Text-to-Image Model for Protein Localization Prediction

Emaad Khwaja

Electrical Engineering and Computer Sciences University of California, Berkeley

Technical Report No. UCB/EECS-2023-251 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-251.html

December 1, 2023

Copyright © 2023, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Acknowledgement

Aaron Agarunov contributed to the figures and visualizations. Bo Huang and Yun S. Song provided fruitful discussion and insight which vastly improved the scope of the paper. Special thanks to my beloved partner, Tanha Tabassum Alsheikhdallah, for supporting me every step of the way. Text-to-Image Model for Protein Localization Prediction

by

Emaad Khwaja

A thesis submitted in partial satisfaction of the

requirements for the degree of

Masters of Science

 in

Electrical Engineering & Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Yun S. Song, Chair Professor Ian Holmes Professor Kannan Ramchandran

Spring 2023

The thesis of Emaad Khwaja, titled Text-to-Image Model for Protein Localization Prediction, is approved:

Men S. Song Inthen Kan Ral Chair

May 11, 2023 Date May 12, 2023 Date Date <u>05/12/23</u>

University of California, Berkeley

Abstract

Text-to-Image Model for Protein Localization Prediction

by

Emaad Khwaja

Masters of Science in Electrical Engineering & Computer Sciences

University of California, Berkeley

Professor Yun S. Song, Chair

We present CELL-E 2, a novel bidirectional non-autoregressive transformer that can generate realistic images and sequences of protein localization in the cell. Protein localization is a challenging problem that requires integrating sequence and image information, which most existing methods ignore. CELL-E 2 extends the work of CELL-E by capturing the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but can also generate sequences from images, enabling *de novo* protein design. We train and finetune CELL-E 2 on two large-scale datasets of human proteins. We also demonstrate how to use CELL-E 2 to create hundreds of novel nuclear localization signals (NLS) for Green Fluorescent Protein (GFP).

Contents

Co	Contents					
Lis	st of Figures	ii				
Lis	st of Tables	\mathbf{v}				
1	Introduction 1.1 Background	1 1 4				
2	CELL-E 2 Transformer 2.1 Datasets	6 6 8				
3	Results	15				
4	Discussion 4.1 Future Work	25 28				
Bi	bliography	34				
A	Extended Results	43				
в	Candidate NLS Sequences	48				

List of Figures

1.1	Localization predictions from CELL-E 2 (HPA Finetuned (Finetuned HPA (VQGA on randomly chosen validation set proteins from the OpenCell dataset. All images feature the Hoescht-stained nucleus image as a base. The "Original Image" column shows the fluroscently labelled protein from the dataset. The "Thresholded Label" shows pixels greater than the median value. This serves as the ground truth for the model during training. "Generated Image" is the image specifically predicted by CELL-E 2 and is compared against the thresholded ground truth image. "Predicted Distribution" is the latent space interpolation of the binary	N)_480)
1.2	threshold image tokens which uses which utilizes the output logits of CELL-E 2. See Fig. 1.3 for colorbars corresponding to all plots in this work Depiction of training paradigm for CELL-E 2. Gray squares indicate masked tokens. Loss is only calculated on masked tokens in the sequence and protein	2
1.3	threshold image.	$\frac{3}{4}$
2.1	The amino acid sequence is tokenized and randomly padded via the <pad> token. The top row shows start and end padding. The middle row shows end padding. The bottom row shows start-padding. All of these are possible. Note that the fixed length of 1002 means that the <sep> token is always placed in the 1003rd position</sep></pad>	8
 2.2 2.3 	Depiction of the reconstruction scheme used to generate the predicted distribution heatmaps. Similar to training time, we provide tokenized vectors corresponding to the amino acid sequence and the nucleus image. Every position for the tok- enized image is set to <mask_im> (shown as gray squares). The output logits are saved for every position and treated as probabilities associated with each image patch. These values are scaled and sent to the threshold VQGAN decoder to produce the final heatmap. Values are clipped between 0 and 1 Image prediction based on the number of reconstruction steps. Note the decreased</mask_im>	11
	distribution intensity with increasing step count	14
3.1	More randomly selected predictions from HPA <code>Finetuned HPA VQGAN_480</code> . We only note an incorrect prediction in Eukaryotic translation initiation factor 5. $$.	21

3.2	CELL-E 2 models trained on the HPA dataset. Predictions are shown based on the hidden size of the transformer embedding. We see the strongest performance from the 480 and 640 models. Localization is expected within the mitochondria in the selected protein. Not the heightened intensity within the nuclear region in the 1280 and 2560 models predictions.	22
3.3	Similar to Fig. 3.2, we depict the performance of CELL-E 2 models only trained on the OpenCell dataset. We see the best performance on the 480 model, but not drastically different predicted distribution images. This is likely a function of reduced training time due to the quick overfitting of the model	23
3.4	Various model performance from different fine tuning methods. We note superior predictive performance from the model with where we initially fine-tune the image encoder.	24
4.1	Diagram depicts the pipeline for NLS discovery. In the top half, we predeter- mine the length of the novel NLS sequence and insert the corresponding number of mask tokens either after the starting Methionine or before the <end> token, depending on the chosen terminus. The threshold image is obtained by passing the nucleus image through Cellpose. In the bottom half, we pass the the GFP with proposed NLS sequence into an image prediction model to ensure predictive</end>	
4.2	consistency of the sequence	30
4.3	stretches per bin is shown as a percentage inside the circle	31
	further biological investigation.	32

4.4 Attention weights associated with positive signal within the predicted image. Tokens with higher attention weight associated with background patches (low signal) are not highlighted. See Section 4 for more information about the visualization process. We show 3 sequences with the highest (left column) and lowest (right column, not included in Table B.1) predicted nucleus proportion intensity. The GFP sequences are shown with the predicted NLS highlighted in red. . . . 33

List of Tables

2.1	VQGAN Hyperparameters	12
2.2	Base Transformer Hyperparameters	12
3.1	Validation Set Image Prediction Accuracy	16
3.2	Validation Set Masked Sequence In-Filling	18
3.3	ESM-2 Masked Sequence In-Filling Accuracy (No Image)	18
3.4	OpenCell Validation Set Image Prediction Accuracy after Finetuning	20
4.1	Speed Comparison	25
4.2	NLS Composition	28
A.1	Image Prediction Accuracy Across OpenCell and HPA	44
A.2	Masked Sequence In-Filling Accuracy	45
A.3	Image Prediction Accuracy after Finetuning on HPA and OpenCell	46
A.4	Masked Sequence In-Filling Accuracy after Finetuning on HPA and OpenCell .	47
B.1	NLS candidates sorted by nucleus proportion	49

Acknowledgments

Aaron Agarunov contributed to the figures and visualizations. Bo Huang and Yun S. Song provided fruitful discussion and insight which vastly improved the scope of the paper. Special thanks to my beloved partner, Tanha Tabassum Alsheikhdallah, for supporting me every step of the way.

Chapter 1 Introduction

1.1 Background

Subcellular protein localization is a vital aspect of molecular biology as it helps in understanding the functioning of cells and organisms [6]. The correct localization of a protein is critical for its proper functioning, and mislocalization can lead to various diseases [7]. Protein localization prediction models have typically relied on protein sequence data [8, 9] or fluorescent microscopy images [10, 11] as input to predict which subcelleular organelles a protein would localize to, designated as discrete class labels [12, 13]. The CELL-E model was markedly different in that it utilized an autoregressive text-to-image framework, to predict subcellular localization as an images [14], thereby overcoming bias from discrete class labels derived from manual annotation [15]. Furthermore, CELL-E was capable of producing a 2D probability density function as an image based on localization data seen throughout the dataset, yielding more a far more interpretable output for the end user.

Although novel, CELL-E was inherently restricted by the following limitations:

Autoregressive Generation Alongside other autoregressive models [16–19], CELL-E was limited by slow generation times and unidirectionality. When provided with input, CELL-E required a separate step for each image patch (256 for the output image composed of tokens of size 16×16). This slow image generation severely limits the ability of CELL-E to perform a high-throughput mutagenesis screening.

Unidirectional Prediction The unidirectional nature of CELL-E allowed for predictions to be made in response to an amino acid sequence, however it may be of interest to biologists to make predictions of sequence given a localization pattern. Such capability would be advantageous for those working in a protein engineering domain [20, 21]. One could imagine a researcher wanting to know the optimal localization sequence to append to a protein on either the N or C terminus [22] while maintaining essential function within an active site region, as well as reducing the chance of off-target trafficking.

1.1: from CELL-E 2Figure Localization predictions (Finetuned HPA (VQGAN) 480) on randomly chosen validation set (HPA Finetuned proteins from the OpenCell dataset. All images feature the Hoescht-stained nucleus image as a base. The "Original Image" column shows the fluroscently labelled protein from the dataset. The "Thresholded Label" shows pixels greater than the median value. This serves as the ground truth for the model during training. "Generated Image" is the image specifically predicted by CELL-E 2 and is compared against the thresholded ground truth image. "Predicted Distribution" is the latent space interpolation of the binary threshold image tokens which uses which utilizes the output logits of CELL-E 2. See Fig. 1.3 for colorbars corresponding to all plots in this work.

Limited Dataset CELL-E utilized the OpenCell dataset [23], a small dataset which led to overfitting. Vision transformers require large amounts of data to make robust predictions

Figure 1.2: Depiction of training paradigm for CELL-E 2. Gray squares indicate masked tokens. Loss is only calculated on masked tokens in the sequence and protein threshold image.

[24], however a small dataset was utilized in the original model. This led to a degree of overfitting and prediction bias based on the limited diversity in localization patterns of the original dataset.

Present Work CELL-E 2 differs from CELL-E by implementing a non-autoregressive (NAR) paradigm which improves the speed of generation. Similar to CELL-E, we retrieve embeddings from a pre-trained protein language model and concatenate these with learned embeddings corresponding to image patch indices coming from a nucleus image and protein threshold image encoders (Fig. 1.2). We then apply masking to both the amino acid sequence as well as the threshold image in an unsupervised fashion, and reconstructed tokens are predicted in parallel, allowing for generation in fewer steps. This also allows for bidirectional prediction, (sequence to protein threshold image or protein threshold image to sequence). Additionally, to improve the predictive performance we utilize a larger corpus of data, the Human Protein Atlas (HPA) [25] in pre-training to expose the model to a higher degree of localization diversity, and finetune on the OpenCell dataset [23], which preserves native expression levels. We explore multiple strategies towards finetuning which serves to generally inform task-specific refinement text-to-image models in Section 3.

Figure 1.3: Colorbars used in figures on white (left) and black (right) background.

1.2 Related Work

Protein Language Models

Embeddings from unsupervised protein language moels can be used to predict and analyze the properties of proteins, such as their structure, function, and interactions [26]. By exploring the hidden patterns and relationships within these sequences, protein language models can help to advance our understanding of the complex world of proteins and their roles in various biological processes. Masked language modelling has been particularly successful. Ankh [27], ProtT5 [28], ProGen [29], ESM-2 [30], and OmegaFold [31] are examples of recent models which use masked language approaches. ESM-2 and Omegafold in particular have been able to be used for structural prediction, indicating hierarchies of information beyond the primary sequence contained in the embeddings [32].

Protein Localization Prediction

Protein localization prediction via machine learning is an emerging field that uses computational algorithms and statistical models to predict the subcellular location of proteins [33]. This is an essential task in biology, as the subcellular localization of a protein plays a crucial role in determining its function and interactions with other proteins [34, 35] The prediction of protein localization is performed by analyzing protein sequences, amino acid composition, and other features that can provide clues about their subcellular location. Machine learning algorithms are trained on large datasets of labeled proteins to recognize patterns and make predictions about the subcellular location of a protein. This field has the potential to improve our understanding of cellular processes, drug discovery, and disease diagnosis.

Recently, attention-based methods have demonstrated the ability to predict localization from a sequence [36], enabling the use of long context information when compared to convolutional neural network-based counterparts [37–39]. These methods, however, predict localization as discrete classes rather than as an image. CELL-E, on the contrary, does not utilize existing annotation and provides a heatmap of the expected localization on a per-pixel basis [14]. This approach enables learning at scale by eliminating the bottleneck of manual annotation while also eliminating label bias.

Text-to-Image Synthesis

Recently, there has been a significant advancement in the field of text-to-image synthesis. Gains have largely been made by autoregressive models [16, 18], which correlate text embeddings with image patch embeddings, as well as diffusion models, [19, 40–43], which condition on sentence embeddings to gradually synthesize images from random noise.

A few works implement non-autoregressive models (NAR), which take advantage of a masked reconstruction procedure, similar to BERT [44], where the model is tasked with predicted randomly masked portions of an input image. These types of models are particularly advantageous because they enable parallel decoding, allowing images to be synthesized in relatively view steps when compared to autoregressive models. Furthermore, NAR models are not bound to a particular direction of synthesis like autoregressive models, which only perform next-token prediction. CogView2 [45] utilizes a modified transformer architecture where attention on masked tokens is eliminated. MUSE [46] builds on MaskGIT [47] by concatenating a pre-trained text embedding to a token masked representation of a corresponding image. It uses a vanilla transformer architecture [48] and yielded state-of-the-art image synthesis performance in terms of FID and human evaluation.

Chapter 2

CELL-E 2 Transformer

2.1 Datasets

We pre-trained our model on protein images from the Human Protein Atlas (HPA) [49], which covers various cell types and imaging conditions using immunofluorescence microscopy1. We then fine-tuned it on the OpenCell dataset [23], which has a consistent modality using live-cell confocal microscopy23 of endogenously tagged proteins. To ensure generalization to new data, we followed the homology partitioning method of [39]. We used PSI-CD-HIT [50] to cluster HPA proteins at ($\geq 50\%$) sequence similarity and randomly split the clusters into 80/20 train/validation sets. We applied the same clustering and splitting to the OpenCell proteins, matching the train/validation labels from HPA. For proteins present in OpenCell but not HPA n = 176, we assigned the protein based on the other labels in the cluster. Any remaining unassigned proteins n = 1 were assigned to the training set.

Human Protein Atlas

We used the Human Protein Atlas v21, available under the Creative Commons Attribution-ShareAlike 3.0 International License. For pre-training, we selected the immunofluorescence stained images from the Human Protein Atlas (HPA), which contains data on more than 17,268 human proteins, with information on their distribution across 44 different normal human tissues and 20 different cancer types. Example images show distribution of proteins within 2-5 cell types with different antibody markers [49]. We extracted corresponding amino acid sequences from UniProt [51].

OpenCell

We selected the OpenCell dataset for fine tuning due to its high-quality images, consistent imaging and cell conditions, and availability of reference images with consistent morphology. The dataset includes a collection of 1,311 CRISPR-edited HEK293T human cell lines, each tagged with a target protein using the split-mNeonGreen2 system. For each cell line, the

OpenCell imaging dataset contains 4-5 confocal images of the tagged protein, accompanied by DNA staining to serve as a reference for nuclei morphology. While smaller in comparison to HPA, the cells were imaged while alive, providing a more accurate representation of protein distribution within the cell than immunofluorescence [23]. The OpenCell dataset is available under the BSD 3-Clause License.

Amino Acid Sequence Preprocessing

In natural language contexts, ensuring input sequences are the same length is usually performed by modifying the end of the sequence, either via truncation or end-padding [52]. This allows for predictions with respect to a given input (i.e. a text prompt). From the perspective of protein function, however, both the beginning and end (N and C termini) are points of interest for appending amino acids, especially with respect to protein localization [6, 53]. As such, we augment the sequence data as follows:

- 1. The amino acid sequence is tokenized using the ESM-2 tokenizer.
- 2. Start and end tokens are appended to the beginning and end of the sequence.
- 3. Cropping or padding occur based on the full sequence length, (length of amino acid sequence + \langle START> token + \langle END> token = 1002).
 - If the full sequence length > 1002 tokens, we randomly crop 1002 tokens.
 - If the full sequence length < 1002 tokens, we randomly add pad tokens before the <START> token and/or after the <END> token (See Fig. 2.1).
- 4. A <SEP> token is appended to the end of the protein sequence.

Image Preprocessing

A few preprocessing steps were necessary for the image encoder. Our image processing proceedure is as follows:

- 1. We clip pixels beneath the .001 and above the 99.999 percentiles.
- 2. We normalize image values based on the calculated means and standard deviation from the datasets:

Human Protein Atlas

Nucleus: $\mu = 0.0655$, $\sigma = 0.1732$ Protein Image: $\mu = 0.0650$, $\sigma = 0.1208$ **OpenCell**

Figure 2.1: The amino acid sequence is tokenized and randomly padded via the <PAD> token. The top row shows start and end padding. The middle row shows end padding. The bottom row shows start-padding. All of these are possible. Note that the fixed length of 1002 means that the <SEP> token is always placed in the 1003rd position.

Nucleus: $\mu = 0.0272$, $\sigma = 0.0486$ Protein Image: $\mu = 0.0244$, $\sigma = 0.0671$

- 3. We rescale the images so pixel values are between 0 and 1.
- 4. The median pixel value of the protein image is calculated to create the thresholded image such that pixels ≥ median = 1 and pixels < median = 0.
 Finally, we rescale images to 600 × 600 and randomly crop to 256 × 256 pixels.
- 5. Data augmentation is applied via random horizontal and vertical flips.

2.2 Model

CELL-E 2 (Fig. 1.2) is a masked *encoder-only* transformer model, similar to BERT [44], which upgrades the capabilities of CELL-E, an autoregressive *decoder-only* model [54]. Due to the NAR nature of the model, CELL-E 2 is capable of both image generation (sequence to image), as well as sequence prediction (image to sequence).

Amino Acid Sequence Embeddings

CELL-E 2 utilizes embeddings from ESM=2 [30]. We opt to use frozen embeddings for the prediction task, which has been demonstrated to yield superior reconstruction performance in text-to-image models [14, 41, 46]. The embeddings obtained from a protein language model contain valuable information about amino acid residues, biochemical interactions, structural features, positional arrangements, as well as other characteristics like size and complexity [26]. We train models of varying size based on the released ESM-2 checkpoints

(See Section 3). The output of the final embedding layer per respective model is used as the amino acid sequence embedding.

