the texture map T after each shape update during optimization. For
each training view i, and for each pixel p, we find the K closest faces intersecting a ray originating
at p and the corresponding points of intersection x1..K . We compute texels ck = T (xk), described
in Sec. 2.3, and set wi = 0 in Eq. 2.1 so that image Ii does not contribute to the texture for pixel p
in the rendered i-th view. This ensures that image Iri for camera πi is generated by sampling colors
from all images I1..N but Ii to encourage photometric consistency.

Handling Variable Topology Each gradient descent step updates the vertex positions of the mesh
and the camera parameters. However, the topology of the shape is left intact. To handle objects with
varying topology and to deviate from shapes homeomorphic to spheres, we update the topology of
our shapes during optimization. At intermediate steps during training, we voxelize our mesh [111,
116], project voxels onto the view plans and check for occupancy by comparing to the ground truth
silhouettes A1...N . We remove voxels that project to an unoccupied area in any mask. We re-mesh
the remaining voxels using marching cubes, reset all shape-optimization parameters and resume
optimization.

2.4 Experiments
We test our differentiable stereopsis approach, which we call DS, on three datasets: Google’s
Scanned Objects [137], Tanks and Temples [79] and the Amazon-Berkeley Objects [24]. We
additionally evaluate on DTU MVS [63] in the Appendix. We run extensive quantitative analysis
on objects of varying topology and shapes, for which 3D ground truth is available. We also show
qualitative results on real objects and challenging real-world scenes.

Experiments on Google’s Scanned Objects
Google’s Scanned Objects (CC-BY 4.0) [137] consists of 1032 common household objects that
have been 3D scanned to produce high-resolution Lambertian textured 3D meshes. From these, we
pick 50 object instances with varying shape, topology and texture for quantitative analysis including
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Figure 2.3: Performance of DS and nerf-opt on Google’s Scanned Objects with varying number of
views {4, 6, 8, 12} (x-axis) and camera noise {10◦, 20◦, 30◦}. Each plot reports the median across
the 50 objects in our evaluation set. We report shape reconstruction metrics (Chamfer, F1), normal
consistency, and camera error. For Chamfer and camera error, lower is better. For everything else,
higher is better.

toys, electronics, instruments, appliances, cutlery and many more. For each object, we render
2048× 2048 RGBA images from 12 random camera viewpoints. Camera rotation Euler angles and
field-of-view are uniformly sampled in [0◦, 360◦] and [20◦, 50◦] respectively. To the cameras, we
add rotation noise θ ∼ N (0, σ2) about a uniformly sampled axis with varying σ = {10◦, 20◦, 30◦}.
Metrics We report a variety of metrics to quantitatively compare the predicted with the ground-truth
meshes. We use L2-Chamfer distance, normal consistency and F1 score at different thresholds,
following [45]. Since predicted shapes don’t lie in the same coordinate frame as the ground-truth,
we align predictions to ground truth before benchmarking via the iterative-closest-point (ICP)
algorithm [11]. See Appendix for more details. Lastly, we report the rotation error (in degrees)
between the ground truth and the output cameras from DS optimization.

Comparison with baselines We extensively compare to NeRF [110], as the state-of-the-art
volumetric method, which learns an implicit function from accurately posed input views. While
NeRF doesn’t explicitly output shape, we extract geometry from its implicit representation via
voxelization and run marching cubes to get a mesh. We compare to two NeRF variants which
use additional mask information: (a) nerf - the original NeRF approach with an additional MSE
loss on rendered masks, and (b) nerf-opt - which is the same as (a) but optimizes camera poses
with gradients from the reprojection loss. nerf-opt uses the same camera parametrization as our
approach. To prevent NeRF from collapsing due to large areas of white background in the input
views, all NeRF baselines sample 50% of their points inside the mask in every iteration. We
also compare qualitatively to IDR [183], a volumetric method with an implicit representation
that learns geometry and appearance from sparse wide-baseline images and masks with noisy
camera poses. In the Appendix, we also compare to COLMAP [141, 142] as the state-of-the-art
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photogrammetry approach. Finally, we compare to variants of our approach: (a) DS-notex, which
does not use any texture information removing Ltex from Eq. 2.4; and (b) DS-naive, which naively
optimizes a UV texture image in addition to shape/camera instead of using our texture-transfer.
For texturing, the texture image is mapped to the mesh surface using a fixed UV map [57] that
is automatically computed with Blender [13]. Whenever the mesh topology changes, the texture
image is re-initialized and the UV-map recomputed.

Fig. 2.3 quantitatively compares DS to nerf-opt, the best performing NeRF variant of the
two. We train with varying number of views N = 4, 6, 8, 12 (x-axis) and varying camera noise
{10◦, 20◦, 30◦}. Each plot reports the median across the 50 instances selected from the dataset. For
small camera noise (10◦), DS and nerf-opt (green lines) achieve comparable Chamfer and F1, except
for N = 4 views where nerf-opt achieves higher F1. Undoubtedly, predicting shape from 4 views is
challenging for all methods, as indicated by the absolute performance, and is the only setting where
nerf-opt performs better than DS. For larger camera noise (20◦), DS performs better than nerf-opt
(orange lines) under all metrics for N ≥ 6 and on par for N = 4. For even larger camera noise
(30◦), DS leads by a significant margin (blue lines) for all N and all metrics. We note that as the
number of views N increases, both methods converge roughly to the same performance for 10◦ &
20◦ noise. For 30◦ noise, DS also converges to the above optimum with increasing views N . On the
other hand, nerf-opt is unable to recover shape or cameras for 30◦ noise and achieves much lower
reconstruction quality. These results prove that DS can learn better shapes and recover cameras
even under larger camera noise and fewer views. When given slightly more views, DS reaches the
same reconstruction quality as with little camera noise proving its robustness to errors in cameras.
See Appendix for quantitative comparisons to IDR, COLMAP, and DS-naive.

Fig. 2.4 qualitatively compares nerf, nerf-opt, IDR and DS with 8 views and 30◦ noise. IDR
and both NeRF variants produce shapes with cloudy artifacts, with nerf-opt visibly outperforming
nerf. DS captures better shape under the same settings proving its robustness to noisy cameras
and few views. We observe that in a few-view wide-baseline setting, like ours, implicit volumetric
approaches attempt to explain the few input views without relying on accurate shape geometry
and appearance. However, meshes, which explicitly represent surfaces, offer stronger surface
regularization and predict more precise geometry. Also, in the first row of Fig. 2.4 we observe
that DS is able to reconstruct different animals as disconnected components despite having been
initialized to a single sphere.

Fig. 2.5 compares DS to DS without texture (DS-notex) and naive texture map optimization (DS-
naive) with 8 input views and 20◦ camera noise. DS-notex fails to capture shape concavities, which
are impossible to capture via just silhouettes. DS-naive results in shapes with some concavities
but in the wrong place and of shape quality similar to DS-notex. With naive texture optimization
as in DS-naive, texture converges to the mean texture from different images, providing unreliable
gradients to improve shape/cameras and leading to suboptimal geometry. In contrast, DS accurately
captures creases in object shapes by exploiting texture.

Fig. 2.9 shows qualitative results on Google’s Scanned Objects. For each object, we train with 8
input views and 20◦ camera noise. We show the input views (left) and the output shape and texture
for two novel views (right).

Fig. 2.7 shows the evolution of shape with time for two examples from Google’s Scanned
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nerf-opt DS GTInput Views nerf IDR

Figure 2.4: Results of nerf, nerf-opt, IDR and DS with 8 views and 30◦ camera noise. nerf-opt and
IDR outperform nerf but they fail to capture good shape. DS captures better geometry illustrating
its robustness to high levels of camera noise.

Objects with 8 input views and 20◦ camera noise. We remesh the shape by updating its topology at
three intermediate steps during optimization. This brings the final shape close to the ground truth
both in terms of geometry and topology.

We also show failure modes in the Appendix.

Results on Amazon Products
We show results from images of 6 real-world objects from the ABO dataset (CC-BY-NC 4.0) [24].
Pixel-thresholding the white-background images gives masks. Camera poses for these images are
unknown and COLMAP fails to give sensible estimates. We get rough initial cameras by manually
annotating a set of 40 keypoint correspondences across all images of an object. We estimate
the parameters for a weak-perspective camera for each image using a orthographic rigid-body



CHAPTER 2. DIFFERENTIABLE STEREOPSIS: MESHES FROM MULTIPLE VIEWS 14

factorization formulation [107] adopted in [71, 73, 165]. We initialize our perspective cameras
using the computed weak-perspective cameras and assume a 30◦ field-of-view.

Fig. 2.6 shows shape and texture reconstructions. Despite very noisy cameras and few views,
ranging from 4 to 9, our approach reconstructs shape and texture reasonably well even for challeng-
ing shape topologies like the lawnmower. We also note that DS is able to reconstruct more specular
surfaces like the wristwatch in the last row.

Results on Tanks and Temples
Tanks and Temples (CC-BY-NC-SA 3.0) [79] is a 3D reconstruction benchmark consisting of RGB
videos of indoor and outdoor scenes with corresponding laser-scanned ground-truth 3D point clouds.
The dataset comes with cameras computed by COLMAP’s SfM pipeline [141]. We evaluate on 7
scenes using only 15 input images and corresponding SfM-reconstructed cameras as initialization.
For Barn, Ignatius, Caterpillar and Truck, we generate masks by rendering the 3D point clouds
from SfM-reconstructed cameras. To stress test our approach without relying on 3D point clouds to
get masks, for Horse, Family and Train we use an off-the-shelf object detector [78] pretrained on
COCO [96].

Fig. 2.8 shows reconstructions for scenes from Tanks and Temples with 15 input views and
SfM-reconstructed cameras. DS is able to produce good reconstructions and undoubtedly has a
harder time for Barn due to occlusions by trees. For Family and Train, detected masks are poor
leading to bad reconstructions. In the Appendix, we compare to IDR, NeRF-opt, and COLMAP.

2.5 Discussion
We propose Differentiable Stereopsis (DS) by pairing traditional model-based stereopsis with
modern differentiable rendering. We show results on a diverse set of object shapes with noisy
cameras and few input views. Even though DS performs well, it has limitations. It assumes
Lambertian surfaces and consistent lighting. DS works for objects – extending to complex scenes is

Figure 2.5: DS without texture (DS-notex), DS-naive and DS with 8 views and 20◦ camera noise.
DS-notex fails to capture shape concavities, while DS-naive fails to recover accurate shape and
cameras. The ground truth shape (GT) is shown in the last column.



CHAPTER 2. DIFFERENTIABLE STEREOPSIS: MESHES FROM MULTIPLE VIEWS 15

Figure 2.6: DS evaluated on real-world product images from Amazon [24]. For each example, we
show input views (left) and reconstructed shape and texture for novel views (right).

Figure 2.7: Evolution of shape over time for Garden Swing (top) and Breyer Horse (bottom)
from Google’s Scanned Objects with 8 views and 20◦ camera noise. We visualize shape at key
optimization steps: at the end of warmup (at 500 iterations), before and after the 1st/2nd/3rd remesh
(at 10k/20k/30k iterations) and final shape (at 50k iterations).
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Figure 2.8: Reconstructions of DS on Ignatius, Truck, Caterpillar, Barn and Horse from Tanks and
Temples with 15 input views and SfM-generated camera poses. For each example, we show input
views (left), shape and texture reconstructions from two novel views (right). Silhouettes for Horse
were generated by a pretrained off-the-shelf 2D object detector.

future work. While DS is robust to noisy masks (e.g. predictions from Mask R-CNN) and inaccurate
cameras provided at input, eliminating them from the input alltogether is important future work.
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Figure 2.9: Qualitative results of DS on Google’s Scanned Objects with 8 input views and 20◦

camera noise. We show input views (left) and reconstructed shape and texture from two novel views
(right).
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Chapter 3

Shape and Viewpoint without Keypoints

3.1 Introduction
There has been much progress in recent years in training deep networks to infer 3D shape from 2D
images. These approaches fall into two major families based on the supervisory signal used (a) 3D
models, as available in collection of CAD models such as ShapeNet or (b) multiple views of the
same object which permit deep learning counterparts of classical techniques such as shape carving
or structure-from-motion. But do we need all this supervision?