Image Tokenization

We utilize VQGAN autoencoders [55] trained on both the HPA and OpenCell datasets, respectively. VQGAN surpasses other quantized autoencoders by incorporating a learned discriminator derived from GAN architectures [56]. Specifically, the Nucleus Image Encoder employs VQGAN to represent 256×256 nucleus reference images as 16×16 image patches, with a codebook size of (n = 512) image patches. To enable transfer learning, we explore ways to finetune these VQGANs in Section 2.2.

The protein threshold image encoder acquires a compressed representation of a discrete probability density function (PDF) that maps per-pixel protein positions, presented as an image. We binarize the image based on the median pixel value of the image (see Section 2.1). We utilize a VQGAN architecture identical to the Nucleus VQGAN to estimate the entire set of binarized image patches to denote local protein distributions. These VQGANs are trained until convergence, and the discrete codebook indices are used for the CELL-E 2 transformer. Hyperparameters (Table 2.1, Table 2.2) and training details can be found in Section 2.2.

Input Masking Strategy

We adopt a cosine-scheduling technique for masking image tokens, which has been used by other works. The probability of an image patch being masked is determined by a cosine function, favoring high masking rates with an expected masking rate of 64% [46, 47]. This technique provides various levels of masking during the training process, exposing the model to spatial context for masked language tokens.

Of similar interest as image prediction, sequence in-filling with respect to a localization pattern is of interest to biologists. Typically, protein localization sequences are found through sequence similarity searches with proteins that have known localizations in particular organelles [57–59] or via experimentation [60, 61]. CELL-E 2's bidirectionality enables the model to make predictions for image sequences and sequence predictions for images, making it a novel approach to protein engineering. To achieve this, we also mask the language tokens along with the protein threshold image tokens. We experimented with using the same cosine function for image masking but found it led to numerical instability and vanishing gradients. Therefore, we decided to linearly scale the cosine function to ensure the maximum masking rate matched that used during the training of ESM-2, which was 15%.

Base Transformer

The base transformer is an *encoder-only* model in which the inner dimension is set based on the embedding size of the pre-trained language model used. In order to perform masking, we have two types of masking tokens. For masking the amino acid sequence, we utilize the mask token which already exists within the ESM-2 dictionary, designated as <MASK_SEQ>. The VQGAN does not contain a masking token within its codebook, so to represent it, we add an additional entry in the image token embedding space (with n + 1: (512 + 1 = 513), where n is the number of tokens in the VQGAN codebook), and designate the final token as <MASK_IM>. We additionally create an embedding space of length 1 for the <SEP> token which is appended to the end of the amino acid sequence. Training details can be found in Section 2.2.

We sample from this transformer by strategically masking positions in the image or sequence (see Section 2.2). The logit values for the image prediction are used as weights for the threshold image patches to produce a predicted distribution (Fig. 1.1, Fig. 3.1).

Sampling

We experimented with the cosine-scheduling approach used in other works [46, 47], but we did not see any improvement in reconstruction performance (Fig. 2.3). We predicted the entire image in one step for image prediction. For amino acid sequence prediction, we predict amino acids one-by-one from the central protein.

We also calculated the probabilities of each token for all image predictions. We kept the output logits of the transformer. For image logits, we normalized them to 1 and fed them to the VQGAN decoder, which performed a linear interpolation in latent space. We clipped the values between 0 and 1 and displayed them as a heatmap (Fig. 2.2).

Training

We utilized $4 \times$ NVIDIA RTX 3090 TURBO 24G GPUs for this study. 2 GPUs were utilized for training VQGANs via distributed training. Our computer also contained $2 \times$ Intel Xeon Silver and 8×32768 mb 2933MHz DR×4 Registered ECC DDR4 RAM. Only a single GPU is ever used to train CELL-E 2 models. Models were implemented in Python 3.11 using Pytorch 2.0 [62].

In order to train the transformer, we underwent the following procedure (Fig. 1.2):

- 1. We tokenize the amino acid sequence using the ESM-2 dictionary. We tokenize the nucleus image and protein threshold image using the codebook indices of the respective pre-trained VQGANs.
- 2. We retrieve embeddings for the amino acid sequence from the pre-trained ESM-2 protein language model (available under the MIT license Copyright (c) Meta Platforms, Inc. and affiliates.) . These embeddings are frozen and never updated over the course of training.
- 3. We randomly mask the amino acid sequence and protein threshold image tokens. The *<SEP>* and nucleus image tokens are never masked.

Figure 2.2: Depiction of the reconstruction scheme used to generate the predicted distribution heatmaps. Similar to training time, we provide tokenized vectors corresponding to the amino acid sequence and the nucleus image. Every position for the tokenized image is set to <MASK_IM> (shown as gray squares). The output logits are saved for every position and treated as probabilities associated with each image patch. These values are scaled and sent to the threshold VQGAN decoder to produce the final heatmap. Values are clipped between 0 and 1.

- 4. We obtain embeddings for the image tokens from embedding spaces created within the transformer and are learned over training. These size of the embedding are set to the same dimension as the pre-trained language embeddings. We similarly retrieve embeddings from a separate embedding space for the *SEP>* token.
- 5. We pass the embeddings through a positional encoder via rotary encoding [63].
- 6. We concatenate the embeddings along the sequence dimension and pass them through the transformer. We calculate loss via cross-entropy only on the masked tokens.

Hyperparameters

Hyperparameter	Value
Optimizer	Adam [64]
Base Learning Rate	4.5×10^{-6}
Betas	$\beta_1 = .5, \beta_2 = .9$
Weight Decay	0
Embedding Dimension	256
Number of Embeddings	512
Resolution	256
Number of Input Channels	1
Dropout	0
Discriminator Start	50000
Discriminator Weight	.2
Codebook Weight	1.0

Table 2.1: VQGAN Hyperparameters

Table 2.2: Base Transformer Hyperparameters

Hyperparameter	Value
Optimizer	AdamW $[65]$
Base Learning Rate	3×10^{-4}
Betas	$\beta_1 = .9, \beta_2 = .95$
Weight Decay	.01
Number of Text Tokens	33
Text Sequence Length	1000
Embedding Dimension/Depth	480/68 or 640/55
	or $1280/25$ or $2560/5$
Number of Heads	16
Dimension of Head	64
Attention Dropout	.1
Feedforward Dropout	.1
Image Loss Weight	1
Condition Loss Weight	1

Fine-Tuning

We sought to leverage both datasets to be beneficial. Human Protein Atlas contains many proteins (17,268) but is subject to inaccuracies fundamentally because of the immunohistochemistry used for staining, which requires several rounds of fixation and washing [25]. This means the proteins are not observed in a live cell; are subject to signal loss, artifacts, and/or relocalization events; and therefore do not necessarily represent the true nature of protein expression and distribution within a cell [66]. The OpenCell dataset, while comparatively smaller, overcomes these issues by using a split-fluorescent protein fusion system allows for tagging endogenous genomic proteins, maintaining local genomic context, and the preservation of native expression regulation [23, 67]. We therefore initially trained on the Human Protein Atlas dataset and then fine-tuned on the OpenCell dataset.

Fine-tuning in the text-to-image domain is still an open question. The use of multiple models makes it difficult to pin down the correct strategy. Contemporary efforts utilize pre-trained checkpoints to fine-tune on domain specific data [68–70]. Chambon et al. [71] reported improved synthesized image fidelity when fine-tuning the U-net of a text-to-image diffusion model, but similar fine-tuning strategies have not been explored for patch-based methods. We report our findings in Section 3.

Cosine Schedule Reconstruction (480 HPA Model) Formin-like protein 1

Figure 2.3: Image prediction based on the number of reconstruction steps. Note the decreased distribution intensity with increasing step count.

Chapter 3

Results

Similar to CELL-E, we cast the embedding spaces for the image tokens at the same size as the ones used by the pre-trained language model. The size of the embedding vectors ("Hidden Size") for each model was chosen based on the publicly available ESM-2 checkpoints. For instance, a CELL-E 2 model with hidden size = 480 uses esm2_t12_35M_UR50D, which corresponds to a 35M parameter model with 12 attention layers. Khwaja et al. [14] demonstrated an positive relationship between the number of attention layers in the base transformer (designated "Depth"), and the image prediction performance. The maximum depth was set based on our available GPU memory capacity. We refer to models using the name format "Training Set_Hidden Size".

Image Prediction Accuracy

To generate the protein localization image prediction, we provide CELL-E 2 with the protein sequence and nucleus image, and fill the image token positions with <MASK_IM> tokens (Fig. 2.2).

We evaluated the models on several image metrics (see Section A) that measure the quality and diversity of the generated protein images (Table 3.1). Additionally, we assessed the model's generalization capabilities by testing them on the other dataset (HPA-trained model on OpenCell and *vice versa*) (Table A.1). We reported the results for each model on its respective dataset. We observed a significant positive effect of depth on performance across all metrics and datasets. The models with hidden sizes of 480 and 640 achieved the highest scores, with no significant difference between them. However, on the HPA dataset, HPA_640 surpassed the HPA_480 model in more categories. On the OpenCell dataset, OpenCell_480 performed better than the OpenCell_640. Table A.1 shows the image prediction performance of HPA and OpenCell-trained across both datasets and splits. We evaluate image reconstruction using the following metrics:

Nucleus Proportion MAPE This metric measures how well the predicted protein image matches the ground truth in terms of the fraction of intensity within the nucleus. We use

Cellpose [72] to create a mask of the nucleus channel. Then we divide the sum of the predicted 2D PDF pixels inside the mask by the sum of all pixels in the image. We do the same for the ground truth protein image and compare the two fractions. The error is expressed as a percentage of the ground truth fraction.

Image MAE This metric calculates the average absolute difference between each pixel in the predicted protein threshold image and the ground truth protein threshold image. A lower MAE means a better match.

PDF MAE This metric is similar to Image MAE, except we evaluate the difference using the predicted 2D PDF, rather than the predicted protein threshold image. We expect this number to be less accurate as tokens with less confidence will reduce the pixel value, while all values in the protein threshold image are 0 or 1.

SSIM Structural similarity index measure (SSIM) is a metric that evaluates how similar two images are in terms of local features such as brightness and contrast. It takes into account the spatial relationships between neighboring pixels. SSIM values range from 0, meaning no similarity, to 1, meaning perfect similarity.

IS Inception score (IS) is a metric that assesses how realistic and diverse the images generated by a model are. It uses a pretrained neural network to classify the images and computes a score based on how well they fit into different categories. A higher IS means more realistic and varied images.

FID Fréchet Inception Distance (FID) is another metric that compares the quality and diversity of generated images to ground truth images. It calculates the distance between two statistical representations of the image distributions, called feature vectors, which are extracted by a pretrained neural network. A lower FID means more similar distributions and better quality images. For this study FID was scored against the training or validation sets when applicable.

Dataset	Hidden Size	Depth	Nucleus Proportion MAPE	Image MAE	PDF MAE	SSIM	FID	IS
	480	68	0.0257 ± 0.0250	0.3340 ± 0.0788	0.2846 ± 0.0985	0.2633 ± 0.1781	12.0332	$2.2900 \pm .0410$
HPA	640	55	0.0294 ± 0.0278	0.3283 ± 0.0805	0.2842 ± 0.0991	0.2826 ± 0.1827	21.7942	2.2618 ± 0.0364
	1280	25	0.0370 ± 0.0360	0.3622 ± 0.0799	0.2967 ± 0.0985	0.2645 ± 0.1857	1.5161	2.5440 ± 0.0490
	2560	5	0.0818 ± 0.0794	0.3516 ± 0.0792	0.3104 ± 0.0904	0.2558 ± 0.1619	23.7977	2.1578 ± 0.0290
	480	68	0.0161 ± 0.0148	0.4953 ± 0.0064	$\textbf{0.3620} \pm \textbf{0.1168}$	0.1220 ± 0.1188	1.5844	${\bf 2.6069 \pm 0.1175}$
OpenCell	640	55	0.0159 ± 0.0136	0.4995 ± 0.0006	0.3785 ± 0.1008	0.1011 ± 0.1012	2.6966	2.0974 ± 0.0981
	1280	25	0.0272 ± 0.0223	0.4996 ± 0.0010	0.4359 ± 0.0700	0.0694 ± 0.0472	8.9102	1.3712 ± 0.0432
	2560	5	0.0584 ± 0.0511	0.4996 ± 0.0005	0.4145 ± 0.0889	0.0890 ± 0.0667	9.5116	1.4176 ± 0.0329

 Table 3.1: Validation Set Image Prediction Accuracy

We also visually inspected some of the generated protein images (Fig. 3.2, Fig. 3.3). The images appeared realistic and consistent with the ground truth labels, but they had low

entropy in the predicted distribution. This suggests that the models learned to generate images with high probability tokens, but failed to capture the uncertainty and variability of the image tokens. This could be attributed to the rapid overfitting of the OpenCell models, which limited their generalization ability.

We found that models performed better on their own datasets than on the other dataset. However, the HPA-trained model had higher image prediction performance on the OpenCell dataset than the OpenCell-trained model, with lower PDF MAE values for all categories. The HPA model also had lower FID on the OpenCell validation set, indicating the benefits of having more data despite different imaging conditions. **OpenCell_480** achieved the best scores for 4 out of 8 metrics (MAPE, MAE, SSIM and IS). This performance is likely due to the large number of parameters in the model, which is 25M.

Masked Sequence In-Filling

To test each model's sequence learning, we used a masked in-filling task similar to the training task. Similar to Section 3, we provide CELL-E 2 with a randomly masked (15 %) sequence, a nucleus image, and a threshold image. To select the sequence prediction we perform a weighted random sampling operation from the 3 amino acids with the highest predicted probabilities. We measured the accuracy as the percentage of correct predictions (noted as "Sequence MAE", see Section A). We then embedded each reconstructed sequence with esm2_t36_3B_UR50D, the largest model we could fit in memory, with 3B parameters, 36 layers and an embedding dimension of 2560. We computed the mean cosine similarity between the embeddings of the original and reconstructed sequences at masked positions. We show validation results in (Table 3.2) and all results in (Table A.2).

We evaluate only on masked positions using the following criteria:

Sequence MAE This metric calculates the average absolute difference between each amino acid in the predicted sequence and the ground truth sequence. A lower MAE means a better match.

Cosine Similarity We evaluate cosine similarity of the amino acid embeddings. This metric measures the angle between two vectors that represent the predicted sequence and the ground truth sequence. It ranges from -1 to 1, where 1 means the vectors are identical, 0 means they are orthogonal, and -1 means they are opposite. A higher cosine similarity means a more similar sequence.

Most models had low performance on this task in terms of reconstruction. This could be because the models learned to generate amino acids that were common or frequent in the dataset, but not necessarily correct for the specific sequence. However, we also observed values close to 1 for the cosine similarity, indicating that the predicted amino acids had similar embedding values to the original ones at the masked positions. This could be because the models learned to capture some semantic or structural features of the amino acids, such as

Dataset	Hidden Size	Depth	Sequence MAE	Cosine Similarity
НРА	480 640 1280 2560		$\begin{array}{c} 0.8628 \pm 0.0951 \\ 0.7917 \pm 0.1245 \\ 0.6512 \pm 0.1794 \\ \textbf{0.5759} \pm \textbf{0.2322} \end{array}$	$\begin{array}{c} 0.9504 \pm 0.0237 \\ 0.9577 \pm 0.0216 \\ 0.9708 \pm 0.0163 \\ \textbf{0.9722} \pm \textbf{0.0210} \end{array}$
OpenCell	480 640 1280 2560		$\begin{array}{c} 0.7507 \pm 0.1709 \\ 0.6641 \pm 0.1764 \\ 0.5698 \pm 0.2016 \\ \textbf{0.4950} \pm \textbf{0.2456} \end{array}$	$\begin{array}{c} 0.9533 \pm 0.0285 \\ 0.9610 \pm 0.0272 \\ 0.9709 \pm 0.0220 \\ \textbf{0.9711} \pm \textbf{0.0271} \end{array}$

Table 3.2: Validation Set Masked Sequence In-Filling

polarity or charge, that were reflected in the embedding space. Models that used the embedding model with 2560 dimensions had the best performance. For example, OpenCE11_2560 had the best performance on both metrics, with a MAE of 0.4950 and cosine similarity of 0.9711.

Table 3.3: ESM-2 Masked Sequence In-Filling Accuracy (No Image)

Training Set Proteins								
Dataset	Hidden Size	# Layers	Sequence MAE	Cosine Similarity				
	480	12	$.7351 \pm .1100$	$.9464 \pm .0232$				
HPA	640	30	$.6507 \pm .1317$	$.9572 \pm .0183$				
	1280	33	$.4921 \pm .1741$	$.9724 \pm .0133$				
	2560	36	$\textbf{.3818} \pm \textbf{.1911}$	$\textbf{.9778} \pm \textbf{.0130}$				
	480	12	$.7276 \pm .1144$	$.9425 \pm .0233$				
OpenCell	640	30	$.6151 \pm .1364$	$.9572 \pm .0159$				
	1280	33	$.4335 \pm .1650$	$.9746 \pm .0082$				
	2560	36	$\textbf{.3298} \pm \textbf{.1762}$	$\textbf{.9793} \pm \textbf{.0089}$				

Validation Set Proteins								
Dataset	Hidden Size	# Layers	Sequence MAE	Cosine Similarity				
	480	12	$.7368 \pm .1116$	$.9471 \pm .0209$				
HPA	640	30	$.6553 \pm .1334$	$.9571 \pm .0161$				
	1280	33	$.5005 \pm .1705$	$.9723 \pm .0096$				
	2560	36	$\textbf{.3894} \pm \textbf{.1911}$	$\textbf{.9777} \pm \textbf{.0096}$				
	480	12	$.7355 \pm .1130$	$.9381 \pm .0286$				
OpenCell	640	30	$.6185 \pm .1454$	$.9538 \pm .0199$				
	1280	33	$.4260 \pm .1822$	$.9737 \pm .0096$				
	2560	36	$\textbf{.3220} \pm \textbf{.1848}$	$\textbf{.9789} \pm \textbf{.0086}$				

We also note that the reconstruction ability does not improve the performance of the

original language models (Table 3.3). This may be a result of the combined image/sequence loss used during training or because of a smaller corpus of data compared to datasets used for the training the original language model.

Evaluation results across both datasets can be found in (Table A.2)

Finetuning

We experimented with different finetuning strategies for CELL-E 2 on the OpenCell dataset. We used the pre-trained HPA checkpoint as the starting point for all finetuned models, continuing training on the OpenCell train set. We also evaluated the pre-trained HPA and OpenCell checkpoints without any finetuning as baselines. The finetuned models differed in how they updated the image encoders:

- HPA Finetuned (HPA VQGAN): we kept the original VQGAN image encoders from the HPA checkpoint.
- HPA Finetuned (OpenCell VQGAN): we replaced the image encoders with the Open-Cell VQGANs.
- HPA Finetuned (Finetuned HPA VQGAN): we finetuned the HPA image encoders while keeping the rest of the model frozen, then freeze the image encoders and update the transformer weights.

Fig. 3.4 shows image predictions on an OpenCell validation protein for models with hidden size = 480. Surprisingly, the pre-trained HPA model already achieved strong performance on the OpenCell dataset without any finetuning (seeTable A.3). The best results were obtained by fine-tuning both the VQGAN image encoders and using them in the HPA base transformer checkpoint (see Table 3.4). We attribute the 1.81% improvement in MAE, along with the improvements in FID and IS, to the finetuning of both the VQGANs, as it improved the consistency of image patch tokens. This provided the checkpoint with more reliable image patches to generate from. However, swapping the HPA VQGAN with an OpenCell one led to a similar losses of distribution information seen in Fig. 3.3. This could be because the model overfits before being able to learn probabilities across tokens. The learning obstacle comes from the possibility that images patches within the finetuned OpenCell VQGAN have sufficient (or even more) pixel consistency with the images, but the patch positional indices are misaligned with those of the HPA VQGAN. These findings are consistent with those found in analogous text-to-image works utilizing diffusion models.

We did not find that finetuning improved the sequence reconstruction ability of the model (see Table A.4).

 Table 3.4: OpenCell Validation Set Image Prediction Accuracy after Finetuning

Fine-Tuned	Threshold Image Encoder	Nucleus Proportion MAPE	Image MAE	PDF MAE	SSIM	FID	IS
No	HPA	0.0181 ± 0.0168	0.4154 ± 0.0594	0.3887 ± 0.1270	0.1250 ± 0.1149	3.9509	2.1739 ± 0.1255
No	OpenCell	0.0161 ± 0.0148	0.4953 ± 0.0064	0.3620 ± 0.1168	0.1220 ± 0.1188	1.5844	2.6069 ± 0.1175
Yes	HPA	0.0166 ± 0.0151	0.3776 ± 0.0834	0.3477 ± 0.1268	0.1869 ± 0.1503	17.4075	2.9113 ± 0.1199
Yes	OpenCell	0.0159 ± 0.0156	0.4996 ± 0.0006	0.3506 ± 0.1208	0.1574 ± 0.1372	2.5026	2.7168 ± 0.1137
Yes	HPA Finetuned	0.0170 ± 0.0160	0.3449 ± 0.1305	0.3487 ± 0.1340	0.1881 ± 0.1541	19.2683	$\bf 3.6083 \pm 0.2013$

CHAPTER 3. RESULTS

Figure 3.1: More randomly selected predictions from HPA Finetuned HPA VQGAN_480. We only note an incorrect prediction in Eukaryotic translation initiation factor 5.

Figure 3.2: CELL-E 2 models trained on the HPA dataset. Predictions are shown based on the hidden size of the transformer embedding. We see the strongest performance from the 480 and 640 models. Localization is expected within the mitochondria in the selected protein. Not the heightened intensity within the nuclear region in the 1280 and 2560 models predictions.

Original Image

OpenCell Model Size Comparison Actin-binding protein WASF1

Thresholded Label (Ground Truth)

Generated Image

Predicted Distribution

Figure 3.3: Similar to Fig. 3.2, we depict the performance of CELL-E 2 models only trained on the OpenCell dataset. We see the best performance on the 480 model, but not drastically different predicted distribution images. This is likely a function of reduced training time due to the quick overfitting of the model.

Finetuned Model Comparison Glycerol-3-phosphate acyltransferase 4

Figure 3.4: Various model performance from different fine tuning methods. We note superior predictive performance from the model with where we initially fine-tune the image encoder.

Chapter 4

Discussion

Speed

In Table 4.1, we compare the speed localization prediction from scratch of CELL-E 2 against CELL-E. We found that the CELL-E 2 with hidden size of 480 was able to generate a prediction $65 \times$ faster than the CELL-E model. This is a result of the model's capability to generate a prediction in a single step (.2784 seconds). This level of speed enables the advent of large-scale *in silico* mutagenesis studies.

Model	Hidden Size	Autoregressive	Mean Generation Time (s)
CELL-E (Cached)	768	Yes	18.2740 ± 0.0451
CELL-E (Non-Cached)	768	Yes	28.7694 ± 0.3207
CELL-E 2	480	Yes	55.0057 ± 0.2069
CELL-E 2	640	Yes	62.9650 ± 0.1033
CELL-E 2	1280	Yes	74.3698 ± 0.1788
CELL-E 2	2560	Yes	128.9960 ± 0.3718
CELL-E 2	480	No	$\boldsymbol{0.2784 \pm 0.0006}$
CELL-E 2	640	No	0.3067 ± 0.0012
CELL-E 2	1280	No	0.3249 ± 0.0011
CELL-E 2	2560	No	0.5487 ± 0.0022

Table 4.1: Speed Comparison

Table 4.1 depicts the mean time taken for 10 separate model predictions. CELL-E is not directly comparable to CELL-E 2 due to differences in language model and package versioning, so we opt to include the compute time of CELL-E 2 using an autoregressive reconstruction scheme (i.e. 256 sequential steps from top left to bottom right). CELL-E 2 model run in autoregressive mode are significantly slower due to the lack of cache implementation found in CELL-E and the larger ESM-2 language model compared to the TAPE model used in CELL-E. CELL-E 2 models which generate the prediction in a single step (NAR) are an orders of magnitude faster than their autoregressive counterparts.

De novo NLS Design

CELL-E 2 "s bidirectional integration of sequence and image information allows for an entirely novel image-based approach to *de novo* protein design. We applied CELL-E 2 to generate NLSs for GFP, a common protein engineering target [73–75] that is non-native and absent in the datasets. NLS are short amino acid sequences that direct proteins to the nucleus. They are usually identified by experimental mutagenesis studies or *in silico* screens that search for frequent sequences in nuclear proteins [57, 76]. However, these methods may yield candidates that are highly similar to known ones or not specific to the target protein. A more recent approach uses machine learning on sequence identity to augment featurization and statistical priors [22], but it is limited by the distribution of training samples due to the scarcity of experimentally verified NLSs. CELL-E 2 overcomes these limitations because it does not rely on explicit labels, and can therefore leverage significantly more unlabelled image data.

We generated a list of 255 novel NLS sequences for GFP using the procedure described in Section 4. Briefly, we insert mask tokens of set length in a GFP sequence and ask the model with best sequence in-filling performance (OpenCell_2560) to fill in the masked amino acids, conditioned on a threshold image generated from the nucleus image (via Cellpose segmentation [72]). To verify the accuracy of the prediction, we pass the predicted sequence through the best performing image model (HPA Finteuned (Finetuned HPA VQGAN)_480), and quantify the proportion of signal intensity within the nucleus of the predicted threshold image (Fig. 4.1). The NLS sequences were then ranked by based on sequence and embedding similarity with known NLSs (see Section 4). The list of candidates can be found in Section B. We found several NLS candidates with high predicted signal in the nucleus, but which were fairly dissimilar from any protein found within NLSdb [76].

NLS generation

 We selected a desired NLS length (iterating over a range of 5 to 30 residues) and inserted that number of mask tokens after the starting methionine in the GFP sequence. (e.g. an NLS of length 5 at the N terminus would have an input sequence of <START> M <MASK_SEQ> <MASK_SEQ> <MASK_SEQ><MASK_SEQ>

```
<MASK_SEQ>SKGEE...<END> <PAD>...).
```

2. We randomly chose a nucleus image and segmented the nuclei area by applying a mask with Cellpose [72]. We assigned the pixels inside the nucleus area to True and used this as the threshold image.

- 3. We inputted the masked GFP sequence, the nucleus image, and the threshold image to the transformer and sampled the output. We used the model depth that achieved the highest performance on sequence reconstruction, which was OpenCell_2560.
- 4. For each sequence length, we generated 300 candidates per length per terminus. We then provided the HPA Finetuned (Finetuned HPA VQGAN)_480 model with the predicted NLS + GFP sequence and the nucleus image. Using the previously calculated nucleus mask, we calculate the percentage of positive intensity predicted within the nucleus bounds. Any sequence with a predicted nucleus proportion intensity < 75% was discarded.

We generated candidate NLS with lengths from 2 to 30 amino acids at the N and C termini of the protein. We ranked them using these criteria:

- Forward Consistency: The proportion of positive signal in the nucleus mask relative to the whole image, using the best image prediction model (480 model), similar to Section 3.
- Image Prediction Confidence: The values from the predicted distribution using a masked approach, indicating the confidence in the localization image prediction.
- Text Prediction Confidence: The average probability values of the predicted NLS sequence tokens.
- Sequence Similarity: The maximum alignment score between the candidate NLS and sequences from the NLSdb, similar to Madani et. al. [29].
- Embedding Cosine Angle: The minimum cosine angle between the embeddings of the candidate NLS and sequences from the NLdb [76], using the same language model from Section 3, except similarity is evaluated on the entire protein sequence (NLS + GFP), rather than limited to the masked positions.

We rounded all values to one decimal place and ranked them by 1) Sequence Similarity, 2) Embedding Cosine Angle, 3) Forward Consistency, 4) Image Prediction Confidence, 5) Text Prediction Confidence.

Classical NLSs are characterized by having regions of basic, positively charged amino acids arginine (R) and lysine (K) [53, 77], and are categorized as "monopartite" or "bipartite", either having a single cluster of basic amino acids or two clusters separated by a linker [78], respectively. We observed a postive corellation between percentage of R and K residues in our predicted NLSs and sequence homology with known NLSs (Table 4.2). The number of clusters per sequence followed a similar trend, with sequences with relatively low sequence homology (Max ID% \leq 33) having at most 2 clusters in 88 % of predictions (Fig. 4.2). The remaining predictions, if correct, are therefore non-classical NLSs.

Max ID $\%$	# Sequences	Mean Sequence Length	Mean % R or K
0% - 33% 33% - 66%	109 133	$\begin{array}{c} 25.6606 \pm 3.0099 \\ 17.1955 \pm 5.0804 \\ 6.0221 \pm 1.2559 \end{array}$	$\begin{array}{c} 20.6379 \pm 8.6101 \\ 32.0076 \pm 12.8334 \\ 57.5724 \pm 17.0351 \end{array}$
66% - 100%	13	6.9231 ± 1.2558	57.5794 ± 17.9351

Table 4.2: NLS Composition

Visualizing Attention

In Fig. 4.3 and Fig. 4.4, we depict the relative attention weights placed on the input amino acid sequence and nucleus image used to generate the threshold prediction. Specifically, we sought to emphasize weights correlated with positive signal, that is patches with largely white pixels. In this way, we do not bias the weights we consider with the use of any manual feature annotations or image segmentation. We first use attention rollout [79] to obtain the relative correlation between tokens at the end of the network. We then take an average across the multiplied attention heads. From here, we separate "positive" vs "negative" signal image patches based on the average intensity within the predicted image. Positive and negative patches are those where $\geq 75\%$ and $\leq 25\%$ are white, respectively. We then subtract the mean attention weights of the negative patches from the positive patches. Those with positive differences are therefore more correlated with a positive signal prediction in the cell. For visualization, we depict the log value of the difference (normalized to 1).

Similar to CELL-E, we observed high attention weights on documented localization sequences correlated with positive protein signal within the threshold image (Fig. 4.3). For sequences with high predicted nucleus proportion intensities, we observed high activation across the entire sequence (novel NLS and GFP residues), with some NLS weights being an order of magnitude higher than others across the GFP sequences (Fig. 4.4). On the contrary, predicted sequences with comparatively less predicted intensity within the nucleus had low activation across the sequence, with little to none in the proposed NLS. We observed similar amounts of attention placed on the nucleus image patches, which largely corresponded to the location of the predicted threshold patches.

4.1 Future Work

In this paper, we have presented CELL-E 2, a novel bidirectional NAR model for protein design and engineering. CELL-E 2 can generate both image and sequence predictions, handle multimodal inputs and outputs, and run significantly faster than the SOTA.

By pre-training on a large HPA dataset and fine-tuning on CELL-E, CELL-E 2 can achieve competitive or superior performance on image and sequence reconstruction tasks. However, one limitation of CELL-E 2 is its output resolution, which is currently (256×256) . This resolution may not capture the fine details of microscopy images. Increasing the output resolution of CELL-E 2 is one direction for future work. Another direction for future work is

to incorporate structural information into the sequence embeddings. CELL-E 2 can generate novel NLS sequences with similar properties to GFP but low homology to existing sequences. However, the current sequence embeddings are based on a language model that may not capture all the structural features of the proteins. These features may affect the image appearance and vice versa.

We believe that CELL-E 2 is a promising model for protein design and engineering. We hope that our work will inspire more research on bidirectional NAR models for this domain and other domains that involve multimodal data.

Figure 4.1: Diagram depicts the pipeline for NLS discovery. In the top half, we predetermine the length of the novel NLS sequence and insert the corresponding number of mask tokens either after the starting Methionine or before the <END> token, depending on the chosen terminus. The threshold image is obtained by passing the nucleus image through Cellpose. In the bottom half, we pass the the GFP with proposed NLS sequence into an image prediction model to ensure predictive consistency of the sequence.

of Basic Amino Acid Stretches per Sequence

Figure 4.2: Pie charts showing the maximum # of stretches (numbers outside of circle) of R and K amino acids per proposed NLS sequence. Stretches are calculated based on the number of continuous R and K amino acids with a maximum tolerance of 2 amino acid gap. Only streches with 4 or more amino acids are counted. Proteins are shown binned with respect to Max ID % sequence homology with the NLSdb (0%-33%, 33%-66%, and 66%-100%). The relative proportion of max stretches per bin is shown as a percentage inside the circle.

Relative Attention Weights for Image Prediction

Figure 4.3: Relative attention weights of predictions from HPA_480 on HPA images with known localization signals (highlighted in red).

Three proteins with documented localization signals show high attention on those regions: Heterogeneous nuclear riboprotein A1 (top left), which localizes to the nucleus and cytoplasm [1, 2]; Nucleoplasmin-2 (bottom left), which localizes to the nucleus [3]; and Mitochondrial import receptor subunit TOM22 homolog (top right), which localizes to the mitochondria [4]. However, Calnexin (bottom right), which localizes to the endoplasmic reticulum [5], does not show high attention on its localization signal despite the correct prediction. This may be due to the loss of subcellular features in the thresholding process caused by the low resolution of the fluorescence image.

We also observe high attention on other amino acids in the sequences that are not known localization signals. These may indicate potential sites of interest for further biological investigation.

Figure 4.4: Attention weights associated with positive signal within the predicted image. Tokens with higher attention weight associated with background patches (low signal) are not highlighted. See Section 4 for more information about the visualization process. We show 3 sequences with the highest (left column) and lowest (right column, not included in Table B.1) predicted nucleus proportion intensity. The GFP sequences are shown with the predicted NLS highlighted in red.

Bibliography

- [1] Lars Jønson, Jonas Vikesaa, Anders Krogh, Lars K. Nielsen, Thomas vO Hansen, Rehannah Borup, Anders H. Johnsen, Jan Christiansen, and Finn C. Nielsen. Molecular composition of IMP1 ribonucleoprotein granules. *Molecular & cellular proteomics: MCP*, 6(5):798–811, May 2007. ISSN 1535-9476. doi: 10.1074/mcp.M600346-MCP200.
- [2] Qing Liu, Shi Shu, Rong Rong Wang, Fang Liu, Bo Cui, Xia Nan Guo, Chao Xia Lu, Xiao Guang Li, Ming Sheng Liu, Bin Peng, Li-ying Cui, and Xue Zhang. Whole-exome sequencing identifies a missense mutation in hnRNPA1 in a family with flail arm ALS. *Neurology*, 87(17):1763, October 2016. doi: 10.1212/WNL.00000000003256.
- [3] J. P. Makkerh, C. Dingwall, and R. A. Laskey. Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. *Current biology: CB*, 6(8):1025–1027, August 1996. ISSN 0960-9822. doi: 10.1016/s0960-9822(02)00648-6.
- [4] M. Yano, N. Hoogenraad, K. Terada, and M. Mori. Identification and functional analysis of human Tom22 for protein import into mitochondria. *Molecular and Cellular Biol*ogy, 20(19):7205–7213, October 2000. ISSN 0270-7306. doi: 10.1128/MCB.20.19.7205-7213.2000.
- [5] Asvin Kk Lakkaraju, Laurence Abrami, Thomas Lemmin, Sanja Blaskovic, Béatrice Kunz, Akio Kihara, Matteo Dal Peraro, and Françoise Gisou van der Goot. Palmi-toylated calnexin is a key component of the ribosome-translocon complex. *The EMBO journal*, 31(7):1823–1835, April 2012. ISSN 1460-2075 0261-4189. doi: 10.1038/emboj.2012.15. Place: England.
- С. [6]Nicholas Paul W. Doetsch, Anita Η. Corbett. Bauer, and Mechanisms Regulating Protein Localization. 16(10):1039-Traffic, 1061. 2015.ISSN 1600-0854. doi: 10.1111/tra.12310. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/tra.12310.
- Mien-Chie Hung and Wolfgang Link. Protein localization in disease and therapy. Journal of Cell Science, 124(Pt 20):3381–3392, October 2011. ISSN 1477-9137. doi: 10.1242/jcs.089110.