It is easy to find on the internet large collections of images of objects belonging to particular
categories, such as birds or cars or chairs. Let us focus on birds, for which datasets like CUB [166],
shown in Figure 3.1 (left) exist. Note that this is a “Multiple Instance Single View" setting. For each
bird instance we have only a single view, and every bird is a slightly different shape, even though the
multiple instances share a family resemblance. Compared to classical SFM, where we have “Single
Instance Multiple Views", our goal is to “3Dfy" these birds. From a single image, create a 3D model
and its texture map, which can then be rendered from different camera viewpoints as shown in the
rows of Figure 3.1 (right). This particular formulation was presented in the “Category-Specific
Mesh Reconstruction" work of Kanazawa et al. [70], and their algorithm (CMR) is an inspiration
for our work. Even earlier the work of Cashman and Fitzgibbon [17] working on analyzing images
of dolphins showed how an “analysis by synthesis" paradigm with a deformable template model of
a shape category could enable one to infer 3D shapes in an optimization framework.

It is under-appreciated that these approaches, while pioneering, do exploit some supervisory
information. This includes (1) knowledge of a mean shape for the category (2) silhouettes for each
instance (3) marked keypoints on the various instances (e.g. beak tip for each bird). Of these, the
need for labeled keypoints is the most troublesome. Only one mean shape is needed for the entire
category and sometimes a very generic initialization such as a sphere is good enough. Silhouettes

This chapter is based on joint work with Angjoo Kanazawa and Jitendra Malik [47], and is presented much as it
appeared in the ECCCV 2020 proceedings.

https://arxiv.org/abs/2007.10982
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Figure 3.1: Given an image collection of an object category, like birds, we propose a computational
framework that given a single image of an object, predicts its 3D shape, viewpoint and texture, without using
any 3D shape, viewpoints or keypoint supervision during training. On the right we show the input image and
the results obtained by our method, shown from multiple views.

could presumably be marked (perhaps in a category-agnostic way) by an instance segmentation
network like Mask R-CNN. But keypoints are tedious to mark on every instance. This effort
can be justified for a single important category like humans, but we cannot afford to do for the
thousands of categories which we might want to “3Dfy". Yes, we could have the keypoints be
marked by a network but to train that would require keypoint labels! There have been recent efforts
in unsupervised keypoint-detection [62], however, so far, these methods learn viewpoint-dependent
keypoints that often get mixed-up in the presence of 180-degree rotations.

In this chapter, we present an approach, U-CMR (for Unsupervised CMR) which enables us
to train a function which can factor an image into a 3D shape, texture and camera, in a roughly
similar setting to CMR [70], except that we replace the need for keypoint annotation with a single
3D template shape for the entire category. It turns out that keypoint annotations are needed for
recovering cameras (using SFM like techniques) and if we don’t have keypoint annotations, we have
to solve for the camera simultaneously with shape and texture. Extending the “analysis by synthesis"
paradigm to also recover cameras is unfortunately rather hard. Intuitively speaking, this is because
of the discontinuous and multi-modal nature of the space of possible camera viewpoints. While
shape and texture have a smooth, well behaved optimization surface that is amenable to gradient
descent optimization, this does not hold for the space of possible cameras. The two most likely
camera explanations might lie on the opposite sides of the viewing sphere, where it is not possible to
approach the optimal camera in an iterative manner as done when optimizing the energy landscape
of a deep network. This typically causes the camera prediction to be stuck in bad local minima. Our
solution to this problem is to maintain a set of possible camera hypotheses for each training instance
that we call a camera-multiplex. This is reminiscent of particle filtering approaches with the idea
being to maintain a distribution rather than prematurely pick a point estimate. We can iteratively
refine the shape, texture as well as the camera-multiplex. More details are presented in Section 3.3.
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We evaluate our approach on 3D shape, pose, and texture reconstruction on 4 categories: CUB-
200-2011 birds [166], PASCAL-3D [174] cars, motorcycles and a new dataset of shoes we scraped
from the Internet. We show that naively predicting shape, camera, and texture directly results
in a degenerate solution where the shape is flat and the camera collapses to a single mode. We
quantitatively evaluate the final camera prediction where the proposed camera-multiplex approach
obtains the state of the art results under this weakly-supervised setting of no keypoint annotations.
We show that despite the lack of viewpoints and keypoints, we can learn a reasonable 3D shape
space, approaching that of the shapes obtained by a previous method that uses keypoint supervision
[70].

3.2 Related Work
Recent deep learning based 3D reconstruction methods can be categorized by the required supervi-
sory signal and the output of the system. This is illustrated in Table 1. Earlier methods formulate the
problem assuming full 3D shape supervision for an image [23, 44, 34, 159, 45], which is enabled by
synthetic datasets such as ShapeNet [173] and SunCG [148]. Some approaches generate synthetic
datasets using data gathered from the real world to train their models [19, 162, 200]. However,
requiring 3D supervision severely restricts these approaches, since ground truth 3D shape is costly
or not possible to acquire, especially at a large scale. As such, follow up methods explore more
natural forms of supervision, where multiple-views of the same object are available. Some of these
approaches assume known viewpoints [180, 72, 160] akin to the setting of traditional MVS or
visual hull. Other approaches explore the problem with unknown viewpoint setting [157, 58, 41].
These approaches assume that multi-view silhouettes, images, and/or depth images are available,
and train their models such that the predicted 3D shapes reconstruct the images after projection or
differentiable rendering. A variety of differentiable rendering mechanisms have been explored [101,
75, 98].

While multi-view images may be obtained in the real world, the vast amount of available
visual data corresponds to the setting of unconstrained collection of single-view images, where no
simultaneous multiple views of the same instance are available. This is also the natural setting for
non-rigid objects where the shape may change over time. The traditional non-rigid structure from
motion [156] also falls under this category, where the input is a tracked set of corresponding points
[156, 25] or 2D keypoints [165, 117]. Earlier approaches fit a deformable 3D model [12, 73, 17, 68]
to 2D keypoints and silhouettes. Kanazawa et al. [70] propose CMR, a learning based framework
where 3D shape, texture, and camera pose are predicted from a single image, trained under this
setting of single-view image collections with known mask and keypoint annotations. While this
is a step in the right direction, the requirement of keypoint annotation is still restrictive. More
recently, Kulkarni et al. [85] bypass this requirement of keypoints to learn a dense canonical surface
mapping of objects from a set of image collections with mask supervision and a template 3D shape.
They focus on predicting the surface correspondences on images and learn to predict the camera
viewpoints during the training, but do not learn to predict the 3D shape. While we tackle a different
problem, we operate under the same required supervision. As such we quantitatively compare with
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Approach Required Supervision per Image Output
3D Shape Multi-view Cam Keypoints Mask 3D Shape 2.5D Cam Texture

MeshRCNN∗ [45] ✗ ✓

DeepSDF [120] ✗ ✓

Smalst [200] ✗ ✗ ✗ ✗ ✓ ✓ ✓

PTN [180] ✗ ✗ ✓

MVC [157] ✗ ✓ ✓

CMR [70] ✗ ✗ ✗ ✓ ✓ ✓

CSM [85] ✗ ✓

Wu et al. [172] ✓ ✓ ✓

U-CMR ✗ ✓ ✓ ✓

Table 3.1: A comparison of different approaches highlighting the differences between the input (during
training) and the output (during inference). Our approach (U-CMR) uses only silhouette supervision but
predicts full 3D shape, camera and texture. ∗MeshRCNN predicts shape in camera-coordinates instead of a
canonical frame.

CSM on the quality of the camera predicted, where our approach obtains considerably better camera
predictions. Note that there are several recent approaches that explore disentangling images into
2.5D surface properties, camera, and texture of the visible regions from a collection of monocular
images, without any masks [153, 145, 172]. However these approaches are mainly demonstrated on
faces. In this work we recover a full 3D representation and texture from a single image.

3.3 Approach

Preliminaries
Shape Representation. We represent 3D shape as a mesh M ≡ (V, F ) with vertices V ∈ R|V |×3

and faces F . The set of faces F defines the connectivity of vertices in the mesh and we assume
it remains fixed. We choose a mesh topology that is homeomorphic to a sphere. We model the
vertex positions of a deformable object as V = ∆V + V̄ , the summation of an instance-specific
deformation ∆V that is predicted from an image to a learned instance-independent mean shape V̄
[70]. We initialize the mean shape with the template 3D mesh. This parameterization allows the
model to learn the space of possible deformations for each category.

Texture Representation. As the topology of our mesh is fixed, we can use a UV image Iuv

representation to model the texture. The values in a UV image get mapped onto the surface via a
fixed UV mapping. The UV mapping is either a spherical projection akin to unrolling a globe into a
flat map [57], or when that is not good enough, is a distortion-minimizing unwrap of a template
mesh along manually defined seams computed using blender [13].
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Figure 3.2: Overview of the proposed framework. We first train a shape and texture predictor f , while
simultaneously optimizing the camera-multiplex C, a set of K possible camera hypotheses maintained for
every image. We render the predicted shape and texture from every camera in the multiplex, compute a
per-camera reconstruction loss, treat it as negative log-likelihood of the camera, and update the f against the
expected loss. We also update each camera in the multiplex against the loss incurred by it. After training f ,
we train a feed-forward model g to predict the best camera π∗ in the multiplex from an image. As such, at
test time our approach is able to predict all shape, texture, and camera from a single image.

Camera Projection. We assume a weak-perspective camera projection, parametrized by scale
s ∈ R, translation t ∈ R2 and rotation R (captured as Euler angles azimuth, elevation, cyclo-rotation
[az,el,cr] ∈ R3). We use π(P ) to denote the projection of a set of 3D points P onto the image
coordinates via the weak-perspective projection defined by π ≡ (s, t,R). We denote the image
rendered by composing all three factors as Ĩ = R(V, Iuv, π) and silhouette rendered just from the
shape and camera as S̃ = R(V, π) where R(·) is a differentiable renderer. We denote a set of
camera hypotheses kept for each image, a camera-multiplex C = {π1, · · · , πK}. We describe its
training details below.

Our Method
Figure 3.2 shows an overview of our approach. During training, we learn a function f(I) to predict
the 3D shape and texture of the object underlying image I . We optimize over the camera-multiplex
for each instance in the training dataset instead of making a deterministic prediction. For every
shape and texture prediction, we compute the loss from every camera in the camera-multiplex,
which induces a distribution on the camera poses inside a multiplex. We then use the expected loss
over the camera-multiplex to update f(I). When the training of f(·) converges, we identify the
optimal camera for each training example in the camera-multiplex. We then train a function g(I)
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that predicts the optimal camera from a single image, such that at test time we can infer all shape,
texture, and camera from a single image. We provide the details for the training process below.

For each training instance I , let C = {π1, · · · , πK} denote its camera-multiplex with K cameras
and S its silhouette. Note that while we omit the subscript on training instances for brevity, every
instance maintains its own C independently. For every predicted shape V = V̄ +∆V and texture
Iuv, we compute the silhouette and image reconstruction loss against each camera πk:

Lmask,k = ||S − S̃k||22 + dt(S) ∗ S̃k, (3.1)

Lpixel,k = dist(Ĩk ⊙ S, I ⊙ S, ), (3.2)

Lmask,k is the silhouette loss where S̃k = R(V, πk) is the silhouette rendered from camera πk, and
dt(S) is the uni-directional distance transform of the ground truth silhouette. Lpixel,k is the image
reconstruction loss computed over the foreground regions where R(V, Iuv, πk) is the rendered
image from camera πk. For this, we use the perceptual distance metric of Zhang et al. [194]. To
exploit the bilateral symmetry and to ensure symmetric texture prediction, we also render the mesh
under a bilaterally symmetric second camera, and compute Lpixel,k as the average pixel loss from
the two cameras.

In addition to these losses, we employ a graph-laplacian smoothness prior on our shape Llap =
||Vi − 1

|N(i)|
∑

j∈N(i) Vj||2 that penalizes vertices i that are far away from the centroid of their
adjacent vertices N(i). For cars, motorcycles and shoes, we empirically observe better results using
Llap = ||LV ||2 where L is the discrete Laplace-Beltrami operator that minimizes mean curvature
[129]. For this, we construct L once using the template mesh at the start of training. Following [12,
17, 73], we also find it beneficial to regularize the deformations as it discourages arbitrarily large
deformations and helps learn a meaningful mean shape. The corresponding energy term is expressed
as Ldef = ||∆V ||2.

Model Update.