- [8] Yuexu Jiang, Duolin Wang, Yifu Yao, Holger Eubel, Patrick Künzler, Ian Max Møller, and Dong Xu. MULocDeep: A deep-learning framework for protein subcellular and suborganellar localization prediction with residue-level interpretation. *Computational and Structural Biotechnology Journal*, 19:4825–4839, January 2021. ISSN 2001-0370. doi: 10.1016/j.csbj.2021.08.027.
- [9] Wen-Yun Yang, Bao-Liang Lu, and Yang Yang. A Comparative Study on Feature Extraction from Protein Sequences for Subcellular Localization Prediction. In 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, pages 1–8, Toronto, ON, Canada, September 2006. IEEE. ISBN 978-1-4244-0623-4 978-1-4244-0624-1. doi: 10.1109/CIBCB.2006.330991.
- [10] Tanel Pärnamaa and Leopold Parts. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning. *G3 Genes/Genomes/Genetics*, 7(5):1385–1392, May 2017. ISSN 2160-1836. doi: 10.1534/g3.116.033654.
- [11] Sonam Aggarwal, Sheifali Gupta, and Rakesh Ahuja. A Review on Protein Subcellular Localization Prediction using Microscopic Images. In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), pages 72–77, October 2021. doi: 10.1109/ISPCC53510.2021.9609437. ISSN: 2643-8615.
- [12] Yuexu Jiang, Duolin Wang, Weiwei Wang, and Dong Xu. Computational methods for protein localization prediction. *Computational and Structural Biotechnology Journal*, 19:5834–5844, January 2021. ISSN 2001-0370. doi: 10.1016/j.csbj.2021.10.023.
- [13] Gaofeng Pan, Chao Sun, Zijun Liao, and Jijun Tang. Machine and Deep LearningDeep learning (DL) for Prediction of Subcellular Localization. In Daniela Cecconi, editor, *Proteomics Data Analysis*, pages 249–261. Springer US, New York, NY, 2021. ISBN 978-1-07-161641-3. doi: 10.1007/978-1-0716-1641-3₁5.
- [14] Emaad Khwaja, Yun S. Song, and Bo Huang. CELL-E: Biological Zero-Shot Text-to-Image Synthesis for Protein Localization Prediction, May 2022. Pages: 2022.05.27.493774 Section: New Results.
- [15] Alexandra M. Schnoes, David C. Ream, Alexander W. Thorman, Patricia C. Babbitt, and Iddo Friedberg. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space. *PLOS Computational Biology*, 9 (5):e1003063, May 2013. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1003063. Publisher: Public Library of Science.
- [16] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation. arXiv:2102.12092 [cs], February 2021. arXiv: 2102.12092.

- [17] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao, Hongxia Yang, and Jie Tang. CogView: Mastering Text-to-Image Generation via Transformers. In Advances in Neural Information Processing Systems, volume 34, pages 19822–19835. Curran Associates, Inc., 2021.
- [18] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors, March 2022. arXiv:2203.13131 [cs].
- [19] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling Autore-gressive Models for Content-Rich Text-to-Image Generation, June 2022. arXiv:2206.10789 [cs].
- [20] Gaurav Bhardwaj, Jacob O'Connor, Stephen Rettie, Yen-Hua Huang, Theresa A. Ramelot, Vikram Khipple Mulligan, Gizem Gokce Alpkilic, Jonathan Palmer, Asim K. Bera, Matthew J. Bick, Maddalena Di Piazza, Xinting Li, Parisa Hosseinzadeh, Timothy W. Craven, Roberto Tejero, Anna Lauko, Ryan Choi, Calina Glynn, Linlin Dong, Robert Griffin, Wesley C. van Voorhis, Jose Rodriguez, Lance Stewart, Gaetano T. Montelione, David Craik, and David Baker. Accurate de novo design of membrane-traversing macrocycles. *Cell*, 185(19):3520–3532.e26, September 2022. ISSN 00928674. doi: 10.1016/j.cell.2022.07.019.
- [21] Jing Yang (John) Wang, Alena Khmelinskaia, William Sheffler, Marcos C. Miranda, Aleksandar Antanasijevic, Andrew J. Borst, Susana V. Torres, Chelsea Shu, Yang Hsia, Una Nattermann, Daniel Ellis, Carl Walkey, Maggie Ahlrichs, Sidney Chan, Alex Kang, Hannah Nguyen, Claire Sydeman, Banumathi Sankaran, Mengyu Wu, Asim K. Bera, Lauren Carter, Brooke Fiala, Michael Murphy, David Baker, Andrew B. Ward, and Neil P. King. Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains. *Proceedings of the National Academy of Sciences*, 120(11): e2214556120, March 2023. doi: 10.1073/pnas.2214556120. Publisher: Proceedings of the National Academy of Sciences.
- [22] Yun Guo, Yang Yang, Yan Huang, and Hong-Bin Shen. Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis. *Analytical Biochemistry*, 591:113565, February 2020. ISSN 0003-2697. doi: 10.1016/j.ab.2019.113565.
- [23] Nathan H. Cho, Keith C. Cheveralls, Andreas-David Brunner, Kibeom Kim, André C. Michaelis, Preethi Raghavan, Hirofumi Kobayashi, Laura Savy, Jason Y. Li, Hera Canaj, James Y. S. Kim, Edna M. Stewart, Christian Gnann, Frank McCarthy, Joana P. Cabrera, Rachel M. Brunetti, Bryant B. Chhun, Greg Dingle, Marco Y. Hein, Bo Huang, Shalin B. Mehta, Jonathan S. Weissman, Rafael Gómez-Sjöberg, Daniel N. Itzhak, Loic A. Royer, Matthias Mann, and Manuel D. Leonetti. OpenCell: proteome-scale endogenous tagging enables the cartography of human cellular organization. Technical report, March 2021.

Company: Cold Spring Harbor Laboratory Distributor: Cold Spring Harbor Laboratory Label: Cold Spring Harbor Laboratory Section: New Results Type: article.

- [24] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling Vision Transformers. pages 12104–12113, 2022.
- [25] Peter J. Thul and Cecilia Lindskog. The human protein atlas: A spatial map of the human proteome. Protein Science: A Publication of the Protein Society, 27(1):233–244, January 2018. ISSN 1469-896X. doi: 10.1002/pro.3307.
- [26] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel, and Yun S. Song. Evaluating Protein Transfer Learning with TAPE. Advances in Neural Information Processing Systems, 32:9689–9701, December 2019. ISSN 1049-5258.
- [27] Ahmed Elnaggar, Hazem Essam, Wafaa Salah-Eldin, Walid Moustafa, Mohamed Elkerdawy, Charlotte Rochereau, and Burkhard Rost. Ankh: Optimized Protein Language Model Unlocks General-Purpose Modelling, January 2023. arXiv:2301.06568 [cs, q-bio].
- [28] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard Rost. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. *IEEE transactions on pattern analysis and machine intelligence*, 44(10):7112–7127, October 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3095381.
- [29] Ali Madani, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M. Holton, Jose Luis Olmos, Caiming Xiong, Zachary Z. Sun, Richard Socher, James S. Fraser, and Nikhil Naik. Large language models generate functional protein sequences across diverse families. *Nature Biotechnology*, pages 1–8, January 2023. ISSN 1546-1696. doi: 10.1038/s41587-022-01618-2. Publisher: Nature Publishing Group.
- [30] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic level protein structure with a language model, December 2022. Pages: 2022.07.20.500902 Section: New Results.
- [31] Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, and Jian Peng. High-resolution de novo structure prediction from primary sequence, January 2022.
- [32] Robert Verkuil, Ori Kabeli, Yilun Du, Basile I. M. Wicky, Lukas F. Milles, Justas Dauparas, David Baker, Sergey Ovchinnikov, Tom Sercu, and Alexander Rives. Language models generalize beyond natural proteins, December 2022. Pages: 2022.12.21.521521 Section: New Results.

- [33] Henrik Nielsen, Konstantinos D. Tsirigos, Søren Brunak, and Gunnar von Heijne. A Brief History of Protein Sorting Prediction. *The Protein Journal*, 38(3):200–216, June 2019. ISSN 1875-8355. doi: 10.1007/s10930-019-09838-3.
- [34] Katelyn C Cook and Ileana M Cristea. Location is everything: protein translocations as a viral infection strategy. *Current Opinion in Chemical Biology*, 48:34–43, February 2019. ISSN 1367-5931. doi: 10.1016/j.cbpa.2018.09.021.
- [35] Josie A. Christopher, Charlotte Stadler, Claire E. Martin, Marcel Morgenstern, Yanbo Pan, Cora N. Betsinger, David G. Rattray, Diana Mahdessian, Anne-Claude Gingras, Bettina Warscheid, Janne Lehtiö, Ileana M. Cristea, Leonard J. Foster, Andrew Emili, and Kathryn S. Lilley. Subcellular proteomics. *Nature Reviews Methods Primers*, 1(1):1–24, April 2021. ISSN 2662-8449. doi: 10.1038/s43586-021-00029-y. Number: 1 Publisher: Nature Publishing Group.
- [36] Vineet Thumuluri, José Juan Almagro Armenteros, Alexander Rosenberg Johansen, Henrik Nielsen, and Ole Winther. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. *Nucleic Acids Research*, 50(W1):W228–W234, July 2022. ISSN 0305-1048. doi: 10.1093/nar/gkac278.
- [37] Leyi Wei, Yijie Ding, Ran Su, Jijun Tang, and Quan Zou. Prediction of human protein subcellular localization using deep learning. *Journal of Parallel and Distributed Computing*, 117:212–217, July 2018. ISSN 0743-7315. doi: 10.1016/j.jpdc.2017.08.009.
- [38] Bin Yu, Wenying Qiu, Cheng Chen, Anjun Ma, Jing Jiang, Hongyan Zhou, and Qin Ma. SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. *Bioinformatics*, 36(4):1074–1081, February 2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/btz734.
- [39] José Juan Almagro Armenteros, Casper Kaae Sønderby, Søren Kaae Sønderby, Henrik Nielsen, and Ole Winther. DeepLoc: prediction of protein subcellular localization using deep learning. *Bioinformatics*, 33(21):3387–3395, November 2017. ISSN 1367-4803. doi: 10.1093/bioinformatics/btx431.
- [40] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical Text-Conditional Image Generation with CLIP Latents, April 2022. arXiv:2204.06125 [cs].
- [41] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. Advances in Neural Information Processing Systems, 35:36479–36494, December 2022.
- [42] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mc-Grew, Ilya Sutskever, and Mark Chen. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models, March 2022. arXiv:2112.10741 [cs].

- [43] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-Resolution Image Synthesis with Latent Diffusion Models, April 2022. arXiv:2112.10752 [cs].
- [44] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, May 2019. arXiv:1810.04805 [cs].
- [45] Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. CogView2: Faster and Better Textto-Image Generation via Hierarchical Transformers, May 2022. arXiv:2204.14217 [cs].
- [46] Huiwen Chang, Han Zhang, Jarred Barber, A. J. Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip Krishnan. Muse: Text-To-Image Generation via Masked Generative Transformers, January 2023. arXiv:2301.00704 [cs].
- [47] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. MaskGIT: Masked Generative Image Transformer, February 2022. arXiv:2202.04200 [cs].
- [48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, December 2017. arXiv:1706.03762 [cs].
- [49] Andreas Digre and Cecilia Lindskog. The Human Protein Atlas—Spatial localization of the human proteome in health and disease. Protein Science, 30(1):218–233, 2021. ISSN 1469-896X. doi: 10.1002/pro.3987. __eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.3987.
- [50] Ying Huang, Beifang Niu, Ying Gao, Limin Fu, and Weizhong Li. CD-HIT Suite: a web server for clustering and comparing biological sequences. *Bioinformatics*, 26(5):680–682, March 2010. ISSN 1367-4803. doi: 10.1093/bioinformatics/btq003.
- [51] The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Research, 43(D1):D204–D212, January 2015. ISSN 0305-1048. doi: 10.1093/nar/gku989.
- [52] Middi Venkata Sai Rishita, Middi Appala Raju, and Tanvir Ahmed Harris. Machine translation using natural language processing. *MATEC Web of Conferences*, 277:02004, 2019. ISSN 2261-236X. doi: 10.1051/matecconf/201927702004. Publisher: EDP Sciences.
- [53] Juane Lu, Tao Wu, Biao Zhang, Suke Liu, Wenjun Song, Jianjun Qiao, and Haihua Ruan. Types of nuclear localization signals and mechanisms of protein import into the nucleus. *Cell Communication and Signaling*, 19(1):60, May 2021. ISSN 1478-811X. doi: 10.1186/s12964-021-00741-y.

- [54] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain, Alex Newhouse, Jason Blazakis, Kris McGuffie, and Jasmine Wang. Release Strategies and the Social Impacts of Language Models, November 2019. arXiv:1908.09203 [cs].
- [55] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming Transformers for High-Resolution Image Synthesis. pages 12873–12883, 2021.
- [56] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.
- [57] M. Cokol, R. Nair, and B. Rost. Finding nuclear localization signals. *EMBO reports*, 1(5): 411–415, November 2000. ISSN 1469-221X. doi: 10.1093/embo-reports/kvd092.
- [58] Paul Horton, Keun-Joon Park, Takeshi Obayashi, Naoya Fujita, Hajime Harada, C.J. Adams-Collier, and Kenta Nakai. WoLF PSORT: protein localization predictor. *Nucleic Acids Research*, 35(suppl_2):W585–W587, July 2007. ISSN 0305-1048. doi: 10.1093/nar/gkm259.
- [59] Michelle S. Scott, François-Michel Boisvert, Mark D. McDowall, Angus I. Lamond, and Geoffrey J. Barton. Characterization and prediction of protein nucleolar localization sequences. *Nucleic Acids Research*, 38(21):7388–7399, November 2010. ISSN 0305-1048. doi: 10.1093/nar/gkq653.
- [60] Yin-Yuan Mo, Chengyi Wang, and William T. Beck. A Novel Nuclear Localization Signal in Human DNA Topoisomerase I*. *Journal of Biological Chemistry*, 275(52):41107–41113, December 2000. ISSN 0021-9258. doi: 10.1074/jbc.M003135200.
- [61] Allison Lange, Ryan E. Mills, Christopher J. Lange, Murray Stewart, Scott E. Devine, and Anita H. Corbett. Classical Nuclear Localization Signals: Definition, Function, and Interaction with Importin *. *Journal of Biological Chemistry*, 282(8):5101–5105, February 2007. ISSN 0021-9258, 1083-351X. doi: 10.1074/jbc.R600026200. Publisher: Elsevier.
- [62] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in PyTorch. October 2017.
- [63] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. RoFormer: Enhanced Transformer with Rotary Position Embedding. arXiv:2104.09864 [cs], October 2021. arXiv: 2104.09864.
- [64] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, December 2014.
- [65] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, November 2017.

- [66] Ulrike Schnell, Freark Dijk, Klaas A. Sjollema, and Ben N. G. Giepmans. Immunolabeling artifacts and the need for live-cell imaging. *Nature Methods*, 9(2):152–158, February 2012. ISSN 1548-7105. doi: 10.1038/nmeth.1855. Number: 2 Publisher: Nature Publishing Group.
- [67] Christian von Mering, Roland Krause, Berend Snel, Michael Cornell, Stephen G. Oliver, Stanley Fields, and Peer Bork. Comparative assessment of large-scale data sets of protein– protein interactions. *Nature*, 417(6887):399–403, May 2002. ISSN 1476-4687. doi: 10.1038/nature750. Number: 6887 Publisher: Nature Publishing Group.
- [68] Justin Pinkney. How to fine tune stable diffusion: how we made the text-to-pokemon model at Lambda, September 2022.
- [69] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion, August 2022. arXiv:2208.01618 [cs].
- [70] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation, March 2023. arXiv:2208.12242 [cs].
- [71] Pierre Chambon, Christian Bluethgen, Curtis P. Langlotz, and Akshay Chaudhari. Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains, October 2022. arXiv:2210.04133 [cs].
- Marius Pachitariu and Carsen Stringer. Cellpose 2.0: how to train your own model. Nature Methods, 19(12):1634–1641, December 2022. ISSN 1548-7105. doi: 10.1038/s41592-022-01663-4. Number: 12 Publisher: Nature Publishing Group.
- [73] R. H. Köhler, W. R. Zipfel, W. W. Webb, and M. R. Hanson. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. *The Plant Journal: For Cell* and Molecular Biology, 11(3):613–621, March 1997. ISSN 0960-7412. doi: 10.1046/j.1365-313x.1997.11030613.x.
- [74] Nicole Maria Seibel, Jihane Eljouni, Marcus Michael Nalaskowski, and Wolfgang Hampe. Nuclear localization of enhanced green fluorescent protein homomultimers. *Analytical Bio-chemistry*, 368(1):95–99, September 2007. ISSN 0003-2697. doi: 10.1016/j.ab.2007.05.025.
- [75] Akira Kitamura, Yusaku Nakayama, and Masataka Kinjo. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding. *Biochemical and Biophysical Research Communications*, 463(3):401–406, July 2015. ISSN 1090-2104. doi: 10.1016/j.bbrc.2015.05.084.
- [76] Michael Bernhofer, Tatyana Goldberg, Silvana Wolf, Mohamed Ahmed, Julian Zaugg, Mikael Boden, and Burkhard Rost. NLSdb-major update for database of nuclear localization signals and nuclear export signals. *Nucleic Acids Research*, 46(D1):D503–D508, January 2018. ISSN 1362-4962. doi: 10.1093/nar/gkx1021.

- [77] Alex N. Nguyen Ba, Anastassia Pogoutse, Nicholas Provart, and Alan M. Moses. NL-Stradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics, 10(1):202, June 2009. ISSN 1471-2105. doi: 10.1186/1471-2105-10-202.
- [78] K. J. Bradley, M. R. Bowl, S. E. Williams, B. N. Ahmad, C. J. Partridge, A. L. Patmanidi, A. M. Kennedy, N. Y. Loh, and R. V. Thakker. Parafibromin is a nuclear protein with a functional monopartite nuclear localization signal. *Oncogene*, 26(8):1213–1221, February 2007. ISSN 0950-9232. doi: 10.1038/sj.onc.1209893.
- [79] Samira Abnar and Willem Zuidema. Quantifying Attention Flow in Transformers, May 2020. arXiv:2005.00928 [cs].