For iteratively refining the camera-multiplex, we use the summation of the silhouette and image
reconstruction loss Lπk

= Lmask,k + Lpixel,k as the loss for each camera πk in the camera-multiplex.
We optimize each camera to minimize Lk every time the training instance is encountered during the
training. For updating the shape and the texture, we use the resulting losses over the cameras as a
distribution over the most likely camera pose in the camera-multiplex, and minimize the expected
loss over all the cameras. Specifically, we compute the probability of πk being the optimal camera
through a softmin function pk =

e−Lk/σ∑
j e

−Lj/σ
and train the shape and texture prediction modules with

the final loss:
Ltotal =

∑
k

pk(Lmask,k + Lpixel,k) + Ldef + Llap. (3.3)

In practice, the temperature σ changes dynamically while computing pk by linearly normalizing
Lk to have a fixed range to standardize the peakiness of the probability distribution. We do not
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backpropagate through pk. In summary, we iteratively refine the cameras in the multiplex against
loss Lπk

and update the parameters of f through Ltotal for every training sample.
We implement the camera multiplex for each image Ci as a variable stored in a dictionary. Every

time an image is encountered during training, the corresponding camera multiplex is fetched from
this dictionary of variables and used as if it were an input to the rest of the training pipeline. Modern
deep learning frameworks such as PyTorch [121] support having such a dictionary of variables.

Training a feed-forward camera predictor.

When the training of f converges, for each training image we select the optimal camera to be the
camera that minimizes the silhouette and image reconstruction losses. We then train a new camera
prediction module g(I) in a supervised manner such that at inference time our model can predict all
3D shape, texture, and camera at the same time.

Approach at test time.

Given a novel image I at test time, we can use the learnt modules f and g to predict the 3D shape,
texture and camera-viewpoint of the object underlying image I . f(I) predicts shape V = V̄ +∆V

and texture Iuv while g(I) predicts the camera-viewpoint π. This is illustrated in Figure 3.2.

3.4 Experiments
In this section we provide quantitative and qualitative evaluation of our approach that learns to
predict 3D shape, texture, and camera from a single image without using any keypoint annotations
during training. We explore our approach on four object categories: birds, cars, motorcycles and
shoes.

Experimental Detail
Datasets. We primarily use the CUB-200-2011 dataset [166], which has 6000 training and test
images of 200 species of birds. In addition to this, we train and evaluate U-CMR on multiple
categories: car, motorcycles from the Pascal3D+ dataset and shoes scraped from zappos.com.
For CUB and Pascal3D, we use the same train-test splits as CMR [70]. For the initial meshes
for birds and cars, we use the 3D template meshes used by Kulkarni et al. [85]. For others, we
download freely available online models, homogenize to a sphere and simplify to reduce the number
of vertices. We symmetrize all meshes to exploit bilateral symmetry. We compute masks for
the zappos shoes dataset, which contains white background images, via simple threshold-based
background subtraction and hole-filling.

Architecture. For all but texture, we use the same architecture as that of CMR [70] and pass
Resnet18 features into two modules - one each for predicting shape and texture. The shape prediction
module is a set of 2 fully connected layers with R3|V | outputs that are reshaped into ∆V following
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[70]. For the texture prediction, prior work predicted flow, where the final output is an offset that
indicates where to sample pixels from. In this work we directly predict the pixel values of the UV
image through a decoder. The texture head is a set of upconvolutional layers that takes the output of
Resnet18 preserving the spatial dimensions. We find that this results in a more stable camera, as
the decoder network is able to learn a spatial prior over the UV image. We use SoftRas [98] as our
renderer. Please see the supplementary material for details and ablation studies.

Camera-multiplex implementation. We use K = 40 for camera-multiplex. We initialize the
camera multiplex C for every image in the training set, to a set of K points whose azimuth and
elevation are uniformly spaced on the viewing sphere. For cars and motorcycles, we use K = 8
cameras - all initialized to zero elevation. We optimize each camera in the multiplex using the
silhouette loss Lmask,k before training shape and texture. To reduce compute time while training
shape and texture, we reduce K from 40 to 4 after 20 epochs by pruning the camera-multiplex and
keeping the top 4 cameras. Note that naive data augmentation that scales and/or translates the image
without adjusting the camera-multiplex will result in the rendered shape being pixel-unaligned.
We handle random crop and scale data augmentation during training by adjusting the scale and
translation in the stored camera multiplex with a deterministic affine transformation before using it
for rendering the shape.

Figure 3.3: CMR without keypoints. CMR-
nokp, which directly predicts shape, texture, and
camera without keypoint supervision or the pro-
posed camera-multiplex, obtains degenerate so-
lutions. The shape from predicted camera view-
point (centre) explains the silhouette well but an
alternate view (right) reveals that the model has
learned to output a planar, flat bird shape.

Baselines. As no other approach predicts 3D shape,
texture and pose without relying on keypoints or
known camera or multi-view cues during training, as
baseline we compare with ablations of our approach
that do not use the camera-multiplex. This can be
thought of CMR without keypoints, which simulta-
neously predicts shape, camera and texture and only
supervises rendered silhouette and texture. We call
this approach CMR-nokp and ensure that the experi-
mental setup is comparable to U-CMR. Additionally,
in the supplementary, we compare to two variants of
CMR [70] that have more supervision than our set-
ting. For camera prediction, we compare with CMR
[70] (which uses additional keypoint supervision),
CSM [85] and U-CMR without texture prediction
(U-CMR-noTex).

Qualitative Evaluation
The problem when no keypoints and viewpoints are available is that there always exists a planar
shape and texture that explains the image and silhouette for any arbitrary camera pose. We first
demonstrate this point using CMR-nokp. We observe that, as expected, CMR-nokp results in a
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degenerate solution shown in Figure 3.3 where the recovered shape explains the image silhouette
well, but when seen from a different viewpoint the shape is planar.

In Figure 3.6, we visualize U-CMR predictions on unseen images from the CUB test set. Our
approach, despite not using any viewpoint or keypoint supervision is able to recover a full, plausible
3D shape of the birds and learns to predict their texture from a single image. Our approach captures
various types of bird shapes, including shapes of water birds and songbirds. We are able to recover
sharp long tails and some protrusion of legs and beaks. Please see supplementary for more results
of random samples from test set and comparisons to CMR.

We further analyze the shape space that we learn in Figure 3.4, where we run principal component
analysis on all the shapes obtained on the train set. We find directions that capture changes in the
body type, the head shapes, and the tail shapes. In Figure 3.4, we also show that the final mean
shape deviates significantly from the template mesh it was initialized to, by becoming thinner and
developing a more prominent tail. Please see the supplemental for more results.

Input Template Mesh Learnt Mean Mesh

Figure 3.4: Learned Shape. On the left, we visualize the space of learned shapes by running PCA. We
see that the model has learned to output changes in body type, head shape, and tail types. On the right, we
compare the template shape to the final learnt mean mesh. See text for discussion.

Quantitative Evaluation
We conduct quantitative evaluation on the camera poses obtained from our approach, since there
are no 3D ground truth shapes on this dataset. For camera evaluation, we compare our approach
to CSM [85], which learns to output dense correspondences of the image against a template 3D
shape as well as the camera poses from image collections without keypoints. Note that they do
not learn to predict 3D shapes. We used the same 3D template mesh as CSM and therefore are
comparable to CSM. We evaluate cameras from different approaches on metrics measuring their
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Rotation
Error ↓

Entropy
(nats) ↑

Wasserstein Dist ↓
Azimuth Elevation

GT - 7.44 - -
CMR [70] 22.94◦ 7.25 6.03◦ 4.33◦

CMR-nokp 87.52◦ 5.73 64.66◦ 12.39◦

CSM [85] 61.93◦ 5.83 27.34◦ 11.28◦

U-CMR (noTex) 61.82◦ 7.36 16.08◦ 7.90◦

U-CMR 45.52◦ 7.26 8.66◦ 6.50◦

Table 3.2: Quantitative evaluation of camera pose predictions on the test dataset. We plot rotation error
as the geodesic distance from the ground-truth, the entropy of the azimuth-elevation distribution and the
wasserstein distance of marginal Az/El w.r.t. ground-truth. U-CMR outperforms all methods in the absence
of keypoints.

CMR - nokp CSM U-CMRGT CMR

Figure 3.5: Camera Pose Distributions on CUB Test. We show azimuth-elevation scatter plots over the
entire CUB test set for different approaches. From left to right, we show (i) pseudo ground-truth cameras
computed via running SfM on keypoints,(ii) the cameras predicted by CMR which uses the SfM cameras as
supervision, (iii) CMR without viewpoint and keypoint supervision (CMR-nokp), (iv) CSM [85] and (v) our
approach U-CMR. The last three approaches are weakly-supervised and do not use any keypoint annotation.
Notice how the camera pose collapses in CMR-nokp and CSM, while U-CMR with camera-multiplex is able
to obtain distribution similar to the ground truth cameras.

accuracy and collapse. We compare our predicted cameras to the pseudo ground-truth cameras
computed in CMR [70] using SFM on keypoints. For evaluating accuracy, we compute the rotation
error errR = arccos

(
Tr(R̃TR∗)−1

2

)
as the geodesic distance between the predicted camera rotation R̃

and the pseudo ground-truth camera rotation R∗. We report the average rotation error (in degrees)
over the entire test dataset. To measure collapse, we analyze the azimuth-rotation distribution
and report (i) its entropy (in nats) and (ii) it’s Wasserstein distance to the pseudo ground truth
azimuth-elevation distribution. Because of computational ease, we only report the Wasserstein
distance on the azimuth and elevation marginals. We primarily focus on azimuth and rotation
because changes in scale, translation and cyclo-rotation of a camera only warp the image in 2D and
don’t constitute a “novel viewpoint".

Table 3.2 reports the numbers on all metrics for supervised (CMR) and weakly-supervised
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(CMR-nokp, CSM, U-CMR) methods. Observe that all the weakly-supervised baselines incur
significant camera pose collapse - as can be seen by the entropy of their distributions. In contrast,
U-CMR, despite being weakly-supervised, achieves an entropy that is slightly better than CMR -
the supervised baseline. We automatically learn a camera distribution that is almost as close to the
ground-truth distribution (in Wasserstein distance) as the supervised baseline (CMR). U-CMR is
more accurate than CMR-nokp and CSM and achieves an average rotation error at least 15 degrees
better than them. This table also suggests that the texture loss helps with refining camera poses to
make them more accurate as U-CMR (noTex) is well-distributed with a very high entropy but is not
as accurate as U-CMR.

Figure 3.5 visualizes the azimuth-elevation distributions of different approaches. This figure
illustrates that while CSM prevents an extreme mode collapse of the camera, their camera pose
distribution still collapses into certain modes. For making this figure, we employ CSM’s public
model, trained on the same CUB dataset with a fixed template shape. This empirical evidence
exemplifies the fact that U-CMR’s weakly-supervised camera-multiplex optimization approach
learns a camera pose distribution that’s much better than other weakly-supervised baselines and
almost as good as supervised methods.

Evaluations on other categories
While our primary evaluation is on the CUB Birds dataset, we also run our approach on cars
and motorcycles from the Pascal3D+ dataset, and the shoe images we scraped from zappos.com.
We show qualitative visualizations of predicted shape, texture and camera for all categories. For
Pascal3D cars, we also compare IoU of predicted shapes to CMR, previous deformable model
fitting-based [73] and volumetric prediction [160] methods. All three of these approaches leverage
segmentation masks and cameras and keypoints to learn 3D shape inference.

Figure 3.7 shows qualitative results on selected images from their respective test set. U-CMR
learns accurate camera poses and diverse yet plausible shapes for cars and motorcycles. For shoes,
U-CMR shapes are reasonable but not as diverse because of biases in the underlying dataset. We
observe some artifacts where the sides of the cars have concave indentations and some parts of
the shoes are tapered and pointy. These issues stem from using weak-perspective projections and
limitations of the regularization, which is not spatially adaptive. Please see the supplemental for
each category’s PCA visualizations and the initial template.

Category CSDM [73] DRC [160] CMR [70] U-CMR

Car 0.60 0.67 0.640 0.646

Table 3.3: Reconstruction evaluation using PASCAL 3D+. We report the mean intersection over union
(IoU) on PASCAL 3D+ to benchmark the obtained 3D reconstructions (higher is better). We compare to
CMR [70], a deformable model fitting approach (CSDM [73]) and a volumetric prediction approach (DRC
[160]). CSDM and DRC use image collection supervision in addition to keypoints/cameras.
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We report the mean IoU on the test set in Table 3.3 and observe that U-CMR performs compara-
bly to alternate methods that require more supervision.