Appendix A

Extended Results

Image Prediction Accuracy

Table A.1 shows the image prediction performance of HPA and OpenCell-trained across both datasets and splits.

Masked Sequence In-Filling

Table A.2 shows the sequence prediction performance (predicting 15 % of masked residues) of the models shown in Table A.1.

FineTuning

Table A.3 shows the image prediction performance of models across datasets after finetuning on the OpenCell dataset. Table A.4 shows the sequence prediction accuracy of the same models.

Dataset	${\rm Train}~{\rm Set}$	Hidden Size	${\rm Depth}$	Nucleus Proportion MAPE	Image MAE	PDF MAE	SSIM	FID	IS
		480	68	$.0254 \pm .0296$	$.3344 \pm .0797$	$.2845 \pm .0991$	$.2635 \pm .1797$	11.4596	$2.3151 \pm .0224$
	HPA	640	55	$.0291 \pm .0318$	$.3286 \pm .0808$	$.2843\pm.0996$	$.2827\pm.1836$	21.0591	$2.2879 \pm .0153$
		1280	25	$.0356 \pm .0341$	$.3640 \pm .0797$	$.2942 \pm .0973$	$.2673 \pm .1862$	1.0080	$2.5634 \pm .0192$
		2560	5	$.0788 \pm .0773$	$.3530 \pm .0795$	$.3097 \pm .0904$	$.2569 \pm .1636$	22.8721	$2.1817 \pm .0166$
HPA									
		480	68	$.0244\pm.0317$	$.4620 \pm .0769$	$.3530 \pm .0803$	$.0865 \pm .0714$	4.1290	$2.7063 \pm .0146$
	OpenCell	640	55	$.0247 \pm .0285$	$.4676 \pm .0778$	$.3572 \pm .0781$	$.0800 \pm .0674$	37.6196	$2.4858 \pm .0169$
	-	1280	25	$.0368 \pm .0321$	$.4678 \pm .0776$	$.3835 \pm .0659$	$.0712 \pm .0518$	21.3462	$1.5207 \pm .0020$
		2560	5	$.0706 \pm .0737$	$.4678 \pm .0777$	$.3474 \pm .0797$	$.1041 \pm .0725$	14.4177	$1.7531 \pm .0109$
		480	68	$.0184 \pm .0177$	$.4138 \pm .0573$	$.3699 \pm .1262$	$.1388 \pm .1206$	3.7217	$2.3090 \pm .0548$
	HPA	640	55	$.0183 \pm .0166$	$.4087 \pm .0579$	$.3835 \pm .1191$	$.1230 \pm .1128$	3.5440	$2.0354 \pm .0998$
		1280	25	$.0219 \pm .0202$	$.4358 \pm .0588$	$.3659 \pm .1141$	$.1225 \pm .1198$	7.1451	$2.1888 \pm .0776$
		2560	5	$.0460 \pm .0418$	$.4164 \pm .0693$	$.3905 \pm .0962$	$.0984 \pm .0870$	7.5480	$2.0104 \pm .0519$
OpenCell									
		480	68	$.0134\pm.0131$	$.4930 \pm .0074$	$.3264 \pm .1108$	$.1620\pm.1429$.8923	$\textbf{3.0345} \pm \textbf{.1000}$
	OpenCell	640	55	$.0141 \pm .0124$	$.4994 \pm .0006$	$.3473 \pm .0995$	$.1291 \pm .1195$	2.8314	$2.3160 \pm .0702$
		1280	25	$.0277 \pm .0230$	$.4996 \pm .0007$	$.4276 \pm .0707$	$.0743 \pm .0518$	9.3420	$1.3759 \pm .0213$
		2560	5	$.0567 \pm .0479$	$.4996\pm.0006$	$.4037\pm.0877$	$.0927 \pm .0681$	9.8328	$1.4463\pm.0260$
				Validation	<u>Set Prote</u>	eins			
Dataset	Train Set	Hidden Size	Depth	Nucleus Proportion MAPE	Image MAE	PDF MAE	SSIM	FID	IS
		480	68	$.0257 \pm .0250$	$.3340\pm.0788$	$.2846\pm.0985$	$.2633\pm.1781$	12.0332	$2.2900\pm.0410$
	HPA	640	55	$.0294 \pm .0278$	$.3283 \pm .0805$	$.2842\pm.0991$	$.2826\pm.1827$	21.7942	$2.2618 \pm .0364$
		1280	25	$.0370 \pm .0360$	$.3622 \pm .0799$	$.2967 \pm .0985$	$.2645\pm.1857$	1.5161	$2.5440\pm.0490$
		2560	5	$.0818 \pm .0794$	$.3516\pm.0792$	$.3104 \pm .0904$	$.2558 \pm .1619$	23.7977	$2.1578 \pm .0290$
HPA									
		480	68	$.0245\pm.0235$	$.4622 \pm .0767$	$.3533 \pm .0803$	$.0861 \pm .0718$	41.5344	$2.6712 \pm .0225$
	OpenCell	640	55	$.0248 \pm .0231$	$.4676 \pm .0776$	$.3575 \pm .0783$	$.0795 \pm .0681$	38.3386	$2.4850 \pm .0381$
		1280	25	$.0371 \pm .0343$	$.4678 \pm .0775$	$.3833 \pm .0661$	$.0713 \pm .0525$	21.6973	$1.5206 \pm .0152$
		2560	5	$.0717 \pm .0722$	$.4678 \pm .0776$	$.3474 \pm .0796$	$.1038 \pm .0731$	14.7231	$1.7524 \pm .0160$
		480	68	$.0181 \pm .0168$	$.4154 \pm .0594$	$.3887 \pm .1270$	$.1250 \pm .1149$	3.9509	$2.1739 \pm .1255$
	HPA	640	55	$.0178 \pm .0165$	$.4058\pm.0574$	$.3651 \pm .1197$	$.1359 \pm .1183$	3.0867	$2.1508 \pm .0384$
		1280	25	$.0227 \pm .0213$	$.4323 \pm .0581$	$.3886 \pm .1128$	$.1051 \pm .1140$	1.4713	$2.0247 \pm .1003$
		2560	5	$.0487 \pm .0453$	$.4202\pm.0722$	$.4049\pm.0870$	$.0874\pm.0792$	9.1799	$1.9269\pm.0768$
OpenCell									
		480	68	$.0161 \pm .0148$	$.4953\pm.0064$	$.3620\pm.1168$	$.1220 \pm .1188$	1.5844	$2.6069 \pm .1175$
	OpenCell	640	55	$.0159\pm.0136$	$.4995\pm.0006$	$.3785 \pm .1008$	$.1011\pm.1012$	2.6966	$2.0974\pm.0981$
		1280	25	$.0272 \pm .0223$	$.4996\pm.0010$	$.4359 \pm .0700$	$.0694 \pm .0472$	8.9102	$1.3712\pm.0432$
		2560	5	$.0584 \pm .0511$	$.4996\pm.0005$	$.4145\pm.0889$	$.0890 \pm .0667$	9.5116	$1.4176 \pm .0329$

Training Set Proteins

Table A.1: Image Prediction Accuracy Across OpenCell and HPA

$\begin{array}{ c c c c c c } \hline Dataset & Train Set & Hidden Size & Depth & Sequence MAE & Cosine Similarity \\ & 480 & 68 & .8548 \pm .1050 & .9500 \pm .0260 \\ & .7738 \pm .1368 & .9580 \pm .0238 \\ & .9580 \pm .0238 \\ & .9733 \pm .0195 \\ & .5294 \pm .2402 & .9732 \pm .0235 \\ & .9733 \pm .0195 \\ & .5294 \pm .2402 & .9732 \pm .0235 \\ & .9733 \pm .0195 \\ & .9732 \pm .0235 \\ & .974 \pm .1356 & .9570 \pm .0291 \\ & .2560 & 5 & .5599 \pm .2294 & .9721 \pm .0235 \\ & .5799 \pm .2294 & .9721 \pm .0235 \\ & .5799 \pm .2294 & .9721 \pm .0235 \\ & .7434 \pm .1356 & .9557 \pm .0263 \\ & .9725 \pm .0219 \\ & .2560 & 5 & .4766 \pm .2281 & .9726 \pm .0266 \\ & 0penCell & 640 & .55 & .6641 \pm .1764 & .9610 \pm .0272 \\ & .2560 & 5 & .4950 \pm .2456 & .9711 \pm .0271 \\ & .2726 \pm .0266 \\ & .9709 \pm .0220 \\ & .5608 \pm .016 & .9709 \pm .0220 \\ & .5608 \pm .016 & .9709 \pm .0220 \\ & .5608 \pm .2016 & .9709 \pm .0220 \\ & .2560 & 5 & .4950 \pm .2456 & .9711 \pm .0216 \\ & .9709 \pm .0220 \\ & .2560 & 5 & .7917 \pm .1245 & .9577 \pm .0216 \\ & .2560 & 5 & .7917 \pm .1245 & .9577 \pm .0216 \\ & .2560 & 5 & .7917 \pm .1245 & .9577 \pm .0216 \\ & .2560 & 5 & .7599 \pm .2322 & .9710 \\ & .2724 \pm .0210 \\ & .276 & .2728 & .9724 \pm .0210 \\ & .276 & .2788 & .9724 \pm .0210 \\ & .276 & .5799 \pm .2388 & .9724 \pm .0210 \\ & .276 & .5791 \pm .2388 & .9529 \pm .0214 \\ & .276 & .5791 \pm .2388 & .9529 \pm .0214 \\ & .276 & .5791 \pm .2388 & .9529 \pm .0214 \\ & .276 & .5791 \pm .2388 & .9724 \pm .0210 \\ & .777 & .214 & .9700 \pm .0250 \\ & .5789 \pm .2388 & .9724 \pm .0210 \\ & .788 & .256 & .5872 \pm .2060 & .9699 \pm .0213 \\ & .5789 \pm .2360 & .5789 \pm .2365 & .9703 \pm .0230 \\ & .5789 \pm .2360 & .5789 \pm .2365 & .9703 \pm .0230 \\ & .5789 \pm .2360 & .5789 \pm .2365 & .9703 \pm .0230 \\ & .5789 \pm .2360 & .5789 \pm .2366 & .9703 \pm .0210 \\ & .278 & .256 & .5872 \pm .2660 & .9703 \pm .0213 \\ & .5680 \pm .2366 & .5783 \pm .2366 & .9703 \pm .0213 \\ & .5680 \pm .2366 & .5783 \pm .2366 & .9703 \pm .0230 \\ & .5880 \pm .0240 & .0513 & .0530 \pm .0$	Training Set Proteins						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dataset	Train Set	Hidden Size	Depth	Sequence MAE	Cosine Similarity	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			480	68	$.8548 \pm .1050$	$.9500 \pm .0260$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		HPA	640	55	$.7738 \pm .1368$	$.9580 \pm .0238$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1280	25	$.5818 \pm .2053$	$.9733\pm.0195$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2560	5	$.5294 \pm .2402$	$.9732 \pm .0235$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HPA						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			480	68	$.8554 \pm .1047$	$.9504 \pm .0262$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		OpenCell	640	55	$.7806 \pm .1343$	$.9576 \pm .0239$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1280	25	$.6377 \pm .1850$	$.9709 \pm .0191$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2560	5	$.5599 \pm .2294$	$.9721 \pm .0235$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			480	68	$.8403 \pm .1102$	$.9463 \pm .0277$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		HPA	640	55	$.7434 \pm .1356$	$.9557 \pm .0263$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1280	25	$.5315 \pm .1996$	$.9725 \pm .0219$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2560	5	$.4760 \pm .2281$	$.9726\pm.0266$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OpenCell						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 0 1	480	68	$.7507 \pm .1709$	$.9533 \pm .0285$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		OpenCell	640	55	$.6641 \pm .1764$	$.9610 \pm .0272$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1280	25	$.5698 \pm .2016$	$.9709 \pm .0220$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2560	5	$.4950\pm.2456$	$.9711 \pm .0271$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Validatio	on Set	Proteins		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dataset	Train Set	Hidden Size	Depth	Sequence MAE	Cosine Similarity	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			480	68	$\frac{1}{8628 + 0.0951}$	9504 ± 0237	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		HPA	640	55	7917 ± 1245	9577 ± 0216	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		111 11	1280	25	$.6512 \pm .1794$	$.9708 \pm .0163$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2560	5	$.5759 \pm .2322$	$.9722 \pm .0210$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HPA		-000	Ű			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			480	68	$.8625 \pm .0935$	$.9508 \pm .0240$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		OpenCell	640	55	$.7927 \pm .1245$	$.9577 \pm .0216$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1280	25	$.6476 \pm .1811$	$.9711 \pm .0163$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2560	5	$.5696 \pm .2288$	$.9724\pm.0210$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			480	68	$.8651 \pm .0992$	$.9420 \pm .0312$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		HPA	640	55	$.7675 \pm .1318$	$.9529 \pm .0271$	
2560 5 $.5137 \pm .2414$ $.9700 \pm .0250$ OpenCell48068 $.8600 \pm .1030$ $.9430 \pm .0316$ OpenCell64055 $.7645 \pm .1332$ $.9532 \pm .0273$ 128025 $.5872 \pm .2060$ $.9703 \pm .0213$ 25605 $.5080 \pm .2365$ $.9703 \pm .0250$			1280	25	$.5910 \pm .2065$	$.9699 \pm .0213$	
OpenCell 480 68 $.8600 \pm .1030$ $.9430 \pm .0316$ OpenCell 640 55 $.7645 \pm .1332$ $.9532 \pm .0273$ 1280 25 $.5872 \pm .2060$ $.9703 \pm .0213$ 2560 5 $.5080 \pm .2365$ $.9703 \pm .0250$			2560	5	$.5137 \pm .2414$	$.9700 \pm .0250$	
OpenCell 640 55 $.7645 \pm .1332$ $.9532 \pm .0273$ 1280 25 $.5872 \pm .2060$ $.9703 \pm .0213$ 2560 5 $.5080 \pm .2365$ $.9703 \pm .0250$	OpenCell		480	68	$.8600 \pm .1030$	$.9430 \pm .0316$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		OpenCell	640	55	$.7645 \pm .1332$	$.9532 \pm .0273$	
$2560 5 .5080 \pm .2365 .9703 \pm .0250$		SPERCEN	1280	25	$.5872 \pm .2060$	$.9703 \pm .0213$	
			2560	5	$.5080 \pm .2365$	$.9703\pm.0250$	