Limitations
While U-CMR shows promising results in the direction of weakly supervised 3D shape understand-
ing, it has some limitations. Foremost limitation is that we do not model articulation and expect to
fail in cases with significant articulation. In Figure 3.8, we demonstrate various modes of failure
for shape, texture and camera-viewpoint prediction. Our approach struggles when the bird shape is
significantly different from the template mesh and undergoes large articulation, such as the case
with flying birds. It is challenging to identify correct camera poses when there’s a large deformation
like this without keypoints. The data imbalance between flying and not flying birds also exacerbates
this problem. The two examples in the top row of the figure show how our shape prediction fails
when the bird in the image is flying, or has it’s wings open. The example in the bottom right shows
an articulated bird with it’s head twisted back. Due to the lack of an articulation model, these
failure cases are expected. We also fail at predicting good texture sometimes - especially for parts
of the object that are not visible. The example on the bottom left of Figure 3.8 and bottom right of
Figure 3.7 shows how background colours may leak into the predicted texture.

3.5 Conclusion
In this work, we present a learning framework that can decompose an image of a deformable object
into its 3D shape, texture, and camera viewpoint. In order to solve this highly under-constrained
problem, we propose a representation for maintaining a distribution over possible camera viewpoints
called camera-multiplex. This allows the model to maintain a possible set of camera hypothesis,
avoiding the learning process from getting stuck in a bad local minima. We show our approach on
four categories, where we show that U-CMR can recover reasonable 3D shape and texture without
viewpoints and keypoints.

Acknowledgements. We thank Jasmine Collins for scraping the zappos shoes dataset and members
of the BAIR community for helpful discussions. This work was supported in-part by eBay, Stanford
MURI and the DARPA MCS program.
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Figure 3.6: Qualitative results. For each input test image on the left, we show the predicted mesh, the
textured mesh, and the textured mesh from multiple views.
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Figure 3.7: Qualitative results on cars, motorcycles and shoes. For each image, we show the predicted
3D shape and texture from two viewpoints.
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Figure 3.8: Failure Modes. The columns, from left to right, show the input image, the predicted shape
and texture from the predicted camera, and finally a different view of the textured mesh. See the text for
discussion.
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Chapter 4

Humans in 4D

4.1 Introduction
In this chapter, we present a fully transformer-based approach for recovering 3D meshes of human
bodies from single images, and tracking them over time in video. We obtain unprecedented accuracy
in our single-image 3D reconstructions (see Figure 4.1) even for unusual poses where previous
approaches struggle. In video, we link these reconstructions over time by 3D tracking, in the process
bridging gaps due to occlusion or detection failures. These 4D reconstructions can be seen on the
project webpage.

Our problem formulation and approach can be conceived as the “transformerization” of previous
work on human mesh recovery, HMR [67] and 3D tracking, PHALP [133]. Since the pioneering
ViT paper [31], the process of “transformerization”, i.e., converting models from CNNs or LSTMs
to transformer backbones, has advanced rapidly across multiple computer vision tasks, e.g., [16,
33, 54, 91, 127, 170]. Specifically for 2D pose (2D body keypoints) this has already been done by
ViTPose [178]. We take that as a starting point and through careful design and experimentation, we
develop a new version of HMR, which we call HMR 2.0 to acknowledge its antecedent.

We use HMR 2.0 to build a system that can simultaneously reconstruct and track humans from
videos. We rely on the recent 3D tracking system, PHALP [133], which we simplify and improve
using our pose recovery. This system can reconstruct Humans in 4D, which gives the name to our
method, 4DHumans. 4DHumans can be deployed on any video and can jointly track and reconstruct
people in video. The functionality of creating a tracking entity for every person is fundamental
towards analyzing and understanding humans in video. Besides achieving state-of-the-art results for
tracking on the PoseTrack dataset [4], we also apply HMR 2.0 on the downstream application of
action recognition. We follow the system design of recent work, [132], and we show that the use of

This chapter is based on joint work with Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and
Jitendra Malik [48], more details for which can be found on the project webpage.

https://shubham-goel.github.io/4dhumans/
https://shubham-goel.github.io/4dhumans/
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Figure 4.1: A “transformerized” view of Human Mesh Recovery. We describe HMR 2.0, a fully
transformer-based approach for 3D human pose and shape reconstruction from a single image. Besides
impressive performance across a wide variety of poses and viewpoints, HMR 2.0 also acts as the backbone of
an improved system for jointly reconstructing and tracking Humans in 4D (4DHumans). Here, we see output
reconstructions from HMR 2.0 for each 2D detection in the left image. We encourage the reader to see our
4D reconstructions on the project webpage to appreciate the tracking and temporal stability.

HMR 2.0 can achieve impressive improvements upon the state of the art on action recognition on
AVA v2.2 dataset.

This work is unabashedly a systems work. We explored various choices and put together the
best combination. Our model will be made publicly available. There is an emerging trend, in
computer vision as in natural language processing, of large pretrained models (sometimes also
called “foundation models”) which find widespread downstream applications and thus justify the
scaling effort. HMR 2.0 is such a large pre-trained model which could potentially be useful not just
in computer vision, but also in robotics [122, 128, 163], computer graphics [168], bio-mechanics,
and other fields where analysis of the human figure and its movement from images or videos is
needed.

Our contributions can be summarized as follows:

1. We propose an end-to-end “transformerized” architecture for human mesh recovery, HMR 2.0.
Without relying on domain-specific designs, we outperform existing approaches for 3D body
pose reconstruction.

2. Building on HMR 2.0, we design 4DHumans that can jointly reconstruct and track humans
in video, achieving state-of-the-art results for tracking.

3. We show that better 3D poses from HMR 2.0 result in better performance on the downstream
task of action recognition, finally contributing to the state-of-the-art result (42.3 mAP) on the
AVA benchmark.

https://shubham-goel.github.io/4dhumans/
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4.2 Related Work
Human Mesh Recovery from a Single Image. Although, there have been many approaches
that estimate 3D human pose and shape relying on iterative optimization, e.g., SMPLify [14] and
variants [50, 87, 125, 136, 155, 188], for this analysis we will focus on approaches that directly
regress the body shape from a single image input. In this case, the canonical example is HMR [67],
which uses a CNN to regress SMPL [100] parameters. Since its introduction, many improvements
have been proposed for the original method. Notably, many works have proposed alternative
methods for pseudo-ground truth generation, including using temporal information [5], multiple
views [89], or iterative optimization [83, 65, 124]. SPIN [83] proposed an in-the-loop optimization
that incorporated SMPLify [14] in the HMR training. Here, we also rely on pseudo-ground truth
fits for training, and we use [84] for the offline fitting.

More recently, there have been works that propose more specialized designs for the HMR
architecture. PyMAF [192, 191] incorporates a mesh alignment module for the regression of
the SMPL parameters. PARE [81] proposes a body-part-guided attention mechanism for better
occlusion handling. HKMR [43] performs a prediction that is informed by the known hierarchical
structure of SMPL. HoloPose [51] proposes a pooling strategy that follows the 2D locations of each
body joints. Instead, we follow a design without any domain-specific decisions and we show that it
outperforms all previous approaches.

Many related approaches are making non-parametric predictions, i.e., instead of estimating the
parameters of the SMPL model, they explicitly regress the vertices of the mesh. GraphCMR [82]
uses a graph neural network for the prediction, METRO [94] and FastMETRO [20] use a transformer,
while Mesh Graphormer [95] adopts a hybrid between the two. Since we regress the SMPL model
parameters, instead of the locations of mesh vertices, we are not directly comparable to these.
However, we show how we can use a fully “transformerized” design for HMR.
Human Mesh & Motion Recovery from Video. To extend Human Mesh Recovery over time, most
methods use the basic backbone of HMR [67] and propose designs for the temporal encoder that
fuses the per-frame features. HMMR [69] uses a convolutional encoder on features extracted from
HMR [67]. VIBE [80], MEVA [105] and TCMR [21] use a recurrent temporal encoder. DSD [150]
combines convolutional and self-attention layers, while MAED [167] and t-HMMR [124] employ a
transformer-based temporal encoder. Baradel et al. [7, 8] also used a transformer for temporal pose
prediction, while operating directly on SMPL poses. One key limitation of these approaches is that
they often operate in scenarios where tracking is simple [69, 193], e.g., videos with a single person
or minimal occlusions. In contrast to that, our complete 4DHumans approach is also solving the
tracking problem.
Tracking People in Video. Recently, there have been approaches that demonstrate state-of-the-
art performance for tracking by relying on 3D human reconstruction from HMR models, i.e.,
T3DP [134] and PHALP [133]. In these methods, every person detection is lifted to 3D using an
HMR network [124] and then tracking is performed using the 3D representations from lifting [134]
and prediction [133] to track people in video. Empirical results show that PHALP works very well
on multiple tracking benchmarks (the main requirement is that the images have enough spatial
resolution to permit lifting of the people to 3D). We use these tracking pipelines, and particularly
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Figure 4.2: Overview of our approach. Left: HMR 2.0 is a fully “transformerized” version of a network
for Human Mesh Recovery. Right: We use HMR 2.0 as the backbone of our 4DHumans system, that builds
on PHALP [133], to jointly reconstruct and track humans in 4D.

PHALP, as a task to evaluate methods for human mesh recovery.
Action Recognition. Action recognition is typically performed using appearance features from
raw video input. Canonical examples in this category include SlowFast [37] and MViT [33].
Simultaneously, there are approaches that use features extracted from body pose information, e.g.,
PoTion [22] and JMRN [144]. A recent approach [132] demonstrates state-of-the-art performance
for action recognition by fusing video-based features with features from 3D human pose estimates.
We use the pipeline of this approach and employ action recognition as a downstream task to evaluate
human mesh recovery methods.

4.3 Reconstructing People

Preliminaries
Body Model. The SMPL model [100] is a low-dimensional parametric model of the human body.
Given input parameters for pose (θ ∈ R24×3×3) and shape (β ∈ R10), it outputs a mesh M ∈ R3×N

with N = 6890 vertices. The body joints X ∈ R3×k are defined as a linear combination of the
vertices and can be computed as X = MW with fixed weights W ∈ RN×k. Note that pose
parameters θ include the body pose parameters θb ∈ R23×3×3 and the global orientation θg ∈ R3×3.
Camera. We use a perspective camera model with fixed focal length and intrinsics K. Each
camera π = (R, t) consists of a global orientation R ∈ R3×3 and translation t ∈ R3. Given
these parameters, points in the SMPL space (e.g., joints X) can be projected to the image as
x = π(X) = Π(K(RX + t)), where Π is a perspective projection with camera intrinsics K. Since
θ already includes a global orientation, in practice we assume R as identity and only predict camera
translation t.
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HMR. The goal of the human mesh reconstruction (HMR) task is to learn a predictor f(I) that
given a single image I, reconstructs the person in the image by predicting their 3D pose and
shape parameters. Following the typical parametric approaches [67, 83], we model f to predict
Θ = [θ, β, π] = f(I) where θ and β are the SMPL pose and shape parameters and π is the camera
translation.

Architecture
We re-imagine HMR [67] as an end-to-end transformer architecture that uses no domain specific
design choices. Yet, it outperforms all existing approaches that have heavily customized architectures
and elaborate design decisions. As shown in Figure 4.2, we use (i) a ViT [31] to extract image
tokens, and (ii) a standard transformer decoder that cross-attends to image tokens to output Θ.
ViT. The Vision Transformer, or ViT [31] is a transformer [164] that has been modified to operate on
an image. The input image is first patchified into input tokens and passed through the transformer to
get output tokens. The output tokens are then passed to the transformer decoder. We use a ViT-H/16,
the “Huge” variant with 16× 16 input patch size. Please see SupMat for more detail.
Transformer decoder. We use a standard transformer decoder [164] with multi-head self-attention.
It processes a single (zero) input token by cross-attending to the output image tokens and ends with
a linear readout of Θ. We follow [83] and regress 3D rotations using the representation of [199].

Losses
Following best practices in the HMR literature [67, 83], we train our predictor f with a combination
of 2D losses, 3D losses, and a discriminator. Since we train with a mixture of datasets, each having
different kinds of annotations, we employ a subset of these losses for each image in a mini-batch.
We use the same losses even with pseudo-ground truth annotations. Given an input image I , the
model predicts Θ = [θ, β, π] = f(I). Whenever we have access to the ground-truth SMPL pose
parameters θ∗ and shape parameters β∗, we bootstrap the model predictions using an MSE loss:

Lsmpl = ||θ − θ∗||22 + ||β − β∗||22.

When the image has accurate ground-truth 3D keypoint annotations X∗, we additionally supervise
the predicted 3D keypoints X with an L1 loss:

Lkp3D = ||X −X∗||1.

When the image has 2D keypoints annotations x∗, we supervise projections of predicted 3D
keypoints π(X) using an L1 loss:

Lkp2D = ||π(X)− x∗||1.