Table A.2: Masked Sequence In-Filling Accuracy

Table A.3: Image Prediction Accuracy after Finetuning on HPA and OpenCell

	Training Set Proteins								
Dataset	Image Encoders	Hidden Size	Depth	Nucleus Proportion MAPE	Image MAE	PDF MAE	SSIM	FID	IS
	HPA			$.0292 \pm .0291$	$.3606 \pm .0832$	$.3599 \pm .0836$	$.2237 \pm .1479$	22.0947	$2.8130\pm.0208$
	Opencell	480	68	$.0245 \pm .0317$	$.4680\pm.0776$	$.3428 \pm .0833$	$.1047 \pm .0840$	23.2398	$3.0922\pm.0167$
	HPA Finetuned			$.0249 \pm .0289$	$.3755 \pm .1011$	$.3292 \pm .0848$	$.1406 \pm .1027$	8.3675	$\textbf{3.9647} \pm \textbf{.0299}$
	HPA			$.0299 \pm .0263$	$.3475 \pm .0834$	$.3472 \pm .0819$	$.1516\pm.1118$	6.7563	$2.0455\pm.0099$
	Opencell	640	55	$.0273 \pm .0254$	$.4518\pm.0570$	$.3505 \pm .0778$	$.0900\pm.0747$	31.7937	$2.5763 \pm .0119$
HPA	HPA Finetuned			$.0270 \pm .0249$	$.3041\pm.0907$	$.3328 \pm .0794$	$.1278 \pm .0910$	11.4788	$2.3392 \pm .0130$
	HPA			$.0448 \pm .0400$	$.3461 \pm .0820$	$.3350 \pm .0842$	$.2004 \pm .1364$	6.8770	$2.1677 \pm .0096$
	OpenCell	1280	25	$.0426 \pm .0410$	$.4486 \pm .0556$	$.3401\pm.0826$	$.1067 \pm .0841$	17.6565	$2.7158 \pm .0105$
	HPA Finetuned			$.0435 \pm .0437$	$.3315 \pm .0888$	$.3323 \pm .0826$	$.1762 \pm .1183$	5.9633	$2.2360 \pm .0279$
	HPA			$.0729 \pm .0655$	$.3844 \pm .0704$	$.3590 \pm .0792$	$.1793 \pm .1161$	12.6113	$2.0646 \pm .0112$
	OpenCell	2560	5	$.0727 \pm .0776$	$.4736 \pm .0633$	$.3428 \pm .0847$	$.1291 \pm .0925$	8.4963	$2.1803 \pm .0116$
	HPA Finetuned			$.0744 \pm .0671$	$.3507 \pm .0803$	$.3599 \pm .0795$	$.2014 \pm .1322$	16.672	$2.2908 \pm .0156$
	HPA			$.0157 \pm .0151$	$.3712 \pm .0791$	$.3699 \pm .0799$	$.2038 \pm .1525$	17.1616	$3.0822 \pm .0843$
	OpenCell	480	68	$.0135\pm.0135$	$.4996 \pm .0007$	$.3161 \pm .1117$	$.1874 \pm .1495$	1.5167	$3.0898 \pm .1459$
	HPA Finetuned			$.0154 \pm .0150$	$.3170 \pm .1159$	$.3186 \pm .1215$	$.2125\pm.1600$	18.7426	$3.9276 \pm .1406$
	HPA			$.0165 \pm .0151$	$.4011 \pm .0667$	$.3439 \pm .1026$	$.1263 \pm .1063$	6.0163	$2.2918 \pm .0533$
0 0 1	OpenCell	640	55	$.0149 \pm .0136$	$.4732 \pm .0192$	$.3415 \pm .1054$	$.1356 \pm .1281$	4.9600	$2.4016 \pm .0866$
OpenCell	HPA Finetuned			$.0167 \pm .0150$	$.3305 \pm .1035$	$.3400 \pm .1059$	$.1525 \pm .1195$	2.8065	$2.7464 \pm .0621$
	HPA	1000	05	$.0243 \pm .0224$	$.3817 \pm .0686$	$.3355 \pm .1065$	$.1546 \pm .1201$	3.7530	$2.5043 \pm .0454$
	OpenCell	1280	25	$.0220 \pm .0205$	$.4671 \pm .0278$	$.3236 \pm .1089$	$.1702 \pm .1491$.5084	$3.0222 \pm .1054$
	HPA Finetuned			$.0254 \pm .0241$	$.3701 \pm .0838$	$.3581 \pm .1054$	$.1468 \pm .1156$	5.2415	$2.5990 \pm .1403$
	HPA	05.00	-	$.0411 \pm .0379$	$.4007 \pm .0745$	$.3303 \pm .1087$	$.1775 \pm .1299$	14.7029	$2.4132 \pm .0003$
	UDA Einstein	2500	9	$.0540 \pm .0492$	$.4977 \pm .0124$	$.3753 \pm .1089$	$.1030 \pm .1200$	20.8880	$1.8080 \pm .0489$
	HFA Filletuned			$.0594 \pm .0559$	$.3710 \pm .0843$	$.3492 \pm .1032$	$.1727 \pm .1203$	10.0400	$2.3420 \pm .0037$
				Validation S	Set Proteir	ıs			
Dataset									
Baraber	Image Encoders	Hidden Size	Depth	Nucleus Proportion MAPE	Image MAE	PDF MAE	SSIM	FID	IS
Databet	Image Encoders HPA	Hidden Size	Depth	Nucleus Proportion MAPE $.0291 \pm .0259$	$\begin{array}{r} \text{Image MAE} \\ .3589 \pm .0838 \end{array}$	PDF MAE .3583 ± .0843	$\frac{\rm SSIM}{.2246\pm.1501}$	FID 21.8254	IS 2.8176 ± .0210
Davabor	Image Encoders HPA Opencell	Hidden Size 480	Depth 68	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233	Image MAE .3589 ± .0838 .4681 ± .0774	PDF MAE .3583 ± .0843 .3430 ± .0833	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \end{array}$	FID 21.8254 23.9367	$\begin{split} & \text{IS} \\ & 2.8176 \pm .0210 \\ & 3.0918 \pm .0519 \end{split}$
Databet	Image Encoders HPA Opencell HPA Finetuned	Hidden Size 480	Depth 68	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$	Image MAE .3589 ± .0838 .4681 ± .0774 .3427 ± .0908	PDF MAE .3583 ± .0843 .3430 ± .0833 .3292 ± .0847	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \end{array}$	FID 21.8254 23.9367 8.7002	$IS \\ 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \textbf{3.9302} \pm .0716 \\ \end{cases}$
Databet	Image Encoders HPA Opencell HPA Finetuned HPA	Hidden Size 480	Depth 68	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$	Image MAE $.3589 \pm .0838$ $.4681 \pm .0774$ $.3427 \pm .0908$ $.3469 \pm .0835$	PDF MAE .3583 ± .0843 .3430 ± .0833 .3292 ± .0847 .3476 ± .0821	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ \textbf{.1047} \pm \textbf{.0853} \\ \textbf{.1397} \pm \textbf{.1047} \\ \textbf{.1496} \pm \textbf{.1117} \end{array}$	FID 21.8254 23.9367 8.7002 7.0875	$\begin{split} & IS \\ & 2.8176 \pm .0210 \\ & 3.0918 \pm .0519 \\ & \textbf{3.9302} \pm .0716 \\ & 2.0259 \pm .0310 \end{split}$
<u>Databot</u>	Image Encoders HPA Opencell HPA Finetuned HPA Opencell	Hidden Size 480 640	Depth 68 55	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$ $.0276 \pm .0265$	$\begin{array}{c} \text{Image MAE} \\ \hline .3589 \pm .0838 \\ .4681 \pm .0774 \\ .3427 \pm .0908 \\ .3469 \pm .0835 \\ .4519 \pm .0567 \end{array}$	PDF MAE .3583 ± .0843 .3430 ± .0833 .3292 ± .0847 .3476 ± .0821 .3502 ± .0779	$\begin{array}{c} {\rm SSIM} \\ \hline {\bf .2246 \pm .1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \textbf{3.9302} \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned	Hidden Size 480 640	Depth 68 55	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$ $.0276 \pm .0265$ $.0279 \pm .0262$	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906	PDF MAE .3583 ± .0843 .3430 ± .0833 .3292 ± .0847 .3476 ± .0821 .3502 ± .0779 .3326 ± .0793	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm .1501 \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \hline \textbf{3.9302} \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ \hline \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA	Hidden Size 480 640	Depth 68 55	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$ $.0276 \pm .0265$ $.0279 \pm .0262$ $.0454 \pm .0434$	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822	PDF MAE .3583 \pm .0843 .3430 \pm .0833 .3292 \pm .0847 .3476 \pm .0821 .3502 \pm .0779 .3326 \pm .0793 .3326 \pm .0847	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1368 \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 0.0705 \pm .0020 \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell	Hidden Size 480 640 1280	Depth 68 55 25	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$ $.0276 \pm .0265$ $.0279 \pm .0262$ $.0454 \pm .0434$ $.0433 \pm .0444$	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .4484 \pm .0560	PDF MAE $.3583 \pm .0843$ $.3430 \pm .0833$ $.3292 \pm .0847$ $.3476 \pm .0821$ $.3502 \pm .0779$ $.3362 \pm .0793$ $.3362 \pm .0847$ $.3400 \pm .0827$	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1064 \pm .0484 \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.0027 \pm .0410 \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned	Hidden Size 480 640 1280	Depth 68 55 25	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$ $.0276 \pm .0265$ $.0279 \pm .0262$ $.0454 \pm .0434$ $.0433 \pm .0444$ $.0430 \pm .0403$	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .484 \pm .0560 .3222 \pm .0882	PDF MAE .3583 \pm .0843 .3430 \pm .0833 .3292 \pm .0847 .3476 \pm .0821 .3502 \pm .0779 .3362 \pm .0793 .3362 \pm .0847 .3400 \pm .0827 .3320 \pm .0824	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1770 \pm .1175 \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \textbf{3.9302} \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0211 \pm .0211 \\ 2.0$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell Opencell	Hidden Size 480 640 1280	Depth 68 55 25	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$ $.0276 \pm .0265$ $.0279 \pm .0262$ $.0454 \pm .0434$ $.0433 \pm .0444$ $.0430 \pm .0403$ $.0746 \pm .0686$.0755	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .362 \pm .0822 .4484 \pm .0560 .3322 \pm .0882 .3828 \pm .0708	PDF MAE .3583 \pm .0843 .3430 \pm .0833 .3292 \pm .0847 .3476 \pm .0821 .3502 \pm .0779 .3362 \pm .0793 .3362 \pm .0827 .3400 \pm .0827 .3200 \pm .0824 .3594 \pm .0807	$\begin{array}{c} {\rm SSIM} \\ \hline .2246 \pm .1501 \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1980 \pm .0577 \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \textbf{3.9302} \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.0491 + .0275 \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Opencell HPA Finetuned HPA OpenCell UPA Finetuned	Hidden Size 480 640 1280 2560	Depth 68 55 25 5	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$ $.0276 \pm .0265$ $.0279 \pm .0262$ $.0454 \pm .0434$ $.0433 \pm .0444$ $.0430 \pm .0403$ $.0746 \pm .0686$ $.0739 \pm .0755$	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .4484 \pm .0560 .3322 \pm .0882 .3828 \pm .0708 .4730 \pm .06516	PDF MAE .3583 \pm .0843 .3430 \pm .0833 .3292 \pm .0847 .3476 \pm .0821 .3502 \pm .0779 .3326 \pm .0793 .3362 \pm .0827 .3400 \pm .0827 .3320 \pm .0847 .3400 \pm .0827 .3320 \pm .0847 .3429 \pm .0807 .3429 \pm .0854	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .0023 \pm .1320 \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4008	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \textbf{3.9302} \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 0.2755 \pm .0310 \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned	Hidden Size 480 640 1280 2560	Depth 68 55 25 5	$\begin{array}{l} \mbox{Nucleus Proportion MAPE} \\ .0291 \pm .0259 \\ .0245 \pm .0233 \\ .0249 \pm .0235 \\ .0304 \pm .0273 \\ .0276 \pm .0265 \\ .0279 \pm .0262 \\ .0454 \pm .0434 \\ .0433 \pm .0444 \\ .0430 \pm .0403 \\ .0746 \pm .0686 \\ .0739 \pm .0755 \\ .0761 \pm .0697 \end{array}$	$\begin{array}{r} {\rm Image \ MAE} \\ .3589 \pm .0838 \\ .4681 \pm .0774 \\ .3427 \pm .0908 \\ .3469 \pm .0835 \\ .4519 \pm .0567 \\ .3041 \pm .0906 \\ .3462 \pm .0822 \\ .4484 \pm .0560 \\ .3222 \pm .0882 \\ .3828 \pm .0708 \\ .4730 \pm .0650 \\ .3510 \pm .0816 \\ \end{array}$	$\begin{array}{r} \text{PDF MAE} \\ .3583 \pm .0843 \\ .3430 \pm .0833 \\ .3292 \pm .0847 \\ .3476 \pm .0821 \\ .3502 \pm .0779 \\ .3326 \pm .0793 \\ .3362 \pm .0847 \\ .3400 \pm .0827 \\ .3400 \pm .0824 \\ .3594 \pm .0807 \\ .3429 \pm .0854 \\ .3603 \pm .0810 \\ \end{array}$	$\begin{array}{c} {\rm SSIM} \\ \hline $.2246 \pm .1501$ \\ .1047 \pm .0853$ \\ .1397 \pm .1047$ \\ .1496 \pm .1117$ \\ .0905 \pm .0759$ \\ .1266 \pm .0917$ \\ .1984 \pm .1368$ \\ .1064 \pm .0848$ \\ .1064 \pm .0848$ \\ .1771 \pm .1162$ \\ .1790 \pm .1176$ \\ .1289 \pm .0957$ \\ .2003 \pm .1332$ \\ \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA OpenCell HPA Finetuned HPA	Hidden Size 480 640 1280 2560	Depth 68 55 25 5	Nucleus Proportion MAPE $.0291 \pm .0259$ $.0245 \pm .0233$ $.0249 \pm .0235$ $.0304 \pm .0273$ $.0276 \pm .0265$ $.0279 \pm .0262$ $.0454 \pm .0434$ $.0433 \pm .0444$ $.0430 \pm .0403$ $.0746 \pm .0686$ $.0739 \pm .0755$ $.0761 \pm .0697$	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .4484 \pm .0560 .3322 \pm .0882 .3828 \pm .0708 .4730 \pm .0650 .3510 \pm .0816 .3776 \pm .0834	PDF MAE .3583 \pm .0843 .3430 \pm .0833 .3292 \pm .0847 .3476 \pm .0821 .3502 \pm .0779 .3326 \pm .0793 .3362 \pm .0827 .3320 \pm .0827 .3320 \pm .0824 .3594 \pm .0807 .3429 \pm .0854 .3603 \pm .0810 .3477 \pm .1268	$\begin{array}{c} \text{SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \textbf{3.9302} \pm .0310 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA OpenCell HPA OpenCell	Hidden Size 480 640 1280 2560	Depth 68 55 25 5	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0433 \pm .0444 .0433 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .4484 \pm .0560 .3322 \pm .0882 .3828 \pm .0708 .4730 \pm .0650 .3510 \pm .0816	PDF MAE .3583 \pm .0843 .3430 \pm .0833 .3292 \pm .0847 .3476 \pm .0821 .3502 \pm .0779 .3326 \pm .0793 .3362 \pm .0847 .3400 \pm .0827 .3320 \pm .0824 .3594 \pm .0807 .3429 \pm .0854 .3603 \pm .0810 .3477 \pm .1268 .3566 \pm .1208	$\begin{array}{c} {\rm SSIM} \\ \hline .2246 \pm .1501 \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned	Hidden Size 480 640 1280 2560 480	Depth 68 55 25 5 68	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0430 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0160	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .4484 \pm .0560 .3322 \pm .0882 .3828 \pm .0708 .4730 \pm .0650 .3510 \pm .0816 .3776 \pm .0834 .4996 \pm .0006 .3440 \pm .1305	PDF MAE .3583 \pm .0843 .3430 \pm .0833 .3292 \pm .0847 .3476 \pm .0821 .3502 \pm .0779 .3362 \pm .0793 .3362 \pm .0847 .3400 \pm .0827 .320 \pm .0824 .3594 \pm .0807 .3429 \pm .0854 .3603 \pm .0810 .34477 \pm .1268 .3566 \pm .1208 .3477 \pm .1208	$\begin{array}{c} {\rm SSIM} \\ \hline $.2246 \pm .1501$\\ .1047 \pm .0853\\ .1397 \pm .1047\\ .1496 \pm .1117\\ .0905 \pm .0759\\ .1266 \pm .0917\\ .1984 \pm .1368\\ .1064 \pm .0848\\ .1071 \pm .1162\\ .1790 \pm .1176\\ .1289 \pm .0957\\ .2003 \pm .1332\\ \hline $.2003 \pm .1332\\ \hline $.1869 \pm .1503\\ .1574 \pm .1541\\ \hline $.1812\\ .1811 \pm .541\\ \hline $.1812\\ .1812\\ .1811 \pm .541\\ \hline $.1812\\ .1812\\ .1811 \pm .541\\ \hline $.1812\\ $	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026	$\begin{array}{r} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA	Hidden Size 480 640 1280 2560 480	Depth 68 55 25 5 68	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0430 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0160 .0176 \pm .0155	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0835 .4519 \pm .0856 .3462 \pm .0822 .4484 \pm .0560 .3222 \pm .0882 .3828 \pm .0708 .4730 \pm .0650 .3510 \pm .0816 .3776 \pm .0834 .4996 \pm .0006 .3449 \pm .1305 .4028 \pm .0668	PDF MAE .3583 \pm .0843 .3430 \pm .0833 .3292 \pm .0847 .3476 \pm .0821 .3502 \pm .0779 .3362 \pm .0793 .3362 \pm .0847 .3400 \pm .0827 .3320 \pm .0824 .3594 \pm .0807 .3429 \pm .0854 .3603 \pm .0810 .3477 \pm .1268 .3566 \pm .1208 .3487 \pm .1340 .3644 \pm 1004	$\begin{array}{c} {\rm SSIM} \\ \hline .2246 \pm .1501 \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \\ \hline .1869 \pm .1503 \\ .1574 \pm .1372 \\ .1881 \pm .1541 \\ .1060 \pm .0928 \\ \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026 19.2683 7 9330	$\begin{array}{r} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline 2.9113 \pm .1199 \\ 2.7168 \pm .1137 \\ \textbf{3.6083 \pm .2013} \\ 2.0560 + 1219 \\ \hline \end{array}$
НРА	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell OpenCell OpenCell HPA Finetuned HPA OpenCell OpenCell OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell	Hidden Size 480 640 1280 2560 480 640	Depth 68 55 25 5 68 55	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0433 \pm .0444 .0430 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0160 .0176 \pm .0149	$\begin{array}{r} {\rm Image \ MAE} \\ {\rm .3589 \pm .0838} \\ {\rm .4681 \pm .0774} \\ {\rm .3427 \pm .0908} \\ {\rm .3469 \pm .0835} \\ {\rm .4519 \pm .0567} \\ {\rm .3041 \pm .0906} \\ {\rm .3462 \pm .0822} \\ {\rm .4484 \pm .0560} \\ {\rm .3322 \pm .0882} \\ {\rm .3828 \pm .0708} \\ {\rm .4730 \pm .0650} \\ {\rm .3510 \pm .0816} \\ \end{array}$	$\begin{array}{r} \text{PDF MAE} \\ .3583 \pm .0843 \\ .3430 \pm .0833 \\ .3292 \pm .0847 \\ .3476 \pm .0821 \\ .3502 \pm .0779 \\ .3362 \pm .0793 \\ .3362 \pm .0847 \\ .3400 \pm .0827 \\ .3320 \pm .0824 \\ .3594 \pm .0807 \\ .3429 \pm .0854 \\ .3603 \pm .0810 \\ \end{array}$	$\begin{array}{c} {\rm SSIM} \\ \hline .2246 \pm .1501 \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \\ \hline .1869 \pm .1503 \\ .1574 \pm .1372 \\ .1881 \pm .1541 \\ .1060 \pm .0928 \\ .1081 \pm .1121 \\ \hline .081 \pm .121 \\ \hline .081 \pm .181 \\ \hline .081 \pm$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026 19.2683 7.9330 5.1479	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \textbf{3.9302} \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$
HPA	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA	Hidden Size 480 640 1280 2560 480 640	Depth 68 55 25 5 68 55	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0430 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0160 .0176 \pm .0155 .0170 \pm .0151 .0170 \pm .0151	$\begin{array}{r} {\rm Image \ MAE} \\ {\rm .3589 \pm .0838} \\ {\rm .4681 \pm .0774} \\ {\rm .3427 \pm .0908} \\ {\rm .3469 \pm .0835} \\ {\rm .4519 \pm .0567} \\ {\rm .3041 \pm .0906} \\ {\rm .3462 \pm .0822} \\ {\rm .4484 \pm .0560} \\ {\rm .3222 \pm .0882} \\ {\rm .3828 \pm .0708} \\ {\rm .4730 \pm .0650} \\ {\rm .3510 \pm .0816} \\ \hline \\ \hline \\ {\rm .3776 \pm .0834} \\ {\rm .4996 \pm .0006} \\ {\rm .3449 \pm .1305} \\ {\rm .4028 \pm .0668} \\ {\rm .4771 \pm .0201} \\ {\rm .3477 \pm .043} \\ \hline \end{array}$	$\begin{array}{r} \text{PDF MAE} \\ \text{.3583 } \pm .0843 \\ \text{.3430 } \pm .0833 \\ \textbf{.3292 } \pm .0847 \\ \text{.3476 } \pm .0821 \\ \text{.3502 } \pm .0779 \\ \text{.3362 } \pm .0793 \\ \text{.3362 } \pm .0847 \\ \text{.3400 } \pm .0827 \\ \text{.3400 } \pm .0827 \\ \text{.3220 } \pm .0824 \\ \text{.3594 } \pm .0807 \\ \text{.3429 } \pm .0854 \\ \text{.3603 } \pm .0810 \\ \end{array}$	$\begin{array}{c} {\rm SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \\ \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026 19.2683 7.9330 5.1479 2.4811	$\begin{array}{r} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \hline 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$
HPA	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA	Hidden Size 480 640 1280 2560 480 640	Depth 68 55 25 5 68 55	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0430 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0160 .0176 \pm .0155 .0170 \pm .0149 .0172 \pm .0151 .0258 \pm .0243	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .4484 \pm .0560 .3322 \pm .0882 .3828 \pm .0708 .4730 \pm .0650 .3510 \pm .0816 .3776 \pm .0834 .4996 \pm .0006 .3449 \pm .1305 .4028 \pm .0668 .4771 \pm .0201 .3477 \pm .1043	$\begin{array}{r} \text{PDF MAE} \\ .3583 \pm .0843 \\ .3430 \pm .0833 \\ .3292 \pm .0847 \\ .3476 \pm .0821 \\ .3502 \pm .0779 \\ .3362 \pm .0847 \\ .3400 \pm .0827 \\ .3400 \pm .0827 \\ .3420 \pm .0847 \\ .3400 \pm .0827 \\ .3400 \pm .0827 \\ .362 \pm .0847 \\ .3603 \pm .0810 \\ .3634 \pm .0807 \\ .3477 \pm .1268 \\ .3506 \pm .1208 \\ .3487 \pm .1340 \\ .3684 \pm .1074 \\ .3684 \pm .1074 \\ .3583 \pm .1033 \\ .3572 \pm .1050 \\ \end{array}$	$\begin{array}{c} {\rm SSIM} \\ \hline .2246 \pm .1501 \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \\ \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026 19.2683 7.9330 5.1479 2.4811 3.7844	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ \hline 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$
HPA	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell	Hidden Size 480 640 1280 2560 480 640 1280	Depth 68 55 25 5 68 55 25	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0433 \pm .0444 .0433 \pm .0444 .0433 \pm .0444 .0433 \pm .0468 .0739 \pm .0755 .0761 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0160 .0176 \pm .0155 .0170 \pm .0149 .0172 \pm .0151 .0258 \pm .0243 .0262 \pm .0259	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .4484 \pm .0560 .3322 \pm .0882 .3828 \pm .0708 .4730 \pm .0650 .3510 \pm .0816 .3776 \pm .0834 .4996 \pm .0006 .3449 \pm .1305 .4028 \pm .0668 .4771 \pm .0201 .3477 \pm .1043 .3890 \pm .0709 .4743 \pm .0275	$\begin{array}{r} \text{PDF MAE} \\ .3583 \pm .0843 \\ .3430 \pm .0833 \\ .3292 \pm .0847 \\ .3476 \pm .0821 \\ .3502 \pm .0779 \\ .3326 \pm .0793 \\ .3362 \pm .0847 \\ .3400 \pm .0827 \\ .3320 \pm .0824 \\ .3594 \pm .0807 \\ .3429 \pm .0854 \\ .3603 \pm .0810 \\ \end{array}$	$\begin{array}{c} {\rm SSIM} \\ \hline .2246 \pm .1501 \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \\ \hline .1869 \pm .1503 \\ .1574 \pm .1372 \\ .1881 \pm .1541 \\ .1060 \pm .0928 \\ .1081 \pm .1121 \\ .1339 \pm .1083 \\ .1355 \pm .1092 \\ .1339 \pm .1218 \\ .1355 \pm .1092 \\ .1339 \pm .1218 \\ .1345 \pm .1218 \\ .1355 \pm .1092 \\ .1339 \pm .1218 \\ .1345 \pm .1218 \\ .1355 \pm .1092 \\ .1339 \pm .1218 \\ .1345 \pm .1218 \\ .1355 \pm .1092 \\ .1349 \pm .1218 \\ .1345 \pm .1218 \\ .1355 \pm .1092 \\ .1349 \pm .1218 \\ .1345 \pm .1218 \\ .1355 \pm .1092 \\ .1349 \pm .1218 \\ .1345 \pm $	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026 19.2683 7.9330 5.1479 2.4811 3.7844 9.963	$\begin{array}{c} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$
HPA OpenCell	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA	Hidden Size 480 640 1280 2560 480 640 1280	Depth 68 55 25 5 5 68 55 25 25	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0430 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0156 .0170 \pm .0155 .0170 \pm .0155 .0170 \pm .0151 .0258 \pm .0243 .0262 \pm .0259 .0247 \pm .0234	$\begin{array}{r} {\rm Image \ MAE} \\ {\rm .3589 \pm .0838} \\ {\rm .4681 \pm .0774} \\ {\rm .3427 \pm .0908} \\ {\rm .3469 \pm .0835} \\ {\rm .4519 \pm .0567} \\ {\rm .3041 \pm .0906} \\ {\rm .3462 \pm .0822} \\ {\rm .4484 \pm .0560} \\ {\rm .3222 \pm .0882} \\ {\rm .3828 \pm .0708} \\ {\rm .4730 \pm .0650} \\ {\rm .3510 \pm .0816} \\ \hline \\ \\ {\rm .3776 \pm .0834} \\ {\rm .4996 \pm .0006} \\ {\rm .3449 \pm .1305} \\ {\rm .4028 \pm .0668} \\ {\rm .4771 \pm .0201} \\ {\rm .3477 \pm .1043} \\ {\rm .3890 \pm .0775} \\ {\rm .3599 \pm .0813} \\ \end{array}$	$\begin{array}{r} \text{PDF MAE} \\ .3583 \pm .0843 \\ .3430 \pm .0833 \\ .3292 \pm .0847 \\ .3476 \pm .0821 \\ .3502 \pm .0779 \\ .3326 \pm .0793 \\ .3362 \pm .0847 \\ .3400 \pm .0827 \\ .320 \pm .0824 \\ .3594 \pm .0807 \\ .3429 \pm .0854 \\ .3603 \pm .0810 \\ \end{array}$	$\begin{array}{c} {\rm SSIM} \\ \hline {\bf .2246 \pm .1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1071 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \\ \hline {\bf .1869 \pm .1503} \\ .1574 \pm .1372 \\ .1881 \pm .1541 \\ .1060 \pm .0928 \\ .1081 \pm .1121 \\ .1339 \pm .1083 \\ .1355 \pm .1092 \\ .1339 \pm .1218 \\ .1645 \pm .1229 \\ \hline {\bf .128} \\ .1645 \pm .1229 \\ \hline {\bf .128} \\ .1289 \\ .1281 \\ .129 \\ .1281 \\ .1281 \\ .1281 \\ .1281 \\ .1218 \\ .1645 \pm .1229 \\ \hline {\bf .1281} \\ .129 \\ .1281 \\ .129 \\ .1218 \\ .1645 \pm .1229 \\ \hline {\bf .1281} \\ .129 \\ .1218 \\ .129 \\ .129 \\ .1218 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .129 \\ .1218 \\ .129 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 \\ .129 \\ .1218 $	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026 19.2683 7.9330 5.1479 2.4811 3.7844 .9963 4.8118	$\begin{array}{r} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$
HPA	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA	Hidden Size 480 640 1280 2560 480 640 1280	Depth 68 55 25 5 68 55 25 25	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0430 \pm .0434 .0430 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0156 .0170 \pm .0155 .0170 \pm .0151 .0258 \pm .0243 .0262 \pm .0259 .0247 \pm .0234 .0464 \pm .0464	$\begin{array}{r} {\rm Image \ MAE} \\ .3589 \pm .0838 \\ .4681 \pm .0774 \\ .3427 \pm .0908 \\ .3469 \pm .0835 \\ .4519 \pm .0567 \\ .3041 \pm .0906 \\ .3462 \pm .0822 \\ .4484 \pm .0560 \\ .3222 \pm .0882 \\ .322 \pm .0882 \\ .322 \pm .0882 \\ .3510 \pm .0650 \\ .3510 \pm .0816 \\ \hline .3510 \pm .0816 \\ \hline .3776 \pm .0834 \\ .4996 \pm .0006 \\ .3449 \pm .1305 \\ .4028 \pm .0668 \\ .4771 \pm .0201 \\ .3477 \pm .1043 \\ .3890 \pm .0776 \\ .3599 \pm .0813 \\ .4081 \pm .0776 \\ \hline \end{array}$	$\begin{array}{r} \text{PDF MAE} \\ .3583 \pm .0843 \\ .3430 \pm .0833 \\ .3292 \pm .0847 \\ .3476 \pm .0821 \\ .3502 \pm .0779 \\ .3362 \pm .0793 \\ .3362 \pm .0847 \\ .3400 \pm .0827 \\ .3202 \pm .0824 \\ .3594 \pm .0807 \\ .3429 \pm .0854 \\ .3603 \pm .0810 \\ \hline .3603 \pm .0810 \\ \hline .3603 \pm .0810 \\ \hline .3684 \pm .1073 \\ .3684 \pm .1073 \\ .3583 \pm .1033 \\ .3572 \pm .1050 \\ .3576 \pm .1133 \\ .3561 \pm .1078 \\ .3591 \pm .1074 \\ \hline .074 \\ \hline .084 \\ .074 \\ .074 \\ \hline .084 \\ \hline .074 \\ \hline .084 \\ \hline .074 \\ \hline .084 \\ \hline .074 \\ \hline .074 \\ \hline .074 \\ \hline .074 \\ \hline .084 \\ \hline .074 \\ \hline .074 \\ \hline .084 \\ \hline .074 \\ \hline .074 \\ \hline .084 \\ \hline .074 \\ \hline .074 \\ \hline .084 \\ \hline .074 \\ \hline .074 \\ \hline .084 \\ \hline .074 \\ \hline .074 \\ \hline .084 \\ \hline .084 \\ \hline .074 \\ \hline .084 \\ \hline .074 \\ \hline .084 \\ \hline .084 \\ \hline .074 \\ \hline .084 \\ \hline .084 \\ \hline .074 \\ \hline .084 \\ \hline .08$	$\begin{array}{c} {\rm SSIM} \\ \hline $.2246 \pm .1501 \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \\ \hline $.2003 \pm .1332 \\ \hline $.2003 \pm .1332 \\ \hline $.1869 \pm .1503 \\ .1574 \pm .1372 \\ .1881 \pm .1541 \\ .1060 \pm .0928 \\ .1081 \pm .1121 \\ .1339 \pm .1083 \\ .1355 \pm .1092 \\ .1335 \pm .1092 \\ .1398 \pm .1211 \\ \hline $.1584 \pm .121 \\ \hline $.1598 \pm .121 \\ \hline $.1584 \pm$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026 19.2683 7.9330 5.1479 2.4811 3.7844 .9963 4.8118 13.7206	$\begin{array}{r} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$
HPA	Image Encoders HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA Opencell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell HPA OpenCell HPA OpenCell	Hidden Size 480 640 1280 2560 480 640 1280 2560	Depth 68 55 25 5 68 55 25 25 25 5	Nucleus Proportion MAPE .0291 \pm .0259 .0245 \pm .0233 .0249 \pm .0235 .0304 \pm .0273 .0276 \pm .0265 .0279 \pm .0262 .0454 \pm .0434 .0433 \pm .0444 .0433 \pm .0444 .0430 \pm .0403 .0746 \pm .0686 .0739 \pm .0755 .0761 \pm .0697 .0166 \pm .0151 .0159 \pm .0156 .0170 \pm .0156 .0170 \pm .0149 .0176 \pm .0151 .0258 \pm .0243 .0262 \pm .0259 .0247 \pm .0234 .0464 \pm .0464 .0594 \pm .0533	Image MAE .3589 \pm .0838 .4681 \pm .0774 .3427 \pm .0908 .3469 \pm .0835 .4519 \pm .0567 .3041 \pm .0906 .3462 \pm .0822 .4484 \pm .0560 .3222 \pm .0882 .3222 \pm .0882 .3222 \pm .0882 .3232 \pm .0708 .4730 \pm .0650 .3510 \pm .0816 .3776 \pm .0834 .4996 \pm .0006 .3449 \pm .1305 .4028 \pm .0668 .4771 \pm .0201 .3477 \pm .1043 .3890 \pm .0709 .4743 \pm .0275 .3599 \pm .0813 .4081 \pm .0776 .4969 \pm .0021	$\begin{array}{r} \text{PDF MAE} \\ .3583 \pm .0843 \\ .3430 \pm .0833 \\ .3292 \pm .0847 \\ .3476 \pm .0821 \\ .3502 \pm .0779 \\ .3326 \pm .0793 \\ .3362 \pm .0847 \\ .3400 \pm .0827 \\ .3320 \pm .0824 \\ .3594 \pm .0807 \\ .3429 \pm .0854 \\ .3603 \pm .0810 \\ \hline \\ .3477 \pm .1268 \\ .3506 \pm .1208 \\ .3487 \pm .1340 \\ .3684 \pm .1073 \\ .3684 \pm .1073 \\ .3583 \pm .1033 \\ .3572 \pm .1050 \\ .3576 \pm .1133 \\ .3561 \pm .1078 \\ .3591 \pm .1074 \\ .3928 \pm .1074 \\ \end{array}$	$\begin{array}{c} {\rm SSIM} \\ \textbf{.2246} \pm \textbf{.1501} \\ .1047 \pm .0853 \\ .1397 \pm .1047 \\ .1496 \pm .1117 \\ .0905 \pm .0759 \\ .1266 \pm .0917 \\ .1984 \pm .1368 \\ .1064 \pm .0848 \\ .1771 \pm .1162 \\ .1790 \pm .1176 \\ .1289 \pm .0957 \\ .2003 \pm .1332 \\ \end{array}$	FID 21.8254 23.9367 8.7002 7.0875 31.8870 12.0062 6.8893 18.1654 5.9752 12.6199 8.7266 16.4098 17.4075 2.5026 19.2683 7.9330 5.1479 2.4811 3.7844 .9963 4.8118 13.7206	$\begin{array}{r} \text{IS} \\ \hline 2.8176 \pm .0210 \\ 3.0918 \pm .0519 \\ 3.9302 \pm .0716 \\ 2.0259 \pm .0310 \\ 2.5738 \pm .0402 \\ 2.3105 \pm .0310 \\ 2.1656 \pm .0288 \\ 2.7017 \pm .0460 \\ 2.2687 \pm .0112 \\ 2.0311 \pm .0311 \\ 2.1980 \pm .0275 \\ 2.2785 \pm .0319 \\ \hline \end{array}$

Training Set Proteins

Training Set Proteins					
Dataset	Image Encoders	Hidden Size	Depth	Sequence MAE	Cosine Similarity
	HPA			$.8457 \pm .1102$	$.9507 \pm .0260$
	OpenCell	480	68	$.8442 \pm .1144$	$.9508 \pm .0259$
	HPA Finetuned			$.8498 \pm .1108$	$.9506 \pm .0259$
	HPA	640		$.7716 \pm .1365$	$.9581 \pm .0239$
UDA	UDA Einstein d	640	55	$.7729 \pm .1422$	$.9582 \pm .0240$
ПРА	HPA Finetuned			$.7730 \pm .1334$ 5749 $\pm .2022$	$.9579 \pm .0239$
	OpenCell	1280	25	$.5742 \pm .2022$ $5737 \pm .2155$	$.9740 \pm .0194$ $0738 \pm .0106$
	HPA Finetuned	1200	20	5791 ± 2071	$9736 \pm .0196$
	НРА			$.5156 \pm .2443$	$.9738 \pm .0235$
	OpenCell	2560	5	$.5177 \pm .2426$	$.9736 \pm .0236$
	HPA Finetuned			$.5128\pm.2433$	$.9739 \pm .0236$
	HPA			$.8139 \pm .1436$	$.9483 \pm .0279$
	OpenCell	480	68	$.7493 \pm .1909$	$.9528 \pm .0286$
	HPA Finetuned			$.8026 \pm .1585$	$.9493 \pm .0281$
	HPA			$.7339 \pm .1560$	$.9560 \pm .0267$
	OpenCell	640	55	$.6738 \pm .1964$	$.9599 \pm .0277$
OpenCell	HPA Finetuned			$.7338 \pm .1565$	$.9561 \pm .0267$
	HPA			$.4991 \pm .2176$	$.9738 \pm .0226$
	OpenCell	1280	25	$.3697 \pm .2493$	$.9790 \pm .0236$
	HPA Finetuned			$.4959 \pm .2190$	$.9740 \pm .0229$
	HPA	25.00	-	$.4510 \pm .2568$	$.9725 \pm .0273$
	OpenCell	2560	5	$.4289 \pm .2600$	$.9732 \pm .0274$
	HPA Finetuned			$.4482 \pm .2558$	$.9726 \pm .0273$
	Va	lidation	Set P	roteins	
Dataset	Image Encoders	Hidden Size	Depth	Sequence MAE	Cosine Similarity
	HPA			$.8566 \pm .1000$	$.9508 \pm .0238$
	OpenCell	480	68	$.8575 \pm .0973$	$.9507 \pm .0237$
	HPA Finetuned			$.8610 \pm .0998$	$.9507 \pm .0238$
	HPA			$.7920 \pm .1249$	$.9576 \pm .0217$
	OpenCell	640	55	$.7976 \pm .1243$	$.9574 \pm .0217$
HPA	HPA Finetuned			$.7954 \pm .1235$	$.9575 \pm .0216$
	OpenCell	1280	25	$.6434 \pm .1840$	$.9713 \pm .0163$
	HPA Finetuned			$.6446 \pm .1824$	$.9712 \pm .0163$
	HPA On an Call	2560	-	$.5672 \pm .2345$	$.9726 \pm .0209$
	UDA Einstungd	2000	б	$.0731 \pm .2313$	$.9723 \pm .0209$
	nrA rinetuned			$.3031 \pm .2329$	$.9727 \pm .0210$
	При			8560 1 1061	0496 1 0919
	OpenCell	480	68	$.0000 \pm .1001$ $8634 \pm .1101$	$.9420 \pm .0312$ 0421 \pm 0212
	HPA Finaturad	400	08	$.0034 \pm .1101$	$0.9421 \pm .0313$ $0.417 \pm .0211$
	HPA			$.0003 \pm .1090$ $7679 \pm .1340$	0520 ± 0071
	OpenCell	640	55	7829 ± 1385	$.9517 \pm .0271$
0 0 7	A Delly and	0 10	00		
OpenCell	HPA Finetuned			.7792 + 1398	$.9520 \pm 0.00023$
OpenCell	HPA Finetuned HPA			$.7792 \pm .1398$ $.5955 \pm .2134$	$.9520 \pm .0273$ $.9695 \pm .0218$
OpenCell	HPA Finetuned HPA OpenCell	1280	25	$.7792 \pm .1398$ $.5955 \pm .2134$ $.5867 \pm .2172$	$.9520 \pm .0273$ $.9695 \pm .0218$ $.9698 \pm .0219$
OpenCell	HPA Finetuned HPA OpenCell HPA Finetuned	1280	25	$.7792 \pm .1398$ $.5955 \pm .2134$ $.5867 \pm .2172$ $.5931 \pm .2136$	$.9520 \pm .0273$ $.9695 \pm .0218$ $.9698 \pm .0219$ $.9696 \pm .0217$
OpenCell	HPA Finetuned HPA OpenCell HPA Finetuned HPA	1280	25	$\begin{array}{c} .7792 \pm .1308 \\ .5955 \pm .2134 \\ .5867 \pm .2172 \\ .5931 \pm .2136 \\ .5277 \pm .2565 \end{array}$	$\begin{array}{r} .9520 \pm .0273 \\ .9695 \pm .0218 \\ .9698 \pm .0219 \\ .9696 \pm .0217 \\ .9686 \pm .0255 \end{array}$
OpenCell	HPA Finetuned HPA OpenCell HPA Finetuned HPA OpenCell	1280 2560	25 5	$\begin{array}{c} .7792 \pm .1398 \\ .5955 \pm .2134 \\ .5867 \pm .2172 \\ .5931 \pm .2136 \\ .5277 \pm .2565 \\ .5322 \pm .2545 \end{array}$	$\begin{array}{r} .9520 \pm .0273 \\ .9695 \pm .0218 \\ .9698 \pm .0219 \\ .9696 \pm .0217 \\ .9686 \pm .0255 \\ .9684 \pm .0255 \end{array}$