Furthermore, we want to ensure that our model predicts valid 3D poses and use the adversarial
prior in HMR [67]. It factorizes the model parameters into: (i) body pose parameters θb, (ii) shape
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parameters β, and (iii) per-part relative rotations θi, which is one 3D rotation for each of the 23
joints of the SMPL model. We train a discriminator Dk for each factor of the body model, and the
generator loss can be expressed as:

Ladv =
∑
k

(Dk(θb, β)− 1)2.

Pseudo-Ground Truth fitting
We scale to unlabelled datasets (i.e., InstaVariety [69], AVA [49], AI Challenger [171]) by computing
pseudo-ground truth annotations. Given any image, we first use an off-the-shelf detector [91] and a
body keypoints estimator [178] to get bounding boxes and corresponding 2D keypoints. We then
fit a SMPL mesh to these 2D keypoints using ProHMR [84] to get pseudo-ground truth SMPL
parameters θ∗ and β∗ with camera π∗.

Pose Predictor

Mask
Token

Mask
Token

Mask
Token

Past Future

Figure 4.3: Pose prediction: We train a BERT-style [29] transformer model on over 1 million tracks
obtained from [132]. This allow us to make future predictions and amodal completion of missing detections
using the same model. To predict future poses (t+ 1, t+ 2, ...), we query the model with a mask-token using
corresponding positional embeddings. Similarly for amodal completion, we replace missing detections with
a masked token.

4.4 Tracking People
In videos with multiple people, we need the ability to associate people across time, i.e., perform
tracking. For this we build upon PHALP [133], a state-of-the-art tracker based on features derived
from HMR-style 3D reconstructions. The basic idea is to detect people in individual frames, and
“lift” them to 3D, extracting their 3D pose, location in 3D space (derived from the estimated camera),
and 3D appearance (derived from the texture map). A tracklet representation is incrementally
built up for each individual person over time. The recursion step is to predict for each tracklet,
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the pose, location and appearance of the person in the next frame, all in 3D, and then find best
matches between these top-down predictions and the bottom-up detections of people in that frame
after lifting them to 3D. The state represented by each tracklet is then updated by the incoming
observation, and the process is iterated. It is possible to track through occlusions because the 3D
representation of a tracklet continues to be updated based on past history.

We believe that a robust pose predictor should also perform well, when evaluated on this
downstream task of tracking, so we use the tracking metrics as a proxy to evaluate the quality of 3D
reconstructions. But first we needed to modify the PHALP framework to allow for fair comparison
of different pose prediction models. Originally, PHALP used pose features based on the last layer
of the HMR network, i.e., a 2048-dimensional embedding space. This limits the ability of PHALP
to be used with different pose models (e.g., HMR 2.0, PARE, PyMAF etc.). To create a more
generic version of PHALP, we perform the modification of representing pose in terms of SMPL
pose parameters, and we accordingly optimize the PHALP cost function to utilize the new pose
distance. Similarly, we adapt the pose predictor to operate on the space of SMPL parameters. More
specifically, we train a vanilla transformer model [164] by masking random pose tokens as shown in
the Fig 4.3. This allows us to predict future poses in time, as well as amodal completion of missing
detections. With these modifications, we can plug in any mesh recovery methods and run them on
any videos. We call this modified version PHALP′.

4DHumans. To track people in videos, previous approaches relied on off-the-shelf tracking
approaches and used their output to reconstruct humans in videos (e.g., take the bounding boxes
from tracking output and reconstruct people). For example, PHD [193], HMMR [69] can run on
videos with only single person in the scene. In this work, we combine reconstruction and tracking
into a single system and show that better pose reconstructions result in better tracking and this
combined system can now run on any videos in the wild.

4.5 Experiments
In this section, we evaluate our reconstruction and tracking system qualitatively and quantitatively.
First, we show that HMR 2.0 outperforms previous methods on standard 2D and 3D pose accuracy
metrics (Section 4.5). Second, we show 4DHumans is a versatile tracker, achieving state-of-the-art
performance (Section 4.5). Finally, we further demonstrate the robustness and accuracy of our
recovered poses via superior performance on the downstream application of action recognition
(Section 4.5).

Setup
Datasets. Following previous work, we use the typical datasets for training, i.e., Human3.6M [59],
MPI-INF-3DHP [108], COCO [96] and MPII [3]. Additionally, we use InstaVariety [69], AVA [49]
and AI Challenger [171] as extra data where we generate pseudo-ground truth fits.
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Method
3DPW Human3.6M

MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

Te
m

po
ra

l
Kanazawa et al. [69] 116.5 72.6 - 56.9
Doersch et al. [30] - 74.7 - -
Arnab et al. [5] - 72.2 77.8 54.3
DSD [150] - 69.5 59.1 42.4
VIBE [80] 93.5 56.5 65.9 41.5

Fr
am

e-
ba

se
d

Pavlakos et al. [126] - - - 75.9
HMR [67] 130.0 76.7 88.0 56.8
NBF [118] - - 59.9
GraphCMR [82] - 70.2 - 50.1
HoloPose [51] - - 60.3 46.5
DenseRaC [177] - - 76.8 48.0
SPIN [83] 96.9 59.2 62.5 41.1
DecoMR [189] - 61.7† - 39.3†

DaNet [190] - 56.9 61.5 48.6
Song et al. [147] - 55.9 - 56.4
I2L-MeshNet [112] 100.0 60.0 55.7† 41.1†

HKMR [43] - - 59.6 43.2
PyMAF [192] 92.8 58.9 57.7 40.5
PARE [81] 82.0 50.9 76.8 50.6
PyMAF-X [191] 78.0 47.1 54.2 37.2
HMR 2.0a 69.8 44.4 45.3 33.8
HMR 2.0b 81.4 54.5 52.6 33.4

Table 4.1: Reconstructions evaluated in 3D: Reconstruction errors (in mm) on the 3DPW and
Human3.6M datasets. † denotes the numbers evaluated on non-parametric results. Lower ↓ is better.
Please see the text for details.

Baselines. We report performance on benchmarks that we can compare with many previous works
(Section 4.5), but we also perform a more detailed comparison with recent state-of-the-art methods,
i.e., PyMAF [192], CLIFF [93], HMAR [133] PARE [81], and PyMAF-X [191]. For fairness, we
only evaluate the body-only performance of PyMAF-X.

Pose Accuracy
3D Metrics. For 3D pose accuracy, we follow the typical protocols of prior work, e.g., [83], and we
present results on the 3DPW test split and on the Human3.6M val split, reporting MPJPE, and PA-
MPJPE in Table 4.1. Please notice that we only compare with methods that do not use the training
set of 3DPW for training, similar to us. We observe that with our HMR 2.0a model, which trains
only on the typical datasets, we can outperform all previous baselines across all metrics. However,
we believe that these benchmarks are very saturated and these smaller differences in pose metrics
tend to not be very significant. In fact, we observe that by a small compromise of the performance on
3DPW, our HMR 2.0b model, which trains for longer on more data (AVA [49], AI Challenger [171],
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Method
LSP-Extended COCO PoseTrack
@0.05 @0.1 @0.05 @0.1 @0.05 @0.1

PyMAF [192] - - 0.68 0.86 0.77 0.92
CLIFF [93] 0.30 0.64 0.63 0.88 0.75 0.93
PARE [81] 0.27 0.60 0.72 0.91 0.79 0.93
PyMAF-X [191] - - 0.79 0.93 0.85 0.95
HMR 2.0a 0.38 0.72 0.79 0.95 0.86 0.97
HMR 2.0b 0.54 0.84 0.85 0.96 0.90 0.98

Table 4.2: Reconstructions evaluated in 2D. PCK scores of projected keypoints at different
thresholds on the LSP-Extended, COCO, and PoseTrack datasets. Higher ↑ is better.

and InstaVariety [69]), achieves results that perform better on more unusual poses than what can be
found in Human3.6M and 3DPW. We observe this qualitatively and from performance evaluated on
2D pose reprojection (Table 4.2). Furthermore, we observe that HMR 2.0b is a more robust model
and use it for evaluation in the rest of the chapter.
2D Metrics. We evaluate 2D image alignment of the generated poses by reporting PCK of
reprojected keypoints at different thresholds on LSP-Extended [64], COCO validation set [96], and
Posetrack validation set [4]. Since PyMAF(-X) [192, 191] were trained using LSP-Extended, we
do not report numbers for that part of the table. Notice in Table 4.2, that HMR 2.0-b consistently
outperforms all previous approaches. On LSP-Extended, which contains unusual poses, HMR 2.0-
b achieves PCK@0.05 of 0.54, which is 2× better than the second best (PARE) with 0.27. For
PCK@0.05 on easier datasets like COCO and PoseTrack with less extreme poses, HMR 2.0b still
outperforms the second-best approaches but by narrower margins of 8% and 6% respectively.
HMR 2.0a also outperforms all baselines, but is worse than HMR 2.0b, especially on harder poses
in LSP-Extended.
Qualitative Results. We show qualitative results of HMR 2.0 in Figure 4.4. We are robust to
extreme poses and partial occlusions. Our reconstructions are well-aligned with the image and
are valid when seen from a novel view. Moreover, we compare with our closest competitors in
Figure 4.5. We observe that PyMAF-X and particularly PARE often struggle with more unusual
poses, while HMR 2.0 returns more faithful reconstructions.

Tracking
For tracking, we first demonstrate the versatility of the modifications introduced by PHALP′, which
allow us to evaluate 3D pose estimators on the downstream task of tracking. Then, we evaluate our
complete system, 4DHumans, with respect to the state of the art.

Evaluation Setting. Following previous work [134, 133], we report results based on IDs (ID
switches), MOTA [74], IDF1 [138], and HOTA [104] on the Posetrack validation set using the
protocol of [133], with detections from Mask R-CNN [53].
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Tracker Pose Engine
Posetrack

IDs↓MOTA↑ IDF1↑ HOTA↑

PHALP′

PyMAF [192] 598 58.7 76.2 53.0
CLIFF [93] 550 58.9 76.6 53.5
HMAR [133] 523 59.2 76.8 53.5
PARE [81] 477 59.1 77.1 53.8
PyMAF-X [191] 472 59.2 76.9 53.7
HMR 2.0 471 59.1 76.7 53.8

Table 4.3: Tracking with different 3D pose estimators. With the modifications of PHALP′, we have
a versatile tracker that allows different 3D pose estimators to be plugged into it. HMR 2.0, PARE, and
PyMAF-X perform the best in this setting.

Versatility of PHALP′. With the modifications of PHALP′, we abandon the model-specific latent
space of [133] and instead, we operate in the SMPL space, which is shared across most mesh
recovery systems. This makes PHALP′ more versatile and allows us to plug in different 3D pose
estimators and compare them based on their performance on the downstream task of tracking. We
perform this comparison in Table 4.3 where we use pose and location cues from state of the art
3D pose estimators (while still using appearance from HMAR [133]). We observe that HMR 2.0,
PARE [81] and PyMAF-X [191] perform the best on the Posetrack dataset, with minor differences
between them. Note that tracking is often most susceptible to errors in predicted 3D locations with
body pose having a smaller effect in performance [133]. This means that good tracking performance
can indicate robustness to occlusions, so it is helpful to consider this metric, but it is less helpful to
distinguish fine-grained differences in pose. As a result, the competitive results of PARE [81] and
PyMAF-X [191] indicate that they handle occlusions gracefully, but their pose estimation might still
be less accurate (as observed from Table 4.2). See also Figure 4.5 and SupMat for more qualitative
comparisons.
4DHumans. Table 4.4 evaluates tracking performance of our complete system, 4DHumans, on the
PoseTrack dataset. Using the same bounding box detector as [134, 133], 4DHumans outperforms
existing approaches on all metrics, improving ID Switches by 16%. Using the improved ViTDet
detector [91] can improve performance further. As a by-product of our temporal prediction model
(Figure 4.3), we can perform amodal completion and attribute a pose to missing detections.

Action Recognition
Evaluation setting. The approach of [132] is the state of the art for action recognition in videos.
Given a video input, the authors propose using per-frame 3D pose and location estimates (using
off-the-shelf HMR models [133]) as an additional feature for predicting action labels. They also
show results for a “pose-only” baseline that predicts action labels using only 3D pose and location
estimates. We use this setting to compare our model with baselines on the downstream task of
action recognition on the AVA dataset [49]. In [132], the authors train a transformer that takes
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Front viewInput Side view Top view Front viewInput Side view Top view

Figure 4.4: Qualitative evaluation of HMR 2.0. For each example we show: a) the input image, b) the
reconstruction overlay, c) a side view, d) the top view. To demonstrate the robustness of HMR 2.0, we
visualize results for a variety of settings - for unusual poses (rows 1-4), for unusual viewpoints (row 5) and
for images with poor visibility, extreme truncations and extreme occlusions (rows 6-8).
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PyMAF-X PARE HMR 2.0InputFull Image

Figure 4.5: Qualitative comparison of state-of-the-art mesh recovery methods. HMR 2.0 returns
more faithful reconstructions for unusual poses compared to the closest competitors, PyMAF-X [191] and
PARE [81].
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Figure 4.6: Qualitative tracking results of 4DHumans. We use head masks (frame number is on the top
left). First row: We track people skating on ice with challenging poses and heavy occlusions, in a minute long
video without switching identities. Second row: The main person is tracked through multiple interactions
with other players. Third row: The person of interest is tracked through long occlusions.
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Method
Posetrack

IDs↓MOTA↑ IDF1↑ HOTA↑

Trackformer [109] 1263 33.7 64.0 46.7
Tracktor [9] 702 42.4 65.2 38.5
AlphaPose [35] 2220 36.9 66.9 37.6
Pose Flow [175] 1047 15.4 64.2 38.0
T3DP [134] 655 55.8 73.4 50.6
PHALP [133] 541 58.9 76.4 52.9
4DHumans 455 59.5 77.6 54.1

4DHumans + ViTDet 367 61.9 79.3 57.8

Table 4.4: Comparison of 4DHumans with the state of the art on the Posetrack dataset.
4DHumans achieve state-of-the-art tracking performance for all metrics. Incorporating a better detection
system [91] leads to further performance improvements.

Action Model Pose Engine OM PI PM mAP

[132]

PyMAF [192] 7.3 16.9 34.7 15.4
CLIFF [93] 9.2 20.0 40.3 18.6
HMAR [133] 8.7 20.1 40.3 18.3
PARE [81] 9.2 20.7 41.5 19.1
PyMAF-X [191] 10.2 21.4 40.8 19.6
HMR 2.0 11.9 24.6 45.8 22.3

Table 4.5: Action recognition results on the AVA dataset. We benchmark different mesh recovery
methods on the downstream task of pose-based action recognition. Here, OM : Object Manipulation,
PI : Person Interactions, and PM : Person Movement. Higher ↑ is better.

SMPL poses as input and predicts action labels. Following their setup, we train a separate action
classification transformer for each baseline.
Comparisons. Comparing results in Table 4.5, we observe that HMR 2.0 outperforms baselines on
the different class categories (OM, PI, PM) and overall. It achieves an mAP of 22.3 on the AVA test
set, which is 14% better than the second-best baseline. Since accurate action recognition from poses
needs fine-grained pose estimation, this is strong evidence that HMR 2.0 predicts more accurate
poses than existing approaches. In fact, when combined with appearance features, [132] shows that
HMR 2.0 achieves the state of the art of 42.3 mAP on AVA action recognition, which is 7% better
than the second-best of 39.5 mAP.
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4.6 Conclusion
We study the problem of reconstructing and tracking humans from images and video. First, we
propose HMR 2.0, a fully “transformerized” version of a network for the problem of Human Mesh
Recovery [67]. HMR 2.0 achieves strong performance on the usual 2D/3D pose metrics, while
also acting as the backbone for our improved video tracker. The full system 4DHumans, jointly
reconstructs and tracks people in video and achieves state-of-the-art results for tracking. To further
illustrate the benefit of our 3D pose estimator, HMR 2.0, we apply it to the task of action recognition,
where we demonstrate strong improvements upon previous pose-based baselines.

Our work pushes the boundary of the videos that can be analyzed with techniques for 3D human
reconstruction. At the same time, the improved results also demonstrate the type of limitations
that need to be addressed in the future. For example, the use of the SMPL model [100] creates
certain limitations, and leveraging improved models would allow us to model hand pose and facial
expressions [125], or even capture greater age variation, e.g., infants [55] and kids [123, 151].
Moreover, since we consider each person independently, our reconstruction are less successful at
capturing the fine-grained nature of people in close proximity, e.g., contact [38]. Besides this, our
reconstructions “live” in the camera frame, so for proper understanding of the action in a video, we
need to consider everyone in a common world coordinate frame, by reasoning about the camera
motion too [184, 187]. Finally, lower input resolution can affect the quality of our reconstructions,
which could be addressed by more extreme resolution augmentations [176].
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Chapter 5

Conclusion

In conclusion, this thesis takes significant steps towards high-fidelity 3D reconstruction of humans,
animals, and objects, from one or many images.

In Chapter 2, we saw how to reconstruct shape when multiple images are available. Our approach,
Differentiable Stereopsis (DS), reconstructs objects and scenes from very few images, with noisy
camera poses as input. We saw that compared to its volumetric counterparts, DS especially shines
in the regime with few input images and high camera pose noise, where the input data is limited
and noisy. Despite the shape and camera optimization landscape being highly non-convex in such a
low-data setting, our SGD-based optimization avoids local minima by only optimizing for shape
and camera parameters, but to minimize a texture reprojection loss.

In Chapter 3, we presented UCMR (Unsupervised-CMR), a learning framework that learns to
recover the 3D shape, pose and texture from a single image, by leveraging an image collection
of a particular category, without any ground truth 3D shape, multi-view, camera viewpoints or
keypoint supervision. As the key contribution, we maintained a camera pose distribution for each
image, as a set of camera hypotheses, and optimize them during training to best explain the image
given the current shape and texture. We observed that optimizing the cameras in this way avoids a
network collapse to degenerate solutions when no ground-truth annotations are available. Eventually,
these optimized cameras can be distilled into a separate network to predict cameras from images.
We showed that UCMR faithfully predicts shape, camera and texture, while scaling to multiple
categories without ground-truth 3D or keypoint annotations.

In Chapter 4, we presented an approach to reconstruct humans and track them over time. At
the core of our approach, HMR 2.0, is a fully “transformerized” single-view 3D human pose and
shape reconstruction model. We also use these 3D reconstructions as input to build a 3D tracking
system, 4DHumans, that enables us to analyze humans in video – dealing with multiple people
and maintaining identities through occlusion events. Powered by 4DHumans, we enable using
3D humans pose estimation for downstream tasks, achieving state-of-the-art results for tracking
people from monocular video, and contributing to the best performing pose-based human action
recognition system.

A common theme across Chapters 3 and 4, where we learn priors for single-view reconstruction,
is that of "optimize and distill", i.e. first optimize to extract some 3D information for every instance,
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and then distill it down into a network. For U-CMR, we optimized cameras while training shape, and
distilled the cameras later into a feed-forward network. With HMR 2.0, we first pre-processed an
unlabelled dataset, optimizing the SMPL mesh to fit 2D keypoints. We then distill these optimized
SMPL parameters into a neural network, i.e. train it using the optimized parameters as pseudo-GT.

Something we have not discussed until now, is that the world around us can be modeled using a
variety of 3D representations. Classical approaches such as point clouds, voxels, and meshes have
been well-studied and are supported by numerous communities outside computer vision. More
recently, implicit neural representations, like NeRF [110], have gained popularity for novel-view
synthesis. Each of these representations comes with its own set of advantages and disadvantages.
Volumetric representations like NeRFs demonstrate promise for 3D reconstruction, particularly
in multi-view settings when numerous images are available. However, in sparse view settings
with noisy data, a mesh-based representation outperforms volumetric approaches, as illustrated in
Chapter 2, due to the inherent surface regularization provided by meshes. In Chapter 3, learning
morphable models for shape was most straightforward with meshes, although this constrained
us to a fixed topology. However, subsequent work in the community [32] has addressed this
limitation. For human representations, in Chapter 4, we used the most popular parametric human
model [100], which happens to be mesh-based. While there has been progress in developing
more expressive human models like [119], they are yet to be widely adopted within the research
community. Regardless, the ideas presented in this thesis are general and can be extended to various
types of shape representations.

Even though this thesis takes major steps towards solving 3D reconstruction of objects and
scenes in the wild, the problem remains unsolved and is an active area of research. Chapters 3 and 4
show how to learn priors for single-view 3D reconstruction for many categories. However, these
learnt priors are category-specific. Even though this can be scaled to a large number of categories,
“categories” are an unnatural man-made discretization of an otherwise continuous world. What we
truly need, and already have as humans, are 3D priors that work across all objects and scenes. When
built, these priors will definitely use semantics, i.e. some implicit knowledge of similar instances
having similar shapes, but will still work for all data in the wild. For example, the shift we’ve
witnessed in generative image modelling, from class-conditioning [15] to text-conditioning [140], is
of a similar kind.

The 3D community has taken a stab at learning category-agnostic priors multiple times [195,
170, 114] but much progress remains to be made. Two things make this problem much harder than
its 2D counterparts: the lack of large-scale annotated 3D data, and the high-dimensionality of the 3D
data over which these priors need to be learnt. The latter could be resolved as we build more efficient
models, e.g. RIN [61] decouples computation on the data from the underlying spatial topology
in which the data resides. The lack of data, however, is a more fundamental issue. Collecting
3D annotoations of all the complex objects in the real world, with a laser scanner for example,
is time-consuming, expensive, and unscalable. Even though size of 3D datasets has increased by
orders of magnitude, the biggest 3D datasets today, like Objaverse [27] at 800 thousand models,
are still orders of magnitudes smaller than large-scale image datasets like LAION-5B [143], which
have 5 billion image-text pairs. Furthermore, these 3D datasets, though helpful, are very different
from the actual 3D world, as being CAD models that are synthetically created by artists.
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The most natural scalable source of data, for learning 3D priors, is video, of which we have
plenty. For example, YouTube-8M [1] has 350 thousand hours of video and the total amount of
data on YouTube is closer to 150 million hours. However, it remains unclear how to use this data
to build priors on the 3D world. With NeRFs and their dynamic variants, we are making steady
progress on 3D-ifying each video individually. Similar to the "optimize and distill" ideas used
in Chapters 3 and 4, one solution might be to first reconstruct a large dataset of scenes to 3D via
per-video optimization, and then distill the 3D dataset down to a prior. Another exciting direction is
to leverage 2D image priors, as encoded in pretrained 2D generative models, to extract a 3D prior.
Some recent approaches explore this direction [97], sometimes totally bypassing the need for any
3D data [131]. However, these approaches are far from a general prior on the 3D world.

In this thesis, we have made major steps at learning to reconstruct 3D shapes of humans and
objects, from single and multiple views. However, 3D computer vision remains an important and
open area of research, where much progress still remains to be made, and given the pace of research
in the community, we can anticipate the research community making exciting new progress in this
direction over the years to come.
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A.1 Additional Training Details

Misc
We downsample the original 2048× 2048 images to 400× 400 for all methods but COLMAP. Both
NeRF baselines are trained for 100k iterations and take ∼ 10 hours to run on a 32GB NVIDIA
V100. DS is trained for 50k iterations and takes ∼ 9 hours to run on the same GPU.

Bi-directional distance transform loss
This section describes the bi-directional distance transform lossLbi-dt used in the mask reconstruction
loss in Equation 6 of the main text. Our novel loss is a differentiable version of a non-differentiable
naive bi-directional distance transform loss. We first define the naive non-differentiable loss and
then describe our differentiable adaptation to it. For convenience, we misuse A (or Ar) to refer to
the set of pixels where GT mask A (or the rendered mask Ar) is 1.

A naive non-differentiable bi-directional distance transform loss Lbi-dt-naive(A
r, A) between the

rendered mask Ar and GT mask A consists of 2 components. The first penalizes pixels p ∈ Ar \A,
where the rendered mask is 1 but GT mask is 0, by the distance of p from NN(p,A) - the closest
occupied pixel in the GT mask. NN is the nearest neighbor operation in euclidean space. The second
component penalizes pixels q ∈ A \ Ar, where the GT mask is 1 but rendered mask is 0, by the
distance of q from NN(q, Ar) - the closest occupied pixel in the rendered mask.

Lbi-dt-naive(A
r, A) =

∑
p∈Ar\A

NNd(p,A) +
∑

q∈A\Ar

NNd(q, A
r)) (A.1)

where NNd(p,A) = d(p,NN(p,A)) is the distance between p and its nearest neighbor in A as
measured by a metric d.