Table A.4: Masked Sequence In-Filling Accuracy after Finetuning on HPA and OpenCell

Appendix B Candidate NLS Sequences

Predicted sequences are shown in Table B.1.

Terminus	Sequence	Terminus	Sequence
Ν	RKRRQR	С	SPTAFPSNVIETIRVKRRMEL
Ν	NKRPRKKEK	\mathbf{C}	EFRAKYRQMGSRKKKKSGQWSA
\mathbf{C}	RPKVI	Ν	KKHKLRSVPDLTELMRMIFLAP
\mathbf{C}	VLKRAKKD	Ν	KLLRFAGKSGMMVLLAPHSGKM
\mathbf{C}	RHKKKKIA	\mathbf{C}	IFQADKDQKAHPPAKKAPSELMQ
Ν	HRRKKR	\mathbf{C}	KGKVKSIMIPPKSRKSLAKVPLS
\mathbf{C}	RSQKRK	Ν	AAGKSFKPRIKKSRMTRDSSETMA
Ν	KCKKKN	\mathbf{C}	TGNRIFGETPSWERERKRPGGGQQ
Ν	KGKRFSK	\mathbf{C}	NKLQKHSKRQPHKLQAMKLKYPTWE
С	AKRLKGK	С	LVFPNRDASIKKPLQNPPQKRRCMIM
С	SKKAKKNKM	Ν	LPKRRRLSRRKKVELEPEYGWEEEVVV
C	EEKRPRF	N	TEAPARTAVKKSRAMKGYIARLASSPS
N	MKICIT	C	IEKSKGKEAPKSSPPLKQNQRSRKMVK
N	AVPAKRARIDG	C	FQVRASPKGKPATKNKLRLLKIRRHRV
C	ESHHLPRAKKR	C	LQEGTRTRSQKAQEPKFKKVSGDIPNK
N	GKERSYPPISKR	N	SDPNTAQYPWMPPQATKRAAMAAREAE
C	KLKKRNRQPEDKK	C	HYKKEKRKRSASPILAEEPVPKCARTLR
C	GGKFATGKKKKPKM	C	LDKRKRIKPPKEEQKELMRKMWGPGSSL
N	PSKLLRQ	N	GSKKSRTATDSLESRMAMEDVAMGEESE
C	QRRKGQKFQT	C	EGSGLVPGNSRKRPEPKKPKKRKKVRRK
C	KTCPPKRPVVEW	C	RKKRQAIQAVTMGRIKKKSYEKQWSKFED
C	DKEKKRKNDHEK	C	ASTVPAYSRSKAGKVEPKPKQKKTQRNAP
N	FRFSC	C	SKQQAEINLKAAKPLETTDISLSKKEKKDM
N	LQSSDKK	C	RRAEGLSEPKRHMAEYEQSRRRQRVVRTAT
C	EMEGKKKKIKKM	N	PPTKKQEPQQENNSEDELRRSSSAADPEER
C	LQRKQKMRSH	C	ANFCSGMQAHLSRDFLCL
C	YGEPCIKRSS	C	GNKLARTEMPAVYTSIGSASKSY
C	AQAKRKRIGFH	C	VELRNGKLKPTEESMSFKRMYGS
C	DSSKKPKFTPK	C	ETTLSGPPFGGPQVVYRPKLQRVT
C	LKSGPSKSQRKN	C	FGGEIQHENSAKKSHLRPNMHEMI
C	TTKKKKNDSUGAS LEGUNDEDKKKKEVM	C	HKAQPAVIQAISVKRAVEDEPVPMAMI
C	LFGKNRFPKKKKFKM OVVVOUVDDVI VVEV	C	HLI SLAMGGLF VLLPIRSRQARGSDVG
U N	GANDOVMI AF	C	LRDARRSASGLPRQDSEG I VGAPKRIN
N C	DVDCVCVVDVCVV	C	LLI GI RLGIGDEKI RRAKHILI SQASK
N	V RVI HEADOSAI	C	I VQSIGVEIFGKRGRSSLFSLIQMAEF
C	CDDAKEMI DV	N	DCDCCDVDDI EDCCDA A E
C	GFFARFMLDV SKOACDCKDCSK	IN C	T GESSKI KELEDGGEAAE VDNMDEDDGEDGUAVTMM
C	DSIPSSRKKRSFM	N	ENEMPTEEHSPKRVOPMNPNS
C	ICPSSSSVEPEEKBT	N	PRNNKKTKMTEL CLTOLAEAV
C	IFVOPASDKKRKAMT	N	DSPKRPFVTSVEEPMSMVIMPE
C	SBNBKKBKNBLBBIBKBOFH	C	FUCNAKRVPFAECULHKVOKK
N	PKRRKPMOGGE	C	KASKKVEDOLDAKKPKMEGKAKP
N	KRALMAEPVVE	C	TOEKAOKKADLBGOPOBKBSKEM
C	KKEKVSKBKOBBBE	C	KPOEVLKEIECTOKPTKKKVLDC
C	VECKCMKRSVRAV	C	IATATHRKRGIKHPHRRSRPLFG
C	BORPAVNAVDI	N	OSNVKROKVPPPENSEMBVAMCSEL
Č	TYKKLPTDKKOOOILKB	C	FSKKPEPTGKBPKKSSBSKFBCHBN
Č	FALKODHKKAK	N	KBKTNOIPSKBEGDOTNMADTKBOKL
Ň	GNHKRYKMKERMGLF	Ċ	FRTKPPKGKNRMSETGSFAMAVKANA
Ċ	KKWKOBIKBILPU	\tilde{c}	TKEPKKPHKKTKMBLBBLNGNSESMSC
Ň	ELGEBPGSRKBTGRE	\tilde{c}	DWFTYAONOAVSNAIEEHHSMLKKHKI
Ň	SLTKAFSOMORSOKK	\tilde{c}	DLRNBRLHLSKVEIVWYGALSKOPRTN
N	LKLHSKLLEKKNKRMM	\tilde{c}	BKBBBGLDBPGYNSSTSHCDDPPTSCW
Ĉ	VTLDOTKKSKTRRKHIFR	$\check{\mathbf{C}}$	HALRKGRIELVYKOTKRSAAITSRYTLE
Ň	DASEMLKGKLKKMKSEGLT	$\tilde{\mathbf{C}}$	KRKAAEDTTEVEMSPGGDEEEKHASPSS

Table B.1: NLS candidates sorted by nucleus proportion.

С	GNRKAKRKDGTLDRNHRLEN	С
С	LDANGPFKDMVKNKRAKRQC	С
С	RDFKEPKPKRRRIRRASGAP	С
Č	DRAVLPPPYKHOKRKEATKKKM	Č
č	AYKLEGVESASAPHSPIKEKEM	Ň
Ň	PTPPSKBOPELSLEFAKOAABEA	N
C	KKKBPCBABBBBBKKKKOCELKIOH	Ĉ
C	KERCCKKRKRETOKKTOSVTRKREK	N
C	VEVEDCESDOOCDI	n C
C		C
C	CDAKDKAEDUUUUUA	C C
C	ADDUDGDOGGOONKDD	C
C	APIFVESPQSSGQNKRE	C
C	KKRGRWGRIRPSYVKDKCL	C
С	LLSDSSSLQHALEPKKIQI	С
С	NTTKPKRKQNKTIT	С
Ν	PPSRGKKLTDNRRSKSPSPLPE	Ν
Ν	DPGPAKKARTMTQS	С
С	NENPTVKQECKK	С
С	KEYIKYQKKKLMM	Ν
С	MIKPAKRSKTEKPQN	С
С	AKKFESLAMKFORLN	С
Ċ	RPTVLPKPGSROAKKSY	Ċ
č	KVEDIEPNTKKESGKOS	č
č	KRSKGKMWMKNLFPEKL	č
C	RKKKKKSBTEREPIRKBK	č
N	STKRCEVERSENI DACEM	c
C	EDVCGTVEDVDOVIDCISN	N
C	EF VG51KFRKRQKIRGISN VVDSVVAEDEMDTVVCCCM	N C
C	KI REKKAFREMINI KVGGGM	G
C	KVSDKASEQHARKKKKQSS	C
N	GKHTCSNKGKRKRKLIHFKSRM	C
C	DRKKDITGHGPEKKKLRKEQQK	C
C	NVDNENIDKKKKFKSVTKGKHD	С
С	ATEGKEPVGPGSSKGRRRRRRP	Ν
С	QGIEVDSSIKGFSHKKKKRKMKM	С
\mathbf{C}	RRKNKLRPARRRRLYPSKRRRRLRPN	С
\mathbf{C}	ERAATAAASTSTKEASPPASKKSYKFEF	С
С	DKKGRKPGRSTGVI	С
С	KRAARRSRVVAPIRSI	С
С	HSSGSPLEKLGRKNNRNRAS	Ν
С	RTRVDGAAAASE	С
Ν	AMAGOTKRRPORKA	С
Ν	SGDGPFHOSKGKRKH	С
С	WNCKRLKEKKSEHPAA	Ĉ
Ň	SGPPAKVOKRAPESDCR	Ň
C	RHPPAEETPKAAKBKPTI	N
č	DKETSKDIGBGGBGKBKLDL	C
C	KKKKKOBKKBKBDOGBLBKW	č
C	I SEEBCKMKBI HKKKBKIKI	ĉ
C	LSF EIGRMAALIIRAAAAAL VCVTVVVDVDEDMDVVDDI T	C
C	KGKI I I KAWALAMI KKAFLI VVDEVDVOVEAVUVDDUVSMLE	N
C	CAREARAQAEAAHARRIASMLE	N
C	SMPKELNSLVPKKRRQGPVRQDIQ	C
U	PQSKRDGKQKDSDN	C
C	RGEAKKESENAKRHQ	C
C	KEKQNITKKAKRKTHK	C
С	DRKSNPFVFLKPKTEEM	\mathbf{C}
\mathbf{C}	KRKDKQIAVKKYPRTKS	С
\mathbf{C}	KLLKTTKITKDAKYPRKH	С
\mathbf{C}	ARYSKSKKKFYNSKLMPH	С
\mathbf{C}	RGGKKKKGARAPVFGASLD	С
С	VDVAFVHKSPGSRKQRGRF	Ν

DKDNLCLKKRERLEDMGYLPKKRASAMRM NIKLDDPIPTDRTGEILMDARKSKIRPMM OSLDPKDDDSAKRPALPHPAKAIKKSRLH NPTLHAPIHFGKMRNLTPPPPPTKKKMKP PRPSLAKRPRFVACKQLMLPDDPVSLHYK PPKQRRRHKTDESLFLGRPDTPSVEWKRKQ SKSPMLAGGGEPHDPSGTESEPVSMRTHTM AEEELTVAVTTASEPAWAGMSSITEIAAKR **KKDAAAPGLVTGDEKRTAM** VPPGYRDKDVKRAKPLSPSYVA RKSRKILCPYMRFYFEHATVGAW KKENTPVQLVPPSKKAARTSLISK SVSKRSRDLVPWSEEGFFQQAKQIQ NVRPAIKKQIPLYDLQRQPEKMRKLINM DFKKKRKKWLLARRMQAC ELAREQEMSPAKRHMTWGTL PHKITEDLTQERRKRGKGGH IGAAKKLHQPVGERASKKAMM SSTEPPADPSAPRSKIPRLATE LVLEKSASSVMEAPSKILKQKM AASPLPLEPPANLGDRKKRKEAIK HPKKKRATGWSPKKQASRKRPKWNAI KGESSGKKQTLKKVCLGHEKRTFSKA ASSKCDHNERDRSSRDKRKTSKKKGNK YFSISRTISKTRKARPRGWEGSKKSRMM STISSVATRRSKKEQRMPAAPSNNLPKKI PRRREADVETRDAAMGGEPKVLQVLHLGN IRYMNIPQRGIPKLPRSE SFTHQDNMPSKRFNGRGRMQH KQRAATLKQTSEESKKPRPIDLH AAPSALSREEPGLWGSMAKRTVLA TSKDQPPHKLMQRAV TMMAMQLARRMGPRFMRSSF KSKFKRQKYAGDHGLKEGDI VPAEREKNRRKRQTHLGYSMGL DVMPNKKLCIVLPPKSLSDAPMQ PLETDHMHRTWSTKIRMCVLMIT KLKRRGIIITGETLNESGLKKLA AARKRGQAKLLERRLEWFWMMIGDML RQSQSISAKWKRESAASQSGEQAEMNM QVRKRYYVRLTSEKPKIPKYQKWLYWM LCMDIVIEYTDARIRKKTAKFLKEINE IYPGKEPPIKLNKSLKSKRESHSADMSF EVSKAQRKQKPAKLPPSTTIQIASVDYE KGGRKEVEVQQRESAPLPALPSEAYEEAVE NMLSPSEPSYVGSTKYGKSIR VHSPWMGVSSTEGLLFLPVKILKQV YAQEPELQSKFKAQRLTDPYFYGPH SRGLAWLMPTVLLCPHKPFRLRVDS RIGSIWEFVRRKEQFWLRVTAMA KLLIEPYAKAKKNŴISMLCSAAMGSFL KSRNKTPPKKGLCVVTSSLKKTVTMTKS SIFGDGKLKDARRKVPHKRRLRILFLSYC GSGLRRKSTKTLQQTSDMAEGKS TLIPFHALKNIFAVVALQALRVVG AALIGSASPLALLRHGVQVLSPDSYW KYKGEQTIVKQEHLGDGVVARMPT RKEMFVRPPTHTHTVTMILRKKLKLSAS SNRHAIMSRPEYNKHEDDNKMQKYIVWM AGASLVMDTAGIGGSVGMRIQTKRHKVD

\mathbf{C}	RTTKKRQTRPPAPRDRRNSL	Ν	KRFMPMMSQNTIHNNPQYINARPSRFPLY
\mathbf{C}	SKLEEKKWALLSSQKHTRQG	Ν	ATAHPTSNAŚWEKESAHAPVKKVHRMKEP
Ν	NKKKNKTCAAAPAAAAPTVM	\mathbf{C}	REHKPAQQQAKGKEPKVPPPTGERTMGYQ
Ν	SKKKKYPGILRVPVGQLPLAEMKSA	\mathbf{C}	AAKKSRTLPETKSGGMKTVRLLEGPMDF
Ν	PKKKRKAPAVWQAAEPAPSSMPPVE	Ν	AAATNPTRAMITLKENRKGHMMGKNKKA
Ν	PFLLVSQLG	\mathbf{C}	VDKKLPPKECMKKMIKMAISKLVAKPTK
Ν	LLATAGIYHLL	\mathbf{C}	YTSVTNFGFKAHDLDFGKFKQEPDLDYD
С	HSSKHLARVL	Ν	ISFSKILMLPLMSLSTAPAMKVQHED
С	RVCRKGNMFIDSSKERS	Ν	AMMAVAMMTMVAMGQFAGDTLKKRNRGE
Ν	MMMMMMMMMKMMMMLCQTLTGQF	RKIRG	LAIGAVEPAMAQEPMIETTMVFQVPERS
С	FLRINAVHRAKGPKKIKSLPA	\mathbf{C}	DGTKLLEGQFTKQSCAATILFPSHD
		Ν	AMAGLAYGQENVPPKNGQGQT