The operation of finding the set of pixel locations where the rendered mask Ar is occupied is
the only non-differentiable one in the loss above. Our novel adaptation provides a differentiable
approximation for the same. Given a pixel p in i-th image Ii, recall (from Section 3.1) that the
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rasterizer finds K points x1..K on the surface of the mesh that project to p under camera πi. Therefore,
πi(xk) is a differentiable approximation to p for each xk. We approximate p ∼ p̂ =

∑
k wkπi(xk)

as a normalized weighted sum of projections πi(xk) with weights from the softmax blending that
composites texels c1..K into a final color at p. Let Âr = {p̂|p ∈ Ar; p̂ =

∑
k wkπi(xk)}. The full

differentiable bi-directional distance transform loss is

Lbi-dt(A
r, A) =

∑
p∈Ar\A

NNd(p̂, A) +
∑

q∈A\Ar

NNd(q, Âr)) (A.2)

where d(x, y) = clamp(||x − y||2, τmin, τmax) is the clamped L-2 euclidean distance. We set
τmin to 2 pixels and τmax to 0.1 of the shorter image dimension.

Learning Schedule
We run our optimization for 50k iterations using SGD with a momentum of 0.9 and an initial
learning rate of 0.01. We use cosine annealing for our learning rate with warm restarts [103]
which we find helps avoid local minima for both shape and cameras. We clip gradient norms for
stability. For mesh rasterization, we use PyTorch3D [135] with K = 6 and a blur radius that decays
exponentially from 5× 10−5 to 10−6 over the course of optimization.

Aligning meshes for benchmarking
As cameras are optimized, ground-truth and optimized shapes are not in a common coordinate
space and must be aligned before benchmarking. However, different benchmarking metrics are
minimized by different alignments. Therefore, for every instance, for each metric, we find 3 possible
alignments and pick the best. The first is a brute force minimization of Chamfer-L2 over scale/depth
in camera 0’s view coordinate space. The second and third additionally optimize rotation and
translation via ICP from ground-truth to predicted mesh and vice-versa.

A.2 Additional Results

COLMAP
In Fig. A.5, we show dense pointcloud reconstructions by COLMAP on scenes from the Tanks and
Temples dataset as the number of views reduces from 100 to 50 to 25 to 15. The pointcloud density
drops drastically as we reduce the number of views below 50. With 15 views, the reconstruction
is practically empty and the scene is unrecognizable. Our attempts to mesh these points using
COLMAP’s Poisson and Delaunay meshers failed. In contrast, as seen in Fig. 8 of the main text,
our approach is far more robust with the same views.

In Fig. A.6, we show dense pointcloud reconstructions by COLMAP on instances from the
Google dataset with 8 input views and ground-truth cameras. COLMAP fails on 2/50 instances and
of the 48 instances it works on, it only reconstructs parts of the scene that are textured and visible
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in close (narrow-baseline) views. It still misses surfaces that are visible in only 2-3 wide baseline
views. For example in Fig. A.6, COLMAP fails to reconstruct the back of the green backpack which
is visible only in 2/8 input views.

Cameras from SfM We tried using COLMAP’s Structure-from-Motion (SfM) pipeline to ame-
liorate the need for noisy camera inputs. It often, if not always, fails to register all cameras into a
single coordinate space correctly and usually ends up with multiple groups – each with 2-3 cameras
with reasonably accurate relative orientation. The inability to merge the multiple groups into a
single coordinate frame made it infeasible to use the COLMAP cameras as initializations. Note
that SfM’s failure is not surprising since we are working with 8 white-background views covering
360-degrees of the object. On average, any surface is visible from ∼ 3 views only. Furthermore,
white background images are harder to calibrate than in-context images with background because
of the lack of visual overlap in the background.

Further comparisons
In addition to comparisons with NeRF [110] and NeRF-opt in the main paper, we compare

to COLMAP [141], IDR [183], and DS-naive. Table A.2 shows results on GSO following the
evaluation protocol of the main paper. All methods use 8 views and σ = 30◦ camera noise,
except COLMAP, which uses ground-truth cameras. For COLMAP, we compute metrics on the
reconstructed dense point cloud via uniform random sampling.

DS outperforms all baselines across all metrics. IDR gets slightly better shapes but worse
cameras than NeRF-opt. However, neither can recover accurate geometry under camera noise. Sur-
prisingly, DS-naive performs similar to NeRF-opt but with better Chamfer and Normal Consistency,
suggesting the mesh representation is robust in noisy settings. We note that COLMAP has extremely
high precision (99.8%, compared to DS’s 88.4%) but very poor recall (35.5%, compared to DS’s
78.2%) at a threshold of 0.2. This suggests that COLMAP reconstructs accurate point clouds but
misses large parts of the shape, supporting the qualitative claim in Appendix A.2. The comparison
with COLMAP, a method that finds view correspondences followed by triangulation, suggests that
such methods have a hard time reconstructing shapes from limited views.
Tanks and Temples Fig. A.1 compares on Tanks and Temples with 15 views and no camera noise
(to be compared to Fig. 2.8 in the main paper). Table A.1 shows the corresponding quantitative
comparison following the evaluation protocol of the main paper. However, since the ground-truth
pointclouds are hollow (without the bottom), the reported numbers only approximate the quality of
the shape. NeRF-opt produces lower quality shapes than DS. With more views and no camera noise,
IDR performs slightly better than DS. This is not a surprise. Our approach has an advantage when
few views (≤ 12) are available and cameras are noisy. But our approach, even with more views
(= 15) and no camera noise, reconstructs shapes well, performing better than NeRF-opt and similar
to IDR.

DTU dataset Fig. A.2 compares on scenes from the DTU dataset with 6 views and linear camera
noise following IDR [183]. Note that this data is easier to reconstruct because the 6 views span
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Figure A.1: IDR and NeRF-opt on Tanks and Temples with 15 views.

Scene Method Chamfer↓ F1@.1↑ F1@.2↑

Barn
IDR 0.14 47.6 70.2
NeRF-opt 0.98 33.4 48.2
DS 0.39 35.1 . 56.0

Caterpillar
IDR 0.06 59.6 81.9
NeRF-opt 0.15 54.5 77.7
DS 0.07 55.8 76.4

Ignatius
IDR 0.18 68.2 86.9
NeRF-opt 0.20 54.6 74.5
DS 0.30 53.4 75.8

Truck
IDR 0.06 54.8 79.7
NeRF-opt 1.40 23.9 40.8
DS 0.14 52.0 70.7

Table A.1: Results on Tanks and Temples scenes with 15 input views.
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Method Chamfer↓ F1@.1↑ F1@.2↑ NC↑ Rot↓

COLMAP 0.38 35.2 52.3 - -
IDR 0.52 22.0 40.5 0.23 22.8
NeRF-opt 0.31 33.1 58.6 0.28 13.4
DS-naive 0.22 29.5 53.0 0.54 14.7
DS 0.10 63.5 80.6 0.68 0.54

Table A.2: Results on GSO with 8 views and σ = 30◦ camera noise. NC=Normal Consistency; Rot=Rotation
Error (in degrees).

only 1/8th of the entire viewing sphere and the cameras have an average camera noise of only
∼ 1◦, which is much lesser than most of our experiments on GSO. We observe that both DS and
IDR outperform NeRF-opt, which has cloudy artifacts. IDR works well in this setting with few
views and almost-correct cameras. This is not a surprise as DS has an advantage with few views
and noisy cameras. IDR reconstructions are slightly more detailed than DS at some places (e.g. at
the windows of the house and the feet of the bird). However, IDR shapes are less constrained and
contain erroneous blobs (e.g. at the belly of the teddy bear, the middle and side of the house, and
the head of the boy) because of the lack of a sufficient number of views.

DS
In Fig. A.3 , we show shape and texture reconstruction from DS on more instances in the GSO
Dataset.

In Fig. A.4, we show some failure modes of DS. Thin structures and small objects are particularly
hard to reconstruct. This is because we use a mesh representation with surface smoothening
regularization. DS does not model surface specularities and lighting and subsequently also struggles
with specular surfaces.
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Figure A.2: Results on DTU with 6 views and linear camera noise. Figure compares DS to IDR and
NeRF-opt.
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Figure A.3: Qualitative shape and texture reconstructions by DS using 8 views and 20◦ camera noise for
more instances from Google’s Scanned Objects Dataset

Figure A.4: Failure modes for two instances from Google’s Scanned Objects. For the leftmost example, we
show the input views (left) and reconstructions (middle) and ground truth shape (right). For the rightmost
example, we show input views (left), reconstructions (right top) and ground truth shape (right bottom).



APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 68

Figure A.5: COLMAP-reconstructed dense pointclouds with varying number of input views from scenes in
the Tanks and Temples dataset.

Figure A.6: COLMAP-reconstructed dense pointclouds with 8 input views and ground-truth cameras for
objects in the Google Scanned Objects Dataset.
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Overview
In this supplementary material, we present additional results including visualization of the shape,
texture and camera-multiplex, comparisons to CMR [70], qualitative results on random test samples,
an ablation study on texture prediction model, and additional details on the network architecture.

B.1 More Results
PCA in Texture space

In Figure B.1, we visualize the learnt texture space by running PCA on predicted uv-textures across
the entire test dataset. On the left, the mean texture is a rather dull gray colour, as expected. On
the right, we visualize axes of variation. In the first column, we see low-frequency variations in
overall colour, head and belly of the bird. In the second column, we see slightly higher-frequency
variations that assign different colors to different parts (head, back, belly and wings) of the bird. We
can even recognize eyes and beak in the last two rows on the right.

Learnt shape space for other categories

In Figure B.2, we compare the input template mesh to the learnt shape space for car, motorbike
and shoe categories. Observe, on the left, that the input template and learnt mean shape differ
substantially for each of these categories - some more than others. For example, the front tire of the
motorbike becomes more significantly more prominent, the back of the car becomes more rounded
and the shoe becomes slimmer and more elongated. On the right, we visualize the space of learned
shapes by running PCA on all shapes obtained on training and test dataset. The three PCA axis
visualized show interesting deformations. For example, in the motorcycle, the three visualized axes
vary in prominence of front tire, size of fuel-tank and concavity of seat respectively.
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Mean Texture

Texture Variation

Figure B.1: PCA in UV-Texture space. We visualize the learnt texture space by running PCA over all
predicted uv-texture maps on the test dataset, and rendering axes of variation on the learnt mean bird shape.
See text for discussion.

Camera-multiplex visualization over time.

Figure B.3 shows how the azimuth-elevation distribution of camera poses in the camera-multiplex
(over the entire training dataset) changes as training progresses. Observe that the distribution
changes rapidly initially and results in a final distribution that is very different from the initial
distribution.

Qualitative comparison to CMR.

We qualitatively compare results from U-CMR to 2 variants of CMR [70]. The first is the official
CMR model (CMR-official) that was trained using additional keypoint losses and used NMR [75]
as it’s differentiable renderer. The second is our implementation of CMR (CMR-ours) which is
similar to U-CMR in it’s architecture for shape/texture, using Softras [98] for rendering, regularizing
shape using the graph-laplacian and having the same template mesh as it’s initial mean shape, but
different from U-CMR in that it uses the ground-truth camera pose from SFM during training.
Unlike CMR-official, CMR-ours does not include vertex-keypoint reprojection loss.

In Figures B.5-B.6, we compare CMR-official, CMR-ours and U-CMR. For each input image,
the first row is from CMR-official, second is from CMR-ours and the last row is U-CMR. Observe
that CMR-official is not as accurate as CMR-ours in capturing the shape and texture of the underlying
bird but has pointier beaks and feet because of the keypoint reprojection loss it uses. The figures
show that U-CMR shapes are qualitatively very similar to CMR-ours, hence exemplifying our
assertion that U-CMR’s camera-multiplex optimization alleviates the need for ground-truth camera
pose supervision for most cases.
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Input Template Mesh Learnt Mean Mesh

Learnt Shape Variation

Input Template Mesh Learnt Mean Mesh

Learnt Shape Variation

Input Template Mesh Learnt Mean Mesh

Learnt Shape Variation

Figure B.2: Learned Shape on other categories. On the left, we compare the template shape to the final
learnt mean mesh. On the right, we visualize the space of learned shapes by running PCA on all shapes and
show three axis of deformations.
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Initial Camera Multiplex Epoch 1 Epoch 20 Final Camera Multiplex

Figure B.3: Change in Camera Pose Distributions during training. We show azimuth-elevation scatter
plots of K = 40 camera poses in all the camera-multiplex of the CUB train set as training progresses. Points
corresponding to less probable cameras have a lower alpha value and are more transparent. Starting from
top left, we have the camera poses after the camera-multiplex initialization, after 1 training epoch, after 20
training epochs and the final optimized camera poses. The number of camera poses in each multiplex (K) is
pruned down from 40 to 4 after epoch 20.

We compare U-CMR and CMR-ours on a random subset of 15 images from the test dataset in
Figures B.7-B.9. Observe that U-CMR (second row) accurately predicts shapes that are very similar
to those from CMR-ours when the bird is not articulating too much.

Ablation on texture prediction model.

We experiment with two different architectures for predicting the texture. First, we explore predicting
texture as texture-flow, which is used in CMR. Texture-flow is a 2D positional offset for every pixel
in the UV image that specifies where to sample the RGB values from the input image. Second,
we predict the UV image values directly (Texture-gen) using a decoder attached to a bottleneck
with spatial dimensions preserved. This is the final approach used in U-CMR. We observed that
predicting a flow-field can lead to flat degenerate shapes and a collapse of optimized camera poses.
Figure B.4 shows the collapse in the final optimized camera poses when predicting texture as a
flow-field. This is because even when the camera pose is wrong, texture-flow is able to learn to
adjust to the bad camera, as the output of the texture-flow across different instances is not necessarily
correlated. However, when predicting the texture directly through a decoder, the network learns
an implicit spatial prior of the texture across the dataset. For example, the network needs to learn
to generate the texture of the eye at the same location in every texture map. Similarly for wings,
breast, head etc,̇ as the texture map is predicted in a canonical semantic space. This spatial prior
that is learned through a spatial decoder allows the texture prediction to disambiguate incorrect and
correct poses in the camera-multiplex.
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Texture-flow final camera Texture-gen final camera Ground Truth

Figure B.4: Texture-flow camera-multiplex distribution on training set. On the left, we show the
azimuth-elevation distribution of the final camera-multiplex when we predict texture as a flow-field for
sampling from the input image. Note how the camera poses have collapsed to 2 broad areas. Center: U-CMR
camera-multiplex, Right: GT camera distribution

B.2 Training details

Architecture details.
Our code is available on our project page: https://shubham-goel.github.io/ucmr.
The shape and texture predictor f has an encoder-decoder architecture. Image I ∈ R256×256×3 is
first encoded to latent feature map z ∈ R4×4×256 using Resnet-18. The shape head takes flattened
z ∈ R16×256 as input and passes it through 2 fully connected layers, each with 200 output channels
and then a final linear layer for predicting ∆V ∈ R|V |×3. The texture head takes the latent feature
map and bilinearly samples it to z ∈ R4×8×256, this is followed by 7 Resnet blocks with 256, 256,
256, 128, 64, 32, 16 output channels respectively, with intermediate bilinear upsampling by a factor
of 2 after blocks 1, 3, 4, 5, 6. This is then sent to a final convolution layer that outputs the texture
map Iuv ∈ R128×256×3. The Resnet encoder uses ReLU activations while the shape and texture
heads use Leaky-ReLU activations. All networks use batchnorm for normalization. We will release
our code upon publication.

After training the shape and texture prediction with camera-multiplex, we learn the feed-forward
camera pose predictor g. We attach this as another head to the latent variable z from the shared
Resnet-18 trained for shape and texture prediction with camera-multiplex. We freeze the encoder,
and then train a fully connected head for predicting camera scale s ∈ R, translation t ∈ R2 and
rotation (as quaternion q ∈ R4) through 2 fully connected layer each with 200 channels.

https://shubham-goel.github.io/ucmr
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Figure B.5: CMR-official vs CMR-ours vs U-CMR. We compare U-CMR (third row) to CMR-ours
(second row) and CMR-official (first row) on selected images from the test dataset. The first 2 columns
show the predicted shape and texture from the predicted camera viewpoint. The last 2 columns are novel
viewpoints of the textured mesh.
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Figure B.6: CMR-official vs CMR-ours vs U-CMR. We compare U-CMR (third row) to CMR-ours
(second row) and CMR-official (first row) on selected images from the test dataset. The first 2 columns
show the predicted shape and texture from the predicted camera viewpoint. The last 2 columns are novel
viewpoints of the textured mesh.
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Figure B.7: CMR-ours vs U-CMR on random subset. We compare U-CMR (second row) to CMR-ours
(first row) on a random subset of images from the testset. The first 2 columns show the predicted shape and
texture from the predicted camera viewpoint. The last 2 columns are novel viewpoints of the textured mesh.
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Figure B.8: CMR-ours vs U-CMR on random subset. We compare U-CMR (second row) to CMR-ours
(first row) on a random subset of images from the test dataset. The first 2 columns show the predicted shape
and texture from the predicted camera viewpoint. The last 2 columns are novel viewpoints of the textured
mesh.
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Figure B.9: CMR-ours vs U-CMR on random subset. We compare U-CMR (second row) to CMR-ours
(first row) on a random subset of images from the test dataset. The first 2 columns show the predicted shape
and texture from the predicted camera viewpoint. The last 2 columns are novel viewpoints of the textured
mesh.
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We provide more details about HMR 2.0, i.e., the architecture we use (Section C.1), the data
(Section C.2) and the training pipeline (Section C.3). Furthermore, we describe the aspect of pose
prediction (Section C.4) and we discuss the metrics we use for evaluation (Section C.5). Then we
discuss the experimental settings for tracking (Section C.6), and action recognition (Section C.7).
Finally, we provide additional qualitative results (Section C.8).

C.1 HMR 2.0 architecture details
The architecture of our HMR 2.0 model is based on a ViT image encoder and a transformer decoder.
We use a ViT-H/16 (“huge”) pre-trained on the task of 2D keypoint localization [178]. It has 50
transformer layers, takes a 256×192 sized image as input, and outputs 16×12 image tokens, each of
dimension 1280. Our transformer decoder is a standard transformer decoder architecture [164] with
6 layers, each containing multi-head self-attention, multi-head cross-attention, and feed-forward
blocks, with layer normalization [6]. It has a 2048 hidden dimension, 8 (64-dim) heads for self-
and cross-attention, and a hidden dimension of 1024 in the feed-forward MLP block. It operates on
a single learnable 2048-dimensional SMPL query token as input and cross-attends to the 16× 12
image tokens. Finally, a linear readout on the output token from the transformer decoder gives pose
θ, shape β, and camera π.

C.2 Data details
In our training, we adopt the training data conventions of previous works [84], using images from
Human3.6M [59], COCO [96], MPII [3] and MPI-INF-3DHP [108]. This forms the training set
for the version we refer to as HMR 2.0a in the main manuscript. For the eventual HMR 2.0b
version, we additionally generate pseudo-ground truth SMPL [100] fits for images from AVA [49],
InstaVariety [69] and AI Challenger [171]. Since AVA and InstaVariety include videos, we collect
frames by sampling at 1fps and 5fps respectively. For pseudo-ground truth generation, we use
ViTDet [91] for bounding box detection and ViTPose [178] for keypoint detection, while fitting
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happens using ProHMR [84]. We discard detections with very few 2D detected keypoints (less
than five) and low detection confidence (threshold 0.5). We also discard fits with unnatural body
shapes (i.e., body shape parameters outside [−3, 3]), unnatural body poses (computed using a
per-joint histogram of poses on AMASS [106]), and large fitting errors (i.e., which indicates that
the reconstruction was not successful). For training our HMR 2.0b model, we sample with different
probabilities from each dataset, i.e., Human3.6M: 0.1, MPII: 0.1, MPI-INF-3DHP: 0.1, AVA: 0.15,
AI Challenger: 0.15, InstaVariety: 0.2, COCO: 0.2.

C.3 Training details
We train our main model using 8 A100 GPUs with an effective batch size of 8×48 = 384. We use an
AdamW optimizer [102] with a learning rate of 1e-5, β1 = 0.9, β2 = 0.999, and a weight decay of
1e-4. Training lasts for 1M iterations, which takes roughly six days. For our main model HMR 2.0b,
we train the network end-to-end. However, for the HMR 2.0a variant, the ViT encoder remains
frozen, allowing a larger effective batch size of 8× 512 = 4096, learning rate of 1e-4, and fewer
training iterations of 100K (i.e., roughly equivalent number of epochs).

C.4 Pose prediction
For the pose prediction model, we train a vanilla transformer model [164] from the tracklets obtained
by [132]. Each tracklet at every time instance contains 3D pose and 3D location information, where
the pose is parameterized by the SMPL model [100] and the location is represented as the translation
in the camera frame. The transformer has 6 layers and 8 self-attention heads with a hidden dimension
of 256. Each output token regresses the 3D pose and 3D location of the person at the specified
time-step. We train this model by randomly masking input pose tokens and applying the loss on the
masked tokens. During inference, to predict a future 3D pose, we query the model by reading out
from a future time-step, using a learned mask-token as input to that time-step. Similarly for amodal
completion, we replace the missing detections with the learned mask-token and read out from the
output at the corresponding time-step. The model is trained with a batch size of 64 sequences and a
sequence length of 128 tokens. We use the AdamW optimizer [102] with a learning rate of 0.001
and β1 = 0.9, β2 = 0.95.

C.5 Metrics
For our evaluation, we use the metrics that are common in the literature:
3D Pose: We follow [67] and we use MPJPE and PA-MPJPE. MPJPE refers to Mean Per Joint
Position Error and it is the average L2 error across all joint, after aligning with the root node.
PA-MPJPE is similar but it computed after aligning the predicted pose with the ground-truth pose
using Procrustes Alignment.
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2D Pose: We use PCK as defined in [181]. This is the Percentage of Correctly localized Keypoints,
where a keypoint is considered as correctly localized if its L2 distance from the ground-truth
keypoint is less than a threshold t. We report results using different thresholds (@0.05 and @0.1 of
image size).
Tracking: Following [134, 133], we use standard tracking metrics. This includes ID switches (IDs),
MOTA [74], IDF1 [138], and HOTA [104].
Action Recognition: We report results using mAP metrics as defined in the AVA dataset [49]. We
further provided a more fine-grained analysis reporting results on different action categories: actions
that involve Object Manipulation (OM), actions that involve Person Interactions (PI), and actions
that involve Person Movement (PM). The results in these categories are also reported using mAP.

C.6 Tracking with PHALP′

In the main manuscript, we compare different human mesh recovery systems on the downstream
problem of tracking (Table 3 of the main manuscript). For this, we modify the PHALP ap-
proach [133], so that pose distance is computed on the SMPL space that all the models share.
To make this comparison fair, we keep other variables similar to the original PHALP (e.g., same
appearance embedding). Note that this comparison is generous to baselines that do not model
appearance themselves. Eventually, our final 4DHumans system is using an updated appearance
head and our new pose prediction, which lead to the state-of-the-art performance for tracking on
PoseTrack (Table 4 of the main manuscript).

C.7 Action recognition
As an alternative way to assess the quality of 3D human reconstruction, we evaluate various human
mesh recovery systems on the downstream task of action recognition on AVA (please refer to the
attached anonymous manuscript [132] for more details on the task definition). More specifically, we
take the tracklets from [132], which were generated by running PHALP [133] on the Kinetics [76]
and AVA [49] datasets. Then, we replace the poses from various human mesh recovery models (i.e.,
PyMAF [192], PyMAF-X [191], PARE [81], CLIFF [93], HMAR [133], HMR 2.0) and evaluate
their performance on the action recognition task. In this pose-only setting, the action recognition
model has access only to the 3D poses (in the SMPL format) and 3D location and is trained to
predict the action of each person. For a fair comparison and to achieve the best performance for each
3D pose regressor, we retrain the action recognition model specifically for each 3D pose method.

C.8 Additional qualitative results
We have already provided a lot of qualitative results of HMR 2.0, both in the main manuscript and
in the supplementary video. Here, we provide additional results, including comparisons with our
closest competitors (Figure C.1), and a demonstration of our results in a variety of challenging
cases, including successes (Figure C.2) and failure cases (Figure C.3).
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PyMAF-X PARE HMR 2.0Input CLIFF

Figure C.1: Qualitative comparison of our approach with state-of-the-art methods. We compare
HMR 2.0 with our closest competitors, PyMAF-X [191], PARE [81] and CLIFF [93]. For each example, we
show the input image, and results from each method (including the frontal and a side view). HMR 2.0 is
significantly more robust in a variety of settings, including images with unusual poses, unusual viewpoints
and heavy person-person overlap.
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Figure C.2: Qualitative results of our approach on challenging examples. For each example we show the
input image, the reconstruction overlay, a side view and the top view. The examples include unusual poses,
unusual viewpoints, people in close interaction, extreme truncations and occlusions, as well as blurry images.
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Figure C.3: Failures of single frame 3D human reconstruction with HMR 2.0. Despite the increased
robustness of our method, we observe that HMR 2.0 occasionally recovers erroneous reconstructions in cases
with very unusual articulation (first row), heavy person-person interaction (second row), and very challenging
depth ordering for the different body parts (third row).
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